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Estimation of model accuracy in CASP13 

Abstract 
Methods to reliably estimate the accuracy of 3D models of proteins are both a fundamental part 
of most protein folding pipelines and important for reliable identification of the best models when 
multiple pipelines are used. Here, we describe the progress made from CASP12 to CASP13 in 
the field of estimation of model accuracy (EMA) as seen from the progress of the most 
successful methods in CASP13. We show small but clear progress, i.e. several methods 
perform better than the best methods from CASP12 when tested on CASP13 EMA targets. 
Some progress is driven by applying deep learning and residue-residue contacts to model 
accuracy prediction. We show that the best EMA methods select better models than the best 
servers in CASP13, but that there exists a great potential to improve this further. Also, according 
to the evaluation criteria  based on local similarities, such as lDDT and CAD, it is now clear that 
single model accuracy methods perform relatively better than consensus-based methods. 

Introduction 
Estimation of model accuracy (EMA) is vital for both selecting structural models in protein 
structure prediction and using them appropriately in biomedical research. Many of EMA (or 
quality assessment (QA)) methods1–5 have been developed to tackle this problem. In terms of 
input, EMA methods can be classified as single-model methods3,5–7 and multi-model (or 
consensus) methods8,9. The former takes a single structural model as input to predict its 
accuracy, while the latter uses multiple structural models of a protein as input to estimate their 
accuracy, often leveraging the similarity between the models.  In terms of output, EMA methods 
can be categorized as global accuracy assessment methods10,11 and local accuracy assessment 
methods12, see Table I. The global methods predict a single global score (e.g. GDT-TS score) 
measuring the global accuracy of a whole model, whereas the local methods estimate the local 
accuracy (e.g. the distance deviation from the native position) for each residue in a model. The 
vast majority of local accuracy methods also produce a global estimate of the accuracy. This is 
often done by using the average local accuracy. 
 
Different EMA methods utilize different descriptions of the models. Historically, EMA methods 
were often divided into single and consensus methods. Here, single methods only use a single 
model and predicts the accuracy of that model (or regions of that model), while consensus 
methods compared a set of models and (often) assumed that the more similar they were the 
more likely they were to be correct. In earlier CASPs a category of “quasi-single” methods also 
existed. These methods do not require a set of models, as for the consensus methods, instead 
they compare the model with a set of internally generated models, assuming that the more 
similar the model is to the internally generated models the better it is. Now, many methods 
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combine many of the methods making it hard to exactly classify each method, but we have tried 
to describe the most important features of all our methods in Table I.  
 
Due to its importance, EMA became an independent category in the 7’th Critical Assessment of 
Techniques for Protein Structure Prediction (CASP7) in 2006 and has remained a major open 
challenge of CASP since then. In CASP13, 52 groups including 41 automated server predictors 
from around the world participated in the EMA experiment, which represented a variety of state-
of-the-art methods in the field.  In this work, we summarized the results of the EMA predictors 
from six top-performing labs in the CASP13 experiment. We analyzed the strengths and 
weaknesses of these methods. We investigated the progress in the field from CASP12 to 
CASP13 and identified the major challenges to be overcome in the future. 
 
We show that there has been measurable progress since CASP12. Although direct 
comparisons are difficult, as the targets and underlying methods that generate the targets 
change between CASP seasons, it is clear that progress has been made as novel methods 
outperform the best methods in CASP12. Further, we show that the best EMA methods slightly 
outperform the best servers when it comes to selecting one model per target. 

Methods 
 
A summary of all methods can be found in Table I. Below is a brief description of the CASP13 
predictors of the six top-performing groups.  

Cheng group  - MULTICOM_CLUSTER, MULTICOM-CONSTRUCT, 
MULTICOM-NOVEL 
We benchmarked three new deep learning-based EMA servers (MULTICOM_CLUSTER, 
MULTICOM-CONSTRUCT, and MULTICOM-NOVEL) in CASP13.  
 
MULTICOM_CLUSTER and MULTICOM-CONSTRUCT servers are the consensus-based 
methods for estimating the accuracy of protein structural models. Different from the linear 
combination of scores from multiple quality assessment methods in CASP11 and CASP12 4, in 
CASP13, we applied deep learning and ensemble techniques to integrate a wide variety of 
accuracy scores and inter-residue contact predictions for predicting the global accuracy of 
models 13. Given a pool of models, the methods first use SCWRL14 to repack their side-chains to 
make them consistent. They then generate several 3D accuracy scores for each model by using 
9 single-model QA methods (i.e. SBROD15, OPUS_PSP16, RF_CB_SRS_OD17, Rwplus18, 
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DeepQA19, ProQ26, ProQ320, Dope21 and Voronota22) as well as three consensus-based QA 
methods (i.e. APOLLO23, Pcons8, and ModFOLDclust224). In addition, they incorporate the novel 
2D contact features, i.e. the percentage of predicted inter-residue contacts (i.e. top L/5 short-
range, medium-range and long-range contacts predicted by DNCON225) existing in a model. 
Several 1D sequence features are also used to score models including the agreement between 
the secondary structure and solvent accessibility predicted from the protein sequence and the 
ones parsed from the models26,27. The 1D, 2D and 3D features are used by the deep neural 
network method (DeepRank) to predict the global accuracy score (GDT_TS) of each model13. 
We used the predicted structures of CASP8-11 targets to train 10 deep neural networks via 10-
fold cross-validation. All input features of each model are fed into the 10 pre-trained networks to 
generate 10 accuracy scores (GDT_TS score). For MULTICOM-CONSTRUCT server, the 10 
accuracy scores are simply averaged as a final global score for each model. For 
MULTICOM_CLUSTER server, the 10 predicted accuracy scores are concatenated with the 
initial input features as the input for another deep neural network to predict the final accuracy 
score. Prior to CASP13, we benchmarked the performance of the two DeepRank-based 
methods on CASP12 targets along with our previous methods tested in the CASP11 and 
CASP12 that did not use deep learning and contact features4. The results showed that applying 
the deep neural network to integrate a set of accuracy scores and contact features achieved 
significant improvement over our methods used in CASP11 and CASP12 and outperformed all 
individual features on model ranking and selection.  
 
MULTICOM-NOVEL server is a single-model accuracy assessment method that predicts the 
global accuracy and local (residual-specific) accuracy of protein structural models using a one-
dimensional deep convolutional neural network (1D-CNN) 28. The 1D-CNN was trained using a 
multi-task learning framework to predict the local scores of residues as well as the global 
accuracy (GDT-TS score) of a model. The objective of using the multi-task learning is to study 
whether global and local accuracy predictions can synergistically interact to improve the overall 
prediction performance. Given a structural model, the method first generates several residue-
specific features and model-specific energies, which include (1) 20-digit amino acid encoding of 
each residue, (2) position specific scoring matrix (PSSM) profile of each residue derived from 
the multiple sequence alignment of the protein, (3) predicted disorder state of each residue, (4) 
the agreement between the secondary structure and solvent accessibility of each residue 
predicted from the sequence and the ones parsed from the model, (5) Rosetta energies of each 
residue used in the ProQ320, and (6) six global knowledge-based potentials or features of the 
model produced by ModelEvaluator29, Dope21, RWplus17, Qprob30, GOAP31, and Surface 
score19. For the local accuracy prediction, 1D-CNN uses the feature vector of length L (L: 
sequence length) as input to predict the S-score  𝑆(𝑑)  = 1

1+( 𝑑𝑑0
)2

 for each residue in the model, 

where d is the distance deviation between the position of the residue in the model and that in 

This article is protected by copyright. All rights reserved.

https://paperpile.com/c/rgtnek/y1lO
https://paperpile.com/c/rgtnek/CnFB
https://paperpile.com/c/rgtnek/4Y5e
https://paperpile.com/c/rgtnek/1wjZ
https://paperpile.com/c/rgtnek/zHxN
https://paperpile.com/c/rgtnek/HQTC
https://paperpile.com/c/rgtnek/dauV
https://paperpile.com/c/rgtnek/2j22
https://paperpile.com/c/rgtnek/cXIO
https://paperpile.com/c/rgtnek/pGRD
https://paperpile.com/c/rgtnek/E02D
https://paperpile.com/c/rgtnek/QvfG
https://paperpile.com/c/rgtnek/uDSV
https://paperpile.com/c/rgtnek/chRx
https://paperpile.com/c/rgtnek/4Y5e
https://paperpile.com/c/rgtnek/egJZ
https://paperpile.com/c/rgtnek/1wjZ
https://paperpile.com/c/rgtnek/CEJ4
https://paperpile.com/c/rgtnek/7h4E
https://paperpile.com/c/rgtnek/gT13
https://paperpile.com/c/rgtnek/y1lO


Estimation of model accuracy in CASP13 

the native structure and d0 is set to 3.0 Å. The predicted S-score can be converted back to the 
distance d. For the global accuracy prediction, the global accuracy score of a model is derived 
by averaging the local accuracy predictions of residues directly using the formula 
1
𝐿
∑𝐿𝑖=1

1

1+(𝑑𝑖𝑑0
)2

. The 1D-CNN was trained on the structural models of the single-domain 

protein targets of CASP8, 9, 10 and evaluated on the models of CASP11 and CASP12 targets. 
The source code of the method is available at https://github.com/multicom-toolbox/CNNQA. 
 

Elofsson group - ProQ3D and ProQ4 
Since the development of ProQres12 for local predictions ProQ has been one of the best single-
model EMA methods in CASP1,20,32–34. All versions of ProQ has been developed continuously 
using the same strategy. Each residue in the protein model is described by a number of 
structural, sequence and prediction features. These features are then combined and compared 
to each other using different window sizes, including window sizes that includes the entire 
model. Finally a machine learning method is used to predict the error (accuracy) for each 
residue. ProQres, ProQ2, ProQ3 and ProQ3D are trained to predict the S-score, which 
correlates well with GDT_TS when the average S-score is used to estimate the global accuracy. 
 
We participated with ProQ3D (in several versions) and ProQ4 in CASP13. In short, the different 
ProQ methods can be summarized as follows: Starting from ProQ2 developed by the Wallner 
lab6 we developed ProQ3 a few years ago by adding additional carefully tuned input features 
describing the accuracy of a protein model20. ProQ3 was one of the best methods in 
CASP121,6,20. Both ProQ2 and ProQ3 uses a simple linear SVM to combine the many input 
features when estimating the accuracy of a model. In ProQ3D we replaced the simple SVM with 
a multilayer perceptron, thanks to the rapid improvement in training deep learning neural 
networks using GPUs 35. A preliminary version of ProQ3D was used in CASP12 - but in 
CASP13 we used the final version which outperforms ProQ3 in almost all measures. In addition 
to the default version of ProQ3D which is trained to predict the S-score36, we developed several 
versions that were trained to predict other model accuracy scores37. These predictors are 
named ProQ3D-TM, ProQ3D-CAD and ProQ3D-lDDT.  
 
In CASP13 we also used a preliminary version of ProQ438 - based on a distinct and novel 
approach. ProQ4 is using a simplified description of a protein model and an advanced deep 
learning approach. The target function is trained on the LDDT score (as ProQ3D-LDDT), while 
the protein model is described only by structural features given by DSSP27,37 (dihedral angles, 
relative surface area, and secondary structure). Finally, the sequence is described by simple 
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statistical features, such as entropy of each column in the multiple sequence alignment, and 
does not include predicted features as in ProQ3D. The underlying architecture is a deep 
convolutional network. However, the main difference between ProQ4 and other methods is that 
the network is trained using a comparative approach: at every iteration, two models from the 
same target are presented, and the network is trained to predict not only the scores of each 
model but also which one is better. Thereby it is possible to augment the data and to take 
advantage of the structure of the problem and it improves the ability to rank models. 
 
ProQ3D is available as a web server and standalone at proq3.bioinfo.se. ProQ4 can be 
downloaded from github.com/ElofssonLab/ProQ4. 

Han group  - SART methods 
We participated in CASP13 with 2 methods, SART (group name: "SASHAN") and SARTclust 
(group name: "UOSHAN"). They are a new single model accuracy estimation method and a new 
clustering method, respectively. For details, see the CASP 13 abstracts at 
http://predictioncenter.org/casp13/doc/CASP13_Abstracts.pdf. 

SART_G: Single model global accuracy score 
For SART_G 10 features extracted from a protein model are linearly combined into the single 
model global accuracy score SART_G. The features of SART_G include 4 consistency-based 
terms and 6 statistical potential-based terms. 
One important category of features is consistency-based terms between the predicted and the 
calculated values of the model in aspects of secondary structure, solvent accessibility and 
residue-residue contact. One consistency term is the 8 states-agreement between the predicted 
(by SSpro8_5.1 of SCRATCH39 and the secondary structure calculated by DSSP27) secondary 
structure of model. Solvent accessibility-based consistency terms include the binary agreement 
and Spearman correlation coefficient (RSPE) between the predicted (by ACCpro_5.1 or 
ACCpro20_5.1 of SCRATCH) and the calculated solvent accessibility. Residue contact-based 
consistency term is calculated as number of residue pairs in the model which are in contact 
state and belong to the top 2×L (target protein sequence length) residue pairs with the highest 
predicted contact probability. 
 
The other important category of features is statistical potential-based terms. They include 2 
residue pair potentials, 2 torsion potential-related scores. The remaining 2 features are based 
on burial propensities of 20 amino acids and the buried state of 8 hydrophobic residues, 
respectively. 
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To enable comparisons between different proteins, most of the features are divided by n × L (for 
consistency-based terms) or Ln (for statistical potential-based terms). Here, n is set differently 
for different terms using data of CASP7, CASP9 and CASP11. 
 
SART_G is a linear combination of 10 features described above. Linear regression is performed 
between 10 features and GDT_TS27,40  scores of 34337 CASP9 models. 

  

SART_L: Single model-based local accuracy score 
For SART_L 9 features are extracted from a sphere (radius 12 Å) centered on the residue of 
interest. The features of SART_L are similar to those of SART_G: 5 consistency-based terms 
and 4 statistical potential-based terms. The true distance, d, is converted to the S-score with 
threshold d0=3.8Å, S = 1 / (1 + (d / d0)2). Linear regression is done between 9 features and S-
score41 calculated from 6818635 residues of 34337 CASP9 models. The per-residue distance 
deviation SART_L is calculated as SART_L = d0 (1 / S-score - 1)1/2. We put all SART_L>15Å to 
15Å. 

  

SARTclust 
Our clustering method is based on the following idee: If we know a native structure, the 
accuracy of a protein model can be easily obtained by comparing the native structure to the 
model. In EMA a related method could be to identify the best model, i.e. the model closest to the 
native structure, and then estimate the accuracy of all models by comparing them with the best 
model. However, it is often difficult to identify the “best” model correctly and the quality of the 
best model might not be good enough. Given that our single model method SART_G is still not 
perfect and that the quality of the best model is sometimes low, our clustering method uses 
comparisons with several top-ranked models with diverse structural properties. According to 
benchmarks on CASP11 data, the appropriate number (n) of the chosen models was 11 for 
stage 1 and 21 for stage 2. 
 
For calculating clustering-based global accuracy score SARTclust_G, a reference set composed 
of n top-ranked models is formed based on SART_G scores. A given model (to be assessed) is 
compared with each of n models in the reference set using TMscore41,42, resulting in n GDT_TS 
scores. Finally, the clustering-based global accuracy score SARTclust_G is calculated as 
SART_G-weighted mean of n GDT_TS scores. 
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For calculating clustering-based local accuracy score SARTclust_L, the Cα distance (d) 
between the corresponding residues is computed after superposition of the given model and 
each of the models in the reference set using TMscore. The distances (d) are converted to the 
S-scores with threshold d0=3.8Å. Next, SART_G-weighted mean (S_Weight) of n S scores is 
calculated. Finally, the per-residue distance deviation, SARTclust_L is calculated as 
SARTclust_L = d0 (1/ S_Weight -1)1/2. We put all SARTclust_L>15Å to 15Å. 
 
The weighting scheme makes the different models contribute differently to the estimation of the 
given model’s accuracy according to their SART_G scores. 

McGuffin group  - ModFOLD7 methods 
 
The ModFOLD7 server is the latest version of our web resource for the estimation of model 
accuracy (EMA) of 3D models of proteins1,2,3, which combines the strengths of multiple pure-
single and quasi-single model methods for improving prediction accuracy. For CASP13, our 
emphasis was on increasing the accuracy of per-residue assessments for single models, single 
model ranking and score consistency. Each model was considered individually using six 
previously described pure-single model methods: CDA3, SSA3, ProQ24, ProQ2D5, ProQ3D5 and 
VoroMQA5. Additionally, reference 3D-models sets were generated using the IntFOLD5 server43 
and these were used to score models using four previously described quasi-single model 
methods: DBA3, MF5s3, MFcQs3 and ResQ7. Neural networks, specifically multilayer 
perceptrons (MLPs), were then used to combine the residue scores produced by the ten 
alternative scoring methods, resulting in a final consensus accuracy score for each residue in 
each model (Figure 1) 
 

Component per-residue/local accuracy scoring methods: 
 
The ModFOLD7 neural networks were trained using two separate target functions for each 
residue in a model: the superposition based S-score36 used previously3 and the residue contact 
based lDDT score8. For the network trained using the lDDT score (ModFOLD7_res_lddt), the 
per-residue similarity scores were calculated using a simple multilayer perceptron (MLP). The 
MLP input consisted of a sliding window (size=5) of per-residue scores from all 10 of methods 
described above, and the output was a single accuracy score for each residue in the model (50 
inputs, 25 hidden and 1 output).  For the method trained with the S-score (ModFOLD7_res), the 
per-residue similarity scores were also calculated using an MLP with a sliding window (size=5) 
of per-residue scores, but this time only 7 of the 10 methods were used as inputs - all apart from 
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the ProQ2, CDA and SSA scores (resulting in 35 inputs, 18 hidden and 1 output). The RSNNS 
package for R was used to construct the MLPs, which were trained using data derived from the 
evaluation of CASP11 & 12 server models versus native structures. The MLP output scores, s, 
for each residue were then converted back to a distance, d, using this formula: 
 

d = 3.5√((1/s)−1). 
 

Global scoring methods: 
Global scores were calculated by taking the mean per-residue scores (the sum of the per-
residue similarity scores divided by sequence lengths) for each of the 10 individual component 
methods, described above, plus the NN output from ModFOLD7_res and ModFOLD7_res_lddt. 
Furthermore, 3 additional quasi-single global model accuracy scores were generated for each 
model based on the original ModFOLDclust, ModFOLDclustQ and ModFOLDclust2 global 
scoring methods, which have been described previously9. Thus, we ended up with 15 alternative 
global QA scores, which could be combined in various ways in order to optimize for the different 
facets of the accuracy estimation problem. We registered three ModFOLD7 global scoring 
variants: 
 

● The standard ModFOLD7 global score was simply the mean per-residue output 
score from ModFOLD7_res, which was found to have a good balance of 
performance both for correlations of predicted and observed scores and rankings 
of the top models.  

● The ModFOLD7_cor global score variant ((MFcQs + DBA + ProQ3D + ResQ + 
ModFOLD7_res)/5) was found to be an optimal combination for producing good 
correlations with the observed scores, i.e. the predicted global accuracy scores 
should provide more linear correlations with the observed global accuracy 
scores.  

● The ModFOLD7_rank global score variant ((CDA + SSA + VoroMQA + 
ModFOLD7_res + ModFOLD7res_lDDT)/5) was found to be an optimal 
combination for ranking, i.e. the top ranked models (top 1) should be closer to the 
highest accuracy, but the relationship between predicted and observed scores 
may not be linear.  

 
The local scores of the  ModFOLD7 and ModFOLD_rank variants used the output from the 
ModFOLD7_res NN, whereas the ModFOLD_cor variant used the local scores from the 
ModFOLD7_res_lddt NN. All three of the ModFOLD7 variants are freely available at: 
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http://www.reading.ac.uk/bioinf/ModFOLD/ModFOLD7_form.html  
 

ModFOLDclust2  
 
The ModFOLDclust2 method9 is a leading clustering approach for both local and global 3D 
model accuracy estimation. The ModFOLDclust2 server which was tested during CASP13 was 
identical to that tested in the CASP9-12 experiments, and it, therefore, serves as a useful gauge 
against which to measure the progress of single model methods. ModFOLDclust2 can be run as 
an option via the older ModFOLD3 server at 
http://www.reading.ac.uk/bioinf/ModFOLD/ModFOLD_form_3_0.html. The software is also 
available to download as a standalone program at http://www.reading.ac.uk/bioinf/downloads/  
 
 

Studer group  - FaeNNz methods 
FaeNNz is the working title of an improved version of QMEANDisCo, the default accuracy 
estimation method employed by the SWISS-MODEL homology modelling server44. The method 
aims to efficiently calculate local per-residue accuracy estimates using one single structural 
model as input. As the global full model score, the average of per-residue scores has been 
submitted. As of writing this article, the method tested in CASP13 has been merged back into 
QMEANDisCo and will be described in full detail elsewhere [manuscript in preparation]. The 
implementation is accessible on the web (https://swissmodel.expasy.org/qmean) or as source 
code (https://git.scicore.unibas.ch/schwede/QMEAN).  
 
FaeNNz is a composite scoring function mainly relying on knowledge-based statistical potentials 
of mean force 7 that are trained on a non-redundant set of experimentally determined protein 
structures. There are: 
 

● Two Interaction Potentials: The first one assesses pairwise interactions between all 
chemically distinguishable heavy atoms, the second one only between Cβ atoms. 

● Two Packing Potentials: The first one assesses the number of close heavy atoms 
around all chemically distinguishable heavy atoms, the second one only considers Cβ 
atoms. 

● One Reduced Potential: Assesses pairwise interactions between a reduced 
representation of amino acids. Such a reduced representation is composed of the Cα 
position and a directional component constructed from backbone N, Cα and C positions. 
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● One Torsion Potential: The central φ/ψ angles of three consecutive amino acids are 
assessed given the identity of the full triplet. 

 
Non-statistical potential terms include a clash score as defined for SCWRL345, the raw count of 
other residues within 15Å and solvent accessibility in Å2. They are complemented by the 
agreement of secondary structure and solvent accessibility predictions from the sequence 
(PSIPRED46 / ACCPRO39) with the actual outcome from the model coordinates. 
 
Known structures thoroughly represent the structural variety of a protein family in many cases. If 
available, FaeNNz utilizes this information by employing an additional score, the DisCo 
(Distance Constraints) score that is constructed from templates homologous to the model in 
question that are found by HHblits47. DisCo consists of Cα-Cα constraints for every residue pair, 
and the per-residue DisCo score is the averaged outcome of all constraints involving one 
residue.  
 
The accuracy of DisCo is directly related to the structural similarity of the used templates to the 
native structure. To optimally exploit DisCo, particularly in combination with other terms that are 
independent from the template situation, the reliability of DisCo needs to be quantified. FaeNNz 
uses terms like sequence identity/ similarity (BLOSUM62) of found templates or the variance of 
pairwise distances used for constraint construction. They are passed to a subsequent machine 
learning step to optimally weigh the DisCo term with all other described components in order to 
get a final per-residue score. 
 
All previously described components compose the input layer of a neural network trained to 
predict local lDDT scores48. Amino acid specific biases for composite scores have been 
identified in previous work49 and taken into account in the input layer by using "one-hot" 
encoding. Various network topologies and training parametrizations have been sampled using a 
5-fold cross-validation (80% training / 20% test) on three data sets. (1) approximately 2 mio. 
per-residue data points extracted from models submitted from the CAMEO QE category50 (2) 
approximately 2 mio. per-residue data points from models submitted from the CASP12 EMA 
category (3) a mixed set composed of a random selection of 50% from each of the first two. The 
cross validation of (3) has been constructed to maintain a valid cross validation when training on 
(3) but testing on (1)/(2). The finally used network has been trained on (3) and contains 3 hidden 
layers of width 20. It exhibited superior test performance compared to networks trained on (1)/ 
tested on (2) and vice versa. It also exhibited equal or better test performance as it has been 
observed for the raw cross-validation on (1) or (2)  and thus successfully generalized data from 
different sources (Table II). 
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Venclovas group  - VoroMQA methods 
Two automated model accuracy estimation methods, VoroMQA-A and VoroMQA-B, employed 
the latest version of VoroMQA5, a method for the estimation of protein structure accuracy. In 
VoroMQA, the accuracy of protein structure is estimated using inter-atomic and solvent contact 
areas derived from the Voronoi tessellation of atomic balls and employing the idea of a 
knowledge-based statistical potential. Inter-atomic and solvent contact areas are derived using 
the procedure implemented as part of Voronota software22. During the learning stage of 
VoroMQA contacts were first classified into different types and then each assigned pseudo-
energy values derived from statistics of contact areas observed in high-quality experimentally 
determined structures from the Protein Data Bank. In the VoroMQA application stage scoring is 
firstly done on the atomic level. Given a single atom and the set of associated contacts, a 
normalized pseudo-energy value is computed as a weighted average of contact-level energies, 
using contact areas as weights. The normalized energy value is then transformed (using the 
Gauss error function) into an atomic score in the range from 0 to 1. The global structure score is 
then defined as a weighted arithmetic mean of the scores of all the atoms in the structure with 
weights indicating how deep each atom is buried inside a structure. The raw score of a residue 
is defined as an average of the scores of its atoms. Final residue scores are calculated by 
smoothing the raw scores along the residue sequence using the sliding window technique. 
  
In CASP13 an enhanced version of the VoroMQA method was tested. The principal 
enhancement was including hydrogen atoms when deriving Voronoi tessellation-based contacts 
(previously only heavy atoms were used). This was done to make descriptions of interatomic 
interactions more comprehensive by capturing distinct orientations of contacts. Other parts of 
the VoroMQA method were not altered. Reduce software51 was employed for calculating 
coordinates of hydrogens. 
  
The resulting experimental VoroMQA version was run by two server groups: VoroMQA-A and 
VoroMQA-B. VoroMQA-A server preprocessed input models by rebuilding their side-chains 
using SCWRL445, VoroMQA-B did not alter input models before evaluating them. 
 
The software implementation of VoroMQA is freely available as an open-source standalone 
application and as a web server at http://bioinformatics.lt/software/voromqa. 

Results 
The value and potential of EMA methods can be seen when selecting the top model for each 
target, see Figure 2. Here a small improvement can be obtained when using the best EMA 
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methods compared with using the best server alone. The average GDT_TS for the best server 
on the 80 full-length targets used in the evaluation of the EMA methods is 56.3. When the best 
EMA method is used to select the best model the average GDT_TS score is 57.6.  Moreover, in 
total nine EMA methods select models better than the best individual server. However, the 
potential for improvement is quite significant. If the best model for each target were selected, the 
average GDT_TS would increase by 10% to 63.3. Using any other measure, similar numbers 
appear. Unfortunately, no EMA method is close to always identifying the best model yet. The 
value of EMA methods seems slightly bigger for hard targets (2.5-6.0%) compared with easier 
targets (0.8-3.5%). Also, as expected there is more room for improvement for the harder targets, 
see Figure 2.  

Relative performance of EMA methods depending on evaluation 
metric 
Using different reference-based scores (evaluation metric) may lead to different rankings of 
models and different best models. Some EMA methods are trained to predict specific reference-
based scores, for example, GDT-TS or TM-score. Therefore, it might be expected that the 
relative performance of EMA methods may depend on the use of specific evaluation scores. To 
test whether this is the case, we asked how successful different EMA methods are in selecting 
models according to four different scores: two superposition-based scores (GDT-TS and TM-
score) and two superposition-free scores (lDDT and CAD-score). To make the comparison 
straightforward, for every reference-based score we used Z-scores instead of raw values. For 
every CASP13 target, we derived z-score values using the procedure typically used in CASP 
assessments: calculate z-scores for all models; exclude models with z-scores lower than -2 and 
recalculate Z-scores; assign -2 to every Z-score lower than -2. For each EMA method, we then 
summed Z-scores of selected models for all CASP13 targets. The evaluation was done 
separately for GDT-TS, TM-score, lDDT and CAD-score. If a given EMA method is equally 
successful in selecting models according to each of the four reference-based scores, then the 
contribution of each type of z-score would be approximately the same, or ~25% of the total sum 
of z-scores for GDT-TS, TM-score, lDDT and CAD-score (100%). We tested whether this is the 
case by computing the actual deviation from 25% for each type of z-scores. The positive and 
negative values indicate correspondingly that the EMA method is either relatively more or less 
successful according to that score, but not its absolute performance. 
 
Results of this analysis are presented in Figure 3. Several inferences can be drawn from these 
results. First, the relative success of most EMA methods indeed depends on the evaluation 
metric. Only some consensus-based methods are relatively balanced in this regard. Strikingly, 
the absolute majority of EMA methods show relatively better performance according to the 
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superposition-free scores, lDDT and CAD-score (the latter in particular). It is interesting that 
even an EMA method trained using TM-score as a target function (ProQ3D-TM) is still relatively 
more successful according to the superposition-free scores. The results suggest that for single-
model EMA methods it is generally easier to predict superposition-free scores than the 
superposition-based scores. In turn, this might be interpreted as the ability of superposition-free 
scores to provide a more objective definition of model accuracy. 

Correlation of top N models 
When choosing an evaluation metric for EMA methods, it is essential that this metric rates the 
methods based on whether they accurately estimate the correctness of high-quality models, but 
it is less important to rate them based on whether they accurately estimate the correctness of 
low-quality models. For that reason it has been argued that the correlation between the 
predicted and real scores of models is not a useful metric when evaluating EMA methods, as it 
gives equal importance to all models. As a result, one of the evaluation metrics that are 
currently most employed is the first-ranked score loss, as it takes into account only the best 
ranked model for each target, so gives more importance on how the EMA methods evaluate the 
high quality models. However, the first ranked score loss has its disadvantages, because it 
might be somewhat noisy when the differences between the predicted scores are tiny. 
 
Here, we suggest a novel way to evaluate the EMA methods, see Figure 4. We calculate the 
average per-target Pearson correlation and first ranked lDDT loss for Top N models, where Top 
N models are selected based on their lDDT scores. In such a way we evaluate how the EMA 
methods perform when all the models are high quality, but also when they are of varying 
qualities.  
 
One important thing that we learn from this analysis is that the performance of different EMA 
methods depends a lot on how many of the top models we choose as the evaluation data set. 
Recently it has been a standard in CASP to evaluate all the methods on 150 models per target 
that are selected by an arbitrary consensus method (i.e the “stage 2” evaluations). We believe 
that the evaluation would be more independent if we evaluate the methods on a range of 
different data set sizes. 
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Discussion  

Cheng group  - What did we learn 
 
In CASP13, MULTICOM_CLUSTER based on DeepRank had the lower average loss of model 
selection than every individual QA method used by it on the 80 targets (loss = 0.054), as shown 
in Figure 5A, indicating that deep learning is an effective approach to integrate accuracy 
features. Besides, MULTICOM_CLUSTER that used the second-level deep learning network to 
integrate the accuracy scores predicted by the first-level deep networks (loss = 0.054) 
outperformed MULTICOM-CONSTRUCT that simply averaged the output of the first-level deep 
learning (loss = 0.072), as shown in Figure 5B. This demonstrates the two-level deep learning 
approach provides a better solution for the consensus prediction than the one-level deep 
learning approach for both template-based and free-modeling targets, especially for the hard 
(FM and FM/TBM) targets when different QA methods generated inconsistent predictions 
(Figure 5C).   
 
We compared MULTICOM_CLUSTER based on deep learning with the two baseline 
combination strategies that were used in CASP12, (e.g., the average score of raw feature 
scores and their z-scores respectively). Figure 5C shows that the deep learning-based 
consensus method worked better than the two baseline averaging methods, which is one 
progress from CASP12 to CASP13.  
 
Our results also show that 2D contact features improved the performance of model accuracy 
estimation and model selection on average (Figure 5B & C), even though their impact depended 
on the accuracy of contact prediction (Figure 5D & E). In almost all cases, the short-, medium-, 
and long-range contact features were accurate enough to make a positive contribution to the 
accuracy estimation in terms of both loss and correlation (Figure 5D & E), even though in one 
case the inaccurate short-range contact features (precision < 0.5) caused a higher loss. For the 
first time, these results demonstrate that contact features can consistently improve the 
estimation of model accuracy, which is another progress from CASP12 to CASP13.  
 
Despite the progress made by deep learning and contact features, our methods failed to 
accurately estimate the accuracy of the models of some targets, particularly some hard targets 
that had few good models. As shown in Figure 2C, MULTICOM_CLUSTER failed to select top 
models of 15 targets, where the loss is > 0.1. Among the 15 targets, 13 targets contain at least 
one FM or FM/TBM domain. 7 out of 15 targets are defined as hard targets according to GDT-
TS scores of their models (T0953s2, T0957s1, T0968s1, T0979, T0991, T0998 and T1008), and 
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the remaining 8 targets are T0975, T0976, T0978, T0980s2, T0992, T1010, T1019s 
and,T1022s2. A possible reason for the failure is that there exist a large portion of low-quality 
models for the hard targets and for these the less accurate input features hinder the 
performance.  

Elofsson group - What did we learn 
Our objective for CASP13 was to investigate if we could improve the performance over ProQ3  
by (i) using deep learning (ii) improve performance on different evaluation measures and (iii) 
improve per-target ranking. All of these goals were achieved.  
  
First, in Figure 6A it can be seen that (i) ProQ3D52 performs better than ProQ320 using several 
measures. ProQ3D and ProQ3 use identical inputs, and the only difference is that ProQ3 uses a 
linear SVM while ProQ3D uses a multi-layer perceptron. Figure 6A confirms our results from 
benchmarking and shows that modern machine learning methods can be easily used to improve 
the performance of older methods. 
 
Secondly, we examined the performance of different versions of ProQ3D trained to predict 
different model evaluations measures37.  Here, it can be seen that the version of ProQ3D 
trained on a specific target function performs better when evaluated on that target function, see 
Figure 6B.  
 
It is well known that the full potential of EMA methods is not realized as for many targets the 
best available model is not ranked at position one. When developing ProQ438 one of the goals 
were to improve the ranking of targets. The better ranking is obtained by always presenting two 
models for the same target to the network and then train it to identify the better one. It can be 
seen in Figure 6C that ProQ4 is better at ranking than ProQ3D, so this goal was also achieved. 
However, as can be seen in Figure 6D the overall performance was not better for ProQ4 than 
for ProQ3D-XX (ProQ3D trained on the accuracy measure on which is evaluated). 
 
Finally, it can be seen that all ProQ methods (as well as other single model methods) perform 
relatively better when evaluated on CAD and lDDT compared with consensus methods such as 
Pcons, see Figure 3 and 6D. 
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Han group  - What did we learn 
According to CASP13 assessment, SARTclust performed well both in selecting the best models 
and in the aspect of per-target correlation in global QA (Figure 2C). In particular, SARTclust 
performed best in all criteria of local QA such as ASE, MCC and correlation. Our clustering 
method is based on comparisons between the given model and the top-ranked models in the 
decoy set, which is slightly different from ModFOLDclust28,24 and Pcons8 based on all-against-
all pairwise model comparisons. The better performance of SARTclust over ModFOLDclust2 
and Pcons demonstrates the validity of the idea behind our clustering method. Further 
improvement in SARTclust would be accomplished by the progress of our single model 
accuracy estimation method, SART, through pre-selection step and weighting scheme.  

The single model accuracy estimation method SART did not perform well in CASP13, although 
it contributes to the good performance of clustering method SARTclust through the step of 
selecting the reference set and weighting scheme. In our benchmarks on CASP11 prior to 
CASP13, it outperformed the well-known top single method ProQ26 as shown in CASP13 
abstract. However, it is outperformed by ProQ2 in this round. We plan to implement some 
directions to improve our single model method. First, more attention should be given to 
extracting of more valuable features such as prediction of residue-residue contact and residue-
residue distance. Although SART incorporates residue-residue contact prediction, the 
performance of the in-house residue-residue contact prediction program is not good. So, it 
should be further upgraded in future. Besides, we will try to prepare the training data evenly, 
which is thought to be important for balanced prediction. Due to the bias in the composition of 
training data (medium- and low-quality models are more dominant than high-quality models in 
CASP9 data we used as training data), SART was ranked worse in the aspect of accuracy loss 
than in absolute accuracy estimation. It is expected that the performance improvement of the 
single model method SART will also make a good effect on the clustering method SARTclust. 
 

McGuffin group  - What did we learn 
The ModFOLD7 server is continuously benchmarked in the Model accuracy Estimation (MAE) 
category using the CAMEO server10 (identified as server 28). The method has been 
independently verified to be an improvement on our previous methods (ModFOLD4 & 
ModFOLD6). At the time of writing, the ModFOLD7_(res)_lDDT method ranks among the top 
few QE servers on CAMEO.  
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Looking at global scoring evaluations on the CASP13 data, as expected the ModFOLD7_rank 
method was the best variant at ranking or selecting the best models and the ModFOLD7_cor 
variant was better at reflecting observed accuracy scores or estimating the absolute error, while 
he ModFOLD7 method was more balanced in terms of performance. For local scoring, the 
ModFOLD7_rank and ModFOLD7 variants performed better according to S-score and 
ModFOLD7_cor method according to lDDT. 
 
Specific Improvements over ModFOLD6 from our in-house analysis using CASP11, CASP12 
and CASP13 data were calculated for global and local scoring, and a summary of selected key 
results are shown in Figure 7. The ModFOLD7 variants showed small but significant 
improvements in both local scoring and selection of best models across all three datasets 
(CASP11-13), compared with the equivalent ModFOLD6 variants (Figure 7). The plots on left 
panels of Figure 7 show that ModFOLD7 rank outperforms ModFOLD6_rank in terms of 
selecting the best models measured by cumulative GDT_TS; a significant improvement on all 3 
datasets. In the middle panels, the ModFOLD7_cor method outperforms ModFOLD6_cor in 
terms of the correlation of the global output score versus the GDT_TS score on some datasets. 
However no consistent improvement in global correlations was observed for ModFOLD7_cor 
over ModFOLD6_cor across all datasets, and any improvements seen were dependent on the 
chosen dataset and/or the observed score (e.g. ModFOLD7 outperforms ModFOLD6_cor 
according to the lDDT score on the CASP13 set, but not by GDT_TS). Finally, in terms of local 
accuracy estimates, based on both the lDDT scores (Figure 7, right panels) and S-scores, we 
also observed a significant improvement with the newer ModFOLD7 variants versus our older 
ModFOLD6 method.  
 
The consistent performance improvements of ModFOLD7 variants over ModFOLD6 were due 
to; 1. The addition of more input scores and correspondingly more input and hidden layer 
neurons to the neural network, 2. Training to different local target functions (the lDDT score as 
well as the S-score), and 3. Optimising for different evaluation metrics using a higher number of 
global scoring metrics. 

Studer group  - What did we learn 
There is a tendency for harder modelling targets in CASP when compared to CAMEO. Low-
resolution terms that primarily assess the likelihood of a correct overall fold (e.g. agreement 
terms/ backbone only statistical potentials), might have increased importance, compared to 
high-resolution terms that are mainly targeted at detecting local distortions in high-quality model 
structures (e.g. full atomic statistical potentials). We found that neural networks, if trained with 
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appropriate data, are capable of adaptively weigh different terms to return accurate accuracy 
estimates for models of both origins, CASP and CAMEO (Table II). 
 
FaeNNz has never been optimized to assess global model accuracy. However, given the nature 
of contact based scores such as lDDT or CAD, the average of accurate per-residue accuracy 
estimates can be expected to be a good approximation of the global accuracy. Especially in the 
case of lDDT, the score FaeNNz has been trained to predict, this assumption has been verified. 
According to the automated evaluation in CASP13, FaeNNz has the lowest average deviation 
between predicted score and actual global lDDT. This makes it the ideal tool to estimate the 
absolute global accuracy of a protein model and assess its suitability for the planned use case.  
 

Venclovas group  - What did we learn 
Several observations regarding the VoroMQA performance in CASP13 can be made. Firstly, 
repacking side-chains prior to scoring with VoroMQA (done by VoroMQA-A) was not 
advantageous in any way. Thus, the performance of only the more straightforward server, 
VoroMQA-B, is discussed further. Also, for every VoroMQA-B score, the corresponding score by 
the previous VoroMQA version was calculated and recorded to assess if including hydrogen 
atoms affected the performance. For brevity, the older version is denoted onwards as 
VoroMQA(no H), and the newer one as VoroMQA(H). 
  
The performance of VoroMQA in selecting best models is summarized in Figure 8A, which 
shows a histogram of the per-target selection losses. Here, the loss is defined as the difference 
between the z-scores of the model selected by VoroMQA and the actual best model for the 
target according to lDDT. Using other reference based scores instead of lDDT (e.g. GDT-TS, 
CAD-score) reveals similar tendencies. Figure 8A shows that the most substantial selection 
errors by VoroMQA(H) were made on those targets that correspond to the individual subunits 
pulled out of protein complexes. VoroMQA(H) performed significantly better (smaller losses) on 
the targets that are native monomers. VoroMQA(no H) showed similar selection performance. 
The reason why VoroMQA performs worse on targets that are not monomers in the native state 
can be easily explained. Structures of individual subunits withdrawn from protein complexes 
often exhibit energetically unfavorable solvent-accessible surface regions corresponding to 
protein-protein interaction interfaces. Such regions can be heavily penalized by VoroMQA, 
which works by estimating the energy but are not penalized by reference-based scores that only 
consider discrepancies in positions of corresponding atoms, not energy. Thus, to achieve the 
best selection results, it is more appropriate to use VoroMQA on structural models representing 
the native oligomeric state so that inter-chain interfaces can be assessed properly. 
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The VoroMQA performance can also be assessed by asking how effectively the VoroMQA 
scores can group models according to their accuracy. Such grouping can be done using 
quantiles of distributions of VoroMQA scores. Figure 8B shows the results of the grouping 
analysis performed on the global scores of the models for the CASP13 targets that are native 
monomers (the results for all the CASP13 targets are similar, but with more outliers). Grouping 
was done using VoroMQA(no H), VoroMQA(H) and CAD-score. CAD-score was included for 
comparison to see how well a given reference-based score (CAD-score) can group models 
when judged by another reference-based score. In this case, the judge was lDDT, but the 
results were similar if the roles of lDDT and CAD-score were switched. Grouping was done 
using quantiles of 1/3 and 2/3 (33.3% and 66.7%) as thresholds. For every resulting group, the 
corresponding distribution of lDDT scores is depicted in Figure 8B via box plots. The box plots 
indicate that VoroMQA(no H) and VoroMQA(H) perform equivalently, although their 
corresponding quantile values are different. In general, the VoroMQA-based grouping is fairly 
similar to that based on CAD-score. This is quite remarkable considering that lDDT and CAD-
score are some of the most similarly behaved and highly correlated reference-based scores53. 
  
The same analysis was also done for local (per-residue) scores. The results are shown in 
Figure 8C. The VoroMQA scores used in the analysis are raw VoroMQA local scores ranging 
from 0 to 1, not converted to distance deviations. Comparison of Figure 8C and Figure 8B 
reveals that the conclusions made for the grouping of global scores can also be applied to the 
grouping of local scores. One of the differences is that the grouping of local scores (at the level 
of residues) results in groups with more spread out corresponding distributions of lDDT scores 
(compared to the grouping according to the global scores). In addition, the group of residues 
with the lowest VoroMQA scores exhibit a tighter distribution of lDDT scores than the medium 
and high-scoring groups. In other words, poorly modeled regions are recognized more 
efficiently. Interestingly, CAD-score also shows a better agreement for residues in such regions. 
  
Overall, based on the CASP13 results it can be concluded that the new enhancement (the 
addition of hydrogen atoms) neither improved nor impaired the VoroMQA performance. Thus, 
the VoroMQA version that does not use hydrogen atoms is more practical. It is faster and does 
not depend on additional tools for adding hydrogens. VoroMQA performs reasonably well in 
model selection, especially when evaluating structural models in the native monomeric or 
oligomeric state. Also, considering that VoroMQA is an unsupervised learning-based method 
that was not trained to predict any reference-based accuracy scores and does not use any 
additional data, it appears to be surprisingly robust in estimating both global and local accuracy. 
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Conclusions  
We show that there has been a small but significant improvement since CASP12 in EMA 
methods. It can be noted that many of the improved methods use deep learning, but in different 
ways. The rapid development of deep learning models as exemplified here might indicate that 
the best way to use machine learning for model accuracy evaluations is still not developed. We 
also notice that on average the best EMA methods select models that are better than those 
provided by the best server. However, still, much more significant improvements could be 
achieved if there were possible ways to always select the best model for each target. Finally, we 
do notice systematic differences when using different model evaluations methods. Single model 
methods perform relatively better when using local evaluations methods.  
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Table I: overview of methods discussed in this paper and the way they were developed. 
 
 
 
 
Table II: Cross-validation performance of FaeNNz with final neural network topology/ 
parametrization across different data-sets when predicting per-residue lDDT scores. Prediction 
results for all 5 validation sets in each cross-validation have been pooled together to estimate 
the performance in form of Pearson correlation and receiver operation characteristics (ROC) 
analysis. Data points with per-residue lDDT < 0.6 have been classified as “positive” in ROC 
analysis. 
 
 

This article is protected by copyright. All rights reserved.

http://paperpile.com/b/rgtnek/oW4m
http://paperpile.com/b/rgtnek/oW4m
http://paperpile.com/b/rgtnek/oW4m
http://paperpile.com/b/rgtnek/oW4m
http://paperpile.com/b/rgtnek/oW4m
http://paperpile.com/b/rgtnek/oW4m
http://paperpile.com/b/rgtnek/xZPA
http://paperpile.com/b/rgtnek/xZPA
http://paperpile.com/b/rgtnek/xZPA
http://paperpile.com/b/rgtnek/xZPA
http://paperpile.com/b/rgtnek/xZPA
http://paperpile.com/b/rgtnek/xZPA
http://paperpile.com/b/rgtnek/gEUA
http://paperpile.com/b/rgtnek/gEUA
http://paperpile.com/b/rgtnek/gEUA
http://paperpile.com/b/rgtnek/gEUA
http://paperpile.com/b/rgtnek/gEUA
http://paperpile.com/b/rgtnek/gEUA
http://paperpile.com/b/rgtnek/gEUA


Estimation of model accuracy in CASP13 

Figure Legends 

Figure 1: Flow of data and processes for the ModFOLD7 method variants. The inputs at the top 
are simply a single 3D model and the target sequence. The target sequence was pre-processed 
by a number of different methods to produce predicted secondary structures, contacts, disorder 
and reference models. These data were then fed into the 10 different scoring methods to 
produce local scores. The local scores were then used as inputs to neural networks, which were 
then trained using either the S-score or the lDDT score as the target function. The mean local 
scores for each model were then taken to produce global scores from each input method. 
Combinations of these global scores were used to generate ModFOLD7_rank, ModFOLD7_cor 
and ModFOLD7 global scores  
 
Figure 2: (A) Comparison of average score of the first ranked model for each target in 
relationship to the score of the best model made by any server using different evaluation 
measures. In blue the best server and in red the model selected by the best EMA method. In 
darker colors easy targets (average GDT_TS > 0.5) and in lighter colors the harder targets. In 
(B) the number of EMA methods that are better than best server is shown. (C) Boxplot of per 
target loss for the top group methods based on the GDT-TS score. The rectangular box shows 
the median, 25% percentile,  75% percentile of the loss on 80 targets. Dots of different 
shapes/colors denote the loss of individual targets of different types (MultiDomain, 
SingleDomain, FM, FM/TBM, TBM-easy, TBM-hard). The mean of the loss is also listed next to 
the name of each method. (D)  Boxplot of per target correlation for the top group methods based 
on the GDT-TS score.  
 
Figure 3: Relative success of different EMA methods in predicting four reference-based 
evaluation scores. The relative success according to each of the four scores is expressed as the 
difference between the actual percentage and 25%. Positive values indicate relatively higher 
success, negative values indicate relatively lower success. For each method positive values 
balance out negative ones (their sum is zero). EMA methods are ordered by increasing 
disbalance, which is unrelated to the absolute performance. The methods that are not classified 
as single-model are indicated with the bold italic font. 
 
Figure 4: (A) Average per target Pearson correlations between lDDT and the predicted 
accuracy scores of our EMA methods for top N models. (B) First ranked lDDT loss for top N 
models.  
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Top N models are selected based on lDDT scores. For example, top 10 models are the 10 
models that have the best lDDT scores. The methods in the legend are sorted according to Area 
Under the Curve (AUC) values. 
 
 
 
 
Figure 5: (A) Comparison of MULTICOM_CLUSTER method with individual QA methods used 
in feature generation. Each box plot shows the loss of each QA method. Here the loss is 
measure at 1-point scale (i.e. the highest/perfect GDT-TS score = 1). The set of features 
include: 3 contact match scores, 3 clustering-based scores, and 17 single-model QA scores. (B) 
Comparison of different consensus strategies on individual QA features. The methods were 
evaluated according to average GDT-TS loss calculated from the 80 full-length targets. (C) 
Comparison of different consensus strategies on 42 template-based (TBM-easy and TBM-hard) 
targets, and 38 free-modeling targets (FM+FM/TBM), respectively. If any domain of each target 
is classified as FM or FM/TBM, the target is defined as free-modeling target, otherwise, 
template-based target. (D) Impact of contact prediction accuracy on protein model accuracy 
assessment in CASP13 datasets. The loss with/without each kind of contact features (i.e., top 
L/5 contacts of short-range, medium-range, long-range) is shown and compared. The loss was 
consistently reduced on the CASP13 dataset if the precision of contacts used with 
MULTICOM_CLUSTER is higher than 0.5, otherwise the impact of contacts is mixed. (E). 
Impact of contact prediction accuracy on protein model accuracy assessment in terms of 
correlation. 
 
Figure 6: Here we compare the performance of different ProQ versions in CASP13. (A) 
Compares the difference in performance between ProQ3 and ProQ3D using GDT_TS as an 
evaluation criteria. Three measures are reported, global correlation, per target correlation and 
average GDT_TS score for the first ranked model. (B) Compares the performance of different 
versions of ProQ3D using the global correlation of all targets. Here evaluation is for different 
versions of ProQ3D trained on different target functions, with ProQ3D-XX is ProQ3 trained on 
the target function on which it is evaluated. ProQ3D is trained on S-score. (C) Compares 
ProQ3D and ProQ4 when it comes to per target correlation. (D) Plots the Z-score of 
performance for the different ProQ versions and Pcons for the global correlation. 
 
Figure 7. Histograms summarising the improvements in ModFOLD7 variants versus 
ModFOLD6 variants on CASP11-13 datasets. Model data from QA stages 1 and 2 are 
combined with duplicate models removed. Left panels show the ranking/model selection 
performance measures by cumulative GDT_TS scores of the top selected models by each 
method. Middle panels show Pearson correlation coefficients of global predicted accuracy 
versus observed accuracy according to GDT-TS. Right panels show performance of local 
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accuracy estimates as measured by the Area Under the Curve (AUC) scores from ROC 
analysis using the lDDT observed local scores.  
 
Figure 8: (A) Histogram of VoroMQA losses in selecting best models. (B) Quantile-based 
grouping for global scores. (C) Quantile-based grouping for local scores (the box plots were 
drawn based on more than a million residue scores, outliers are not shown for clarity). Colored 
numbers under the horizontal axis are the empirical quantile values derived from the observed 
distributions of the different assessed scores. 
 

This article is protected by copyright. All rights reserved.



This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



 

Method Local/Global Inputs 
Sequence 

features 
Structure features 

Predicted 

Features 

Target 

Function 

Machine Learning 

method 

FaeNNz 
Local (Global is 
avg. Local) 

Model and full length target 
sequence  

Statistical Potentials 
of Mean Force + 
Distance Constraints 
from Templates + 
Solvent Acc. 

Sec. Str and 
Surface Area LDDT (local) Multi-Layer 

Perceptron 

ModFOLD7 
Local (Global is 
sum of local) 

Model and full length target 
sequence PSSM 

Pairwise comparisons 
of generated 
reference models, 
residue contacts 

Contacts, 
Sec.Str and 
Disorder 

S-score 
(local) 

Multi-Layer 
Perceptron 

ModFOLD7_cor 

Local and 
optimised 
composite global 
score 

Model and full length target 
sequence 

PSSM 

Pairwise comparisons 
of generated 
reference models, 
residue contacts 

Contacts, 
Sec.Str and 
Disorder 

lDDT (local) 
GDT_TS 
(global) 

Multi-Layer 
Perceptron 

ModFOLD7_rank 

Local and 
optimised 
composite global 
score 

Model and full length target 
sequence 

PSSM 

Pairwise comparisons 
of generated 
reference models, 
residue contacts 

Contacts, 
Sec.Str and 
Disorder 

S-score 
(local) 
GDT_TS 
(global) 

Multi-Layer 
Perceptron 

ProQ2  Local (Global is 
sum of local) Profile+Model+ Predictions PSSM 

Atom Contacts, 
Residue Contacts 

Sec.Str and 
Surface Area 

S-score 
(local) Linear SVM 

ProQ3 Local (Global is 
sum of local) 

Profile+Model+ Predictions+ 
Energies 

PSSM ProQ2+Energy terms Sec.Str and 
Surface Area 

S-score 
(local)  Linear SVM 

ProQ3D  Local (Global is 
sum of local) 

Profile+Structure+Predictions+ 
Energies 

PSSM See ProQ3 See ProQ3 S-score 
(local)  

Multi-Layer 
Perceptron 

ProQ3D-TM Local (Global is 
sum of local) 

Profile+Model+ Predictions+ 
Energies PSSM See ProQ3 See ProQ3 TM-score 

(local)  
Multi-Layer 
Perceptron 

ProQ3D-lDDT Local (Global is 
sum of local) 

Profile+Model+ Predictions+ 
Energies PSSM See ProQ3 See ProQ3 lDDT(local) Multi-Layer 

Perceptron 

ProQ3D-CAD Local (Global is 
sum of local) 

Profile+Model+ Predictions+ 
Energies PSSM See ProQ3 See ProQ3 

CAD-score 
(local) 

Multi-Layer 
Perceptron 

ProQ4 (ProQ4) 
Local (Global is 
sum of local) Profile+ DSSP PSSM 

DSSP (sec. Str and 
surface area) 

Internally 
DSSP. lDDT(local) Deep Network 

SART_G Global 
Model+Predictions+Energies  

Statistical Potentials  + 

Solvent Acc + Sec. Str + 

Residue Contact 

Sec. Str, Solvent 

Acc and Residue 

Contact 

GDT_TS Linear Regression 

SART_L Local 
Model+Predictions+Energies  

Statistical Potentials  + 

Solvent Acc + Sec. Str + 

Residue Contact 

Sec. Str, Solvent 

Acc and Residue 

Contact 

S-score Linear Regression 

SARTclust_G Global 
Model+Predictions+Energies  

Statistical Potentials  + 

Solvent Acc + Sec. Str + 

Residue Contact 

Sec. Str, Solvent 

Acc and Residue 

Contact 

GDT_TS Linear Regression 

VoroMQA-A, 
VoroMQA-B Local and global Model Not used Voronoi tessellation-

based contact areas. Not used Not used Statistical potential 

MULTICOM-
CLUSTER 

Global Model and full-length 
sequence 

Not used 

 

Secondary structure, 
Solvent accessibility, 
residue contacts 

 

Contacts, 
Sec.Str, 
Surface Area 
and Structural 
scores 

GDT_TS 
(global) 

Deep 
Network+ensemble 

MULTICOM- 
CONSTRUCT Global Model and full-length 

sequence 

Not used 

 

Secondary structure, 
Solvent accessibility, 
residue contacts 

Contacts, 
Sec.Str, 
Surface Area 
and Structural 
scores 

GDT_TS 
(global) 

Deep 
Network+ensemble 

MULTICOM 
NOVEL 

Local  (Global is 
sum of local) 

Model and full-length 
sequence 

PSSM, 
Amino acid 
encoding 

 

Secondary structure, 
Solvent accessibility, 
Energy terms 

Disorder, 
Sec.Str and 
Surface Area 

S-score 
(local) and 
GDT_TS 
(global) 

Deep Network 

Table I: overview of methods discussed in this paper and the way they were developed. 
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 Validation 

 CAMEO  CASP12 

Training Pearson R ROC AUC Pearson R ROC AUC 

CASP12 0.841 0.917 0.836 0.937 

CAMEO 0.887 0.940 0.812 0.934 

Mixed 0.889 0.940 0.856 0.946 

 

Table II. Cross-validation performance of FaeNNz with final neural network topology/ 

parametrization across different data-sets when predicting per-residue lDDT scores. Prediction 

results for all 5 validation sets in each cross-validation have been pooled together to estimate the 

performance in form of Pearson correlation and receiver operation characteristics (ROC) analysis. 

Data points with per-residue lDDT < 0.6 have been classified as “positive” in ROC analysis. 
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