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Abstract 

Although local air movement acts as a critical factor to enhance human thermal 

comfort and energy efficiency, the various factors influencing such movement have led 

to inconsistent publications on how to evaluate and design localised airflow systems in 

practice. This study aims to identify the main impacting factors for a localised airflow 

system and predict a cooling performance based on machine learning algorithms. Three 

typical localised airflow forms, i.e. an isothermal air supply (IASN), non-isothermal air 

supply (NIASN), and floor fan (FF), were deployed. The experiments were conducted 

under a variety of temperature/humidity/air velocity conditions in a well-controlled 

climate chamber, and a database including 1305 original samples was built. The 

primary results indicated that a classification tree C5.0 model showed a better 

prediction performance (83.99%) for a localised airflow system, with 17 input 

parameters in the model. Through a sensitivity analysis, 8 feature variables were 

quantified as having significant main effect responses on subjects’ thermal sensation 

votes (TSV), and three environmental factors (temperature, air velocity, and relative 

humidity) were identified as having the most significant effects. Using the 8 sensitive 

factors, the C5.0 model was modified with 82.30% accuracy for subject TSV prediction. 

A tree model demonstrating the decision rules in the C5.0 model was obtained, with air 

velocity (=0 m/s,＞0 m/s) as the first feature variable, and root node and temperature 

(≤28 °C,＞28 °C) as the second feature variable and leaf node, respectively. The 

outcomes that provide the most influential variables and a machine learning model are 

beneficial for evaluating personal thermal comfort at individual levels and for guiding 

the application of a localised airflow system in buildings. 

 

Keywords: 

Localised airflow system; Influencing factors; Sensitivity analysis; Classification tree 

model; Thermal sensation prediction.  

 

Nomenclature 

PCS personalised comfort system TSVoverall overall thermal sensation  

HVAC heating, ventilation and air-

conditioning 

TSVhead thermal sensation for head 

IASN isothermal air supply nozzle TSVchest thermal sensation for chest 

NIASN non-isothermal air supply nozzle TSVback thermal sensation for back 

FF floor fan TSVhand thermal sensation for hand 

T Air temperature in the chamber TSVlower thermal sensation for lower 

body part 

RH Relative humidity in the chamber Thead head skin temperature 

V Air velocity for the localised 

airflow system 

Tchest chest skin temperature 
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SA sensitivity analysis Tback back skin temperature 

AD body surface area Tupper upper arm skin temperature 

BMI body mass index Tlower lower arm skin temperature 

SVM support vector machine Thand hand skin temperature 

ANN artificial neural network Tthigh thigh skin temperature 

SD Standard deviation Tcalf calf skin temperature 

  Toverall Mean skin temperature 
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1. Introduction 1 

The personalised comfort system (PCS), which was designed to respond to the 2 

energy crisis in the 1970s[1, 2] and to locally change an indoor environment 3 

independently from a heating, ventilation, and air-conditioning (HVAC) system, has 4 

been acknowledged to benefit both thermal comfort and energy efficiency[3, 4]. The 5 

local means of a PCS are targeted to affect the most sensitive body parts to achieve 6 

overall comfort, and thus push the boundaries of conventional comfort zones. An 7 

extended comfort zone can be achieved from 16 °C to 20 °C with personalised warming, 8 

and from 27 °C to 30 °C or more with air velocity adjustments[5]. Most importantly, it 9 

consumes a relatively smaller amount of energy. A field study found that through 10 

applying personal devices and adjusting HVAC supply air set-points, the occupants’ 11 

satisfaction increased from 56% to over 80%, while lowering HVAC energy 12 

consumption by 60% in heating and 40% in cooling [6]. It is generally estimated that 13 

using a PCS can potentially achieve approximately 15%–30% energy savings, with 14 

great user satisfaction [7, 8]. 15 

A localised airflow system, as a crucial type of PCS, has attracted considerable 16 

focus from researchers in both field surveys and lab experiments. Employing a fan to 17 

increase airflow indoors is the most frequent behaviour by occupants in buildings to 18 

extend their comfort zones in the summer [9, 10]. One on-site observation by Mustapa 19 

et al. [11] showed that the use percentage of floor fans was 5.1% in air-conditioned 20 

buildings, but up to 19.4% in naturally-ventilated buildings. A higher fan use proportion 21 

of 64% was obtained in a long-term case study, and increased in summer with the upper 22 

limit of the comfort temperature, up to 28 °C [12]. In-depth research regarding the 23 

relationships between air movement and thermal comfort with localised airflow 24 

systems has been performed via lab experiments. A variety of operating parameters, 25 

such as environmental contexts[13, 14], airflow velocity and turbulence [15–17], the 26 

temperature of supplied air [18], the types of different air supply structures [19–21], 27 

and locally-exposed body parts [22] were examined as having effects on user comfort, 28 

to varying degrees. Additionally, studies [23, 24] that focused on occupant behaviours 29 

regarding the local air supply systems further addressed the significant influence of 30 

personal controls: the upper acceptable temperature limit was increased when the air 31 

supply was accessibly regulated at individual levels. Later, Zhang et al. [7] summarised 32 

five typical PCS models reviewed in current studies, and defined a term “corrective 33 

powder” to quantify the cooling efficiency of the different PCS models. It was 34 

concluded that the offset temperatures ranged from 1 °C to 6 °C for cooling, and from 35 

2 °C to 10 °C for heating. However, these findings are hardly comparable to one another, 36 

as variant factors and conditions exist in different experimental designs, all of which 37 

remarkably affect the performance of localised airflow systems. As such, no consistent 38 

results are available for how to evaluate and design a localised airflow system in 39 

building environments[7], which thwarts its real practical application and wider energy 40 

saving potential.  41 
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A machine learning methodology for problem solving has received increased 42 

attention in many research fields, thanks to its abilities to improve model prediction 43 

performance through continuous learning, and to handle complex and high-dimensional 44 

data [25]. Driven by the building technology improvement and wireless sensor-rich 45 

environments, researchers have shifted their paradigms to a variety of machine learning 46 

algorithms to obtain relationships between human thermal comfort and a number of 47 

factors, aiming to achieve better predictions/evaluations on human thermal comfort and 48 

applications in buildings. Kim et al. [26] integrated field data of environmental 49 

conditions and mechanical system settings as well as occupants’ control behaviours on 50 

a PCS, and predicted the individuals’ thermal comfort responses using six machine 51 

learning algorithms. The results indicated that employing a machine learning technique 52 

enabled a median prediction accuracy of 0.73, as compared to conventional models 53 

(predicted mean vote (PMV), adaptive model) that produced a median accuracy of 0.51. 54 

Similarly, Jiang [27] adopted a C-Support Vector Classification (C-SVC) algorithm to 55 

predict a personal thermal sensation in a PCS; the results showed a higher predictive 56 

accuracy (89.82%) as compared to the PMV model (49.71%), which was beneficial for 57 

optimisation control for the PCS. Further, Kim [28] emphasised the new paradigm of 58 

using machine learning methods for personal comfort models; such models enable 59 

predictions at individual levels instead of the average responses of a large population, 60 

and significantly improve the prediction accuracy by approximately 17%–40%, 61 

reinforcing the potential of a PCS in real-world applications. Based on real-time 62 

feedback and automatic regulation, employing extreme learning machines and neural 63 

networks results in a predicted maximum energy saving rate of 30% for air-conditioning 64 

and mechanical ventilation systems, while maintaining a pre-defined comfort [29]. 65 

However, though these works provide valuable insights for using machine learning 66 

techniques to improve the prediction performance with a PCS, there is still a paucity of 67 

research for gaining a holistic understanding of the various driving factors for a 68 

localised airflow system, and identifying an appropriate machine learning model to 69 

evaluate personal thermal comfort. Moreover, there has been insufficient examination 70 

of how to determine which factors should be considered for localised airflow systems, 71 

to what degree the model inputs affect the target variable, and how to guide the 72 

evaluation and designs of such localised airflow systems in real-life buildings.  73 

With new devices and technologies of localised airflow systems being increasingly 74 

accessible for indoor building environments, identifying the most significant factors 75 

and an appropriate evaluation model covering all these factors is of great importance, 76 

before such systems are applied in buildings to achieve building energy savings. As a 77 

result, this study is based on a collective database of several lab experiments for 78 

localised airflow systems and conducts a rigorous process to explore the influencing 79 

factors and evaluate models for local airflow conditions. The aims of this study are to 80 

quantify the relative significance of factors by referring to sensitivity analysis and 81 

identify a prediction model of personal comfort based on the advantages of machine 82 

learning algorithms. This work is expected to provide an in-depth understanding of 83 
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factor interactions in a localised airflow system and enable a more informed appraisal 84 

of localised airflow system design in practice. The outcomes can aid in guiding data 85 

monitoring and collection efforts when a localised airflow system is applied in 86 

buildings in the future to improve personal thermal comfort prediction and energy 87 

efficiency in buildings. 88 

2. Methods 89 

We conducted multiple laboratory experiments to examine the relationships 90 

between local air supply and human thermal comfort in warm and hot environments 91 

and built a database. For personalised ventilation, it has been found that airflow is 92 

preferred by people when it is directed against the upper parts of the body (e.g. face, 93 

head, chest)[30, 31] and that a transverse flow improves thermal comfort. Therefore, 94 

we selected three typical localised airflow systems, i.e. isothermal air supply nozzle 95 

(IASN), non-isothermal air supply nozzle (NIASN), and floor fan (FF). The difference 96 

between the IASN and NIASN systems is the temperature difference of the supplied air. 97 

The FF was considered as a common local airflow device in buildings to increase air 98 

movement, wherein the air supply type differed from the IASN system. All experiments 99 

were performed during the summer season in different periods from 2014 to 2017 and 100 

covered the main factors we aimed to explore for a localised airflow system. An 101 

introduction is briefly presented as follows, to support an improved understanding of 102 

the experiments and the database used.  103 

2.1 Climate chamber 104 

All three series of experiments were performed in a climate chamber with a size 105 

of 4 m × 3 m × 3 m (L×W×H). The air temperature (T) and relative humidity (RH) in 106 

the chamber were managed by an automatic control system with a temperature range 107 

of 10 °C–40 °C (accuracy: ±0.3 °C) and RH range of 10%–90% (accuracy: ±5%). The 108 

handled air was sent to the chamber using a perforated ceiling, such that the ambient 109 

air velocity in the chambers not generated by the local airflow system did not exceed 110 

0.1 m/s during experiments. This ensured a uniform surrounding environment and a 111 

lack of disturbances of the airflow during experiments. A special insulation construction 112 

of the chamber ensured conditions such that the mean radiant temperature was equal to 113 

the room air temperature. In addition, the climate chamber was connected to an air-114 

conditioned room that was controlled at a neutral thermal environment (26 °C/50% RH) 115 

for preparation work before each test.  116 

2.2 Subjects 117 

The subjects in experiments were recruited from college students. Before the 118 

experiments, a priori power analysis in G*Power 3 [32] was conducted to determine 119 

the sample capacity, according to the designs in each series of experiments. All 120 

participants were volunteers between 20 and 25 years of age, with healthy conditions, 121 

e.g. no colds or fever. They were paid to participate in all of the design conditions in 122 

each series of experiments. Before enrolment in the tests, each subject received verbal 123 

and written explanations of the study. Written informed consent was obtained from the 124 
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subjects. The basic information of participants was collected at the first time they 125 

attended the test, as summarised in Table 1. In addition, uniform summer clothes (cotton 126 

short-sleeved T-shirt, thin trousers, and slippers, with clothing insulation of 0.4 clo[33]) 127 

were provided to subjects in the experiments, to minimise the effect of clothing 128 

insulation on subjective thermal perceptions. 129 

Table 1 Basic anthropometric data of subjects(mean±SD) 130 

Conditions Number Sex Age(years) Height(cm) Weight(kg) 

Isothermal 

air supply 

nozzle 

(IASN) 

18 male 24.5±1.2 174.2±5.2 62.6±5.5 

Non-

isothermal 

air supply 

nozzle 

(NIASN) 

8 male 23.6±1.4 175.1±6.1 70.0±10.5 

8 female 23.4±1.2 161.5±6.4 51.3±4.8 

Floor Fan 

(FF) 

8 male 23.7±0.9 174.2±6.1 63.3±5.9 

8 female 23.7±0.7 162.2±1.3 49.8±4.6 

2.3 Experimental designs 131 

Among all three types of localised airflow systems, local air was directly supplied 132 

in front of the subjects. As shown in Figure 1, the IASN and NIASN systems were made 133 

of a ventilation duct with plastic batches (d=150 mm) and equipped with a nozzle 134 

(d=100 mm)[34]. Variable nozzle types and sizes were exclusively considered in this 135 

study. The supply-air outlet was placed 30–40 cm from the subjects, with an adjustable 136 

angle to aim at a subject’s face and head horizontally, or to aim in a slightly downward 137 

slope, e.g. to aim at the neck and chest. The FF was located 1.5 m horizontally in front 138 

of the subjects and was placed approximately 0.9 m above the floor level, and it directed 139 

a forced airflow to the head and chest region. A general view of the local airflow system 140 

used in the experiments is shown in Figure 1.  141 

 142 
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Figure 1 Schematic of the three localised airflow systems 143 

     Considering that local airflows given to upper body parts were more sensitive 144 

and efficient for cooling[35, 36], we mainly focused on three factors for airflow, i.e. the 145 

V at locations where subjects were exposed, temperature of the supplied air, and body 146 

parts exposed to the airflow. In addition, as air velocity has been acknowledged to offset 147 

temperature increases in warm settings, all of the experiments were designed in 148 

warm/hot environments, with T ranging from 26 °C to 32 °C, and RH from 50% to 90%. 149 

The design conditions in the three series of experiments are summarised in Table 2.  150 

For the NIASN system, the temperature of the supplied air shown in Table 2 was 151 

controlled by a constant temperature-humidity air-conditioned system in an adjacent 152 

room, and the cooled air at the designed levels was supplied to the chamber through 153 

plastic ducts; for the IASN system, the supplied air was circulated by fans from ambient 154 

air in the chamber. The designed V in Table 2 for the NIASN system was slightly lower 155 

than that for the IASN system, in accordance with the cooling effect of the low 156 

temperature of the air supplied in IASN system. The different body parts exposed to 157 

airflow were achieved by regulating the angles of the supply air outlet (see Figure 1) in 158 

these two systems. It should be noted that the V given in Table 1 for all three localised 159 

airflow systems are designed values referring to places where subjects were located, 160 

rather than at the outlets (see the lower part of Figure 1). This was to determine a 161 

comfortable V for subjects. The V under each condition was regulated and measured 162 

during preparation work, with no subjects. The regulations were recorded, and before 163 

each test, the V would be preset at the designed level. 164 

Table 2 Design conditions of the three series of experiments 165 

Conditions T*(°C) RH(%)* V(m/s)* 
Supply Air 

Temperature(°C)** 

Local Body 

Parts 

IASN 

28 

55 

0/1.4 
28 head 

28 chest 

30 0/1.8 
30 head 

30 chest 

32 0/2.2 
32 head 

32 chest 

28 

0/1/1.4/1.8 

28 head+chest 

30 30 head+chest 

32 32 head+chest 

NIASN 26 75 0/0.6/0.8/1.0/1.2 25 head 
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26 

28 0/0.6/0.8/1.0/1.2 
25 

22 

30 0/0.8/1.0/1.2/1.4 
25 

22 

 

 

 

 

FF 

 

28 

50 0/1.1/1.3/1.9 
 

28 
 

 

 

 

head+chest 

70 0/1.1/1.3/1.9 

90 0/1.1/1.9/2.4 

30 

50 0/1.1/1.9/2.4 

30 70 0/1.1/1.9/2.4 

90 0/1.3/1.9/2.4 

32 

50 0/1.3/1.9/2.4 

32 70 0/1.9/2.4/2.8 

90 0/1.9/2.4/2.8 

Note:  166 

* the T and RH are the designed ambient temperature and humidity in the climate chamber, which 167 

are controlled by the chamber automatic control system; the V is the designed air velocity at subject 168 

location, with the equal height to the jet axis in localised airflow system.  169 

** the supply air temperature is the measured temperature at the air outlet. 170 

 171 

Table 3 shows the measured thermal environments during tests, using the average 172 

values of all samples in each condition in each series of experiments in Table 2. It is 173 

observed that the measured environmental T and RH met the designed conditions (Table 174 

2) well. The V fluctuated around the designed levels, with small standard deviations. 175 

The strictly controlled environment minimised the errors caused by the designs and 176 

ensured the quality of the experimental data.  177 

 178 

Table 3 Measured thermal environment parameters during experiments (mean±SD) 179 

Conditions 
Temperature 

(°C) 

RH 

(%) 

Air Velocity 

(m/s) 

Supply Air 

Temperature(°C)* 

IASN 

28.0±0.1 56.2±0.4 0/1.40±0.02 28.5±0.2 

29.9±0.2 55.7±0.9 0/1.81±0.02 30.5±0.2 

32.1±0.2 56.2±1.3 0/2.20±0.09 32.5±0.5 

28.0±0.1 56.1±0.5 0/1.02±0.06/1.41±0.02/1.81±0.02 28.4±0.1 

29.9±0.1 56.4±0.4 0/1.04±0.06/1.40±0.03/1.81±0.02 30.3±0.3 

32.1±0.1 56.1±1.0 0/1.00±0.04/1.41±0.01/1.80±0.05 32.5±0.2 

NIASN 

25.9±0.2 74.2±1.5 0/0.61±0.05/0.79±0.03/1.01±0.05/1.21±0.03 24.9±0.3 

26.1±0.1 75.4±1.2 0/0.57±0.08/0.81±0.05/0.98±0.07/1.20±0.02 26.1±0.2 

28.1±0.1 75.1±0.8 0/0.60±0.07/0.81±0.05/1.0±0.03/1.22±0.04 25.2±0.3 

27.9±0.2 75.5±0.4 0/0.62±0.03/0.79±0.06/0.99±0.04/1.18±0.05 22.1±0.4 

30.0±0.2 75.3±0.6 0/0.81±0.08/1.02±0.02/1.21±0.05/1.42±0.06 24.9±0.5 

39.9±0.2 74.8±1.0 0/0.80±0.04/1.01±0.05/1.23±0.02/1.39±0.04 22.2±0.4 
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FF 

28.0±0.2 50.5±1.0 0/1.13±0.07/1.32±0.05/1.90±0.09 28.0±0.2 

27.9±0.2 69.6±0.8 0/1.1±0.1/1.29±0.08/1.91±0.08 27.9±0.2 

28.1±0.2 89.5±1.2 0/1.08±0.1/1.90±0.08/2.42±0.05 28.1±0.2 

30.2±0.1 49.8±1.0 0/1.11±0.1/1.88±0.07/2.4±0.10 30.2±0.1 

29.9±0.2 70.4±0.9 0/1.12±0.07/1.93±0.05/2.39±0.1 29.9±0.2 

30.1±0.2 89.5±1.1 0/1.31±0.06/1.91±0.04/2.43±0.05 30.1±0.2 

27.9±0.2 51.2±0.8 0/1.29±0.13/1.85±0.11/2.41±0.08 27.9±0.2 

27.9±0.1 70.5±1.2 0/1.92±0.08/2.38±0.11/2.82±0.1 27.9±0.1 

28.1±0.2 91.2±0.9 0/1.88±0.1/2.4±0.13/2.82±0.1 28.1±0.2 

Note:  180 

* the temperature of the supplied air in IASN and NIASN systems was measured at outlets using 181 

thermocouples (range: -20 °C-+85 °C, accuracy: ± 0.1 °C, PyroButton-T, Opulus, US); the 182 

temperature of the supplied air in FF system was defaulted to ambient air temperature.  183 

 184 

2.4 Variables and measurements 185 

Many factors influence the cooling effect of local airflow on human thermal 186 

comfort. With the aim of identifying significant variables, we classified possible factors 187 

into four categories, namely environmental, individual, physiological, and 188 

psychological, and selected representative parameters in each category for further 189 

analysis.  190 

A thermal comfort monitoring station instrument was used to measure the real-191 

time T and RH in the chamber (MI6401, Germany, Accuracy: T ±0.2 °C, RH ±2%), to 192 

ensure that the experimental environments met the designed demands. The instrument 193 

was placed in the central chamber, at a height of 0.6 m above the floor and 0.5 m away 194 

from subjects. Before each test, when no subject was present, the V at the subject 195 

exposing location was pre-regulated and measured to reach the designed level in Table 196 

2, using an Air Distribution Measuring System (AirDistSys 5000, Sensor Electronic, 197 

Poland, range: 0.05 m/s–5 m/s, accuracy: ±0.02 m/s ± 1% reading data). To evaluate an 198 

environmental air velocity for thermal comfort, a weighted average of the indoor air 199 

velocity was calculated. The weighted average was calculated based on measurements 200 

performed at levels representing heights of ankles, abdomen, and neck (0.1, 0.6 and 1.1 201 

m for seated occupants, respectively) during tests, and according to the American 202 

Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 203 

Standard 55 [33]and European standards [37, 38]. A portable hot wire anemometer 204 

(VT110, France, 0.15 m/s–30 m/s, ±3% reading data with ±0.05 m/s) was used every 5 205 

min repeatedly, to verify whether the actual V met the designed level in Table 2. The 206 

values at the three levels were then averaged to represent the mean air velocity in the 207 

room when necessary.  208 

The parameters that were considered influential for individuals were sex, body 209 

surface area (AD), and body fat ratio, which were believed to affect body heat 210 

generation and heat loss and thus affect the sensation of airflow. As shown in Table 1, 211 

the first time subjects attended the tests, each subject’s weight and height were 212 
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measured. The AD values for each subject were calculated by Equation (1)[39]. The 213 

body fat ratio was indirectly calculated using body mass index(BMI), referring to 214 

Equation (2). 215 

AD=0.202Wb
0.425Hb

0.725         (1) 216 

BMI=Wb/Hb
2                  (2) 217 

Where Hb is the body height, m; Wb is the body weight, kg. 218 

In warm/hot environments, body heat dissipation commonly occurs through two 219 

major mechanisms, namely cutaneous vasodilation and sweating, which affect skin 220 

temperatures and convective and evaporative heat transfer from the core to the skin[40]. 221 

During experiments, the local skin temperatures from eight parts of the body (i.e. 222 

forehead, left chest, left back, left upper arm, left lower arm, left hand, right anterior 223 

thigh, and anterior calf), were measured by thermocouples (TSD202B, BIOPAC, US, 224 

temperature range: 0–70 °C, accuracy: ±0.1 °C), while using surgical, water permeable, 225 

adhesive tapes. The data were recorded at 0.5/s and logged by a multi-channel 226 

physiological acquisition system (MP150-SKT100C, BIOPAC, US). The mean skin 227 

temperature (Toverall) was calculated using an area-weighted eight-point method 228 

(Equation (3) ) [41].  229 

 Toverall=0.07Thead+0.175Tchest+0.175Tback+0.07Tupper+ 0.07Tlower+0.05Thand+0.2Tthigh+0.19Tcalf   230 

(3) 231 

where the Toverall is the mean skin temperatures, °C; Ti is the local skin temperature of 232 

the head, chest, back, upper arm, lower arm, hand, thigh, and calf, °C. 233 

Studies had previously suggested that a whole body thermal sensation was a result 234 

of the integrated effect of whole and local thermal responses, where the local body parts 235 

took significant proportions in affecting the whole body thermal sensation under local 236 

airflow environments [35, 36, 42, 43]. Therefore, we considered the interactions of 237 

subjects’ whole and local thermal perceptions and designed questionnaires for both 238 

whole and local thermal evaluation. The most common thermal sensation vote (TSV) 239 

scale was used: -3 cold, -2 cool, -1 slightly cool, 0 neutral, +1 slightly warm, +2 warm, 240 

and +3 hot, as described in the ASHRAE 7-point scale[33]. Subjects were asked to 241 

evaluate a thermal sensation on the whole body, head, chest, back, hand, and lower body, 242 

under local airflow conditions. In some situations, when the subjects had difficulties in 243 

expressing judgements, he/she was allowed to use middle votes between the above 244 

values (e.g. +1.5 between +1 and +2). Additional questions were also involved in the 245 

questionnaire to evaluate subjects’ sensation to humidity, air velocity, environmental 246 

expectations, environmental acceptability, and so on. Considering this study concerns 247 

the offset of a local airflow on acceptable temperature limits, the main dependent 248 

variable being focused on is the thermal sensation. Therefore, these indices were 249 

exclusively analysed in the following parts.  250 

2.5 Experimental protocols 251 

The experiments complied with the guidelines in the Declaration of Helsinki[44]. 252 

Participants were counselled to withdraw from the experiments at any point in time if 253 

they were not comfortable during the tests.  254 
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For each test, subjects were asked to arrive at the adjacent room 30 min in advance, 255 

to change into uniform clothes, attach thermocouples, and stabilise their metabolic rates. 256 

During this period, the details of experimental process and questionnaires were 257 

explained to them.  258 

The formal experiment began after the subjects entered the chamber and were 259 

seated at desks. For each test, they experienced different conditions, with and without 260 

a local air supply. Blind to the experimental settings, the subjects were exposed to two 261 

or three levels of V for 20 min, and intermittent recovery for 15–20 min (without air 262 

supply) during each test. The different air velocities in each condition were regulated 263 

by experimenters according to the preset measurements, and were supplied in a random 264 

way during the whole experimental process. The T and RH in the chamber were kept 265 

constant, at the designed levels. Over the period of testing, the local skin temperatures 266 

of each subject were measured continuously; meanwhile, they were asked to fill in 267 

identical questionnaires every 5 min to report their thermal perceptions. During the 268 

whole experiment, the subjects performed standardised office work while avoiding 269 

walking, talking, and other intensive activities. 270 

2.6 Statistical analysis 271 

2.6.1 Data collection 272 

The experiments adopted 17 variables to comprehensively identify the significant 273 

influencing factors. They included 3 individual factors (i.e. sex, AD, BMI), 5 274 

environmental factors (i.e. T, RH, V, supplied air temperature, and local exposed body 275 

parts), 9 physiological factors (i.e. Thead, Tchest, Tback, Tupper, Tlower, Thand, Tthigh, Tcalf, and 276 

Toverall). In addition, 6 subjective indices (TSVoverall, TSVhead, TSVchest, TSVback, TSVhand, 277 

and TSVlower body) were also investigated using questionnaires. The original 278 

experimental data were collected and saved in SPSS 22.0 software. As the study mainly 279 

focused on subjects’ stable thermal responses to local airflow, a repeated measure of 280 

analysis of variance (ANOVA) was firstly performed for subjects’ skin temperatures, to 281 

determine the stable time of subjects’ thermal responses during tests under each 282 

condition. The stable time was determined as that having no significant difference 283 

between subject’ skin temperatures at one-time point and thereafter. The results showed 284 

that majority of subjects’ skin temperatures stabilised quickly, during the initial 10 min 285 

when they were exposed to airflow. Then, all of the data for each subject were averaged 286 

(mean±SD) for the last 10 min at each stage during the tests, either with airflow or 287 

without airflow. The new database included 1305 sample cases, which were built and 288 

used for the following analysis. To explore the correlation and interaction between 289 

variables, a Pearson correlation coefficient analysis was employed for continuous 290 

variables, and Spearman correlation coefficients were employed for categorical 291 

variables. A p-value below 0.05 indicated statistical significance during the analysis. 292 

2.6.2 Machine learning models 293 

Research has provided robust evidence for the application of a variety of machine 294 

learning algorithms, to better predict human thermal comfort[28] at individual levels. 295 

These algorithms include the adaptive stochastic model[45], classification tree [46, 47], 296 
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Bayesian network [48], Gaussian process [49], support vector machine (SVM) [27, 50], 297 

and artificial neural network(ANN) [51]. These models enable using a variety of factors 298 

to solve the complexity of variant variables in models, and concentrate exclusively on 299 

the target output. This is an advantage in PCS studies, which have a large number of 300 

confounding factors.  301 

One objective of this study is to deploy the advantages of the machine learning 302 

methods to explore an appropriate model to predict the personal comfort for a localised 303 

airflow system. The SPSS Modeler 20.0, as a data mining tool, offers multiple machine 304 

learning techniques and supports a variety of classification and regression models[52]. 305 

Given many algorithms exist in machine learning[25], this study first employed the 306 

SPSS Modeler 20.0 to select the  well-matched generative and deterministic machine 307 

learning models according to the experimental database. One benefit of the SPSS 308 

Modeler is that it can provide an intuitive graphical interface to help visualise each step 309 

in the data mining process as part of a stream. Figure 2 shows the primary analysis 310 

processing in SPSS Modeler, including experimental data processing and model 311 

screening. After those steps, 11 models are further examined in the following parts: 312 

logistic regression, discriminative model, Bayesian network, ANN, Lagrangian SVM 313 

(LSVM), C5.0, Tree-AS, chi-squared automatic interaction detection (CHAID), 314 

classification and regression tree (C&RT), Quest, and Random Tree.  315 

 316 

Figure 2 Analysis process in SPSS Modeler using experimental data 317 

2.6.3 Sensitivity analysis (SA)  318 

As nearly 20 impacting factors were considered in this study for a localised airflow 319 

system, it is impractical to cover all of these data in models for a building application. 320 

Therefore, it is necessary to first identify significant variables, e.g. those with better 321 

explanations of human thermal comfort under local airflow conditions. A sensitivity 322 

analysis (SA) is a targeted method that enables determination of how the variation of 323 

the output in a model can be apportioned among the inputs[53]. The SA has been widely 324 

applied in academic research, and has been used in practical application in a variety of 325 

fields [54]. The method has also been considered as a powerful tool for building 326 
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optimisation in building design, and for exploring influencing variables on a specific 327 

target in a building energy simulation[55, 56]. However, as there are several methods 328 

to perform the SA, less attention has been paid to explore the application in multiclass 329 

classification, and in particular with the various categorical and numerical features in a 330 

thermal comfort evaluation for a PCS. In this study, we referred to a variance-based SA 331 

methodology based on a Bayesian treed Gaussian process model in the “tgp” package, 332 

[57] and conducted the analysis via R software (ver. 3.3.2). The outcomes enable us to 333 

understand and quantify the main effects of variables on a dependent variable, as well 334 

as the first order and total sensitivity indices among the input variables. The 335 

significance level was set at 95% (p < 0.05).  336 

 337 

3. Results analysis 338 

Based on the dataset of 1305 original samples from the three series of experiments, 339 

the following section aims to explore which models are superior for thermal comfort 340 

evaluation in a localised airflow system at individual levels, as well as the 341 

representative factors that have the most significant effects on personal thermal comfort.  342 

3.1 Machine learning models identification for localised airflow system 343 

Although both local and whole thermal sensations of subjects were measured 344 

during the experiments, an interactive effect exists among these indices. Therefore, we 345 

employed the typical whole body (overall) thermal sensation TSVoverall as the target 346 

dependent variable to examine its relation to the variant independent variables and build 347 

models.  348 

After determining the 17 input variables (see Section 2.4) and the target output, 349 

the dataset was randomly split into training and testing sets (80% and 20%), and all of 350 

the 11 machine learning models mentioned in Section 2.6.2 were tested using the SPSS 351 

Modeler 20.0. Figure 2 depicts the conducting process in the SPSS Modeler. In that 352 

regard, this study does not discuss the detailed process of data training and parameter 353 

tuning in these algorithms. Instead, we focused on comparing the prediction 354 

performance among these models to identify the appropriate model. Table 4 355 

summarises the preferred five models from the set of 11 models and lists their prediction 356 

performances. From Table 4, it can be seen that the C5.0 model displays the highest 357 

prediction performance of 83.99% when all 17 variables are included, followed by 358 

59.69% for the CHAID model, and 57.47% for the C&RT model. The Quest and ANN 359 

models were worse than the first three classification tree models, with their predictive 360 

performances at 53.56% and 44.9%, respectively. As the C5.0 model takes the 361 

information gain as a standard to optimise the partition process and favours outcomes 362 

with a higher information gain, the results indicate that the C5.0 model is superior for 363 

predicting subjects’ thermal sensations under local airflow conditions. Therefore, we 364 

give priority to the C5.0 model in the following analysis to profile the relationship 365 

between subjects’ thermal sensations and variant input features in localised airflow 366 

systems.  367 
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 368 

Table 4 Preferred machine learning models  369 

Models Prediction Performance Number of Input Variables 

C5.0 83.99% 17 

CHAID 59.69% 9 

C&RT 57.47% 14 

Quest 53.56% 10 

ANN 44.91% 17 

 370 

3.2 SA for impacting factors in localised airflow system 371 

3.2.1 Feature variable screening 372 

 373 

From Table 4, it is not surprising that the C5.0 model possesses a better prediction 374 

performance, as too many variables are involved in the model. Practically speaking, 375 

owing to the difficulties and expenses of monitoring all influential variables, choosing 376 

a good model is not only based on accuracy, but also on the validity and explanatory 377 

ability of the selected data [26]. Therefore, it may be difficult to capture all the relevant 378 

information for the C5.0 model to develop a comfort prediction; otherwise, it is 379 

necessary to correlate the comfort prediction with highly representative variables. In 380 

fact, some variables in the dataset interact with each other to influence subjects’ thermal 381 

sensations, and some are negligible for model prediction. Therefore, we first conducted 382 

a correlation analysis to examine the 17 variables in the C5.0 model, to possibly reduce 383 

the number of input variables.  384 

First of all, because of the limited distance (30–40 cm) between the supplied air 385 

outlet and the subjects in the IASN system, both the head and chest of subjects were 386 

exposed to air movement in the experiments, which made the boundaries fuzzy in 387 

distinguishing the body areas exposed to airflow. In that case, the factors of different 388 

exposed parts for the body are exclusively considered. Moreover, some previous 389 

studies[58, 59] confirmed that the temperature difference between the supplied air from 390 

a nozzle and the surroundings was negligible when the air reached the subjects, 391 

resulting from the diffusing effect of the supplied air. The measurements of the air flow 392 

field during pre-experiments had also found that the temperature of the cooled air 393 

attenuated quickly in a NIASN system, being equal to the ambient temperatures in 394 

warm and hot conditions. Thus, the temperature variable of supplied air is also removed 395 

when evaluating the cooling effect of local air movement. After that, the environmental 396 

parameters were reduced to three: T, RH, and V. 397 

As for physiological variables, Dai et al. [50]discussed that the curse of 398 

dimensionality may occur with additional local body skin temperatures as inputs for 399 

thermal demand predictions, based on a SVM classifier. Therefore, a Pearson 400 

correlation analysis was performed first, and the correlation metrics of these 401 

physiological indices are illustrated in Table 5. From Table 5, it can be seen that there 402 

were no significant correlations between the skin temperatures of the chest and other 403 
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parts. During experiments, the thermocouples were placed at the upper left part of the 404 

chest, and were directly exposed to the air and V. Therefore, it was reasonable that the 405 

subjects’ chest skin temperatures were more sensitive to local airflow than other body 406 

parts (see Figure 1). In addition, the correlation coefficients in Table 5 (marked in grey 407 

colour) show that the Toverall was significantly related to local skin temperatures. As a 408 

result, the mean skin temperature Toverall can be a feature selected to represent the local 409 

skin temperatures. After analysis, the physiological variables can be reduced to two: 410 

Toverall and Tchest. 411 

 412 

Table 5 Correlation analysis of subjects’ physiological indices 413 

Variances Thead Tchest Tback Tupperarm Tlowerarm Thand Tthigh Tcalf Toverall 

Thead 1.00 0.008 0.253** 0.097** 0.017 0.023** 0.445** 0.173** 0.283** 

Tchest  1.00 0.012 0.013 -0.001 0.000 0.033 0.001 0.023 

Tback   1.00 0.086** -0.014 0.048 0.329* 0.001 0.246** 

Tupperarm    1.00 0.017 0.012 0.108** 0.001 0.147** 

Tlowerarm     1.00 -0.001 0.000 -0.006 0.51* 

Thand      1.00 0.032 0.010 0.871** 

Tthigh       1.00 0.134** 0.319** 

Tcalf        1.00 0.283** 

Toverall         1.00 

(Note: ** p< 0.01; * p<0.05, (two-tailed) 414 

In summary, we identified the featured variables, and reduced the number of 415 

variables from 17 to 8, i.e. sex, AD, BMI, T, RH, V, Tchest, and Toverall. These 8 variables 416 

are examined for sensitivity.  417 

3.2.2 SA of the feature variables 418 

Although the correlation analysis allows us to simplify the features in the C5.0 419 

model, there is still a need to examine the degree to which these factors affect thermal 420 

sensation, and how to quantify their effects. To correctly interpret the results in the right 421 

perspective, we divided the 8 variables into three categories (i.e. environmental, 422 

individual, and physiological), and conducted a global SA to evaluate their effects. 423 

Figures 3–5 plot the main effects of the 8 features, respectively. The slopes of different 424 

inputs in Figures 3–5 give the information on whether the output of TSV is an 425 

increasing or decreasing function of the corresponding inputs; the solid lines are the 426 

mean values, and the dotted lines are the 95% intervals.  427 

①  Individual features 428 

It was observed that the TSV showed linear change trends with the 8 variables 429 

increasing, as can be seen from Figures 3–5. Specifically, in Figure 3, the main effect 430 

differed in sex, with 1 being defaulted as female and 2 as male. In addition, with the 431 

increase of body AD and BMI, the main effects caused by increasing AD and BMI 432 

decreased slightly, suggesting the effects of individual differences of AD and BMI on 433 

subjects’ TSV changes were attenuated under such conditions. 434 
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 435 

Figure 3 Sensitivity analysis (SA) results for three individual factors 436 

②  Environmental features 437 

The main effects of environmental parameters of T, RH, and V on TSV are plotted 438 

in Figure 4. From Figure 4, larger main effects of T and RH were observed on the TSV 439 

responses. Especially for T, it revealed that with T increasing, the effect of increasing 440 

1 °C on the TSV would be more significant. In addition, an in-depth observation on 441 

Figure 4 showed that the main effect responses tended to be stable when the T and RH 442 

were approximately 26 °C/50% RH, and above 31 °C/80% RH. This allows us to infer 443 

that when the T and RH are in a moderate zone, the thermal environment is neutral, 444 

such that the changes of T and RH have slight effects on subject thermal sensation. As 445 

the thermal sensation is limited to seven scale values with a maximum of +3 for hot, 446 

when the T and RH are high, subjects’ TSV may stabilise at +3, and can be higher for 447 

longer. As a result, the effect caused by T and RH changes on TSV responses is slight. 448 

Conversely, the V in Figure 4 displays an opposite trend of the main effect response, 449 

i.e. increasing V has positive effects on a subject’s thermal sensation, and produces a 450 

decrease in TSV. Moreover, the values of the main effect responses for V were much 451 

higher in Figure 4, indicating that the elevated V in a localised airflow system has a 452 

significant cooling effect on subjects’ TSV.  453 
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 454 

Figure 4 SA results for physical factors 455 

③  Physiological features 456 

As compared to the environmental factors shown in Figure 4, the main effects of 457 

Toverall and Tchest changes on the TSV responses in Figure 5 were slight in cases where 458 

skin temperatures were lower than approximately 32 °C. However, the main effects 459 

increased remarkably when the skin temperatures increased above 32 °C. Considering 460 

the comfort limits for skin temperatures, this indicates that when the skin temperatures 461 

of subjects are lower than the thresholds (e.g. 32 °C in this study), the TSV is in a 462 

comfortable range, and is slightly affected by skin temperatures. When the skin 463 

temperatures increase beyond the comfort zones, the TSV of subjects tends to increase 464 

significantly. 465 

 466 
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Figure 5 SA results on physiological factors 467 

④  Global effects 468 

To display the main effects for all parameters using a single plot, Figure 6 further 469 

summarises the first-order sensitivity and the total effect sensitivity of the 8 indices. In 470 

Figure 6, the first-order sensitivity indices quantify the changes of output variables 471 

respectively caused by individual input variables, and the total effect sensitivity indices 472 

reflect the interactive effects of all of the input variables on the output variable. From 473 

Figure 6, it is clearly observed that T is a major contributor, leading to the most sensitive 474 

TSV responses with increasing T. The V and RH are ranked as the second and third 475 

contributors to the TSV changes, respectively. This is to some degree different from the 476 

individual effects depicted in Figure 5, which may be explained by the coupled effects 477 

of T, RH, and V. By contrast, the individual and physiological features are roughly the 478 

same, sharing the small values of sensitivity responses to TSV. However, for the total 479 

sensitivity, a remarkable change is found in Figure 6. Although the overall distribution 480 

trend of the 8 variables remains, the total effects increase when considering the 481 

interactions among 8 variables, especially for T. That the sensitivity indices do not sum 482 

to one indicates that the interactive effects between two or more variables are important 483 

for individual thermal sensation evaluation under local airflow conditions. Overall, 484 

Figure 6 gives a visual impression of the effects of the selected 8 feature variables on 485 

the variation of TSV, and quantifies their individual and coupled effects, which are 486 

believed to be beneficial for the evaluation and design of localised airflow systems in 487 

buildings.  488 

 489 

Figure 6 Full SA results for all feature variables 490 

 491 
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3.3 Model verification 492 

Here, further discussion is provided as to whether and to what degree the reduction 493 

of input variables might compromise the prediction performance of the obtained C5.0 494 

model, as compared to the iteration using e.g. 17 variables. A new database with 8 495 

feature variables and 1 output variable is created via inputs filtering, as shown in Figure 496 

2 in solid red lines. Using the same settings as in Section 3.1, the data are also divided 497 

into training and testing sets, and the predictive performance of the obtained C 5.0 498 

model is examined and verified. The result shows that the new C5.0 model using 8 499 

inputs has a high predictive performance of 82.30%, even though it is slightly lower 500 

than the aforementioned performance of 83.99% using 17 variables as shown in Table 501 

4. This indicates that the C5.0 model is better for predicting human thermal comfort in 502 

a local airflow system with as few as 8 variables, which is expected to simplify the C5.0 503 

model to facilitate its use in applications. 504 

One additional advantage of choosing the C5.0 model is that it can generate a 505 

interpretable model to understand how the model implements rules and can run faster 506 

with a large database, as compared with some complex models such as Random forest 507 

and SVM[26]. Therefore, we demonstrate the decision rules in the C5.0 model and 508 

simplify the process using the first four layers as example, as shown in Figure 7. 509 

Consistent with the sensitivity analysis, the model in Figure 7 adopts the environmental 510 

parameters as the prior feature nodes, to divide different categories and layers. With or 511 

without a local air velocity, the C5.0 model first takes V as the root node of the tree, as 512 

seen in Figure 7. In particular, the C5.0 model only follows a rule of binary 513 

classification for features, from the root node to leaf node. Therefore, the original 514 

division splits V into two categories of ≤ 0 m/s and ＞ 0 m/s. However, it is 515 

unreasonable in reality for V to be under 0 m/s. Therefore, we fine-tune the 516 

classification tree in Figure 7 with V＝0 m/s. Starting from root node, the data are split 517 

into two categories, using a T baseline of 28 °C in the second layer. The third layer 518 

introduces RH as the feature, and divides according to the baselines of 75% and 55% 519 

for T≤28 °C and T＞28 °C, respectively. The fourth layer further adopts RH and BMI 520 

as leaf nodes. By contrast, the classification rule is slightly different from that when V 521 

is above 0 m/s. That is, with V＞0 m/s, the T and RH are adopted as feature variables 522 

in the third layer for classification. When T is equal to or under 28 °C, T is introduced 523 

for the third layer (T≤26 °C(neutral) and T＞26 °C(warm)). When T is above 28 °C, 524 

the RH is adopted in the third layer, with RH≤75% and RH＞75%. This suggests that 525 

the effect of RH on human thermal comfort is coupled with T, and plays a dominant 526 

role under higher T values and humidity.  527 
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Figure 7 Classification Tree C5.0 model for localised airflow evaluation  528 

 529 

4. Discussion and limitations 530 

The above analysis (depicted in Figure 7) identifies the most significant features 531 

affecting TSV at each layer of the tree with different discriminative approaches, and is 532 

superior to some other models. Kim[26] compared the performance of six typical 533 

machine learning algorithms used to develop personal comfort models; he argued that 534 

although algorithms with capabilities to control high dimensions and noise in the data 535 

(e.g. Random forest, regularised logistic regression, kernel SVM (kSVM)) could 536 

produce higher accuracy, they were more computationally expensive. In light of this, 537 

the C5.0 model in the current study significantly reduces the numbers of feature 538 

variables; meanwhile, it still predicts the individual thermal sensations well (higher than 539 

80%). Most important, the machine learning models are superior at continuously and 540 

automatically improving themselves through repeated learning and training [26]. It is 541 

thus believed that by performing an incremental restoration of data, the prediction 542 

performance of the C5.0 model for predicting personal thermal comfort with 8 input 543 

variables could be improved, i.e. more in-depth. In this way, this work can be referred 544 

to for comfort evaluation for a localised airflow system and guide application of such a 545 

system, in parallel with reduced dependence on HVAC systems and more energy-saving 546 

potential.  547 

However, although this study identifies the significant influencing variables in 548 

localised airflow systems and builds an appropriate classification tree model based on 549 

C5.0, some limitations should be discussed for the current study, to make better 550 

interpretation of the results and inspire further studies. The results in this study are 551 

based on a database including three local air supply forms, where subjects were exposed 552 

to airflow for 20 min, and recovered for 15–20 min between two different V levels. As 553 

under warm/hot conditions, the inner body heat storage of subjects would increase over 554 

the periods without airflow, the study may exaggerate the subjects’ real thermal 555 

sensation on the cooling effect of air velocity, when the airflow is subsequently given. 556 

This would have effects on the obtained database. However, some experiments 557 

designed without recovery periods, or with a short recovery time [60–63], could cause 558 

the inclusion of subjects’ thermal memories from a previous thermal experience, 559 

potentially resulting in deviations for the subjective evaluations. Therefore, balancing 560 



21 

 

the variant factors in a localised airflow system and the contradictions between time, 561 

cost, and experimental designs for different purposes should be considered for future 562 

studies.  563 

The preferred air velocity of occupants is believed to have a “time and fatigue” 564 

effect, as the demand for air velocity for people would differ from short-term exposure 565 

to long-term exposure[64, 65]. The lab experiments used in this study were designed to 566 

explore the cooling effect of air movement for a localised airflow system and the 567 

exposure durations were limited, with the time-dependent variations of subject thermal 568 

sensations being thus exclusively considered. The term “alliesthesia” has been paid 569 

increasing attention in the dynamic thermal comfort field, and describes a sensation of 570 

pleasantness that occurs only with dynamic thermal stimuli on a human skin surface[66, 571 

67]. As for long-term exposure to airflow in real building environments, the annoyance 572 

caused by a constant air velocity may increase over time[64]. An air velocity over 1 m/s 573 

may exert extra pressure on the human body surface[68]and cause eye irritation [69]; 574 

moreover, the high air velocity may cause thermal draught for occupants in hot 575 

environments [15, 65]. In that case, a new database including a time variable should be 576 

built, to retrain the current C5.0 model for long-term comfort evaluation.  577 

In addition, to achieve such ‘temporal alliesthesia’ for people, the local air supply 578 

system should be regulatory for occupants. According to some studies exploring the 579 

personal control of localised air supply systems[23, 70], the expected air velocity 580 

decreases and the acceptable temperature limits increase when providing personal 581 

control to occupants. However, considering that occupants’ demands and regulations 582 

on air velocity as integrated with a time factor remain incompletely understood, subjects 583 

in these three series of experiments were restricted from regulating the local airflow 584 

system. Therefore, some deviations may exist when the C5.0 model is applied to a 585 

personally-controlled system. As the occupant behaviours play dominant roles for 586 

thermal comfort and energy consumption in buildings, in-depth research should be 587 

conducted for the effects of personal control on localised air supply systems and the 588 

corresponding demands.  589 

From a practical perspective, the challenges ahead model application would 590 

depend upon some factors[71]: (1) the quality and importance of the monitored 591 

parameters; (2) the availability of devices to monitor these parameters; and (3) the 592 

operation and cost for long term measurements. The current study identifies 8 features 593 

for C5.0 model prediction, but some individual parameters and physiological indices 594 

may be difficult for data monitoring and collection in buildings. Future studies for 595 

application of the localised airflow system in buildings should select more accessible 596 

variables, or alternative indices, without compromising the prediction performance of 597 

the C5.0 model.  598 

5. Conclusions 599 

This work, based on three series of experiments with localised airflow systems, i.e. 600 

IASN, NIASN, and FF, identifies the appropriate machine learning model - the 601 
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classification tree C5.0 model, which has the highest prediction performance of 83.99% 602 

with 17 original variables.  603 

The sensitivity analysis quantifies the main effects of 8 major variables in a 604 

localised airflow system. T is the major contributor leading to the most sensitive 605 

response of TSV, followed by V and RH. The total effects increase using global 606 

sensitivity analysis, indicating significant interactive effects.  607 

The C5.0 model is then modified with the 8 sensitive features, and displays a better 608 

prediction performance (82.3%). A tree model is obtained to demonstrate the decision 609 

rules in the C5.0 model. The model employs V (=0 m/s,＞0 m/s) as the first feature 610 

variable and root node, and T (≤28 °C,＞28 °C) as the second feature variable and leaf 611 

node. This is highly interpretable, and responds to the sensitivity analysis. With the 612 

lowered cost of sensors and ubiquitous wireless connectivity, it is believed that the C5.0 613 

model will be further improved, thanks to its continuous learning and ability to 614 

automatically train itself.  615 
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