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ABSTRACT Long-term consumption of dietary fiber is generally considered benefi-
cial for weight management and metabolic health, but the results of interventions
vary greatly depending on the type of dietary fibers involved. This study provides a
comprehensive evaluation of the effects of a specific dietary fiber consisting of a
wheat-bran extract enriched in arabinoxylan-oligosaccharides (AXOS) in a human in-
tervention trial. An integrated multi-omics analysis has been carried out to evaluate
the effects of an intervention trial with an AXOS-enriched diet in overweight individ-
uals with indices of metabolic syndrome. Microbiome analyses were performed by
shotgun DNA sequencing in feces; in-depth metabolomics using nuclear magnetic
resonance in fecal, urine, and plasma samples; and massive lipid profiling using
mass spectrometry in fecal and serum/plasma samples. In addition to their bifido-
genic effect, we observed that AXOS boost the proportion of Prevotella species. Met-
agenome analysis showed increases in the presence of bacterial genes involved in
vitamin/cofactor production, glycan metabolism, and neurotransmitter biosynthesis
as a result of AXOS intake. Furthermore, lipidomics analysis revealed reductions in
plasma ceramide levels. Finally, we observed associations between Prevotella abun-
dance and short-chain fatty acids (SCFAs) and succinate concentration in feces and
identified a potential protective role of Eubacterium rectale against metabolic disease
given that its abundance was positively associated with plasma phosphatidylcholine
levels, thus hypothetically reducing bioavailability of choline for methylamine bio-
synthesis. The metagenomics, lipidomics, and metabolomics data integration indi-
cates that sustained consumption of AXOS orchestrates a wide variety of changes in
the gut microbiome and the host metabolism that collectively would impact on glu-
cose homeostasis. (This study has been registered at ClinicalTrials.gov under identi-
fier NCT02215343.)

IMPORTANCE The use of dietary fiber food supplementation as a strategy to reduce
the burden of diet-related diseases is a matter of study given its cost-effectiveness
and the positive results demonstrated in clinical trials. This multi-omics assessment,
on different biological samples of overweight subjects with signs of metabolic syn-
drome, sheds light on the early and less evident effects of short-term AXOS intake
on intestinal microbiota and host metabolism. We observed a deep influence of
AXOS on gut microbiota beyond their recognized bifidogenic effect by boosting
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concomitantly a wide diversity of butyrate producers and Prevotella copri, a micro-
bial species abundant in non-Westernized populations with traditional lifestyle and
diets enriched in fresh unprocessed foods. A comprehensive evaluation of hundreds
of metabolites unveiled new benefits of the AXOS intake, such as reducing the
plasma ceramide levels. Globally, we observed that multiple effects of AXOS con-
sumption seem to converge in reversing the glucose homeostasis impairment.

KEYWORDS AXOS, dietary fiber, glucose homeostasis, lipidomics, metabolic
syndrome, metabolomics, microbiome, overweight

The World Health Organization (WHO) reports that 1.9 billion adults are overweight,
650 million of whom are obese (1), making the obesity epidemic and the resulting

metabolic complications an important health concern. The current rise in obesity
prevalence in low- and middle-income countries, particularly in urban settings, and in
children and adolescents further underlines the importance of prevention and treat-
ment of obesity (1, 2). Obesity is the result of a long-term imbalance between energy
intake and expenditure, mainly caused by overnutrition and sedentary lifestyle (3).
Obesity is characterized by chronic low-grade inflammation and impairment of the lipid
and glucose metabolism, thus increasing the risk of developing comorbidities such as
type 2 diabetes (T2D), cardiovascular disease (CVD), and mental diseases (4, 5). Different
epidemiological studies support the notion that regular consumption of enriched
dietary fiber food is inversely correlated with weight gain, thus potentially reducing the
risk of developing T2D and CVD (6–10). Interestingly, a recent umbrella review of
systematic reviews reports that dietary fiber intake has a convincingly protective effect
against CVD, including coronary artery disease and CVD-related death, and that there
is suggestive evidence of disease risk reduction for several type of cancers, T2D, and
stroke (11). Accordingly, dietary fiber consumption appears to be a feasible long-term
and cost-effective strategy to prevent obesity and its comorbidities.

Dietary fiber comprises a diverse group of structurally complex carbohydrates with
various effects on human metabolism and the gut microbiota (12). Arabinoxylans (AX)
are cell wall components that constitute a major part of the dietary fiber fraction of
cereal grains and are an important fiber source in the human diet (13). The main
products of AX enzymatic hydrolysis are arabinoxylan-oligosaccharides (AXOS) and
xylan-oligosaccharides (XOS), which show prebiotic potential because of their ability to
increase the abundance of bifidobacteria and some butyrate producers in the gut
(14–16). The bifidogenic effect of AX-derived oligosaccharides has been shown in
human dietary interventions where abundance of Bifidobacterium species has been
increased in feces as a consequence of the intake of 4-g/day XOS for 3 weeks (17) or
2- to 10-g/day AXOS during a similar period of time (18–20). Although no major impact
on blood biochemical, physiological, and anthropometrical parameters has been ob-
served following AXOS/XOS intake, most likely due to the short duration of the studies,
the increases in fecal moisture (17) and short-chain fatty acid (SCFA) concentrations
(19), and in postprandial ferulic acid concentration (20), altogether confirm utilization of
this type of dietary fiber by gut microbiota and its potential impact on metabolic
health.

In a previous study including a randomized crossover intervention evaluating the
effects of AXOS and polyunsaturated fatty acids (PUFA) in overweight subjects with
indices of metabolic syndrome (MetS), we reported that AXOS exert a bifidogenic effect
and increase the abundance of butyrate-producing bacteria using a 16S rRNA gene
sequencing approach (21). In the current paper, we aimed to further characterize the
microbiome, metabolome, and lipidome responses to AXOS intake to gain insight into
the possible role of the microbiota as mediator of dietary effects on metabolic health
(Fig. 1). To this end, we have analyzed the biological samples of the group of
responders to AXOS consumption (who showed significant changes in their gut
microbiota) from our previous study (Kjølbæk et al. [21]). A multi-omics approach has
been applied, including shotgun DNA sequencing metagenomics of feces; nuclear
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magnetic resonance (NMR) metabolomics conducted in feces, plasma, and urine; and
mass spectrometry-based (liquid chromatography mass spectrometry [LC-MS]) lipido-
mics in plasma and feces.

RESULTS
Human gut metagenome’s response to AXOS consumption. (i) Abundance

changes in bacterial groups. The new taxonomic analyses performed on meta-
genomic shotgun sequencing data indicate that AXOS intake increased the abundance
of Actinobacteria (P � 0.0481), Bifidobacteriaceae (P � 0.0316), and Bifidobacterium
(P � 0.0317) taxonomy groups, comparing samples at baseline with those after the
intervention. In addition to this characteristic bifidogenic effect, the abundance of
members of the Ruminococcus gnavus group (P � 0.0105) and of the Lachnospiraceae
XPB1014 group (P � 0.0171) were also increased in samples after the AXOS interven-
tion. Conversely, the AXOS intake reduced the proportion of Rikenella (P � 0.0413),
Parabacteroides (P � 0.0367), and Paraprevotella (P � 0.0428) species (Fig. 2).

The metagenome analysis was based on the processing of more than 3.2 billion
reads (106 million paired-end reads on average per sample), which produced approx-
imately 10.2 million encoding genes assembled. A nonredundant coding metagene
database was obtained by clustering protein sequences predicted from sequencing
reads, thus retrieving �1.7 million metagenes as a reference for the assessment of the
effects of AXOS intake on the gut microbiome. We found that 3,230 metagenes
(�0.19% of the full data set) exhibited differential abundance, of which 852 were
underrepresented and 2,378 were overrepresented after the intervention. In order

FIG 1 Graphical description of the study and the main outcomes assessed.
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FIG 2 Gut microbiota components influenced by AXOS intake. The distribution of normalized reads belonging to the
taxonomy categories with differential abundance after AXOS consumption is depicted in box plots. Red boxes represent
start point samples (baseline before the intervention), whereas turquoise boxes represent the endpoint samples (at the end
of the intervention). Blue data points indicate outliers. The linear mixed model (LMM) estimate (baseline as reference
group) and P values are shown. LMM indicates the variance obtained using log-transformed data.
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to confidently disclose the taxonomy categories corresponding to those genes, we
performed a simple BLASTP (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE�Proteins)
search against the nonredundant protein database at the NCBI (release May 2017),
making taxonomy assignments of query sequences with alignments of at least 70%
amino acid sequence identity, compared with the respective top matches. Regarding
the underrepresented set of metagenes, we were able to assign taxonomy categories
for 36% of them with certainty and identify species of the genera Bacteroides, Alistipes,
Eubacterium, Roseburia, Prevotella, and Raoultella (Fig. 3A). Of all the species, the
metagenes of Bacteroides species were those most negatively influenced by AXOS
intake, particularly Bacteroides massiliensis and Bacteroides eggerthii. Additionally, spe-
cies such as Alistipes obesi, Eubacterium siraeum, Roseburia inulinivorans, Prevotella
buccalis, and Prevotella multisaccharivorax were also reduced by AXOS intake. The
analysis of the overrepresented set of metagenes (60% with reliable taxonomy identi-
fication) allow the identification of Bifidobacterium species, with Bifidobacterium ado-
lescentis, Bifidobacterium longum, Bifidobacterium catenulatum, and Bifidobacterium an-
gulatum as the most predominant (Fig. 3B). We observed that more than one-third of
the overrepresented metagenes corresponded to Prevotella species, particularly Pre-
votella copri (Fig. 3B). We detected and quantified DNA reads for the six Prevotella
phylotypes present in the SILVA database release 128 (see Fig. S1 in the supplemental
material). Interestingly, each individual phylotype showed no significant distribution,
including the “Prevotella_9” corresponding to P. copri, but with a notable increase in
reads of “Prevotella_1” and “Prevotella_9.” Globally, the sum of reads for all Prevotella
phylotypes indicated that such species are promoted by AXOS intake as well
(P � 0.0501).

The analysis of the overrepresented set of metagenes also enabled the identification
of additional bacterial species, such as Bacteroides stercoris, Bacteroides ovatus, Blautia
obeum, Blautia wexlerae, Eubacterium rectale, Eubacterium hallii, Roseburia faecis, and
Adlercreutzia equolifaciens, which were increased after AXOS intervention (Fig. 3B).

(ii) Functional analysis. The set of metagenes underrepresented as a consequence
of AXOS intake exhibits a wide range of metabolic and cellular functions according to
the annotation with KEGG. Of these, some metagenes encode potential pathogenic
features, such as biofilm formation (ko:02026, ko:02025, and ko:05111), beta-lactam
resistance (ko:01501), bacterial secretion systems for virulence factor release (ko:03070),
flagellar assembly (ko:02040), cationic antimicrobial peptides (CAMP resistance) (ko:
01503), bacterial chemotaxis (ko:02030), monobactam biosynthesis (ko:00261), and
lipopolysaccharide biosynthesis (ko:00540) (Table S2). When we analyzed the overrep-
resented set of metagenes, we found a lower level of functional annotation than for the
underrepresented set of metagenes (24% and 43%, respectively). We then evaluated
the function of those metagenes present in the species predominantly influenced by
AXOS, such as Prevotella copri and Bifidobacterium spp., which account for roughly 50%
of the overrepresented metagenes (Fig. 3B). As shown in Fig. 4, the AXOS consumption
led to an expansion of the collection of genes dedicated to vitamin and cofactor
biosynthesis as well as of genes specialized in transport, biosynthesis, and degradation
of glycans. Notably, we also found a significant increase of genes involved in the
biosynthesis of the neurotransmitter gamma-aminobutyric acid (GABA) and precursors
of aromatic amino acids (shikimate and chorismate) with potential roles in the gut-brain
communication. Moreover, the Venn analysis indicated that the functions amplified to
a greater extent by AXOS intake (present in at least 3 out of the 4 groups of
overrepresented metagenes) consisted of those involved in the biosynthesis of vitamin
K2, the derivative vitamin B9 tetrahydrofolate (THF), vitamin B2, and the coenzyme A
biosynthesis. All the above were equally found to be overrepresented in metagenes
from Prevotella copri and Bifidobacterium species (Fig. 4).

To investigate the bacterial cellular functions boosted by AXOS consumption, we
conducted a domain enrichment analysis using the Pfam annotation system. This
showed that the overrepresented metagenes were almost exclusively dedicated to
glycan metabolism, with several metagenes exhibiting a wide range of particular
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functions for this fundamental cell process (Table S3). We observed overrepresentation
of functions such as outer membrane proteins (OMPs) for carbohydrate binding and
transport relying on OMP-, TonB-, and SusD-like proteins. Moreover, we also identified
a vast amount of proteins enriched in carbohydrate binding modules (CBMs) charac-

FIG 3 Taxonomy assessment of metagenes with differential abundance as a result of the AXOS intervention. (A) Genus and
species distribution of the underrepresented metagenes in the metagenome of samples after AXOS intervention. (B) Similar
analysis as in panel A for the overrepresented metagenes. Pie charts indicate the distribution at genus level, whereas bar plots
indicate the distribution of the main species; the color coding is maintained accordingly. “Unknown” is used for taxonomic
categories showing an identity score lower than 70% and no taxonomy defined at genus level. Those with a score identity higher
than 70% and equal matching with several species from the different genera are shown as “Uncertain.” Numbers inside
parentheses show the number of genera or species in addition to those shown in the graph.
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teristic of glycosyl hydrolase enzymes such as beta-galactosidases, of which central
domains were likewise enriched in the overrepresented metagenes. More-general
functions were also found in several metagenes that encode ATPases with no defined
molecular roles but apparently related to sugar transport function according to asso-
ciations inferred from functional and phylogenetic information. Increases in the pres-
ence of metagenes encoding carboxypeptidases and protein domains associated with
similar functions (PD40/WD40-like) suggested that AXOS could increase the activity of
specific peptidases of the gut metagenome. An increased presence of several met-
agenes associated with the prokaryote innate immune response, such as restriction
modification systems, was also observed (Table S3).

(iii) Human gut metavirome response to AXOS intake. We also used the metag-
enome information to evaluate the presence of virus sequences in the raw data
retrieved from shotgun sequencing of fecal DNA. By using the ViromeScan approach
(22), we were able to evaluate the relative abundance of approximately 22 virus
families. In general terms, we found a predominant tendency toward a decrease of
reads matching human virus sequences after the AXOS intervention, although the
differences did not reach statistical significance. Interestingly, our viral characterization
on the gut samples led to the detection of Megavirales and other giant viruses
(�200 nm in diameter), which were only recently identified in human stool and other
human samples (23). The clinical or biological significance of the presence of these
viruses in the human gut remains to be determined; for this reason, our data pave the
way to searching for giant viruses in the human gut and to establishing the impact that
diet has on them.

AXOS impact on markers of glucose homeostasis and gut microbiota. A new
evaluation in the set of responders indicates that AXOS intake did not result in

FIG 4 Gain of function in the gut microbiome as a consequence of AXOS ingestion. Overrepresented metagenes from Bifidobacterium spp.
(n � 315), Prevotella copri (n � 782), non-copri Prevotella spp. (n � 415), and non-Bifidobacterium/non-Prevotella species (n � 866) were mapped
to the KEGG database and then assigned to the respective functional modules of that repository. A Venn analysis displays the taxonomy-specific
functions gained and those exacerbated by the simultaneous presence in at least 3 out of the 4 groups of bacterial species analyzed (dashed
circle).
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significant changes in most of the metabolic health outcomes and biomarkers analyzed
(anthropometry, inflammatory, lipid, or glucose biomarkers), probably due to the
limited sample size and short study duration. Nevertheless, we observed that the mean
value of fasting insulin as well as of the insulin resistance index (homeostatic model
assessment for insulin resistance [HOMA-IR]) was slightly reduced (Fig. S2A, B, and C).
Although this reduction was observed in only a proportion of the subjects analyzed
(�47%), it is suggestive of a potential improvement in glucose metabolism probably
linked to changes in certain microbiota signatures. Using a logistic regression analysis,
we found that changes in the HOMA-IR tended to be related to three different
taxonomy groups, whose abundance was increased as a result of the intervention
(Fig. S2D). In particular, the changes in abundance of “Lachnospiraceae AC2044 group”
(odds ratio � 4.95, confidence interval [CI] � 4.39 to 49.65, P � 0.0571), “Eubacterium
ruminantium group” (odds ratio � 3.53, CI � 1.22 to 20.15, P � 0.0575), and “Lachno-
spiraceae XPB1014 group” (odds ratio � 3.20, CI � 1.05 to 15.69, P � 0.0737) suggest
that an increase of 1 logarithmic unit in the relative abundance of these microbial
groups leads to an increase of at least 3-fold in the probability of the HOMA-IR
amelioration.

AXOS effects on plasma and fecal lipidome. By using MS-based lipidomics
approaches, we were able to quantify 9 lipid classes and more than 150 species
according to the chain length and double bond content in both plasma and fecal
samples. We found no significant changes in the lipid profiles from feces in response to
the intervention. In plasma, we detected a significant increase in one out of 18 analyzed
cholesteryl ester species, CE 20:0, and a decrease in two hexosylceramides and one
ceramide (Table S4). For the latter, a quasiconsensus signal of reduction in plasma
ceramide levels was observed in 8 out of the 9 features evaluated (three of them in a
significant manner, P � 0.013), thus obtaining a global trend for a decrease in the total
ceramide content in plasma samples (P � 0.0788). We found no correlations between
microbiome signatures and this lipidomic feature.

Metabolomic profiling upon AXOS consumption. The NMR-based metabolomic
analysis of the metabolite profile before and after the AXOS intervention indicated that
there were changes only in the urine hippuric acid concentration (Fig. 5). This increase
was more prominent in a subgroup of participants, which could be attributed to higher
abundance of Prevotella_6-associated species (R2Y � 0.5951, Q2Y � 0.1320) and nega-
tively correlated with Ruminococcaceae UCG.012 abundance (R2Y � 0.7190, Q2Y �

0.2795). Additional correlation patterns suggested that urine dimethylamine (DMA)
levels were associated with proportions of Peptoclostridium species (R2Y � 0.6010,
Q2Y � 0.2679). In fecal samples, positive correlations between Prevotella_2 abundance
and the concentrations of acetate, propionate, and succinate were identified

FIG 5 Effects of the dietary intervention on urine metabolome. The urinary metabolome was analyzed by 1H nuclear magnetic resonance.
Orthogonal projection to latent structure discriminant analysis models were used to compare the changes in the urinary metabolome at
start points and endpoints. (A) For this pairwise comparison, the plot of the scores (T) compared with cross-validated scores (Tcv) is shown.
(B) Loading plot is color coded according to the correlation coefficient (R2) with Y (predictor vector coding time of the intervention). Q2,
goodness of prediction; R2, goodness of fit.

Benítez-Páez et al.

July/August 2019 Volume 4 Issue 4 e00209-19 msystems.asm.org 8

https://msystems.asm.org


(R2Y � 0.7357, Q2Y � 0.1818). Finally, application of a supervised model of analysis
allowed partial discrimination between plasma samples before and after the interven-
tion (start and end points). Signals from residual very-low-density lipoprotein (VLDL)
and triglyceride (TAG) fractions, including fatty acids and glyceryls of lipids, were to
some extent increased after the intervention. Although this could be indicative of a
trend for dyslipidemia, the VLDL profile in plasma measured by classical biochemical
methods indicates no major changes in this type of lipid during the intervention
(P � 0.2099). On the other hand, the abundance of Eubacterium rectale, a microbial
species boosted by AXOS intake (Fig. 3B) (21), was positively correlated with concen-
trations of phosphocholine and sn-glycero-3-phosphocholine in plasma (R2Y � 0.5468,
Q2Y � 0.2928).

DISCUSSION

Using a multi-omics approach, we have performed an in-depth characterization of
the microbiome, lipidome, and metabolome response to a specific source of fiber
(AXOS). In previous intervention trials, there has been controversy on the effect of AXOS
on health outcomes with the microbiome assessments being limited to taxonomic
features (18, 19, 21, 24, 25). The present study aimed at providing a more exhaustive
analysis of the AXOS-driven metabolic changes with a particular focus on the early gut
microbiota-induced changes after a 4-week randomized dietary intervention. In agree-
ment with previous findings, we found that a bifidogenic effect of AXOS was evident
when the metagenome was analyzed using shotgun sequencing (18–20, 26). In this
study, we report new microbiome effects resulting from AXOS intake, including in-
creases in the abundance of Ruminococcus gnavus and Lachnospiraceae XPB1014
taxonomy groups, the latter related to Eubacterium, Blautia, and Roseburia species
(BLASTN search against the nonredundant 16S NCBI database, 91 to 94% sequence
identity). We have described the AXOS impact on Blautia luti and Blautia wexlerae
species and other butyrate/propionate-producing bacteria such as Eubacterium rectale,
Eubacterium hallii, Faecalibacterium prausnitzii, and Dorea longicatena, based on V3-V4
16S amplicon sequencing data and the combination of multivariate and linear analyses
of operational taxonomic units (OTUs) in a previous paper (21). Moreover, we observed
that AXOS intake significantly reduced Parabacteroides, Paraprevotella, and Rikenella
species. Similarly, reductions in Parabacteroides proportions have been linked to im-
provement of glucose homeostasis in obese mice after dietary supplementation with
capsaicin according to another study (27). This effect produced by AXOS on Parapre-
votella species was also observed after the Roux-En-Y gastric bypass (RYGB)-like and
metformin treatments in the Zucker diabetic fatty (ZDF) rat model of obesity and T2D
(28).

Upon assembling and predicting the set of bacterial genes present in the gut
microbiome of responders included in the present study, we also found that AXOS
intake increased the proportion of Prevotella species and particularly of Prevotella copri.
When searching the SILVA database (release 128), we found that of the six different
phylotypes present in the database, only two tend to be increased after AXOS intake
(Prevotella_1 and Prevotella_9). However, a change in this taxonomy category
(P � 0.0501) was detected as a result of the intervention when all Prevotella phylotypes
were combined and considered in the analysis. These findings could lead to question-
ing of the proper identification of this complex group of bacteria. This issue has been
reported previously in a human study where De Filippis and coworkers describe that
correlation patterns of Bacteroides and Prevotella species with animal- or plant-derived
nutrients, respectively, correspond with a simplistic association given the unexplored
genetic variability at the subgenus level of these taxonomic groups prevalent in the
human gut microbiota (29).

The role of the species P. copri in the amelioration of glucose intolerance seems to
be contradictory according to the existing scientific evidence. While the early metag-
enomic assessment of the gut microbiome of T2D patients indicated that P. copri is
linked to an increased production of branched-chain amino acids (in plasma and gut)
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associated with insulin resistance and to a higher risk of T2D (30), other animal studies
reported that P. copri has a positive impact on glucose homeostasis, given the activa-
tion of the intestinal gluconeogenesis via succinate production (31–33). Therefore, it is
difficult to attribute a healthy or harmful role to P. copri in glucose homeostasis in the
light of the existing evidence. We hypothesize that such antagonist effects could
depend on the specific strains tested, on the substrate availability (activating different
proteolytic or saccharolytic pathways), and on other components of the gut microbiota
involved in host-microbe and microbe-microbe interactions and on the experimental
conditions. In fact, a very recent work of De Filippis et al. suggests that antagonist
associations of P. copri strains with health and disease would be explained by genetic
variability and certain metabolic traits (34). In our particular case, AXOS intake increased
a large number of metagenes carried by P. copri and tended to improve the HOMA-IR
index (P � 0.0837), suggesting that AXOS intake can ameliorate the glucose metabo-
lism, via modification of metagenomic functions, in overweight individuals with signs
of MetS, in agreement with other studies in humans (25, 35). Nevertheless, this slight
improvement in HOMA-IR values was not explained by a change in abundance of any
Prevotella phylotype, including those closely related to P. copri. In contrast, we unveiled
an association trend between the HOMA-IR and three different taxonomy groups,
including the Lachnospiraceae XPB1014 group related to Eubacterium, Blautia, and
Roseburia species. Special attention should be given to the species from the Lachno-
spiraceae XPB1014 group since these were found to be augmented by AXOS intake
(Fig. 2). It is likely that several components of the microbiota involved in the generation
of SCFAs by cross-feeding mechanisms could explain potential AXOS effects on glucose
metabolism. Such effects could be mediated, for example, by the conversion of
succinate into SCFAs like propionate, which can trigger intestinal gluconeogenesis and
improve glucose metabolism (32).

From a functional point of view, we observed that AXOS consumption increased the
abundance of genes involved in carbohydrate metabolism as well as vitamin and
cofactor biosynthesis. The expansion of the set of glycosyl hydrolases and enzymes
related to carbohydrate metabolism, essentially in P. copri and Bifidobacterium species,
could be involved in the generation of organic acids, including SCFAs, through cross-
feeding mechanisms with potential beneficial effects on gut and metabolic health (16).
Theoretically, microbiome-mediated increases in the production of vitamins and cofac-
tors could also bring host benefits (e.g., vitamin K2 in bone physiology altered in obese
individuals [36, 37]), although direct evidence of vitamin production and host utilization
remains to be shown. The AXOS intake increased the representation of metagenes
involved in the biosynthesis of tetrahydrofolate (THF; the active form of folic acid),
which may also have potential metabolic benefits. Indeed, some obese individuals
show folate deficiency, which could lead to hyperhomocysteinemia related to athero-
sclerosis risk (38). In line with this, administration of folic acid and derivatives seems to
confer protection against hyperhomocysteinemia-induced oxidative stress (39). AXOS
intervention also increased the capacity of the gut microbiome for aromatic amino acid
production (shikimate pathway producing precursors for tryptophan, phenylalanine,
and tyrosine biosynthesis), which theoretically could increase the generation of deriv-
ative neurotransmitters (e.g., serotonin, dopamine, epinephrine, and norepinephrine).
An augmented capacity for GABA biosynthesis was also detected as a consequence of
AXOS intake. Altogether, this could result in additional effects on the communication
within the gut-brain axis (40). Different studies based on mouse models indicate that
low concentrations of GABA are associated with anxiety-like behavior, insulin resis-
tance, energy expenditure imbalance, and weight gain in overweight and obesity
(41–44). Particularly, one animal study indicated that GABA acts as activator of insulin
secretion, given that GABA-like immunoreactive cells in the pancreas of rats are
reduced in diabetes (45). A recent study in obese rats also indicated that GABA
supplementation reduces serum ceramide concentrations (43). Therefore, we hypoth-
esized that the AXOS-driven increased abundance of microbial species encoding GABA
production could hold promise for the mediation of metabolic and mental health
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effects. Interestingly, other microorganisms like Bacteroides species, evolutionarily re-
lated to the Prevotella genus members, as well as some Lactobacillus and Bifidobacte-
rium species, also have been described to be GABA-producing gut microbes (46, 47).
Our findings also show that AXOS intake significantly decreases the concentration of
several ceramide species in plasma (P � 0.013). Previous reports have also shown an
association between the increased levels of ceramides and impaired glucose homeo-
stasis in MetS and T2D patients (48–50).

Finally, the metabolomics approach was useful to trace the utilization of AXOS by
gut microbiota through the presence in urine of hippuric acid, a microbial metabolite
derived from degradation of polyphenols associated with dietary fiber (51). Our data
suggest that hippurate production could be related to the abundance of Prevotella
species increased by AXOS intake. Additionally, acetate, propionate, and succinate
concentrations in feces were also positively related to the abundance of Prevotella
species, which could bring benefits to metabolic health as explained above (32). The
plasma metabolomic profiling indicates that phosphatidylcholine biosynthesis could be
increased by AXOS intake via the butyrate producer Eubacterium rectale, which showed
positive correlations with phosphatidylcholine precursors (P � 0.05). In turn, this could
decrease bioavailability of choline for the production of methylamines (DMA and
trimethylamine [TMA]) by other gut microbes (52), such as Peptoclostridium species that
showed a positive correlation with the DMA urine concentration in our study. TMA is
the precursor of trimethylamine oxide (TMAO), which is produced in the liver, kidney,
and other tissues. Increased plasma levels of TMAO have been associated with en-
hanced risk of developing atherosclerosis, T2D, and chronic kidney disease. Therefore,
this could be a mechanism by which AXOS microbiome-mediated effects could confer
protection against the impairment of glucose metabolism, (53), as well as against a
wide variety of chronic diseases (54), reducing the availability and exposure to meth-
ylamine oxide forms. Indeed, a previous study in patients with chronic kidney diseases
found that AXOS slightly decreased plasma TMAO (55), results that further support our
ideas.

Conclusions. Using a multi-omics functional approach, we have characterized in
depth the effects of AXOS intake on the microbiome, lipidome, and metabolome and,
thereby, tentatively identified possible microbiome- and non-microbiome-mediated
dietary effects on metabolic health. We have shown that in addition to the well-
recognized bifidogenic effect of AXOS, this type of dietary fiber increases the abun-
dance of Prevotella and clostridial bacteria from the Lachnospiraceae family (butyrate
producers) along with increases in organic acids (propionate and succinate). Further-
more, AXOS decreases plasma ceramide levels via a microbiome-independent mecha-
nism, which altogether could contribute to improved glucose metabolism. The direc-
tion of other functional metagenomic changes induced by AXOS was related to the
production of neuroactive (GABA) and choline metabolites, suggesting potential addi-
tional effects that could reduce the risk of developing chronic metabolic conditions.
Studies with a larger sample size and longer duration are warranted to confirm whether
the metabolome and lipidome profiles resulting from AXOS intake and the induced
microbiome configuration are translated into metabolic health outcomes, aiding in the
validation of the biomarkers of dietary exposure and function tentatively identified in
the present study.

MATERIALS AND METHODS
Ethics approval and consent to participate. The study is registered at ClinicalTrials.gov

(NCT02215343), was conducted according to the guidelines laid down in the Declaration of Helsinki, and
was carried out in accordance with the ethical standards of the responsible regional committee on
human experimentation in Denmark, registered as H-4-2014-052, and the Danish Data Protection Agency
(2013-54-0522).

Study design. The present study is based on a non-placebo-controlled randomized crossover trial
with two dietary intervention periods (4 weeks each) separated by a washout period (4 weeks) conducted
in 30 overweight and obese individuals (body mass index [BMI] of 25 to 40 kg/m2) with MetS index (an
increased waist circumference plus at least one of the criteria for MetS [56]) described in detail elsewhere
(21). The dietary fiber ingredient provided was a wheat bran extract, enriched in arabinoxylan-
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oligosaccharides (AXOS) (10.4 g/day AXOS). Before and after intervention periods, weighted dietary
records and fecal, urine, and blood samples as well as anthropometric measurements were collected
(Fig. 1). The present study encompasses the integration of clinical and multi-omics data derived from
multiple biological samples of a subset of responders to AXOS intervention (n � 15) (Fig. 1), for whom
AXOS did produce meaningful shifts in the structure of the gut microbial community (with no risk of
carryover effect because of the crossover design). The information inferred from beta-diversity analysis,
based on the Bray-Curtis dissimilarity index among samples (PERMANOVA � 1.90, P � 0.02), was used as
an indicator of significant changes in the microbial community structure (21). The baseline characteristics
of this cohort of samples are described in Table S1 in the supplemental material. Responders were
defined as the group of participants included in the same dietary intervention period and showing
significant changes in their microbiota composition, for whom the OTUs matching with bifidobacteria
and/or recognized butyrate producer species were boosted as a result of the dietary intervention with
AXOS and assessed by16S rRNA gene sequencing (21).

Sampling. (i) Urine and feces. Collection of fecal and urine samples took place at home prior to the
clinical investigation day (CID) in sterile collection tubes provided. The urine sample was collected in the
morning, and the fecal sample was collected as close to the urine sample as possible. Both samples were
kept at 4°C after collection and delivered to the Department of Nutrition, Exercise, and Sports, University
of Copenhagen, within 3 h after collection of feces. At the Department, the samples were weighed and
the density of the urine sample was measured (Atago PAL-10S pocket refractometer) to calculate the
volume. For the metabolomic analysis of urine, an aliquot of 4 ml urine was used and 45 �l 0.1% sodium
azide was added. For fecal analysis, an aliquot of the sample was transferred to the EasySampler kit for
stool collection (GP Medical Devices, Denmark) for metagenomic analyses. Here, the fecal sample was
homogenized with MilliQ water, 1:1, and an aliquot was used for metabolomic analyses. For lipidomic
analysis, 500 �l methanol was added per 500 mg homogenized fecal sample. All aliquots were stored at
�80°C.

(ii) Blood samples. Prior to the CID, the participants consumed a standardized dinner in the evening
followed by a fasting period of at least 8 h. All blood samples were collected in the fasting state.
Lipidomic analyses were conducted in plasma and serum. For plasma analysis, blood was collected in
EDTA tubes and put directly on ice, and for serum analysis, blood was kept at room temperature for 20
min to coagulate before centrifugation. For metabolomic analysis, blood for plasma analyses was
collected in heparin tubes and put directly on ice. Afterwards, all blood samples were centrifuged at
2,500 � g for 10 min at 4°C to obtain respective aliquots of serum and plasma and stored at �80°C.
Sampling procedures for plasma and serum samples presented here—for example, glucose, insulin,
lipids, inflammation markers, etc.—are found elsewhere (21).

Metagenomics approach. (i) DNA extraction and shotgun sequencing. The fecal DNA was
extracted using the QIAamp Fast DNA stool minikit (Qiagen, Hilden, Germany) according to the
manufacturer’s instructions with a prior step of bead beating in 2-ml microcentrifuge tubes containing
0.1-mm-diameter glass beads, �200 mg feces, and 1 ml InhibitEX buffer. Bead beating was carried out in
a Mini-Bead Beater apparatus (BioSpec Products, Bartlesville, OK, USA) with two cycles of shaking during
1 min and incubation on ice between cycles. The fecal DNA was quantified through Qubit 3.0 and the
Qubit dsDNA HS assay kit (Thermo Fisher Scientific, Waltham, MA, USA), and 1.5 �g DNA of every sample
was sent to be multiplexed and sequenced in a plate of the HiSeq2500 platform with 2 � 125 paired-end
configuration (Eurofins Genomics GmbH, Ebersberg, Germany). The NEBNext Ultra DNA library prep kit
for Illumina was used according to the manufacturer’s instructions with 400- to 500-bp insert size and
low PCR cycling (5 cycles).

(ii) Metagenome data analysis. Approximately 0.5 Tb raw data were delivered in fastq files.
Paired-end fastq files were used to assemble the fecal metagenome of each individual at two different
time points by using Velvet assembler v 1.2.10 (57) with k-mer length 61, -exp_cov auto, and -ins_length
200 parameters, followed by an assembly refinement step using the Metavelvet extension (58) with the
-ins_length 200 -ins_length_sd 50 configuration. The assembled contigs larger than 200 nucleotides (nt)
in length were retained, and the prediction of potential open reading frames (ORFs) contained in such
fragments from respective metagenomes was assisted by FragGeneScan v1.30 (59), with the
-complete�0 and -train�complete configuration. Peptide sequences obtained from the ORF prediction
in all metagenomes were concatenated and clustered at 70% sequence identity using cdhit algorithm
with -c 0.7, -G 1, -M 10,000, -B 1, and -g 1 parameters (60, 61). For read mapping against the
nonredundant peptide database compiled from the 30 metagenomes assembled, we used the Usearch
v8.0.1623 algorithm with the following parameters: -usearch_local, -id 0.7, -strand both, and -maxaccepts
1. Differential abundance of coding metagenes was assessed by using negative binomial distribution
methods implemented in edgeR (62) and determining a false-discovery rate (FDR) for selection of �0.1.
For taxonomy aims, we mapped the remaining set of reads with no hits after comparison against the
nonredundant coding database. Consequently, we mapped those reads against the reference Silva
database (release 128, https://www.arb-silva.de/), and read alignments were filtered to retain those
expanding beyond 80% of the read length (�100 nt) with �99% sequence identity. Differential abun-
dance in phylum, family, and genus distribution was evaluated with Linear Mixed Models (LMM) by using
time points as fixed effects and subject-specific information (gender, age, and BMI) as random effects.
Additionally, we assessed the taxonomy distribution of the coding metagenes with differential abun-
dance by using BLAST and the NCBI nonredundant protein database (ftp://ftp.ncbi.nlm.nih.gov/refseq/).
Taxonomy identification for those metagenes was based on selection of hits with the best alignment
score among the multiple alignments (covering 100% query sequence and at least 70% sequence
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identity) of each query against targets retrieved. Cases were defined as “uncertain” when equal scoring
was obtained in comparison with more than one hit belonging to different microbial species.

(iii) Functional analyses. Preliminary analysis to assess the function of differentially abundant
metagenes was completed by submitting the amino acid sequence of metagenes with significant
increasing and decreasing abundance, as a consequence of the AXOS intake, to the Kyoto Encyclopedia
of Genes and Genomes (KEGG) Automatic Annotation Server (KAAS) (63). Advanced functional enrich-
ment analysis was performed by annotating the full set of nonredundant coding sequences, obtained in
the global metagenome assembly, against the Pfam database (64) through the WebMGA server (65).
Functional enrichment of Pfam functions in samples after AXOS intake was evaluated by hypergeometric
Fisher’s exact test with correction for multiple testing using the Benjamini-Hochberg method.

(iv) Biochemical and lipidomic data. Plasma biochemical markers previously assessed (21) were
reanalyzed in the present study for the selected subset of subjects. The Shapiro-Wilk normality test was
estimated for all variables, and accordingly, paired and one-sided t test or Wilcox signed-rank test was
performed, respectively, in order to establish if the AXOS intervention improved any of the biochemical
parameters measured. To establish possible relationships between changes in the abundance of bacterial
genera and markers of glucose metabolism (HOMA-IR and fasting insulin), a logistic regression model
was applied, using the glm [family�“binomial”(link�“logit”)] function of R v3.4.3; the HOMA-IR index was
used as binary outcome (1 � improved and 0 � nonimproved), and the changes in the relative abun-
dance of different bacterial genera (Δgenus � log10 normalized reads at endpoint � log10 normalized
reads at start point) were used as explanatory variable. Lipidomics data were analyzed using Wilcox
signed-rank test for paired samples with Benjamini-Hochberg correction for multiple comparisons when
appropriate.

(v) Human virome analysis. Raw fastq sequences were processed using the ViromeScan software to
taxonomically characterize the virome directly from metagenomic reads (22) using the -d human_DNA
parameter to detect only DNA viruses with humans as a natural host. The relative abundance was used
to perform statistical analyses and comparisons among samples before and after the AXOS intervention.
Alpha-diversity was computed for each sample considering the number of viral species detected within
each metagenome. Significance testing was performed using the R package stats and nonparametric
Wilcox signed-rank test for paired samples. When appropriate, P values were adjusted for multiple
comparisons using the Benjamini-Hochberg correction. A false-discovery rate (FDR) of �0.05 was
considered statistically significant. All the statistics and plots for metagenomics and functional ap-
proaches were obtained and designed on R v3.4.3.

Plasma and fecal lipidomics. (i) Quantification of plasma lipid species. Lipids were quantified by
direct flow injection electrospray ionization tandem mass spectrometry (ESI-MS/MS) in positive ion mode
using the analytical setup and strategy described previously (66, 67). Lipid extraction was performed
according to the method of Bligh and Dyer (68), in the presence of non-naturally occurring lipid species
as internal standards. The following lipid species were added as internal standards: phosphatidylcholine
(PC) 14:0/14:0, PC 22:0/22:0, phosphatidylethanolamine (PE) 14:0/14:0, PE 20:0/20:0 (diphytanoyl), phos-
phatidylinositol (PI) 17:0/17:0, lysophosphatidylcholine (LPC) 13:0, LPC 19:0, sphingosine-based cer-
amides (Cer) d18:1/14:0, Cer 17:0, D7-free cholesterol (FC), cholesteryl ester (CE) 17:0, and CE 22:0. A
fragment ion of m/z 184 was used for PC, sphingomyelin (SM) (67), and LPC (69). Neutral loss fragments
were used for the following lipid classes: PE and PI with a loss of 141 and 277, respectively (70, 71).
PE-based plasmalogens (PE P) were analyzed according to the principles described by Zemski Berry and
Murphy (72). Cer and hexosylceramides (HexCer) were analyzed using a fragment ion of m/z 264 (73).
Free cholesterol (FC) and CE were quantified using a fragment ion of m/z 369 after selective derivatization
of FC (66). Quantification was achieved using two non-naturally occurring internal standards (IS) for each
lipid class (except for PI, sphingomyelin [SM] was calculated using PC IS and PE P were calculated using
PE IS), and calibration lines were generated by standard addition of a number of naturally occurring
species to plasma. Calibration lines were generated for the following naturally occurring species: PC 34:1,
36:2, 38:4, and 40:0 and PC O-16:0/20:4; SM d18:1/16:0, 18:1, and 18:0; LPC 16:0, 18:1, and 18:0; PE 34:1,
36:2, 38:4, and 40:6 and PE P 16:0/20:4; Cer d18:1/16:0, 18:0, 20:0, 24:1, and 24:0; FC, CE 16:0, 18:2, 18:1,
and 18:0. Deisotoping and data analysis for all lipid classes were performed by self-programmed Excel
macros as described previously (67, 74). Lipid species were annotated according to the recently
published proposal for shorthand notation of lipid structures that are derived from mass spectrometry
(75). Glycerophospholipid species annotation was based on the assumption of even-numbered carbon
chains only. SM species annotation is based on the assumption that a sphingoid base with two hydroxyl
groups is present.

(ii) Quantification of bile acids. Both plasma and fecal bile acids were quantified by LC-MS/MS using
stable isotope dilution analysis. Fecal samples were homogenized as described below using 10-fold
dilution of the samples.

(iii) Quantification of fecal lipid species. Fecal samples were homogenized in 70% 2-propanol,
using a gentleMACS dissociator (Miltenyi Biotec GmbH, Bergisch Gladbach, Germany) as described
previously (76). Fecal sterols and 5�/�-stanols were quantified by liquid chromatography– high-
resolution mass spectrometry (LC-MS/HRMS) after derivatization to N,N-dimethylglycine esters (76). Fecal
fatty acids were quantified by gas chromatography coupled to mass spectrometry (GC-MS) after
preparation of fatty acid methyl esters (77).

Metabolomics. (i) Sample preparation. In order to reduce the water signal, urine samples (1 ml)
were freeze-dried and reconstituted in 650 �l NMR phosphate buffer [sodium phosphate, 0.2 M, pH 7.4;
sodium 3-(trimethylsilyl)-propionate-2,2,3,3-d4 [TSP] [Sigma-Aldrich], 1 mM; 80% D2O, 20% H2O). TSP
served as NMR reference. Feces (200 mg) were homogenized in 800 �l of NMR buffer for 5 min at 25 Hz
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in a tissue lyser (Qiagen). Plasma samples (350 �l) were mixed with D2O (350 �l). All homogenized
samples were centrifuged (10 min, 4°C, 16,000 � g) and transferred to 5-mm NMR tubes (Bruker, United
Kingdom) for analysis by NMR spectroscopy.

(ii) Spectrum acquisition. The NMR experiments were carried out in the Chemical Analysis Facility
(CAF; University of Reading) using a Bruker AV700 NMR instrument equipped with a 5-mm inverse
CryoProbe, for increased sensitivity. A standard one-dimensional nuclear Overhauser effect spectroscopy
(NOESY-PR-1D) experiment was performed on all three types of samples, using a standard preset pulse
sequence (noesy1d90°). Additionally, a Carr-Purcell-Meiboom-Gill (CPMG) experiment was applied to
plasma samples, where simple presaturation of the water peak was used. This experiment reduced the
signal contribution from albumin and lipoproteins present in plasma and highlighted signals from
smaller molecules. All samples were analyzed at 300 K, and a 65,000-data-point spectrum (spectral width,
14,705 Hz) was obtained by recording 128 scans (8 dummy scans).

(iii) Data processing and statistical analysis. Phase and baseline of the spectra were corrected
using MestreNova software (version 10.0m; MestreLab Research). NMR spectra were referenced to TSP
peak for urine and fecal water samples and to glucose (at � 5.223 ppm) for plasma samples. The
processed spectra were digitalized and transferred to Matlab (version R2017a; MathWorks, Natick, MA) for
the statistical analysis. The residual water signal was removed, and all spectra were normalized to the
total spectral area for feces and urine. Plasma spectra were not normalized. Relative spectra were mean
centered and scaled to unit variance. For the first stage of the analysis (unsupervised), principal-
component analysis (PCA) was used. The next, supervised stage of the analysis involved the orthogonal
projection to latent structure discriminant analyses (O-PLS-DA) (no orthogonal components used) to
compare the changes in metabolite profiles between the two time points. The comparison was made
between the baseline (start point) and the endpoint of AXOS intervention.

NMR spectra were used as a matrix of variables X and time point vector Y (0, baseline; 1, endpoint)
as a predictor. This analysis was used to construct a model identifying metabolites differentiating
between the two time points. The internal validation of the model was evaluated using the following
parameters: the goodness of fit (R2Y), showing what percentage of variation is explained by the model,
and goodness of prediction (Q2Y), the percentage of Y predicted after 7-cross validation. For the
correlation of metabolome with microbiome data, the metagenomics readings (normalized using the
“reads per million” approach) were used as a predictor Y using the O-PLS analysis.

Data availability. The raw fastq sequences generated from the shotgun sequencing of fecal DNA are
publicly available at the ENA under the project accession number PRJEB25727.
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