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Case studies remain an important method for meteorological parameter sensitivity

process studies. However, these types of study often use just a few case studies (typically

up to three) and are not tested for statistical significance. This approach can be

problematic at the convective scales, since uncertainty in the representation of an event

increases, and the variability in the atmosphere arising from convective-scale noise is not

routinely taken into account. Here we propose a simple ensemble method for performing

more robust sensitivity analysis without the need for an operational-style ensemble

prediction system and demonstrate it using a case study from the 2005 Convective Storm

Initiation Project. Boundary layer stochastic potential temperature perturbations with

Gaussian spatial structure are used to create small ensembles to examine the impact of

increasing cloud droplet number concentration (CDNC) on precipitation. Whilst there

is a systematic difference between the experiments, such that increasing the CDNC

reduces the precipitation, there is also an overlap between the different ensembles

implying that convective-scale variability should be taken into account in case study

process-based sensitivity studies.
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2 Flack et al.

1. Introduction14

Case studies remain an important method of understanding how models represent meteorological processes and the sensitivities of15

these processes to certain parameters (e.g. Thompson et al. 2004; Zampieri et al. 2005; Mahoney and Lackmann 2006; Adams-Selin16

et al. 2013; Barthlott et al. 2017). However, these types of sensitivity studies are often performed using single deterministic forecasts17

and consider just a few case studies [e.g. Mahoney and Lackmann (2006) and Gilmore et al. (2004) considered one and three cases,18

respectively]. The statistical significance of the differences between runs are not considered due to the small sample and furthermore19

such studies often use a small number of variants of the parameter being tested (e.g. Zhang and Anthes 1982; Gilmore et al. 2004;20

Oleson et al. 2008; Planche et al. 2015).21

The robustness of such sensitivity experiments has been considered though the use of multiple resolutions in the vertical or horizontal22

(e.g. Sun and Bosilovich 1996; Planche et al. 2015); varying the domain size (e.g. Barthlott et al. 2017); or by using multiple models23

(e.g. Derbyshire et al. 2004). However, it may be that in these experiments sensitivities exhibited to model configurations are larger than24

the sensitivities exhibited to the parameter being examined. In particular, such model configuration changes can modify the timing and25

location of the weather event of interest (or even prevent it occurring). For example Done et al. (2006) demonstrate that a mesoscale26

convective system simulated with explicit convection can have a very different structure (and associated precipitation rates) to that27

simulated using parametrized convection, even at the same resolution, and Clarke et al. (2019) demonstrate that mis-representation of28

mesoscale convective system structure by convective parametrization schemes can impact downstream forecasts. Given the chaotic and29

indeterminate nature of the atmosphere, the possibility for numerical artefacts (e.g. Ancell et al. 2018) and its reduced predictability30

at convective scales relative to synoptic scales (e.g. Hartmann et al. 1995; Zhang et al. 2003; Hohenegger and Schär 2007), it is not31

obvious that such process-based case study sensitivity tests can yield robust results, particularly when using convection-permitting32

models.33

Operationally, the variability in the atmosphere is addressed through the use of ensemble prediction systems (e.g. Buizza and Palmer34

1995; Toth and Kalnay 1997; Bowler et al. 2008, 2009). Such ensembles are used to indicate the multiple possible outcomes of the35

forecasts by including representations of errors in the initial and lateral boundary conditions, as well as in the model itself. Ensemble36

systems designed for use at convective scales are described by Baldauf et al. (2011), Seity et al. (2011) and Hagelin et al. (2017) for37

example, and have been shown to add value over deterministic forecasts, particularly for events that have low predictability such as fog38

formation (Price et al. 2015; McCabe et al. 2016).39

The inclusion of convective-scale noise in operational versions of such ensemble systems is becoming an increasingly common40

strategy: e.g. McCabe et al. (2016) describe the impact of the Met Office random parameter scheme adapted for use in the convection-41

permitting ensemble prediction system in which ten parameters, five from each of the microphysics and boundary layer parametrization42

schemes, are perturbed at regular intervals throughout the forecast to represent convective-scale uncertainty. However, in the context43

of parameter sensitivity tests, it may be impractical to run full operational ensembles due to availability of access and due to the44

number of members that would be required to be run to ensure that the conclusions of sensitivity to the parameter changes are robust45

given the other forms of uncertainty taken into account by the operational ensemble. We do not use an operational ensemble for these46

tests as, although the limited predictability of convective-scale motions is an important consideration, the uncertainties in the initial47

and boundary conditions are not of concern in order to establish whether there is sensitivity to the given parameter. Indeed, these48

uncertainties would often dominate in impact over that due to the changes in parameter both in magnitude and spatial scale. Rather, the49

purpose of using ensemble forecasts in parameter sensitivity studies is to facilitate the distinction between consistent tendencies driven50

by a varying a parameter from nonlinear effects introduced when varying model resolution or configuration. The aim of this study51

is to demonstrate a simple and computationally-cheap ensemble approach suitable for testing parameter sensitivity in process-based52
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Case Study Sensitivity Analysis 3

case studies that yields improved robustness compared to small ensembles generated through configuration changes. Stochastic noise53

indicative of unresolved boundary-layer fluctuations is added on a spatial scale that is near the grid scale and of magnitude typical54

of unresolved fluctuations at this scale. These perturbations are used to create a small ensemble of possible realisations to distinguish55

whether variations in parameters yield systematic differences in the simulation outcome. It is anticipated that this ensemble technique56

could provide an accessible means for other research groups to improve the robustness of their sensitivity tests without the need to57

embed their tests within a full operational-style ensemble.58

Specifically we consider simple ensemble simulations for sensitivity tests to cloud droplet number concentration (CDNC) for a case59

study from the Convective Storm Initiation project (CSIP; Browning et al. 2007). The case corresponds to Intensive Observation Period60

8 (IOP 8) and was previously considered by Planche et al. (2015) who were also interested in the sensitivity of the convective showers61

to CDNC. Those authors found that increasing the CDNC by a factor of three led to a decrease in the average surface precipitation62

by around one sixth. Planche et al. (2015) used the Met Office Unified Model (MetUM) for their simulations and, to build confidence63

in their conclusion, ran the model with several different grid spacings. Here we revisit the case as a test of concept for our simple64

ensemble sensitivity method and further pursue the analysis to provide insights into the changed characteristics of the convection that65

may be associated with reduced precipitation.66

The paper is organised as follows. The case study is described in Section 2, followed by details of the model and perturbation strategy67

in Section 3. Diagnostics are presented in Section 4 and the results are presented and discussed in Section 5. A summary is provided in68

Section 6.69

2. CSIP IOP 870

The case considered is IOP 8 of the CSIP campaign, which occurred on 13 July 2005. The synoptic situation (Fig. 1a) shows a retreating71

high pressure region over the United Kingdom (UK), indicating light winds. There were two trailing cold fronts on the northern fringes72

of the UK, which weakened as they progressed south and had dissipated by 0000 UTC on 14 July. Convection occurred in the mid-73

afternoon (Figs. 1c–d) in the southern half of the country, with the main focus to the north of London (Fig. 1c; see also Bennett 2007;74

Khodayar 2009) where temperatures reached 29◦C. There was weak synoptic-scale forcing for convection, which was characterised75

by the diurnal cycle of boundary layer development later leading to cumulus. The convective development was limited by pre-existing76

mid-tropospheric capping inversions, and decayed in the evening partly due to the inland propagation of a sea breeze. The CSIP study77

region, over which the diagnostics presented are calculated, is indicated by the box in Fig. 1a.78

The MetUM with a 4-km horizontal grid length produced more convective showers than were observed and they were also in the79

wrong location (compare Fig. 1d with Fig. 1c). These are not untypical errors for convection-permitting models (e.g. Clark et al. 2016).80

A possible source for the differences between the forecast and observed convection in this case may be hypothesised to be due to the81

locally increased CDNC observed over the southern half of the UK. For example, increased levels of CDNC (relative to typical levels)82

were observed by the LIDAR at the Chilbolton observatory (Clark and Lean 2006), and one might expect this to suppress the formation83

of convective precipitation. The control model simulation in Fig. 1d used the default (hereafter STANDARD) CDNC in the model and84

did not include boundary layer perturbations.85

3. Model86

The model used for this study is the MetUM. It is discussed in Section 3.1, along with the control experiments (without boundary layer87

perturbations), while the perturbation strategy used to create the ensemble is described in Section 3.2.88
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4 Flack et al.

Figure 1. An overview of CSIP IOP 8: (a) the Met Office surface analysis at 0000 UTC (Courtesy of the Met Office, Crown Copyright, 2005, Met Office), where the
box represents the area used in the study; (b) visible image from the MODIS satellite at 1330 UTC (NERC Satellite Receiving Station 2005); (c) the radar-derived hourly
accumulation from 1500–1600 UTC (Met Office 2003); and, (d) the control model representation of the hourly accumulation for 1500–1600 UTC (using the default CDNC
values and no boundary layer perturbations).

3.1. Control Experiments89

The MetUM at version 6.1 was used for this study. This is based on the “New Dynamics” dynamical core (Davies et al. 2005) which90

is semi-implicit, semi-Lagrangian and non-hydrostatic. The parametrizations used include the Edwards and Slingo (1996) radiation91

scheme, the Wilson and Ballard (1999) microphysics scheme, and the Lock et al. (2000) boundary-layer scheme with the Met Office92

Surface Exchange Scheme (MOSES: Essery et al. 2001).93

More specifically, we use a 4-km horizontal grid-length configuration of the MetUM, with a limited area domain which covers the94

UK. The lateral boundary conditions were provided from a 12-km horizontal grid-length configuration and all of the runs considered95

were initiated at 0700 UTC on 13 July 2005 and run for 14 h, after which all of the convection in the case had dissipated (Clark96

and Lean 2006). The convection-permitting class of models begins at grid lengths of around 4 km, however at the larger grid lengths97

of this class of model it has been noted that shallow convection is not well represented (e.g. Lean et al. 2008; Clark et al. 2016).98

This poor representation means in practice that some 4-km models run convection schemes that are modified so that the convection is99

not over/under estimated and to reduce the formation of grid point storms. In the 4-km configuration of the MetUM the Gregory and100

Rowntree (1990) convection parametrization scheme is enabled with its behaviour being strongly modified by the Roberts (2003) CAPE101

dependent closure modification. The essential idea of the Roberts (2003) modification is to make the closure timescale an increasing102

function of CAPE: in this way deep convection can be represented explicitly wherever feasible, but nonetheless shallow overturning103

is parametrized and excessive accumulation of gridscale CAPE can be avoided. In the simulations analysed here, we checked that any104

precipitation originating from the convection parametrization was a small fraction of that originating through the explicit dynamics.105
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Case Study Sensitivity Analysis 5

Table 1. CDNC over land and sea points for the four different experiments considered and values from the Planche et al. (2015) study for comparison.

Experiment label CDNC (cm−3)
land sea

STANDARD 300 100
INCREASED 600 150
LAND 600 600
2×LAND 1200 1200

Planche et al. (2015) control 300 100
Planche et al. (2015) “clean” 100 100
Planche et al. (2015) “polluted” 900 100

The microphysics scheme used in our simulations is the “3D” version of the microphysics scheme described in detail by Wilson and

Forbes (2004). The most important aspect of the microphysics scheme for this study is the autoconversion: the process of changing

cloud water into precipitation. The autoconversion is based on Tripoli and Cotton (1980) and is given by

PRAUT = A1Eauto (ρqcl)
A2−1 qcl

(nd)A3
,

for PRAUT the autoconversion rate, A1, A2, A3 defined parameters, Eauto a collision/collection coefficient, qcl the cloud liquid water,106

ρ the density, and nd the CDNC. Thus sensitivity in the autoconversion mainly derives from uncertainties in the CDNC, which is raised107

to the power A3=1/3. The “3D” scheme used here is an updated version of that used in Planche et al. (2015). The differences include108

the option for using up to two ice quantities, a consistent sub-gridscale model for all species of water and additional capabilities in the109

autoconversion to calculate CDNC from sulphate aerosol (although that option was not used within this study).110

To test the sensitivity of the formation of convection to the CDNC, four different unperturbed control experiments were set up. The111

concentrations for each case are given in Table 1 and are constants in space and time. The STANDARD experiment uses the model’s112

default values, as in the control run of Planche et al. (2015). The last two experiments use either the INCREASED land CDNC across113

the entire domain or else twice that value. Such concentrations for CDNC are typical of those considered in other sensitivity studies.114

For example Storer et al. (2010) used a linearly decreasing profile with height from the surface to a value of 100 cm−3 at 4 km, with115

surface values ranging from 100 to 6400 cm−3.116

3.2. Perturbation Strategy117

For each of the four CDNC experiments in Table 1, a small (seven member) simple ensemble is created consisting of a control plus

six perturbed runs. This ensemble size was chosen due to computational expense limitations and because previous studies have found

that it is for about seven members that results become statistically meaningful (e.g. Leoncini et al. 2013). The initial and boundary

conditions are identical in all of the simulations to ensure that the large-scale dynamical situation remains indistinguishable from the

control in all members and so focus analysis purely on the impact of the changing CDNC in the experiments. Ensemble members

differ only through different realisations of boundary-layer fluctuations that are indicative of the variability in unresolved turbulence.

Specifically, Gaussian potential temperature perturbations are centred on each horizontal grid point (x0,y0) within the model domain

with the form

perturbation(x, y) = Aexp

[
− (x− x0)2 + (y − y0)2

2σ2

]
,

for A the amplitude, (x,y) the position in the zonal and meridional directions and σ the spatial scale of the perturbations. The overall118

perturbation field is formed as the superposition of these Gaussian perturbations centred on each grid point. The lengthscale σ is set119

to 8 km and the amplitude is scaled such that the maximum value in the superposed field is 0.1 K. Perturbation fields are added to the120
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6 Flack et al.

model state every 30 min throughout the entire run at a hybrid-model height of 720 m (chosen to be within the daytime convective121

boundary layer). Perturbations of the same form have been used in studies by Leoncini et al. (2010), Done et al. (2012) and Flack et al.122

(2018) in which more information can be found on the motivation for, and any sensitivities to, details of the implementation.123

The members were created as paired ensemble members (i.e. the perturbations for even-numbered ensemble members are the same124

in structure and amplitude to those for a corresponding odd-numbered member but opposite in sign) and the same random seeds were125

used to create a given member in each of the four CDNC experiments. Some choices of seed caused the model to become unstable.126

This was due to an occasional instability in this particular configuration of the model (Lean, pers. comm. (2018)). Such choices were127

discarded and after several trials a suitable set of seeds was obtained that could be used in all four experiments. We do not anticipate128

that the need to need to discard some seeds will have influenced the conclusions drawn here or that it affects the general applicability129

of the methodology proposed. Moreover, in studies of some more recent convective-scale cases using this style of perturbation with130

newer model configurations, Flack et al. (2018) found no problems with the specification of initial seeds.131

4. Diagnostics132

There are a range of diagnostics that could be used to consider the impact of ensemble sensitivity experiments, including probabilistic-133

based approaches such as the rank histogram and continuous rank probability score (e.g. Casati et al. 2008). However to fully134

demonstrate the advantages of our method we need diagnostics that are simple and easily applied to both small ensemble and135

deterministic forecasts. The complementary diagnostics we use are chosen to enable consideration of the variability within the136

ensembles due to differences in both the magnitude (Sec. 4.1) and spatial structure (Sec. 4.2-4.3) of the precipitation. All diagnostics137

presented are computed over the CSIP study region shown in Fig. 1c,d, which is also indicated by the box in Fig. 1a.138

4.1. Mean Square Difference139

The Mean Square Difference (MSD) is a standard diagnostic used for considering errors in forecasts, or comparing ensemble members

(e.g. Hohenegger and Schär 2007; Clark et al. 2009; Leoncini et al. 2013). It evaluates differences in the local magnitude of a field and,

as such, may be subject to the “double penalty problem” (Roberts and Lean 2008) when applied to precipitation in which a forecast is

penalised twice for producing precipitation in the wrong location. This diagnostic thus requires careful interpretation unless either i) a

neighbourhood is applied to the MSD (for more on neighbourhood-based approaches see Ebert 2008) or ii) the MSD is considered in

components representing the common, control and perturbed parts (as in Flack et al. 2018). The MSD is computed here as

MSD =
Σ (Pp − Pc)

2

ΣP 2
c

,

where Pc is the hourly accumulation of precipitation in a control forecast and Pp is that in a perturbed forecast. The summations140

extend over all points in the study region for which either Pc or Pp exceeds a threshold of 0.125 mm with the threshold set to focus141

on convective storms and ignore any drizzle from stratiform cloud regions. The threshold thus identifies, as convective, storms of size142

(4 km)2 or larger with hourly accumulations which would be equivalent to at least 2 mm if concentrated into boxes of (1 km)2. The143

MSD is also considered in component form (see Section 5.4).144

4.2. Fraction of Common Points145

Common points are defined as those having an hourly precipitation accumulation in excess of 0.125 mm in both of the forecasts being

compared (e.g., the control and a perturbed member). The fraction of common points was introduced in Leoncini et al. (2010) and
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Case Study Sensitivity Analysis 7

modified by using a slightly different normalisation in Flack et al. (2018). The form used here is the latter, specifically

Fcommon =
N1,2

N1 +N2 −N1,2
,

where Nx is the number of precipitating points for forecast x = 1 or 2, and with subscript “1, 2” denoting the number in common in146

the two forecasts. This is a simple diagnostic with values ranging between zero and unity that gives an indication of ensemble spread147

across the study region in a spatial context.148

4.3. Fractions Skill Score149

The Fractions Skill Score (FSS; Roberts and Lean 2008) is a neighbourhood-based technique that can be used to compare ensembles

or as a verification diagnostic. It determines the fraction of points above a specified threshold within an area in two different products,

in our case the control and sensitivity forecasts. The FSS is given by:

FSS = 1 − Σ (f − o)2

Σf2 + Σo2
,

where f is the value of the output field within the control forecast and o is the value of the same output field in the sensitivity forecast.150

The FSS varies between zero and unity, with zero representing forecasts that are completely different spatially and unity representing151

forecasts that are spatially identical. We apply the FSS to the precipitation field and generate binary fields of precipitating and non-152

precipitating points using a threshold of hourly accumulations of 0.125 mm. The application of the FSS to a binary field means that153

the diagnostic provides information only on the spatial displacement of events; no information is provided about differences in the154

magnitude of precipitation (beyond that it meets the required threshold).155

Here, the FSS has been calculated between the STANDARD CDNC members and the corresponding sensitivity experiment members156

(similar to the member pairs comparisons in Dey et al. 2014). A “skilful” scale for these ensembles is then determined as the lowest157

spatial scale for which the FSS exceeds 0.75, averaged across the pair comparisons (FSS values above this threshold represent forecast158

pairs in good agreement for the given scale). This threshold is greater than the 0.5 FSS threshold usually used in other studies (e.g.159

Roberts and Lean 2008; Dey et al. 2014) due to the short lead time for the present forecasts.160

5. Results161

5.1. Comparisons of individual simulations162

As in many of the previously referenced studies (e.g. Sun and Bosilovich 1996; Adams-Selin et al. 2013; Planche et al. 2015;163

Barthlott et al. 2017) we consider simple comparisons of single runs with the different CDNC settings, as presented for precipitation164

accumulations in Figure 2. Comparing the control runs (i.e. without perturbations: Fig. 2a, b) corresponds to the approach of Planche165

et al. (2015) and the STANDARD CDNC control is found to produce the largest values of the peak hourly-precipitation and cumulative166

precipitation. For the peak hourly-precipitation we find that the 2×LAND experiment has the least precipitation whereas the LAND167

and INCREASED are very similar (Fig. 2a). Furthermore, the cumulative precipitation across the forecast indicates that there is less168

precipitation in the INCREASED experiment compared to the STANDARD run. By the end of the forecast the LAND and 2×LAND169

experiments, whilst having less precipitation than the other experiments, are very similar to one another (Fig. 2b).170

The implication of the existence of convective-scale noise is that a test of the sensitivity to CDNC values in an operational context171

might easily have produced results corresponding to any member of the ensemble experiments. Moreover, given that the only difference172
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8 Flack et al.

(a) (b)

(c) (d)

(e) (f)

Figure 2. Domain-averaged hourly accumulations (a, c, e) and the associated cumulative precipitation (b, d, f) for (a, b) the control member, (c, d) member 1 and (e,
f) member 3 of each ensemble. The solid line is for the STANDARD experiment, dashed for INCREASED CDNC, dot-dash for LAND CDNC dot-dot-dot-dash the
2×LAND CDNC. All values are plotted at the start of the hour. The legend in (a) refers to all panels.

between the members is the use of a random seed to introduce convective-scale noise, any one of the members presents an equally valid173

choice for CDNC comparisons. It is therefore important to consider whether the findings from the control simulations in Figs. 2a, b are174

robust for all members of the ensemble. For example, consider the results for members 1 and 3 of the ensembles shown in Figs. 2c, d175

and e, f, respectively, chosen as examples that are not consistent with our earlier findings.176

Considering the peak hourly accumulations, for the control simulations the largest peak occurs with the STANDARD CDNC177

experiment (Fig. 2a), while for the member 1 simulations the LAND experiment has the highest peak (Fig. 2c) and for the member 3178

simulations all experiments produce similar peaks, albeit at different times (Fig. 2e). In both perturbed ensemble members the179

cumulative precipitation is, as for the control members, highest for the STANDARD CDNC experiment throughout, but the ordering180

for the three experiments with increased CDNC is different for different ensemble members. For example, at the end of the simulations,181

the lowest cumulative precipitation occurs for the INCREASED CDNC experiment when comparing the member 1 results (Fig. 2d),182
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Case Study Sensitivity Analysis 9

but for the LAND and 2×LAND CDNC experiments when comparing the member 3 results (Fig. 2f) or the control results (Fig. 2b)183

(with the values for the two experiments indistinguishable as plotted).184

The largest differences in domain-average precipitation generally occur between the STANDARD and 2×LAND CDNC simulations,185

and “postage stamps” for both of these ensembles are presented for accumulations over 1500–1600 UTC in Figure 3. These plots serve186

to highlight our remarks above because on initial inspection there are very limited differences between the precipitation distributions187

in the different panels and it is not immediately clear whether the two sets have come from distinct underlying distributions. Closer188

inspection does suggest a possible reduction in the area of precipitating cells in the 2×LAND plots, but analysis of the full ensembles189

is desirable in order to test this hypothesis.190

Figure 3. Postage stamps plots of the hourly precipitation accumulation from 1500–1600 UTC for a) the STANDARD CDNC and b) the 2×LAND CDNC ensemble. In
each case, the control member is the first plot on the left and the corresponding members are shown in equivalent positions. The colour scale refers to all plots.

In summary, the small boundary-layer perturbations representative of turbulent fluctuations induce a level of variability in the191

precipitation results that cast doubt as to whether differences between single simulations can be considered reliable in revealing192

systematic impacts of different CDNC values. It is therefore clear that the use of ensemble diagnostics is required to be able to increase193

our confidence in the sensitivity analysis.194

5.2. Comparisons of ensembles195

In the left hand panels of Fig. 4 we consider the ensemble mean of the cumulative precipitation over the study area, along with the196

ensemble range, and in the right hand panels the fraction of precipitating points. It is clear from the figure that although there are197

reductions in precipitation in the experimental ensembles with increased CDNC, these impacts require a cautious assessment as the198

uncertainties within the simulations, represented by the ensemble range, can be of similar size.199
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10 Flack et al.

(a) STANDARD vs. INCREASED (b) STANDARD vs. INCREASED

(c) STANDARD vs. LAND (d) STANDARD vs. LAND

(e) STANDARD vs. 2×LAND (f) STANDARD vs. 2×LAND

Figure 4. (a, c, e) cumulative precipitation in the ensemble simulations, and (b, d, f) the fraction of points with precipitation exceeding an hourly accumulation of
0.125 mm. The solid lines on each panel present results for the STANDARD CDNC ensemble while the dashed lines are for (a, b) the INCREASED CDNC ensemble, (c,
d) the LAND CDNC ensemble and (e, f) the 2×LAND CDNC ensemble. The thick lines represent the ensemble mean and the thinner lines the extremes of the ensemble.
All values are plotted at the start of the hour. The legends in (a, c, e) refer to (b, d, f), respectively.

Figures 4a, c and e all show indications of a decrease in the cumulative precipitation for the increased CDNC ensembles in200

comparison with the STANDARD CDNC ensembles. The largest differences are seen between the STANDARD CDNC and 2×LAND201

CDNC ensembles, and these ensembles appear to be distinct. A Wilcoxon Signed Rank test has been used to test which ensembles202

are distinct (e.g. Hamill 1999). The test is an appropriate choice here because the distributions being compared are non-Gaussian.203

Such tests indicate that differences between the LAND or the 2×LAND ensembles and the STANDARD CDNC ensembles can be204

considered significant throughout the forecast period (i.e. at each hour) at the 5% significance interval. By contrast, the INCREASED205

CDNC ensemble shows significant differences from the STANDARD CDNC ensemble only in the final three hours of the simulations.206

5.3. Mechanism for reduced precipitation207

Thus far we have considered the effects of aerosol on the total precipitation within the study area, finding reduced precipitation from208

increased CDNC. Naturally we would like to understand something of the reasons for such reduction. One possible explanation could209
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Case Study Sensitivity Analysis 11

be that increased CDNC acts to prevent convective rainfall from developing in some locations, and so that there is a reduction in the210

fraction of precipitating points. The right hand panels of Fig. 4 do indeed indicate such a reduction, albeit with some overlap between211

the ensembles which reiterates the need to perform the analysis in the context of the simple ensemble experiments. Considering the212

time with peak accumulations (taken as 1500 UTC) and a time when the convection is beginning to dissipate (1800 UTC) we find213

that there are reductions of 17% and 11%, respectively, in the ensemble mean number of points reaching the 0.125 mm hourly rainfall214

accumulation threshold for the 2×LAND ensemble relative to the STANDARD ensemble.215

Planche et al. (2015) demonstrated that ice microphysics does not play a strong role in this case and so argued that the reduction of216

precipitation they found from increased CDNC was a result of the suppression of warm rain processes. If so, one might indeed expect to217

see a reduction in the number of precipitating points and, more specifically, a reduction in the lightest precipitation accumulations with218

limited differences for the heavier values. To consider this, Fig. 5 presents histograms of the hourly accumulations for each ensemble219

experiment. It provides some support for the suggestion: the STANDARD ensemble has the most points in the lightest 0.125–0.5 mm220

and 0.5–1.0 mm bins, but there are limited differences between ensembles in the number of points in the bins beyond 3.0 mm.221

Figure 5. Distributions of hourly accumulations from each ensemble experiment. Black frequency bars represent the STANDARD CDNC ensemble, subsequent paler
shades represent the INCREASED ensemble, the LAND ensemble and the 2×LAND ensemble. All bin widths are 0.5 mm except for the first, which ranges from
0.125–0.5 mm, and the last bin which represents all values > 4.5 mm.

5.4. Causes of ensemble differences diagnosed using MSD222

In Fig. 6 we show the MSD between the 2×LAND CDNC and the STANDARD CDNC ensembles, focusing on times after 1200 UTC223

once precipitation has developed. As expected, given the short length of the simulations, the MSD grows throughout the period and224

does not saturate. Fairly steady, almost linear, growth occurs in each pair comparison until around 1700 UTC after which the MSD225
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becomes noisy as the precipitation starts to decay. However, interpretation of the MSD is complicated by the “double penalty” problem226

in convective-scale numerical weather prediction. Computing the MSD over the common points only (not shown) indicates that despite227

some reductions in warm rain (Sec. 5.3) there are only limited differences that can be attributed to changes at points that precipitate in228

both the paired ensemble members. Thus the increases in MSD must arise in large part due to different positioning of the convective229

precipitation.230

Figure 6. The Mean Square Difference between the STANDARD CDNC and 2×LAND CDNC ensemble members, with differences computed between the corresponding
members.

The MSD being affected by the displacement of the cells is not unexpected as it is a known impact from boundary-layer perturbations231

such as those used here, particularly in cases of scattered showers (e.g. Done et al. 2012; Flack et al. 2018). The extent to which232

displacements were induced can be quantified using Fcommon, as in Fig. 7. The fraction decreases gradually with lead time. Around233

70% of the first precipitating cells were co-located in corresponding members of the two ensembles, and by the time of maximum234

precipitation around half of the precipitating points remain in common. Further evidence of this displacement is found via the235

computation of the FSS, which indicates the amplitude of typical displacements in location between forecast events. For the ensemble236

comparisons here, it results in an average skilful scale of 7.7 km. This scale corresponds to approximately two grid boxes and is237

therefore on a similar spatial scale to that of the perturbations themselves. This small displacement implies that the MSD-related238

errors associated with displacement are likely to be more associated with a drop in the fraction of precipitating points, corroborated by239

Fcommon and Figs. 4 and 5.240

Figure 7. The fraction of common points in the STANDARD CDNC and 2×LAND CDNC ensembles, with fractions computed for the corresponding members.

6. Summary241

While process-based sensitivity case studies remain an important tool for advancing our knowledge of how models perform, current242

sensitivity tests typically only consider one run of each variant and often for a limited number of cases (often between one and three243
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cases; e.g. Gilmore et al. 2004; Mahoney and Lackmann 2006). This small sample size means statistical tests cannot be produced. It is244

also a particular problem when resolution is increased because convective events studied with convection-permitting models are likely245

to have low predictability (e.g. Hohenegger and Schär 2007). Here we have studied an example that highlights the implications of this246

low predictability for case study process-based sensitivity tests of model behaviour. It is suggested that a simple ensemble technique247

can provide a clearer and cleaner view of the sensitivity to physical processes involved. Specifically, we have used boundary-layer248

potential temperature perturbations to create a small ensemble (7 members) with the 4-km grid-length configuration of the MetUM to249

determine the impact of increasing CDNC on a case of isolated convective showers.250

When single pairs of control runs are considered, we find similar results to the previous study of this case by Planche et al. (2015)251

in that increasing CDNC leads to a suppression of the number of precipitating points, which in turn acts to reduce the average hourly-252

precipitation accumulations. This result was also found when considering the ensemble means. However, there are overlaps in the253

ensembles produced for different CDNC settings, so that the result would not necessarily be apparent were an arbitrary pair of runs to254

be compared. For example, if one were to consider only member 1 or member 3 of the ensembles then a misleading conclusion might255

have been reached.256

Analysis of the full ensembles showed the LAND and 2×LAND CDNC ensembles to be statistically different from the STANDARD257

CDNC ensemble. Further analysis revealed that the reduced precipitation on increasing CDNC primarily occurs through convection258

being suppressed, with reduced cell numbers particularly for the lighter rain rates. The overlap shown in the ensembles casts doubt on259

single run experiments at the convective scale and the method suggested here provides a cheap alternative to operational ensembles to260

create more robust sensitivity test analysis to alleviate that doubt. This method provides a useful starting point for taking uncertainty261

into consideration, and may also provide a means for (cheap) initial testing of physics parameters in an operational context before262

determining the impact in a fully-operational ensemble; however, further testing would be required to show that this method is robust263

for all circumstances and types of cases.264
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