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Abstract
Global ecosystem change presents a major challenge to biodiversity conservation,

which must identify and prioritize the most critical threats to species persistence

given limited available funding. Mechanistic models enable robust predictions

under future conditions and can consider multiple stressors in combination. Here

we use an individual-based model (IBM) to predict elephant population size in

Amboseli, southern Kenya, under environmental scenarios incorporating climate

change and anthropogenic habitat loss. The IBM uses projected food availability as

a key driver of elephant population dynamics and relates variation in food avail-

ability to changes in vital demographic rates through an energy budget. Habitat

loss, rather than climate change, represents the most significant threat to the persis-

tence of the Amboseli elephant population in the 21st century and highlights the

importance of collaborations and agreements that preserve space for Amboseli ele-

phants to ensure the population remains resilient to environmental stochasticity.
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1 | INTRODUCTION

African elephants (Loxodonta africana) face an array of
threats, from ivory poaching to negative human-elephant
interactions (HEI), habitat loss, and climate change. Poaching
has been responsible for the drastic reduction of elephant
populations across Africa, from an estimated one million in
1970 (Douglas-Hamilton, 1987) to around 400,000 in 2016
(Chase et al., 2016). Although poaching continues to pose a
threat, the sharing of space between people and elephants in
the face of environmental change is of growing concern.

Limited financial resources available for biodiversity conser-
vation must identify and prioritize responses to future threats.

In 2009 Africa's human population hit one billion, having
doubled since 1982, and it is expected to double again by
2050 (UNDESA, 2017). The associated conversion of natu-
ral habitats into human-dominated landscapes squeezes
wildlife into smaller and increasingly isolated pockets of
land, where resource availability is reduced and dispersal is
constrained. Habitat fragmentation due to human encroach-
ment also increases interactions between humans and wild-
life (Hoare, 1999), where undesirable elephant behaviors
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reduce tolerance by people (Browne-Nunez, Jacobson, &
Vaske, 2013; Dickman, 2010). As the absolute space avail-
able to wildlife declines, climate change may alter the qual-
ity of remaining habitats: rising global temperatures and
CO2 along with shifts in the amount, distribution, and timing
of rainfall are expected to alter vegetative communities, with
implications cascading up the trophic web (Walther, 2010).
Given large body size and range requirements as well a slow
rates of reproduction, elephants are expected to be amongst
the hardest hit by these changes (Martínez-Freiría, Tarroso,
Rebelo, & Brito, 2016).

Food availability is a key driver of elephant population
dynamics (Boult, Quaife, et al., 2018; Rasmussen, Wittemyer, &
Douglas-Hamilton, 2006; Wittemyer, Rasmussen, & Douglas-
Hamilton, 2007) and movement behavior (Bohrer, Beck, Ngene,
Skidmore, & Douglas-Hamilton, 2014; Boult et al., 2018;
Loarie, Van Aarde, & Pimm, 2009), but availability and distribu-
tion are expected to change as environmental conditions shift.
Here we estimate the food available to elephants inhabiting the
Amboseli ecosystem in southern Kenya under projected climate
change and anthropogenic habitat loss scenarios. Projected food
availability is used to drive an individual-based model (IBM)
which predicts vital elephant demographic rates through an
energy budget. IBMs present a powerful tool for future scenario
modelling as their process-based approach maintains their pre-
dictive ability under novel environmental conditions (Stillman,
Railsback, Giske, Berger, & Grimm, 2015) and can capture the
cumulative impacts of multiple environmental changes (Nabe-
Nielsen et al., 2018). Projected elephant population size emerges
from IBM simulations, providing vital information on the poten-
tial outcomes of environmental change scenarios. Results are
used to identify scenarios which pose the greatest threat to the
Amboseli elephants and will aid in prioritizing land management
policy and conservation efforts.

2 | METHODS

2.1 | The individual-based model

We previously developed an IBM relating variation in food
availability to elephant life histories through individuals'
energy budgets (Boult, Quaife, et al., 2018).

The model environment represents the landscape available
to elephants in the Amboseli ecosystem and is characterized
by vegetation biomass, which represents the food available to
elephants. Biomass was estimated using remotely-sensed
measures of vegetation. Specifically, we used the normalized
difference vegetation index (NDVI) retrieved by the Terra
MODIS (Moderate Resolution Imaging Spectroradiometer)
mission as a proxy for vegetation biomass. NDVI was vali-
dated using ground-based measures of vegetation biomass
collected by the Amboseli Elephant Research Project from

1979 to 2018 to provide estimates of food availability
across the landscape over time (see Appendix S1).

The model incorporates females of all ages and males
prior to dispersal from their natal family at approximately
12 years old. Elephants are represented as individuals and
each experiences life processes through its own energy bud-
get. Energy is taken from food available in the environment
and allocated to the energy-expending processes of life by
order of priority (Sibly et al., 2013). Maintenance fuels the
basic processes of life and so takes first priority. If sufficient
energy is available following maintenance, individuals will
commit energy to growth and reproduction, the order of
which depends on age and sex. Sexually immature individ-
uals allocate energy to growth and store any remaining
energy as fat. Sexually mature individuals first cover the
costs of reproduction but continue to grow throughout life if
energy is available. Again, any remaining energy is stored to
be drawn on in times of food limitation. Therefore, when
food is abundant, energy is allocated maximally to mainte-
nance, growth and reproduction, and storage tissues are
accumulated. When food is limited, maintenance takes prior-
ity and growth and reproductive rates reduce. If the costs of
maintenance cannot be met, individuals die. In this way birth
and death rates, and ultimately population size, emerge from
variation in food availability. Further details, including the
equations describing processes in the IBM are included in
the Appendix S1. During initial model development, uncer-
tain parameters were calibrated using approximate Bayesian
computation (ABC) to maximize the fit of the model to the
observed population dynamics of four elephant family
groups from 2000 to 2016. Here, the model was recalibrated
by fitting to historic (2000–2016) data of Amboseli elephant
demographic rates for the whole population (> 50 families),
again using ABC (van der Vaart, Beaumont, Johnston, &
Sibly, 2015) to describe the uncertainty in parameter values
(Figure S1). The uncertainty arising from unknown parame-
ters in the IBM was propagated to population projections in
the climate and habitat scenarios below by running the
model for each of the 30 parameter sets that best fitted his-
toric data. We chose to use the 30 best fitting simulations as
a compromise between including only well-fitting runs and
the need to produce posterior distribution to represent uncer-
tainty in parameter values. Full details of the IBM develop-
ment, parameterization and validation are presented in
Boult, Quaife, et al. (2018).

2.2 | Habitat loss scenarios

The risk of loss of a habitat is not equal across ecosystems
and some areas, such as those with irrigation potential, are
more susceptible to anthropogenic conversion than others.
At present, there is little consensus on how best to predict
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the location and extent of habitat loss. We therefore devel-
oped six possible scenarios of habitat loss for Amboseli
based on empirical data and stakeholder opinion (Figure 1).
We divided the ecosystem into administrative units and
ranked each unit based on change in human population den-
sity (from 1989 and 2009 Kenyan censuses; CBS, 1994;
KNBS, 2013; Figure 1b), incidences of negative HEI
(2014–2018; Big Life Foundation data; Figure 1c), stake-
holder opinion ranking areas based on the likelihood that
elephants would have continued access (Figure 1d; stake-
holders listed in Table S1) and conservation area (CA) status
(KWCA , 2017; Figure 1e and f). We believe these metrics
give a good indication of possible habitat loss: change in
human population density is closely related to habitat con-
version and infrastructural development; in CAs people are
committed to protecting wildlife, supported by economic
benefits; frequency of non-crop-foraging HEIs affect human
tolerance for wildlife and may align with areas that, although
not physically lost to elephants, are avoided by elephants
due to the perceived risks in the area (Roever, van Aarde, &
Chase, 2013; Wittemyer, Keating, Vollrath, & Douglas-
Hamilton, 2017). We excluded crop-foraging because occur-
rence coincides with crop areas near areas of high human
population growth, which is covered in Figure 1b and is geo-
graphically limited to relatively small areas of the ecosystem
where irrigation is possible.

2.3 | Climate change scenarios

We used climate change simulations supplied by the ISI-
MIP 2b project, developed to provide information about the
impacts of different greenhouse gas (GHG) emissions sce-
narios (Warszawski et al., 2014). The ISI-MIP 2b simula-
tions incorporate four general circulation models (GCMs;
GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, and
MIROC-ESM-CHEM) and two representative GHG concen-
tration pathways (RCP2.6 and RCP6.0). The RCP2.6 path-
way is broadly consistent with the United Nations Paris
Agreement targets to limit global temperature rise, and
RCP6.0 produces a roughly 3�C rise in global temperatures
above pre-industrial levels by the year 2100. The ISI-MIP
dataset covers 2006–2099 at a 0.5� × 0.5� resolution and is
bias-corrected to provide long-term agreement with observed
historic data (Hempel, Frieler, Warszawski, Schewe, &
Piontek, 2013).

2.4 | Combined stressor scenarios

Since aspects of environmental change interact and may
have additive or antagonistic effects on elephant demo-
graphics, we also considered the impacts of climate change
and habitat loss in combination. We simulated the IBM

under both HadGEM2-ES emissions scenarios (RCP2.6 and
RCP6.0) for each habitat loss scenario. We chose to only
use HadGEM2-ES as all GCMs showed good agreement in
elephant population projections, but HadGEM2-ES projec-
ted the largest difference between RCPs and thus represented
the greatest uncertainty.

2.5 | Projecting food availability

Food availability is used to drive elephant population
dynamics in the IBM. To determine future food available to
elephants, we projected vegetation biomass under our cli-
mate and habitat scenarios. Biomass is not a standard output
of climate models and as such, we had to develop a means
of projecting it throughout the 21st century. To do so, we
established the historic relationship between biomass and
rainfall in Amboseli (see Appendix S1), then used ISI-MIP
rainfall estimates to project future biomass. We classified
historic Amboseli years 1968–2016 by rainfall collected at
the Amboseli Elephant Research Camp gauge (coordinates:
2.68S, 37.27E) using the standard precipitation index (SPI;
McKee, Doesken, & Kleist, 1993). Amboseli years run from
October to September to align with the annual rainfall cycle
(i.e., Amboseli year 2000 runs October 1999 to September
2000; Croze & Lindsay, 2011). Each Amboseli year was
classified by its SPI as follows: ≥2 = very wet, (1, 2) = wet,
(−1, 1) = normal, (−2, −1) = dry, and < −2 = drought.

The SPI is the World Meteorological Organisation's rec-
ommended index for monitoring rainfall extremes globally
(Hayes, Svoboda, Wall, & Widhalm, 2011) and describes the
deviation of observed rainfall from the climatological average.
Due to its relative simplicity, requiring rainfall data alone, and
its ability to be applied at any timescale, SPI is widely used by
meteorological agencies around the world to monitor rainfall
anomalies (Ntale & Gan, 2003). In addition, SPI has been
shown to relate strongly to vegetation dynamics (Measho,
Chen, Trisurat, Pellikka, & Guo, 2019).

Historic biomass values (2000–2016) were obtained for
the area available to elephants under each habitat loss sce-
nario. Biomass was estimated using NDVI from the Terra-
MODIS (Didan, 2015) mission (see Appendix S1). Specifi-
cally we used the MOD13Q1 product accessed via the Oak
Ridge National Laboratory web service (Vannan, Cook,
Pan, & Wilson, 2011). For each SPI class (very wet, wet, nor-
mal, dry, and drought), we calculated a median biomass value
per month for each area available to elephants. These values
were used to construct monthly biomass time series for the
projected period (2007–2099) under scenarios of habitat loss
only, climate change only and their combined effects.

For habitat loss scenarios, we assumed a stable average
climate throughout and used monthly biomass values from
“normal” SPI years only. For climate scenarios, we first
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FIGURE 1 Predicted Amboseli habitat loss scenarios. Scenarios were based on empirical data and stakeholder opinion. In each scenario, the red and
orange areas are lost. (a) The full-area scenario: Elephants have access to the full extent of the ecosystem. (b) Areas which have experienced the greatest increase
in human population density could be converted to non-habitat and become inaccessible to elephants. (c) Areas with the highest frequency of non-crop-raiding
human-elephant interactions (black points) may be avoided by elephants due to perceived risks. (d) Habitats thought by stakeholders to be unlikely or very
unlikely to remain suitable elephant habitats are lost. (e) Only existing and proposed conservation areas remain suitable, accessible habitats for elephants. (f)
Only existing conservation areas remain suitable, accessible habitats for elephants. We assumed that elephants could move through lost habitats, but that these
areas no longer represented forging opportunities. Arrow = north. Scale bar represents 20 km (divisions of 10 km)
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calculated the SPI of Amboseli years for the projected period
using monthly precipitation totals from the eight ISI-MIP
climate scenarios (four GCMs and two RCPs; Figure S2).
Using monthly biomass values from habitat scenario A
assuming no habitat loss, we arranged monthly biomass
values by projected SPI. In combined scenarios, monthly
biomass was projected according to HadGEM2-ES RCPs
and all habitat loss scenarios.

2.6 | Model simulations

We assumed the elephant population used the available dis-
persal areas evenly. Under habitat loss scenarios, we
assumed that elephants could move through lost habitats, but
that these areas no longer represented foraging opportunities.
Therefore, where scenarios include habitats only accessible
via converted habitats, our projections may be conservative.
We did not model changes in water availability under cli-
mate change (a known limiting factor for elephants:
Chamaillé-Jammes, Fritz, & Madzikanda, 2009) as artificial
water sources and abundant swamps within the ecosystem
currently determine the population distribution. For all sce-
narios, the IBM was simulated from 2007 until 2099 for
each of the 30 best calibrated parameter sets to indicate
uncertainty arising from parameter uncertainty in the IBM.
The IBM was initiated with the known elephant population
on the 1st January 2007. Under habitat loss and combined
scenarios, the area parameter in the IBM was adjusted at
model initiation to indicate the habitat remaining (Table S2)
and population size was recorded at the end of 2099. In cli-
mate simulations, elephant population size was recorded at
the end of each Amboseli year (30th September).

3 | RESULTS

3.1 | Habitat loss projections

Scenario A, in which current ecosystem limits remain
unchanged, shows the elephant population remains stable
around its current size. Habitat loss inevitably reduces the
number of elephants supported by the ecosystem (Figure 2),
though elephant numbers are not directly proportional to the
amount of area lost (Table S2). Scenario B, where habitat is
lost to human population growth, supports fewer elephants
than scenario C, where areas become avoided due to risks
associated with HEI, despite the amount of area lost being
similar. In scenario F, where only existing CAs remain
accessible, the model predicts an approximately 80% reduc-
tion in elephant numbers.

3.2 | Climate change projections

The projected precipitation changes in the four GCMs show
relatively small long-term trends compared to the variability
from year-to-year, and the simulated timing and frequency
of droughts varies across the simulations (Figure S2). Ideally
a larger set of precipitation projections would be used to
account for uncertainty due to precipitation variability and
uncertainty in long-term trends, but only one simulation per
GCM is available in ISI-MIP 2b. There is little agreement
amongst a broader set of GCMs about whether precipitation
will increase or decline over the coming century for the
Amboseli region (Figure S3).

In all climate scenarios, the IBM projected an increase in
the initial elephant population of 1,099 individuals, with
early growth (2007–2015) slowing and stabilizing around
1,250 elephants (Figure 3). The elephant population is thus
not expected to deviate much from the current size under
any climate scenario. Droughts intersperse the time-series
and generate population crashes, as vegetation availability
limits survival and reproduction (Figure 3: arrows), and sub-
sequent population recovery. These dynamics suggest that

FIGURE 2 Projected elephant population size in 2099 and
percent change from the 2017 population for habitat loss scenarios (a–
f) assuming “normal” climates (see methods). Boxplots (median and
interquartile ranges) indicate uncertainty arising from parameters used
in the IBM. Points show outliers. Dashed line = elephant population
size in 2017 (n = 1,247). Maps: Black polygons = remaining elephant
habitats; grey polygons = lost habitats
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drought frequency is an important determinant in population
stability, as regularly recurring droughts may not allow
enough time for population recovery. Frequent droughts
may therefore result in overall population decline and war-
rants future investigation (see Wato et al., 2016). Inter-
quartile ranges for projections indicate that some uncertainty
arises due to parameter values used in the IBM.

3.3 | Combined stressor projections

The combined effects of habitat loss and climate change are
shown in Figure 4. In all habitat scenarios, the higher emis-
sion climate scenario (RCP6.0) projected a larger elephant
population than the low emission scenario, but these differ-
ences were smaller than the differences between habitat
scenarios.

4 | DISCUSSION

Models suggest that habitat loss, rather than climate change,
is the most significant immediate threat to the Amboseli ele-
phants. The elephant population declines under all scenarios
of habitat loss, though declines are not directly proportional
to the amount of area lost since affected areas vary in vegeta-
tion quantity and quality. Despite the areas lost due to
human population growth and HEI (scenarios B and C) rep-
resenting roughly the same total space, our IBM predicted
bigger losses of elephants resulting from human population
growth rather than HEI. This is likely because HEI currently
occurs where people and livestock share space with ele-
phants. Livestock grazing tends to occur on drier land where
crop production is difficult; in contrast, human population
growth is usually concentrated around highly productive and
well-watered areas for farming. This underscores the prob-
lems posed by agricultural encroachment into key foraging
areas for the Amboseli elephants and highlights the need for
landscape-scale planning of human development.

Like many areas, Amboseli faces increasing pressure on
the space and resources available to people and wildlife.
With growing competition, the government has encouraged
people to settle and farm, resulting in widespread subdivi-
sion of land, an expansion of agriculture, and the emergence
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FIGURE 3 Elephant population projections given expected scenarios of climate change. Four GCMs (GFDL, HadGEM, IPSL, and MIROC)
and two GHG emissions scenarios (RCP2.6 and RCP6.0; blue and red lines, respectively) are included to account for uncertainty in climate
projections. Lines = median, shading = interquartile range indicating uncertainty arising from parameters in the IBM, arrows = drought years. The
dashed line shows elephant population size in 2017 (n = 1,247)

FIGURE 4 Elephant population size in 2099 and percent change
from 2017 under combined climate change and habitat loss scenarios.
For each habitat scenario (a–f), the IBM was simulated with RCPs 2.6
(blue) and 6.0 (red). Boxplots (median and interquartile ranges)
indicate uncertainty arising from parameter uncertainty in the IBM.
Points show outliers. The dashed line shows elephant population size in
2017 (n = 1,247). Maps: Black polygons = remaining elephant
habitats; grey polygons = lost habitats
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of many unplanned developments (Croze, Moss, & Lindsay,
2011; Schüßler, Lee, & Stadtmann, 2018). Community
choices and human tolerance will shape Amboseli's conser-
vation success, and our model has begun to identify how
these choices would impact elephants. Scenario E, rep-
resenting the accessibility of only existing and proposed
CAs, suggests that dialogue to promote human-elephant
coexistence beyond the boundaries of CAs may be worth
approximately 800 elephants, or approximately 60% of the
current population. Models predict an approximately 80%
decline, to around 300 elephants supported by the ecosystem
if elephants were confined to existing CAs alone (scenario
F). Such small elephant populations are vulnerable to sto-
chastic perturbations including demographic and environ-
mental stochasticity, and natural disasters (Shaffer, 1981).
Fewer elephants may also decrease tourism revenues
(Naidoo, Fisher, Manica, & Balmford, 2016) which repre-
sent a key component of successful balance between biodi-
versity conservation and socio-economic development in
many African landscapes.

It is impossible to overstate the importance of local com-
munity decisions for the future of Amboseli's elephants, limit-
ing habitat conversion and mitigating HEI to ensure
continued accessibility of the ecosystem for all wildlife.
Amboseli stakeholders are well aware of these needs. Land
management planning is a new part of the Kenyan constitu-
tion, and Amboseli's ecosystem management plan was the
first to be formally gazetted. Amboseli has several projects in
place to ease HEI, including Amboseli Elephant Research
Project's (AERP) livestock loss consolation scheme
(Sayialel & Moss, 2011) and Big Life Foundation's elephant-
proof fence to prevent crop foraging by elephants and the fur-
ther expansion of agriculture (Big Life Foundation, 2017).
More broadly, Amboseli is developing community-led multi-
stakeholder initiatives under the Amboseli Ecosystem Trust,
to promote evidence-based and transparent landscape plan-
ning to balance human and wildlife needs.

The modelling approach taken here will provide a useful
tool for conservation agencies and NGOs. Our model
enables the identification of priority areas and sets out the
challenges for targeted efforts and funding. More specifi-
cally, as Amboseli stakeholders engage in the next round of
ecosystem management planning, our model could be run in
real time in workshop scenarios or community meetings to
simulate the impact of the landscape management strategies
being discussed. The powerful community-led conservation
movement in Kenya is increasingly keen to use real-world
data to evaluate decisions for stakeholders and Amboseli's
data-driven partnership approach is of great interest. Many
African landscapes have enough data to populate their own
versions of the model, which could be adapted for other spe-
cies of conservation concern.

Whilst climate change does not appear to present a signif-
icant direct threat to the Amboseli elephants, we advise cau-
tion based on potential interactions between climate change
and human behavior which may indirectly impact elephants.
For example, more rainfall in the area may draw more peo-
ple seeking to expand and intensify agriculture to the region.
In addition, we have only considered the four GCMs which
participated in the ISI-MIP 2b experiments, and these may
not be fully representative of the broader set of more than
40 different GCMs which participated in the underlying
Coupled Model Intercomparison Project, phase 5 (CMIP5;
Figure S3). We note that if these simulations under-represent
the frequency of droughts then the assessed effect of climate
change on Amboseli elephants would be too small. Another
issue not addressed here is the impact of rising atmospheric
CO2. It is well established that increased CO2 makes vegeta-
tion more tolerant to droughts (Morison, 1985), and hence
the impact of low rainfall on available food may be less than
suggested here. Additionally, increasing CO2 levels are
likely to drive increased bush growth (Devine, McDonald,
Quaife, & Maclean, 2017) and thus not necessarily produce
food limitation for elephants. It is also important to note that
the impacts of climate change on elephant populations will
vary by location given disparities in projected rainfall across
African elephant range states. In southern Africa in particu-
lar, climate projections suggest rainfall will decline
(Serdeczny et al., 2016), potentially resulting in reduced
vegetation productivity and food limitations for elephants.
Alternatively, given the possible alleviating effects of
increased CO2 on vegetation, the more pertinent issue in
areas where rainfall declines may be limitations on the avail-
ability of drinking water.

It should also be noted that our biomass projections are
based on only a short 17-year timeseries of historical data,
potentially introducing biases when projecting food avail-
ability. For example, there was only a single SPI-classified
drought year in the 2000–2016 period and biomass in pro-
jected drought years was necessarily based on this year
alone, potentially introducing bias if the drought year was
unusual.

Our results suggest that while most of the uncertainty
about the future stems from different potential scenarios of
habitat loss, there is significant uncertainty stemming from
unknown parameters in the IBM. The latter will hopefully
reduce as improved methods are developed in data assimila-
tion (see, e.g., van der Vaart, Prangle, & Sibly, 2018).

Further improvements to the model and in turn our popu-
lation projections may be made by addressing the assump-
tion that elephants use the space available to them evenly.
Rather, elephants utilize established home ranges and move
seasonally to maximize resource availability. Movement
decisions are guided not only by food availability, but also
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by perceived risks (Graham, Douglas-Hamilton, Adams, &
Lee, 2009), water availability (Chamaillé-Jammes et al.,
2009), and social companions (Goldenberg, Douglas-Hamil-
ton, & Wittemyer, 2016), among other factors. We acknowl-
edge that incorporating spatially explicit elephant ranging
may alter our results. For example, areas which are deemed
important in terms of food availability may not represent
functional elephant habitats for females and calves due to an
absence of drinking water or cover for resting. Considering
the impacts of climate change and habitat loss on these fac-
tors and thus on elephant space use, will improve the realism
of our modelling and may allow our model to more accu-
rately pinpoint regions of significance for elephants and
identify specific elephant families most at risk from change.

Future efforts must also consider adult males, who
occupy different ecological niches that vary their needs and
interactions with humans (Shannon, Page, Duffy, & Slotow,
2006), and the impacts of other change scenarios, such as
variation in livestock density or demand for ivory, which
may act to exacerbate or alleviate the scenarios presented
here. In addition, while the energy budget included in the
IBM mechanistically relates food availability to demo-
graphic rates, the relationship between rainfall and food
availability is not mechanistically modelled. If we are to
maximize the predictive ability of our model under future
global change, we should seek more realistic representation
of vegetation responses to rainfall. Land surface models may
present the opportunity to simulate vegetation dynamics
based on rainfall projections (Yu et al., 2014).

The approach used here relies on modelling the relation-
ship between food availability and demographic rates. How
food availability is influenced by environmental change is
estimated and underlies IBM predictions of elephant popula-
tion size. We believe IBMs present a strong option for
improving our ability to predict the responses of animal
populations to combined stressors and novel environmental
conditions (Nabe-Nielsen et al., 2018; Stillman et al., 2015).
The IBM employed here uses a general energy budget
framework, calibrated to the Amboseli elephants, and could
be readily adapted for other elephant, or mammalian herbi-
vore, populations. We therefore see that this approach pro-
vides the basis for the development of a broader toolkit for
use by stakeholders to assess the consequences of policy
decisions for animal populations.
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