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Abstract

Methods commonly used to analyse oscillatory systems, such as short-time Fourier or

wavelet transforms, require prede�ned oscillatory structures or �ne-tuning of method's

parameters. These limitations may be detrimental for an adequate component descrip-

tion and can introduce bias to the interpretation. This thesis addresses the challenge

of identifying interacting components in a signal by introducing a model of coupled

oscillators. The proposed model consists of two parts: Sturm-Liouville self-adjoint

ordinary di�erential equation (ODE) and Kuramoto's coupling model. The resulting

model, KurSL, is described by a set of coupled ODEs producing general amplitude- and

frequency-modulated mutually interacting oscillations. The complexity of these equa-

tions depends on the de�nition of the coupling function, the number of oscillators and

the initial state of each oscillator. Thus, the performance of the KurSL decomposition

can be characterised in terms of the model parameters optimisation. After introducing

the model, the thesis provides analysis and discussion of the KurSL with examples of

its usage. The method is �rstly tested on various synthetic data that were generated

from simulated stationary and dynamical processes. Such testing allows capturing

various characteristics that are desirable in coupled oscillatory components such as

phase and amplitude dynamics. Subsequently, experiments were performed on empiri-

cal EEG signals recorded from patients with epilepsy. Validation of these experiments

is through comparisons to di�erent orders of the KurSL and to other time-frequency

methods. Overall results indicate that the KurSL method provides a more detailed

description of oscillatory processes than the Huang-Hilbert transform and it provides

insights comparable to manually tuned short-time Fourier transform and Morlet-based

wavelet time-frequency representations. However, the advantage of the KurSL is that

the similar results can be achieved with a �nite number of components. Moreover, in

contrast to the mentioned representations which, due to �nite resolution, are unable to

localise time-frequency events precisely, the KurSL provides an instantaneous descrip-

tion. This exactness allows to identify any modulations in both time and frequency

domains and thus better describe the behaviour of the analysed system.
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Chapter 1

Introduction

One of the inherent human urges is to understand the underlying mechanics of the

surrounding environment. Since ancient times people have been trying to understand

the behaviour of all observable events [1, 2]. A signi�cant realisation, which allowed

for further developments, was that with every physical object a particular type of

information could be associated and expressed as a set of values. In many cases, the

more one knows about the previous and current state of the system the more precise

estimation can be deduced [3]. In general, any data have little value unless they are

recorded and analysed. Once processing is �nished, one can attempt to describe the

evolution of a system through the modelling [4]. Such description allows simulating the

system's behaviour and thus predict its state at the desired time. These predictions

often simplify the reality and project it onto a few dependent parameters which best

predict future response within a given error margin.

A general approach to modelling the reality can be presented in an iterative frame-

work of the experiment-theory cycle. To explain some phenomenon, scientists have �rst

to propose a hypothesis and experiments which could validate it [5, 6]. Then, depend-

ing on the results, they can update their understanding and design even more precise

experiments con�rming a more re�ned hypothesis. Further advancements in modelling

came with the development of Physics and Mathematics which lead to the creation of

mathematical modelling. Using mathematics to describe phenomena gave modelling a

more rigorous foundation. These models can have di�erent levels of complexity that

depend on the amount of information available and the expected precision of predic-
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tion. For example, to send a satellite into an orbit, it is enough to consider gravity

from a Newtonian perspective. However, when trying to determine the position of an

object via a GPS system, it is essential to include Einstein's special relativity.

When modelling a system, it is essential to consider its complexity, which can be

dependent on the type and number of objects within. Those objects can be, for ex-

ample, separated into temporal or spatial domains [7]. Such distinctions, however, do

not forbid any interactions between the objects or with the surrounding environment.

In fact, these interactions are always present, but in the majority of cases, commu-

nications can be omitted as they have too small an e�ect on the system. The main

di�culty of constructing a model is to determine which interactions are essential for

predictions with a de�ned accuracy.

A particular interest in the scienti�c community is given to systems which peri-

odically repeat their behaviour or visit a speci�c state [5, 8]. This attention is due to

an abundance of examples present in nature ranging from the Earth's day-night and

seasonal behaviour, through laser generation [9] and �re�ies �ashing synchronisation to

the cardiovascular system [10]. The periodicity of a system does not necessarily mean

that it will repeat the same behaviour over time. Perturbation to its state may be due

to outside in�uences and their e�ect will vary depending on the scale at which they are

analysed. For example, Earth's rotation around the Sun is continuously disturbed by

other astronomical objects and thus its period continually changes. However, the scale

of this phenomenon is outside of human general perception and, unquestionably, year

length is considered constant. In this case, for the majority of calculations, one can

assume objects on Earth are isolated from the in�uence of other astronomical objects.

In some systems, however, interactions are much more pronounced and can have a

dominant impact on the overall behaviour. One such example is the brain [9, 11]. It

is common to model brain regions as oscillatory objects that interact with each other,

when explaining the behaviour of neural activities [12, 13].

As it happens, many methods commonly used to extract information from oscil-

latory systems are not suitable for such analysis [14, 15]. Some of these, like Fourier

transform, assume mathematically idealistic behaviour of the system, such as linear-

ity and stationarity. These assumptions are in contrast with most systems in nature,
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including the brain or the climate, which are non-linear and non-stationary [16] (see

Appendix A.1). Moreover, these methods often neglect possible interactions between a

system and its surrounding. Such disadvantages have long been understood and the at-

tempts to mitigate them have in�uenced the development of data-driven methods [17,

18].

Data-driven classi�cation refers to a method's ability to shape its underlying

model to �t the provided data. These methods often assume a general behaviour,

which is then limited depending on the input's characteristics. One of the reasons

for increased interest in data-driven methods is the progress in technology, mainly in

storage capacity and computational power. Such developments allowed for shifting

away from computational paradigms where data had to be manually selected and lim-

ited to only the essential characteristics. The memory limitations are currently much

less stringent, which allows one to analyse a signi�cant amount of data, and with in-

creasingly high computational throughput the preliminary analysis takes little time.

Overall, technological development enables including more factors in analysis, for ex-

ample, those responsible for interactions, and producing results in reasonable time.

However, this trend also caused a shift in analytical approaches towards applying al-

gorithms in a black-box manner where the emphasis is more on their output and less

on their meaning. An example of such an approach is the empirical mode decomposi-

tion (EMD, Section 2.3). Since its proposal, the method has been empirically veri�ed

by many researchers to provide physically meaningful results [19�21]. Nevertheless,

despite many attempts, its exact behaviour is yet to be discovered as the method is

lacking a mathematical framework.

The goal of this project was to develop a robust method which would be able

to extract meaningful information from oscillatory systems. The proposed method,

KurSL, aims to be general purpose, including non-linear and non-stationary processes,

and thus its properties are data-driven. The work was inspired by EMD's idealised

features such as extraction of physically meaningful oscillatory components. However,

in contrast to EMD's development, the core emphasis of the KurSL is to start from

a mathematically sound framework. Such a framework is based on a combination

of two components: Kuramoto's coupling model and Sturm-Liouville theory. This
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combination allows for modelling systems in which objects interact with one another

and maintain oscillatory behaviour. The KurSL aspires to provide components that

are both mathematically well-de�ned and providing physically meaningful results.

Outline

The following chapter (Chap. 2) describes popular data analysis methods. It begins

(Sec. 2.2) by introducing and discussing classical time-frequency transformations such

as Fourier and wavelet transformations. After inspecting their advantages and limita-

tions, it follows (Sec. 2.1) with an introduction of a few decomposition methods out of

which a particular interest is given to the empirical mode decomposition (EMD) which

is explained in greater detail in Section 2.3.

Model-based representation as a complementary approach to data analysis is

discussed in Chapter 3. Its primary emphasis is on models that describe oscillatory

systems. The �rst Section 3.1 discusses Sturm-Liouville theory which refers to an oscil-

latory system de�ned by a second order di�erential equation. The following Section 3.2,

however, presents a model of a system in which oscillators are allowed to interact with

each other.

In Chapter 4 more thorough investigations of some of the EMD's properties are

presented. These include analysis of computational stability under di�erent data for-

mats (Sec. 4.1) and de�ning an objective metric in the results space (Sec. 4.2). Ad-

ditionally, Section 4.3 focuses on an analysis of the frequency-mixing behaviour. This

phenomenon describes the appearance of a component when input components have

similar frequencies.

Inspired by the properties of the EMD and its idealised behaviour, the KurSL

model is introduced in Chapter 5. The proposed model is based on a combination of

two models as mentioned earlier, i.e. Sturm-Liouville and Kuramoto. After presenting

the formal de�nition in Section 5.1, its general properties and a few examples are

presented in the following Section 5.2. A generalisation of the model is described in

Section 5.3, where the order of the model denotes the number of applied harmonics

terms in the coupling.
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Chapter 6 presents an application of the KurSL model as a data-driven adaptive

decomposition method. It begins (sec. 6.1) with a description of the process of obtaining

parameters, which are extracted based on the input's properties. This is additionally

summarised in the form of an algorithm and presented in Section 6.2. The following

sections discuss the method's convergence (sec. 6.3) and parametric stability (sec. 6.4).

Moreover, Section 6.4 discusses how traversing through KurSL's parameter space a�ects

its components in time series space.

Examples of the method's applications are presented in Chapter 7. These in-

clude decomposition of known synthetic data (sec. 7.1) performed for di�erent orders

of KurSL model. Additionally, Section 7.2 describes a dynamic approach to KurSL

data decomposition in which the change of parameters over time is considered. As

a summary and �nal example, the method is presented on empirical EEG signals in

Section 7.3.

The �nal Chapter 8 of the document contains conclusion of the research. Sec-

tion 8.1 inspects obtained results and acknowledges potential limitations. Finally, it

discusses possible improvements to the model and the method, which are presented in

Section 8.2.
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Chapter 2

Data analysis

The analysis of data starts even before the recording is started; it is initiated with

the design of an experiment. In the �rst step, one has to identify the system and

understand how it can be measured considering all its impurities. These include other

objects not contained within the system. In nature, it is highly unlikely to record a

signal which originated from a single source or sources that are not coupled with a

noisy environment. Even if one can isolate them physically, the measurement can still

be a�ected by the noise either from the measuring device's imperfections or through

natural variations in the observing system. Knowing the limitations of experiment

one should adjust methods of analysis appropriately. For this reason, it is commonly

convenient to consider data X to be composed of noise ξ and many components cn,

which can correspond to di�erent features or phenomena. In case of time t series, X(t),

with noise ξ(t) contamination data can be expressed as

X(t) =
N∑
n=1

ancn(t) + ξ(t), (2.1)

where N is the number of the components and an is a scale of the contribution of

component cn to whole data. The process of extraction and identi�cation of such

components is called decomposition, and it is vital for analysing the system.

Unfortunately, there is not a unique approach on how to decompose data; con-

versely, any real dataset can be represented in in�nitely many di�erent ways. In a

simpli�ed example, number 4 can be expressed both as 1 + 3 = 4 and 10 − 6 = 4, or
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any other combination of two or more numbers resulting in 4. Typically, to extract

some meaningful information, one has to specify conditions or characteristics which

are sought in the data. In case of many non-interfering sources this might be looking

for components' independence, or in case of observing repeatable events, one would be

interested in periodicity. In this thesis, the primary interest is in the latter situation,

i.e. when phenomena have oscillatory behaviour.

This chapter brie�y introduces some methods of data analysis. The �rst Sec-

tion (2.1) describes two general decomposition methods and their assumptions. In

Section 2.2 the emphasis is made on methods for time-frequency analysis. Final Sec-

tion 2.3 presents a thorough study of an empirical mode decomposition, which is a

general decomposition method that can produce time-frequency representation of a

signal.

2.1 Data decomposition

In this section, two decomposition methods are introduced and discussed. The �rst

method, matching pursuit (MP), focuses on an iterative matching of all user-de�ned

components to the input data. This approach is in contrast to principal compo-

nent analysis (PCA) extraction, which is de�ned to decompose a signal into uncor-

related components. These methods are presented in mentioned order in Sections 2.1.1

and 2.1.2, respectively.

2.1.1 Matching pursuit

One of the methods that decompose data into a set of functions is matching pursuit

(MP). These components (atoms) are often selected to possess desirable properties

dependent on the nature of the input [22]. Mallat and Zhang in their article introducing

MP [23] used sine waveforms with Gaussian modulated envelopes, which in the signal

processing community are often called Gabor functions and are de�ned as

gγ (t) = K(γ)e−π(
t−u
s )

2

cos (ω(t− u) + φ) , (2.2)
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where u is time displacement, s is scale, ω is frequency and φ is the phase shift. These

parameters are often collectively represented as a set γ = {u, s, ω, φ} and allow to

compute normalisation factor K(γ). An argument for choosing Gabor de�nition of

an atom is its good behaviour under Wigner's transformation [14, 24]; it has the best

localisation in such time-frequency representation. Once atoms are de�ned, they are

stored in a large and redundant set called dictionary. Ideally, this set should contain all

possible positions in the γ-parameter space; however, due to storage and computational

limitations, one has to specify a �nite set of these parameters.

The MP decomposition is performed in an iterative manner. At each iteration,

atoms are compared to the previous iteration's residual to �nd the best match. The cost

function varies, but it is often assumed to minimise L2 metric [23, 25]. An atom that

minimises cost function is considered as a component and is subtracted from the input

signal R1X = X − 〈R0X, gγ0〉. The residue is then carried over to the next iteration,

and the process continues on a dictionary with a removed atom. The algorithm for

MP process can be described more formally


R0X = X,

RnX = 〈RnX, gγn〉gγn +Rn+1X,

gγn = arg maxgγi∈D |〈R
nX, gγi〉|.

(2.3)

As a result, the set of obtained components approximates the original signal

X ≈
N∑
n=1

〈RnX, gγn〉gγn , (2.4)

where the number of components N can be either de�ned in advance or will depend

on the decomposition criteria.

In this method, the size of the dictionary and the form of atoms are essential.

The bigger the set of available functions, the more likely it is that it contains the exact

representation of the feature. However, the size also a�ects computation time since

all atoms should be compared to the data at each iteration. Moreover, due to the

greediness of the algorithm, it always tries to �t function to match data globally. Such

�tting can introduce artefacts when, for example, the data consists of few components
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with the similar parameter. In such case, the method instead of perfectly matching

few parts it will assign a single mediocre �t as its dot product will be more signi�cant.

Subtracting non-existing element will introduce false structure into data that can be

later wrongly identi�ed as a component.

2.1.2 Principle component analysis

Another example of decomposition method is the principle component analysis [26].

Depending on imposed conditions and the source of the input data this method may

be called di�erently, for example, empirical orthogonal functions (EOF) or Karhunen-

Loeve decomposition [27]. The process tries to �nd a base that will highlight speci�c

characteristics within a provided dataset. In case of PCA or EOF, the imposed condi-

tion is to �nd vectors with the smallest correlation [28]. This can be easily calculated

for multivariate signals where the covariance matrix Ξ is estimated considering activi-

ties on all possible dimensions. For single variable time series, however, such approach

is not possible. To overcome this problem, time series will often be extended with

additional N − 1 time-shifted duplicates, creating an arti�cial N -variate signal. Such

preparation and appliance can also be referred to as singular spectrum analysis [29].

In this process, data matrix Ξ is of form

Ξij =
1

T − |i− j|

t=N−|i−j|∑
t=1

X(t)X(t− |i− j|), (2.5)

where T denotes the length of time series X(t). Decomposition of Ξ under PCA

conditions will generate a set of orthogonal functions ci(τ) such that

X(t) =
N∑
n=1

ancn(t), (2.6)

where the signi�cance of each component is denoted by its scaling factor an. The

orthogonality of components cn is computed via eigenproblem decomposition, i.e. by

�nding eigenfunctions ful�lling

Acn = λncn, (2.7)
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where A and λn are the conditional operator and an eigenvalue, respectively. Produced

components of this eigen-decomposition can be ordered depending on the value of

eigenvalue. The larger the value, the stronger presence of the component in for of

eigenvector.

The advantage of PCA is in its general approach. Extraction of components with

the smallest correlation allows to identify and retrieve noise easily as it by de�nition

should have little correlation with the measured data. Moreover, since for time series

the covariance is based on a lagged signal, the PCA will also highlight components

that have periodic structure and thus oscillatory features. However, di�culty arises

when there are many phenomena within the system, and they are coupled. PCA is

not able to distinguish these as they are highly correlated. Moreover, this method

is heavily dependent on the de�nition and size of matrix operator A. It means that

components will contain only those features that are speci�ed by covariance and there

is no guarantee that they are physically meaningful.

2.2 Time-frequency analysis

Time series can be considered as functions in the time domain. Such representation

is convenient when one is interested in the changes of a system over time. However,

in cases when it is known that some periodic behaviours are present, it can be more

suitable to represent a signal in a frequency domain. Such representations emphasise

how strong is the presence of periodic components in the signal of interest, although

the de�nition of these elements depends on the applied method. In this section two

representations are discussed: Fourier transform and spectrogram in Section 2.2.1 and

wavelet transformation wit scalogram in Section 2.2.2. Discussion of their limitations

is then presented in Section 2.2.3.

2.2.1 Fourier transform

Fourier transform (FT), named after French mathematician Joseph Fourier, is an im-

portant transformation used in data analysis. It provides reversible conversion between

two reciprocal domains such as time and frequency. Given data as a time series s(t),
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it allows to represent them in frequency f domain via kernel integration

S(f) = F(s)(f) =
1√
2π

∫ ∞
−∞

s(t)e−2πitfdt, (2.8)

where F denotes Fourier transform which kernel integration is over the whole time

domain. This representation can be inverted back to the time domain by similar

integration

s(t) = F−1(S)(t) =
1√
2π

∫ ∞
−∞

S(f)e2πitfdf, (2.9)

which is over frequency domain. In both cases integration is performed using harmonic

kernel K = exp(iωt) = cos(ωt) + i sin(ωt), which also suggests that these are the

canonical oscillations in FT. Acting on functions de�ned on whole domains, FT allows

for lossless and reversible transformation. Since the integration is with a complex

kernel, its result is also complex where the amplitude and phase describe sinusoid of

a particular frequency. The function which is describing strengths of each component

|S(f)|2 is called Fourier spectrum, which due to FT popularity is often shortened to

the spectrum.

One of the properties which make FT very useful is its linearity. Directly from

de�nition 2.8 it can be seen that when applying to a superposition of two or more

components the transformation F results in

F (αs1(t) + βs2(t)) = αS1(f) + βS2(f), (2.10)

where S1(f) = F1s(t) and S2(f) = F2s(t). This property allows performing inference

about multiple sinusoidal oscillations present in a signal. Regardless of this fact, the

spectrum of the superimposed signal may not be the same as a sum of both spectra

separately. A simple case is when both signals contain an oscillation with the same

amplitude and frequency but in opposite phases.

Whenever FT acts on time series s(t), it produces a representation of harmonic

oscillations with constant over time amplitude and phase for all frequencies that have

ever occurred in the signal. This representation can be misleading as unless there is

exact sinusoid in the signal any transient component will be falsely described as an
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in�nitely long oscillation. A practical improvement in localisation can be performed

by analysing shorter windows of a signal, e.g. in a range t ∈ [−T/2, T/2]

S(f) =
1√
2π

∫ T/2

−T/2
s(t)e−2πitfdt, (2.11)

which is often referred to as short-time Fourier transform (STFT). Such operation is

the same as performing FT on a signal masked with window function w(τ,T )(t)

S(τ, f) = F(s(τ,T ))(f) =
1√
2π

∫ ∞
−∞

s(t)w(τ,T )(t)e
−2πitfdt, (2.12)

where w(τ,T )(t) = 1 for t ∈ [τ − T/2, τ + T/2] and 0 otherwise. In general, parameters

τ and T refer to window's position and its width, respectively. These properties and

window's actual shape signi�cantly modify the analysed signal, and thus they should

be selected carefully. It can be shown that multiplying two functions in one domain,

g(t) = w(t)·s(t), is equivalent to performing convolution on independently transformed

signals in reciprocal domain, G(f) = W (f) ∗ S(f). In case of aforementioned rectan-

gular function in the time domain, for the frequency domain, this is represented as a

sinc(x) function, convolution with which can distort the true spectrum. Two examples

of popular window functions are Hann and Hamming windows. Both of these are de-

�ned as a lifted cosine on �nite support with the highest value being in the centre. It

is a common approach to observe how frequency content changes in time by shifting

window's position, sometimes even leading to overlaps. Visual representations of com-

puted spectra for di�erent window positions is called spectrogram. Figure 2.1 presents

an arbitrary example of the spectrogram, where the x- and y-axis represent time and

frequency domains, respectively, and intensity of colour indicates amplitude.

Most of the current data analysis is done using computers, which forces recorded

signals to be discretised at certain intervals. Such processing imposes restrictions

on what can be inferred. Just the process of sampling limits the maximum fre-

quency possible to extract, i.e. Nyquist frequency. If a signal is sampled with con-

stant frequency fs then the fastest frequency possible to extract is fmax = fs/2 [Hz]

or ωmax = πfs [
rad
s
] [14]. Moreover, the minimum frequency is dictated by the length

of the signal T to fmin = 1/T [Hz] or ωmin = 2π/T [ rad
s
]. Having discrete input signal
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(a) Arbitrary signal. (b) Spectrogram of arbitrary signal.

Figure 2.1: Example of time-frequency representation. An arbitrary signal 2.1a of

10 s length was generated with sampling rate of 256 Hz. It is composed of a chirp

function and 20 harmonic oscillations with Gaussian envelope. Its spectrogram 2.1b

was computed using 1 s Hamming window with 0.5 s overlap. In both Figures x-axis

refers to the time domain and y-axis is amplitude and frequency for 2.1a and 2.1b,

respectively. Both amplitudes where scaled such that the maximum per graph is one

and the scale is presented by colour intensity.

requires the use of discrete Fourier transform (DFT) which is in the form of

S[k] =
1√
N

N−1∑
k=0

s[n]e−i
2πn
N
k, (2.13)

and the inverse DFT is de�ned as

s[n] =
1√
N

N−1∑
k=0

S[k]ei
2πk
N
n, (2.14)

where for both cases N refers to the number of samples N = T/dt. With limits on the

frequency range and the number of samples, one can see that the spectrum also has a

limited number of points. Such constraint means that not all values of frequencies are

possible to extract and thus one should be careful when applying DFT to time series.

If these contain frequencies spaced closer than ∆f = fmin, then DFT spectrum will

not be able to separate them. In case of the simulated signal, one can always increase

resolution by increasing length of the signal. However, this is not possible if the signal

was already recorded.
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2.2.2 Wavelet transformation

In Wavelet transformation (WT) the wavelet refers to a small wave [30]. This notion is

in contrast with sinusoids which are called the �big waves� due to their in�nite length.

The purpose of WT is to highlight transient oscillations by progressive localisation in

time and frequency domains. It does that by using an adaptive time window which is

stretched and compressed accordingly. For a function to be called wavelet ψ(u) it has

to have the following two properties:

1. The integral of ψ(u) over the whole domain is zero:

∫ ∞
−∞

ψ(u)du = 0. (2.15)

2. Squared absolute wavelet |ψ(u)|2 integrates over the entire domain to a unity:

∫ ∞
−∞
|ψ(u)|2du = 1. (2.16)

The �rst property emphasises the oscillatory behaviour of wavelets, imposing that

there has to be the same amount of function above as it is below some reference point

(zero). The square integrability, also called the �nite support property, indicates that

the function can be normalised. For this to happen, the wavelet has to reach zero value

while going to both positive and negative in�nities. This highlights the physical sense

of these functions; recorded signals had to start and stop at speci�c points, or quickly

converge to zero.

Unlike the Fourier transform which is strictly de�ned by sinusoids, the WF refers

to a general class of functions. These can be described in both the real and complex

spaces, although in practice when dealing with measurable signals only the real part

of wavelets are chosen. Despite the vastness of wavelet class some functions are more

popular and commonly used in the analysis [31]. Figure 2.2 presents few of these

examples. The top left graph (Figure 2.2a) shows Haar [32] wavelet, i.e. a square func-

tion, which is the most straightforward wavelet used for analysis. Despite sharp edges,

such form not only has compact support but also allows to identify and understand

component's frequency easily. Another class of wavelets with compact support are
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Daubechies wavelets [33], which are characterised by the maximum number of vanish-

ing moments for given support width. Examples of these components are presented in

Figures 2.2d and 2.2e, which have 2 (db2 ) and 6 (db6 ) vanishing moments, respectively,

and Figure 2.2f shows more symmetrical version of db6, i.e. symlet 6. In the central

and right positions of the top row are presented functions with in�nite support, but

quickly converging to zero. Both are de�ned using an exponential decline, which for

Ricker wavelet (Fig. 2.2c), also known as Mexican hat wavelet, is

Rω(t) = (1− ω2t2) exp

(
−ω

2t2

4

)
, (2.17)

where ω denotes a peak in Fourier spectrum. Morlet wavelet, however, is de�ned [34]

as harmonic oscillation with Gaussian envelope

Ψω(t) =
1
4
√
π

(
exp(iωt)− exp

(
−ω

2

2

))
· exp

(
−t

2

2

)
, (2.18)

where ω is the base frequency of modulation. The advantage of this wavelet is in its op-

timal volume of uncertain bound in time-frequency representation [35, 36]. Figure 2.2b

shows real part of Morlet wavelet with the centre frequency ω = 5, which is chosen as

the smallest value such that the second term in Eq. (2.18) is negligible.

Given wavelet Ψ and time series s(t) the wavelet transformation is de�ned as

WΨ(a, b) =

∫ ∞
−∞

1√
a

Ψ∗
(
t− b
a

)
s(t)dt, (2.19)

where Ψ∗ denotes complex conjugate of Ψ and parameters a > 0 and b de�ne scale

and time shift, respectively. The transformation is commonly shorted with notation of

mother wavelet Ψ and its child wavelets ψa,b by de�ning

ψa,b(t) =
1√
a

Ψ

(
t− b
a

)
, (2.20)

which allows representing WT in the form of a dot product

WΨ(a, b) = 〈ψa,b(t), s(t)〉 =

∫ ∞
−∞

ψ∗a,b(t)s(t)dt, (2.21)
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(a) Haar wavelet (b) Morlet wavelet (c) Ricker wavelet

(d) Daubechies (db2) wavelet (e) Daubechies (db6) wavelet (f) Symlet (sym6) wavelet

Figure 2.2: Gallery of selected popular wavelets. Each panel contains function as

indicated by its label. For ease in shape comparison all functions have been scaled

such that the maximum de�ection have the same value 1.

where 〈f, g〉 is a dot product in Hilbert L2 space. Scale factor a refers to the width

of wavelet which indicates how much of a signal a wavelet can explain. The smaller

the scale value, the shorter segment is used to analyse, and the faster frequencies are

associated. Selection of the appropriate set of scales is dependent on chosen mother

wavelet. In case of orthogonal wavelets it is argued [37] that a dyadic dilation a = 2i

with discrete shifts b = j2i i, j ∈ Z are preferred. For other wavelets it is convenient [31]

to use scales with fractional powers of two ai = a02iδi , i = {1..I}, where I determines

the largest scale, I = log2 (T/a0) /δi. As it can be seen parameter δi determines the

resolution in spectral space and its optimal value is wavelet speci�c, e.g. δi = 0.5 is the

largest value preferred for Morlet wavelet [31]. Limitations on shift b value are imposed

by the edges of the �nite-length input signal. Although it is possible to extend time

series with zero on both ends, such augmentation impacts transformation values. The

region where these edge e�ects are pronounced is called the cone of in�uence (COI)

and is quantitatively de�ned as an area where the wavelet power decreases e−2-fold due

to imposed discontinuities.
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(a) Discrete scalogram (b) Continuous scalogram

Figure 2.3: Results of WT with discrete sym6 (Fig. 2.3a) and continuous Morlet

(ω0 = 5) (Fig. 2.3b) wavelets computed on the arbitrary signal (Fig. 2.1a). For ease of

comparison with spectrogram both produced scalograms where transformed from scale

a and shift b representations into the time-frequency domain. Both representations

were scaled independently such that the maximum amplitude value is one, with colour

progression according to included scales. All axes are linear. Greyed area visible in

bottom corners of 2.3b indicates region outside of COI.

Similarly to spectrogram obtained using STFT one can display results of WT

in terms of scale a and shift b. Although WT produces scale-shift representation

often called scalogram in the thesis these representations are transformed into time

and frequency values, allowing for more straightforward comparison with other time-

frequency methods. The actual relation depends on used wavelet and its properties.

In case of Morlet function, an association between frequency ω and scale factor a can

be directly computed as

ω = ω0/a, (2.22)

where ω0 is the central frequency in Morlet's de�nition. Using the arbitrary signal

introduced in FT section (Fig. 2.1a), two transformed scalograms are computed and

presented. For discrete transformation (Fig. 2.3a) wavelet sym6 was used, whereas

continuous transformation (Fig. 2.3b) was calculated with Morlet function of centre

frequency ω = 5. Despite the di�erent focus of these representations they both seem

to highlight similar activity in time-frequency space. These are also consistent with

Fourier spectrogram presented in Fig. 2.1.

In practice, a type of wavelet is usually chosen depending on features that one
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intends to extract. As it can be observed in Fig. 2.2, there is a variety of shapes which

will highlight di�erent characteristics. For example, when dealing with signals of brain

origin, a popular choice is the Morlet wavelet [38�41].

2.2.3 Limitations

This section introduced two methods for providing time-frequency representation. Fourier

spectrogram and wavelet scalogram allow one to observe the content of time series in

the form of components with speci�c periods or frequencies. Although these methods

provide insightful representation close to what is expected from the signal, they also

su�er from some limitations.

As it has been already highlighted, one of the limitations it is the abstract def-

inition of component's form and the oscillation that it represents. In case of FT, the

type of oscillation is already de�ned as a sinusoid or segmented sinusoid in case of

STFT. Such representation is dictated by the formula to preserve speci�c mathemati-

cal properties. However, it is unlikely that the signal itself would contain components

of such nature. In case of WT the structure of components, and thus the de�nition

of oscillation, is more �exible. This allows constructing oscillations that better re�ect

possible physical processes undergoing within the time series. However, this also in-

troduces selection bias forcing the signal to be projected onto observer's assumptions.

Under such conditions, it is possible to falsely interpret the presence of an event with

assumed structure, despite that its true form might be di�erent and not singular. Even

if a signal is composed of noise both TF representations would highlight some activ-

ity. Furthermore, both spectrogram and scalogram assume a single form of a periodic

component within a signal; they reject the possibility that event might be a mix of few

distinct forms of oscillations.

Another constraint that needs to be acknowledged is a �nite resolution in both

time and frequency domains. This limitation is often called an uncertainty princi-

ple [14]. It refers to a situation when two properties are so tightly bound, that making

more precise determination of one parameter increases the uncertainty of the other

one. In other terms, the product of variances for both time ∆t and frequency ∆ω res-

olutions cannot be smaller than certain value σ, ∆t ·∆ω ≥ σ. This relation manifests
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(b) Wavelet spectrogram.

Figure 2.4: Time-frequency plot for Fourier 2.4a and Wavelet 2.4b Transformation.

Both in Fourier spectrogram and wavelet scalogram each box has the same area.

itself as a grid of available values � so-called Heisenberg boxes � in time-frequency

representation. Such boxes can be seen in Figure 2.4 which shows Fourier spectrogram

(2.4a) and wavelet scalogram (2.4b). Any expansions or contractions to box's width ∆t

or height ∆ω will cause a counter transformation in the reciprocal domain keeping the

volume constant. In order to obtain better resolution in frequency, one needs to gather

more extended signal, which prevents from localising event in the time domain. Hence,

it is impossible to determine the exact frequency value present at a particular time,

and one needs to balance these properties depending on the expected observations.

Presented time-frequency representations also can mislead with an assumption

about causality in dynamics. One might expect that observing high activity at a

particular time and frequency ranges preceded by similar high activity at previous

time block could be its continuation. Although such extension is possible, it is not

necessarily true. Both in Fourier spectrum and wavelet scalogram each Heisenberg

box is computed independently from others, and thus a sudden change in signal might

occur. To cover this sudden change often signi�cant overlaps in segments are taken

and appropriate adjustments of scale and shift parameters. This, however, smears TF

representation and, depending on the approach, may not be able to detect immediate

variation.

Concluding, FT and WT can provide insightful information about frequency con-

tent of time series. However, there are limitations to what such time-frequency repre-
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sentation can describe. These representations are susceptible to researcher's bias and

methods' limitations. Although being insightful, they should be used with precautions.

2.3 Empirical mode decomposition

Previous sections discussed methods for extracting components of general form (Sec. 2.1)

and highlighting how frequency content of time series changes in time (Sec. 2.2). Given

that many systems in nature have oscillatory characteristics, it is essential to be able

to extract these intrinsic periodical components. This process requires both identifying

data speci�c oscillations and highlighting their dynamics. Such endeavour was taken

by Huang et al. [17] who proposed the empirical mode decomposition (EMD) which

is a method for non-stationary and non-linear processes. The EMD aims to decom-

pose data into general oscillatory functions, i.e. amplitude- and frequency-modulated

components. The decomposition is dependent only on the shape of the input signal,

thus making the method purely data-driven. Resulting components are considered to

represent intrinsic oscillations within the system, and for this reason, they are called

intrinsic mode functions (IMF).

The popularity of EMD has been steadily increasing since the introduction. Most

of the attention has been focused on application to geophysical signals, especially to

analyse wind and earthquake data. As it has been shown in [42], it is possible with

EMD to capture di�erent time-scale patterns embedded in the data. In their �ndings,

each IMF corresponds to events with di�erent frequency, e.g. daily, weekly or monthly.

Similarly, patterns related to physical events were discovered in other studies, e.g.

daily river �ows [43] or natural wind phenomena as a diurnal cycle, frontal passages or

baroclinic instability [44�46].

Many of studies are also performed in biomedical science. Some authors [47] have

shown synchrony between the cardiac and respiration signals. Some research, however,

has been done concentrating on brain waves, that is the electroencephalogram (EEG)

recordings. Researchers have studied the phase synchronisations between di�erent sen-

sors [48, 49] or detecting signi�cant features in EEG [50, 51]. EMD was also discovered

to be a valuable tool for removing eye movements signal from the EEG [20, 52�54].
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Moreover, EMD has been successfully applied in many scienti�c and engineering �elds,

e.g. [55�57], producing insightful results. Such wide popularity and general accom-

plishments necessitate investigation and understanding of the method.

The emphasis of this section is on introducing EMD. Presented here content

is structured as follows. In the �rst Subsection 2.3.1, the EMD original algorithm is

presented, and the following Subsection 2.3.3 discusses variations proposed by other

researchers. Final Subsection 2.3.2 highlights and discusses some properties of the

EMD and its components.

2.3.1 The algorithm

The original EMD [17] has proposed algorithmically, without any underlining mathe-

matical framework. The method acts on time series S(t) producing N intrinsic mode

functions (IMFs) which forms depend strictly on signal's shape, i.e. change in amplitude

of time series. The algorithm for EMD can be described in few steps as follows:

1. Store the input signal S(t) as the initial iteration s0(t) := S(t).

2. Identify all local extrema (both minima and maxima) in time series sj(t). Ex-

trema are de�ned by locations where the derivative
dsj(t)

dt
= 0.

3. If the number of extrema is less or equal than 2 then si(t) is considered to be a

trend � a low frequency modulation � and the algorithm stops (R(t) = sj(t)).

4. Estimate top emax and bottom emin envelopes of sj(t) by interpolating respec-

tively local maxima and local minima with natural cubic splines (Figure 2.5).

5. Calculate instantaneous meanm(t) of both envelopes,m(t) = 1
2

(emax (t) + emin (t)).

6. Subtract the mean from focused time series hj(t) = sj(t)−mj(t).

7. If hj(t) ful�ls the stopping criteria, then it is considered an intrinsic mode function

(IMF) (a component c(t)) and the procedure is repeated for a modi�ed signal

S(t) := S(t) − c(t) from the �rst point. Otherwise, the algorithm starts from

second step with sj+1(t) := hj(t).
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Figure 2.5: Signal's features identi�cation in EMD sifting process. Top (emax ) and

bottom (emin ) envelopes of an input signal s(t) composed of slowly changing trend and

a riding wave. Averaging both envelopes creates local mean h(t) (dashed line).

The critical element of the algorithm is to calculate local mean and subtract it

from the signal. These steps are often referred to as sifting process [17]. As a result of

EMD one obtains a decomposition in the form of

S(t) =
N∑
n=1

cn(t) +R(t), (2.23)

where cn are IMFs and R is a residue, which is a slowly varying trend. The number

of components N is �nite and dependent on the input data's complexity. It has been

shown that for Gaussian noise EMD behaves as a dyadic �lter bank [58] producing on

average N ≈ log2(fs), where fs is the sampling frequency.

The stopping criterion introduced in the original paper [17] tests IMF's time series

convergence in consecutive iterations. It states that sifting process is convergent if the

Cauchy's standard deviation, SD, is smaller than a prede�ned threshold value, σ,

SD =
T∑
t=0

[
|hk(t)− hk−1(t)|2

h2
k−1(t)

]
< σ, (2.24)

where the threshold value σ is suggested to be between 0.2 and 0.3 [17]. The justi�cation
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given by the authors is based on Fourier spectra. When comparing two spectra, one

of which has 5 data points (out of 1024) shifted, their SD value will be in a range of

0.2�0.3 (calculated point-by-point).

2.3.2 Properties

As it has been mentioned before, EMD decomposes a signal into a set of oscillatory

functions called intrinsic mode functions (IMFs). In the original paper, the authors

have de�ned IMF as a function which ful�ls two conditions:

1. In a given domain, the number of extrema and zero-crossings must di�er at most

by one, and

2. the local mean spanned by the average of top and bottom envelopes should be

zero everywhere.

These conditions are meant to guarantee the oscillatory behaviour of IMF. The ne-

cessity to cross the zero-value between consecutive extrema refers to the narrowband

requirement for a stationary Gaussian process [17]. The second condition refers to the

symmetrical shape of a component. Such property is desired when performing Hilbert

transform (see Appendix A.2) on the signal as it allows for its extraction. Authors

deliberately imposed such condition to extract meaningful instantaneous frequency.

Figure 2.6 presents two oscillatory functions out of which only the top function

ful�ls IMF's properties. Despite being periodic with a period of 1 s, the bottom func-

tion is not an IMF. It possesses two frequencies: slow wave (2 Hz) and a fast wave

(22 Hz). Often the fast component in such combination is referred as a riding wave.

Top function, however, is a single oscillation in a general form, i.e. having modulations

in both amplitude and frequency. Although in presented example modulations have

apparent structures, in general, they can be more complicated.

An exemplary set of IMFs obtained via EMD is presented in Figure 2.7. The

top graph (red colour) displays the input signal, which is a normalised Gaussian noise

�ltered with a moving average window of 5 samples. Consecutive rows contain 5 �rst

IMFs starting with the �rst on top. The order of IMFs also corresponds to the order

of instantaneous frequencies averaged over time, i.e. average frequencies.
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Figure 2.6: Examples of oscillatory functions. Only the top oscillation, presented in

green with blue envelopes, ful�ls IMF conditions. The bottom function described in

red colour is composed of slowly oscillating trend (dashed) with much faster wave.
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Figure 2.7: An example of a set of IMFs obtained using EMD. An input signal (top

graph, red) is a moving-average �ltered Gaussian noise. The following graphs (green)

represent �rst 5 obtained IMFs.
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Common practice in signal processing community is to apply the Hilbert trans-

form to extract amplitude and phase components from the signal. It has been proven,

that such transformation will result in a complete decomposition when the signal ful�ls

the Bedrosian theorem (see Appendix A.3). Unfortunately, without the mathematical

framework, it is impossible to conclude decisively whether IMFs ful�l theorem's condi-

tions. Some researchers [21, 59, 60] have started developing framework centred around

Bedrosian theorem. Such approach allows for construction of components with easily

extractable amplitude and phase features.

2.3.3 Extensions

The lack of formal mathematical de�nition was a great stimulus for developing EMD

extensions. These either come as a variation on the algorithm itself or from assum-

ing some mathematical framework. Overall, one could consider dividing most of the

suggested modi�cations into few groups.

• Technique modi�cations. These modi�cations relate to changing at least one

of the steps used within the original EMD algorithm. An example of the most

common modi�cation is proposing a di�erent spline interpolation technique, e.g.

in [61, 62]. Other modi�cations can relate to interpolation of extrema positions

and values. Since the execution of the EMD is only possible on computers, which

can only store discrete signals, only available data points should be considered.

However, the EMD uses continuous signals in its de�nition, and the discretisation

is only a result of framework limitations. This indicates challenges in both deter-

mining extrema's related values, e.g. estimating through cubic interpolation [63],

and determining envelopes values at the edges of the signal of interest [64].

• Procedural modi�cation. In contrast to the �rst instance, these modi�cations

relate to particular elements of the EMD procedure. Most commonly they suggest

modifying stopping criterion related to the sifting procedure either proposing a

di�erent convergence metric [58, 65] or advocating for a replacement step [66].

Some researchers have proposed modifying sifting procedure by either subtracting

scaled or masked [67, 68] local mean. Moreover, inclusive to this group are
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modi�cations that allow merging di�erent parts of the analysed signal, e.g. using

a sliding window technique [69, 70].

• Method variations. Changes in this group have the biggest e�ect on the out-

come of the method. Often they modify signi�cant part of the algorithm and in-

clude additional steps. The most popular variation is Ensemble Empirical Mode

Decomposition (EEMD) [71], which creates an ensemble of noise-added signals

and performs EMD on each one of them. The expected result is the grand av-

erage of all ensembles. Other modi�cations include de�ning EMD method in

multi-dimensional problems [72�76]. Similarly, some variations are only loosely

related to EMD and they try to explain its behaviours through other approaches,

e.g. �ltering [68], di�usion [77], or in�nitesimal local mean [78].

As previously mentioned, the list of EMD applications and achievements suggests

that the method has been recognised to provide meaningful results. Nevertheless, the

number of proposed variations also suggests that there is capacity for improvements.

For this to happen the method would require a mathematical framework; otherwise,

any advancements cannot be objectively compared and stated what the bene�t is. The

popularity of the EMD and drawbacks mentioned above indicate there is a lack of data

analysis method which has properties similar to EMD and a well-de�ned mathematical

foundation.

48



Chapter 3

Model-based analysis

Systems can be described and analysed from di�erent perspectives. Along the data

analysis approach presented in Chapter 2 one can focus on constructing the underlying

model behind the system. This is called model-based analysis and is described in this

chapter. The main di�erence between mentioned approaches, is that with modelling

one tries to initiate discussion by presenting a mathematical model of the system. One

starts with principles in order to analyse system's properties and then validate the

hypothesis with observations.

By constructing models, one not only can explain the underlying behaviour, but

also can analyse the system theoretically. This allows to forecast and simulate data,

instead of performing potentially time consuming experiments. In fact, any physical

phenomena can be modelled. In case of oscillations two speci�c approaches are very

important: Sturm-Liouville theory and Kuramoto model for coupling in phase. Both

describe dynamics of the system via di�erential equations, i.e. in terms of system's

function and its changes. The general form of a ordinary di�erential equation (ODE)

of function y(x) can be written as

N∑
n=0

an(x)
dny(x)

dxn
= q(x), (3.1)

where q(x) and an(x) are coe�cient functions of an independent variable, x, and the

summation limit, N , determines the order of the system. As it can be seen ODE in

equation (3.1) are linear in respect to y(x) and its derivatives.
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The Sturm-Liouville theory describes general behaviour of oscillators in terms of

2nd order ODE. It states how a single oscillator will behave given its initial conditions

and some function of surrounding. The latter model, i.e. Kuramoto model, refers to

interactions between a number of oscillators. It emphasises that when objects are

communicating, their properties may change. It focuses on these changes in phases,

i.e. delaying and extending periodic behaviour.

3.1 Sturm-Liouville eigenvalue problem

The general form of the second order ODE can be written as

a2(x)
d2y

dx2
(x) + a1(x)

dy(x)

dx
+ a0(x)y(x) = q(x), (3.2)

where the notation is as for the Equation (3.1). A particular form of this equation

was named after Jacques Charles François Sturm [79] and Joseph Liouville [80]. Their

research focused on ODEs of form

− d

dx

(
p(x)

dy(x)

dx

)
+ q(x)y(x) = λw(x)y(x), (3.3)

where coe�cient functions p(x), q(x) and derivative p′(x) belong to Hilbert space L2.

Equation (3.3) is, in fact, an eigenvalue problem with λ and w(x) being an eigenvalue

and weighting function, respectively. These relations are more apparent once the left-

hand side is presented as a linear operator L acting on function y, i.e. Ly(x) = λy(x),

where

L =
1

w(x)

[
− d

dx

(
p(x)

d

dx

)
+ q(x)

]
. (3.4)

Often, in practice, a simpli�ed form of the equation is used [80]. Changing variables

from x to ξ such that

ξ(x) =

∫ x

x0

dx̃

p(x̃)
, (3.5)

allows to de�ne the �rst derivative as

d

dx
=
dξ

dx

d

dξ
=

1

p(x)

d

dξ
, (3.6)
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and the second as
d2

d2x
=

1

p2(x)

d2

dξ2
− p′(x)

p(x)

d

dξ
. (3.7)

This conversion results in an operator with changed variable ξ as

L̃ =
1

w̃(ξ)

(
d2

dξ2
+ q̃(ξ)

)
. (3.8)

Replacing dependent variable again by x and omitting weighting function w(x), the

Sturm-Liouville (SL) equation can be written as

y′′(x) +Q(x)y(x) = λy(x). (3.9)

This form is commonly used in literature. It is especially popular when analysing

inverse Sturm-Liouville problem [80].

The popularity of SL equations comes from their wide appearance when analysing

physical problems. For reasons that are explained later, these equations describe wave-

like behaving functions often met in nature. For example, wave propagation in ma-

terials like strings or drums can be postulated in SL forms [6]. An equation of the

form (3.9) is especially prevalent in quantum mechanics as it represents Schrödinger

equation [81], which describes the movement of particles.

Properties and solutions for some particular coe�cient functions, i.e. Q(x) or

{p(x), q(x)}, have already been intensively studied. Two of the most popular equations

are Bessel type with (p(x) = −x, q(x) = (x2 − ν2)) and Airy (p(x) = −1, q(x) =

−x) [82]. Solutions to such equations are special functions, which often appear in

quantum mechanics [35]. Another set of equations which have been thoroughly studies

is the set with a constant coe�cient, Q(x) = 0. In such case, often called Fourier type,

equation (3.9) is transformed into

y′′(x) = λy(x), (3.10)

which for λ < 0 is solved by sinusoids with period of T = 2π/
√
|λ|, i.e. y(x) =

A sin(
√
|λ|x+ φ).
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An SL problem which has separated boundary conditions on a �nite interval [0, 1]1

of form 
α0y(0) + β0y

′(0) = 0 (α2
0 + β2

0 > 0),

α1y(1) + β1y
′(1) = 0 (α2

1 + β2
1 > 0),

(3.11)

and p(x), w(x) > 0 is said to be regular. The meaning and properties of the regular

Sturm-Liouville problem are described in the Theorem 1.

Theorem 1. The regular Sturm-Liouville problem has a countable number of discrete

and simple eigenvalues λn, which accumulate only at∞. The corresponding normalised

eigenfunction ỹn can be chosen real-valued and form an orthonormal basis for the con-

sidered interval I, i.e.

f(x) =
N∑
n=0

〈ỹn, f〉 ỹn(x), (3.12)

for all f ∈ L2. Moreover, if f belongs to a linear subspace of Hilbert space L2, then the

series is uniformly convergent.

It can be shown [82] that the operator L is a self-adjoint operator. The meaning of

this property is that if there exists a non-empty set of solutions all their corresponding

eigenvalues are real. Moreover, respective eigenfunctions span basis in the Hilbert's

space L2
I on a segment I with the inner product de�ned as

〈f, g〉w =

∫
I
f ∗(x)g(x)w(x)dx. (3.13)

In the equation 3.13 asterisk ∗ denotes complex conjugation and functions f, g, w ∈ L2
I .

Another essential property of solutions to the SL problem is that their eigenfunctions

can be sorted by the increasing number of roots. This is stated in Theorems 2 and 3 [83],

where the notation of an eigenfunction y(x, λ) with an eigenvalue λ was used. The

�rst Theorem 2 states that for the same SL eigenproblem, the eigenfunction related

to a more prominent eigenvalue has a higher frequency of zero-crossings. Oscillation

Theorem 3, however, refers to the number of possible solutions below a certain value

of eigenvalue. It implies that the nth eigenfunction has exactly n zero-crossings. Their

combined results are stated in another Theorem 4.
1The interval is general, because one can always apply a linear mapping T : [0, 1]→ [a, b].
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Theorem 2 (Sturm comparison theorem). For j = 1, 2, let yj be eigenfunction of Lj

with eigenvalue λj. Suppose 0 ≤ a < b ≤ 1, y1(a) = y1(b) = 0 and λ1 < λ2. Then y2

has a zero in (a, b).

Theorem 3 (Oscillation theorem). The number of eigenvalues of (3.9) strictly below

λ is equal to the number of zero values y = 0 of y(x, λ) in (0, 1).

Theorem 4. Let λ0 < λ1 < . . . be the eigenvalues of L (3.9) in L2
[0,1] with boundary

conditions y(0) = y(1) = 0. Then y(x, λn) has exactly n zeros in (0, 1).

The main implication of these theorems is the possibility to create a set of or-

thogonal functions with oscillatory properties. Each eigenfunction has a number of

zero-crossings related to its ordinality. Thus with increasing order, the number of zero-

crossings also increases allowing to relate that property to the frequency of solution

and uniquely decompose functions in such constructed basis. As the equation (3.12)

implies, scaling for each fundamental component, i.e. eigenfunction, can be obtained by

projecting the data onto the respective component. An example of such decomposition

is Fourier series, which is obtained while solving the SL eigenproblem under a constant

coe�cient (3.10). In such case eigenvalues have straightforward interpretation as they

correspond to the frequency of individual sinusoids.

Sturm-Liouville theory has also been connected to the structure of IMFs (Sec-

tion 2.3). Vatchev & Sharpley in their articles [84, 85] have related conditions for IMFs

to the oscillation theorem. Their modi�ed de�nition of IMF, which they called a weak

IMF, is postulated concerning a solution to the SL problem with {p(x), q(x)} such that

f(x) =
1

q(x)
h′(x), h(x) = −q(x)f ′(x), (3.14)

where f(t) is the weak IMF and h(x) is an associated function from C2
I . The obtained

eigenfunction f is an oscillation, i.e. the numbers of extrema and zero-crossings di�er

at most by one.
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3.2 Interacting oscillators and the Kuramoto model

The oscillation theory presented in the previous section refers to a single oscillator. In

nature, however, it is di�cult to observe an isolated object, i.e. one which does not

interact with its surroundings. An object can be either in�uenced by a dynamically

changing environment or interact with other components creating a network or a sys-

tem. There are many examples where such interactions between objects have been

observed [86�92]. The abundance of these problems resulted in plenty of studies in

this �eld [10, 93, 94]. Interactions in an obvious manner a�ect each component and

make the whole system behave di�erently than a simple superposition of all compo-

nents. Although the behaviour of the whole system depends on its con�guration, some

systems will exhibit the shared phenomena. Commonly described physical e�ects are

the synchronisation and the oscillation death. The former can be commonly observed

in nature and thus has been widely studied [95]. The synchronisation is de�ned as an

adjustment of rhythms (oscillation patterns) in oscillating objects through their weak

interactions [95]. In contrast, the oscillation death describes the process of mutual

extinction of either amplitude or phase.

A common distinction of interactions is to classify them as either structural or

functional. The structural interaction indicates the existence of a direct connection

between the components. Some components, however, can in�uence each other despite

not having a visible connection. Components that exhibit statistically signi�cant in-

teractions, e.g. are correlated, are considered to be functionally connected. However,

often interaction is more complex than presented connections. Some components can

have greater impact on others, and the coupling does not need to be symmetrical. In

extreme cases, there can be components that in�uence others, but they are immune to

changes within the network. For these reasons, networks often distinguish direction-

ality and strengths between nodes. In case of the brain, the structural connectivity

would be described by the neuronal connections between regions whereas the func-

tionality is through observing correlated activity within the brain. When describing a

system with analytical methods, it is easier to di�erentiate three types of connectivity,

i.e. by adding the e�ective connectivity [92] to the structural and functional connectiv-

ities. The e�ective connectivity provides more in-depth qualitative knowledge about
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the system such as coupling strengths and their directions. These, in turn, provide

more knowledge about the information �ow in the system. Understanding the dynam-

ics of the network can provide information on what are speci�c contributions of each

node and which regions have the most signi�cant impact on the network. Further-

more, understanding the dynamics allows building appropriate models, through which

it might be possible to understand the general mechanisms of the physical entity, such

as the brain. For these reasons, there have been many attempts on creating methods

to identify couplings.

Solving a general dynamical system of coupled oscillators is di�cult; physical os-

cillators will interact on all dimensions simultaneously. With an increase of dimension-

ality/complexity, there are more variables to solve for in a model of these interactions.

As with any solving approach, one needs to divide the problem into smaller parts. With

coupled oscillators, it is common to consider the focus on either strong or weak inter-

actions. The di�erence is in coupling regime and its e�ect on the network. Although

the boundary depends on the speci�c system, some properties can be generalised.

The strong interaction is considered when the coupling a�ects the whole network,

especially oscillators' amplitude [94]. The research on the coupled systems with strong

coupling is ongoing with many interesting open questions such as synchronisation or

oscillation death. The analysis of the synchronisation has been signi�cantly moved

forward by the introduction of the master-stability function (MSF) [95, 96]. The class

of strong interactions is di�cult to analyse as it a�ects many states creating a large

problem space. To ease the analysis a common step is to reduce the dimensionality of

the problem or consider the system under particular conditions.

In the weak interactions regime, the coupling does not a�ect oscillators ampli-

tude. Even though it is a smaller class than the strong coupling, it is nevertheless a

substantial class with many applications [10, 18, 92, 97]. Such reduction allowed for a

signi�cant research in�ux with valuable results. The vastness of the problem space is

typically approached by assuming certain conditions of the system such as frequency

distributions or speci�c types of the coupling function. In special cases, it is possible to

�nd constraints on global solutions or provide approximate local solutions with loosen

constraints.
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Theoretical attempts to model these modulations have started with Winfree who

proposed a generic model for dynamics in the phase space. Movements in this space

describe any period activity where the phase denotes current position in reference to

the period. The beginning of an event is at phase φ = 0 and similarly, the phase

φ = π (or 180◦) indicates the median position. The �rst systems [8, 10, 98] which were

designed to consider phase dynamics of an oscillator were proposed in terms of

φ̇i = ωi +

(
N∑
j=1

Xij(φj)

)
Z(φi), (3.15)

where the X(φi) is the phase-dependent in�uence on others oscillators, and the Z(φ)

denotes the sensitivity function. Such form indicates that oscillators are expected to

interact indirectly, through an interaction with the environment. Another change to

the model incorporated the potential direct coupling between oscillators

φ̇i = ωi +
N∑
j=1

Γij (φj − φi) , (3.16)

where Γ is a general function of a di�erence between each pair of coupled oscillators.

Such de�nition, however, was too general for practical use. Although it could be

applied to the majority of the real systems, most of them would have too complicated

interaction, making them not solvable analytically. A simpler, yet still general approach

to strictly oscillatory components [9, 89, 99, 100] is to consider a system in the form of

φ̇i = ωi +
K

N

N∑
j=1

h(φj − φi), (3.17)

where the coupling function h(·) is 2π periodic and is the same for all components. A

speci�c version of this model was proposed by Kuramoto in 1975 [101]. He suggested

to use h(·) function in the form of a scaled sinusoid, i.e.

φ̇i = ωi +
1

N

N∑
j=1

K sin (φj − φi) , (3.18)

where φi is a phase of i
th oscillator and ωi is its natural frequency often called intrinsic
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θj

Ψ
r

Figure 3.1: Geometric representation of oscillators' phases θj as points on a circle.

Mean of all these vectors describes the mean-�eld vector of a length r and phase Ψ.

(Source: [10])

frequency. This equation means that phase dynamics are dictated by a phase shift

relative to another oscillator's phase. These modulations determine the oscillations

instantaneous frequency ω. Commonly in the analysis of the model, it is assumed

that ω is drawn from a distribution g(ω), which is typically a unimodal distribution,

symmetric around some value Ω. In this context, Ω can be thought of as an overall

average frequency. Due to rotational symmetry made by periodic coupling function

in the model subtracting Ω from all ωi does not change the overall dynamic. Such

transformation allows for g(ωi) to be substituted with ĝ(ωi) = g(ωi−Ω). Additionally,

coe�cient K in formula (3.18) denotes coupling strength, as it scales the impact of the

interaction between oscillators.

The advantage of Kuramoto's model is that it can be solved analytically for a

large number of oscillators. The solution is performed by averaging oscillators or,

conceptually equivalent, by analysing them using a moving reference frame, i.e.

r sin (ψ − φ) =
1

N

N∑
j=1

sin (φj − φi) , (3.19)

where r and ψ are the amplitude and the phase of the frame, respectively. Geometric

representation of such situation is represented in Figure 3.1. The phase of each oscil-

lator is represented as a dot on a circle, and a vector r gives their average position at

angle Ψ. Moving frame transformation allows writing the formula (3.18) in the form

of

φ̇i = ωi + rK sin (ψ − φi) , (3.20)
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Figure 3.2: A typical dynamic of coherence r value depending on initial coupling K

value in reference to critical coupling value KC . (Source: [10])

which highlights that the phase of each oscillator is pulled towards the mean-�eld phase.

Moreover, the positive feedback loop means that the more oscillators are coupled (i.e.

big Kr), the more in�uential they will be on the other oscillators, thus making the

coe�cient Kr even bigger. Eventually, depending on the initial value of K, all oscil-

lators will either be coupled entirely or incoherent, with phases uniformly distributed

in the domain. The divergence can be seen in Figure 3.2, which represents changes

of coherence value r over time-depending on the initial value of K. Typically a set

of coupled oscillators can be divided into two groups: completely synchronised and

partially synchronised. The �rst group tends to follow the global trend and thus stays

in relatively equal distances. The partially synchronised group, however, is less rigid

and allows for irregular migration in and out of the group.

Discussed behaviour refers to an ideal situation without any external in�uence on

the system. In a more realistic scenario, however, the system can be a�ected by some

non-oscillatory input from the environment. The perturbation can introduce time-

dependent modulations into natural frequencies and couplings [102]. For simplicity,

such a disturbance is often only considered as a non-stationary in�uence on the natural

frequency leading to a modi�ed Kuramoto equation

φ̇i = ωi + ξi(t) +
1

N

N∑
j=1

K sin (φj − φi) , (3.21)

in which ξ is the noise component. Under such conditions, the activity of components is

described by the Fokker-Planck model and is often used to model physical systems [9].

Some recent development has indicated that such systems might not be stochastic at

all but instead belong to a new class of chronotaxic systems [103, 104]. These systems
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are allowed to interact with the environment through dissipative dynamics. Such in-

teraction, however, is stabilised and resist changes with the support from the internal

source of energy. It is important that models which aspire to deal with measurements

should belong to either of mentioned classes since the surrounding will often in�uence

physical systems [105�107].

Once the model is de�ned, one can proceed to extract valuable information from

the gathered data. As mentioned, the area of coupled oscillators is fast evolving.

Earlier methods focused only on the existence or directionality of coupling [94]. The

information extraction was based on the data characteristics such as the time-frequency

representation [108] or information-based measures like the mutual information [109]

or the Granger causality [110]. Improvements in measuring techniques and advances in

computations, however, allowed for more expressive methods and their �t, shifting the

trend towards a model-based inference. Few examples of recently introduced methods

for reconstructing the coupling functions include the model �tting through a metric

optimisation with the least-square �tting, statistical maximum likelihood estimation

or the phase resetting.

Methods based on the least-square �tting [111, 112] attempt to �t the data a

de�ned model with free parameters. The simplicity of the approach made it be the

�rst to derive coupling functions, and thus the e�ective connectivity, from observed

oscillations in the phase of recorded data [94]. As the name suggests, their approach

starts by constructing a metric and then attempting to �nd a set of parameters which

minimises the metric. This approach is based on minimising the error for the explana-

tion when trying to �t a model. Conceptually somehow di�erent optimisation is with

the Bayesian statistics approach of maximising the likelihood estimation (MLE). In

the Bayesian philosophy, the focus on the likelihood of whether given data could have

been produced with the assumed model [3]. An example of a method that uses MLE

to �t the model is MLE-MS [113]. The abbreviation is expanded to MLE multiple

shooting (MS) [114] which focuses on �tting through stating a multipoint boundary-

value problem for which all these points are nonlinear constraints in the optimisation

process. Such de�nition decreases the chances of an ill initial starting point and allows

to better estimate the actual maximum a priori (MAP) values.
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Interesting usage of the Bayesian approach is in the Dynamical Bayesian inference

(DBI) [115, 116]. The method encompasses the time-variable dynamics of the stochastic

di�erential equation

φ̇i = f (φ|c) +
√
Dξi, (3.22)

where the function f (φ|c) de�nes independent evolution and interactions with other

oscillators both of which are adjustable through parameter c. Additionally, parametric

matrix D characterises the noise di�usion within the network. The core assumption is

that the noise ξ is white which allows describing the problem in terms of the Gaussian

process. Such a de�nition allows expressing the optimisation as a set of equations

that can be evaluated iteratively. The authors suggest that the reformulated approach

is converges within only a few cycles even when initiated with a non-informative �at

distribution and parameter c0 = 0 [116]. The dynamicity of the method comes from the

possibility to propagate the estimates along the signal and observe how they change.

These steps depend on the system's assumed structure and the certainty of extracted

parameters as a priori probability distribution for the following segment depends on

the previous' posterior.

A di�erent approach is proposed by Z. Levnaji¢ and A. Pikovsk [117] who aim at

reconstructing both the topology and coupling functions of a general oscillatory net-

work. They have introduced the Random Phase Resetting which utilises an ensemble

of oscillators that were repeatedly initiated with randomly drawn starting phases and

instantaneous frequencies. The core of the method is based on the appropriate formu-

lation of the test function in terms of 2π-period dissipative function. Such de�nition

allows to expand it with the Fourier series and optimise for their coe�cients, although

the number of harmonics was suggested to be de�ned based on the assumptions about

the system or empirical observations of the data. After enough reruns of the system

one can take all results and with appropriate usage of a kernel smoother create an

ensemble solution. This approach is more robust than inferring e�ective connectivity

from a single system execution which might over�t to a particular state. The drawback

of the method, however, is its invasiveness; it assumes that one is able to repeat experi-

ments with di�erent initial conditions which in case of physical oscillators is commonly

impossible.
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Presented here methods utilise models for which certain assumption needs to be

made. These can be regarding the number of oscillators, the type of noise or the way the

oscillators interact with one another. Certain systems, such as cardiovascular [91, 108,

118] or some electrochemical oscillators [86, 88, 113, 119] have been studied thoroughly

allowing to incorporate the expert knowledge into the research; however, the majority of

systems is yet to be well de�ned. Moreover, discussed methods focus only on the weak

interactions leaving a gap for further research in data-driven methods that describe a

general coupled oscillatory system. The advances are also expected to be accompanied

with more empirical approach due to the signi�cant improvements in the computational

performance allowing for shorter feedback and quicker validation of research ideas.
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Chapter 4

EMD analysis

As it has been discussed in previous chapters, EMD is a promising method for obtain-

ing oscillatory features. This chapter details the analysis of the decomposition method,

as well as some of its properties and limitations. In Section 4.1 focus is put on EMD's

performance limitations under di�erent data formats. Then, in Section 4.2 the problem

of validating EMD's results is addressed. This issue is taken care through proposing

objective metrics that would satisfy claims made by Huang et al. [17]. Finally, Sec-

tion 4.3 discusses the issue of components' and their frequencies' mixing. All Sections

of this chapters are based on author's published papers [120�122].

4.1 EMD performance

Modern computers used for the signal processing have such a high computational per-

formance that researchers do not think about the e�ciency of data handling nor the

used format. This simplicity often makes the calculations to be performed in a very

high precision formats like double �oating point (DFP). Such precision rarely is neces-

sary, but since most analysis is performed in a relatively short time, the con�guration

is kept for the sake of high precision. For some systems, however, changing the format

into a single �oating point (SFP) can signi�cantly reduce computation time. An ex-

ample of such device is graphical processing unit (GPU), which bene�ts from parallel

processing and is reported to work several times faster using SFP precision instead of

DFP [123].
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EMD can be computationally intensive and not suitable for real-time analysis [57].

Moreover, due to its empirical nature, the method might be very susceptible to the data

format. An example of such sensitivity is presented by Rilling et al. in [124], where

they studied the smallest sampling frequency for the EMD to work.

In this section, the question of EMD's performance is addressed. This is done by

conducting experiments and comparing results under DFP and SFP conditions.

4.1.1 Experiments

Series of experiments were conducted with the purpose to analyse whether there is

a di�erence between two �oating point formats and, if so, what is the scale of this

discrepancy. EMD used in these experiments was con�gured with natural cubic spline

technique to interpolate envelops on local maxima and minima for the top and bottom

envelops, respectively. Each extremum was de�ned as a peak of a parabola interpolated

on three consecutive samples, where the central sample is below (minimum) or above

(maximum) its closest surrounding [63]. The stopping criterion for the decomposition

was ten consecutive sifting iteration for all of which proto-IMF had the number of

extrema and zero-crossings di�erent at most by one.

All examples were generated and analysed using Python programming language.

The source code of the EMD implementation used in these experiments is freely avail-

able from the author's web-page [125]. The numerical manipulations were performed

using NumPy scienti�c package [126].

Worth noting is the fact that the interpolation techniques depend both on points'

values and their positions. This means that the di�erence between two sets will be

even greater when comparing values at di�erent positions. When analysing signals, it

is advised to scale appropriately independent variable, so that it has exact numerical

representation. For binary �oating point precision, this means to assign a step value

to be a multiple of the power of 2 (m2p).
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Figure 4.1: Signal used in example 1 and generated according to the formula (4.1).

Example 1

In the �rst experiment, signal S(t) was generated as a sum of cosines with di�erent

frequencies and phases, i.e.

s1(t) = A
5∑
i=1

cos (2πfit+ φi) , (4.1)

where frequencies and phases are, respectively, fi = {6.1, 9.4, 12.7, 16, 19.3} Hz and

φi = {0, 1, 2, 3, 4} rad. The particular set of frequencies and phases was chosen so

that components are not harmonics of one another and their initial value are di�erent.

The amplitude value A was assigned such that the max(|S|) = 1. This normalisation

was performed for easier comparisons between presented examples. The signal was

generated with time t in the range [0, 1] s with a sampling frequency of 1024 Hz and

is visualised in Fig. 4.1. Its EMD decomposition is shown in Fig. 4.2, where the solid

blue line and dashed green indicate DFP and SFP, respectively. As it can be seen, two

sets are visually ideally overlapping each other. To visualise the di�erence more clearly,

the set obtained with SFP was projected onto DFP and subtracted from it, as it has a

higher precision. The di�erence between corresponding IMFs is presented in Figure 4.3.

The biggest di�erence is in order of 10−6 which is only one magnitude larger than the

machine epsilon for the SFP. Moreover, the discrepancy between compared time series

is still about �ve orders smaller than the magnitude of signal s1(t). Thus, unless such

small values are expected from analysis of the experiment, it can be considered as a

negligible noise; they have no meaningful e�ect on the results.
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Figure 4.2: EMD decomposition of example 1 signal (Fig. 4.1). Overlapping results for

DFP and SFP were plotted with solid blue and dashed green lines, respectively. All

functions have the same amplitude scale with arbitrary units.
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Figure 4.3: Pointwise di�erences between EMD sets obtained for SFP and DFP from

example 1. These of SFP were �rst projected onto double precision and then subtracted

from EMD DFP set. All functions have the same amplitude scale with arbitrary units.
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Example 2

For the second example, a signal was generated using 1024 data points sampled from

a random Gaussian process, i.e.

s2(t) = N (x̄ = 0, σ = 1), (4.2)

with a zero mean and a standard deviation of 1. The signal (Fig. 4.4) was additionally

scaled so that the biggest amplitude value was one. The EMD decomposition of s2(t)

is shown in Figure 4.5, where solid blue lines and dashed green lines represent DFP

and SFP, respectively. Similarly to the previous example, at a presented scale, not

much di�erence between the two sets is visually noticeable. In order to emphasise the

discrepancies between these time series an additional �gure was generated (Fig. 4.6)

in which a pointwise di�erence for respective IMFs is presented. In this example the

biggest variance in visible for IMF 6, where the range of values is of magnitude �ve. Cu-

riously, the pointwise di�erences between the initial 5 IMFs have much more variation

than those later IMFs. This is due to mismatch in exact representations for extrema in

the respective data formats. For high frequency components, there are more extrema

and thus the higher chance for a di�erence in representation. One can also see, that the

variance is bigger for time t ≈ 1 s, where the numerical representation is more sparse.

Comparing results for signals s2(t) and s1(t), it seems that there is a bigger

di�erence and more variance between the two data formats in this example. Such

discrepancy is expected as the signal s2(t) has more complex structure and has a

larger number of extrema. Nevertheless, when comparing magnitudes the discrepancies

between two sets, i.e. magnitude �ve, to the amplitude of the input signal s2(t) these

di�erences are magnitude six times smaller and thus can be considered as noise.

Example 3

The �nal example uses time series which represent a single channel of real EEG data.

These recordings were obtained during resting state, i.e. when a person was not involved

in any physical, nor mental activity. For analysis, a four seconds segment of the signal,

sampled at the rate of 128 Hz, was chosen randomly. Before the EMD decomposition
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Figure 4.4: The generated signal used in example 2. It consists of 1000 random points

drawn from a Gaussian distribution with mean 0 and standard deviation of 1.

was performed the signal was preprocessed, i.e. the mean value was removed and the

amplitude was scaled so that the highest amplitude was 1. Also, to decrease the error

along the time axis, values were scaled into range t ∈ [−1, 1] s with sampling frequency

256 Hz. The signal used for decomposition is presented in Fig. 4.7.

Set of IMF components obtained from EMD is shown in Fig. 4.8 using solid blue

lines and dashed green lines for DFP and SFP, respectively. The di�erence between

corresponding IMFs is displayed in Fig. 4.9. From this �gure, one can see that the

di�erence between obtained sets has the biggest absolute value and variance when |t| ≈

1 s, i.e. where the numerical representation is more sparse. Such result is consistent

with the previous examples (Figs. 4.3 and 4.6). Nevertheless, similarly to the previous

two examples, the di�erence between both decomposition is relatively small. The

magnitude of di�erence has not changed signi�cantly from the one obtained for s2(t)

(Example 2). Again, the range of di�erences has the order of magnitude -6 and thus

can be ignored when compared to the input signal.

4.1.2 Conclusion

As reported in Section 4.1.1, there is a di�erence between decomposition obtained for

di�erent precision formats, namely single and double �oating point precisions. Those

di�erences are tiny and negligible when observing at the input signal scale. However,

these di�erences can be seen clearly when comparing the di�erences between obtained

sets for di�erent �oating point formats, i.e. Figures 4.3, 4.6 and 4.9. As it has been

pointed out, both absolute values and variance of error are small near t = 0 s and

increase when approaching |t| = 1 s. This is because extrema positions are deter-
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Figure 4.5: EMD decomposition of the signal from example 2 (Fig. 4.4). Decomposi-

tions for DFP and SFP are drawn overlapping with solid blue and dashed green lines,

respectively.
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Figure 4.6: Pointwise di�erences between EMD sets obtained for SFP and DFP from

example 2. These of SFP were �rst projected onto double precision and then subtracted

from EMD DFP set. All functions have the same amplitude scale with arbitrary units.
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Figure 4.7: EEG data used in the third example. Processing involves removing the

mean and scaling amplitude so that the maximum de�ection is 1. Timescale changed

to span from -1 to 1 with sampling frequency 256 Hz.

mined with parabolic interpolation, thus not necessarily falling onto the exact numer-

ical representation grid. Such pronounced e�ect is a result of binary �oating point

representation, which has much bigger resolution close to zero and it decreases with

distance [127].

In summary, in all three experiments obtained di�erences are minimal compared

to the average amplitude of each component. Corresponding IMFs produced in two

di�erent data formats are visually indistinguishable. Such similarity means that using

systems or devices, such as NVIDIA GPU [123], which perform faster on a single �oat-

ing point compared to double �oating point precision, one should be able to decrease

computational time without a loss of meaningful content.

4.2 EMD metric

In the original paper on EMD [17] authors noted that small perturbations to the input

signal results in di�erent outputs. This is a highly undesired e�ect, but unfortunately,

due to the heuristic nature of the EMD, it is impossible to determine which set of IMFs

is better. Nevertheless, researchers usually can make, and do, assessments of method's

performance based on their knowledge and experience. Few authors [17, 128, 129] have

made attempts to formulate rules based on which sets of IMFs should be chosen. All of

them, however, are based on the assumption that IMFs belong to Hilbert's L2 function

space, which is not necessarily true. As stated in [17] obtained orthogonality (in Hilbert

sense) is purely by coincidence and should not be expected from the method.
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Figure 4.8: EMD decomposition of the EEG signal from example 3 (Fig. 4.7). Decom-

positions for DFP and SFP are drawn overlapping with solid blue and dashed green

lines, respectively.

72



Time [s]

-1.0 -0.5 0.0 0.5 1.0

Di� 1

Di� 2

Di� 3

Di� 4

Di� 5

Di� 6

Di� 7

A
m
p
li
tu
d
e

[a
rb
.
u
.] 1.8 · 10−6

−1.8 · 10−6

A
m
p
li
tu
d
e

[a
rb
.
u
.] 1.1 · 10−6

−1.1 · 10−6

A
m
p
li
tu
d
e

[a
rb
.
u
.] 7.7 · 10−7

−7.7 · 10−7

A
m
p
li
tu
d
e

[a
rb
.
u
.] 6.4 · 10−7

−6.4 · 10−7

A
m
p
li
tu
d
e

[a
rb
.
u
.] 3.7 · 10−7

−3.7 · 10−7

A
m
p
li
tu
d
e

[a
rb
.
u
.] 4.8 · 10−7

−4.8 · 10−7

A
m
p
li
tu
d
e

[a
rb
.
u
.] 4.5 · 10−7

−4.5 · 10−7

Figure 4.9: Pointwise di�erences between EMD sets obtained for SFP and DFP from

example 3. These of SFP were �rst projected onto double precision and then subtracted

from EMD DFP set. All functions have the same amplitude scale with arbitrary units.
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The most popular validation method is based on a visual inspection of the re-

sults [61, 63, 128]. Such manual process introduces the subjective opinion into the

process. Conclusions from their research cannot be generalised since they have looked

at di�erent, often single, features of output. In this chapter objective methods for val-

idating the decomposed sets are introduced. The proposals are based on the features

that IMFs are expected to possess. Each variant focuses on di�erent characteristics of

the data.

Section 4.2.1 describes proposed validating methods. Then, Section 4.2.2 in-

troduces two numerical experiments for which the conclusions are presented in Sec-

tion 4.2.3.

4.2.1 Proposed validation methods

The main reason for method proposed in this chapter is to avoid the use of subjective

judgement in evaluation of EMD performance. This is achieved by relying on the

intrinsic features reportedly possessed by the IMFs, or on those that would help in the

future analysis [17]. The main characteristics considered are: 1) decrease of average

frequency with the increase of IMFs index, 2) distinct instantaneous frequency for each

IMF and 3) disjoint Fourier spectra support for IMF's amplitude and phase.

In this Section, IMFs are represented in polar form, i.e. time series of the jth

indexed IMF are assumed to have amplitude a and phase φ modulations, i.e. IMFj(t) =

aj(t) cos (φj(t)). Although, all proposed metrics are designed for continuous functions,

in most cases, change to the discrete domain is a straightforward operation. Such

processing requires exchanging integration operator over time period T into sum over

all data points P .

Validation method I

This metric is based on the empirical evidence for the decrease of average instantaneous

frequency, simply referred to as the average frequency, with the increase of IMF's index

number. Although the order with which IMFs are constructed corresponds in general

to the order of average frequencies, there are instances when the instantaneous frequen-

cies cross over other components and temporally break the order. Since it has been
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claimed that each IMF has a signi�cant and non-mixing instantaneous frequency [17],

such behaviour is undesired, and hence it is penalised by this metric. Penalties are

introduced when instantaneous frequency of an IMF with a lower number (high aver-

age frequency) is smaller than the instantaneous frequency of any IMF with a higher

number. The penalty value is proportional to the length of the crossing over e�ect, i.e.

mI
j =

N∑
k=j+1

∫
φ̇k>φ̇j

dt

T
, (4.3)

where k, j are IMFs' indices. Formula (4.3) compares functions of instantaneous fre-

quencies of two IMFs and returns the total duration over which the IMF with higher

index has a lower frequency. The crossing over e�ect has been presented in Figure 4.10.

It shows instantaneous frequency of each IMF as a function of time. Coloured regions

indicate where the crossing over occurred. Summing over all pairs of IMFs allows us

to assess results for a particular EMD. Metric value for the whole set is given as

MI =
N∑
j=1

mI
j, MI ∈

[
0,
N(N − 1)

2

]
. (4.4)

According to this measure, the best IMF set is the one for which MI = 0, i.e. there

are no crossing-over parts in the instantaneous frequency domain. The worst case,

MI = N(N − 1)/2, is when the order of all IMFs is reversed, i.e. when the �rst IMF is

under all others and the last IMF is above all others. However, this theoretical upper

limit is very unlikely and the corresponding IMF set could be still considered upon

index reversal.

Validation method II

Another validating measure is based on the Bedrosian Theorem [130] (see Appendix A.3).

It refers to the necessary conditions for the signal's amplitude, a(t), and phase, φ(t), to

be exactly recoverable using Hilbert transform. For signal s(t) = a(t) cos (φ(t)) these

conditions require the support of amplitude and phase Fourier spectra to not over-

lap. In other words, for the amplitude function, f(t) = a(t), and the phase function,
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Figure 4.10: A Plot of instantaneous frequency as a function of time for each IMF of

an arbitrary signal. Each instantaneous frequency is displayed with di�erent colour

and red-coloured regions indicate where the frequency crossing over occurs. Metric MI

penalises based on the length of highlighted regions.

g(t) = cos (φ(t)), the following is required

〈F(f),F(g)〉 = 0, (4.5)

where F represents the Fourier transform and 〈h(t), l(t)〉 =
∫
h∗(t)l(t)dt is the dot

product. Here it is assumed, that all functions belong to L2 normed space.

Let F a
j = |F (aj(t))| and F φ

j = |F (cos (φj(t)))| be absolute values of Fourier

transforms of aj and cos(φj), respectively, for j
th IMF. Their normalised measure of

overlapping spectra is given as

mII
j =

〈
F a
j , F

φ
j

〉
√
‖F a

j ‖‖F
φ
j ‖
, (4.6)

where ‖h‖ = 〈h, h〉 is a norm of a function h. Assumptions of Bedrosian theorem are

completely ful�lled when spectra are not overlapping, thus the minimum value of mII
j

is zero. This allows for di�erent de�nitions of metric for the whole IMF set, depending

on application of EMD. The �rst de�nition is based on a biggest value of overlap mj

in considered decomposition, i.e.

MII = max
j
{mII

j }, MII ∈ [0, 1], (4.7)
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Figure 4.11: Example of comparing Fourier spectrum of amplitude component F a (blue

dashed line) with a spectrum of phase component F φ (solid green line) for an arbitrary

signal. Gray-striped area indicates where two components overlap.

and the second refers to the cumulative overlap within the decomposed set, i.e.

MIII =
N∑
j=1

mII
j , MIII ∈ [0, N ], (4.8)

where in both cases N is the number of extracted IMFs. Zero for both metrics implies

no overlap between amplitude's and phase's spectra in any of IMFs.

Visual interpretation of the validation measure (4.6) is presented in Figure 4.11.

It shows example Fourier spectra of slowly changing amplitude (dashed line) and higher

frequency phase (solid line). Gray-striped region indicates an overlapping area of both

spectra. Proposed value is a measure of the ratio of the overlapping area to the total

area under both functions.

Since metricMIII is a sum over all IMFs, it also contains the one which maximises

value mII
j (Eq. (4.6)). This means that MIII for each decomposition has to be equal or

higher than MII.
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Application of the validation measures

Each of the presented metrics highlights di�erent properties of the decomposition.

Computing all three values is equivalent to �nding a point M = (MI,MII,MIII) in a

3-dimensional space, where each dimension relates to the speci�c metric. The best

decomposition corresponds to the minimum over all the metrics, i.e. M = (0, 0, 0),

and the worst decomposition to M = (N(N−1)
2

, 1, N). For any other point, one has to

decide on the importance, or weight, for each of the proposed metrics, on the basis of

the problem being considered. Although the distance in the M -space is not strictly

de�ned, it can be any Lp norm. It is suggested using the weighted Manhattan metric,

i.e.

‖M‖ = w1MI + w2MII + w3MIII, (4.9)

where wi are respective weights. Their values should re�ect the relative importance of

features one is concentrated on.

4.2.2 Experiment

Measures proposed in Section 4.2.1 quantify characteristics of well behaved IMFs. The

smaller those metrics are, the better the IMF decomposition set represents the desired

properties of the EMD-based decomposition. One could also extend the EMD method

into an optimisation problem for any parameter, where Mi measures de�ned cost.

In the following examples, optimisation was performed to choose the best value of a

parameter HF for an input signal. The parameter HF indicates when to stop sifting

procedure; it refers to the number of consecutive iterations of sifting for which the

residue ful�ls the de�nition of an IMF. EMD was performed for each value of the

parameter and the decomposition which minimised its value was chosen as the best.

Two experiments were conducted for an illustration. First one is performed on

synthetic signal constructed of four sinusoidal components and the second on �ltered

Gaussian noise. All signals utilised in the following experiments were generated with

a single �oating point precision. As it was shown in Section 4.1, in most cases this

does not in�uence the quality of the decomposition but can increase computation per-

formance. Boundary e�ect introduced by using Hilbert transform was removed by
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symmetrically truncating the signal to 80% of the original, i.e. removing initial and

�nal 10% of samples. Additionally, the signal was smoothed by adding mean of each

sample's neighbours.

Experiment 1

The �rst experiment was conducted on a synthetic signal composed of harmonic com-

ponents. The test signal was generated according to the following formula

S1(t) =
5∑
j=1

Aj sin(2πfjt+ φj) +N (0, 0.1), (4.10)

where values for the amplitude (Aj), the frequency (fj) and the phase shift (φj) are

included in Table 4.1. These values were sampled from uniform random distributions

with [0, 2π] rad range for phase φ, range of integers [0, 5] for amplitude A and [1, 50] Hz

range for frequency f . For simplicity of analysis and to minimise the e�ect of mode-

mixing [66, 124], an additional constraint was imposed on frequencies such that distance

between any two values would not be less than 4. Moreover, in Eq. (4.10) the symbol

N (µ, σ) denotes noise in the form of the normal distribution with a mean µ and a

variance σ2. The graphical representation of the signal can be seen in Fig. 4.12.

The experiment was conducted as follows:

1. Generate test signal S1(t).

2. Set value range of the parameter � HF spanning from 1 to 20.

3. For each value HF , decompose the signal with EMD and calculate all metrics

(MI,MII and MIII).

4. The best decomposition set is the one with the smallest sum of all metrics M =

MI +MII +MIII (all weights equal).

The signal was decomposed 20 times with the EMD under di�erent stopping

criteria conditions, i.e. HF ranged from 1 to 20. All validating metrics, computed for

each decomposition, are presented in Table 4.2. Decomposition sets are assessed based

on a total of all metric values for a parameter. The best set is the one with the smallest

sum; likewise, the worst set is one with the largest value.
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Table 4.1: Parameters for amplitude (Aj), frequency (fj) and phase shift (φj) used to

generate the signal in experiment 1 according to formula 4.10.

j 1 2 3 4 5

A [arb. u.] 1 1 3 2 3

f [Hz] 35 25 19 15 4

φ [rad] 2.0 4.0 0.0 3.4 5.7
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Figure 4.12: Test signal S1(t) used in the EMD metric experiment with synthetic data

which was generated according to Eq. (4.10).

80



For the provided signal, the best decomposition was obtained with the parame-

ter HF = 17. All extracted IMFs under such condition are shown in Figure 4.13. In

contrast, the worst decomposition set is obtained for HF = 1 (Fig. 4.14). Although

these results appear similar, especially when comparing the �rst IMFs of both decom-

positions, there are few di�erences between obtained sets. The main di�erence is the

number of produced components. The set with a higher value of metric M has one

additional IMF. It might not be evident at which stage it was added, but there seem

to be more components with a low number of extrema. Moreover, the di�erence is

also apparent when analysing position and amplitude of extrema. Comparing second

and third IMFs one can see that in the best decomposition position of local extrema

are relatively evenly spaced. The same observation holds for the amplitude of extrema

� there is a clear, stable modulation in the amplitude. The worst decomposition,

however, has less visible structure, even though it also contains an apparent repeating

pattern.

By design, the discrepancy in obtained sets is due to the di�erent value of pa-

rameter HF . This parameter denotes the number of consecutive sifting iteration for

which IMF conditions have to be ful�lled. As explained in the EMD Section (sec. 2.3)

each subtraction of the mean removes slowly varying trend, leaving only single fast

oscillation. In an idealised scenario, this would mean that the more sifting iterations,

the better representation of a single oscillations. However, the sifting operation is not

ideal. Each mean is estimated on envelops which are arbitrary interpolated within

signal's region and additionally have to be extrapolated onto the boundaries. Any of

the imperfections in the estimating process will contaminate the signal and will be

emphasised with each sifting operation. Thus, the larger the number of iteration the

more visible e�ect of the inaccurate estimations of the actual mean signal. This means

that for small and large values of HF , the EMD will perform worse than for midrange

values. The exact progress of decomposition's wellness depends on all its parameters

and applied algorithm.
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Table 4.2: Metric values obtained by performing the EMD on S1(t) with varying value

of HF parameter.

HF MI MII MIII MI +MII +MIII

1 1.17 0.63 0.87 2.66

2 1.13 0.57 0.77 2.47

3 1.33 0.48 0.53 2.27

4 1.17 0.61 0.88 2.65

5 0.91 0.22 0.51 1.64

6 0.92 0.22 0.51 1.65

7 0.93 0.22 0.50 1.64

8 1.15 0.35 0.69 2.19

9 1.12 0.32 0.66 2.10

10 1.12 0.35 0.72 2.19

11 1.18 0.30 0.54 2.02

12 1.20 0.29 0.54 2.03

13 0.98 0.14 0.31 1.44

14 0.98 0.16 0.32 1.45

15 0.96 0.16 0.31 1.43

16 0.97 0.16 0.32 1.45

17 0.96 0.16 0.30 1.42

18 1.44 0.48 0.64 2.56

19 1.45 0.36 0.50 2.32

20 1.56 0.27 0.45 2.24
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Figure 4.13: The best EMD decomposition set, i.e. producing the smallest metric

M value, for the synthetic signal given the range of HF parameters. Decomposition

obtained from signal S1(t) with HF=17.
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Figure 4.14: The worst EMD decomposition set, i.e. producing the biggest metric

M value, for the synthetic signal given the range of HF parameters. Decomposition

obtained from signal S1(t) with HF=1.
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Experiment 2

For this experiment signal was generated using Gaussian noise with mean value 0 and

standard deviation 1

S2(t) = N (0, 1). (4.11)

As it has been suggested in [129], in order to obtain meaningful decomposition it

is necessary to have ratio of signal's sampling frequency, fs, to the highest Fourier

frequency, ff , of at least 10 (fs/ff ≥ 10). This means that when sampling with

frequency 500 Hz, the signal has to be low-pass �ltered with the cut o� frequency of

50 Hz. For the experiment, we used the zero-phase Butterworth low-pass �lter of order

4. The resulting signal is visualised in Figure 4.15.

The experiment was conducted similarly to the Experiment I, with the di�erence

in weights used to calculate the metric. The exact steps of execution were:

1. Generate the test signal, S2(t).

2. Set the value range of the parameter � HF spanning from 1 to 20.

3. For each value HF , decompose the signal with the EMD and calculate all metrics

(MI,MII and MIII).

4. The best decomposition set is the one with the smallest sum of all metrics M =

2 ·MI +MII + 0.5 ·MIII.

Such a choice of weights puts more emphasis on selecting IMFs with more mutu-

ally separate instantaneous frequencies. It also increases the signi�cance of the com-

ponent with the most overlapping amplitude and phase Fourier spectra; the sum of all

measuring values (Eq. (4.6)) has lower priority. Overall, the metric, M , is meant to

select a decomposition with the most distinct frequencies. This e�ect should be visible

when analysing location of extrema, as they should be spaced more evenly.

All calculated values of metrics are presented in Table 4.3. The last column con-

tains a weighted sum of all other metrics for each value of the parameter HF . The

smallest and the largest values are obtained for HF equal to 2 and 12, respectively.

The best decomposition can be seen in Figure 4.16, whereas the worst in Figure 4.17.

Comparing the two decompositions one can see the di�erence in the number of IMFs
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Figure 4.15: Test signal S2(t) used in the EMD metric experiment with �ltered Gaus-

sian noise generated.

� two more in the worst EMD set. In this case, two �rst IMFs seem to be similar, or

at least without any apparent di�erences. Analysing position and value of the third

component's extrema, one can see that there are more extrema for HF = 12. Addition-

ally, IMF 6 from the worst decomposition does not seem to have any close counterpart

in the best decomposition. Its small amplitude suggests that the component might be

hidden within amplitude modulation of any other IMF.

Compared to the previous example, in this case, the decomposition optimum was

obtained with a relatively small value of sifting parameter, i.e. for HF = 2. As it

can be seen in Table 4.3 the main e�ect on the metric value has MI as the other two

columns have very little spread of values. Moreover, one can see that with the increase

of HF metric values MI increase gradually, although not monolithically. The di�erence

between this example and the previous one is in the structural complexity. Signal, S2(t),

used in this experiment is more complicated and thus requires more sifting iterations

to extract each component. Since each IMF depends on decomposition process of all

previous components, the estimation contamination can spread between IMFs. It can

be seen that IMF sets for HF ≥ 12 have similar values in all metrics. For the worst

decomposition, i.e. HF = 12, all metrics give the largest value except for MI which is

0.01 behind the largest value.
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Table 4.3: Metric values obtained by performing the EMD on S2(t) with varying value

of HF parameter.

HF MI MII MIII 2MI +MII + 0.5MIII

1 1.64 0.60 0.84 4.30

2 1.62 0.59 0.70 4.18

3 1.78 0.58 0.85 4.56

4 2.17 0.56 0.67 5.23

5 2.27 0.53 0.82 5.48

6 2.17 0.45 0.69 5.14

7 2.25 0.47 0.79 5.37

8 2.07 0.57 0.89 5.15

9 2.21 0.53 1.04 5.47

10 2.20 0.55 0.86 5.38

11 2.25 0.55 0.87 5.48

12 2.58 0.60 1.04 6.28

13 2.56 0.60 1.00 6.22

14 2.17 0.51 0.74 5.22

15 2.54 0.61 0.81 6.09

16 2.51 0.60 0.80 6.02

17 2.52 0.60 0.80 6.04

18 2.51 0.60 0.78 6.01

19 2.52 0.60 0.78 6.03

20 2.59 0.58 0.99 6.26
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Figure 4.16: The best EMD decomposition set, i.e. producing the smallest metric M

value, for the Gaussian noise signal given the range of HF parameters. Decomposition

obtained from signal S2(t) with HF=2.
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Figure 4.17: The worst EMD decomposition set, i.e. producing the biggest metric M

value, for the Gaussian noise signal given the range of HF parameters. Decomposition

obtained from signal S2(t) with HF=12.

89



4.2.3 Conclusion

Metrics proposed in this chapter refer to idealised characteristics of EMD � either

suggested or intended while creating the method. In contrast to the most validation

methods discussed in the literature, those proposed in this chapter are objective, in-

dependent from user's subjective judgement of the decomposition. Since EMD creates

a set of oscillatory components, the properties on which these metrics were based are

related to their frequencies. Validation of the whole IMF decomposition set is per-

formed either by signi�cant and mutually separate instantaneous frequencies, or on

the attempt to ful�l or be close to the Bedrosian conditions.

Analysis of examples presented in Section 4.2.2 seems to support the usefulness

of the proposed metrics. Although the behaviour of the decomposition can be changed

by adjusting weights wi of the desired feature (Eq. (4.9)), it should still provide good

results. The best decomposition always produces fewer IMFs, which suggests having

more compact information representation of the original signal. Moreover, visual in-

spection con�rms that the best decompositions have better structured (evenly spaced

locations of extrema) than the worst ones.

Nevertheless, despite the foregoing discussion, until there is a mathematical foun-

dation of the EMD, it is impossible to create a single metric, which would capture all

required features. Proposed measures should be considered as assistance for an in-

experienced user, providing him/her with additional arguments for used parameters

choices.

4.3 Frequency mixing

In the original article, Huang et al. [17] have argued that functions which ful�l IMF

properties (discussed in Section 2.3) have signi�cant modes and well-behaved instan-

taneous frequencies obtained via the Hilbert transform. The authors call these com-

ponents physically meaningful, as typically their instantaneous frequencies are non-

negative and they have modulations in amplitude and frequency.

Due to the absence of a mathematical framework for EMD, it can only be analysed

empirically. As it has been observed by many [66, 67, 131], the decomposition process
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su�ers from the mode-mixing phenomena, which describes a situation, when a mode

contains more than one scale. Another de�ciency of EMD is its decomposition stability

problem. Whenever acting on a single IMF I(t) EMD returns the same function, i.e.

I(t)
EMD−−−→ I(t). (4.12)

However, although EMD decomposition of a signal S(t) gives a set of k IMFs, i.e.

S(t)
EMD−−−→ Ck = {I1(t), I2(t), . . . Ik(t)}, (4.13)

a signal composed from a set Cl, Ŝ(t) =
∑l

i Ii(t), which is a subset of Ck, will produce

another set of IMFs,

Ŝ(t)
EMD−−−→ Ĉn = {Î1(t), Î2(t), . . . În(t)}, (4.14)

but there is not necessarily any correspondence between any Îi(t) and Ij(t). A thorough

study of frequency mixing for two components was presented in [132]. The authors com-

pared IMFs obtained from signals composed of two cosines, i.e. S(t) = cos(t)+a cos(ft+

φ), generated with di�erent values of amplitude, a ∈ R, and frequency, f ∈ (0, 1), val-

ues. They found that for a < 0.5 the quality of the decomposition, i.e. similarities of

IMFs and the original cosine components, depends only on the frequency, f . Moreover,

they found that the smaller the frequency (f ≈ 0), the better the recovery of initial

modes. They also noted that the transition from almost perfect decompositions to

near impossible increases monotonically with f . This, however, poses a question: what

is responsible for mixing when frequencies of input components have similar values?

Since only the frequency varies, this means that the mixing phenomenon depends only

on that parameter. As the system is closed, i.e. there are only two components, any

added modulation to the �rst IMF is the same as removing that modulation from the

second IMF. Given the results obtained in [132], it has been hypothesised [122] that

this phenomenon is due to the mutual relationship between instantaneous frequen-

cies of the sources. To validate this hypothesis, harmonic components are used and

tested whether the coupling between them can account for observed IMFs' frequency
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dependencies. Kuramoto model (Section 3.2) was chosen to model this behaviour as

it assumes phase coupling between the oscillators as a function of their instantaneous

phase di�erences.

This Section attempts to answer whether frequency mixing observed in EMD can

be due to EMD decomposition e�ciently mimicking the Kuramoto coupling between

oscillators. Section 4.3.2 presents all conducted experiments, and their results are

discussed in 4.3.3.

4.3.1 Parameter estimation

Kuramoto model (Section 3.2) describes interactions between oscillators. Each oscilla-

tor has an intrinsic frequency and its observed frequency modulated by the di�erence

between each pair of phases [10]. Mathematical form of the model for ith oscillator is

given as

θ̇i = ωi +
N∑
j=1

ki,j sin (θj − θi) , (4.15)

where the dot above variable, i.e. ẋ, denotes the time derivative, ωi is the intrinsic

frequency and ki,j are coupling strength parameters. To fully solve these coupled

di�erential equationsN initial phase values, N intrinsic frequencies andN(N−1) values

for coupling strengths parameters are required. This means that in total N(N + 1)

parameters fully describe a system and these parameters have to be estimated from

data.

The best �t of the model was performed using particle swarm optimisation

(PSO) [133]. It is an optimisation method where many agents iteratively search through

parameter space. They interact with each other by exchanging their �tness and their

position. Movement of the ith particle is dictated by the formula

~Vi(t) = φV ~Vi(t− 1) +φL

(
~Bi(t)− ~Xi(t)

)
+φG

(
~G(t)− ~Xi(t)

)
,

(4.16)

where Xi, Vi and Bi are the particle's current position in the parameter space, its

velocity and its best position until time t, respectively. G is the best global po-
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sition discovered by any particle until time t. Communication is performed after

each iteration, when all particles update their positions based on the velocity, i.e.

X(t + 1) = X(t) + V (t). At t = 0 all particles have a randomly chosen position and

velocity.

In the experiments described below, swarms consisted of 400 particles. The swarm

size was chosen to be large in comparison to standard recommendations to ensure

more thorough coverage of the search domain. Each particle traverses a 6 dimensional

parameter space, where each location is a vector consisting of all initial values, i.e.

Xi(0) = [θ01, θ02, ω1, ω2, k1,2, k2,1], which fully determines the Kuramoto system with

two oscillators. The intrinsic frequencies for the oscillators were drawn from Gaussian

distributions, where the expected values and standard deviations were equal to those

of the IMFs' instantaneous frequencies. Phases and couplings values k also were drawn

from Gaussian distributions; however, their absolute values were used. The expected

values and standard deviations were π and π/4 for phases, and 0 and 5 for k values as

it has been observed that these parameters cover most of the relevant parameter space.

The optimising �tness function is given as

M =

√√√√ 1

N

1

T

N∑
n=1

(
T∑
t=1

(Θ̇n(t)− θ̇n(t))
2

)
, (4.17)

where Θn and θn are phases of n
th IMF and reconstructed oscillator respectively. Sum-

mation goes through all t timestamps and there are N oscillators of length T time

points. The optimisation procedure terminates when, after 100 initial iterations, the

cost value is the same for 20 consecutive iterations.

4.3.2 Experiments

To show phase coupling between components of the input signal, a set of experiments

was conducted. They all were based on synthetic data constructed according to the

formula

Sf (t) = cos(13 · 2πt) + 2 cos(f · 2πt+ φ), (4.18)
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where frequency (f ∈ [1, 7] Hz with step 0.5) and initial phase (φ ∈ [0, 2π] rad with step

2π
15
) of the second component were varied. To ensure robustness of the results against the

in�uence of implementation details, for each f and φ combination, EMD was performed

many times with di�erent spline techniques (natural cubic or Akima [134] spline) and

parameters related to stopping criteria [65]. Out of these options a set was chosen

that minimises de�ned in previous Section (Sec. 4.2) metric M =
√
M2

1 +M2
2 , where

M1 quanti�es the pairwise crossover of instantaneous frequencies between IMFs, and

M2, which penalises based on the overlap between IMF's amplitude and phase spectra.

After the decomposition was performed, the Hilbert transform of each IMF was used to

obtain its instantaneous phase and amplitude. Due to the error created by boundary

e�ects, each component's �rst and last 0.5 s had to be removed leaving 2 s of the signal.

A typical EMD decomposition obtained in the experiment is presented in Fig-

ure 4.18, in which case the varied component had frequency f = 4 Hz. The top graph

contains input signal, whereas the second and the third rows are respectively �rst and

second IMFs. Each component (solid line) was scaled (scale in the top left corner) so

that its maximum value was one. In the same �gure, dashed lines were used to display

cosine function of instantaneous phase (cos Φ(t)) obtained via Hilbert's transformation

of the corresponding IMF. Almost complete overlap of the presented functions suggests

that there is very little amplitude modulation. For this reason, in further analysis, only

phase modulations are considered.

It has been observed that there were modulations in the obtained instantaneous

frequencies of the IMFs. To better understand these changes for each instantaneous

frequency time series, a Fourier spectrum was obtained. If there were no modulations

of instantaneous frequency, one would expect zero-valued spectrum everywhere except

for frequency 0. In contrast, a predominant periodic modulation would manifest itself

as a single spike in the Fourier spectrum. Figure 4.19 displays spectra for all f for the

�rst IMF. For comparison purpose, each spectrum was scaled such that the largest

value was set to one. In the �gure, one can observe that peaks are aligned. This

additionally is emphasised by overlaying results with a line (F = 13 − f). Similar

results are visible for the second IMF, presented in Figure 4.20. However, in this case,

peaks are aligned along a di�erent line, i.e. F = 2 · (13− f).
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Figure 4.18: Top row presents synthetic signal generated with f = 4 Hz and the fol-

lowing rows are its EMD decomposition. IMFs (solid line) are scaled (scale in the top

left corner) such that their maximum value is one. For comparison, dashed lines indi-

cate cosine functions with constant amplitude and phase equal to IMF's instantaneous

phases.
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Figure 4.19: A depiction of Fourier spectra obtained for the �rst IMF for di�erent

values of frequency f (Eq. (4.18)). Each row relates to a di�erent frequency f and

presents Fourier spectrum with colour-coded amplitudes scaled such that the maximum

is one. The dashed line which is going through the �gure highlights trend which is given

by the function F = 13− f .

Figure 4.20: A depiction of Fourier spectra obtained for the second IMF for di�erent

values of frequency f (Eq. (4.18)). Each row relates to a di�erent frequency f and

presents Fourier spectrum with colour-coded amplitudes scaled such that the maximum

is 1. The dashed line which is going through the �gure highlights trend which is given

by the function F = 2 · (13− f).

96



The highlighted dependency between peaks of Fourier spectra and initial fre-

quency f can also be observed when analysing cross-correlations between all pairs of

IMFs' instantaneous frequencies. Such analysis emphasises modulations common for

both components. Since there are only two IMFs, those modulations must be a product

of their interaction, most likely a mixture of frequencies. An example of such mixing is

shown in Fig. 4.21, where the top plots represent the instantaneous frequencies centred

at zero by mean subtraction. In the same �gure, the middle graph presents cross-

correlation between the instantaneous frequencies of both IMFs, whereas the bottom

graph shows the Fourier spectrum of the correlation signal. The vertical line indicates

the value equal to the di�erence of the IMFs' mean frequencies, which for this example

is ∆f = 13Hz − 4Hz = 9Hz. Cumulative result for all pairs of IMFs is shown in Fig-

ure 4.22, where for each f the Fourier spectrum of the IMFs' correlations is plotted.

Each spectrum was normalised so that the biggest value is one. This step allows for vi-

sual comparison of the results, as the maximum amplitude of cross-correlation depends

on the f value and varies by a factor of 105 when comparing results for f = 1 Hz and

f = 7 Hz. Again it can be observed that there exist two channels of peaks along lines

F1 = 13− f and harmonic F2 = 2 · (13− f). This suggests a strong coupling between

the instantaneous frequencies of the IMFs at some f .

A quantitative attempt to explain visible e�ects was performed by �tting Ku-

ramoto coupling model to the obtained instantaneous frequencies of IMFs. An example

of the reconstruction is presented in Figure 4.23. On this graph, the left column con-

tains the instantaneous frequency of the IMF (solid line) and the reconstructed one via

Kuramoto model (dashed line). The right column shows the di�erence between the two

instantaneous frequencies for each IMF, which are the �rst and second for the top and

bottom rows, respectively. The values of obtained parameters and measure of �tness

(Eq. (4.17)) are presented in Table 4.4. Parameters f1 and f2 relate to the intrinsic

frequencies of Kuramoto model for the �rst and the second IMFs respectively. As it can

be seen, they are relatively close matches to the input signal's modes. For small values

of f , i.e. when there is a big di�erence between input components' frequencies, there

is little coupling, i.e. k1 and k2 are small. Although coupling values seems to increase

with f , they do not necessarily lead to a better reconstruction. Graphical depiction of
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Figure 4.21: Correlation between IMFs' instantaneous frequencies centred at zero (case

when f = 4 Hz). Top plots represent the instantaneous frequencies, central plot

displays their cross-correlation, and the bottom graph shows Fourier spectrum of their

cross-correlation. The vertical line marks value equal to the di�erence of IMFs' mean

frequencies, i.e. 13− 4 = 9 Hz.
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Figure 4.22: A depiction of Fourier spectra obtained for correlation functions between

each pair of IMFs for di�erent values of frequency f . The intensity of colour depicts

value of amplitude which all were normalised, such that for given row frequency f the

maximum amplitude is equal to one. A single horizontal slice for f = 4 is presented in

Figure 4.21. This Figure is overlaid with two lines � F1 = 13 − f (dashed line) and

F2 = 2 · (13− f) (dash-dotted line), which highlight the trend of observable peaks.

the dependencies between k values and the frequency f is presented in Fig. 4.24, where

the left and right graphs represent |k1| and |k2| respectively. Additional variables Mr

andMw in Table 4.4 refer to the mean square error (Eq. (4.17)) of the Kuramoto model

�t to IMFs' instantaneous frequencies when using coupling (Mr) and without coupling

(Mw). The last column represents how much percentage-wise the reconstruction ex-

plains the variation. For f ≈ 6 Hz the Kuramoto model has successfully explained

more than 50% of the variation. However, for small values of f2, i.e. where f2 ≤ 3 Hz,

the mean square error has not decreased signi�cantly. The reason is that IMFs almost

perfectly match the input signal components and there is no need to include coupling

k factors. A special case is f = 2 Hz for which coupling k1 is relatively large and

the error is decreased by 25%. It can be observed that for all examples, the coupling

k1 is bigger than k2. This means that instantaneous frequency of the �rst IMF has

more modulation proportional to the di�erence of the source's frequencies. This is in

accordance with Figures 4.19 and 4.20, where it can be seen that dominant frequencies

in instantaneous frequencies are ∆f1 = 13− f and ∆f2 = 2 · (13− f) for the �rst and

the second IMFs, respectively.
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Table 4.4: Parameters obtained for Kuramoto's model to �t the data for di�erent input

modes. Frequencies f1 and f2 refer to the mean instantaneous frequencies, k1 and k2

are the coupling values, andMr andMw refer to �tness (see Eq. 4.17) with and without

couplings. Indices 1 and 2 refer to the �rst and the second IMFs, respectively.

f [Hz] f1 [Hz] f2 [Hz] |k1| |k2| Mr Mw (Mw −Mr)/Mw [%]

1 13.000 1.000 0.001 0.000 0.020 0.020 0.01

1.5 13.013 1.501 0.031 0.000 0.069 0.069 0.07

2 13.013 2.002 0.696 0.004 0.250 0.337 25.88

2.5 13.013 2.502 0.003 0.000 0.081 0.081 0.10

3 13.013 3.003 0.046 0.009 0.082 0.084 2.81

3.5 13.013 3.504 0.180 0.020 0.076 0.097 21.48

4 13.001 4.000 0.273 0.031 0.087 0.133 34.96

4.5 13.013 4.504 0.509 0.027 0.150 0.227 33.96

5 13.005 5.011 2.225 0.023 0.300 0.950 68.41

5.5 13.027 5.511 2.162 0.178 0.364 0.878 58.50

6 13.030 5.989 5.687 0.036 0.700 2.203 68.24

6.5 13.006 6.492 2.411 0.014 0.442 0.962 54.07

7 13.044 7.021 4.930 0.164 2.285 3.280 30.35

100



Time [s] Time [s]

Time [s] Time [s]

Instantaneous frequency Di�erence

In
st
.
fr
eq

[H
z]

In
st
.
fr
eq

[H
z]

In
st
.
fr
eq

[H
z]

In
st
.
fr
eq

[H
z]

Figure 4.23: Comparison of instantaneous frequencies for f = 4. The left column con-

tains IMF's instantaneous frequency (solid red line) and the reconstructed one (dashed

line), whereas the right column shows their di�erences. Top and bottom rows corre-

spond to �rst and second IMFs, respectively.
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Figure 4.24: Relation between respective coupling values k and the frequency f .
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4.3.3 Conclusion

As observed in all the experiments in Section 4.3.2, the instantaneous frequencies of

each IMF have some modulations. These modulations, both their amplitudes and fre-

quencies, seem to depend on the di�erence between the input's modes. This means that

there is some interaction between the components, which depends on their frequencies

and phases. An attempt to explain this frequency mixing was performed by assuming

Kuramoto type phase coupling between the modes that is proportional to the sine of

their di�erences. The results presented in Table 4.4 suggests that in many cases the

�t was good. In some cases, however, including the coupling only reduced the error �t

by 20%. This implies that there is more complex behaviour between the modes than

a pure sine coupling. A possible solution would be to allow for additional components

in Kuramoto's coupling function, e.g. including harmonic modulations in Eq. (4.15).

This study focused on simple signal composed of two sinusoidal oscillations. Al-

though obtained IMFs were close to the input components, such behaviour is not

expected in general [132, 135]. For more complex signals it is unlikely that the inter-

action would be only visible in phase domain. This suggests that more general model

is required. Such model would not only describe couplings between phases but would

further incorporate interactions between components' amplitude dynamics. The next

chapter introduces a model with such properties.

4.4 Limitations and inspiration

The focus of this Chapter is on the analysis of EMD's properties. As it has been

discussed many times and as the number of applications suggests this decomposition

method is promising for extracting a �nite set of components in general oscillatory

form. Moreover, these components are supposed to be physically meaningful due to

their non-negative instantaneous frequency and a single mode. Such properties are

bene�cial; however, as it has been shown, they might not hold for EMD in its current

form which su�ers from some limitations.

One of the disadvantages is that EMD is susceptible to small changes in signal.

Modifying input's length can result in a di�erent decomposition highlighting a di�erent
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feature set. Reasons for this are uncertain and depend on the actual de�nition of the

EMD algorithm, but one of them is related to the boundary e�ect. The most popular

EMD algorithm [17, 136] uses cubic splines that depend on all extrema points, and

a mirroring technique for extrapolating at the boundaries. These conditions mean

that any change close to the edges will shift extrema and thus a�ect the whole signal

through iterative local mean extraction emphasising small changes regardless of the

data precision format. Such susceptibility to modi�cations is even more pronounced

when the signal is augmented with small in amplitude noise. Again, since envelopes

are spanned by cubic spline adjustments to extrema position or value will intensify

after a large number of iterations and propagate through all components. This event

could also be considered in terms of frequency-mixing as discussed in the previous

section. Since the noise does not have any structure, it is also considered to have all

frequencies which will mix with modes of all components. Regardless of the reason,

such e�ect is far from desirable. Ideally one would expect the method to be robust to

small adjustments, preventing from changes in interpretation of the internal dynamics

of a system.

EMD's main disadvantage is its lack of mathematical framework. Despite suc-

cessful application in many �elds [20, 47, 52�57], it is di�cult to explain what the

results represent precisely. Although there have been some attempts to formalise the

algorithm and its outcome [21, 59, 60], it is still unknown what is the impact of the

decomposition. It is di�cult to objectively assess whether modi�cations and variations

signi�cantly improve the method as there is no foundation allowing for such validation.

Nevertheless, many variations to EMD have been empirically proven to improve the

method, suggesting that it is possible.

A high number of EMD applications suggests that under certain circumstances

EMD produces meaningful results. Similarly, its popularity advocates for the existence

of EMD-like method. All these limitations and demand from the research community

lead us towards investigating the EMD in depth and understand areas of its possible

improvement. The result of this investigation is a decision that a new method with

robust mathematical framework has to be developed. This method would be inspired

by the EMD and its philosophy to extract oscillations directly from data; however, it
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will start with a general de�nition of an oscillation. The following part of this thesis

describes construction and analysis of the EMD-inspired method for characterising a

set of mutually interacting oscillators.
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Chapter 5

The KurSL model

As it has been discussed in Chapter 2, there are limits to currently existing methods

that aim at extracting oscillatory features. Those methods are typically either lack-

ing strict mathematical framework � making their results di�cult to interpret � or

contain prede�ned mathematical features, unlikely to emerge in real systems. The

core purpose of this research is to �ll the gap in-between both ends of the mentioned

spectrum.

One of the promising methods to extract oscillatory features is EMD. Its proper-

ties and purely data-driven approach make it an exciting attempt at data decomposi-

tion. In the previous chapter, EMD method and its properties were analysed. As it has

been shown, its formal analysis is di�cult to execute due to the lack of mathematical

framework. Until now comparing results of EMD was performed via visual inspection.

Although more objective measures for comparison were proposed [121] (sec. 4.2), it is

still based on heuristics, which may not necessarily be true. Even e�ects like mode-

mixing or frequency mixing cannot be explained without knowing what mechanism is

behind it.

This chapter introduces a model, which is a framework for a KurSL method �

the main result of this thesis. The model is based on two approaches: Kuramoto's

coupling model (see Section 3.2) and Sturm-Liouville self-adjoint ordinary di�erential

equation (ODE) (Section 3.1).
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5.1 Joint model

Models, in general, have a particular purpose: they try to provide meaning to extracted

data. A signal by itself can represent any phenomenon; it is the context that matters.

Two models presented and discussed in Chapter 3 refer more speci�cally to oscillations.

Sturm-Liouville equation (sec. 3.1) focuses on a single oscillator and tries to analyse its

overall behaviour. It focuses on oscillation in a broad sense, explaining how amplitude

changes over time. The coupling models (sec. 3.2), however, give quantitative analysis

only of phase dynamics of mutually coupled oscillators. Despite being very valuable and

used to explain many phenomena they are approximations, as it is impossible to observe

an isolated oscillator or measure only phases. A combination of both approaches seems

to be a natural extension. Sturm-Liouville eigenvalue problem introduces all possible

forms of functions that have oscillatory property. Unfortunately, the family of solutions

is too big to be analysed collectively. Addition of Kuramoto synchronisation model not

only gives meaning to solutions but also restricts the number of possible solutions.

This section describes a joint model of Sturm-Liouville theory and Kuramoto coupling

model, which respectively are responsible for an amplitude- and frequency-modulated

components.

Motivated by EMD results, we have focused on constructing method which would

explain oscillatory signals. For simplicity of discussion and analysis, those oscillations

can be described in forms of

y(t) = r(t) cos(φ(t)), (5.1)

which is a product of two functions: an amplitude r(t) and phase-related cosφ(t)

component. As mentioned earlier, SL describes oscillations in general form. Substitut-

ing (5.1) into SL equation (3.9), one obtains

cos(φ)
(
r̈ + (Q− λ− φ̇2)r

)
− sin(φ)

(
2ṙφ̇+ rφ̈

)
= 0, (5.2)

which due to mutual instantaneous orthogonality of sine and cosine functions leads to
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two coupled equations 
2ṙφ̇+ rφ̈ = 0,

r̈ +
(
Q− φ̇2

)
r = 0.

(5.3)

These equations describe a relationship between an amplitude and a phase for a given

function Q. For simplicity of notation, in the equation (5.3) λ value was omitted since

it can be treated as an o�set for function the Q.

Another constraint is obtained by imposing phase dynamics through the Ku-

ramoto system. In its simplest form, where the coupling weights are equal K, the

relation between phases is introduced as

φ̇i = ωi +
K

N

N∑
j=1

sin (φj − φi) , (5.4)

where indices refer to di�erent oscillators from a set of N (i, j ∈ NN). Combination of

both models leads to a coupled system of 3N equations in total: N for amplitudes r,

phases φ and potentials Q, respectively. Their explicit forms are

(1) φ̇i = ωi +
K

N

N∑
j=1

sin (φj − φi) , (5.5)

(2) 2ṙiφ̇i + riφ̈i = 0, (5.6)

(3) r̈i +
(
Qi − φ̇2

i

)
ri = 0, (5.7)

where index i indicates that each set is for a single ith oscillator.

5.1.1 Two oscillators

In case of two oscillators (i ∈ {1, 2}), the problem is well de�ned and can be solved

analytically. Let intrinsic frequencies be ω1 and ω2 for respective oscillators. Expanding

formula (5.4) for all oscillators leads to

φ̇1 = ω1 +K/2 (sin(φ1 − φ1) + sin(φ2 − φ1)) = ω1 +K/2 sin(φ2 − φ1) , (5.8)

φ̇2 = ω2 +K/2 (sin(φ1 − φ2) + sin(φ2 − φ2)) = ω2 −K/2 sin(φ2 − φ1). (5.9)
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These equations can be better presented by introducing variables µ = φ1 + φ2 and

ν = φ1 − φ2, which rede�ne phases and frequencies as

φ1 = 1
2

(µ+ ν) , =⇒ φ̇1 = 1
2

(µ̇+ ν̇) ,

φ2 = 1
2

(µ− ν) , =⇒ φ̇2 = 1
2

(µ̇− ν̇) ,

(5.10)

Such operations allow for general simpli�cation of coupled equations. Adding equa-

tions (5.8) and (5.9) side-by-side one obtains

µ̇ = ω1 + ω2, (5.11)

and the subtraction of (5.9) from (5.8) leads to

ν̇ = ω1 − ω2 +K sin ν. (5.12)

Such de�ned problems have easy solutions. Equation (5.11) is a time-independent

function to which the solution is simply

µ(t) = (ω1 + ω2)t+ µ0, (5.13)

where µ0 = µ(0) is the initial value. Additionally, it can be shown, that solution to

equation (5.12) is

ν(t) = 2 arctan

(
β tan

(
1
2
βt
)

ω1 − ω2

+ ν0

)
, (5.14)

where β2 = (ω1 − ω2)2−K2. Returning to the initial forms for phases, φi, they can be

represented as

φ1(t) = arctan

(
β tan

(
1
2
βt
)

ω1 − ω2

)
+
ω1 + ω2

2
t+ θ1, (5.15)

and

φ2(t) = − arctan

(
β tan

(
1
2
βt
)

ω1 − ω2

)
+
ω1 + ω2

2
t+ θ2, (5.16)

where θ1 and θ2 are initial phase values.

A solution for an amplitude can be sought by using a modi�ed form of equa-
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tion (5.6). Rewriting it into a form of 2ṙi(t)/ri(t) = −φ̈i(t)/φ̇i(t) it can be easily

integrated on both sides leading to

2 log(ri(t)/ρi) = − log(φ̇(t)/φ̇i0), (5.17)

or in di�erent form

r2
i (t) =

ρ2
i φ̇i0

φ̇i(t)
, (5.18)

in both cases ρi = ri(0) and φ̇i0 are ith oscillator's initial amplitude and initial in-

stantaneous frequency, respectively. Using Kuramoto's equation (5.4) and substituting

phases with calculated form gives

r1(t) = ρ1

√√√√√ ω1 + 1
2
K sin (θ2 − θ1)

ω1 + 1
2
K sin

(
2 arctan

(
β tan( 1

2
βt)

ω1−ω2

)) , (5.19)

and

r2(t) = ρ2

√√√√√ ω2 − 1
2
K sin (θ2 − θ1)

ω2 − 1
2
K sin

(
2 arctan

(
β tan( 1

2
βt)

ω1−ω2

)) . (5.20)

With obtained equations for phases, i.e. (5.15) & (5.16), and amplitudes, i.e. (5.19)

& (5.20), solving for the function Q is a straightforward operation by substituting

amplitude and phase expressions into equation (5.7).

5.1.2 N oscillators

Due to Kuramoto's coupled nature, when considering more than two oscillators, the

KurSL model needs to be solved numerically. However, a simpli�cation can be made

to present whole set dependent only on a single function. It can be shown that (5.6)

and (5.7) can be transformed into simpler forms either dependent on the amplitude r(t)

φ̇i(t) =
r2
i0φ̇i0
r2
i (t)

, (5.21)

Qi(t) = − r̈(t)
r(t)

+
r4

0φ̇
2
0

r4(t)
, (5.22)
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or the instantaneous frequency w = φ̇,

r2
i (t) =

ρ2
iwi0
wi(t)

, (5.23)

Qi(t) = −ẅi
wi

+
3

4

ẇ2
i

w2
i

+ w2
i , (5.24)

in both cases ρi and φ̇i0 = wi0 are the initial values of the amplitude and the instanta-

neous frequency, respectively. Since synchronisation in phase cannot be simpli�ed, the

canonical representation of the system is dependent on the phase function, i.e.

wi = ωi +
N∑
j=1

kij sin(φj − φi), (5.25)

r2
i (t) =

ρ2
iwi0
wi(t)

, (5.26)

Qi(t) = −ẅi
wi

+
3

4

ẇ2
i

w2
i

+ w2
i . (5.27)

Such a coupled set of ODEs fully describes the KurSL system. Recall that each oscil-

lator is composed of an amplitude and a phase-related function (5.1). With this one

can present component in a form dependent only on a phase, i.e.

yi(t) = ρi

√
φ̇i0

φ̇i(t)
cos(φ(t)), (5.28)

or in an expanded version

yi(t) =
ρi

√
φ̇i0 cos(φ(t))√

ωi +
∑N

j=1 kij sin(φj − φi)
, (5.29)

which depends on all the initial values and the coupling strengths k between all the

oscillators.
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5.2 Model's properties

5.2.1 Method classi�cation

One of the applications for the KurSL model is as a signal decomposition method. In

essence, when applied to signal, the method will try to �nd parameters for which the

reconstruction will match the input closely. Speci�city of the method will be discussed

in the next chapter; here are presented the properties of oscillators.

As noted in the previous section, the result of the method is a simple superposition

of all oscillators. This, however, does not necessarily mean that the method is linear

(see Appendix A.1). Only in the particular case when all coupling strengths k are

zero, i.e. there is no coupling between oscillators, the method imitates Fourier series

and is treated as linear. Otherwise, adding new oscillator with any kij 6= 0 will a�ect

the whole reconstruction with e�ect dependent on other components. Despite having

a mathematical framework, coupled ODE form makes it di�cult to determine the

impact of each parameter analytically. Such complexity forces the method to be treated

explicitly de�ned by parameters.

5.2.2 The KurSL example

To discuss some properties of the method and its components, in this subsection few

examples are produced numerically. The primary focus is to present behaviour of

KurSL's components in time and frequency domains.

A few time series were generated in the performed experiment. The di�erence

between consecutive executions was the number of oscillators used for generating os-

cillations. The �rst example has two oscillators, the second three and the third has

four oscillators. Table 5.1 presents all parameters used in the experiment. However,

not all were used for each experiment. Bounded regions indicate which parameters

were used for which simulation. Moreover, for each experiment, a visual representation

of obtained results was constructed. They are presented in Figures 5.1, 5.2 and 5.3

for experiments with 2, 3 and 4 oscillators, respectively. Each �gure is composed of

two columns: the left side contains time series whereas the right side has a Fourier

spectrum normalising the highest value to be 1. The order of components is from the
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Table 5.1: Parameters used in the example in all experiments. Corner boxes indicate

which parameters were chosen for each experiment, with the �rst having only two

oscillators and the third experiment using four oscillators. Values kij indicate coupling

strengths between respective oscillators as indicated by row and column ordinals.

n ω/2π [Hz] θ [rad] ρ [arb. u.]
kij [

rad
s
]

1 2 3 4

1 2 1.2 1.0 2.0 1.5 0.5

2 5 2.5 1.5 -2.0 -7.0 4.1

3 10 0.0 1.0 2.2 3.2 3.8

4 13 2.0 1.0 0.1 10.0 0.0

smallest intrinsic frequency on top to the biggest on the bottom. One should notice

that although �rst two components for all experiments are always used with same val-

ues, their time series di�er signi�cantly. This can be easily noticed either by studying

their amplitude's modulations in time series or based on the width of frequency peak.

If there were no coupling, one would expect time series to have a constant amplitude

and a single delta Dirac like peak in Fourier spectrum. Interestingly, the KurSL model

can produce more than one distinct peak in component's spectrum. This means that

in addition to the main frequency, there are distinct patterns of repetition. Those

additional peaks seem to be located around the main peak, with the distance approx-

imate to all possible frequencies' f di�erences. For example, the third oscillator with

frequency f = 10 Hz has additional peaks in locations ν = {2, 5, 7, 13, 15} Hz, which

can be explained as 10± {|10− 2|, |10− 5|, |10− 13|} Hz.

In addition, the cumulative representations, both in time and frequency domains,

are presented in Figures 5.4a and 5.4b, respectively. As expected, all central frequencies

are visible in the spectrum. However, those peaks are more spread than it would be

expected if there were no couplings between oscillators. Such behaviour shows that it is

possible to obtain complex signals with only a few coupled oscillators. The complexity

of these components is also visible in the spectrogram 5.5 which was computed using

Tukey window with tapering parameter α = 0.25 used on 1 second windows with 90%

overlap. It can be observed that all components are modulated in frequency through
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Figure 5.1: Simulation of KurSL model assuming 2 oscillators and parameters accord-

ing to the table 5.1. The left column displays all components with their amplitudes

in red, whereas the right column has respective component's Fourier transformation

normalised to the highest value being 1.
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Figure 5.2: Simulation of KurSL model assuming 3 oscillators and parameters accord-

ing to the table 5.1. The left column displays all components with their amplitudes

in red, whereas the right column has respective component's Fourier transformation

normalised to the highest value being 1.
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Figure 5.3: Simulation of KurSL model assuming 4 oscillators and parameters accord-

ing to the table 5.1. The left column displays all components with their amplitudes

in red, whereas the right column has respective component's Fourier transformation

normalised to the highest value being 1.
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Figure 5.4: Time (a) and frequency (b) domain representations of a collective sum

for all generated components using parameters from Tab. 5.1. In case of the Fourier

spectrum all values were normalised such that the highest peak has amplitude one.

a coupling with other oscillators. The interaction is especially visible between the two

oscillations with the highest frequencies which seem to connect periodically. Such result

is due to indirect coupling; although both oscillators are loosely connected (Table 5.1)

they have high coupling strength with oscillator n = 2. In addition, this component

has more signi�cant variation towards higher frequencies. These methods could help

to estimate the KurSL parameters and once that is done the KurSL can obtain more

detailed representation.

5.2.3 Meaningful instantaneous frequency

Although there is no universally agreed de�nition of what can be considered as a

physically meaningful component, many researchers have been de�ning it in terms of

instantaneous frequency [21, 135, 137, 138]. More strictly, they are connecting physical

meaningfulness to non-negativity of the instantaneous frequency. Such de�nition is

often troublesome since the evolution of the instantaneous frequency depends on the

method which extracted it. Some researchers [139, 140] have strongly advocated for

using an analytic signal via Hilbert transform to estimate the instantaneous frequency

properly. Unfortunately, dealing with discrete signals of a �nite length, as is the case

with empirical data, introduces some artefacts. In comparison, KurSL by de�nition

has always positively de�ned instantaneous frequency making components physically
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Figure 5.5: Spectrogram of a collective sum for all generated components using param-

eters from Tab. 5.1. It was computed using Tukey window with tempering parameter

α = 0.25 of length 1 s and 0.95% overlap.

meaningful. This can be explicitly observed in component's de�ning equation, i.e.

ci(t) = ρi

√
φ̇i0

φ̇i(t)
cos(φ(t)), (5.30)

where the instantaneous frequency scaled by the initial value appears in the denomina-

tor of a square root. Although this allows the frequency to start negative, the direction

of �rotation� is just a convention and one can simply revert the notation. Regardless,

this condition prevents frequency from reaching value zero, and thus forbids oscillation

death phenomenon [141]. It additionally forces the coupling function to be always be-

low the respective value of the intrinsic frequency ω. This imposes inequality constraint

on all coupling values
N∑
j=1

kij sin(φj − φi) ≤ ωi, ∀t, i (5.31)

which is true if and only if
N∑
j=1

kij ≤ ωi, ∀i (5.32)

for all oscillators.

A special situation is when the oscillator has zero frequency all the time, i.e. in the

equation (5.5) the instantaneous frequency φ̇i = 0. This results in a single constraint
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for the amplitude as

r̈i +Qiri = 0, (5.33)

which is an equation for oscillation under the force Qi and thus can be further decom-

posed using substitution (5.1). The only di�erence is in the semantics as they would

refer to amplitude's �amplitude-� and phase-modulations.

5.2.4 On Bedrosian theorem

One of the useful features of the EMD is its ability to extract an instantaneous phase

of the signal. Such extraction typically is performed through the Hilbert transforma-

tion with careful consideration of the Bedrosian theorem (see Appendix A.3). For a

component to ful�l related conditions, its amplitude, r(t), and phase related function,

cosφ(t), must have disjoint Fourier spectra. Such requirement translates to the dot

product of Fourier spectra, i.e.

d = F(r) · F(cosφ), (5.34)

to yield d = 0 for the Bedrosian theorem to hold. Ful�lment of such condition, however,

does not hold for the KurSL method as it can be seen in Figure 5.6 which presents

Fourier spectra of oscillators amplitude component, r(t), and phase related function,

cosφ(t). These components were obtained using parameters from Table 5.1, except

for amplitudes ρ which increased threefold. For ease of comparison, functions were

detrended and scaled such that the largest value of either component's spectrum is 1.

A quantitative measure of the overlap, d (Eq. 5.34), is presented in the top right corner

of each graph.

Figure 5.6 shows that even in this simple example Bedrosian condition is not

ful�lled. Nevertheless, such result does not decrease meaningfulness of the KurSL

method. Bedrosian theorem is essential in the context of EMD, where it would allow

for a correct extraction of an instantaneous frequency. In the KurSL case, however,

the instantaneous frequency can be precisely calculated provided initial conditions for

the model and thus these conditions are not necessary.
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Figure 5.6: Normalised Fourier spectra of amplitude r(t) and phase related component

cosφ(t) presented in blue and green, respectively. Components were created using pa-

rameters from Tab. 5.1 except for amplitudes ρ which were three times larger. Spectra

are presented in decreasing order of intrinsic frequency with the top having. Coloured

areas indicate where components are overlapping with the metric d (Eq. 5.34) presented

in the top right corner.
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5.3 The Mth order model

In the simplest form the Kuramoto model assumes coupling between each oscillator as

a single sine function, i.e.

K(φi, φj, t) = k sin(φj(t)− φi(t)), (5.35)

where φ· are phases for corresponding oscillators and k is the scaling factor. However,

this function does not need to have a form of a single sine. As discussed in Section 3.2

the coupling function can be of any periodical form. This means that any coupling

function can be presented in the form of Fourier series. In case of series consisting of

N components, one can formulate it as

KM(φi, φj, t) =
M∑
m=1

km sin (m(φj(t)− φi(t))) , (5.36)

where km indicates the strength ofmth harmonic component. Case form = 0 is omitted

as it refers to no coupling between oscillators � K0 = 0.

The Kuramoto model with M coupling components can be treated as the Ku-

ramoto model of the M th order. Likewise, KurSL that utilises Kuramoto's M th order

model can be considered as the KurSL model of the M th order. This modi�es equa-

tions (5.5), (5.6) and (5.7) into

(1) φ̇i = ωi +
M∑
m=1

N∑
j=1

kmij sin (m(φj − φi)) , (5.37)

(2) 2ṙiφ̇i + riφ̈i = 0, (5.38)

(3) r̈i +
(
Qi − φ̇2

i

)
ri = 0, (5.39)

which di�ers in the phase function from the model introduced in Section 5.1. Such

de�nition means that the model of an order M , KurSLM , incorporates all possible

models up to its order. The transition from order M to M ′ < M is performed by

setting all intermediate coupling factors km = 0, where m ∈ (M ′,M ]. It follows that a

solution space of M th order model, SM , is a subspace of solution space of any higher
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Table 5.2: Parameters used in all experiments in Section 5.3 using third order model.

Corner boxes indicate which parameters were chosen for each experiment, with the �rst

having only two oscillators and the third experiment using 4 oscillators. The index of

coupling strength indicates by oscillator number with omitting itself. Columns K,L

and M refer to �rst, second and third harmonic, respectively.

ω/2π θ ρ K1 L1 M1 K2 L2 M2 K3 L3 M3

i [Hz] [rad] [arb. u.] [ rad
s
] [ rad

s
] [ rad

s
]

1 2 1.2 1.0 2.0 0.5 -1.2 1.5 0.2 -0.4 0.5 1.8 0.2

2 5 2.5 1.5 -2.0 3.5 -3.3 -7.0 2.1 4.2 4.1 1.2 1.2

3 10 0.0 1.0 2.2 0.5 1.7 3.2 0.3 0.1 3.8 -2.2 6.0

4 13 2.0 1.0 0.1 1.9 1.9 10.0 -2.1 10.7 0.0 9.1 -1.5

order model, SM ⊂ SM+m∀m ∈ N. In this thesis, unless speci�ed otherwise, KurSL is

assumed to be in its simplest form, i.e. of order 1.

For demonstratory purpose an experiment similar to the one presented in 5.2.2,

where the �rst order KurSL was presented. This experiment uses the KurSL of order 3

for which the parameters are contained in Table 5.2. Those parameters were chosen to

match the ones in the previous example where possible. Results for 2, 3 and 4 oscillators

are presented in Figures 5.7, 5.8 and 5.9, respectively. Moreover, Figure 5.10a presents

consolidated results for the time domain and in the Figure 5.10b for the frequency

domain. Unsurprisingly, KurSL with a higher order has more complex structure. This

is especially visible when comparing spectra with the same number of oscillators. Those

produced with the order 3 have broader main peaks and additional variability in the

whole spectrum.

5.4 Conclusion

This chapter introduced the KurSL model. The purpose of the model is to describe

systems with oscillators that communicate with each other. In the KurSL model, the

oscillators are assumed to be harmonic, i.e. when isolated from the system they would

oscillate with a constant frequency. However, due to mutual interaction with other

oscillators, their behaviour in amplitude and phase dynamics are modi�ed accordingly.
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Figure 5.7: Simulation on KurSL model of order 3 assuming 2 oscillators and other pa-

rameters according to the table 5.2. The left column displays all components with their

amplitudes in red, whereas the right-hand side has respective component's normalised

Fourier transformation.

122



Time [s] Frequency [Hz]

A
m
p
li
tu
d
e
[a
rb
.
u
]

A
m
p
li
tu
d
e
[a
rb
.
u
]

A
m
p
li
tu
d
e
[a
rb
.
u
]

A
m
p
litu

d
e
[arb

.
u
]

A
m
p
litu

d
e
[arb

.
u
]

A
m
p
litu

d
e
[arb

.
u
]

Figure 5.8: Simulation on KurSL model of order 3 assuming 3 oscillators and other pa-

rameters according to the table 5.2. The left column displays all components with their

amplitudes in red, whereas the right-hand side has respective component's normalised

Fourier transformation.
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Figure 5.9: Simulation on KurSL model of order 3 assuming 4 oscillators and other pa-

rameters according to the table 5.2. The left column displays all components with their

amplitudes in red, whereas the right-hand side has respective component's normalised

Fourier transformation.
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(b) Fourier spectrum

Figure 5.10: Time (a) and frequency (b) domain representations of a collective sum

for all generated components using parameters from Tab. 5.2. In case of the Fourier

spectrum all values were normalised such that the highest peak has amplitude one.

These modulations are explained by incorporating a Kuramoto coupling model and

Sturm-Liouville oscillation theory which mathematically is described in terms of cou-

pled ordinary di�erential equations. According to this model, the dynamic of the whole

system is described by both the initial state, as well as coupling functions which de�ni-

tion can be dependent on pair and directionality of oscillators. Such de�nition allows

for variability in these properties leading to a general amplitude- and phase-modulated

components. Additionally, the model ensures that components will always have phys-

ically meaningful characteristics such as positively de�ned instantaneous frequency at

any time.

The interaction between any two objects is de�ned by order of the model and the

strength values of coupling factors. However, since these oscillators are not isolated

from others, their dynamics are also a�ected by the environment. This means that there

is a non-unique outcome of the coupling process. Some of the e�ects can be observed

in the Fourier spectrum as a widening of the peak functions or shifting their centres

respective to the interactions. Moreover, as references Figs. 5.1 to 5.3 suggest, the

coupling between oscillators can introduce modulations that are visible in the spectrum

as small satellite peaks. It has been observed that their height is proportional to the

absolute coupling strength between oscillators, and their frequency locations f can be

estimated as a combination of coupled oscillators' locations, i.e. |fi ± fj|.
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An estimate of the complexity of the model is through the number of parameters

which is mainly impacted by the number of oscillators, N . Each new oscillator in the

system adds a degree of freedom for all existing oscillator, thus scaling the complexity

quadratically with the number of oscillators, O(N 2). Another property that can a�ect

the model's complexity is the form of assumed interaction. Depending on the type of

oscillators and their surrounding, the coupling functions can be of di�erent forms. The

variety of these has been denoted in the model by its order, M , which refers to the

highest non-zero term of the Fourier series of the coupling function. Such expansion

has a linear O(M) impact on the complexity. Therefore, the KurSL model is fully

described by stating its orderM and the number of oscillators N in the system. Under

these conditions, there are n = N (3+M(N−1)) parameters spanning the model. This

also means, that in general, the complexity of the model follows O(MN 2) asymptotic.
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Chapter 6

The KurSL method

The model presented in Chapter 5 describes a general system of coupled oscillators.

Such de�nition means that this model can characterise any signal with oscillatory com-

ponents. The KurSL method, which utilises the KurSL model, focuses on extracting

oscillatory information from a signal by �nding the best �tting model. As a result, a

set of coupled oscillators with fully de�ned amplitudes and phases are obtained.

This Chapter introduces the KurSL method. First, Section 6.1 proposes a method

for model's parameters estimation. The primary technique used for parameter �tting

is the Markov Chain Monte Carlo (MCMC, Sec. 6.1.1). This technique uses Bayesian

statistics by providing estimates for parameters' probability distributions based on

a large number of simulations. An algorithm for obtaining initial conditions for the

process is described in Section 6.1.2, and the complete algorithm for the KurSL method

is presented in Section 6.2. The Chapter �nishes with an analysis of the method.

Section 6.3 discusses the convergence property of the method, whereas Section 6.4

focuses on the relation between the time domain and the parameter space.

6.1 Determining parameters of the model

The KurSL model in its standard form, i.e. the �rst order KurSL, requires adjusting

N (N + 2) parameters, where N is the number of oscillators and is also an adjustable

parameter. In general, �tting M th order model requires �nding a parameter set pγN =

{~ω, ~θ, ~ρ,K}, where the frequency, ~ω, the initial phase, ~θ, and the initial amplitude, ~ρ,
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vectors are of length N , and K is the coupling matrix of size N ×M(N − 1). This

means that n = N (3+M(N−1)) values fully de�ne theM th order model. This section

presents techniques with which these parameters are determined.

6.1.1 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) is an optimisation method for �nding a set of

parameters and their probability distribution functions (pdfs) [142]. Its name is derived

from a combination of two methods: a Markov chain and a Monte Carlo simulation.

Markov chain characterises a random process, where the transition to the next state

depends only on the current state, regardless of its history. Commonly it refers to a

discrete process with a discrete time step, and in such cases, it is called a discrete-time

Markov chain (DTMC). The Monte Carlo process refers to a broad class of numerical

simulation algorithms. The development of the method was inspired by an observation

that for some problems it is easier and quicker to perform simulations than doing

a thorough mathematical analysis of the system [143]. Most Monte Carlo methods

compute results based on a randomly generated samples and then infer properties of

obtained distributions. Despite the method being computationally demanding, it is

used with problems where the analytical solutions are di�cult to determine, such as in

numerical integration, optimisation and sampling probability distributions [3].

Markov Chain Monte Carlo as a combined method fully utilises both compo-

nents. It is often used to sample unknown probability distribution. Typically this is

performed in an iterative manner where each next sample depends on some previous

sample's states. Prior knowledge of the system is re�ected in stating prior probability

distributions for each parameter. These parameters then evolve in sampling process to

best describe desired probability distributions.

There are many di�erent MCMCmethods of which the most popular are Metropolis-

Hastings [144, 145] and Gibbs sampling [146]. The method used in this algorithm

is called ensemble sampler with a�ne invariance and was proposed by Goodman &

Weare [142]. The method was selected due to its excellent general performance and

being una�ected by a�ne transformations of space. These conditions are preferable

for inappropriately scaled distributions, which are possible in KurSL case due to its
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possibly highly nonlinear behaviour. The implementation of this MCMC method is

called emcee Hammer and is freely available from [147]. The method utilises the so-

called walkers, which are particular points a parameter space. These walkers change

their location depending on a position of other walkers, their previous states and their

current state. Since the result is dependent on the communication and cumulative

exploration of the parameter space, there should be a relation between the number of

walkers and their initial positions. It is advised [142] to have at least twice as many

walkers as the number of parameters and generate at least hundred movement itera-

tions. A fraction of the initial iterations is often referred as a burn-in period. Since

the walkers are just starting to learn the space, such results can be meaningless and it

is suggested to discard this period. Walkers' position should eventually converge to a

real probability distribution for which the maximum a posteriori (MAP) estimates the

best �t of parameters.

In case of the KurSL, MCMC assumes that the input signal S(t) can be explained

as a sum of all KurSL components c(t) and some additional noise

S(t) =
N∑
i=1

ci(t) + ξ(t), (6.1)

where ξ(t) is a Gaussian noise and all N components ci(t) sum up to c(t). In case of

discrete signals with constant sampling rate where tn = t0 + n∆t and ci(tn) = cni the

equation (6.1) modi�es to

Sn =
N∑
i=1

cni + zn, (6.2)

where zn denotes a discrete sample from a Gaussian distribution. Considering that

each zn is an independent and identically distributed sample, it is possible to write a

joint probability distribution function as

P ({zn}) =
N−1∏
n=0

dzn√
(2π∆t)

L|D̂|
exp

(
− 1

2∆t

zTnD̂
−1zn

)
, (6.3)

where in this case D̂ is an identity matrix and zn is a noise vector with individual
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values being

zn = Sn −
N∑
i=1

cni. (6.4)

Considering such probability is equivalent to minimising L1 error

E =
N∑
n=0

∣∣∣∣∣Sn −
Nosc∑
i=1

rni cos(φni)

∣∣∣∣∣ . (6.5)

Calculating negative log-likelihood function Lz = − log (P ({zn})) of Eq. 6.3 one ob-

tains

Lz =
1

2∆t

N−1∑
n=0

|zn|2 +
NL

2
log (2π∆t) , (6.6)

where only the �rst term depends on the parameters, thus being the only signi�cant

part.

An additional step has to be performed for coupling values. Due to the require-

ment imposed by inequality (5.32) sum of all couplings Ki =
∑

j kij has to be smaller

than the respective intrinsic frequency ωi. Thus, at each iteration parameters are

checked for violation of this condition. If the sum of couplings exceeds ωi, then each

coupling value kij is scaled by a factor s = 0.95ωi/Ki, which results in new coupling

values k̂ij = skij and their sum K̂i = 0.95ωi.

6.1.2 Determination of priors for MCMC

As mentioned in Section 6.1.1, MCMC requires a priori probability distribution func-

tions (pdfs) for the walkers to initiate their positions. If none is available or the model

can not infer their shape, one can assume a uniform distribution. Such solution is, how-

ever, suboptimal and one should take advantage of any information available. Studying

examples provided in Section 5.2, e.g. Figures 5.1 to 5.3, one can infer some relations

between parameters and the observed behaviour. Very suggestive is the structure of

component's Fourier spectrum. There is a relation between spectrum's mode positions

and the value of intrinsic frequency ω. Moreover, the spread of spectrum's peak is

correlated with the sum of all coupling values for a given oscillator. As for the value

of amplitude parameter, one can utilise Parseval's identity [148], which states that the

total energy calculated in time and frequency domains are equal. For simplicity and
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as a �rst approximation, one can assume that the component is a simple harmonic

oscillator. Such hypothesis implies that the amplitude of a peak in the spectrum is a

squared value of the actual amplitude r.

Based on these observations, an algorithm to determine the number of compo-

nents and their initial parameters is proposed. The algorithm 1 is based on input

signal's Fourier spectrum. It iteratively tries to �t a prede�ned peak function (trian-

gular, Gaussian or Lorentz) to the highest peak and then subtract it. It does that until

speci�ed ratio Eε of residual energy to the initial signal's energy is obtained, or until

the number of obtained oscillators is larger than a prede�ned maximum. Sometimes

subtracting �tted peak can result in a power spectrum with negative values. This

artefact is dealt with by converting at each iteration all negative values to zero.

The default con�guration of the algorithm uses for peak de�nition a Gaussian

function with a standard deviation of 1 Hz. Unless stated otherwise the algorithm uses

energy ratio Eε = 0.1 and no limitation on the number of oscillators. It was empirically

determined that such con�guration performs oscillation detection well on most tested

signals. However, as with many threshold parameters, these values should not be

expected to give the best possible results all the time and they should be adjusted

appropriately depending on input signal's features.

Visualisation of the main part of the algorithm is presented in Figure 6.1. For a

given signal (top graph), the algorithm tries to �t a peak function to the maximum of

its spectrum (second row). Each column on the �gure relates to di�erent peak function

type, i.e. triangular, Gaussian and Lorentz type of peaks, respectively from left. Red

colour lines represent �tted peak functions. Subtracting the �tted peak (third row)

could leave some regions of the spectrum with negative values. Such situations are

dealt with by replacing negative spectrum values with zero (bottom row).

Selected optimisation method, MCMC, requires pdf for each parameter and thus

once all initial values are determined, a joint probability function needs to be created.

Here it is assumed that except for coupling strengths k, all pdfs are Gaussian with

their mean values equal to initial values. Only phase variance is �xed to be Var(θ) = 1

for which 99.8% of the distribution lays within the range [−π, π] which covers the

whole phase domain. The variance of amplitude and intrinsic frequency are dependent
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Figure 6.1: Illustratory example of peak removal algorithm. Columns refer to di�erent

type of a �tted peak, starting from left being triangular, Gaussian and Lorentz types

of peaks. Red function on the graph represents a �tted peak. Graph below denotes

spectrum with subtracted peak, whereas the bottom �gures have normalised negative

parts.

132



Data: Signal S(t)

Result: Estimated number of oscillators and a set of initial parameters

Compute Fourier spectrum of input signal S;

Calculate energy ES of the spectrum;

Assign residual energy Eres = ES;

Specify energy target ratio Eε and maximum number of oscillators Nmax;

while Ratio Eres/ES > Eε & number of oscillators N < Nmax do

Find position and amplitude of residue's spectrum Fres(S) maximum;

Fit peak of preselected type spectrum at given position;

Subtract the peak function from residual spectrum;

Assign zeros to any negative part of spectrum;

Calculate energy Eres of residual spectrum;

Calculate the ratio E = Eres/ES;

end

Algorithm 1: Algorithm for initial estimation of KurSL parameters, i.e. �nding

the number of oscillators N and initial values.

on initial values and they are Var(ρ) = 0.1ρ and Var(ω) = log(ω + 1), respectively.

Such assignment is due to the fact, that the algorithm is typically more precise in

determining the value of frequency ω rather than amplitude ρ.

The di�culty with estimation of the coupling k value is related to its non-unique

impact on the signal. Depending on its value and the term it scales coupling strength

can a�ect peaks in Fourier spectrum by widening them, creating satellite peaks or

shifting their positions. Although there are many documented attempts of estimating

coupling factors, the majority of the research assumes that the input is presented as

multivariate observations of coupled oscillators [97, 112, 149]. In the KurSL case,

however, the observation is assumed to be a univariate time series composed of scaled

observations and to the best of our knowledge, no method would work with such

conditions. Due to limited understanding of the general impact of these factors their

pdfs are de�ned as unity distribution with a relatively wide range of k ∈ [−5, 5] rad
s
.

Once the coupling values are sampled, they are additionally scaled such that the sum

of individual oscillator does not exceed intrinsic frequency as equation (5.32) suggests

(positive instantaneous frequency constraint).
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The result of the algorithm is an initial estimate of the KurSL system which

matches the provided signal the best. Since the number of oscillators depends on the

energy ratio threshold Eε and the type of the peak, one should choose them carefully.

Although the system consisting of more oscillators, i.e. more degrees of freedom, would

provide with better estimate this does not mean, that the result would be meaningful.

This could lead to over�tting the system. Moreover, from the pragmatic point of view,

the more oscillators are used, the longer it takes for the optimisation to �nish.

6.2 The algorithm

The algorithm for the KurSL method consists of a few steps. Initially, parameter esti-

mates are obtained via the algorithm provided in Section 6.1.2. Based on these results

initial joint probability distribution is created so that the MCMC can �t the model.

At each iteration and for each walker, the reconstruction is compared to the initial

signal. If computed error is below the prede�ned threshold, the algorithm terminates

returning a set of parameters which is associated with the smallest error. Otherwise,

each walker's position is updated accordingly to the MCMC rules. The best set is

assigned as a maximum a priori (MAP) vector for a posteriori joint pdf. The whole

procedure is presented in the algorithm below (Algorithm 2).

6.3 Convergence

The KurSL method aims to decompose a signal into oscillatory components. Its con-

vergence is de�ned by the process of obtaining a limit for a sequence made out of

reconstruction components. Such problem can also be considered as minimising the

di�erence between the input signal S and the reconstruction signal K obtained via

KurSL. The sequence in question is enumerated by the number of oscillators used for

reconstruction,

RN = S − KN = S −
N∑
n=1

cn, (6.7)
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Data: input signal
Result: KurSL oscillatory components
Determine initial parameters using peak �tting algorithm (Alg. 1);
Create a priori pdfs for each parameter;
foreach Iteration of MCMC do

foreach Walker do
Compute likelihood;
Update location;
if likelihood below threshold then

Return set as the best set;
Terminate for loops ;

end

end

end

if no likelihood below threshold then
Assing global MAP as the best set;

end

Reconstruct and return oscillators generated for the best set;
Algorithm 2: The KurSL algorithm.

where KN denotes the decomposition set of N components c. The di�erence is also

related to the total error of reconstruction, which in case of the Hilbert space L2 is

EN =

√√√√∫ T

0

∣∣∣∣∣S(t)−
N∑
n=1

cn(t)

∣∣∣∣∣
2

dt. (6.8)

For the KN sequence to be convergent, its error EN has to decrease to 0 with the

increase of N .

The convergence for the KurSL is guaranteed by the Fourier series, which are a

speci�c reconstruction set given by the KurSL method. These series are obtained when

there are no couplings between the oscillators, making spectra to be delta functions at

particular frequencies. The proof of uniform convergence is based on the Weierstrass

M-test (De�nition 1) [150], which states that if a convergent sequence can be limited for

every positive index by the sequence in question, then such sequence is also convergent.

As it has been proven, Fourier series F of a function will converge uniformly to

a given limit [151], which in this case is the initial function S. LetMn be the error of
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reconstruction at index N , i.e.

MN =

√∫ T

0

|S(t)−FN(t)|2dt. (6.9)

The KurSL method tries to optimise the metric (6.8) for each index N . Although it

is not guaranteed to �nd the global minimum, the obtained optimum can always be

compared with a case without coupling between oscillators, and thus it will always have

an error at most equal to the Fourier series. This observation means that the Fourier

series limits the KurSL sequence

‖S(t)−KN(t)‖ ≤ ‖S(t)−FN(t)‖ =MN , (6.10)

for all lengths T , and since the former is convergent, the latter is also convergent.

De�nition 1 (Weierstrass M-test). Suppose that {un} is a sequence of real- or complex-

valued functions de�ned on a set D, and that there is a sequence of positive numbers

{Mn} satisfying

∀n ≥ 1,∀x ∈ D : ‖un(x)‖ ≤ Mn,
∞∑
n=1

Mn <∞. (6.11)

then the series
∞∑
n=1

un(x) (6.12)

converges uniformly on D.

6.4 Parametric stability

This section addresses the question of stability of the mapping function from the para-

metric space into the time series space. Although in general for the number of os-

cillators larger than two the problem is di�cult to solve analytically, it can still be

analysed through numerical simulations. Often knowing how traversing through one of

the spaces is projected onto the other can provide some insights on how these spaces

are shaped. Although the KurSL model is de�ned by both the number of oscillators,
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N , and the order, M , the following discussion focuses mainly on the above parameter.

Such a choice is considered to have a much bigger qualitative impact on the general

performance. For this reason, in this section spaces are annotated as PN and SN for

parameter and time series spaces, respectively.

The parameter space PN refers to space with all possible input parameters for

the KurSL method. The position pN in this space depends on the order M of the

model and is de�ned by all the values of the set, i.e.

p = [ω1, . . . , ωN , ρ1, . . . , ρN , θ1, . . . , θN , k
1
1,1, . . . , k

1
2,N , . . . , k

Nh
N ,N ], (6.13)

where the total number of parameters is N = N (3 +Nh(N − 1)). Under the condition

of having a discrete set of parameters, it is proposed to de�ne distance with metric

M2, i.e. Euclidean distance. This means that for two vectors p1 and p2 the distance

between them is given as

MP(px,py) =

√∑
i=1

n
(pxi − pyi)

2, (6.14)

with x and y being all corresponding parameters for vectors px and py, respectively. For

example, if two vectors di�er only at θ value by ∆θ the distance will beMP(px,py) =

|∆θ|.

In case of time series space in general, one would require space for continuous

functions. However, since all signals are recorded and discretised, this means one can

utilise similar metric as in parameters space. Each oscillation can be stored in an array

of a length TN and since there are N oscillations in reconstruction, the whole time

series vector S can be described as

s = [s1(t0), . . . , s1(tTN ), s2(t0), . . . s2(tTN ), . . . sN (tTN )]. (6.15)

This means that all oscillatory components were concatenated to create a single vector
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Figure 6.2: Graphical representation of a mapping G between the parameter space P
and the time series space S. The function G maps points (dots) in parameter space P
onto respective positions in time series space S.

of length N × TN . It also means that the distance between two vectors s1 and s2 is

MS(s1, s2) =

√√√√ n∑
i=1

(sxi − syi)
2, (6.16)

where, again, x and y are values corresponding to vectors s1 and s2.

An illustration of a mapping function G from the parameter space P onto the

time series space S is presented in Figure 6.2. It highlights that a straight line in

one space may not necessarily map onto a straight line in the other. Not only the

curvature can di�er between spaces, but also the distance between consecutive points

can vary. Such behaviour indicates nonlinearity of the mapping function. A series

of experiments were performed to present how each parameter a�ects the model and

whether the KurSL is a nonlinear model. In each experiment, all parameters except for

one were kept constant and for each position of the free parameter, a time series were

generated using the KurSL model. The core parameters used in all experiments are

presented in Table 6.1. Although the number of oscillators was chosen to be N = 4,

obtained results can be generalised.

In the �rst experiment, the parameter of interest was amplitude. All parame-

ters except for the amplitude of the 2nd oscillator, i.e. ρ2, where set according to the

Table 6.1. The range of modi�cation values is given ρ2 ∈ [1, 10] with step ∆ρ = 0.2.
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Table 6.1: Initial parameters used for all experiments in this section. In each experi-

ment, a single parameter was chosen and modi�ed accordingly.

n ω/2π [Hz] θ [rad] ρ [arb. u.]
kij [

rad
s
]

1 2 3 4

1 30 π 2 0.1 2.2 4.2

2 25 0 3 1.1 2.0 1.1

3 17 0 5 0.2 2.2 -0.9

4 10 2 1 0.1 0.1 0

Obtained results in the form of time series are cumulatively presented in Figure 6.3.

These graphs display changes in time series depending on the value of the parameter.

Each row represents a di�erent oscillator with the horizontal and vertical axes corre-

sponding to time and component's amplitude values, respectively. The whole �gure is

colour-coded with legends on the side showing their numerical values.

As it can be seen from these graphs, only time series of the second oscillator were

a�ected. Such result is due to the amplitude ρi manifesting itself only as a simple

scaling value in the KurSL model (Eq. 5.28). Such behaviour is additionally expected

to produce monotonous mapping function from P into S space. Indeed, this can be

observed in Figure 6.4, where the distances in time series space S are presented. The

top graph shows the absolute distance, i.e. ‖sp‖, whereas the bottom shows relative

distance to the previous parameter p, i.e. MS(spi , spi+1
). The behaviour of both

functions can be explained by noticing that in this case, the metric function behaves

like

f(ρ) =
√
aρ2 + b, (6.17)

with respect to the initial amplitude ρ. Investigating its changes with a constant step

∆ρ one can see from Equation (6.16) that the result has the form of

MS(spi , spi+1
) =

√
a(∆ρ)2 + b, (6.18)

where all variables are constant and independent from ρ. This means that in this case

expressionMS(spi , spi+1
) is constant.
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Figure 6.3: Colour-coded representation of time series obtained when modifying am-

plitude parameter, ρ. Each graph correspond to a di�erent oscillator (initial values

Tab. 6.1). The horizontal and vertical axes correspond to time and ρ values, respec-

tively.
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Figure 6.4: Distance values of time series as a function of amplitude parameter, r. The

top plot displays the absolute distance of the vector ‖sp‖, whereas the bottom one is

a distance to the previous vector p in parameter space, i.e. MS(spi , spi+1
).
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The second experiment tested the behaviour when changing initial phase. The

parameter has been modi�ed in a range of θ2 ∈ [0, 2π] rad with a step ∆θ = 0.1 rad.

All obtained signals are presented in Figure 6.5, which displays the same information

as Figure 6.3 with the di�erence that vertical axis now corresponds to the phase values.

In this example, the e�ects of modulation are much more pronounced. The noticeable

e�ect is the shift in phase of the whole second oscillator, which directly corresponds to

the parameter. However, the shift is not monotonous; when phase θ2 ≈ 1.5 rad there

is a change in the progression. Due to the strong coupling between the second and

third oscillators, this transition is also visible in the third oscillator and indirectly in

the �rst. E�ects in the fourth row are unnoticeable.

The aforementioned transition is more understandable when analysing distance

graphs in Figure 6.6. On both plots, there is a peak near θ2 ≈ 1.5 rad. This means that

with a constant change of phase value in parameter space steps in time series space S

suddenly increase and they di�er more signi�cantly. These modulations do not seem

to a�ect the frequency, but they are visible as phase modulations, which also can be

observed as a variation in the width of red and blue columns (Fig. 6.5).

In another experiment, the coupling strength between the �rst and the second

oscillator has been modulated. Again, all values were kept constant (Tab. 6.1) except

for k21, which modulation range was set to [−6, 6] rad
s
, with step ∆k = 0.1 rad

s
. Col-

lective results and distance values are presented in Figures 6.7 and 6.8. In this case,

modulations in both frequency and amplitude are visible. On the �rst sight it seems

that e�ects of k modulations are symmetrical � the further from k = 0 the more mod-

ulations on all components. This is especially pronounced in Figure 6.7 and the relative

distance plot 6.8. It seems that there are two maxima for approximately k = −5 rad
s

and k = 5 rad
s
. When coupling value reaches these points, the frequency of the second

oscillator is closely matching the frequency of the �rst one. With the increase of cou-

pling strength |k| > 5 rad
s
the distance is decaying and stabilising. Based on the shape

of the peak in Fig. 6.8 one can see that there is a di�erent behaviour depending on the

sign of the coupling strength k; for large positive k, the signal converges faster to the

�nal frequency.

It has to be pointed out, that although the coupling is between the �rst and
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Figure 6.5: Colour-coded representation of time series obtained when modifying phase

parameter, θ2. Each graph corresponds to a di�erent oscillator (initial values Tab. 6.1).

The horizontal and vertical axes correspond to time, and θ02 values, respectively.
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Figure 6.6: Distance values of time series as a function of the phase parameter, θ2. Top

plot displays the absolute distance of the vector ‖sp‖, whereas the bottom one is the

distance to the previous vector p in parameter space, i.e. MS(spi , spi+1
).
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Figure 6.7: Set of components obtained by varying coupling strength between the �rst

and second components, k2,1. The range of changes is from -6 to 6 with step 0.1. Each

graph corresponds to a di�erent oscillator (initial values Tab. 6.1). The horizontal axis

is the time, and the vertical axis is the value of the coupling, k2,1.

second components, the �rst component has not been visibly a�ected. It is the third

oscillator which seems to be a�ected the most. Such behaviour is explained by the

e�ect of coupling not being normalised to the intrinsic frequency. From equation (5.5)

it seems clear that the bigger intrinsic frequency, the more signi�ant coupling strength

has to be to a�ect phase modulations. Third's component ω is about two times smaller

than the �rst ones leading to larger sensitivity in modulations, even if indirect.

The parameter that seems to have the most signi�cant impact on the time series

is the intrinsic frequency, ω. In the fourth experiment, the frequency of the second

component ω2 has been varied in the range [5, 45] rad
s
, with step ∆ω = 0.1 rad

s
. As

in previous examples, Figure 6.9 and 6.10 correspond to colour-coded graphs of time

series and computed distance metrics, respectively. In this case, all components have
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Figure 6.8: Distance values of time series as a function of coupling strength parameter,

k2,1. The top plot displays the absolute distance of the vector, whereas the bottom one

is the distance to the previous vector p in parameter space.

been visibly a�ected. Major distortions are in areas of ω ≈ 30 rad
s

for the �rst, ω ≈ 8

for the fourth oscillator and in the range [13, 22] rad
s

for the second oscillator. This

seems to correspond directly to the frequency of other components, suggesting that

there is resonance e�ect. These sudden changes can also be observed when analysing

distance plots in Fig. 6.10. In regions close to the frequency of any other oscillator

there are dynamical changes. However, in regions relatively far, i.e. when ω ≈ 15 rad
s

and ω > 33 rad
s
, changes in metric values are much more gradual.

These experiments and analyses provide with some insight on how the model

behaves. They show that mapping from a parameter space P into time series space

S is not a simple linear function, but rather that its shape depends on both absolute

and relative values of all parameters. Results obtained when manipulating intrinsic

frequency and coupling strength suggest that there can be regions with a sudden change

of gradient. Based on the model's structure and regions in which these transitions

occurred, it is expected that such sharp modulations are due to resonance e�ect between

oscillators. Although the exact mechanism for this e�ect is uncertain, it highlights what

behaviour should be considered with further studying of the method.

6.5 Conclusion

In this Chapter, it has been presented how to obtain a method for extracting oscillatory

features based on the KurSL model. Such transition is done by incorporating a scheme

for �nding a parameter set by which the model describes the input data the best.

The di�culty with analytically solving the KurSL model forces the usage of numerical
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Figure 6.9: Colour-coded representation of time series obtained when modifying intrin-

sic frequency parameter, ω2. Each graph corresponds to a di�erent oscillator (initial

values Tab. 6.1). Horizontal and vertical axes corresponds to time and ω2 values,

respectively.
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Figure 6.10: Distance values of time series as a function of intrinsic frequency parame-

ter, ω2. The top plot displays the absolute distance of the vector, whereas the bottom

one is distance to the previous vector p in parameter space.
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�tting methods. Choice of methods, however, are limited due to the non-convex be-

haviour of the cost function. The presented solution uses Monte Carlo Markov Chain

(MCMC) to �nd the global optimum in a heuristic manner. This optimisation is done

by updating the global probability density function (pdf) of parameters based on initial

estimations. These estimates are determined based on the signal's shape and model's

properties. Some of the initial values can be computed based on the spectrum of the

input signal. For this reason, the emphasis is put on the peaks in the Fourier spec-

trum which correspond to decoupled oscillators. Through correspondence, these peaks,

i.e. their location and amplitude, can be connected to values of intrinsic frequencies

and component's amplitudes. Additionally, it has been observed that the width of the

peak function could be linked to the coupling values. These observations have been

combined into an algorithm for estimating the number of oscillators and their initial

values. The algorithm greedily tries to remove the most energy from the spectrum by

iteratively removing peak functions where each peak corresponds to a single oscilla-

tion. The algorithm does that until it meets a certain energy threshold. Once these

parameters are obtained the MCMC method computes the best global parameters for

the model.

The KurSL method in such form can be computationally demanding. The time

of convergence and whether it obtains the best solution, depends greatly on the opti-

misation process. However, as it has been proven in Section 6.3, for a given method's

order M and a set number of oscillators N , the possible reconstruction of the method

is bounded by the Fourier series reconstruction with the same number of components.

This means that in the worst case the method converges to the input signal at least

as quick as the Fourier series sequenced by the number of oscillators N . In practice,

however, one would expect the convergence to be quicker, due to a broader family of

the possible components.

The richness of the solutions has also been demonstrated through studying the

mapping between parameter space P and time series space S. As it has been shown

in Section 6.4, traversing through one of the spaces along a line does not necessarily

create a linear path in the other. The analysis shows that the mapping of distance from

parametric space P onto a time series space S has a non-linear and local behaviour;
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it depends on the number of oscillators and their positions. Moreover, based on the

results of the mapping on intrinsic frequency, there seems to be an e�ect which can

be described as resonance. This means that the mapping function behaves di�erently

when any pair of intrinsic frequencies have similar values.

It has to be emphasised that the KurSL is not a general purpose signal processing

technique that extracts any type of oscillations from any given dataset. The method fo-

cuses is on systems composed of mutually interactive oscillators which would otherwise

have harmonic characteristics. Through such de�nition, the method tries to include

only physically meaningful systems. Moreover, by de�nition, one is not expected to

obtain a single (isolated) oscillation other than harmonic. Without any external forces

acting upon the object its dynamic ought not to be changed; likewise, the frequency

of the oscillation should also be preserved. Nevertheless, this does not mean that

only harmonic oscillators can be obtained. The KurSL treats the system as a whole.

Any changes in one oscillator are induced by the other oscillators, regardless of their

frequency range and directional in�uence. As an example, an oscillator spinning with

friction can be modelled as two coupled oscillators where one heavy object has a strong

asymmetric in�uence on the other. As another example, the KurSL is not expected

to state that a chirp signal is a single oscillator. Instead, it would be described as a

system with strong interaction between components. The KurSL method is assumed

to be applied to data generated through communication processes and may not be

suitable for an abstract signal.
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Chapter 7

The KurSL application examples

As discussed in the previous chapter, the KurSL model can be used as a signal de-

composition method. This chapter aims to demonstrate such usage by decomposing

and analysing both synthetic and empirical (EEG) data. The �rst section (7.1) de-

scribes the decomposition of stationary signals using the KurSL method. In the second

section (7.2) dynamical analysis of extracted parameters is presented. Finally, in Sec-

tion 7.3 two empirical EEG signals are analysed and decomposed with the KurSL

method both in stationary and dynamical manners.

All computations in this chapter were performed using the Python programming

language. The implementation of the KurSL algorithm 2 (sec. 6.2) with which all

simulations were performed was written using the NumPy [152] and the MCMC Ham-

mer [147] libraries. Computation of spectrograms and scaleograms were performed

using the SciPy [126] and PyWavelets [153] packages, respectively. Although each

experiment required parameter tuning due to having di�erent focal time series, all

scaleograms were computed using the Morlet function as a mother wavelet. Such a

choice is popular for processing brain signals due to its optimal concentration simulta-

neously in both time and frequency [35, 36]. The source code for the KurSL and the

Huang-Hilbert transformation is available from the author's webpage [125].
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7.1 Analysis of a simulated signal

This section presents and discusses an application of the KurSL decomposition method

on synthetic data. The �rst demonstration (Sec. 7.1.1) introduces decomposition based

on a signal generated using the 1st order KurSL method with four oscillators. Its

results are presented in a form of probability distributions, which indicate the most

common and most likely parameter values. The following Section 7.1.2 compares the

performance of the KurSL method with two di�erent orders. For this experiment, a

signal was generated using the 3rd order KurSL and then it was decomposed with the

1st and 3rd order KurSL methods.

7.1.1 Simple example

This case study is based on a synthetic signal generated with the KurSL model. Param-

eters for the model were sampled from uniform distributions with ranges f ∈ [5, 15] Hz,

θ ∈ [0, 2π) rad, ρ ∈ [1, 3] and k ∈ [−5, 5] rad
s
. Frequencies had an additional constraint

such that they had to be at least 0.5 Hz ≈ 3.14 rad
s

apart. All selected values are

presented in Table 7.1. The time series are generated for t ∈ [0, 5] s with the sam-

pling frequency fs = 1000 Hz which allows for the spectrum frequency resolution

df = 0.2 Hz. Their visual representation and computed Fourier spectrum are pre-

sented in Figures 7.1a and 7.1b, respectively. Despite having a visibly simple structure

in the time domain, the spectrum appears to have many peaks smeared in the fre-

quency domain. If all coupling factors ki,j were set to 0, the signal would be composed

only of four harmonic oscillators for which the Fourier spectrum would contain only

four peaks. Contrasting results imply that the coupling between oscillators has to

strengthen the smearing e�ect and to introduce satellite peaks. Details about indi-

vidual components are presented in Figure 7.2 which shows their time series, Fourier

spectrum and spectrogram from the left, respectively.

As discussed in the previous chapter, the coupling between oscillators introduces

modulations in both time and frequency domains. These e�ects make it di�cult to de-

termine the optimal window's properties for the spectrogram. In the case of the KurSL

system, modulations are proportional to pairwise di�erences between the frequency val-
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Table 7.1: Model's parameters used to generate simple KurSL example (Sec. 7.1.1).

n ω/2π [Hz] θ [rad] ρ [arb. u.]
ki,j [

rad
s
]

1 2 3 4

1 13.03 0.23 2.67 2.18 1.97 -4.03

2 11.85 3.32 2.47 -4.8 -4.65 3.82

3 8.98 4.64 2.21 1.93 -4.76 4.09

4 6.46 0.52 1.58 2.95 -0.37 -4.85

ues; thus, the expected resolution should be at least equal to the pairwise distances.

The smallest frequency di�erences are between pairs of oscillators (1,2) and (3,4) which

are ∆f1 = |13.03 − 11.85| = 1.18 Hz and ∆f2 = |8.98 − 6.46| = 2.52 Hz, respectively.

To capture changes in the frequency domain at a given resolution the time window

length needs to be reciprocal which gives the lengths equal to l1 = 1/∆f1 = 0.85 s

and l2 = 1/∆f2 = 0.35 s. However, the window length of 0.85 s is too large to detect

any modulations in the time domain. For this reason, the window was halved and the

frequency resolution was arti�cially increased by zero-padding segments with an array

equal to the length of the window. Since the padding only adds intermediated points,

interpolated by a sinc function, an increased overlap would provide a smoother display

of the translation. A result of these constraints is a Tukey window with the tapering

parameter of α = 0.25, an overlap of p = 80% and window lengths of l1 = 0.425 s for

the two oscillators with the highest frequencies and l2 = 0.35 s for two with the lowest

frequencies.

From these graphs, one can see that all components exhibit modulations in both

time and frequency domains. Both Fourier spectra and spectra indicate that all com-

ponents have a primary mode which is modulated through interactions with other

components. In all spectrograms, these interactions produce an additional transient

oscillation close to the main mode, but with a signi�cantly smaller amplitude. The

Fourier spectrum, however, shows these as satellite peaks around the position of the

intrinsic frequency.

The KurSL analysis of the signal was performed in accordance with the method

described in Chapter 6. The algorithm for determining initial parameters was set
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Figure 7.1: The signal generated using the KurSL model with parameters from Ta-

ble 7.1. Figure (a) displays the sum of time series from all oscillators, whereas (b)

is its Fourier spectrum. Vertical dashed lines on the spectrum denote peak positions

determined by the KurSL method.

to extract a maximum of 4 oscillators, which is equivalent to using the energy ratio

Eε = 0.32. Such con�guration allows to demonstrate the results of the KurSL and

compare these with the parameters that generated the signal. The method has de-

tected oscillators which frequency and amplitude pairs (fi, ρi) equal to {(13.01 Hz,

1.37), (11.78 Hz, 3.19), (9.18 Hz, 4.66), (6.43 Hz, 1.71)}. For visual comparison, these

positions have been imposed as vertical dashed lines on the input's Fourier spectrum

(Fig. 7.1b). The KurSL �tting mechanism was performed with MCMC which was de-

ployed using 200 walkers each of which explored the 24-dimensional parameter space.

The number of iterations was set to 300 out of which the initial 60 samples (20% of

total) were discarded to mitigate the in�uence of incorrect initial conditions. This

burn-in process made the overall sample size for all parameters' distributions to be

480000 points. Based on these points, a probability distribution function (pdf) was

estimated using the Kernel Density Estimator (KDE) with a Gaussian kernel of width

computed using Silverman's method. These KDEs are presented using grey colour

in Figures 7.3, 7.5, 7.4 and 7.6 which pertain to intrinsic frequencies, initial phases,

amplitudes and couplings strengths, respectively. In all �gures, vertical lines indicate

a representative value for a given distribution. Yellow and magenta colours repre-

sent median and mean values of all samples, respectively. Blue colour refers to the

maximum a posteriori (MAP) value for a given marginal distribution which does not
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Figure 7.2: All components generated using the KurSL model with parameters taken

from the Table 7.1. The left column contains time series with their instantaneous

amplitude highlighted using red colour. Fourier spectra normalised such that the largest

value is one, are presented in the central column. The right column contains spectra

which were computed using the Tukey window with tempering parameter α = 0.25,

overlap p = 80% and lengths of 0.425 s, 0.425 s, 0.35 s and 0.35 s from the top,

respectively. All spectra are computed with zero-padding equal to the length of window.
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necessarily optimise the joint distribution; the best result is indicated by the global

MAP, which is denoted with a vertical red line. All these lines can be compared to the

parameters (black) with which the signal was generated (Table 7.1). The closeness of

the black and red lines for all parameters suggests that the search has been performed

successfully. Such result might be surprising since according to obtained distributions

certain parameters are unlikely, e.g. initial phase θ2 lays on the 91st percentile. The

multi-modality and skewing in many distributions towards the red line indicate that

these values could have been obtained late in the walker's search. These could suggest

that the MCMC search has not converged fully to the actual distributions and further

computation could improve the results.

Let pmedian, pmean, pmargin and pmap refer to median, mean, marginal MAP and

global MAP parameter sets, respectively, and their time series be denoted by s(t)

with the same index notation. As can be seen from these graphs, on each distribution

these parameters p are relatively close to each other. Nevertheless, as discussed in

Section 6.4, a small distance in the parameter space does not necessarily imply closeness

in the time series space. For each aforementioned parameter set p a reconstructed

signal was created and compared with the generated input. These comparisons are

presented in Figure 7.7, where rows correspond to a di�erent set of values; from the

top they are: median pmedian, mean pmedian, marginal MAP pmargin and global MAP

pmap reconstructions. For each row, the left column displays an overlaid reconstruction

for a given parameter set p with an input signal, whereas their pointwise di�erences

shown in the right column. Additionally, each reconstruction was labelled with values

of pointwise mean square error (MSE) and residual energy (RE) de�ned as

RE =
E(yin − yrec)

E(yin)
, (7.1)

where yin and yout refer to input and reconstructed signals, respectively, and E(·) indi-

cates energy of its argument. These comparisons show that the best parameter set pro-

vides a reconstruction which closely matches the input signal (RE=0.035, MSE=0.286

[arb. u.]). Nevertheless, as indicated previously, these results can be still improved as

the signi�cant di�erence for the other parameters suggests.

Further time-frequency analysis and the comparison with other methods is pre-
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sented in Figure 7.8 which contains four time-frequency representations. The top row

of the Figure contains two instantaneous frequency representations; the KurSL repre-

sentation is on the left and the Huang-Hilbert transformation (HHT), i.e. using EMD

decomposition, is on the right. Two heatmaps are presented in the bottom row where

the left and right are short-time Fourier transformation (STFT) and the wavelet trans-

formation (WT), respectively. These time-frequency representations were obtained

using the following settings.

The EMD algorithm in the HHT has been con�gured to use the cubic spline in-

terpolation and to accept an IMF only after �ve consecutive sifting when the number

of zeros and extrema di�ered at most by one. Parameters used to generate presented

STFT and WT were selected based on visual comparison. It was expected that the best

representation for both methods would provide a similar result and that they would be

able to highlight at least three regions of increased activity since the two components

with the highest frequencies have overlapping frequency bands. In the case of spectro-

grams, a set of candidates was obtained by generating all possible combinations of a

variable wγ which consists of the length l, the type τ and the overlap percentage p, i.e.

γ = {l, τ, p}. These parameters are de�ned as l ∈ [0.3, 2.0] (seconds) with 0.1 s step,

τ ∈ {Hann, Tukey (α = 0.25), Tukey (α = 0.5)} and p ∈ {50%, 75%, 80%}. Similarly,

for the WT, a set of scaleograms was computed where the central frequency ω0 was

selected from a range [5, 15] rad
s
with a step 0.25 rad

s
. Such range was chosen as it cov-

ers the majority of frequency bands shown in the individual components' spectrogram

(Fig. 7.2). It was concluded that for the STFT the best set uses 0.9 s long Tukey type

window with the taper fraction α = 0.25 and overlap step p = 75%. In the case of

the Wavelet transform the central frequency was determined to be ω0 = 13 rad
s

as it

describes a periodic increase in high frequencies activity with simultaneous, although

subtle, indication that this is due mixing of two components. Worth highlighting is

also representation obtained when using central frequency ω0 = 6.5 rad
s
presented with

other computed spectrograms and scaleograms in Appendix B.1. Representation with

ω0 = 6.5 rad
s
, even more, emphasises the modulations in frequency, indicating the in-

teraction between all components, and yet preserving bands with close to constant

activity. In all scaleograms, the grey region indicates an area outside of the cone of
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in�uence. For comparison purpose, the STFT and WT results were normalised such

that the maximum value in a region of interest is one, as indicated by the attached

scale bar.

When comparing time-frequency representations for all methods, the one ob-

tained with HHT stands out as it is the only one which indicated more than four

components in the signal. Although the EMD decomposed the signal into 8 IMFs, only

two are used to highlight events where the other representations indicate four compo-

nents, i.e. in the frequency range of f ∈ [5, 15] Hz. An interesting behaviour displayed

in the HHT is the number of deep peaks observed for the �rst component. Excluding

the one that starts the component, all these dips correspond to positions where, in the

KurSL representations, the two fastest components crossover, e.g. at time t ≈ 0.9 s.

Similarly, the STFT and WT have shown a merge and an expanse of two components

in the frequency content, respectively. These methods were also able to identify the

other two components, i.e. at frequencies f ≈ 9 Hz and f ≈ 6 Hz. Both represen-

tations highlight modulations in these components; in case of STFT variations are in

the frequency domain, whereas the WT show changes in component's amplitude. All

these phenomena agree with the KurSL instantaneous frequency representation which

visibly displays variations in all components.

Concluding this experiment, for a simple nonlinear signal the KurSL method re-

sulted in a parameter set, which is close to the one used to generate the signal. Since

the signal was generated using the KurSL model, one would expect that the �tting

mechanism would �nd the optimal values. Although provided results are suboptimal,

the positioning of the best-detected parameters onto the tails of obtained distributions

suggests that the optimisation method has not yet converged and further iterations

would improve the results. Overall, all compared time-frequency representations dis-

play comparable results and highlighting similar behaviour.
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Figure 7.3: The probability distribution of intrinsic frequencies obtained using Gaussian

KDE. Vertical lines indicate representative values of distributions. Blue, yellow and

magenta lines code the maximum value of KDE, median and mean values, respectively.

Red vertical line denotes the maximum a posteriori value of a joint distribution.
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Figure 7.4: The probability distribution of amplitudes obtained using Gaussian KDE.

Vertical lines indicate representative values of distributions. Blue, yellow and magenta

lines code the maximum value of KDE, median and mean values, respectively. Red

vertical line denotes the maximum a posteriori value of a joint distribution.
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Figure 7.5: The probability distribution of phases obtained using Gaussian KDE. Ver-

tical lines indicate representative values of distributions. Blue, yellow and magenta

lines code the maximum value of KDE, median and mean values, respectively. Red

vertical line denotes the maximum a posteriori value of a joint distribution.

7.1.2 Order comparison

The purpose of the second experiment is to demonstrate how the order of the KurSL

method a�ects its performance and representation. For this experiment, an exemplary

synthetic signal was generated. It consists of �ve oscillators that are coupled together

with the 3rd order KurSL process. Values used to create the input signal are presented

in Table 7.3 and were sampled from uniform distributions with ranges ω ∈ [1, 150] rad
s
,

θ ∈ [0, 2π) rad, ρ ∈ [1, 2.5] and k ∈ [−15, 15] rad
s
. The signal was generated for the

time t range t ∈ [0, 3] s with the sampling rate of 200 Hz which relates to resolution in

time dt = 0.005 s and frequency df = 0.33 Hz. Visual representation of the time series

and its Fourier Spectrum are presented in Figures 7.9a and 7.9b, respectively.

The choice of the model and its parameters means that the best reconstruction

should be obtained using the KurSL of at least 3rd order. For the purpose of studying

e�ects of the KurSL order, the experiment has been conducted twice: initially using the

�rst order KurSL and then the third. Both times the algorithm for extracting initial

parameters was executed with the default con�guration, i.e. Eε = 0.1 and no limit on

the number of oscillators. For such con�guration, the method was initiated with �ve
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Figure 7.6: The probability distribution of coupling strengths obtained using Gaussian

KDE. Vertical lines indicate representative values of distributions. Blue, yellow and

magenta lines code the maximum value of KDE, median and mean values, respectively.

Red vertical line denotes the maximum a posteriori value of a joint distribution.

n 1 2 3 4 5

ω [ rad
s
] 12.32 31.42 39.77 60.63 77.66

f [Hz] 1.96 5.00 6.33 9.65 12.36

ρ [arb. u.] 2.00 1.72 2.59 1.64 2.36

Table 7.2: Initial frequencies f and amplitudes r obtained for the simulated signal with

�ve oscillators.
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Figure 7.7: Comparisons of reconstructions obtained for sets corresponding to all ob-

tained parameter estimates. Each row represents reconstruction for a set, which from

the top are global MAP, marginal MAP, median and mean. Left column displays

overlaid reconstructions (red) with an input signal (green). The right column shows

a pointwise di�erence between those signals. Titles denote reconstruction measures,

where residual energy (RE) is de�ned as a mean square error (MSE) divided by the

sum of squares of the input signal.
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Figure 7.8: A comparison of di�erent time-frequency representations computed on

the simple KurSL signal (sec. 7.1.1). The top row contains instantaneous frequency

dynamics obtained via the KurSL and the Huang-Hilbert transformations, respectively

from the left. The bottom row, however, contains time-frequency Fourier (left) and

wavelet (right) spectrogram heatmaps, which were normalised such that the maximum

value is one. Additionally, on all graphs, the black line denotes the instantaneous

frequency of the input components.
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Figure 7.9: Signal generated for order comparison experiment. Exact values for the

KurSL model are presented in Table 7.3 (sec. 7.1.2). Figure (a) displays time series of

the sum of all oscillators, whereas (b) is the Fourier spectrum. Vertical dashed lines

on the spectrum denote peak positions determined by the KurSL method.
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oscillators parameters of which are presented in Table 7.2. The MCMC computation

was set to perform 200 iterations out of which the initial 10% were discarded. More-

over, despite having much larger parameter space than in the previous experiment, i.e.

optimising over 75-dimensional parameter space, 200 walkers were deployed to search

for the best solution. Cumulative results from both the �rst and third KurSL order ex-

periments are shown in Appendix in the form of probability distributions. Four sets of

parameters, i.e. intrinsic frequencies, initial phases, signal's amplitudes and all coupling

strengths, are presented, respectively, in Figures B.2, B.3, B.4 and B.5 for the 1st order

KurSL and Figures B.6, B.7, B.8, B.9, B.10 and B.11 for the 3rd order. Vertical lines

in these plots indicate parameter values which either maximise global likelihood (red)

or were used to generate input signal (black). When comparing probability densities,

one can notice that in case of the 3rd order KurSL there is more signi�cant variability

resulting in a bigger spread in the density. One of the reasons for such behaviour is

higher dimensionality of the parameter space. Size di�erence causes changes within a

single parameter to have a smaller e�ect on the global reconstruction. As it has been

mentioned in Section 5.3, increased number of parameters and iterations can help �nd

the global optimum, but it comes with the computational time cost.

The experiment demonstrates the di�erence between both obtained parameter

sets and the one used to generate the input signal. One can see that for the 1st order

KurSL the distance to the true set is much higher than for the 3rd order KurSL,

which seems to �t the input signal parameters very closely. Reconstructed time series

and their mean square errors (MSE) when compared to the input are presented in

Figures 7.10 and 7.11 for the �rst and third orders, respectively. Rows in these Figures

contain time series for corresponding oscillators with the top row being a sum of all

oscillators. In all graphs, the green colour relates to the generated signal, whereas the

red indicates reconstructed data. As it can be seen, results obtained with the third order

KurSL (MSE=0.244 [arb. u.]) are similar to the input signal. Moreover, despite not

obtaining a perfect �t with the �rst order KurSL, reconstructed time series are visually

comparable to the generated signal (MSE=0.799 [arb. u.]). Noticeable di�erence in the

�fth oscillator suggests that these results are not necessarily the best �t in the entire

parameter space. Similarly to the previous experiment, increased number of walkers
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or the iterations should result in a closer �t.

In this experiment, the higher order method has provided better results. Such

behaviour is expected to be more general since the increase of the order expands the

parameter space granting additional degrees of freedom. The increase of degrees of

freedom makes it more likely for the model to �t the data. However, as has been

discussed in Section 5.3, a better �t does not necessarily mean that results are more

signi�cant, especially when data contain noise. In a trivial case, when the underly-

ing data generation process is simple, there is no need for adding extra complexity

to the model. Likewise, even when dealing with more structurally complex signals,

one might not be interested in extracting its exact representation. It can be argued

that in this experiment the �rst order KurSL has provided with close representation.

Although, the de�nition of closeness depends on the used metric, which itself can be

dependent on the experiment. As provided Figures highlight, a high degree method

produces more prominent variability in parameter distributions. Further improvement

under such conditions requires an increased number of walkers and performing more

iterations, both of which has an apparent computational disadvantage and can signif-

icantly increase the experiment duration. The choice of the method's order can have

a signi�cant impact on the representation. Although it is expected that structurally

complex signals will have a higher order of the underlying generating process, this does

not necessarily require applying complex methods. As discussed in this experiment,

when choosing the order, one needs to balance between the reconstruction's expected

�delity, the precision of estimations and the computational complexity.
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Figure 7.10: Reconstructions obtained using the 1st order KurSL model in the compar-

ison experiment. The �rst row contains the original time series and its reconstruction,

whereas following rows present comparison between respectively generated oscillators.

Green and red colours indicate original and reconstructed time series, respectively.
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Figure 7.11: Reconstructions obtained using the 3rd order KurSL model in the compar-

ison experiment. The �rst row contains the original time series and its reconstruction,

whereas following rows present comparison between respectively generated oscillators.

Green and red colours indicate original and reconstructed time series, respectively.
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7.2 Windowed analysis of a simulated signal

As it has been mentioned in Chapter 3, all systems are a�ected by the environment

in which they are placed. Sometimes such interaction can have a signi�cant e�ect on

the system by changing its properties over time in unpredictable manner. Even if the

system is known to have certain characteristics it might be too di�cult to describe it

based on the whole signal. In these cases, it can be bene�cial to consider short time

frames for which analysis is easier to perform and observe how model parameters vary

in time. One of such techniques is based on performing a sliding window analysis,

where the whole signal is divided into segments and for each one of them a model is �t.

Assuming that the system does not change its properties abruptly, small time shifts

should not have a signi�cant impact on the ideal representation1 and thus parameters

are also expected not to change signi�cantly in time. Furthermore, parameters asso-

ciated with the best �t for a given segment can be used as initial parameters for the

following segment.

Demonstration of such analysis was performed on a synthetic signal generated

with the 3rd order KurSL model. Parameters used in the simulation were sampled

from uniform distributions with ranges ω ∈ [10, 200] rad
s
, θ ∈ [0, 2π) rad, ρ ∈ [0.5, 2]

and k ∈ [−15, 15] rad
s

and all obtained values are presented in Table 7.4. Signal was

generated for time array spanned from 0 to 7 seconds with sampling frequency of

200 Hz. Visualisation of the input time series and its Fourier spectrum are presented in

Figures 7.12a and 7.12b, respectively. Dashed vertical lines on spectrum Figure relate

to 8 most impactful peaks, which were selected by the KurSL algorithm con�gured

to explain energy ratio of Eε = 0.1. For this experiment it was decided to modify

algorithm's parameter to limit it only to the �rst 6 oscillators (red vertical lines) or

equivalently energy ratio Eε = 0.26. Justi�cation for such subjective modi�cation

is based on the purpose of this experiment, which is to present behaviour of dynamic

KurSL. Nevertheless, it is acknowledged that the algorithm for determining parameters

could be improved, e.g. by taking into account a coupling between oscillators which

seems to be responsible for additional wide satellite peaks. Values of all detected peaks

1It is assumed here that the step or changes to the system are not big. If they were signi�cant
they should be identi�ed and included in the model.
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n 1 2 3 4 5 6 7 8

ω [ rad
s
] 88.6 25.9 119.7 40.8 71.8 150.9 135.6 103.4

ω/2π [Hz] 14.1 4.1 19.1 6.5 11.4 24.0 21.6 16.5

ρ [arb. u.] 2.7 0.6 2.3 1.8 1.8 1.1 1.5 1.3

Table 7.5: Initial intrinsic frequencies ω, frequencies f and amplitudes ρ obtained for

dynamical KurSL with simulated signal experiment. Parameters are sorted based on

their detection order. Only the �rst 6 oscillators were used as initial values for the

KurSL method.

are presented in Table 7.5 where they are sorted by the order of detection.

For dynamical analysis signal was divided into 3 s long segments with 1 s step

starting from 0 s. All MCMC optimisation were set to have 300 walkers searching the

parameter space in 300 iterations. For each segment prior parameters' distributions

were assumed to be the best set from the previous segment, except for the �rst win-

dow for which they were determined accordingly to the algorithm assuming Eε = 0.26.

Moreover, a reconstruction threshold was implemented indicating when to stop the

process for current segment. Threshold Th value was set to 0.1, meaning that when-

ever mean square error MSE between the reconstructed SR and input signal SI was

MSE(SR, SI) < 0.1, the simulation for current segment would stop and move to the

following time frame.

Reconstructed time series and their Fourier spectrum are presented in Figure 7.13,

where each row corresponds to a di�erent analysis segment. These results (red) are

compared to the input signal (green) for corresponding segment. For all reconstruc-

tions, independently for time series and spectra a measure of residual energy (RE)

has been calculated as a mean square error (MSE) of reconstruction divided by the

total energy of the input. Interestingly, it can be observed that the RE values di�er

signi�cantly when comparing results for Fourier power spectra and time series. In case

of the former the highest REF value is 0.432, whereas for time series in two cases the

RET value is above 1. Since RE refers to the amount of energy that has not been

explained by the reconstruction, RE > 1 means that additional variability has been

introduced into signal. Such outcome is expected to be a result of di�erence in phases
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Figure 7.12: Signal generated using the 3rd order KurSL model with parameters from

Table 7.4. Figure 7.12a displays time series of a sum of all oscillators, whereas 7.12b

is its normalised Fourier spectrum. Vertical lines on spectrum Figure indicate the �rst

8 detected; red colour denotes 6 �rst peaks and the following 2 are in green.

when comparing components in the input system with corresponding components in

the reconstruction. The reasoning is in accordance with observed similarities in pre-

sented Fourier power spectra which contain only information about the amount of given

frequency without any notion of its phase. Nevertheless, it is noticeable that with the

increase of segment's order the �tting performance also increases. This is a result of

parameters estimation propagation from previous to the following segments. Quanti-

tatively one can compare time series and spectrum RE values of the �rst segment for

which RET = 2.094 and REF = 0.432 with the last segment for which RET = 0.619 and

REF = 0.124. The decrease is more than threefold implying signi�cant improvement.

Increase of performance as a function of segment's position order can be also ob-

served in dynamics of all parameters. From all reconstructions the best parameter sets

were compared and their results are presented in Figures B.12 for intrinsic frequen-

cies, B.13 for phases, B.14 for amplitudes and B.15, B.16, B.17 for, respectively, the

�rst, second and third coupling k strengths. In all these �gures and for all parameters

black vertical line indicates the actual value used to generate synthetic signal. One can

see that at segment starting with time t = 0 s almost all estimated values have the

biggest de�ection from the truth when compared to other segments for which the values

are relatively similar. This is especially visible in the amplitude and intrinsic frequency

parameters. As it has been already mentioned, the element that distinguishes the �rst
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Figure 7.13: Comparison between reconstructed (red) and the synthetic input (green)

signals presented for all analysed segments (sec. 7.2). Left and right columns contain

overlaid time series and their Fourier spectra for each segment respectively.
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segment is the process in which the initial parameters are estimated. The following

segments take their estimates as the most optimal values from the previous. For the

initial segment, however, estimates are based on the peak �tting algorithm 1 which

focuses on �nding oscillator's intrinsic frequencies' positions and amplitudes. Estimat-

ing coupling factors is di�cult as they can have many e�ects on the spectrum such

as widening peak, introducing satellite peaks or shifting coupled oscillators towards

each other. Unfortunately, as mentioned in Section 6.1.2, most coupling estimating

methods are un�t for the KurSL purpose as they assume the input to be multivariate.

For this reason, unless parameters are input with speci�ed ranges, the optimisation

method considers relatively wide scope of search and big variance when proposing ini-

tial values. Under such procedure it is unlikely to quickly �nd a good global estimate

and thus more iterations and walkers are necessary. One of possible approaches to

increase performance of optimisation method is to increase sample size of input data,

which would impose additional constrains on cost function. However, extending scope

of input invalidates the assumption on which the dynamic approach is based, i.e. that

whole signal has too complex structure and dividing it into smaller segments allows for

more accurate representation. This then allows to analyse how parameters change in

time, enhancing general understanding of the system. Overall one has to balance the

costs of applying any method depending on availability of all resources.

Presented experiment shows that for more structurally complex signals it is ad-

vantages to perform dynamical analysis. This allows for improved reconstruction per-

formance due to more accurate initial estimations of parameter. Additionally, this

suggests that in cases when analysis in stationary manner does not produce satisfying

results and visual inspection suggests that these results could be improved, one could

attempt analyse the data again using the best estimates. As it has been discussed,

such procedure should mitigate imperfections of the estimating algorithm.
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7.3 Analysis of empirical EEG signals

In this section, two experiments on empirical data are presented and discussed. The

�rst one focuses on a short stationary signal and its analysis performed using the KurSL

of 3rd order. Section 7.3.1 explains the experiment and presents obtained results. In the

second experiment (sec. 7.3.2) input signal is analysed with a moving window KurSL

3rd order method. All data used in the experiments are EEG signals provided by [154]

and are freely available to access2. Each signal from this dataset was digitised at a

sampling frequency of 173.61 Hz and has the length of 4096 samples. The authors

have also �ltered all included signals using a band-pass �lter with cut o� frequencies

0.53 and 40 Hz (12 dB/oct). The characteristic of the data is that they were recorded

from patients su�ering from epilepsy and some of the recordings were recorded during

an epileptic seizure. Such signals are interesting from the analysis perspective, as

they often have visibly periodic structure, signi�cantly di�erent to normal state EEG.

The precise mechanism behind this phenomenon is yet to be discovered; however, it

is commonly considered to be a result of abnormal synchronisation and increase of

coupling between speci�c brain regions [155�157].

The purpose of this section is to provide an exemplary scheme on how empirical

signals can be analysed using the KurSL method. Despite having some intuition regard-

ing the nature of the data generating system, the exact underlying process is unknown.

This makes such analysis di�cult to validate objectively and thus no claims regarding

the true decomposition should be made. Nevertheless, some general characteristics,

such as increased activity at a particular frequency, are expected to be observed.

7.3.1 Static EEG analysis

In the �rst experiment on an empirical signal, EEG recordings are analysed in a sta-

tionary manner. The signal comes from a dataset provided by authors of [154], where

it has a code F11. It was recorded from within the epileptogenic zone in a relaxed

and awake state with eyes opened. The analysis concentrates on the �rst 10 seconds of

the EEG signal for which the Figure 7.14 presents its time series and frequency power

2Web address to the data is provided in the main article and on the author's webpage.
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Figure 7.14: Empirical EEG time series (Fig. 7.14a) and their Fourier spectrum

(Fig. 7.14b) used in the experiment with the 3rd order KurSL method (sec. 7.3.1).

spectrum. In the �gure, one can see that the spectrum consists of a slowly decaying

background noise and three distinct peaks at frequencies F = {2.24, 4.55, 6.82} Hz.

The second and third values appear to be very close to integer multiples, 2 and 3 re-

spectively, of the �rst frequency indicating that they are its harmonics. This suggests

that within the signal there is a pattern which repeats itself with the primary frequency,

although its shape is not sinusoidal. Under such circumstances, this behaviour could be

explained either by proposing a periodic pattern and attempting to �nd its structure

or as many strongly coupled harmonic oscillators. The KurSL method focuses on the

latter approach.

The KurSL method was initiated with parameters estimated according to the
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algorithm provided in Section 6.2 with the energy ratio set to Eε = 0.2. An increase

of the energy ratio Eε compared to a typical value of 0.1 is due to a high amount of

background noise spread throughout the spectrum. Under such conditions, 3 oscillators

were obtained with their initial values presented in Table 7.7. Identi�ed oscillators

could be harmonics as the second and third oscillator have frequency values close to

2 and 3 times of the �rst (fundamental) frequency, respectively. As noted previously

this suggests that there is a strong coupling within the system.

Unfortunately, the strength and form of coupling are di�cult to determine with-

out knowing much about the system which generated the signal. A higher value of the

KurSL order means that the model is more �exible and can explain a broader range

of signals; however, it is also more susceptible to conform to the noise. For this rea-

son, the processing algorithm in this experiment was updated with an extra step to

�nd the most suitable order value for this signal. The �tting procedure started with

initial parameters determined using the peak matching algorithm and assumption that

there is no coupling between oscillators. Once the optimisation algorithm �nished the

KurSL model its complexity has been modi�ed by increasing the order number and

�tting updated model again. The new model was initiated with the best parameters

from the previous run and added coupling parameters were set to 0. The experiment

stopped upon �nding optimum for order M = 4.

For each parameter optimisation MCMC run for 600 iterations and 6 walkers per

parameter, where the number of parameters is given by

#param(N ,M) = N (3 +M(N − 1)), (7.2)

where N and M are the number of oscillators and the order, respectively, which for

this experiment evaluates to 54 for 0 order KurSL and 252 walkers for KurSL of order

4. Since every �tting starts with the best estimate from the previous step and only

accepts better reconstruction, it is natural for the error to go down with a higher order

number. Di�culties here are twofold: not only with the increase of order number the

�exibility increases, which can lead to focusing on reconstructing noise, but also the

computational cost raises. For this experiment, which is to determine a parameter

set for oscillatory empirical signal, more emphasis should be given to derivative of the
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Table 7.6: Cost values obtained for di�erent orders M of KurSL model.

M 0 1 2 3 4

# Parameters 9 15 21 27 33

Cost [µV2] 2157.4 2098.8 1995.2 1924.2 1879.4

Di�erence [µV2] � -58.6 -103.6 -71.0 -44.8

Table 7.7: Initial parameters used in the stationary EEG experiment.

n ω [ rad
s
] θ [rad] ρ [µV]

1 42.86 3.51 20.52

2 28.60 1.93 24.04

3 14.32 6.09 26.35

cost curve and not their absolute values. Reconstruction errors and their di�erences

divided by the change in the number of parameters are presented in Table 7.6 and Fig-

ure 7.15. These resources con�rm that the reconstruction error indeed is monotonically

decreasing with the increase of the model's order. The di�erence, however, has visibly

the biggest increase in error reduction when moving from the 1st to 2nd order. Such

reduction suggests that the rate of improvement decreases for orders bigger than 2. For

this reason KurSL of order M = 2 was considered to be su�cient model, capturing the

most of signal's characteristics with the least necessary number of parameters.

The best set of parameters, i.e. the one that maximises joint probability distri-

bution and minimises cost function, is presented in Table 7.8. Components produced

with these parameters are shown in Figure 7.17 where the �rst row compares the input

signal with model's reconstruction, and the following rows correspond to respective

KurSL oscillator (red) and its instantaneous amplitude (blue). It can be seen that all

amplitudes have signi�cant variations. Of all oscillators, the �rst one has the least

modulations. For two other oscillators, the amplitude changes about up to 10 µV,

which for the oscillator 2 is about 50% of its maximum de�ection. Both these oscilla-

tors have sharp peaks which appear in pair with increased activity in the input signal.

Nevertheless, despite similarities in behaviour, the reconstruction does not adequately

capture the structure of the input time series.
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Figure 7.15: Cost values (Fig. 7.15a) and their piecewise di�erences divided by the

change in the number of parameters (Fig. 7.15b). These results were obtained for a

range of order M values in a stationary EEG experiment.

Table 7.8: Parameters that minimised the cost function when used 3rd order KurSL

model on EEG stationary signal.

k1
ij [

rad
s
] k2

ij [
rad
s
] k3

ij [
rad
s
]

n ω [ rad
s
] θ [rad] ρ [µV] 1 2 3 1 2 3 1 2 3

1 44.79 0.76 15.28 -1.73 -3.97 -6.09 0.53 -6.20 -0.48

2 27.51 3.47 27.69 -1.52 -3.63 6.38 -0.76 -4.38 3.14

3 13.44 6.28 55.97 -1.81 1.98 -1.62 -0.11 -0.02 0.50
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Unfortunately, as it has been stated before, the exact mechanism behind the

system generating EEG epilepsy data is unknown. Lack of this knowledge limits the

methods performance validation and whether the decomposition and obtained parame-

ters have empirical meaning. Nevertheless, one can infer something about the method's

properties by comparing its results to the input signal itself, and to results obtained

with other data analysis methods.

The general approach of validating obtained results is to compare their �t to the

input signal. Such comparisons are presented in Figure 7.16, where overlaid reconstruc-

tion (red) and the original (green) signals are presented in both time (Fig. 7.16a) and

Fourier frequency (Fig. 7.16b) domains, respectively. The visual comparison indicates

that the KurSL method has proposed a signal which follows the general oscillatory

trend of the input. Reconstruction has identi�ed all dips, although in many instances

their depths are not exact. The di�erence is due to a skewed structure of the in-

put signal, making it di�cult to �t both crests and sharp troughs. An attempt for

quantitative comparison is through the residual energy (RE) metric. Despite imper-

fect reconstruction, a model with only three oscillators was able to explain about half

(RE = 0.514) of the energy in time series. Relatively good �t can also be observed

when comparing Fourier spectra. The location of all peaks has been successfully iden-

ti�ed with amplitudes of the fundamental component and its �rst harmonic closely

matching their counterparts. In case of the second harmonic, it seems that peak's

amplitude could be possibly bigger, which might suggest that obtained results are not

necessarily the best global �t. However, with only these three components the visible

residual energy is RE = 0.365. Quantitative di�erence between both comparisons is

expected as the power spectrum only re�ects the existence of particular frequency and

loses all information about its phase and modulations. Nevertheless, additional com-

ponents could be included to reconstruct the signal better. Further error reduction

might include modelling the noise separately and removing it from the data. Using the

KurSL model, this could be done by assuming many strongly coupled oscillators with

intrinsic frequencies evenly spaced within the observed frequency space.

As expected from harmonic series there is an additional peak located close to

frequency 9 Hz. Its small amplitude, comparable with the level of surrounding noise,
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Figure 7.16: Comparison between input EEG signal and its KurSL reconstruction

(sec. 7.3.1). In both time (Fig. 7.16a) and Fourier (Fig. 7.16b) domains, EEG and

reconstructed signals are indicated by green an red, respectively. For both comparisons

computed residual energy (RE), i.e. energy of piecewise di�erence divided by energy of

the input (7.1), is included in the title for a particular �gure.
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manner �tted oscillators (red) with their instantaneous amplitudes (blue).
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makes it di�cult to be noticed. Nevertheless, the proposed KurSL reconstruction

has indicated a small peak at a location close to 9 Hz. This peak is a result of a

strong coupling which can produce behaviour noticeable in the Fourier spectrum as

satellite peaks to the coupled oscillators. It has been observed that relative position of

these satellite peaks to the component peak is approximately equal to the di�erence

in intrinsic frequencies of strongly coupled oscillators. In a case when two consecutive

harmonics are interacting, e.g. fn = nf0 and fn+1 = (n+ 1)f0, their di�erence is equal

to the fundamental frequency f0, which is making the satellite peak fs to appear as

another harmonic, fs = fn+1 + f0 = (n + 2)f0 = fn+2. Such behaviour could also

explain why there are two peaks reconstructed visible close to 2nd harmonic (f2 ≈ 6.5):

one is due to the explicit inclusion of the third oscillator, and the other is a result of

coupling between the �rst and second oscillators.

Another validation of the method that can be done is to compare its results with

those obtained through other methods. Here, the KurSL time-frequency (TF) repre-

sentation is compared with the short-time Fourier transform (STFT), wavelet trans-

formation (WT) and Huang-Hilbert transformation (HHT). The window length for the

spectrogram was chosen to maximise the frequency resolution but with a constraint to

acknowledge the slow variation in the amplitude. The shortest visible length of the am-

plitude modulation, and thus the longest considered window, starts and ends around 4 s

and 6 s, respectively, which accounts for about 2 s (sample size NFT = 2bffsc = 346).

Keeping such length constant, it was visually veri�ed that the spectrogram computed

using the Hann window type and 75% overlap provides the clearest representation. In

the case of the WT, the scaleogram was obtained using the Morlet wavelet with the

central frequency set to ω0 = 7 rad
s
. Such central frequency, when used with a dyadic

scale a, allows to match events at Fourier frequencies f = ω0+
√

2+ω2

4πa
≈ 2.25

a
Hz [31],

which closely match those present in the epilepsy F11 signal at 2.24 Hz and 4.55 Hz

for scales a = 1 and a = 0.5, respectively. For comparison purpose some additional

examples of spectrograms and scaleograms computed with di�erent parameters are pre-

sented in Appendix B.18. In case of the HHT representation, EMD was con�gured to

accept IMFs after they have been sifted HF = 5 consecutive times with the di�erence

in the number of zero-crossings and extrema to be at most one. Such setting produced
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the smallest variance in the frequency domain when contrasted with other values of

HF .

Figure 7.18 presents the comparison of all computed TF representations. The top

row from the left shows instantaneous frequencies for the KurSL and HHT methods,

whereas the bottom row in the same order contains spectrogram and scaleogram. Ad-

ditionally, the HHT representation is presented without the �rst component, as its high

variance hinders readability by overlapping other components. In fact, the variance of

the second (blue) and third (green) components is signi�cant enough to obstruct any

inference about the content with high frequencies. Its fourth component (red), how-

ever, manifests existence of an event with a smaller mean frequency (about 2 Hz) and

less variability. This component agrees with the other representations. Interestingly

both STFT and WT highlight a sudden drop in the amplitude of that component just

before the fourth and after the sixth second. In case of the KurSL, these events are

indicated by the change in variation, which is not visible in the time domain (Fig. 7.17).

Although this might appear as an indication of di�erent behaviours, the decrease in

spectral amplitude and change in the variation of instantaneous frequency highlight the

same phenomena. STFT and WT have a �nite resolution in TF; thus, they highlight

the density within de�ned ranges, which also increases when the variation increases.

Similar behaviour is observed by these three methods for components located closely

to frequencies 4.5 Hz and 7 Hz. Again, both STFT and WT indicate a sudden drop in

amplitude. They also agree on the decrease of the overall intensity in the �rst segment,

i.e. before 4th s, is smaller than the rest. This event, however, was not captured by the

KurSL either in the TF representation or in the time domain (Fig. 7.17). Given that

STFT and WT indicate extra activity for higher frequencies, it is speculated that an

injection of additional oscillators into the KurSL system could better re�ect mentioned

behaviours and improve overall reconstruction.

In conclusion, the result provided by the KurSL method agrees overall with those

obtained through STFT and WT. They all indicated activities at similar positions in

time-frequency representation. All these methods have provided more insightful repre-

sentation than HHT, which in this particular case provided incomprehensible results.

The advantage of KurSL shown in this experiment is its ability to highlight variations
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Figure 7.18: A comparison between di�erent time-frequency representations for pro-

vided EEG signal (Sec. 7.3.1). The top row from left presents instantaneous frequency

dynamics obtained with the 3rd order KurSL and the Huang-Hilbert transformation,

where the EMD was con�gured with HF = 5. The bottom left panel holds spectrogram

obtained using STFT with about 2 s window and 75% overlap. The scaleogram pre-

sented in the bottom right corner was obtained with the Morlet wavelet of ω0 = 7 rad
s
.

Both spectrogram and scaleogram were normalised such that the maximum value is 1

and the progression scale is presented on the right.

182



in the system through a �nite and relatively small number of oscillators. Although

such representation does not explain entirely the behaviour of the system, it is ex-

pected that by increasing the KurSL model's complexity one would be able to provide

more detailed representation.

7.3.2 Dynamic EEG analysis

This section describes another experiment with an empirical EEG signal. In this case,

the analysis is performed using a moving window to capture changes in the system.

The EEG recording comes from the same database as for the previous example, i.e.

database [154], where its code is S63. The measurement comes from a scalp during col-

lected during an epileptic seizure. Such behaviour presents itself as a strong modulation

of a particular period. Graphical representation of these time series and their Fourier

spectrum are shown in Figures 7.19a and 7.19b, respectively. From these graphs, one

can see that the patter have well-de�ned periodic structure manifested as an oscillation

of 6 Hz with two less visible harmonics at 12 Hz and 18 Hz. Similarly to the previous

experiment, presented here analysis assumes that such composition can be explained as

a few tightly coupled oscillators in a noisy environment. Here it is explicitly considered

that the KurSL is not able to fully explain all of the observed behaviours within the

system. Such limitation might be because of the presence of non-oscillatory objects

that in�uence the rest of environment. Nevertheless, identi�cation could be made by

assuming that on short segments the majority of observed behaviour is indeed due to

coupled oscillators. Moving such window one would observe small perturbation to the

�tted system and thus identifying how the oscillatory model evolves.

The experiment was performed using segments of 4 s length, which allows identi-

fying Fourier frequencies with a resolution of f∆ = 0.25 Hz. Each of segments started

0.5 s after the previous one making a a total of 12 segments used for analysis. Such

settings mean that the �rst and the last segments describe signal in ranges 0�4 s and

6�10 s, respectively. The initial number of the KurSL oscillators and their parameters

were initiated using the peak detection algorithm (Alg. 1). Because of the assump-

tion that the following segments are a result of the slightly perturbed KurSL system

and unknown changes in the environment, one should use the �rst segment to initiate
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Figure 7.19: EEG signal used in the empirical dynamic analysis. Figure 7.19a contains

time domain representation, whereas the Fourier spectrum is presented in Figure 7.19b.
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the description process. For this reason, initial oscillators were identi�ed using the

signal in range 0�4 s for which the time series and Fourier spectrum are presented in

Figures 7.20a and 7.20b, respectively. Due to visible noise in the spectrum and ex-

plicit assumption regarding system's content, the energy ratio Eε was set to a value

Eε = 0.25. Such setting allowed to identify six oscillators which positions are presented

in Table 7.9 and graphically overlaid with the Fourier spectrum. The algorithm has

correctly matched oscillations with the main peak at 6 Hz and its harmonics. Inter-

estingly, the importance and complex shape of the dominant peak were highlighted by

representing it as two oscillators. Such dual representation means that after removing

the spike in the �rst iteration, the residual energy was large enough to consider it again

in following iterations but with a smaller amplitude. In case of identi�ed peaks at po-

sitions close to 2 Hz and 9 Hz, these are di�cult to notice in the original spectrum due

to general high background activity. This lack of contrast makes it di�cult to provide

meaning to these selections. Nevertheless, apparent activity in these regions justi�es

the attempt to include oscillators of such properties; they these provide additional

means to reconstruct the signal.

Same as in the previous experiment with empirical EEG signal (Sec. 7.3.2), the

order of the KurSL method was determined by evaluating the reconstruction cost using

di�erent orders. Again, the KurSL �tting was performed for 600 iterations and the

number of walkers given as #walkers = 54 + 4 · #param(N ,M), where the number of

parameters #param is given by (7.2). With six oscillators and the order value M in

range 0�4, inclusive, the formula provides values of #walkers = [126, 246, 366, 486, 606].

Initial parameters for the computation with M = 0 were estimated using the peak

detection algorithm, and the following order evaluations used the best set obtained for

the previous order. As in the previous experiment, added coupling values were initiated

with zeros. For each order M and the best parameter set, a residual energy metric

value was computed. All obtained numerical values are presented in Table 7.10, and

their graphical interpretation is displayed in Figure 7.21. These results indicate that

the best improvement with an increase of the KurSL M is from M = 1 to M = 2.

Although M = 2 does not provide the best result, such order value was decided to be

used in further analysis as it improves the system the most with the least number of
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Table 7.9: Initial parameters used in the dynamic EEG experiment.

n 1 2 3 4 5 6

ω [ rad
s

] 113.48 76.52 58.26 38.36 34.27 11.88

ω/2π [Hz] 18.06 12.18 9.27 6.11 5.45 1.89

θ [rad] 5.55 0.17 6.18 3.38 3.38 5.48

ρ [µV] 10.81 35.51 15.80 17.66 48.05 15.75

Table 7.10: Cost values obtained for di�erent KurSL model orders M in the dynamic

KurSL experiment on EEG signal.

M 0 1 2 3 4

# Parameters 18 48 78 108 138

Cost [µV2] 8597.8 8274.3 7312.1 7103.2 6502.9

Di�erence [µV2] � -323.5 -962.3 -208.9 -600.2

parameters.

Obtained results for the selected order M = 2 and their comparison with the in-

put in the time and Fourier frequency domains are presented in Figure 7.22. Comparing

visually Fourier spectra of both signals one can see a general agreement between the

reconstruction and the input. The similarity is additionally con�rmed by the residual

energy metric RE = 0.307, which is close to assumed surrounding noise level set as an

energy ratio 0.25. Such positive result is because the comparison in Fourier spectrum

does not take into account instantaneous phase; thus it provides a simpli�ed com-

parison. The simpli�cation is con�rmed when comparing signals directly in the time

domain. As the residual energy RE = 0.487 indicates, the KurSL was able to explain

only half of the energy. Interestingly, for time t > 2 s a sudden signi�cant improve-

ment in �tting occurs. This match is in contrast to the preceding period, for which

a di�erence in amplitudes in noticeable despite preservation of a general oscillatory

structure. Figure 7.23 presents time series (red) and instantaneous amplitude (blue) of

identi�ed KurSL oscillators in all rows, except for the �rst row where the comparison

between reconstruction and the input is shown. From these graphs, it is di�cult to

observe signi�cant changes in any individual oscillator. This subtlety suggests that the
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(b) Fourier spectrum

Figure 7.20: EEG signal used in the empirical dynamic analysis. Figure 7.20a contains

time domain representation, whereas the Fourier spectrum is presented in Figure 7.20b.
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Figure 7.21: Cost values (Fig. 7.21a) and their piecewise di�erences divided by the

change in the number of parameters (Fig. 7.21b). These results were obtained for a

range of order M values used in the dynamic EEG experiment.

improvement in reconstruction is a result of synchronisation between all oscillators. It

also suggests that the following segments should observe improvements in �tting.

The KurSL analysis for all segments followed the same procedure as for the �rst

one. For each window, the initial parameters were assigned as the best set from the

previous segment. With such setting all obtained residual energy numerical values, for

both time series RET and Fourier frequency REF , are presented in Table 7.11. A visual

comparison between these values is presented in Figure 7.24 where RET and REF are

indicated with solid blue and dashed red lines, respectively. Despite observing small

variations within the domain, these values seem to be bound to a small numerical range.

No substantial changes in the residual energy RE suggests that identi�ed oscillators

are present in the whole recording, although not necessarily with the same state at

each window. These states and their dynamics are presented in Appendix grouped

by intrinsic frequencies (Fig. B.19), phases (Fig. B.20), initial amplitudes (Fig. B.21)

and coupling strengths of the �rst (Fig. B.22) and the second (Fig. B.23) orders. In all

�gures, the x-axis is the initial value of a time window domain, meaning that all �gures

have 12 points evenly spaced from 0 to 5.5 s inclusive. These results highlight that

indeed the observed system is not composed of only coupled oscillators since obtained

values changes for each segment. The magnitude of variance depends on the oscillator

and inspected segment. Unfortunately, all obtained results are di�cult to interpret on

their own, without knowing what is exactly happening within the system. The KurSL
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Table 7.11: Obtained residual energy (RE) values for all segments in the KurSL win-

dow analysis on the EEG signal. Measures RET and REF refer to RE obtained from

comparison in the time and Fourier frequency domains, respectively, at window which

initial position is indicated by tseg.

tseg [s] 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

RET 0.487 0.468 0.532 0.467 0.468 0.499 0.615 0.520 0.549 0.544 0.449 0.471

REF 0.307 0.300 0.332 0.260 0.253 0.250 0.366 0.338 0.276 0.336 0.239 0.215

method provides a quantitative description of the system, but the domain specialist

should perform analysis of its results.

Results obtained through the KurSL were additionally compared with the Huang-

Hilbert transform (HHT), short-time Fourier transform (STFT) and wavelet transform

(WT). The comparison of all time-frequency (TF) representations are presented in

Figure 7.25, where from the top left in the clockwise order panels refer to the KurSL

and HHT spectral maps, then WT scaleogram and STFT spectrogram. Parameters

for the STFT and WT representations were selected based on a visual comparison,

similarly to the approach in the simulated signal (Section 7.1.1). Given three visible

regions of increased activity in the Fourier spectrum 7.19b, in this case, it was also

expected that the representation for both methods would provide a similar result at

three frequency bands. Candidates for the STFT were obtained by generating all

possible combinations of wγ, where γ = {l, τ, p} and l ∈ [0.5s, 4.0s] with the step

0.25 s, τ ∈ {Hann, Tukey (α = 0.25), Tukey (α = 0.5)} and p ∈ {50%, 75%, 90%}. In

the case of scaleograms, they were computed with the central frequency ω0 in range 3�

7 rad
s
(step 0.2), for which the Fourier frequencies are 4 Hz and 9 Hz, respectively, when

the scale a = 2−3 [31]. For the STFT the best set was selected to use 2 s long Hann

window with a overlap step p = 75%. Such window length allows for the frequency

resolution of 0.5 Hz which is enough to highlight increased activity and gaps between

them. In the case of the Wavelet transform the central frequency was determined to

be ω0 = 5 rad
s

for which the Fourier frequency is f(a = 2−3) = 6.5 Hz. Such frequency

not only closely matches the most dominant peak in the Fourier spectrum (Fig. 7.19b)

but also provides similar representation to the spectrogram. Few examples of other

computed candidates are shown in Appendix B.24. The HHT was evaluated on the
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Figure 7.22: Comparison between the �rst segment of the EEG signal and its KurSL

reconstruction (sec. 7.3.2). In both time (Fig. 7.22a) and Fourier (Fig. 7.22b) domains,

EEG and reconstructed signals are indicated by green an red, respectively. For both

comparisons computed residual energy (RE), i.e. energy of piecewise di�erence divided

by energy of the input (7.1), is included in the title for a particular �gure.
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Figure 7.23: The �gure represents the KurSL reconstruction of the �rst segment of the

EEG signal in dynamic experiment (sec. 7.3.2). The �rst row contains the EEG time

series in green and its KurSL reconstruction in red. Following rows present in frequency

decreasing manner �tted oscillators (red) with their instantaneous amplitudes (blue).
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Figure 7.24: All residual energy RE values obtained for the dynamic KurSL approach

used with the EEG signals. Solid blue and dashed red lines indicate residual energy

for time series RET and Fourier frequency REF , respectively.

whole 9.5 s signal using cubic splines and the default stopping criteria [17]. For ease of

comparison with other methods, obtained instantaneous frequencies were binned into

a two-dimensional histogram with time and frequency resolutions of 0.1 s and 0.25 Hz,

respectively. With such projection, it is possible to present all components in a readable

manner despite high variance in some components. The same steps were applied to

the KurSL results. Such projection was required due to overlapping analysis windows,

which are causing discontinuities in the KurSL instantaneous frequencies. With such

representation, it is possible to observe collective instantaneous frequency in the whole

signal.

The only behaviour that is strongly highlighted by all representations is the ac-

tivity centred around the dominant frequency f = 6 Hz where a sudden change in

behaviour appears close to the time t = 5 s through a variation in the density. Other

components are either highlighted di�erently or missed. For example, only the KurSL

and HHT have consistently indicated an activity with slow frequency f = 2.5 Hz.

Spectrogram and scaleogram's activities in this region are also visible but less pro-

nounced. The di�erence in intensity of the slow component is because the spectrogram

and scaleogram are scaled by the amplitude of the component, whereas constructed

representations of the KurSL and HHT only indicate a component's existence.This

means that from such presentation of KurSL and HHT methods it is di�cult to inter-
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pret which, if any, is the base frequency. Further Figure investigation shows that except

for the HHTs, all representations have shown a component centred close to frequency

f = 12 Hz and its sudden change in behaviour at a position close to t = 5 s, although

it might be di�cult to observe from the graph. Additionally, the KurSL and STFT

show activity of the second subharmonic with frequency f ≈ 18 Hz. The reason for

this component to have limited visibility in the scaleogram is due to selected dyadic

scale resolution. It is expected that with a di�erent scale resolution this component

would also be highlighted by WT. In contrast, it is theoretically uncertain whether any

modi�cations to HHT con�guration could improve its representation. An empirical at-

tempt to improve the spectral map by modifying EMD con�guration has shown little

di�erence in the representation. Because of this, it is acknowledged that for given signal

the HHT has provided the worst TF representation with the rest methods providing

similar results.

In summary, despite not obtaining complete reconstructions in either time or fre-

quency domains, the KurSL method provided with similar insights about the data as

the other time-frequency representation methods. The advantage of using dynamical

approach is in observing how the parameters change, which can highlight some prop-

erties of the signal. In this example, the analysis con�rmed the appropriate choice of

dominant frequencies and their behaviour changes. It is di�cult to determine whether

there are any patterns in such behaviour by merely observing dynamics of all param-

eters. These changes could be a result of both in�uences from the non-deterministic

behaviour of the environment and incorrect assumption of the model's order. Selec-

tion of higher order would improve the reconstruction in both cases; however, it would

also increase the chance of over�tting to the noise. A mitigation to the threat, as with

other signal processing methods, could be a consultation with an expert in the domain,

who would be able to interpret the result by associating them with certain physical

phenomena.
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Figure 7.25: A comparison between di�erent time-frequency representations for the

EEG signal of 9.5 s length. In a clockwise order starting from the top right, panels

present Huang-Hilbert transformation spectral map, scaleogram using Morlet wavelet

with central frequency ω0 = 5 rad
s
, STFT with 2 s window and 0.5 s step and a spectral

map obtained from all KurSL windows. All representations were scaled separately to

the highest value of 1, and they use the same colour dynamic as indicated by the legend.

The grey area in the scaleogram indicates regions outside the cone of in�uence.
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7.4 Conclusion

In this Chapter, an application of the KurSL method has been discussed through

experiments on synthetic and empirical signals. The purpose of these examples was to

demonstrate the usage of the KurSL, its adaptation progress and the meaning of its

results. The KurSL model was also used to generate the synthetic signals which allowed

to demonstrate and discuss obtained results easily. Such a choice also makes sure that

the condition to analyse a system consists of mutually interacting oscillators is met.

Although other models could generate such signal, knowing underlying parameters

allows to control and validate the method's performance.

The purpose of the �rst example (Section 7.1.1) was to introduce how the KurSL

method works and how one can infer its performance based on the results. The focus

of the second analysis (Section 7.1.2) was to show how the order of the KurSL method

can a�ect its performance. In the last experiment on the synthetic data, the analysis

was performed in a dynamical approach, i.e. by dividing the signal into segments which

bene�ted from the estimates on the previous window. Based on these results, additional

examples were presented on the brain signals. The selection of such origin is due to

the common assumption that the underlying system is based on mixing oscillatory

components [9, 11�13]. These signals were analysed in two experiments performed in

stationary and dynamical approaches.

The �rst step in the KurSL method is to estimate the initial parameters for the

optimisation process. These are obtained by using algorithm 1 (sec. 6.1.2) which it-

eratively removes the most prominent peak from the input signal's Fourier spectrum.

Despite being successful in estimating initial intrinsic frequencies, phases and ampli-

tudes, it is unable to determine the values of coupling factors. As it has been discussed

in Section 7.2, the di�culty is due to non-unique e�ects that the coupling has on the

spectrum. Depending on the coupling function, its strength and interacting oscillators

it has been observed that the e�ects can include widening of the peak in the spectrum,

the appearance of satellite peaks or shifting positions of these oscillators towards each

other. For this reason, oscillators are initially assumed to be isolated, i.e. coupling

terms k = 0, with assigned relatively wide probability distribution function (pdf) on

having interactions. Such an approach provides excellent performance on signals com-
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posed of few oscillators with relatively simple interaction. In case of more complex

structures, however, as presented in Section 7.2, lack of this information may hinder

the performance. The imperfections of the algorithm can be mitigated by reapply-

ing the method to the signal using for initial parameters the best parameter set from

the previous execution. Reassigning pdf with new expected locations one shifts and

broadens the search space around the previous best result. One might also increase

the number of walkers, iterations and the variance of initial pdf. These modi�cations

would increase both the search space of the best parameters and the computational

complexity, making the optimisation process run longer.

The KurSL method provides as a result pdf for all parameters. Few experiments

attempted to provide meaning to this property by presenting its marginal distributions.

In most cases, obtained distributions have a form of a single peak although their shapes

can vary signi�cantly. As it has been discussed in the �rst experiment (sec. 7.1) the

global maximum a posteriori (MAP) values are not necessarily in the mode position of

any marginal distribution. Moreover, it is expected that sometimes these distributions

will have multimodal shapes. An example of an observed binomial distribution is

presented in Figure 7.6. Multimodal distributions are expected especially when two or

more oscillators with similar properties are nearby. Since the method does not make

any distinction between oscillators, it is possible that they would occasionally swap

positions.

In presented experiments, the results of the KurSL method has also been com-

pared with other time-frequency representation methods, i.e. Huang-Hilbert Transform

(HHT), short-time Fourier Transform (STFT) and Wavelet transform (WT). It is ac-

knowledged that direct comparison of a scaleogram and spectrogram with KurSL's

results is not possible since the former provides intensity levels within the prede�ned

time and frequency ranges, whereas the latter provides a model to generate compo-

nents without any resolution limits. Nevertheless, such comparison is bene�cial since

if there is any activity within the analysed time series, it should appear in any time-

frequency representation regardless of its construction. Based on the presented results

in this chapter, one can infer that indeed the KurSL indicates components that are

also visible in spectrograms and scaleograms. However, as indicated, the advantage of
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the KurSL is that it provides a model that can generate instantaneous features and

directly explain their behaviour.

Out of all provided time-frequency representations results provided by the HHT

stand out. Only when analysing a relatively simple signal, i.e. four coupled oscillators,

a few of obtained IMFs have instantaneous frequencies that re�ect the content. How-

ever, where other methods have suggested only a few components, the HHT showed

signi�cantly more components. The additional oscillators contain low frequency, not

present in other representations. When acting on more complex signals such as noisy

EEG time series presented in the previous section, the HHT produces components with

a little match to those presented by other methods. Despite repeated decompositions

with a modi�ed setting to select the best decomposition in respect to frequency con-

tent some of these components have overlapping or negative frequencies. Obtained sets

contain a coupled of IMFs with a high frequency and variance, and many more with

low frequency. Such results are consistent with Flandrin and Rilling's observations [58]

that the EMD treats highly complex signals as noise and acts on these like a dyadic

�lter. Since it is a greedy algorithm, all incorrect extractions propagate artefacts to

the following IMFs. Due to being an empirical method, the HHT not only has limita-

tions on the number of components related to the number of samples, but the Nyquist

frequency limits its frequency range. In contrast, the KurSL does not have such limita-

tions. Since the result is a model �t to the system's properties, if required, one can use

it to interpolate between observations. In a case when the initial values are unknown,

the KurSL will start by extracting the most impactful oscillators and will attempt to

add components until a su�cient energy threshold is reached. This approach reduces

chances to over�t to noise and extract the only required number of oscillators. More-

over, the HHT only extract components and their instantaneous frequency which then

requires additional steps to identify what these mean.

In the case of empirical signals, it is impossible to assess which method provided

the most accurate insights. Such a comparison requires expert knowledge and the un-

derstanding of system's functionality to validate the real components. Nevertheless,

since three methods have obtained similar representations, it is expected that they are

performing comparably well. An advantage that comes with the KurSL is its underly-
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ing model which can fully explain oscillatory systems. Knowing the parameters with

which the signal was generated allows simulating its dynamics without any resolution

constriction. It also allows observing how the behaviour would change if the system

were placed in a di�erent environment. Such studies are crucial when learning about

the system, and the KurSL tries to help in understanding the oscillatory systems.
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Chapter 8

Conclusion

8.1 Summary

The study introduces a new data-driven method for describing systems that contain

mutually interacting oscillators. The method uses the KurSL model, which is com-

posed of two well-studied components, i.e. the Kuramoto coupling model and the

Sturm-Liouville oscillation theory. As discussed in Chapter 5, both these components

describe oscillators, although their approach di�ers. The Kuramoto coupling model

describes how a set of oscillators can interact with each other through complex interac-

tions in the phase domain. The Sturm-Liouville theory, however, characterises possible

observations of generally de�ned oscillations independent from the surrounding. As a

combination of these two components, the KurSL model can describe the dynamics

of a system with objects expressing periodical behaviour and capable of interacting

with one another. The model is essential due to the abundance of such examples, i.e.

oscillators with amplitude- and phase-modulations. In fact, it is impossible to observe

in nature any object isolated from the rest of the environment or where no external

forces are applied, and thus leaving dynamics una�ected. The KurSL model explicitly

acknowledges and emphasises such interactions. When the method is applied to a sig-

nal, it assumes that it was generated through a physical process. Knowing how the

signal was created, i.e. knowing the processes within the system, allows for recreation

of the data and in-depth analysis of the system's behaviour.

The advantage of the KurSL over commonly used methods is that the method
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is not restricted to linear or stationary signals containing oscillations. Its components

are estimated based on the provided data and inherently allow for the possibility of

interactions within the system. In the case when there is no coupling between any

oscillator, the KurSL will extract components in the form of harmonic oscillators,

mimicking the behaviour of the Fourier series and converging as such.

The method's adaptation to data is performed in a two-step procedure. It �rstly

estimates parameters from data's properties and then, based on these estimates, opti-

mises the cost function with Markov Chain Monte Carlo (MCMC). Such a choice of the

heuristic optimisation method is due to the non-convex shape of the cost function. As it

has been shown in Section 5.2, some properties of the KurSL model can be estimated

through the analysis of the Fourier spectrum. It has been observed that dominant

peaks in the spectrum are related to the main oscillators in the system. This allows

estimating the number of oscillators and their intrinsic frequencies as well as initial

phases and amplitudes. These parameters are automatically detected for a signal by

applying an algorithm presented in Section 6.2 which are then passed into the MCMC.

Finally, the search for a global optimum in a cost function de�ned as the di�erence

between the reconstruction of the model and input data.

The whole procedure of applying the method to di�erent types of data has been

presented in Chapter 7. Experiments were conducted on both synthetic and empirical

data. Their purpose was to highlight the KurSL performance and the implication of

di�erent con�gurations. After demonstrating the method (sec. 7.1.1) and the impact

of order selection (sec. 7.1.2), additional analysis has been performed on the empirical

EEG signal (sec. 7.3.1). It has been presented that general properties of a signal

with a complex structure can be well approximated by assuming a small number of

coupled oscillators. Moreover, the usage of the KurSL in a dynamic manner has been

demonstrated in Sections 7.2 and 7.3.2. Dividing a signal into segments and utilising

the best estimates from the previous window, one can improve results for the segment

in focus. Such approach also allows for observing how the system can evolve in time

and use these observations to create more precise model. If, for example, one knows the

structure of a model at a particular window, shifting its position allows to extrapolate

the rest of the signal. Analysis performed in a dynamical manner have been applied
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both to synthetic and empirical EEG data with promising results.

In experiments conducted in Chapter 7, the KurSL method was often compared to

other time-frequency representation methods, namely Huang-Hilbert transform (HHT),

short-time Fourier transform (STFT) and wavelet transform (WT). For a simple in-

put signal which is composed of few oscillators, all methods have provided comparable

results, i.e. highlighting activity in similar regions. However, di�erences emerged with

the increase of complexity. In case of empirical signals, the decomposition provided by

HHT was heavily contaminated with considerable variance noise, making it di�cult

to compare visually. The obtained representation disagree with the rest of representa-

tions despite removing the most obscure components. For the most of signals, results

obtained through the KurSL, STFT and WT methods closely agreed with each other.

However, the di�culty of the interpretation has been observed when analysing empirical

signals. Due to visual contrasting and �nite resolution of the STFT and WT meth-

ods, the KurSL is considered to provide a more detailed representation. By knowing

the exact construction of the system, the KurSL can explicitly evaluate instantaneous

frequency. This allows for better understanding of the state and its reference to other

components.

Although the focus in the thesis is mainly on time series decomposition and time-

frequency representation, it needs to be emphasised that this can only be achieved by

having an e�ective connectivity model at the method's core. As discussed in section 3.2

such model allows describing properties of connections between components within a

system. Approaches discussed in that section similarly attempt to �nd the parameters

for a model to explain the data. In that regard, the biggest similarities can be found

between the KurSL and the dynamical Bayesian inference (DBI). Both methods use

the Bayesian inference probabilistic approach which allows deducing the most likely

parameters under which the data could have been observed. Such probabilistic ap-

proach allows these methods to �t a model with a general coupling form and observe

its parameters dynamics by updating their probability distributions through window

shift. There are also di�erences between these methods, and the main one is in the

assumed interactions. The DBI provides a method to extract a general model of weak

interactions, whereas the KurSL explicitly models phase and amplitude dynamics. In
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situations when there are no amplitude modulations, they should provide similar re-

sults. Otherwise, the KurSL does not require any additional steps for extracting the

phase and can be directly applied to amplitude dynamics. However, to the bene�t of

the DBI is its quick convergence, requiring only a few iterations of evaluating formulas.

This is in contrast to computationally demanding KurSL which utilises MCMC and

thus needs to perform a signi�cant number of numerical integrations to search the pa-

rameter space. These extra operations signi�cantly decrease the chance of over�tting

a model and provide a better estimate of posterior distributions.

The KurSL method can provide insights into the system composed of coupled

oscillations. It does that both quantitatively and qualitatively, making it especially

suitable for research on dynamical systems. The de�nition on the KurSL explicitly

models phase and amplitude modulations, making the method directly applicable to

time series without any additional conversion to the phase space. This thesis con-

tributes to science by providing an adaptive and robust tool for studying complex

systems of interacting oscillators.

8.2 Open questions

The introduction of a new tool for analysing systems and generated data opens many

paths for exciting research. One of the paths can be devoted to better understand

the interactions between oscillators within a system. Although it is a broad research

area, it is a promising area with the most signi�cant impact on the KurSL. Being able

to determine what are the implications of di�erent coupling orders and their values

could not only allow for a better estimation of the initial coupling terms kmi,j, but also

provide with more precise estimation on the number of oscillators N . Providing these

estimates would signi�cantly improve method's robustness and computational perfor-

mance. Moreover, obtaining narrower estimates for parameters could additionally limit

the possibility of overlapping search spaces and swapping of positions by the walkers.

An appropriate estimation also reduces the complexity of the method to the necessary

and the most suitable. Such restriction should mitigate the problem of over�tting the

model.
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Additional interesting opportunity lays in creating multivariate method. In this

thesis, the KurSL method has only discussed where the input is in the form of a single

variable time series observation. Such scope is equivalent to recording a system with

a single recorder. Increasing the number of recorders and placing them in unique

locations would mean that due to di�erent distances observations would be perceived

with di�erent delays. However, they all monitor the same system; therefore, they

all should indicate precisely the same parameters. Incorporating multivariate elements

into the KurSL method should bene�t from utilising an additional source of information

under a little cost of including the delay parameters. Additionally, signal gathered by

a di�erent recorder would presumably propagate through a di�erent path and thus be

in�uenced di�erently by the surrounding. Each recording would be contaminated with

di�erent noise making it easier to be removed from the data.

An attractive challenge, which could signi�cantly in�uence the rest of the re-

search, lays in improving the computational complexity and performance. The model

is de�ned by a set of coupled di�erential equations which complexity scales as O(N2M),

where N and M are the number of oscillators and harmonics, respectively. Current

implementation of the KurSL method takes about 20 minutes to perform 10 iterations

�tting eight oscillators with three harmonics or six oscillators with �ve harmonics. One

of the main goals is to decrease the computation time, which would allow for research

with a fast feedback. Improvement could be obtained by changing the software im-

plementation platform. For studies reported in this thesis, the whole programme was

written in Python programming language, which is a high-level programming language.

It is expected that implementing the method in a lower-level language, perhaps Go or

C++, and utilising parallel computational architecture, such as graphical processing

units, would decrease computational time by at least an order of magnitude. Never-

theless, the most improvement should be obtained by removing the need for numerical

simulations and providing analytical solutions. The current software implementation

is open source and freely available to download from author's homepage [125]. The

page will contain all improvements and additional implementations of the method and

model.
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Appendix A

Additional information

A.1 Systems

A system is a set of distinct states whose temporal change is be determined [158]. The

complexity of the states depends on the structure of the system and the environment

in which it is embedded. Some systems can be considered as a set of subsystems, i.e.

units, which on their own would be considered systems. These subsystems, however,

could be in�uenced by environment and thus would produce di�erent states if isolated.

Depending on system's properties they can be classi�ed for example by their linearity

of stationarity.

Linearity

A system is linear if the output of the sum of independent input components is the

same as it would be when passed inputs independently. That is, given two independent

inputs x(t) and y(t). If system H behaves in such way, that H(x(t)) = X(t) and

H(y(t)) = Y (t), then the operator H is called linear if

H (αx(t) + βy(t)) = αX(t) + βY (t), (A.1)

where α and β are scalar weights.

An example of a linear system can be a simple model of harmonic oscillator
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de�ned by a formula

H (x(t)) = m
d2x

dt2
+ kx, (A.2)

where m and k are some constants. If the input is sum of two independent states

x(t) = αy(t) + βz(t) then

H (x(t)) = md2x
dt2

+ kx

= md2(αy(t)+βz(t))
dt2

+ k(αy(t) + βz(t))

= αmd2y
dt2

+ αky + βmd2z
dt2

+ βkz

= αH (y(t)) + βH (z(t)) .

(A.3)

Stationarity

Stationarity property is determined by a dynamic of states, i.e. a process. A stochastic

process in which joint probability distribution stays the same regardless of the obser-

vation time is called stationary. Likewise, if the system is not stationary, it is classi�ed

as non-stationary. However, such de�nition is rigorous and in empirical signals rarely

meet this condition. Commonly in signal processing community, an approximation of

this property is used. The de�nition for stationarity in weak-sense, referring to only

two �rst moments of a signal, is presented in De�nition 2.

De�nition 2. If {Xt, t ∈ Z} (a stochastic process) satis�es properties

1. E{Xt+τ} = µX , ∀τ ∈ Z;

2. Cov {Xt, Xt+τ} = sX,τ , ∀t, τ ∈ Z;

where E and Cov refer to expected value and covariance, then {Xt} is said to be sta-

tionary (second order).

A.2 Hilbert transform

The term analytic signal refers to the fact that its values are complex numbers. These

provide both information about the amplitude and the phase at each time point. One
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of the most popular methods for transforming a measured signal, which is real, into an

analytic on is a Hilbert transform. The linear operator acting on a time series s(t) is

de�ned through the signal's convolution with Cauchy's kernel (KC(t) = 1/t)

H(s)(t) =
1

π
P.V.

∫ ∞
−∞

s(τ)

t− τ
dτ, (A.4)

where P.V. is Cauchy's principal value. Operator H can alternatively be de�ned with

limits [151] as

H(s)(t) = − 1

π
lim
ε→0

∫ ∞
ε

s(t+ τ)− s(t− τ)

τ
dτ. (A.5)

If s ∈ Lp(R) for 1 < p <∞, then the limit of (A.5) is well de�ned for almost every t.

In the physical sense, this operator removes all negative frequencies and doubles

the positive [14]. Hilbert transform can be simpli�ed with the use of Fourier transform

as

F(H(u))(ω) = (−isgn(ω))F(u)(ω), (A.6)

where sgn is signum function, and F is Fourier Transform. The analytic signal, con-

structed on real-value f time series, is thus de�ned as

Af = f(t) + iH(f)(t). (A.7)

A.3 Bedrosian identity

Computing the Hilbert transform of the product of two functions can be simpli�ed

with the help of an identity known as Bedrosian identity. The original formulation of

the theorem by Bedrosian (also proven in [130]) is as follows:

Theorem 5. Let f(x) and g(x) denote general complex functions in L2(R) of the real

variable x. If

1. the Fourier transform F (u) of f(x) vanishes for |u| > a and the Fourier transform

G(u) of g(x) vanishes for |u| < a, where a is an arbitrary positive constant, or

2. f(x) and g(x) are analytic, i.e. their real and imaginary parts are Hilbert pairs,
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then the Hilbert transform of the product of f(x) and g(x) is given by

H [f(x)g(x)] = f(x)H [g(x)] . (A.8)

Over time more generic versions have been proposed. One of them is introduced

in terms of the Fourier transform [159] as shown in Theorem 6.

Theorem 6. Let f ∈ W 1,2(R) and g ∈ L2(R). Then the Hilbert transform of function

fg satis�es the Bedrosian identity (A.8) if and only if

∫ 0

−1

∫
R

ω

t2
e2iπxω(t+1)/tf̂

(ω
t

)
ĝ(ω)dωdt = 0, (A.9)

where f̂ refers to Fourier transform of function f .

All this interest is motivated by the attempts to characterise analytic function

constructed from real-valued one. Any real part of an analytic function can be consid-

ered as a product of amplitude and phase functions, that is x(t) = a(t) cos(φ(t)). The

Hilbert Transform of the function is y(t) = H(x(t)) = −ia(t) sin(φ(t)). This allows

to fully restore analytic function c(t) = x(t) + iy(t) = a(t) exp(iφ(t)) as well as its

components a(t) = |c(t)| and φ(t) = arctan
(
y(t)
x(t)

)
.
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Hann: l=0.9 s, p: 75% Morlet ω0 = 6.5 rad
s

Tukey (α = 0.5): l=1 s, p: 80% Morlet ω0 = 9 rad
s

Hann: l=1 s, p: 75% Morlet ω0 = 11.75 rad
s

Tukey (α = 0.25): l=2 s, p: 75% Morlet ω0 = 15 rad
s

Figure B.1: Di�erent time-frequency representations of the generated signal using the

KurSL model with parameters from Table 7.1 which was used in the simple stationary

experiment with 4 oscillators (Section 7.1.1). Column on the left represents spectro-

grams for which respective labels denote window's type, its length l and the percentage

overlap p. The right column shows scaleograms in order from the top computed using

the Morlet wavelets with central frequencies ω0 = {5, 6.5, 9, 11.75, 15} rad
s
, respectively.

All values were scaled such that the smallest and largest for any plot are zero and one

with the colour dynamic presented in the bottom right corner.
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Figure B.2: The probability density for intrinsic frequency values obtained for the 1st

order KurSL in the comparison experiment. All values are in rad/s units. Red vertical

lines mark the global optima found for respective parameters. Values used to generate

the input signal are indicated by a black dashed line.
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Figure B.3: The probability density for phase values obtained for the 1st order KurSL

in the comparison experiment. All values are in radians. Red vertical lines marks

the global optima found for respective parameters. Values used to generate the input

signal are indicated by a black dashed line.
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Figure B.4: The probability density for amplitude values obtained for the 1st order

KurSL in the comparison experiment. All amplitude values are in arbitrary units. Red

vertical lines marks the global optima found for respective parameters. Values used to

generate the input signal are indicated by a black dashed line.
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Figure B.5: The probability density for coupling strength values obtained for the 1st

order KurSL in the comparison experiment. All coupling values are in rad/s units. Red

vertical lines marks the global optima found for respective parameters. Values used to

generate the input signal are indicated by a black dashed line.
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Figure B.6: The probability density for intrinsic frequencies values obtained for the 3rd

order KurSL in the comparison experiment. All values are in rad/s units. Red vertical

lines marks the global optima found for respective parameters. Values used to generate

the input signal are indicated by a black dashed line.
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Figure B.7: The probability density for phase values obtained for the 3rd order KurSL

in the comparison experiment. All values are in radians. Red vertical lines marks

the global optima found for respective parameters. Values used to generate the input

signal are indicated by a black dashed line.
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Figure B.8: The probability density for amplitude values obtained for the 3rd order

KurSL in the comparison experiment. All amplitude values are in arbitrary units. Red

vertical lines marks the global optima found for respective parameters. Values used to

generate the input signal are indicated by a black dashed line.
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Figure B.9: The probability density for coupling scaling values related to the �rst

harmonic obtained for the 3rd order KurSL in the comparison experiment. All coupling

values are in rad/s units. Red vertical lines marks the global optima found for respective

parameters. Values used to generate the input signal are indicated by a black dashed

line.
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Figure B.10: The probability density for coupling scaling values related to the second

harmonic obtained for the 3rd order KurSL in the comparison experiment. All coupling

values are in rad/s units. Red vertical lines marks the global optima found for respective

parameters. Values used to generate the input signal are indicated by a black dashed

line.
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Figure B.11: The probability density for coupling scaling values related to the third

harmonic obtained for the 3rd order KurSL in the comparison experiment. All coupling

values are in rad/s units. Red vertical lines marks the global optima found for respective

parameters. Values used to generate the input signal are indicated by a black dashed

line.
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Figure B.12: Evolution of intrinsic frequencies for oscillators as indicated in the title.

Values on x-axis denote initial time value for the respective segment, whereas y-axis

holds range for intrinsic frequency values.
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Figure B.13: Evolution of initial phases for oscillators as indicated in the title. Values

on x-axis denote initial time value for the respective segment, whereas y-axis holds

range for phase values.
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Figure B.14: Evolution of amplitudes for oscillators as indicated in the title. Values on

x-axis denote initial time value for the respective segment, whereas y-axis holds range

for amplitude values.
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Figure B.15: Evolution of the coupling strengths scaling the �rst harmonics between

oscillators indicated in the title. Values on x-axis denote initial time value for the

respective segment, whereas y-axis holds range for coupling values.
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Figure B.16: Evolution of the coupling strengths scaling the second harmonics between

oscillators indicated in the title. Values on x-axis denote initial time value for the

respective segment, whereas y-axis holds range for coupling values.
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Figure B.17: Evolution of the coupling strengths scaling the third harmonics between

oscillators indicated in the title. Values on x-axis denote initial time value for the

respective segment, whereas y-axis holds range for coupling values.
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Figure B.18: Time-frequency representations computed for EEG signal used in sta-

tionary experiment (Sec. 7.3.1). The left column presents spectrogram representations

from the top computed Hann window function using 1 s window with 75% overlap,

2 s window with 50% overlap, 3 s window with 75% overlap and 4 s window with 75%

overlap. For the scaleogram which is presented in the right column all representations

were obtained using Morlet wavelet. Each �gure was obtained with di�erent central

frequency which from the top are ω0 = 5, ω0 = 6, ω0 = 8 and ω0 = 9. Values in

all �gures were scaled such that the maximum for any representation is one and the

progression bar is displayed in the bottom right corner.
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Figure B.19: Evolution of intrinsic frequencies for oscillators as indicated in the title.

Values on x axis denote initial time value for respective segment, whereas y axis holds

range for intrinsic frequency values.
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Figure B.20: Evolution of initial phases for oscillators as indicated in the title. Values

on x axis denote initial time value for respective segment, whereas y axis holds range

for phase values.
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Figure B.21: Evolution of amplitudes for oscillators as indicated in the title. Values

on x axis denote initial time value for respective segment, whereas y axis holds range

for amplitude values in millivolts.
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Figure B.22: Evolution of the coupling strengths scaling the �rst harmonics between

oscillators indicated in the title. Values on x axis denote initial time value for respective

segment, whereas y axis holds range for coupling values.
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Figure B.23: Evolution of the coupling strengths scaling the second harmonics between

oscillators indicated in the title. Values on x axis denote initial time value for respective

segment, whereas y axis holds range for coupling values, whereas y axis holds range for

coupling values.
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Figure B.24: Time-frequency representations computed for EEG signal used in the

experiment with dynamic analysis (Sec. 7.3.2). The left column presents spectrogram

representations from the top computed Hann window function using 1 s window with

90% overlap, 2 s window with 50% overlap, 3 s window with 75% overlap and 4 s

window with 75% overlap. For the scaleogram which is presented in the right column

all representations were obtained using Morlet wavelet. Each �gure was obtained with

di�erent central frequency which from the top are ω0 = 3, ω0 = 4, ω0 = 6 and ω0 = 7.

Values in all �gures were scaled such that the maximum for any representation is one

and the progression bar is displayed in the bottom right corner.
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