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Thesis abstract  

The purpose of this project was to develop a novel blend of prebiotics with the potential to 

influence perceptions of satiety and thus food intake.  Prebiotics beneficially modulate the 

composition of the gut microbiota, they are fermented primarily in the ceacum resulting in 

the production of metabolites, including acetate and propionate. These metabolites are 

thought to impact appetite regulation by acting as a ligand, with a high affinity to G-coupled 

receptors (GPR42/3) located on L-cells, throughout the length of the colon. A subsequent 

stimulation of circulating satiety hormones triggers anorexogenic pathways involved in 

reducing food intake and increasing satiety. It is therefore hypothesised that using blends of 

prebiotics to increase SCFA production along the length of the colon might be of benefit in 

weight management.  

Initially a literature review is presented, evaluating dietary intervention studies that have 

explored the satiety inducing effects of different prebiotics/prebiotic candidates on various 

human populations.  In the reviewed 17/27 intervention studies prebiotics were associated 

with increased satiety. Variations in study design, dose and study food matrix might explain 

the disparity in the results. 

The work of screening eleven commonly consumed prebiotics/prebiotic candidates for their 

fermentation characteristics is described in the first experimental chapter. Using an in vitro 

batch culture model of the gut (n=3), those prebiotics that stimulated the growth of acetate 

and propionate producing bacterial species, such as Bifidobacterium and Propionibacterium 

specifically at later fermentation time points (24-48h) (indicating a slower fermentation), 

were considered for further study. Inulin was identified as the most bifidogenic of all the 

substrates. 

Three substrates that performed well in the first experimental section were blended with 

inulin to produce 3 novel prebiotic blends (inulin + resistant starch, inulin + α-gluco-

oligosaccharides, and inulin + arabinoxylan). The fermentation characteristics of these blends 

were assessed in depth using a 3-stage continuous culture colonic model (n=3). The focus was 

on the influence of these prebiotic blends on the third fermentation vessel, which simulates 

the distal region of the colon. The hypothesis that residual prebiotic activity in this vessel 

might be associated with a flatter and more sustained SCFA spike following consumption, and 

that this might lead to better appetite control. Of the 3 blends, I+RS and I+ABX outperformed 
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I+GLOS exhibiting a sustained fermentation towards V3, however I+ABX was the frontrunner, 

due to the levels of propionate produced, including those in V3, which was desirable.  

In a 9-week crossover, placebo controlled and double blinded human appetite study. I+ABX 

was consumed daily by healthy weight men. The primary endpoint was satiety and ad libitum 

energy intake on a study visit day. Secondary endpoints were prebiotic effects assessed in 

stool and urine.  Subjective satiety scores were not influenced however there was a 

statistically significant reduction in energy intake during the ad libitum lunch of 34.28Kcal. If 

extended over three meals this might equate to a <100 Kcal reduction in energy intake per 

day, more than sufficient to elicit progressive weight loss or to contribute to weight 

maintenance.  The intervention also induced significant increases in the abundance of 

Bifidobacterium (P=0.017) and Propionibacterium (P=0.021) in stool samples and an increase 

in the concentration of acetate. This research has demonstrated a pipeline for the 

development of prebiotics with the potential for use in weight management products.  

Chronic consumption of LC-FOS with ABX significantly reduced food intake and therefore 

supplementation of the diet with I+ABX may be a useful tool in weight management. Further 

work is needed to understand the mechanism and to establish additional prebiotic benefits 

associated with consuming this blend. Our blended product is being patented by our industrial 

sponsor and may be explored in further clinical intervention study over extended time frames 

with weight control as the endpoint.    
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Introduction 

The overall aim of this research project was to develop a novel blend of functional food 

ingredients which might favour anorexigenic microbial metabolic activity in the colon. The 

influence of the gut microbiota on adiposity is topical and there is emerging evidence to 

suggest that colonic fermentation influences the satiety cascade. The rationale for our 

approach is based on good existing experimental data to suggest that microbial composition 

in the colon can be purposefully manipulated through dietary intervention. The development 

of anorexigenic functional food ingredients is commercially desirable and socially important 

in the context of the ongoing obesity crisis.  

Obesity: metabolic and social consequences 

In the UK, 90% of those with type 2 diabetes are overweight or obese (Ells et al., 2014) 

representing a large burden to public health with an estimated £6 billion spent on obesity 

related disorders in 2014 (PH England 2014). Increased consumption of energy dense, 

processed foods combined with a reduction in energy expenditure is characteristic of modern 

lifestyle and has contributed to rising obesity rates, which doubled between 1993 and 2014 

(PH England 2016). As adiposity increases so too does the risk of developing metabolic 

conditions such as diabetes through stimulation of adipokines and raised triglyceride levels 

exacerbating insulin resistance (Rabe et al., 2008). 

There are social and personal effects of obesity, along with growing rates among young 

people; a person is 57% more likely to be obese if their friend is obese. Social acceptance of 

the consumption of large amounts of processed foods that are high in fat and sugar can 

compound this (Leahey et al., 2011). Yet the economic spend on weight loss a product in the 

UK is increasing, with no slowing of obesity rates.  

The risk of developing heart disease increases as BMI increases: by double in overweight 

people to more than 10 times in the morbidly obese when compared with lean counterparts 

(Hurt et al., 2010). Obesity is thought to be responsible for 6% of cancer cases in the UK. With 

the greatest risk linked to bowel, liver and oesophagal cancers (Brown et al., 2018). In men a 

5 kg/m2 increase in BMI was strongly associated with oesophageal cancer (RR 1.52, p<0·0001) 

and with thyroid (1.33, p=0·02), colon (1.24, p<0·0001), and renal (1.24, p <0.0001) cancers 
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(Renehan et al., 2008). The risk of developing type 2 diabetes is strongly correlated with 

increasing BMI. The prevalence of diabetes is rising in the UK, with 6% (2.7 million people) of 

the population over 17 diagnosed in 2013. The overall relative risk (RR) an obese person has 

of developing diabetes compared to normal weight is 7.19, 95% CI: 5.74, 9.00 and for 

overweight was 2.99, 95% CI: 2.42, 3.72 (Gatineau et al., 2014). 

Gut microbiota 

The adult human microbiome comprises 100 trillion cells consisting of bacteria, 

bacteriophage, fungi, protozoa and viruses that, along with their collective genomes remains 

relatively stable throughout adulthood (Ursell et al., 2012).  Between individuals, differences 

in the proportions of the ~1000 residential species and whole phylum are common 

(Turnbaugh et al., 2007). 

Many factors are pivotal in the development of a healthy gut microbiota. They include diet 

during mode of delivery (caesarean vs vaginal) diet in early infancy (breastfed vs bottle), 

adulthood (high fibre vs low fibre) and antibiotic use. The commensal bacterial groups 

predominantly aid in nutrient metabolism, prevention of colonization of pathogenic 

microorganisms and they contribute to maintenance of intestinal barrier function (Evans et 

al., 2013). Much of this is due to bacterial groups such as bifidobacteria being strongly anti-

pathogenic through competitive inhibition, but also due to lowering the pH, making it difficult 

for pathogens to take hold.  

Due to the complexity of the microbiota, understanding what constitutes a healthy vs non- 

healthy microbiota, is challenging, particularly as there can be large intra-individual 

differences between healthy people. However, evidence is strengthening that there are 

distinct differences between those with obese vs. normal weight phenotypes, however 

overweight may be associated with reduced diversity. A gene count of <480,000 genes has 

been associated with obesity whilst higher diversity or higher gene count between 380,000-

640,000 is associated with a leaner phenotype (Le Chatelier et al., 2013, The Human 

Microbiome Project, 2012) In a study of monozygotic twins Turnbaugh et al. demonstrated 

that whilst a core common microbiome exists, phylum level changes and an overall reduced 

bacterial diversity was associated with obesity (Turnbaugh et al., 2009). Ley et al. could 

distinguish the microbiome of obese (ob/ob) mice from their lean (ob/+ and +/+) siblings at a 
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phylum level. They found a 50% reduction in Bacteroidetes and increased prevalence 

of Firmicutes in obese mice (Ley et al., 2005). Turnbaugh et al. demonstrated that the 

microbiotas of obese mice exhibit modified metabolic potential through increased capacity 

for energy harvest. And importantly, transplanting the microbiota from obese mice into germ 

free mice induced obesity in the recipient (Turnbaugh et al., 2006). 

Microbial diversity may be strongly influenced by diet and environmental exposure, for 

example the saccharolytes: Prevotella and Xylanibacter, are more abundant in the stools of 

children from Burkina Faso, Africa than in European children (De Filippo et al., 2010). High 

fibre consuming Venezuelan and Malawians also show more diverse microbiota than their 

African American counterparts (Yatsunenko et al., 2012).  

Prebiotics – structure and function  

Prebiotics are substrates that can be selectively utilized by the host microbiota conferring a 

health benefit (Gibson et al., 2017). They must resist digestion in the upper GI tract and then 

selectively stimulate the growth and/or activity of specific commensal bacterial groups. 

bifidobacteria, for example can utilise fructo-oligosaccharides (DP>10) due to their 

glycosidases which can cleave specific linkages other bacterial groups cannot (Rios-Covian et 

al., 2015, Rios-Covian et al., 2013;). Polysaccharides such as resistant starch (RS), (DP >10) 

ferment more slowly (Zhou et al., 2013;), and has exhibited prebiotic potential in human 

randomised control trials (RCTS) (Hald et al., 2016, Maier et al., 2017). bifidobacteria can 

metabolise the outer oligosaccharide chains exposing the backbone for other bacterial groups 

such as Bacteroides to ferment. Metabolites such as acetate produced from the fermentation 

of these prebiotics may also be utilised by species such as Faecalibacterium prausnitzii to 

produce butyrate further along the colon, as observed in co-culture experiments by Rios-

covian et al (Rios-Covian et al., 2015). In the UK consumption of dietary prebiotics, from 

sources such as onion, banana and fortified products is low, at approximately 1-4g/d 

(Bonnema et al., 2010). It therefore may be desirable to supplement the diet with prebiotic 

enriched functional foods. 
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Appetite regulation and satiety  

Appetite regulation and controlling food intake is complex and influenced by food structure 

and composition, internal physiological and biochemical responses to foods as well as 

external cues, learned social and cultural influences on eating behaviour. Satiation and satiety 

are pivotal in this regulation, whereas satiation refers to the amount of food and length of 

time spent during an eating episode, satiety denotes the length of time between meals, both 

of which are integral to appetite regulation. These physiological processes involve both short 

term signals that influence the amount of time between meals and long-term signals such as 

leptin and insulin which are concerned with the amount and distribution of fat Blundell et al 

developed the satiety cascade to describe the biological mechanisms in which food impacts 

satiation and satiety (Blundell and Hill, 1987).  The cascade includes the underlying processes 

involved in satiation; the feeling of fullness perceived during a meal and satiety; the feeling 

of fullness perceived following cessation of an eating episode that, if it persists leads to eating 

less; and longer periods between meals, it is a combination of both satiation and satiety that 

determine the size and frequency of a meal consumed.  
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Figure 1. Satiety cascade showing the relationship between satiation and satiety, with 

mediating psychological and physiological processes. Illustrating how psychological and 

physiological stimuli arising from the consumption of a food modulate the effects of that food 

on appetite sensations and the pattern of eating (Blundell, 2010). 
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The cascade is characterised by three phases, initially the cephalic phase is influenced by 

neural mechanisms that stimulate the sensory system through liking or appeal of a food. 

Physiological aspects of this phase include production of the gut peptide ghrelin in response 

to hunger, stimulating orexigenic neuropeptide Y (NPY) to promote feeding by inhibiting 

anorexigenic pro-opiomelanocortin (POMC) neurons (Figure 1). Conversely the second pre-

absorptive phase is dominated by the production of satiety hormones, glucagon peptide 1 

(GLP-1) and peptide YY (PYY) that reduces NPY activity but stimulates POMC neurons. This 

inhibits food intake and slows gastric emptying, depending on the quantity and density of the 

food consumed. The third post absorptive phase includes satiety effects mediated by gut 

microbiota, through fermentation of non-digestible carbohydrates (NDCs) in the meal. This 

leads to the production of short chain fatty acids (SCFAs) acetate, propionate and butyrate. 

These metabolites have an affinity for G-protein coupled receptors (GPR43/42) on entero-

endocrine cells located throughout the length of the colon, effectively stimulating production 

of GLP-1 and PYY. This in turn triggers anorexigenic pathways such as POMC neurons and 

reducing food intake (Blundell and Hill, 1987, Perry and Wang, 2012). 

 

Prebiotics and appetite regulation 

Prebiotics are often water binding and may be used as low calorie bulking agents in foods, in 

the stomach this bulk stimulates stretch receptors. This limits food intake through release of 

satiety signals (van Kleef et al., 2012). Prebiotics may also delay gastric emptying and, with 

low intestinal bioavailability, they decrease the glycaemic index of foods (Slavin and Green, 

2007). This may smooth the post prandial insulin curve and suppress food seeking behaviour 

during the glucose slump. In the final post-absorptive phase of the satiety cascade, prebiotics 

are fermented in the colon yielding energy for the host in the form of SCFA.  It is hypothesised 

that SCFA are satiety inducing metabolites produced during this process that may be 

increased to further positively impact on satiety mechanisms (Kaji et al., 2011, Karaki et al., 

2006, Morrison et al., 2016). The role of fibre and prebiotics in appetite regulation is reviewed 

later.  
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Blending prebiotics  

Candidate prebiotics exist as a range of different structures leading to varying functionality 

that can be used to target specific bacterial species to produce different ratios of SCFA (Brouns 

et al., 2002, Rivière et al., 2014) By investigating and characterising the fermentation profiles 

of complimentary blends it may be possible to attenuate colonic metabolism in different parts 

of the colon , thereby boosting health benefits, and this could be a route to manipulating 

metabolic processes such as appetite regulation.  

Using a simulator of human intestinal microbial ecosystem, Marzorati et al. demonstrated 

that blending inulin and acacia gum allowed for a gradual fermentation along the length of a 

simulated colon compared to inulin alone (Marzorati et al., 2015)  Similarly, during 24hr batch 

culture, inulin blended with gum acacia and pea fibre (0.5g per substrate in 140mL) induced 

a delay in the  release of SCFA compared to fermentation of the individual substrates alone 

(Koecher et al., 2014). 

Aim and outline of thesis 

Individual prebiotics are known to selectively stimulate growth and activity of commensal 

bacterial groups to produce health benefits. Therefore, it is worthwhile investigating if 

additive prebiotic effects might occur through blending prebiotic oligosaccharides together ie 

inulin + GLOS or with polysaccharides ie inulin +RS, or inulin + arabinoxylan as this might 

improve appetite regulation and increase satiety. The aims of this project were; 

1/ To screen 11 individual fibres through 48h in vitro batch culture to determine those that 

might complement inulin in a blended product. Increased acetate and propionate production, 

along with stimulation of Bifidobacterium and Propionibacterium growth at later time points 

were desirable. 

2/ To test 3 novel prebiotic blends developed in aim 1 in a more realistic continuous culture 

fermentation model of the colon to identify an optimal prebiotic blend. 

3/ To test the optimal blend as ascertained in vitro in a human dietary study with satiety as 

the primary endpoint.  
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The thesis begins with a literature review assessing the existing human intervention studies 

on prebiotics and satiety. In the general methodology chapter, I justify my experimental 

approaches. Chapter 4 describes the in vitro batch culture screening experiment in which the 

fermentation profiles of individual test substrates were characterised with a view to 

proposing candidate prebiotic blends. Chapter 5 describes fermentation profiles of 3 prebiotic 

blends in a three-stage continuous colonic system used to model changes to microbial ecology 

in anatomically distinct compartments, as well as SCFA production in these regions. In the 

final experimental chapter 6 the findings of a human, placebo-controlled crossover study used 

to test the satiety inducing effects of consumption of a prebiotic blend are discussed. Chapter 

7 will cover the general discussion. 
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Abstract  

Prebiotics modify the composition of gut microbiota and this can lead to increases in the 

production of SCFAs. These metabolites are thought to be implicated in appetite regulation, 

and in particular: acetate and propionate are thought to act as ligands, stimulating production 

of satiety hormones such as GLP-1 and PYY and subsequently anorexigenic pathways to 

reduce food intake. To the extent in which prebiotics impact appetite regulation however, is 

yet to be elucidated. The purpose of this review is to identify those human dietary 

intervention studies that investigated the satiety inducing effects of prebiotics/candidate 

prebiotics, measuring subjective satiety as an endpoint, using visual analogue scale (VAS) but 

also changes in microbial ecology and satiety hormones following consumption of: resistant 

starch (RS), βeta glucan (β-GLU), oligofructose (OFS), polydextrose (PDX), and wheat bran 

(WB) Of the 26 studies identified, 17 elicited significant increases in subjective satiety, 

however as most of these studies were acute in design and chose a range of doses as well as 

administration methods, the disparity between results makes sense and instead  it might be 

useful and beneficial to measure satiating effects of prebiotics in well designed, chronic 

human appetite studies, whereby satiety effects mediated by changes to gut microbiota 

might be considered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



28 
 

Introduction 

With 63% of the UK population either overweight or obese, obesity is a pressing public health 

issue.  It is proposed that an imbalance or dysbiosis in the composition of gut microbiota may 

be implicated in the development of the obese phenotype (Ley et al., 2005) (Clarke et al., 

2012). Emerging evidence suggests that this relationship can be mediated through gut 

metabolite influences on appetite regulation (Evans et al., 2013). Dietary approaches that 

favourably manipulate microbial composition and metabolic processes to attenuate appetite 

include supplementation with prebiotics. The purpose of this review is to synthesise current 

evidence pertaining to the role of prebiotics in satiety.  

 

Here we discuss human dietary intervention studies that have measured satiety as a primary 

endpoint, and which have also assessed satiety hormones in plasma, and characterised 

changes in gut microbial composition and/or activity following consumption of a prebiotic.  

We identified studies published between 2003-2017. Most of the human studies reviewed 

used the participant subjective visual analogue scale (VAS) as their main methodology, though 

subjective, VAS scores are considered reliable in terms of measuring satiety in human studies, 

using a within subject, repeated measures (Flint et al., 2000, Hobden et al., 2017). Bias is 

minimised by randomisation, single/double blinded placebo-controlled trials unless stated 

otherwise.      

 

Resistant starch 

Resistant starch (RS), refers to large polysaccharides that may be sub-classified as RS1-RS4 

(Sajilata et al., 2006) dependent on the relative amount of starch that reaches the colon 

(Englyst et al., 1982). High amylose resistant starch 2 (HAMRS-2) consists of 60% amylose, 

a helical polymer of α-D-glucose units and 40% amylopectin, a soluble polysaccharide 

comprised of highly branched polymers of glucose (Keenan et al., 2015).  

 

Of the four human studies evaluating the satiating effects of RS were mainly of an acute 

crossover or parallel design using VAS to measure satiety and ad libitum meals to measure 

food intake (Table 1). 
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Table 1: Fermentable & Soluble Fibre - Human Satiety Studies     
Author, Yr 
Publication 

Sample size  Fibre Method 
Dose 

(g) 
Duration Admin Outcome 

   Resistant Starch       

Willis et al., 
2009 

20 healthy ♂ 
& ♀ 

Hi-Maize 260 high 
amylose corn 

starch 
VAS (0-180mins) 8 1d Muffins Satiety ↑ 

Bodinham 
et al., 2009 

20 healthy ♂ 
Hi-Maize 260 high 

amylose corn 
starch 

VAS (0-7hr) + 
glucose (Ria) & 

insulin  
48 1d Mousse 

No diff in 
satiety, ↓ 

energy intake  

Anderson 
et al., 2010 

n=17 ♂ & 
n=16 ♂ 
healthy 

Hi-Maize 260 high 
amylose corn 

starch 

VAS (0-120mins) + 
glucose (prick test) 

23, 27 1d Soup 
Satiety ↑, ↓ 
energy intake 

Harrold et 
al., 2014 

45 healthy ♂ 
& 46 ♀ 

Hi-Maize 260 high 
amylose corn 

starch 
VAS 20, 30 1d 

Fruit 
smoothie 

Satiety ↑ 

Hoffman et 
al., 2016 

22 healthy ♂ 
& ♀ 

Unripe banana 
flour 

VAS (0-180mins) + 
satiety peptides + 

insulin/glucose 
5g 

3x5g/wk 
for 6 wk 

Soup 

Satiety ↑, ↓ 
energy intake 

attenuated 
glucose 

  Oligosaccharides      

Cani et al., 
2006 

5 healthy ♂ 
& 5 ♀ 

Oligofructose VAS (0-240mins) 16 
2x8g/d 

dose for 
2wk 

Supplement 
Satiety ↑, ↓ 
energy intake 

Cani et al., 
2009 

5 healthy ♂ 
& 5 ♀ 

Oligofructose 

VAS (0-180mins) + 
finger prick – 

glucose: 
glucometer, breath 

hydrogen: 
MICROH2 breath 

test, Luminex: GLP-
1, PYY, GIP, insulin 

16 
2x8g/d 

dose for 
2 wk 

Supplement 
No diff in 

satiety, ↑ PYY 
& GLP-1.  
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Parnell et 
al., 2009 

9 obese ♂ & 
39 obese ♀ 

Oligofructose 

VAS (0-360mins) + 
Lincoplex to detect 
Ghrelin, PYY, CKK, 

Leptin 

21 
21g/d 

dose for 
12 wk 

250ml drink 
No diff in 

satiety, ↑ PYY, 
↓ ghrelin 

Hess et al., 
2011 

20 healthy ♂ 
& ♀ 

Oligofructose 
VAS (0-240mins) + 
Breath hydrogen & 

energy intake 
5, 8 1d 

Cocoa drink & 
chocolate 

chews 

No diff in 
satiety, ↓ 

energy intake 
only in ♀ 

Heap et al., 
2016 

19 healthy ♀ Inulin 
VAS (0-180mins) & 

energy intake 
0, 6 8d Yoghurt 

No diff in 
satiety or 

energy intake 

  Polydextrose 
(PDX) 

     

King et al., 
2005 

8 healthy ♂ 
& 8 ♀ 

PDX + xylitol VAS 

25g 
PDX 

&12.5g 
PDX + 
12.5g 
xylitol 

10d Yoghurt 

PDX - no 
difference, but 
PDX + xylitol ↑ 

Satiety 

Ranawana 
et al., 2012 

26 healthy ♂ PDX VAS 12 1d Smoothie 
No diff in 
satiety, ↓ 

energy intake 

Hull et al., 
2012 

24 healthy♀ 
& 10 ♂ 

PDX VAS (0-450mins) 
0, 

6.25, 
12.5 

1d Yoghurt 
Satiety ↑, ↓ 
energy intake 

Konings et 
al., 2013 

9 obese ♂ & 
9 ♀ 

PDX 
VAS (0-24h) + 

breath hydrogen 
using Gastrolyser 

30% of 
carb = 
PDX 

1d 
Orange or 

cocoa drink 

Satiety ↑, no 
diff energy 

intake 
 

Olli et al., 
2015 

13 obese ♀ 5 
obese ♂ 

PDX 
VAS + gut 
hormones 

15 1d High fat meal 

No diff in 
satiety, ↓ 

hunger & ↑ 
GLP-1 

  βeta glucan      
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Kim et al., 
2006 

19 obese ♂ 
& ♀ 

β-glucan 
VAS + blood 

glucose 

0,2g 
beta 

glucan 
1 day Yoghurt 

No diff in 
satiety 

Keogh et 
al., 2007 

14 healthy ♀ β-glucan 
VAS, insulin & 

glucose, respiratory 
quotient 

11.9g 4wks Muffin/cereal 
no diff in 

energy intake 

Vitaglione 
et al., 2009 

14 healthy ♂ 
& ♀ 

β-glucan 

VAS (0-180mins) + 
Glucose/PYY, 

ghrelin - Elisa plus 
insulin - Immulite 

one 

0, 3 1 day Bread 
Satiety & PYY 
↑, ghrelin ↓ 

Juvonen et 
al., 2009 

4 healthy ♂ 
& 16 ♀ 

β-glucan 
VAS – 180mins 

CCK, PYY, ghrelen 
0, 30 1 day Drink 

HV ↑ satiety, 
↑ CCK, PYY, ↓ 

ghrelin 

Lyly et al., 
2009 

19 healthy ♂ 
& ♀ 

β-glucan 

10 unit graphic 
intensity scale (0-

120mins) + 
viscosity 

0, 10.5 1 day Drink Satiety ↑ 

Beck et al., 
2009 

66 obese ♀ β-glucan 

VAS (0-120mins) + 
Lincoplex to detect 
Ghrelin, CCK, PYY, 
leptin and glp-1 

0, 6, 9 3 mth Muesli bar 
Satiety ↑No 

diff, except ↑ 
PYY 

Pentikainen 
et al., 2014 

30 healthy ♀ β-glucan VAS (0-210mins) 0, 4, 8 1 day 
Biscuits & 

juice 
Satiety ↑ 

Robello et 
al., 2014 

29 ♀ 19 ♂ 
healthy and 
overweight 

β-glucan VAS (0-240mins) 0, 2.68 1 day Oatmeal 

 
Satiety ↑ & 

↓ energy 
intake 

  Wheat bran      

Weickert et 
al., 2006 

14 healthy ♀ Wheat bran 

equilateral 
seven-point rating 
scale (0-300mins) + 

gut hormones 

0, 10.5 1 day Bread 
No diff in 

satiety  
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Lyly et al., 
2009 

19 ♂ ♀ Wheat bran 

10 unit graphic 
intensity scale (0-

120mins) + 
viscosity 

0, 10.5 1 day Drink Satiety ↑ 

Freeland et 
al., 2009 

19 ♂ ♀ 
Wheat bran (Fibre 

One) 
VAS (0-120mins) 0, 41 1 day Drink 

No diff in 
satiety, ↓ 

energy intake 
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Willis et al. reported that corn bran and RS enriched muffins containing 9.6g and 8.0g fibre 

respectively, stimulated a significant reduction in the desire for food intake compared with 

the low fibre (LF) muffins (P=0.025) and (P=0.009) respectively) (Willis et al., 2009) RS muffins 

also kept subjects significantly less hungry compared to baseline at 120 minutes and fuller 

and more satisfied at 180 minutes. An effect of treatment was therefore observed with RS 

over time compared to control. In a similar acute crossover study, Anderson et al reported 

higher satiety scores at 30 minutes following placebo (maltodextrin), which corresponds to 

the greater increase in blood glucose concentration (P=<0.00) (Anderson et al., 2010). The 

high glycaemic load of maltodextrin is likely to have initially induced satiety according to the 

glucostatic theory (Mayer, 1996), however as maltodextrin is highly digestible, satiety was 

short lived. Glucose levels are tightly controlled as the brain relies on glucose as its main 

source of energy so multiple sites in the body are able to detect glucose and relay this to the 

brain through neuronal pathways affecting energy intake (Marty et al., 2007), therefore acute 

satiety signals are directly affected by glucose and subsequent insulin stimulation. In a review 

by Baggio et al satiety hormone GLP-1 was found to peak 20-30 minutes after eating (Baggio 

and Druker, 2007), therefore maltodextrin in this study may have induced gastric stimulation 

of GLP-1. However, at 120 minutes RS was reported to elicit a greater effect by reducing FI, 

indicating a different mechanism of satiety being exerted at this time point. In a small study 

in pigs (n=10) the satiety hormones GLP-1 and PYY did not rise following consumption of RS 

(Souza da et al., 2014),  instead decreased postprandial glucose and insulin responses were 

reported and therefore the most likely mechanism of satiety is via delayed gastric emptying, 

which may account for the reduced food intake in both Willis et al and Anderson et al.  

This hypothesis is supported by the observations of Hoffman et al. who fed 22 volunteers 15g 

of unripe banana flour (RS2) daily for six weeks and observed a significantly lower 

postprandial insulin response compared to maltodextrin placebo over the whole acute study 

period (P=0.029) (Hoffmann et al., 2016). Attenuated insulin release has been reported in 

other RCTs testing the effects of RS consumption (Behall et al., 2006, Klosterbuer et al., 2012).  

Hoffman et al additionally reported a post prandial increase in circulating peptide YY (PYY), 

which could explain reduced feelings of hunger following breakfast at 180 mins (P=0.026) and 
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increased satiety (P=0.044) at 180 mins. Significant reductions in food intake were also 

reported following consumption of a snack (P=0.033) and lunch (p=0.012).  

Harrold et al., 2014 also reported that both 20g and 30g doses of RS reduced subjective 

hunger significantly 3h post breakfast, however the 30g dose exerted further effects at 2 and 

3hrs post lunch by reducing food intake, indicating a dose dependant effect. As reported by 

Anderson et al., 2010, Bodinham et al., 2009. and Hoffman et al., 2016, the satiating effects 

of RS consumption may be due to improved glucose metabolism. Post absorptive effects of 

RS again were not measured in this study but may have been implicated in reduced food 

intake during dinner. 

Contrary to the results of Anderson et al., 2010, Willis et al., 2009, Hoffman et al., 2016 

Harrold et al.,2014 whom all reported increased satiety effects in Bodinham et al., 2010  

study, following consumption of 24 g of RS at breakfast and again at lunch there was no 

increase in satiety, however food intake was significantly reduced during the study period 

(P=0.033) (Bodinham et al., 2010). Viscosity may have impacted satiety scores as the method 

of administration was a mousse which is fairly viscous, and in fact the intervention was liquid 

and placebo semi-solid, the gelling effect of which is likely masked any satiety effects of RS 

metabolism due to delayed gastric emptying associated with viscosity (Marciani et al., 2001).  

Results from studies cited here indicate that 5g/day of RS is sufficient to test induced satiety 

effects and improved glucose homeostasis was observed; however further improvements 

may be feasible with greater levels of intake. All of the studies cited tested acute satiety with 

some chronic intervention, however the potential prebiotic effects of including RS in the diet 

and its effect on energy intake and satiety should be further evaluated using gut microbial 

analysis techniques such as fluorescent in situ hybridisation (FISH) in order to determine if a 

modification of gut microbiota over long term supplementation of RS can impact satiety 

mechanisms. However, it can be concluded that RS reduces perceptions of hunger, increased 

fullness, as a measure of satiety as well as reducing prospective food consumption when 

administered acutely. Prebiotic fermentation has been shown to induce increased circulating 

satiety hormones in animal, human and in vitro research (Table 2). 
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Table 2: Animal and human studies demonstrating the stimulation of satiety hormones GLP-1 & PYY and reduction in food intake through prebiotic 
supplementation.  

Author, 
Publication 

Model Fibre Dose/Treatment Study Design Food Intake Outcome 

Animal:        

Cani et al., 
2005 

Groups of adult 
male rats 

OFS enriched diet (10%), high fat 
diet (HF) enriched or not with 

OFS (10%) 

OFS 35d, then HF (15d): Satiety 
hormones measured (GLP-1 & PYY) at 

end (50d) 

Energy intake ↓ with 
OFS enriched HF diet 

(p<0.05) 

↑ GLP-1 in proximal region, portal 
vein GLP-1 doubled with HF OFS 
rats (p<0.05) no effect in distal 

region.  

Delmee et al., 
2006 

Groups of adult 
mice  

OFS enriched (10%) plus 2 HF 
diets (HF-1 50g/100g and HF-2 

36g/100g) 

OFS (21d), then HF-1 or HF-2 (28d): 
Plasma satiety hormones measured 

(GLP-1 & PYY) at end (50d) 

Energy intake ↓ with 
0.6g/d with OFS 

enriched HF-1 diet 
(P<0.05), no diff with 

HF-2 

GLP-1 ↑ (66%), 100% ↑ in GLP-1 
in proximal colon of mice on HF 

OFS 

Reimer et 
al.,2012 

Male rats 

High prebiotic fibre (HF-21% wt-
wt), or high protein (HP-40% wt-
wt), high fat/sucrose (HFS-40%-

45%). 

HF weaning, then HFS (6wks) then C, HF 
or HP (4 wks): plasma satiety hormones 

measured at end (28d) 

Energy intake ↓ 
(P=0.03). Final 3wks ↑ 

energy intake on HP and 
control compared to HF 

(P=0.05) 

HF diet: ↑GLP-1 & PYY (P=0.05) 
compared to C & HP  

Da Souza et al., 
2014 

Weaning pigs 
 35% pregelatinized starch (PS) 

and 34% retrograded starch (RS) 

Crossover - PS or RS (14d):  Satiety 
hormones measured at the end of each 

treatment 

Energy intake ↓ by 3% 
with RS (P<0.00) 

compared with PS diet  

GLP-1 ↓in RS compared with PS 
(P<0.001) 

Zhou et al., 
2015 

Wild type 
(C57BL/) & GLP-1R 

knock out (KO) 
mice 

Control or 30% RS diet 
 Control or RS(10wks): single 

intraperitoneal injection of saline or PYY 
receptor antagonist at end 

Energy intake ↑ with RS 
(P < 0.05) compared 

with control 

RS ↑ GLP-1 & PYY above detection 
unlike C. Proglucagon and PYY ↑ 

RS-fed mice (p < 0.01) 
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Kaji et al., 2010 Rats 
Control: NDC free diet 

Treatment: 5% FOS diet for 28 
days 

28d followed by FFA2-, GLP-1-, 
enteroendocrine cells quantified 

immuno-histochemically in the colon, 
cecum, and terminal ileum. 

 

↑ density FFA2+ enteroendocrine 
cells in rat proximal colon doubled 

compared to control. FOS 
supplementation ↑ number of 
FFA2+ L cells in proximal colon 

Human:       

Cani et al., 
2006 

Five males and 
five females (21–

39) 

16g/d OFS or 16g/d control 
maltodextrin 

Crossover - OFS & C (2wks) or C with 
2wk washout: FI measured ad libitum 

meals 

Energy intake ↓at 
breakfast (P=0.01) & 
lunch (P=0.03). Total 

energy intake ↓ 5%/d 
during OFS treatment 

Satiety ↑, ↓ energy intake 

Greenway et 
al., 2007 

7 obese, 7 healthy 
weight 

4g/d Viscofibre (oats/barley)  
Weight loss (16wks): PYY & GLP-1 

measured 1hr before & after standard 
meal test (Wk14) 

 

Fasting PYY ↑ (P<0.05), fasting 

GLP-1 ↑ (P<0.01) (wk14). Weight 
reduced 3.07 +/- 3.13 kg (P 

<0.05) over 16 weeks.   
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Oligosaccharides  

Oligofructose is a linear mix of fructose oligomers linked by β (2—1) bond and at the end of 

each fructose chain is a glucose molecule linked by α (1—2) bond, with an average chain 

length, or degree of polymerization (DP) of 10 (Niness, 1999). Four out of the five studies 

reviewed here were a crossover or parallel design to investigate the satiety inducing effects 

of chronic consumption of oligosaccharides using VAS additionally satiety hormones were 

measured in two of the studies (Table 1). 

 

No significant increase in satiety scores were reported in the 360 minutes following 

consumption of OFS at breakfast and lunch at the end of a 12-week weight loss study Parnell 

et al., however circulating plasma PYY did increase by 13% (P=0.03) whereas the hunger 

hormone, ghrelin, decreased by 23% (P<0.00) by day 14. The subjects, though healthy, were 

overweight at baseline; low grade inflammation associated with increased adiposity has been 

shown to dysregulate appetite by blunting the response of satiety signals, which may have 

occurred here. Adam et al., reported blunted GLP-1 response in 28 obese subjects compared 

to 30 lean subjects (P=0.03) following supplementation of 50g galactose or guar gum based 

test meal  (Adam and Westerterp-Plantenga, 2005).  

 

Parnell et al., additionally reported a significant 29% reduction in food intake by week 6 (P< 

0.00) via 3-day food records completed by the volunteers, which corresponds with the 1.03 

±0.43 kg weight loss in the OFS group at end of the study period. There is accumulating 

evidence of the fermentation of prebiotic fibres by commensal bacterial groups such as 

bifidobacteria, leading to production of SCFAs, integral to the mechanisms of appetite 

regulation, through stimulation of satiety hormones, particularly GLP-1 and PYY, implicit in 

reducing food intake and increasing satiety (Table 3).  
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                   Table 3: Animal, human and in vitro research demonstrating stimulation of satiety hormones: GLP-1 & PYY by SCFAs. 

Author, 
Publication 

Model Treatment Study Design Outcome 

Animal:     

Lin et al., 
2012 

Wild type & 
FFAR3 KO 

mice. 

Acetate, propionate, 
and butyrate - 

400mg/kg 

Plasma gut hormone GLP-1 
& PYY levels measured 

following oral SCFA challenge 
at 10mins - 1hr 

Butyrate ↑ GLP-1 & PYY 
at 10 mins post prandial, 
however acetate did not 

↑ GLP-1 & PYY. 
Propionate ↑ GIP, 

insulin, and amylin, but 
not GLP-1 or PYY. 

Psichas et 
al., 2015 

Wistar rats, 
male wild 
type (WT) 

mice & FFA2 
knockout 
(KO)mice 

A single intra-colonic 
propionate (0.45mmol) 

or Saline control 

Jugular vein blood samples 
were collected at 60 mins 

post injection & single blood 
sample taken from the portal 

vein at 15 min. 

Propionate ↑ GLP-1 
(P=0.02) & PYY (P=0.02) 
in rats (GLP-1 peaked at 
30mins, PYY at 60mins). 
In WT mice GLP-1 & PYY 
↑ (P<0.05). No ↑ in KO 

mice 

Human:     

Chambers 
et al., 2014 

60 overweight 
adults 

10g/d inulin (I) or 10g/d 
inulin-proiponate ester 

(IP) 

Parallel, 24wks. Energy 
intake and plasma PYY and 

GLP-1 concentrations 
measured at baseline and 

post treatment 

IP ↑ plasma GLP-1 & PYY 
(p<0.05) 

in vitro:     
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Brown et 
al., 2003 

Mammalian 
cells (calf) 

Control cells: transiently 
transfected with 
hGPR40 or the 

µ-opioid receptor. Or 
HEK293 cells transiently 

transfected with 
hGPR43 

HEK293 cells transiently 
transfected with hGPR43 & 
loaded with Ca+ sensitive 
fluorescent dye Fluo-4 & 

intracellular [Ca+] measured 
using FLIPR. 

Acetate ↑ in Ca+ 
whereas control cells did 

not. 

Tolhurst et 
al., 2010 

3 mth WT 
mice (C57B/6) 
& FFA2/3 KO 

mice 

Control: 10 mmol/L 
glucose only or addition 
of acetate, propionate 
or butyrate (1 mmol/L) 

Bowels of WT & KO mice to 
produce mixed cultures to 
detect GLP-1 stimulation in 

2hr incubation 

GLP-1 secretion in WT 
cultures but not KO 
cultures, propionate 

stimulated GLP-1 
reduced by 70% (P= 
0.001). Response to 
acetate abolished 

(P<0.00). 

Chambers 
et al., 2014 

Cultured gut 
model 

Inulin-propionate (IP) 
ester and inulin 

Gut model used to test 
inulin-propionate (IP) ester 
compared with inulin alone 

Propionate ↑ PYY 
threefold above basal 

(P>0.00) & GLP fourfold 
(P<0.00) 

Psichas et 
al.,2015 

Adult male 
C57BL6 & 

FFA2 KO mice 

Supplemented with 
0.1% free fatty acid 

(bovine) 

Colonic crypt cultures used 
to assess effects of 

propionate on satiety 
hormones release in vitro, 
followed by gut hormone 

secretion experiments 

(1–50 mmol l−1) 
Propionate ↑ 

production of PYY & 
GLP-1 In wild mice and 

was significantly 
attenuated in cultures 

from FFA2-/- mice 
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In a pilot study carried out by Cani et al., it was reported that following chronic consumption 

of 16g/d OFS for 2 weeks, satiety was increased at breakfast (P<0.00) and dinner. Whereas 

food intake was reduced at breakfast (P=0.01) and lunch (P=0.03) but not dinner (Cani et al., 

2006). Conflicting with results Cani et al reported in his 2009 study, in which no increase in 

satiety was reported following 16g/d for 2wk OFS consumption. Both of these studies were 

small (n=5 per gender) and are likely to have been underpowered;  according to Flint et al 

between 12 and 18 single gender subjects are necessary to detect a 5mm difference in self-

reported satiety scores at 4.5h (Flint et al., 2000). Furthermore, the control breakfast appears 

to be 150Kcals greater than the OFS breakfast. Increased energy density can improve satiety 

scores, by increasing the transit time and therefore the rate at which nutrients reach 

receptors involved in satiety, and this impacts the amount of food consumed directly.  This 

was demonstrated by Kissileff et al in food loading experiments, conducted in which eating 

rate corresponded with gastric distention (Kissileff et al., 1984) Though chronic consumption 

of OFS did not increase in subjective satiety scores in Cani et al 2009 study, GLP-1 and PYY 

production was significantly increased following (P=0.007). Disparity between subjective 

satiety scores and objective measurements in appetite studies is prevalent and an issue when 

it comes to designing studies in the future (Lesdema et al., 2016).  

 

Similarly, Hess et al observed no difference in satiety scores following the consumption of 0, 

10 or 16g OFS, in in 10 males and 10 females, in an acute setting. The female group did report 

reduced food intake with 8g/d dose, however the males did not. A study of 22 men and 

women investigated whether the brain responds differently to satiety and is gender specific, 

and using blood flow as a cognitive marker for neuronal activity, reported that possible 

differences in cognitive and emotional processing of hunger and satiation can occur (Del Parigi 

et al., 2002). A later study by Wang et al of 13 women and 10 men observed that only male 

participants could suppress metabolic activation in the amygdala when exposed to an 

appealing food and asked to suppress the desire to eat (Wang et al., 2009) the amygdala is an  

area of the brain that is thought to be involved in satiety regulation and motivation to eat(Farr 

et al., 2016).  Heap et al., may have missed the relevant temporal satiety response as VAS 

scores were only measured for 180mins following consumption of 6g/d OFS for 8 days. 
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Though lower desire to eat, prospective food consumption and increased satiety were 

reported, none were significant. Longer term studies appear to have better impact on satiety 

scores than acute studies following consumption of OFS (Heap et al., 2016).  

 

Unlike more complex polysaccharides that elicit physiological mechanisms of satiety, OFS is a 

short chain oligosaccharide and is thought to be more rapidly fermented, in the proximal 

region of the colon, thereby exerting a prebiotic effect on fibre degrading bacterial groups 

such as bifidobacteria which produce SCFAs. The mechanism OFS impacts satiety may be 

through exerting prebiotic modification on bacterial groups to increase SCFA production and 

stimulate satiety hormones. Previous research suggests that up to 3 weeks supplementation 

is required to observe significant prebiotic induced microbial changes therefore longer term, 

properly powered studies would be required (Macfarlane et al., 2006). Cani et al., points out 

that acute prebiotic supplementation does not necessarily impact appetite regulation and 

that longer term adaptive effects need to take place to observe more pronounced and 

significant effect of prebiotics with satiety. The very small sample size in both of Cani et al., 

studies (n=5 single gender subjects) and Hess et al., (n=10 single gender subjects) could have 

mitigated any acute satiating impact of OFS as well as short duration of supplementation, 

which would not have considered any prebiotic induced increase in satiety mechanisms. 

 

Polydextrose  

Polydextrose is a non-digestible oligosaccharide comprising glucose monomers randomly 

linked, whilst containing small amounts of sorbitol and citric acid. As a low molecular weight 

compound, it is also low in energy density (1kcal/g) (do Carmo et al., 2016). Five randomized, 

controlled human studies investigating the satiety inducing effects of polydextrose (PDX) 

were identified under acute conditions with VAS as the primary method of measuring 

subjective satiety scores (Table 1). 

 

King et al., reported no significant increase in satiety scores in 8 healthy weight men using 

VAS, following chronic consumption of 12g PDX in the form of yoghurt. It may be that the 

study was underpowered (Flint et al., 2000), and highlights the importance for properly 

powered intervention studies to observe desired effects. However, it may also be that the 

viscosity of the yoghurt potentially masked any additionally satiety. Viscosity has been 
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reported to increase subjective satiety through reduced gastric emptying, leading to 

increased stimulation of gastric receptors that can trigger production of satiety hormones. 

Ranawana et al., study was larger, consisting of a population of 26 males, so unlikely to have 

been underpowered, however Ranawana et al., also observed no significant increase in 

satiety following consumption of 12g PDX in 26 healthy males. As the method of 

administration was a viscous 400g smoothie, this may have skewed results, as well as the 

short duration of the study of one day, which may have been insufficient. Conversely, Hull et 

al., study did report increases in subjective satiety when yoghurt enriched with 0, 6.25, 12.5g 

PDX was consumed by 24 healthy weight men and 10 women over the course of one day. 

Consumption of 12.5g PDX induced a significant reduction in FI during the ad libitum lunch 

(P=0.022), whereas consumption of 6.25g PDX additionally significantly increased subjective 

satiety following the ad libitum lunch (P=0.02). Hull et al., concedes the viscosity of the 6.25g 

PDX enriched yoghurt was greater than control or 12.5g PDX enriched yoghurt. Therefore, the 

different rates of transit could account for the altered response to subjective satiety and FI, 

however unlike King et al., and Ranawana et al., significant increases in satiety were reported.  

 

Ranawana et al., study reported no significant increase in satiety scores in 26 healthy weight 

males, only significant reduction of food intake following an ad libitum lunch (102Kcal). Hull 

et al., study however reported both food intake was significantly reduced (52.14Kcal) during 

the ad libitum lunch, as well as a significant increase in satiety scores in 24 healthy females 

and 10 males.  As both studies included a similar population size, dose and administration of 

PDX, it may that gender differences might be the reason for the disparity in results. 

Konings et al., and Olli et al., tested the satiety inducing effects of administering 15g PDX to 

obese participants in an acute setting (Konings et al., 2014, Olli et al., 2015). However, 

whereas Konings et al., reported significant increases in satiety scores following intervention 

(P<0.05) in women, Olli et al did not. Increased adiposity could account for blunting the 

response to satiety hormones, which can skew results and has been reported in previous 

studies (Delgado-aros et al., 2004). Gender differences in the effect of satiation have been 

reported ((Del Parigi et al., 2002), which could account for the disparity in results between 

men and women within Koning et al., study. The study duration may have also impacted 

results here, as 4/5 studies cited, only tested acute satiety over the period of 1 day, and 
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therefore any post absorptive satiety mechanisms would not have been considered or 

reported. 

The evidence from the dietary intervention studies indicates that at higher doses (12.5g-25g) 

PDX triggers a reduction in food intake and increased satiety. The growth stimulatory effect 

of dietary PDX on colonic bifidobacteria (Probert et al., 2004) might induce satiety signals 

mediated through an increase in SCFA production during fermentation. Of the dietary 

interventions with PDX reviewed here, all used VAS to measure satiety following intervention 

in the absence of other measures some show an increase in feelings of satiety relative to 

control and there is weak evidence linking satiety response to colonic fermentation. 

β-glucan 

Beta-Glucan (β-GLU) is partially soluble depending on linkages, branching and molecular 

weight. β-GLU from oat and barley comprise of linear polysaccharides joined by 1,3 and 1,4 

carbon linkages. Most cereal β-glucan bonds consist of 3 or 4 β-1,4 glycosidic bonds.  Eight 

randomised, controlled, blinded human satiety studies with β-GLU were identified: (Kim et 

al., 2006, Vitaglione et al., 2009, Lyly et al., 2009, Beck et al., 2009, Juvonen et al., 2009, 

Pentikainen et al., 2014, Rebello et al., 2014) and of these studies, four reported significant 

increases in perceived feelings of satiety following consumption of β-Glu in doses 3-30g, 

relative to control. All except Beck et al., were acute in design and VAS was used to measure 

subjective satiety in all six studies between 120-560min, two studies additionally measured 

circulating satiety hormones PYY and GLP-1 as well as hunger hormone ghrelin. 

 

Satiety scores were significantly increased (P<0.05) following consumption of β-GLU at 3-

30g/d in healthy weight males and females (Vitaglione et al., 2009, Rebello et al., 2014, 

Pentikainen S et al., 2014). Lyly et al however, did not report an increase in satiety scores in 

19 healthy weight males following consumption of 10.5g/d β-GLU. VAS was completed for 

just 120min following consumption, the shortest duration of the studies cited, and therefore 

may not have been long enough to observe any increase in satiety. Conversely, Vitaglione et 

al did report significant increases in satiety as well as increased fullness at 120mins (P>0.05), 

so it may be that Lyly et al., study suffered from “carry over effects.” An effect from one 

treatment that “carries over” to another and can occur if the washout is insufficient between 

treatments. Lyly et al., reported “at least one day between sessions” however, given the 10.5g 
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dose of β-GLU, it is possible that one day was not long enough for washout in this crossover 

design. 

 

Using a crossover design, Pentikainen et al., 2014also investigated the satiety inducing effects 

of differently administered oat β-GLU in 30 healthy weight women (Pentikainen et al.,2014): 

β-GLU enriched biscuits and enriched juice (EBEJ) and biscuits and enriched juice (BEJ) elicited 

the greatest and significant increase in satiety in 180mins compared with enriched biscuits 

and juice (EBJ), and biscuits and juice (BJ) and it may be that adding β-GLU is more efficacious 

at inducing satiety in a liquid form than solid, in this study. Food composition impacts on 

viscosity, and during an In vitro investigation of the 4 different meals, increased viscosity was 

reported following the transit from stomach to large intestine.  EBEJ had a starting viscosity 

of 19.89pas in stomach increasing to 24.9pas in the intestine. EBJ and BEJ had a much lower 

viscosity at 2.92pas and 2.11pas respectively and increased to 8.16pas and 6.29pas in the 

intestine. The viscosity is far greater in EBEJ than the other interventions. Therefore viscosity 

or mode of administration can impact satiety as observed by Juvonen et al., who explored the 

satiety inducing effects of modified oat bran consumption on 20 healthy weight participants 

with two iso-calorific drinks (300ml) of low viscosity (LV) β-GLU and high viscosity β-GLU (Lin 

et al., 2012). The LV β-GLU drink induced a greater postprandial satiety compared to HV β-

GLU drink (P<0.05). Additionally, the satiety hormone Cholecystokinin (CCK) significantly 

increased (P=0.03), whilst ghrelin was significantly reduced (P<0.00) but only with LV β-GLU 

drink. The authors hypothesise this effect could be related to differences in the rate of gastric 

emptying, with LV eliciting greater acute effects due to a faster absorption rate. Satiety and 

plasma measurements may need to be taken for longer than 180 mins after consumption in 

to determine if the HV had a longer-term impact on satiety. A lower viscosity may liberate 

nutrients faster which could enhance short term satiety, however longer-term satiety may 

have been experienced with HV with nutrients being released more slowly which may have 

impacted prospective food intake at subsequent meals, as has been observed by Pentikainen 

et al.  

 

Kim et al.,2006 administered 2g/d β-GLU to 19 obese women in an acute study over the 

period of 1 day, to investigate the satiety inducing effects, however there was no significant 

effect. The dose was quite low at 2g/d; additionally, the results could have been confounded 
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due to the increased adiposity of the study population, which can blunt satiety signals 

(Hellstrom, 2013). Beck et al., 2009 also reported no significant increase in subjective satiety 

following 3 months chronic consumption of 0, 6 or 9g/d β-GLU in 66 obese women. Circulating 

plasma PYY (P=0.018) and CCK plasma levels (P<0.00) were significantly increased however. 

Vitaglione et al., however, reported both increased satiety scores and circulating satiety 

hormones (PYY) after supplementing healthy weight participants with β-GLU at 3g/d. Again, 

this highlights how disparity between results can occur, and should be a consideration when 

choosing a study population within the study design.  

 

β-GLU becomes gel like in the GI tract and may therefore increase distension and stretch 

receptors, in addition it is a fermentable substrate for saccharolytic flora. Variation in the 

physiological properties of β-Glucans may contribute to the varying outcomes of the satiety 

studies reported (El Khoury et al., 2012). However, as β-GLU is complex viscous 

polysaccharide exhibiting a slower fermentation rate, these acute studies could only 

investigate pre-absorptive and some post absorptive satiety mechanisms. Any increase in 

satiety mediated by gut microbial fermentation of the β-GLU, through prebiotic activity has 

not been measured. Prebiotic activity of β-GLU could account for increases in satiety 

hormones howeverβ-GLU has been reported to be a prebiotic candidate in human/animal 

studies carried out (Table 2), therefore carrying out longer term, chronic studies in which 

changes to microbial ecology and SCFA production are measured as well as gut hormones 

might be worthwhile. Increased SCFA is thought to impact appetite regulation by acting as a 

signalling molecule on endocrine cells in the colon, thereby stimulating satiety hormones 

(Baggio and Drucker, 2007).  

 

Wheat bran 

Wheat bran is a complex structure, composed of about 53% dietary fibre (xylans, lignin, 

cellulose, galactan and fructans (Onipe et al., 2015). Of the three randomised, blinded, 

placebo controlled human intervention studies included in this review, all were acute studies 

(Lyly et al.,2009, Freeland et al., 2009 & Weickert et al., 2006). 

 

Only Lyly et al., 2009 reported an increase in satiety following consumption of 10.5g/d wheat 

bran in an acute setting in 19 healthy women. Both Weickert et al., 2006 and Freeland et al., 
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2009 reported no significant increases in satiety following 10.5 and 41g/d consumption 

respectively. Freeland et al however did report a reduction in energy intake following 

consumption of 41g wheat bran, and Weickert et al., 2006 reported an increase in AUC PYY 

(P=0.016), and a significant decrease in ghrelin (P<0.00). Again, a difference has been reported 

in results from measurement of subjective satiety and the objective measurement of both 

energy intake and satiety hormones. The duration could be a confounding factor as these are 

very short studies; however, using a subjective measurement such as VAS is limited and prone 

to error (Lesdema et al., 2016), such as individual variation in use of the line scale, however, 

using a crossover design can reduce this type of variability. It could be that the duration of 

the studies is too short. Initial satiety from wheat bran is likely to occur from gastric distention 

due the physical bulking and structure of wheat bran, any post absorptive effect on satiety 

has not been evaluated. Wheat bran has been shown have prebiotic effects, due to the xylan 

and inulin within the structure. 

 

A summary of the prebiotic effects (Table 4) is reported below for each fibre reviewed based 

on the weight of evidence collated from the study results, highlighting those fibres that had 

the greatest impact on satiety mechanisms. 

 

 

 

 

 

 

 

 

 

 

 

 

 



47 
 

Table 4: Summary of prebiotic effects exerted during human appetite studies of: resistant 

starch (RS), oligofructose (OFS), polydextrose (PDX), β-glucan (β-GLU), wheat bran (WB). 10-

20% of studies = ↑, 50% of studies = ↑↑, 90% of studies = ↑↑↑ 

Substrate 
Influence on 

subjective 
satiety  

Satiety 
hormones 
corrborate 
subjective 

satiety 

Energy 
intake 

reduced 
(24h) 

Glucose 
attenuated/insulin 

blunted 

RS  ↑↑↑ ↑  ↑↑↑ ↑↑ 

OFS ↑ ↑ ↑↑ ↑ 

PDX ↑↑ ↑ ↑↑ ↑ 

β-GLU ↑↑↑ ↑↑ ↑↑ ↑↑ 

WB ↑↑   ↑ 
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The focus of all three studies was on testing the short-term satiety effects of wheat bran, and 

the results are conflicting. Potential confounders may have affected the results reported. 

Costible et al., 2016 carried out a placebo-controlled, crossover, randomised study in which 

31 healthy weight volunteers consumed 48g wholegrain cereal or wheat bran every day for 3 

weeks. The results showed that faecal levels of bifidobacteria and lactobacilli were 

significantly increased, indicating a prebiotic effect. It could be that over time adaptive effects 

occur to positively impact satiety, such as increasing commensal bacteria to produce SCFAs 

that have been reported to impact on and impact satiety signals (Table 3). Therefore, more 

human studies are required with a chronic, long term aspect to more fully understand the 

satiety inducing effects and prebiotic effects of wheat bran. It might also be preferable to 

isolate some of the potential satiety inducing components of wheat bran such as lignin and 

xylans which have shown promise as a prebiotic candidate.  

 

Conclusion  

There is some evidence to suggest that intervention with fibre and prebiotic oligosaccharides 

may positively impact satiety through multi-mechanistic pathways; the results however, are 

conflicting, mainly because of the differences in study design, some of which are likely to be 

underpowered. Most of these studies are acute studies, focusing on short term benefits of 

prebiotic consumption, whereas properly powered chronic RCTS, would enable measurement 

of the prebiotic and adaptive effects of prebiotic consumption. It is difficult to measure 

subjective satiety, VAS is really the gold standard, but it has its limitations, however the 

validity of VAS is only as good as the study design it is used in and combining with objective 

measurements can increase it validity within a design. There is a complexity in measuring 

satiety as there are multiple mechanisms at work here. Perceived satiety scores are 

subjective, and do not necessarily corroborates actual energy intake, satiety or hormone 

production. 
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Introduction 

This thesis describes experimental investigations which may be divided into 2 parts: In the 

first phase of the study in vitro batch culture fermentations were used to investigate the 

metabolic fate and microbial effects of 11 individual fibres. The results from this preliminary 

screening exercise were used to develop 3 novel blends of prebiotics tested in a more realistic 

continuous colonic gut model system, again to ascertain metabolic and microbial responses. 

The second phase of the project involved a human appetite RCT, to test whether markers of 

prebiotic activity and satiety are improved in healthy weight men consuming a novel prebiotic 

blend. In this chapter we discuss the methodologies used in the project.  
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Prebiotics 

Table 1: Physico-chemical properties and uses of Individual substrates tested in 48hr batch culture fermentations. 

Substrates Physio-chemical 
properties 

Approach/process 
Soluble or 

not? 
Taste/Uses 

Evidence of prebiotic 
potential - human 

studies 

Long Chain fructo-oligosaccharides 
(LC-FOS) (Fine Foods)  

DP 2-65 - β (2-1)-
Fructans (Niness, 

1999)    

Direct extraction -
from raw plant 

material (chicory root) 
Yes 

Slightly sweet -  
baked goods, 

drinks 

Gibson et al.,1995, 
Kolida et al.,2007, 

Costabile et al.,2010 

Oligofructose, (OFS) (Orafti P95) 
DP 2-9 - β (2-1) 

Fructans (Niness, 
1999) 

Controlled hydrolysis - 
using enzymatic                  

hydrolysis if inulin 
from chicory  

Yes 
Slightly sweet - 
baked goods, 

drinks 

Gibson et al., 1995, 
Bouhnik et al.,2006, Knol 

et al., 2005 

Resistant starch, (RS) (Himaize 260 – 
Sigma potato starch)  

DP 35-60 - 60% 
amylose, a helical 
polymer of α-D-

glucose units and 40% 
amylopectin, a soluble 

polysaccharide 
comprised of highly 

branched polymers of 
glucose (Leszczyñski, 

2004) 

Enzymatic hydrolysis 
of potato starch 

No 

Bland, neutral - 
flour replacer 
baked goods, 
cereal, batter, 

cheese 

Hald et al.,2016, Maier 
et al., 2017 
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Resistant maltodextrin, R-MLX 
(Promitor T&L)  

DP 5-20 - 
polysaccharide – α (1-
4), α (1-6), a/b (1-2), 

and a/b (1-3) 
glucosidic bonds 

(Brouns et al., 2007) 

Chemical modification 
of maltodextrin 

Yes 

Neutral to 
slightly sweet - 

sugar 
replacement in 

drinks and baked 
goods 

Fastinger et al.,2008, 
Miyazato et al., 2016 

Gluco-oligosaccharides, GLOS 
(Biocolians)  

DP 3-6 - alternate α-
(1,3)/α-(1,6)-linked 
glucosyl residues 

(Meyer et al., 2014) 

Controlled enzymatic 
hydrolysis of D-

glucose 
Yes 

Slightly sweet - 
baked goods, 

drinks 

Limited human studies: 
Djouzi et al., 1995 (rat 
study), Sarbini et al., 
2013 (in vitro study)  

β-glucan, β-Glu (Glucagel)  

DP-5-28 - glucose 
residues which are 

linked by β-(1–4) and 
β-(1–3) glycosidic 

bondsβ-glucans, are 
linear homopolymers 
of d-glucopyranosyl 

(Glcp) residues  

Controlled enzymatic 
hydrolysis of barley 

grains, (1-3) & (1-4) β-
glucan 

Partially 

Neutral flavour - 
frozen desserts, 
sour cream, and 
cheese spreads. 

Mitsou et al., 2010, 
Wang et al., 2016 
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Oat Fibre, OAT (Fine foods) 

DP-5-28 - glucose 
residues β-(1–4) and 

β-(1–3) glycosidic 
bonds β-glucans, are 
linear homopolymers 
of d-glucopyranosyl 

(Glcp) residues linked 
mostly via two or 

three consecutive β-(1 
→ 4) linkages that are 
separated by a single 

β-(1 → 3) linkage 
(Izydorczyk & Dexter, 

2008) 

Controlled enzymatic, 
hydrolysis from barley 

grains  
Partially 

Neutral - frozen 
desserts, sour 

cream, and 
cheese spreads. 

Mitsou et al., 2010, 
Wang et al., 2016 

Low viscosity arabinoxylan LV-ABX 
(Megazyme 

linear chain backbone 
of ß-d-xylopyranosyl 
(Xylp) residues linked 

through (1 → 4) 
glycosidic linkages. α-

l-Arabinofuranosyl 

Controlled enzymatic, 
hydrolysed from 
wheat and rye 

Yes 
Neutral - animal 
feed, distilling 

Costabile et al., 2008 

Medium viscosity arabinoxylan, MV-
ABX (Megazyme) 

linear chain backbone 
of ß-d-xylopyranosyl 
(Xylp) residues linked 

through (1 → 4) 
glycosidic linkages. α-

l-Arabinofuranosyl 

Controlled enzymatic, 
hydrolysed from 
wheat and rye 

Yes 
neutral - animal 
feed, distilling 

Costabile et al., 2008 
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Xylo-oligosaccharides, (XOS_ Santori 
DP 2-6 - β (1–4)-

Linked xylose (Zhou et 
al., 2008) 

Controlled enzymatic 
hydrolysed of 

polysaccharides; 
arabinoxylan 

Yes 

Slightly sweet - 
increases 

functionality in 
baked goods, 
uses varied 

Okazaki et al., 1990, Na 
& Kim, 2007, Chung et 

al., 2007 

Polydextrose, PDX (Danisco 
Sweeteners) 

DP 3-60 - branched, 
randomly bonded 
glucose polymer 

combinations of α- 
and β-linked 1→2, 

1→3, 1→4, and 1→6 
glycosidic linkages, 

though the 1→6 (both 
α and β), (do Carmo et 

al., 2016) 

Synthesised from 
dextrose, with 10% 

percent sorbitol, and 
1% citric acid added 

Yes 

Slightly tart, 
replacement for 

sugar, starch, 
and fat in 

commercial 
beverages, 

cakes, candies, 
dessert mixes, 

breakfast 
cereals, gelatins, 
frozen desserts, 
puddings, and 
salad dressings 

Jie et al., 2000, Boler et 
al., 2011 
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Arabinoxylan 

Arabinoxylan (ABX) is a hemi-cellulose polysaccharide; it is found in the cell walls of plants 

such a cereal grains and is structured as a linear xylan backbone with α-L- arabinofuranose 

units attached as side chains by β (1 → 4) linkages. These can be substituted with arabinose 

residues on the C(O)-2 and/or C(O)-3 position. Ferulic acid is esterified on the C(O)-5 position 

of arabinose (Dornez et al., 2009) (Table 1). Colonic bacteria such as Bifidobacterium can 

utilise arabinofuranosidases to cleave these side chains (Saha, 2000), however the complete 

degradation of arabinoxylan requires the synergistic activity of several hemicellulolytic 

enzymes, such as β-1,4-endoxylanase, β-xylosidase, α-glucuronidase, α-L-arabinosidase, and 

acetylxylan esterase (Dodd and Cann, 2009, Rogowski et al., 2015).  
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Figure 1: Chemical structure of arabinoxylan, a polysaccharide (Hatfield, 2017) 
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Inulin 

Fructans are oligo- and polysaccharides composed of β-D-fructosyl residues (n = 2–60) 

connected with β-(2→1) linkages, often including a glucosyl moiety.  Oligofructose is the 

shortest fructan with a chain length of <10 monomeric fructose units, whereas fructans >10 

units (DPave= >20 units) are called inulin. Fructans occur naturally in chicory, banana and 

onion in small quantities (Mitmesser & Combs, 2017).  
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Figure 2: Chemical strcuture of inulin (Mensink, 2015)  
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Producing prebiotics 

Extraction of prebiotics from plant sources such as chicory (Cichorium intybus) can yield inulin 

and FOS. Whilst modification by transglycosylation reactions can produce GOS. (Patel, 2012). 

Inulin is mainly isolated from chicory using hot water diffusion, purification, then spray drying. 

Inulin can also be enzymatically synthesised from sucrose via fructosyltransferase, which 

catalyses the transglycosylation reactions whereby sugar residues are transferred form one 

glycoside to another (Mitmesser and Combs, 2017). This process can also be used to obtain 

fructo-oligosaccharide (FOS), except there is an additional step, in which Inulin is hydrolysed 

by an inulase enzyme to reduce the chain length to <10. The resulting oligofructose product 

has ∼30% of the sweetness of sucrose and contains ∼5% glucose, fructose and sucrose 

(Niness, 1999). Galacto-oligosacchairdes (GOS) are produced by hydrolysing lactose using 

glycoside hydrolases, via transglycolation reactions. An enzyme commonly used in this 

process is β-galactosidase from Aspergillus oryzae (Torres et al., 2010). 

Desirable characteristics of prebiotics in this research: <10% digestibility, resists hydrolyzation 

in upper GI tract, selectively stimulates commensal bacterial groups: Bifidobacterium and 

Propionibacterium, does not stimulate potentially pathogenic bacteria such as Desulfovibrio 

and Clostridium histolyticum, and stable at high temperatures such as cooking, as this 

increases the possible uses and increases commercially viability.
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Figure 2: Different methods used to isolate or synthesise prebiotic (Patel, 2012) 
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Batch culture fermentation 

The human colon is not easily accessible; obtaining samples from this region for the purpose 

of investigating fermentation processes of foods and ingredients is considered invasive, 

expensive and unethical (Booijink et al., 2007). Not only this, the colon is home to a large and 

complex ecosystem with multiple metabolic reactions occurring simultaneously and any 

attempt to isolate effects and identify diet-microbial interactions can be problematic. 
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Figure 3: Schematic anaerobic batch culture vessel, with sampling port, pH controller to 

maintain a constant pH 6.8, N2 outlet and inlet, and water jacket to control temperature to 

that of the human colon at 37˚C 
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In vitro batch culture fermentation with faecal inoculate is an inexpensive and well 

documented method used to gauge the metabolic fate of different foods and 

pharmaceuticals by identifying changes in gut microbiota composition and subsequent 

metabolic output (Khalil et al., 2014, Rycroft et al., 2001, Salazar et al., 2009, Vardakou et 

al., 2008). Conditions in batch culture are controlled, by maintaining a pH of 6.8, 

temperature at 37oC, nutrients and oxygen, the conditions of the distal region of the colon 

can be simulated. The distal region of the colon is characterised by the relative dominance 

of proteolytic metabolism, compared to the caecum where saccharolytic fermentation 

dominates. The distal colon may also be more prone to disease due to an accumulation of 

the by-products of proteolytic fermentation (Smith and Macfarlane, 1996), increasing 

saccharolytic metabolism in the distal colon therefore may be beneficial to health, as it 

could help negate the negative effects of proteolysis. Though carbohydrate metabolism 

mainly occurs in the proximal region of the colon, some residual parts of larger chain fibres 

polysaccharides such as arabinoxylan and resistant starch may persist to be metabolised 

further along the colon. Similarly, shorter chain oligo-saccharides metabolised by bacterial 

groups such as bifidobacteria in the proximal region of the colon to produce lactate, the 

lactate can be metabolised by bacterial groups further along the colon, such as Bacteroides 

producing butyrate from lactate (Dodd et al., 2011). 

 

As a closed system with no absorptive epithelial surface to account for absorption, 

amplification effects can occur in batch culture, particularly at the later stages of the 

culture. Thus an accumulation of intermediary, and end products of fermentation, can 

potentially overshadow the detection of metabolic products with health effects (Macfarlane 

and Macfarlane, 2007). We used this model to screen 11 individual substrates to ascertain 

any prebiotic potential over the course of 48 hours (Table 1). By sampling at timepoints 0, 

24 and 48hr, the production of SCFAs were quantitatively measured, and bacterial growth 

assessed, thus allowing an approximation of the rate of fermentation to be reported.  
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Table 2: Major elements, their sources and function required for bacterial growth in batch culture. 

 

Basal medium ingredient/source Element Function 

Glucose, yeast extract  Carbon 
Main component of bacterial cell, 
backbone of biological molecules 

L-cystine, yeast extract, peptone water  Nitrogen 
Synthesis of proteins, amino acids, 

DNA, and RNA 

Water  Hydrogen 
 Main component of organic 
compounds and cell water 

Yeast extract Phosphorus  Nucleic acid synthesis  

Magnesium sulfate (MgSO4) Sulfur 
Component of coenzymes and amino 

acids: cysteine, methionine 

Di-potassium phosphate (K2HPO4) & 
Monopotassium phosphate (KH2PO4) 

Potassium 
Component of enzymes, (inorganic 

cellular cation and co-factor) 

Magnesium sulfate (MgSO4) Magnesium 
Co-factor for enzymatic reactions 

(inorganic cellular cation)  

Calcium chloride (CaCl2) Calcium 
Component of enzymes, (inorganic 

cellular cation and co-factor) 

Hemin  Iron  Co-factor for enzymatic reactions 
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Three faecal donors were chosen to inoculate the batch cultures; they were selected based 

on phenotype and age to reduce inter-individual variation between batches. Age-related 

changes in microbial composition, such as reduced bifidobacterial counts in older people, are 

common (Bartosch et al., 2004), and differences have also been observed when comparing 

the microbiota of lean with obese individuals (Andoh et al., 2016). Whilst we did control for 

age and body mass when selecting volunteer faecal donors, individual differences in the 

fermentation performance were likely due to variance in the composition of the initial 

microbiota population of the volunteer, leading to variable responses throughout the in vitro 

batch culture experiments. Further, an individual's gut microbiota does not necessarily 

respond in a consistent manner to a particular dietary intervention (Healey et al., 2016). 

Those with very low bifidobacterial counts at baseline, can be shown to have greater increases 

following prebiotic intervention than those with high baseline bifidobacterial counts (De 

Preter et al., 2008). Additionally, habitual fibre intake influences baseline gut microbiota 

composition (Cotillard et al., 2013), and this varying degree of consumption of dietary fibre 

may influence how the gut microbiota responds to the prebiotic intervention. In a human 

placebo-controlled study, healthy individuals with habitual high (HDF) and low fibre (LDF) 

intake consumed 16g Beneo Orafti Synergy for 3 weeks, or 16g maltodextrin. In both groups, 

bifidobacteria was increased (P=0.001), however the HDF group also showed increased 

Faecalibacterium (P=0.010), and decreased numbers of Coprococcus (P=0.010), Dorea 

(P=0.043) and Ruminococcus (P=0.032). Thus the HDF group exhibited a greater response to 

the intervention than those with LDF intakes (Healey et al., 2018). 

 It was considered desirable to observe an increase in acetate and propionate producing 

bacterial groups: Bifidobacterium and Propionibacterium, as well as increased concentration 

of their respective metabolites: acetate and propionate in the supernatant. This was based 

on hypothesised anorexigenic effects of these SCFAs, mediated via the stimulation of satiety 

hormones (Psichas et al., 2015, Karaki et al., 2006). Therefore, those substrates that elicited 

the greatest increase in acetate and propionate production through in vitro batch culture 

were deemed the most suitable candidate prebiotics. These substrates were then blended 

together and tested further in a three-stage continuous culture model of the gut.  
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Three stage continuous gut model  

Capturing real time colonic microbial metabolism in vivo is challenging, however a 3-stage 

colonic system continuous culture fermentation system models changes to microbial ecology 

through the functional compartments of the colon.   

Our three stage colonic fermentation model was previously validated against the luminal 

contents of the proximal and distal regions of 4 healthy sudden death victims (Macfarlane et 

al., 1998), studies based on this model to screen for prebiotic activity have been widely 

published in the academic literature (Gibson and Wang, 1994, Gibson et al., 1995, Hobden et 

al., 2013, Liu et al., 2016). This model controls environment (temperature, pH, transit time 

and substrate) allowing us to replicate the influence of substrate on the mixed culture system 

of a given faecal donor. 
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Figure 4: schematic representation of a 3-stage continuous colonic model inoculated with 

human faeces. The system comprises of a trio of connected vessel controlled to simulate 

conditions in each region by adding 1M HCl or NaOH as required, temperature maintained at 

37°C using a water jacket and contents continually stirred using a magnetic flea.  
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Sampling 

It was necessary to monitor SCFA production over 3 consecutive days to ensure the colonic 

model had reached equilibrium, a steady state in which bacteria are producing as much as 

they are consuming. Steady state must be reached before intervention occurs, this ensures 

that observed changes in activity are due to the intervention and are not just fluctuations in 

an equilibrating system. The sampling to establish the steady state began at day 16 of routine 

continuous culture. Once the intervention began, daily for another 15 days, samples were 

again taken over 3 consecutive days for SCFA analysis, to ensure the second steady state had 

been reached.  

 

The aim was to identify a fermentation profile of all three blends (inulin + gluco-

oligosaccharides (I+GLOS), inulin + long chain fructo-oligosaccharides, (I+LC-FOS), inulin + 

arabinoxylan (I+ABX), thereby determining the optimal blend to further test in a human RCT. 

It was desirable to observe an increase in SCFA production, Propionibacterium and 

Bifidobacterium growth towards V3, as this could indicate increased fermentation and 

possible additive prebiotic effects over inulin alone. It was hypothesised that blending fibres 

together would increase and prolong production of SCFA through in vitro fermentation 

compared with prebiotic oligosaccharides alone, thus also potentially sustaining anorexigenic 

pathways of appetite control, by acting as ligands onto the receptors of L-cells, located along 

the length of the colon, to stimulate a more sustained production of gut hormones such as 

GLP-1 and PYY, for a longer period, thereby improving satiety and satiation. 

 

 

 

 

 

 

 



77 
 

Bacterial Characterisation  

A combination of fluorescent in situ hybridisation (FISH) and flow cytometry (FLOW) can help 

detect changes in microbial ecology from in vitro and in vivo samples (FISH-FLOW). 

Fluorescent in situ hybridization (FISH) was chosen to assess microbial ecology as it is a 

quantitative approach. Fluorescent oligonucleotide probes are targeted at 16S rRNA (Table 

3) and oligonucleotide probes are used during FISH for enumeration of target bacterial 

groups. 16S rRNA is a component of the 30S small subunit of prokaryotic ribosome (Kim and 

Chun, 2014) present in all bacteria in high copy numbers. It is a highly conserved genetic 

region (Chakravorty et al., 2007), and is a reliable method for identification of prokaryotic 

cells at the phyla level, independent of cultivability (Zwirglmaier, 2005). Unfortunately, within 

phyla level characterisation is not possible due to conservation of the 16SrRNA sequence. For 

this research genus and species level interrogation of the mixed culture was considered 

sufficient as the overall aim was to detect functional changes in microbial composition. 

RTqPCR is also robust, reproducible and sensitive method to quantitatively track functional 

gene changes in experimental conditions (Smith & Osborn, 2009). However, given the 

additional cost of setting up and using the equipment, it was decided the FISH-FLOW would 

be robust enough for this research.  
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Table 3. Oligonucleotide probes used during FISH for enumeration of target bacterial 

groups. 

Probe 

Name 
Target species  Sequence 5’ to 3’ Reference 

Non Eub Non bacteria ACTCCTACGGGAGGCAGC Wallner et al., 1993 

Eub338‡ Most bacteria GCTGCCTCCCGTAGGAGT Daims et al., 1995 

Eub338II‡ Most bacteria GCAGCCACCCGTAGGTGT Daims et al., 1995 

Eub338III‡ Most bacteria GCTGCCACCCGTAGGTGT Daims et al., 1995 

Bif164 Bifidobacterium spp. CATCCGGCATTACCACCC 
Langendijk et al., 

1995 

Lab158 

Lactobacillus, 

Leuconostoc and 

Weissella spp.; 

Lactococcus lactis; 

all Enterococcus, 

Vagococcus, 

Melisococcus, 

Catellicoccus, 

Tetragenococcus, 

Pediococcus and 

Paralactobacillus 

spp. 

GGTATTAGCAYCTGTTTCCA Harmsen et al., 2002 

Bac303 

Most 

Bacteroidaceae and 

Prevotellaceae 

CCAATGTGGGGGACCTT Manz et al., 1996 
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Erec482 

Most Clostridium 

coccoides- 

Eubacterium rectale 

group 

(Clostridium cluster 

XIVa and XIVb) 

GCTTCTTAGTCARGTACCG Franks et al., 1998 

Rrec584 
Roseburia - 

Eubacterium rectale  
TCAGACTTGCCGYACCGC Walker et al., 2005 

Ato291 

Atopobium, 

Colinsella, Olsenella 

and 

Eggerthella spp.; 

Cryptobacterium 

curtum; 

Mycoplasma 

equigenitalium and 

Mycoplasma 

elephantis 

GGTCGGTCTCTCAACCC Harmsen et al., 2002 

Prop853 

Propionibacterium 

(Clostridial Cluster 

IX) 

ATTGCGTTAACTCCGGCAC Walker et al., 2005 

Fprau655 
Faecalibacterium               

prausnitzii 
CGCCTACCTCTGCACTAC 

Devereux et al., 

1992 

DSV687 

Most 

Desulfovibrionales 

and 

Desulfuromonales 

TACGGATTTCACTCCT Hold et al., 2003 

Chis150  

Clostridium 

histolyticum 

(Clostridium cluster I 

and II) 

TTATGCGGTATTAATCTYCCTTT Franks et al., 1998 
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Metagenomic gene sequencing was considered as an alternate means of microbial 

characterisation; we were however concerned about its propensity towards giving false 

negative results on Bifidobacteria (Lee & O'Sullivan, 2010). In addition, we were interested in 

quantifying the functional bacterial groups, we felt that sequencing would have been 

unsuitable as a quantitative measure.  

Flow cytometry 

Flow cytomtery (FCM) (Accuri C6) is a high throughput technique in which fluorescently 

labelled probes attached to bacterial cells are excited and pass through a laser, thereby 

emitting light at varying wavelengths, allowing enumeration of individual bacterial groups). 

FCM is thought to be less subjective and less time consuming than microscopy techniques 

(Namsolleck et al., 2004). 
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Figure 5: The 1st plot shows EUB I II III cell counts following flow cytometry analysis. 

The interest should be gated around the main dense dot, with at least 90% total 

events.  On the 2nd plot, the left side represents total bacteria, and the right indicates 

non-bacteria (NE-FL1). Here we are aiming for <0.5% to reduce false positive events. 
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Figure 6: Total bacteria represented here on the right side of the plot (18.7%) – total 

bacterial counts will depend on the limit set previously in the negative control (NE-

FL1) 
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SCFA analysis  

Short-chain fatty acids (SCFAs) are metabolic end products of bacterial fermentation, 

produced at an approximate ratio of 60:20:20 acetate, propionate and butyrate in the human 

colon.  Lactate is also produced by Bifidobacterium and Lactobacillus, this is usually then 

converted to acetate through cross-feeding mechanisms by groups such as Bifidobacterium. 

Gut microbiota metabolise fibre via two main metabolic routes, for glycolysis of 6 carbon 

sugars the Embden-Meyerhof-Parnas pathway is utilised, or the pentose-phosphate pathway 

for 5 carbon sugars converting monosaccharides into phosphoenolpyruvate that are 

subsequently fermented to organic acids (Stincone et al., 2015). Acetate is formed by 

hydrolysis of acetyl-coA via the Wood-Ljungdahl pathway which is then taken up by organs 

via the hepatic portal as a source of energy, however the majority – 70% is taken up by the 

liver as an energy source and as a pre-cursor for cholesterol synthesis. Butyrate conversely is 

formed by a condensation reaction in which two molecules of acetyl-to CoA and reduction to 

butyryl-CoA. Butyrate is the preferred energy source for colonocytes and has been implicated 

as an anti-carcinogenic compound due to its effects on cancer cell growth (Gonçalves & 

Martel, 2013). The predominant formation of propionate occurs via the succinate pathway 

from hexose sugars by decarboxylation of methylmalonyl-CoA to propionyl-CoA and 

coupled with sodium transport across the membrane, generating ATP through sodium-

translocating ATPase (Miller & Wolin, 1996, Reichardt et al.,2014). Propionate has been 

implicated in maintaining cholesterol homeostasis, reducing lipogenesis in the liver as well 

as being implicated in positively impacting appetite regulation. This is due to the strong 

affinity propionate has as a ligand on the free fatty acid receptors (FFAR2/3) located on L -

endocrine cells along the length of the colon, thus stimulating production of satiety 

hormones, in particular GLP-1 and PYY, which via the vagus nerve and therefore gut brain 

axis to promote anorexigenic pathways (Brown, 2003, Canfora et al., 2015, Chambers et 

al., 2014, Hosseini et al., 2011, Lin et al., 2012) 
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Figure 7: The Embden-Meyerhof-Parnas pathway. The metabolic pathway favoured by gut 

bacterial groups in glycolosis of 6 carbon sugars. (Adapted from Miller et al., 1996).  
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Figure 8: Schematic of the Pentose Phosphate Pathway, the metabolic pathway favoured by 

colonic bacterial groups to metabolise of 5 carbon sugars to organic acids. (Adapted from 

Miller et al., 1996). 
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HPLC 

High performance liquid chromatography (HPLC) allows for quick detection of most organic 

acids because it is a highly sensitive method. By running samples through an organic acid 

column (phenomenex) then through a refractive index detector, analysis of SCFAs produces 

rapid equilibration, stable baselines, and reproducible results (Fernández et al., 2016). The 

main advantage of this method over gas chromatography is that it negates the need for 

derivatization step, thereby reducing the potential for prepping errors to occur during 

analysis. 
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Figure 9: Calibration curve used to quantitatively measure acetate in samples 

collected.  
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Human double blinded, crossover appetite study 

Methods 

Testing the optimal blend (I+ABX) in a controlled human intervention study was necessary 

to confirm in vivo prebiotic activity. A within-subjects, acute within chronic, double-blinded 

placebo-controlled satiety study was chosen to assess any increase in satiety mechanisms 

in healthy weight men following consumption of I+ABX for 3 weeks. The study employed a 

preload design, allowing for assessments of satiety mechanisms by use of ad libitum food 

intake at lunch meal in response to preloads in the morning. Maltodextrin, commonly used 

in appetite studies was chosen as a placebo, providing the dose is under the threshold to 

provoke a glucose spike in humans and therefore less likely to mask any effects of the I+ABX 

intervention, it was considered a suitable placebo.  

Strict exclusion criteria were implemented during volunteer screening to limit non-

controlled external influences on the study outcomes; volunteers were excluded if their 

BMI was over 26, because as BMI increases a blunting of satiety signals can occur (Camilleri, 

2015). Differences have also been observed in the microbiotas of lean and obese which can 

increase the possibility of inter-individual variation (Long et al., 2015) and wanted to 

minimise this. Healthy males were chosen as the study population as gender differences 

have been reported in hedonic responses to food intake (Chao et al., 2017). 

Those with illness, and gastro-intestinal conditions were excluded this study, as well as 

those on medication such as anti-biotics which can cause dysbiosis of the microbiome, 

modifying the baseline composition. This is undesirable because those with reduced 

bifidobacterial numbers are likely to respond with greater increases in growth than they 

would with balance microbial composition and this can lead to false positive results 

(Francino, 2015). Those on medications, particularly mood stabilisers were excluded as 

these can impact appetite regulation (Wysokinski & Kloszewska, 2014). Poor sleep habits 

have been associated with dysregulation of appetite (Öztürk, 2018), therefore those that 

regularly experience disrupted sleep or sleep <5hrs per night were also excluded, as 

determined by the Pittsburgh questionnaire. Those with disinhibited eating patterns, 
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determined by the 3 factor eating questionnaire were excluded as disinhibition (Anglé et 

al., 2009). A novel fibre blend was being tested here, it was important to recruit volunteers 

that consumed an average amount of fibre, therefore vegetarians were excluded, as well 

as those that consumed >22g fibre/d, determined by 2 x 24 recall dietary analysis in the 

screening process.  

 

Faecal samples were collected at the beginning and the end of both treatment periods, 

giving a total of 4 sample time points to compare through SCFA analysis and determine if 

the treatment influenced SCFA production. 
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Figure 10: Time line of study day. Time points of visual analogue scale (VAS) for satiety 

scores anthropometrics & sample collection and meal time points.  
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VAS  

Several methods may be used to evaluate the satiety inducing effect of a food or ingredient. 

Objective measurements include directly observing total energy consumed during in an ad 

libitum meal following pre-load, (Griffioen-Roose et al., 2012, Adam et al., 2005) or measuring 

circulating colonic satiety hormones such GLP-1 and PYY. Self-reporting food intake or 

measuring subjective satiety scores using weighed food diaries and recalls or visual analogue 

scale (VAS) respectively (Blundell et al., 2010) are subjective methods.  

VAS is a validated method of recording subjective satiety in appetite studies as it is highly 

reproducible (Flint et al., 2000, Stubbs et al., 2000). It is more efficacious to use VAS satiety 

scores in conjunction with other measurable parameters of satiety processes, such as SCFAs, 

gut hormones and energy intake as this helps objectively corroborate the findings of the 

subjective VAS measurements (Flint et al., 2000, Blundell et al., 2010, Hobden et al., 2017). 

Inter-individual variability can occur with self-reporting satiety scores, due to differences in 

using the line scale; however, as a crossover design was chosen, variability in individual 

response was minimised as each volunteer acts as their own control (Lesdema et al., 2016).  

Satiety questionnaires by visual analogue scale (VAS) were used in conjunction with energy 

intake measured during the ad libitum lunch at the end of each study day to determine if any 

increase to subjective satiety had occurred.  

Appetite sensations are difficult to assess as their appearance depends on many external and 

internal factors (Blundell et al., 2010). Using VAS scores to determine true satiety sensations 

is dependent on the study population and design. Healthy weight males (mean BMI: 23.24) 

were chosen, with 20 completing. Between 12-18 single sex subjects are thought to be 

sufficient to observe a 5mm difference in VAS line scale (Flint et al., 2000). Conditions were 

controlled as much as possible so that the evening meal prior to the study day was 

standardised, as was breakfast on the study day itself, and timings were strict. Volunteers 

were partitioned off in a specific quiet area to minimise external stimuli whilst completing 

VAS satiety scores and at mealtimes. The timing in which VAS were completed were strictly 

regulated throughout the study day. 

 

https://www.sciencedirect.com/science/article/pii/S0950329315300057#b0055
https://www.sciencedirect.com/science/article/pii/S0950329315300057#b0035
https://www.sciencedirect.com/science/article/pii/S0950329315300057#b0005
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Gut hormones and VAS 

Measuring circulating plasma satiety hormones such as GLP-1, PYY and insulin at specific time 

point throughout the study day would have been an effective method of corroborating any 

significant increases in subjective satiety using VAS as other satiety studies have used this 

combination of methods with good results (Parnell et al., 2009, Bodinham et al., 2010, 

Hoffmann et al., 2016). However, plasma analysis is time consuming and costly, for the 

purposes of this research it was deemed viable instead to choose measuring subjective satiety 

scores using VAS in conjunction with measuring energy intake during a blinded ad libitum 

lunch following the pre-load. Additionally, SCFA analysis was carried out as these metabolites 

are thought to be implicated in appetite regulation, an increase of acetate and propionate 

could indicate increased satiety in VAS scores.  

Nuclear magnetic resonance (NMR) 

The study of small molecule metabolites in an organism is referred to as metabolomics 

(Dettmer & Hammock, 2004). By analysing at a metabolomic level, the response and effect of 

dietary components can be observed and is an effective way of analysing systemic effects 

produced from a specific food or ingredient (Markley et al., 2017). 

An untargeted approach was chosen based on the hypothesis that variation in metabolites 

will occur between treatment and control and I wanted to detect as many metabolites as 

possible, as opposed to exploring a defined set as is the case with targeted NMR. The main 

advantage of NMR is that a wide range of molecules can be detected from non-destructible 

samples very quickly, with no need for separation or derivatization that are highly 

reproducible, which is necessary when using mass spectrometry and unlike MS, NMR is 

quantitative. Historically, however MS has been shown to be more sensitive than NMR, 

thereby increasing the number of metabolites that may be detected, although sensitivity has 

improved with NMR in recent years. MS is a useful approach for use if sensitivity and 

selectivity combined is necessary in metabolomics research (Emwas, 2015). The spectral data 

collected following analysis not only allows quantification of metabolite concentration, but 

also offers data on chemical structure. Each molecule generates a peak gives information on 

the amount of metabolite whereas the pattern of peaks gives us information to help identify 
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the type of metabolite being measured and can be viewed in both 2-D, based on two 

frequency axis, allowing for overlapping peaks to be highlighted, the chemical shift, that 

would otherwise be hidden in 1-D axis (Alonso et al., 2015). 
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Abstract 

Prebiotics can induce changes in the relative composition of the microbiota, conferring a 

health benefit. It is advantageous to investigate the prebiotic ability of other fibres, as these 

too may be favourable to health. The objective of this study was to compare the fermentation 

characteristics of eleven commonly consumed fibres in an in vitro batch culture model of the 

colon (n=3). Faecal inoculate from three healthy volunteers was incubated in a basal media 

containing the candidate prebiotic substrates at 1% w/v under anaerobic conditions 

simulating the distal colon. The putative prebiotic substrates evaluated were: long chain 

fructo-oligosaccharides (LC-FOS), oligofructose (OFS), xylo-oligosaccharides (XOS), α-gluco-

oligosaccharides (GLOS), polydextrose (PDX), resistant maltodextrin (R-MLX), resistant starch 

(RS), medium viscosity arabinoxylan (MV-ABX), low viscosity arabinoxylan (LV-ABX), oat fibre 

(OAT) and β-glucan (β-GLU). Outcome measures were, changes from baseline in the 

composition of the mixed culture microbiota, and changes in the concentration of short chain 

fatty acids at 0, 24 and 48 hours.  LC-FOS was the only substrate to induce bifidogenic growth 

between both 0-24h (P=0.02) and 24-48h (P=0.01).  OFS (1.65 log10) XOS (1.54 log10), R-MLX 

(1.37 log10), LV-ABX (1.35 log10) exerted the greatest bifidogenic effects, corresponding with 

the significant increases in acetate concentration between 0-24h. OFS elicited the greatest 

increase in acetate 106mM (P=0.01) and GLOS was associated with high propionate 

concentrations of 43mM (P=0.01). It appears the oligosaccharides and polysaccharides induce 

structure specific compositional changes in the microbiota and metabolite production. A 

priori consideration of favourable prebiotic endpoints should guide a purposeful selection of 

optimal products and or the construction of blends of products to achievable favourable 

outcomes in the consumer.   
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Introduction 

In adults, the composition of human gut microbiota remains relatively stable (Rodríguez et 

al., 2015) however illness or low-grade inflammation from increased adiposity, can cause  

disruption to this ecosystem (Ley et al., 2005, Ley et al., 2006). This can increase the risk of 

the host developing ailments such as inflammatory bowel disease (IBD) and irritable bowel 

syndrome (IBS), and can also dysregulate metabolic processes such as appetite regulation 

(Flint et al., 2012, Jostins et al., 2012). 

 

 Prebiotics are defined as 'a substrate that is selectively utilised by host microorganisms 

conferring a health benefit” (Gibson et al., 2017). Supplementing the diet with prebiotics can 

improve bacterial composition, by increasing beneficial commensal colonic bacterial groups, 

such as bifidobacteria (Gibson et al., 1995, Kolida and Gibson 2007, Kolida et al., 2007). 

Fructo-oligosaccharides (FOS) and galacto-oligosaccharides (GOS) are established prebiotics 

(Gibson et al., 1995, Ramirez-Farias et al., 2009), however research continues to establish 

other substrates as prebiotics, including candidates such as resistant starch (RS) and 

arabinoxylan (ABX) (Birt et al., 2013, Hald et al., 2016). Well-designed in vitro and human 

dietary-intervention studies are required to understand the underlying mechanisms and to 

justify classifying these substrates as prebiotics.  

 

An initial assessment of the prebiotic potential of a substrate can be made by measuring 

changes to functional bacterial populations in models of  colonic fermentation (Czechowska 

et al., 2008). Selective growth of non-pathogenic commensal bacterial groups, and 

enhancement of short chain fatty acid (SCFA) production, in mixed culture, in response to 

candidate prebiotic substrate, can be used to justify subsequent human randomised control 

trials to evaluate prebiotics effects (Gibson et al., 2004).  

 

Metabolites associated with prebiotic fermentation include butyrate, the primary energy 

source for colonocytes and a possible anti-carcinogenic metabolite (Peluzio et al., 2009), and 

acetate and propionate which are implicated in lipogenesis, cholesterol synthesis and 

appetite regulation (Canfora et al., 2015).  Further, microbial cross-feeding may result in the 

production of other metabolites that could not be predicted from the culture of isolated 
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bacteria and which may have significance for health, which highlights the importance of 

mixed cultures in the evaluation of candidate prebiotics (Sarbini and Rastall, 2011). 

 

This study aimed to screen 11 candidate substrates in 48-hour batch culture fermentations 

with human faecal inoculate. These cultures were controlled to simulate an environment 

approximate to the distal region of the colon, an area of interest due to increased disease 

occurrence therein (Yao et al., 2016). Static batch cultures have previously been used to 

screen potential candidate prebiotics intended for human use (Rycroft et al., 2001, Liu et al., 

2016). Quantification of changes in bacterial ecology were assessed through fluorescent in 

situ hybridisation and flow cytometry (FISH-FLOW), and with quantification of the SCFAs in 

the supernatant assessed through HPLC analysis.  

Methods 

 

Substrates 

Eleven commercially available fibres were selected for testing in gut simulated 48 hr batch 

culture fermentation long chain fructo-oligosaccharides (LC-FOS) (Fine Foods), oligofructose, 

(OFS) (Orafti P95), resistant starch (RS) (Himaize 260 – Sigma potato starch), resistant 

maltodextrin (R-MLX) (Promitor T&L) α-gluco-oligosaccharides, (GLOS) (Biocolians), β-glucan 

(β-Glu) (Glucagel), oat fibre (OAT) (Fine foods), low viscosity arabinoxylan (LV-ABX) 

(Megazyme), medium viscosity arabinoxylan (MV-ABX) (Megazyme), Xylo-oligosacchairde, 

(XOS) (Santori), Polydextrose (PDX) (Danisco Sweeteners). 

Faecal Donors 

Faecal samples were collected from three human volunteers (BMI 19–27kg/m2), aged 25-39, 

2 females, one male. One faecal donor was used for each batch culture run. There was no 

recent history of gastrointestinal disorders and no anti-biotic use in the last 6 months. The 

volunteers had not consumed prebiotic/probiotic supplements within 3 weeks of donating. 

Samples were collected on the day of inoculation and kept in an anaerobic container 

(AnaeroJar™ 2.5L; Oxoid Ltd) for no more than 1h with a gas generating kit (AnaeroGen™; 

Oxoid), in which the atmospheric O2 is absorbed by the with the simultaneous generation of 

CO2 so within 30 minutes O2 levels reach approximately 1% and CO2 between 9% and 13%. 



110 
 

Samples were diluted 1:10 in anaerobically stored PBS (PBS; 0.1 M; pH 7.4), then 

homogenised in a stomacher (Steward 400) for 2 min at 240 paddle beats per minute.  

 

Basal medium 

Basal medium was prepared by heating and stirring the following substrates: peptone water 

(2 g/L), yeast extract (2g/L), NaCl (0.1 g/L), K2HPO4 (0.04 g/L), KH2PO4 (0.04 g/L), MgSO4.7H2O 

(0.01 g/L), CaCl2.6H2O (0.01 g/L), NaHCO3 (2 g/L), Tween 80 (2ml/L), Hemin (0.05 g/L), Vitamin 

K (10 ml/L), L-cysteine (0.5 g/L), bile salts (0.5 g/L) and resazurin (0.25 g/L). The medium was 

then autoclaved at 121˚C for 15 mins to sterilise and prevent contamination and aseptically 

added to individual batch culture vessels at 135mL volume, then adjusted to pH 6.8. The 

fermenters were purged with O2 free N2 and they were magnetically stirred to maintain pH 

and temperature.  

 

The method for running the batch cultures has been previously described (Liu et al., 2016). 

Twelve sterile batch culture fermenters (300mL volume) were aseptically filled with 135mL 

autoclaved basal medium. All vessels were then gassed overnight with O2 free N2 (15ml/min). 

Each vessel was inoculated with 15mM faecal slurry, then fermentation was initiated with the 

addition of 1.35g (1% w/v) individual substrate into the fermenters. Inulin was chosen as a 

positive control and there was an additional 12th vessel containing no substrate included as a 

control vessel. The pH was maintained between 6.7–6.9 using pH controllers (Fermac 260; 

Electrolab) and automatically adjusted by adding 0.5 mM NaOH or HCl to the vessels when 

required. The pH of 6.8 and temperature of 37˚C was controlled to simulate conditions of the 

distal region of the human large intestine. Batch culture fermentations were run for 48 hours, 

and samples were collected at 0, 24 and 48 hours (5ml from each vessel) for analysis of 

bacterial populations and metabolite production. Fermentation of each substrate was 

performed in triplicate for each volunteer. 

 

Enumeration of specific bacterial groups with fluorescent in-situ hybridization (FISH)  

Enumeration of faecal bacterial groups was via fluorescent in-situ hybridisation (FISH) and 

flow cytometry in combination (FLOW-FISH). Samples were collected from V1-V12 at 0, 24 

and 48hr and from this 375 µl was centrifuged for 5mins at 1300 x g, the supernatant 

removed, and pellet re-suspended with 375 µl filtered PBS (0.22μm filter Millipore, Bedford, 
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MA) and 1125 µL of 4% (v/v) paraformaldehyde. Following incubation at 4˚C for 4 hours, 

samples were then centrifuged at 13000 x g for 5 min and washed in 1ml filtered PBS. This 

was repeated twice and the resultant washed cells were then re-suspended in 150 µl filtered 

PBS and 150 µl ethanol (99%) and stored at -20˚C as previously described (Grimaldi et al., 

2016). 

 

For permeabilisation, 75 µL of the fixed sample was mixed with 500μl of cold PBS at 4°C and 

centrifuged at 11360 × g for 3 min, the supernatant removed and pellet resuspended with 

100 μL of filtered TE-FISH (Tris/HCl 1M pH 8, EDTA 0.5M pH 8, distilled H2O) containing 

lysozyme (1 mg/mL of 50 000 U/mg protein) and filtered with a 0.22μm filter (Millipore, 

Bedford). This was followed by hybridisation steps in which pellets were re-suspended in 150 

μL of hybridisation buffer (5M NaCl, 1 M Tris/HCl pH 8, 30% formamide, ddH2O, 10% SDS, 

then vortexed and centrifuged at 11360 × g for 3 min). Pellets were then re-suspended in 1 

mL of HB and 50 μL aliquoted into Eppendorf tubes, for individual bacterial groups to be 

enumerated using specific probes as detailed in (Table 2) (Devereux et al., 1992, Wallner et 

al., 1993., Langendijk et al., 1995, Manz et al., 1996, Franks et al., 1998, Daims et al., 1999, 

Harmsen et al., 2002, Hold et al., 2003, Walker et al., 2005). For the control tube, no probes 

were added to the 50µl sample. NON EUB338 probe was used to control for non-specific 

binding to EUB338. Simultaneously EUB338 I, II & III linked at their 5’ end either to Alexa488 

and Alexa647 was used to target total bacterial species, as EUB338 I alone is insufficient for 

the detection of all bacterial groups and also using EUB I, II, III together allows for more 

accurate quantification (Daims et al., 1999). In each eppendorf, 4 µL of Eub338 I-II-III linked 

to Alexa488 was added for total bacteria and 4µL of the specific probe linked with Alexa647 

at the 5’ end, then incubated in a heating block at 35°C for a minimum of 12 hours to enable 

hybridisation.  

 

Following hybridisation, samples were centrifuged for 3 min at 13000 x g and supernatant 

removed. The control tube (no probe) was re-suspended with cold PBS (4˚C) and analysed 

using the flow using the BD Accuri™ C6 flow cytometer according to the manufacturer’s 

instructions to determine background noise and subtract this from the analysis.  Samples 

containing probes were then re-suspended with the same volume as negative control. Specific 
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and total bacterial groups were then enumerated using a dilution factor (DF) which was 

calculated from different volumes used during preparation of the samples and events/µl 

determined from NON EUB338 and EUB I-II-III probes that were analysed by flow cytometry. 
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Table 2. Oligonucleotide probes used during FISH for enumeration of bacterial groups. 

Probe Name Target species  Sequence 5’ to 3’ Reference 

Non Eub Non bacteria ACTCCTACGGGAGGCAGC Wallner et al., 1993  

Eub338‡ Most bacteria GCTGCCTCCCGTAGGAGT Daims et al., 1995 

Eub338II‡ Most bacteria GCAGCCACCCGTAGGTGT Daims et al., 1995 

Eub338III‡ Most bacteria GCTGCCACCCGTAGGTGT Daims et al., 1995 

Bif164 Bifidobacterium   CATCCGGCATTACCACCC Langendijk et al., 1995 

Lab158 

Lactobacillus, 

Leuconosto Weissella 

Lactococcus lactis;  

allEnterococcus, 

Vagococcus, 

Melisococcus, 

Catellicoccus, 

Tetragenococcus, 

Pediococcus, 

Paralactobacillus spp. 

GGTATTAGCAYCTGTTTCCA Harmsen et al., 2002 

Bac303 
Most Bacteroidaceae 

and Prevotellacea 
CCAATGTGGGGGACCTT Manz et al., 1996 

Erec482 

 Clostridium coccoides-

Eubacterium rectale 

group 

 (Clostridium cluster XIVa 

and XIVb) 

GCTTCTTAGTCARGTACCG Franks et al., 1998 

Rrec584 
Roseburia - Eubacterium 

rectale  
TCAGACTTGCCGYACCGC Walker et al., 2005 
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Ato291 

Atopobium, Colinsella, 

Olsenella  

Eggerthella 

Cryptobacterium curtum; 

Mycoplasma 

equigenitalium  

Mycoplasma elephantis 

GGTCGGTCTCTCAACCC Harmsen et al., 2002 

Prop853 
Propionibacterium 

(Clostridial Cluster IX) 
ATTGCGTTAACTCCGGCAC Walker et al., 2005 

Fprau655 
Faecalibacterium               

prausnitzii 
CGCCTACCTCTGCACTAC Devereux et al., 1992 

DSV687 
Most Desulfovibrionales 

and Desulfuromonales 
TACGGATTTCACTCCT Hold et al. 2003 

Chis150  

Clostridium histolyticum 

(Clostridium cluster I and 

II) 

TTATGCGGTATTAATCTYCCTTT Franks et al., 1998 
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SCFA analysis 

The concentration of total and individual SCFAs was measured using HPLC (Agilent 1260 

Infinity) as previously described by Grimaldi et al., and Salazar et al., 2009. A, 320 µl filtered 

sample was mixed with 120 µl internal standard (I/S) which was 2-ethylbutiric acid (10mM) 

giving a ratio of 1:4, and this was then added to HPLC vials. By adding the same amount of I/S 

to each sample and standard and using the ratio of the area of the peak analyte and I/S, the 

peaks can be corrected, and quantitative analysis is improved instead of keeping track of 

absolute peak area which may have volumetric losses in preparation and injection. A 20 l 

volume was then injected into the HPLC system with a run time of 45 minutes to allow all 

peaks required to be measured. Agilent (Chemstation) software was then used to integrate 

the peaks, using calibration curves of individual SCFAS: lactic, acetic, propionic and butyric 

acid of increasing concentration (12.5, 25, 50, 75, 100mM). 

Statistical analyses 

Statistical analysis was performed using SPSS for windows (version 16.0; SPSS, Inc). Repeated 

measures, one-way ANOVA and post hoc tests (Bonferri) and t-tests were used to ascertain if 

there was any significant effect of treatment on SCFA production and bacterial growth during 

fermentation between 0-24h and 24-48h at (P<0.05). Bacteriology results were not normally 

distributed, therefore non-parametric Friedmans tests were carried out and this was followed 

by paired t-tests to determine significance (P<0.05), between 0-24h and 24-48h. 

Results 

Bacterial enumeration 

The results of changes to microbial ecology throughout the 48h batch culture are detailed in 

Table 3. 
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Table 3. Bacterial ecology during batch culture fermentation of various substrates: long chain fructo-oligosaccharides (LC-FOS), oligofructose 

(OFS), resistant starch (RS), resistant maltodextrin (R-MLX), α-gluco-oligosaccharides (GLOS), β-glucan (β-GLU), oat fibre (OAT), low viscosity 

arabinoxylan (LV-ABX), medium viscosity arabinoxylan (MV-ABX), xylo-oligosaccharide, (XOS), polydextrose (PDX). Values are means ± SD for 

three separate cultures, statistically significant differences between population levels at 0-24h and 24-48h as determined by one way ANOVA 

repeated measures and paired t-tests, indicated by an asterisk (*).  Significance level P<0.05. 

 

Substrate 
& sampling 

time (h) 
Log10(cells/ml)               

  EUB I II II Bif164 Lab158 Bac303 Erec482 RRec584 Prop853 Fprau655 DSV687 Chis150 

LC-FOS                     

0 8.59±0.06 6.7±0.14 6.51±0.23 7.63±0.50 7.64±0.30 6.79±0.20 7.20±0.77 7.55±0.30 6.03±0.35 6.45±0.46 

24 9.86±0.09* 7.64±0.37* 6.22±0.64 7.50±0.11 8.74±0.60 7.026±0.14 7.92±086 7.67±0.48 6.33±0.62 6.9±0.26 

48 10.02±0.06* 8.50±0.38* 6.56±0.67 8.00±0.05* 8± 0.42 7.72±0.22 8.24±0.50 8.10±0.032 6.30±0.75 7.01±0.15 

OFS                     

0 8.59±0.06 6.7±0.14 6.51±0.23 7.63±0.50 7.64± 0.30 6.79±0.20 7.20±0.77 7.55±0.30 6.03±0.35 6.45±0.46 

24 9.6±0.26 8.35±0.63* 7.07±0.16 7.67±0.50 8.24±0.88 6.90±1.12 8.07±0.78* 7.51±0.56 6.41±0.22 6.5±0.25 

48 9.66±0.23 8.61±0.16 7.68±0.07* 8.05±0.11 8.39±0.44 7.30±0.99 8.13±0.51 7.69±0.52 6.94±0.73 6.54±0.11 

XOS                     

0 8.59±0.06 6.7±0.14 6.51±0.23 7.63±0.50 7.64±0.30 6.79±0.20 7.20±0.77 7.55±0.30 6.03±0.35 6.45±0.46 

24 9.37±0.22* 8.24±0.37* 6.98±0.14 7.36±0.48 7.68±0.92 6.92±0.32 7.33±0.95 7.62±0.59 6.22±0.54 6.21±0.47 

48 9.69±0.3 8.58±0.46 7.35±0.06* 7.78±0.61 8.17±0.81* 7.57±0.33 8.40±0.34 8.12±0.08 6.39±0.53 6.99±0.60 

GLOS                     

0 8.59±0.06 6.7 ± 0.14 6.51±0.23 7.63±0.50 7.64± 0.30 6.79±0.20 7.20±0.77 7.55±0.30 6.03±0.35 6.45±0.46 

24 9.59±0.07* 8.02 ± 0.42* 7.06±0.14 7.52±0.30 9.05 ± 0.37 7.14±0.45 8.19±0.36 7.97±0.36 6.51±0.56 6.94±0.28 

48 9.62±0.1 8.59 ± 0.33 7.54±0.04 7.8±0.56 8.70±0.21 7.84±0.60* 8.67±0.32 8.33±0.31 6.31±0.25 6.55±0.54 

PDX                     
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0 8.59±0.06 6.7±0.14 6.51±0.23 7.63±0.50 7.64± 0.30 6.79±0.20 7.20±0.77 7.55±0.30 6.03±0.35 6.45±0.46 

24 9.51±0.43* 6.8±0.35 6.92±0.12 7.8±0.10 7.56±0.59 6.95±0.86 7.71±0.83 7.66±0.52 6.44±0.49 6.32±0.16 

48 9.66±0.2 7.69±0.61* 7.32±0.07 7.78±0.32 7.59±0.50 7.23±1.40 8.05±0.76 7.55±0.54 6.7±0.44 6.14±0.33 

R-MLX                     

0 8.59±0.06 6.7±0.14 6.51±0.23 7.63±0.50 7.64±0.30 6.79±0.20 7.20±0.77 7.55±0.30 6.03±0.35 6.45±0.46 

24 9.67±0.09* 8.07±0.62* 7.13±0.08 7.84±0.16 9.03±0.37* 7.42±0.45 7.92±0.61 8.19±0.66 6.77±0.39 6.33±0.50 

48 9.7±0.2 8.55±0.48 7.46±0.00 7.64±0.51 8.76±0.70 7.44±0.76 8.21±0.38 7.82±0.51 6.59±0.45 6.82±0.17 

RS                     

0 8.59±0.6 6.7±0.14 6.51±0.23 7.63±0.50 7.64±0.30 6.79±0.20 7.20± 0.77 7.55±0.30 6.03±0.35 6.45±0.46 

24 9.4±0.43 7.77±0.28 6.93±0.28 7.55±0.67 8.05±0.57 7.17±0.37 7.60±0.53 6.94±1.94 6.49±0.72 6.61±0.44 

48 9.65±0.03 8.22±1.01 7.33±0.23 7.76±0.22 8.81±0.83 7.51±0.24 8.09±0.33 7.44±2.30 6.43±0.72 5.94±0.47 

MV-ABX                     

0 8.59±0.06 6.7±0.14 6.51±0.23 7.63±0.50 7.64±3.0 6.79±0.20 7.20±0.77 7.55±0.30 6.03±0.35 5.45±0.46 

24 9.73±0.01* 7.78±0.01* 7.08±0.20* 7.6±0.34 7.87±0.60 7.24±0.28 7.72±0.13 8.23±0.43 6.84±0.44 6.16±0.20 

48 9.86±0.27 8.41±0.46 7.56±0.09 8.2±0.30* 8.35±0.08 7.48±0.86 8.27±0.25 7.94±0.36 7.01±0.29 6.08±0.10 

LV-ABX                     

0 8.59±0.06 6.7±0.14 6.51±0.23 7.63±0.50 7.64±0.30 6.79±0.20 7.20±0.77 7.55±0.30 6.03±0.35 6.45±0.46 

24 9.39±0.27* 8.05±0.39* 6.92±0.03 7.75±0.52 7.63±0.47 7.26±0.18 7.65±0.97 7.73±0.49 6.53±0.52 6.64±0.54 

48 9.61±0.7 8.19±0.09 6.73±0.44 8.17±0.72 7.48±0.51 7.75±0.53 7.90±0.53 7.85±0.51 6.15±0.39 6.62±0.53 

OAT                     

0 8.59±0.06 6.7±0.14 6.51±0.23 7.63±0.50 7.64±0.30 6.79±0.20 7.20±0.77 7.55±0.30 6.03±0.35 6.45±0.46 

24 8.68±0.36 7.34±0.46 6.45±0.05 7.32±0.32 7.45±0.30 6.80±0.46 7.48±0.88 7.32±0.35 6.5±0.14 6.34±1.1 

48 8.73±0.26 7.15±0.18 6.73±0.11 7.15±0.33 7.25±0.50 6.87±0.97 8.00±0.01 7.68±0.01 5.86±0.02* 6.05±0.69 

Negative                      

0 8.59±0.06 6.7±0.14 6.51±0.23 7.63±0.50 7.64±0.30 6.79±0.20 7.20±0.77 7.55±0.30 6.03±0.35 6.45±0.46 

24 8.03±0.53 6.97±0.42 6.66±0.08 7.02±0.32 7.26±0.36 6.78±0.17 7.24±0.82 7.14±0.65 6.68±0.01 6.78±0.08 

48 8.56±0.23 7.11±0.22 6.79±0.11 7.27±0.23 7.34±0.42 7.55±0.38 7.57±0.37 7.21±0.41 6.61±0.2 6.66±0.03 
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β-GLU                     

0 8.59±0.06 6.7±0.14 6.51±0.23 7.6±0.30 7.64±0.30 6.79±0.20 7.21±0.77 7.55±0.30 6.03±0.35 6.45±0.46 

24 8.89±0.39 7.52±0.41* 6.94±0.13 7.6±0.28 8.31±0.47* 7.50±0.13 7.53±0.82 7.81±0.27 6.77±0.5* 6.29±0.74 

48 9.26±0.14 7.8±1.52 6.74±0.14 7.73±0.07 8.39±0.46b 7.63±0.36 8.39±0.76 7.78±0.56 6.38±0.3 6.21±0.62 
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SCFA analysis 

Table 4 below details the production of SCFAs produced during the in vitro fermentation of 

all eleven substrates between 0-24 and 24-48h. 
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Table 4: SCFA concentration during batch culture fermentation of various substrates: long chain fructo-oligosaccharides (LC-FOS), oligofructose 

(OFS), resistant starch (RS), resistant maltodextrin (R-MLX), α-gluco-oligosaccharides (GLOS), β-glucan (β-GLU), oat fibre (OAT), low viscosity 

arabinoxylan (LV-ABX), medium viscosity arabinoxylan (MV-ABX), xylo-oligosaccharide, (XOS), polydextrose (PDX). Values are means ± SD for 

three separate cultures, with statistically significant differences between population levels at 0-24h and 24-48h determined by one way 

ANOVA repeated measures and paired t-tests, indicated by an asterisk (*). Significance level P<0.05. 

 
 
 

Substrate 
& 

Timepoint 
(h) 

Acetate propionate butyrate total 

 
 
 

Substrate 
& 

Timepoint 
(h) 

acetate propionate butyrate total 

LC-FOS   0 7.36±4.38 5.33±1.57 6.85±1.54 19.54±4.32 RS         0 7.36±4.38 5.33±1.57 6.85±1.54 19.54±4.32 

24 53.13±16.27* 21.72±11.29 12.99±6.52 97.84±11.19* 24 59.63±18.96* 22.26±4.42* 13.39±5.31 92.61±13.22* 

48 85.13±36.86 30.73±2.19 20.86±1.27 146.74±37.84 48 92.89±19.11 33.55±21.46 18.12±2.11 144.57±16.19 

OFS        0 7.36±4.38 5.33±1.57 6.85±1.54 19.54±4.32 MV-ABX  0 7.36±4.38 5.33±1.57 6.85±1.54 19.54±4.32 

24 79.38±25.2* 34.04±18.94 17.91±2.34* 131.35±39.01a 24 41.03±36.03* 22.6±7.26 10.85±10.14 85.82±22.86* 

48 82.36±37.38 36.8±22.4 19.16±2.96 131.66±26.98 48 56.63±33.81 33.26±15.89 10.07±8.8 79.1±28.86 

XOS      0 7.36±4.38 5.33±1.57 6.85±1.54 19.54±4.32 LV-ABX    0 7.36±4.38 5.33±1.57 6.85±1.54 19.54±4.32 

24 77.4±7.71* 22.94±8.47* 20.67±9.26* 121.03±16.36* 24 74.99±9.52* 22.84±16.86 12.53±1.56* 102.37±20.72* 

48 92.88±12.88 43.55±12.93 20.51±8.01 156.94±7.28 48 80.41±17.54 33.84±29.6 15.81±2.39 120.07±19.19 

GLOS    0 7.36±4.38 5.33±1.57 6.85±1.54 19.54±4.32  OAT        0 7.36±4.38 5.33±1.57 6.85±1.54 19.54±4.32 

24 53.78±22.95* 48.17±14.55* 17.05±2.14 119.01±38.17* 24 18.15±5.11 19.89±3.03 10.06±2.06 48.1±5.39* 

48 57.52±12.99 51.21±11.4 20.08±5.73 128.82±27.07 48 20.58±5.5 19.69±5.16 11.32±1.28 51.6±11.77 

PDX      0 7.36±4.38 5.33±1.57 6.85±1.54 19.54±4.32 NEG     0  7.36±4.38 5.33±1.57 6.85±1.54 19.54±4.32 

24 35.5±11.57* 30.82±4.47* 11.8±4.51 78.13±13.26* 24 22.52±12.78 15.33±9.54 8.54±1.57 46.4±21.24 

48 39.59±13.91 42.65±10.08 16.44±7.67 107.03±30.51 48 27.25±20.57 16.37±9.46 10.95±4.41 54.58±31.56 
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R-MLX    0 7.36±4.38 5.33±1.57 6.85±1.54 19.54±4.32 β-GLU      0 7.36±4.38 5.33±1.57 6.85±1.54 19.54±4.32 

24 67.07±8.79* 21.73±7.59 17.34±3.42* 126.15±15.24* 24 26.7±7.11* 24.54±13.26 13.87±2.66 65.11±17.72 

48 85.93±9.76 27.4±7.69 21.44±5.13 154.77±6.77 48 25.33±9.69 37.86±6.4 13.54±2.83 76.74±13.25* 
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LC-FOS 

LC-FOS was the only substrate to elicit significant bifidogenic effects in both earlier and later 

stages of the culture, with a significant 1.27, and 0.16 log10 increase in total microbial EUB I 

II III cells (P<0.00) between 0-24h, and 24-48h respectively. This corresponds with the 0.94 

and 0.86 log10 increase in bifidobacterial cells between 0-24 (P=0.02) and 24-48h (P=0.01) 

respectively. The significant 46mM increase in acetate concentrations (0-24h) is reflective of 

this growth. Though the initial fermentation of LC-FOS was dominated by a bifidobacterial 

growth between 0-24h, reflected in the decline of Bacteroides numbers (0.13 log10 cells) at 

this time, there was a shift between 24-48h towards Bacteroides growth with a 0.50 log10 

increase their numbers (P=0.03). 

 

OFS 

During the initial fermentation of OFS, bacterial groups: Bifidobacterium and 

Propionibacterium dominated growth with 1.65 log10 (P<0.00) and 0.87 log10 (P=0.02) 

increase in cell numbers, that was reflected in the significant increase of 1.01 log10 in EUB I II 

III cells. However, between 24-48h there was a shift towards Lactobacillus and Bacteroides 

growth with a 0.61 (P=0.03) and 0.38 (P=0.05) log10 increase in cell numbers respectively. The 

production of SCFA during this time is reflective of the increased bacterial activity with 

significant increases in acetate and butyrate production of 72mM (P=0.04) and 11mM 

(P=0.03) respectively. Though there was a large 29mM increase in propionate production it 

was not significant (P=0.13). 

 

XOS 

Initially, the fermentation of XOS led to bifidogenic effects, with a cell growth of 1.54 log10 

between 0-24h (P<0.00), which accounts for the significant 101mM increase in total SCFA 

(P<0.00), reflected in the 70mM rise in acetate production (P=0.01) at this time. Butyrate 

levels increased by 14mM (P=0.05) as did propionate with a 18mM increase (P=0.01). 

Between 24-48h however, bacterial growth shifted towards Roseburia (P<0.00) and 

Lactobacillus growth (P=0.03) with a 0.65 and 0.37 log10 cell increase respectively. Propionate 

production increased by 21mM, which was close to significance (P=0.06). 
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GLOS 

A 1.00 log10 increased in total EUB I II III cell numbers occurred between 0-24h (P<0.01), and 

can account for the 1.32 log10 cell increase in bifidobacterial numbers during the initial stages 

of GLOS fermentation (P=0.02) and their increased is reflected in the 46mM increase in 

acetate at this time. Growth shifted towards Roseburia cell numbers between 24-48h with a 

0.70 log10 cell increase (P=0.03). Increases of 46mM, 10mM and 43mM in acetate (P=0.01), 

butyrate (P=0.05) and propionate (P=0.01) production respectively is indicative of greater 

bacterial activity.  

 

RS 

There was a large 1.52 log10 increase in cell growth of bifidobacterial between 0-24h, 

however it was not significant (P=0.14). However, it is this elevation in bifidobacterial 

numbers that led to a significant 53mM increase in acetate production between 0-24h 

(P=0.04). Also, propionate production was elevated during this time with a significant 17mM 

increase. There was a shift towards Propionibacterium growth between 24-48h with a 0.49 

log10 cell increase, and this was close to significance (P=0.06).  

 

LV-ABX 

Bifidogenic effects were observed during the initial stages of LV-ABX fermentation, with a 1.35 

log10 increase in cell numbers between 0-24h (P=0.01), and 0.47 log10 growth in Roseburia cell 

numbers which was close to significance (P=0.06). The 0.80 log10 growth of total microbial 

EUB I II III cells is reflective of this, as is the acetate production between 0-24h which 

significantly increased by 68mM (P<0.00), as did butyrate production by 6mM (P=0.04). 

Roseburia cell numbers increased by 0.46 log10 between 24-48h but was not significant 

(P=0.35) 

 

MV-ABX 

During the earlier stages of MV-ABX fermentation there was a significant increase in the cell 

growth of Bifidobacterium and Lactobacillus respectively 1.08 log10 (P<0.00) and 0.80 log10 

(P=0.01), and correlates with significant 1.14 log10 growth of total microbial EUB I II III cells 

(P<0.00), and corresponds to the significant and elevated acetate concentration of 34mM 
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(P<0.00) at this time.  Bacterial growth then shifted towards Bacteroides between 24-48h with 

a 0.6 log10 increase in cell numbers (P=0.03). 

 

R-MLX 

R-MLX fermentation appears to have occurred mainly between 0-24h, with a significant 1.08 

log10 rise in total microbial EUB I II III cell numbers, and is indicative of the 1.37 and 1.39 log10 

cell growth in Bifidobacterium (P=0.03) and Eubacterium rectale (P=0.03) numbers 

respectively. Elevation in SCFA production corresponds with this change in microbial activity 

with a 67mM (P<0.00) and 10mM (P=0.04) increase in both acetate and butyrate 

concentration respectively.  

 

PDX 

Between 0-24h there was a significant 1.08 log10 cell increase in total microbial EUB I II III 

cell numbers (P<0.00), however there was no significant increase in individual bacterial 

groups. Bifidobacterial cell numbers were significantly increased between 24-48h though, 

with a 0.89 log10 cell increase. A significant 28mM (P=0.02) and 25mM (P<0.00) rise in 

acetate and propionate respectively, indicates increased microbial activity at this time.  

 

β-GLU 

Fermentation of β–GLU induced a 0.82 log10 cell increase of Bifidobacterium between 0-24h, 

which corresponds with the significant 19mM rise in acetate levels (P=0.02). Eubacterium 

rectale cell numbers also increased by 0.67 log10, during 0-24h, whereas Desulfulvibrio cell 

numbers significantly decreased by 0.74 log10 (P=0.03).   

 

OAT 

Bifidobacterial cell numbers increased by 0.54 log10 during OAT fermentation between 0-24h, 

however this result was not significant, Desulfulvibrio cell numbers decreased by 0.64 log10 

which was significant (P=0.01). Increased bifidobacterial activity is indicated by the significant 

increase of 28mM in total SCFA production at this time (P<0.00). 
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There was no significant increase in Faecalibacterium prausnitzii during 48h batch culture of 

all 11 substrates.  

 

Between 24-48h there were significant increases in Bacteroides following fermentation of LC-

FOS and MV-ABX. Roseburia was also increased through XOS, GLOS, R-MLX and R-MLX 

fermentation between 24-48h, most likely a result of cross-feeding mechanisms. 

Fermentation of 11 substrates led to a growth in bacterial groups and increased SCFA 

between 0-24h and 24-48h, except for R-MLX, OAT, LV-ABX and negative control. 

 

A summary of prebiotic effects observed during the 48h in vitro batch culture (n=3) are 

summarised in Table: 5, with prebiotic effects symbolised by ↑ = low prebiotic effects, ↑↑ 

= moderate prebiotic effects and ↑↑↑ = high prebiotic effects. Acetate (mM): low; ↑ (0-

25), medium; ↑↑ (25-45), high; ↑↑↑ (50+). Propionate (mM): low; ↑ (0-15), medium; ↑↑ 

(15-30), high; ↑↑↑ (30+). Butyrate (mM): low; ↑ (0-5), medium; ↑↑ (5-10), high; ↑↑↑ 

(10+). Bifidogenic effects between 0-24 & 24-48h (log10 cells/mL): low; ↑ (0.0-0.5), medium; 

↑↑ (0.5-1.0), high; ↑↑↑ (1.0+). Stimulates acetate/propionate/butyrate producing 

bacterial groups between 0-24h OR 24-48h (log10 cells/mL): low; ↑ (0.0-0.4), medium; ↑↑ 

(0.4-1.0), high; ↑↑↑ (0-24h + 24-48h OR 1.00+). Bacterial growth between 0-24h & 24-48h 

indicating a slower fermentation (log10 cells/mL): low; ↑ (0.0-0.3), medium; ↑↑ (0.3-0.7), 

high; ↑↑↑ (0.7+). 
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Table 5: Summary of the 11 prebiotics/prebiotic candidates fermentation characteristics observed during 48h in vitro batch culture (n=3). 

Prebiotic effects are denoted by ↑ = low, ↑↑ = moderate and ↑↑↑ = high.  

Substrates Acetate  Propionate  Butyrate  
Bifidogenic 

0-24h  
Bifidogenic 

24-48h 

Stimulates 
propionate 

producing bacteria 
(Bacteroides, 

Propionibacterium) 

Stimulates 
butyrate 

producing 
bacteria 

(Roseburia, 
Eubacterium 

rectale) 

Stimulates 
acetate 

producing 
bacteria 

(Bacteroides, 
Bifidobacterium, 

Lactobacillus) 

Influence on 
potentially 
pathogenic 

bacterial 
groups 

(Desulfovibrio, 
Clostridium 

histolyticum) 

Slower 
fermentation 
(↑ bacterial 
growth 24-

48h) 

LC-FOS ↑↑     ↑↑↑ ↑↑ ↑↑   ↑↑↑   ↑↑↑ 

OFS ↑↑↑   ↑↑↑ ↑↑↑ ↑ ↑ ↑↑ ↑↑↑   ↑↑ 

XOS ↑↑↑ ↑↑ ↑↑↑ ↑↑↑ ↑   ↑↑ ↑↑↑   ↑↑ 

GLOS ↑↑ ↑↑↑ ↑↑ ↑↑↑ ↑↑   ↑↑ ↑↑↑   ↑↑↑ 

RS ↑↑ ↑↑   ↑↑↑ ↑ ↑↑       ↑↑ 

LV-ABX ↑↑↑   ↑↑ ↑↑↑ ↑   ↑↑ ↑↑↑   ↑↑ 

MV-ABX ↑↑     ↑↑↑ ↑↑ ↑↑   ↑↑↑   ↑↑ 

R-MLX ↑↑↑   ↑↑↑ ↑↑↑ ↑   ↑↑↑ ↑↑↑   ↑↑↑ 

PDX ↑↑ ↑↑   ↑ ↑↑     ↑↑   ↑↑↑ 

B-glu ↑     ↑↑ ↑   ↑↑ ↑↑ ↑↑ ↑ 

OAT ↑↑↑ ↑↑   ↑↑ ↑       ↑↑ ↑ 
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Discussion 

 

Bifidogenic effects of substrate fermentation. 

Fermentation of all 11 substrates led to an increase in cell numbers of Bifidobacterium, above 

growth observed in the negative control vessel, between 0-24h (0.27 log10) with the exception 

of PDX, which was the only substrate in which a decrease in bifidobacterial cell numbers 

occurred. Of the results that were significant: OFS (1.65 log10) XOS (1.54 log10), R-MLX (1.37 

log10), LV-ABX (1.35 log10), GLOS (1.32 log10) were the most bifidogenic, characterised by 

significant increases in acetate observed at this time. The least bifidogenic were: β-GLU ~ 

(0.82 log10), OAT (0.54 log10), and PDX (0.1 log10) between 0-24h, however LC-FOS and PDX 

were the only substrates to induce significant growth in bifidobacterial cell numbers in the 

latter stages of the culture (24-48h). 

 

The fermentation of OFS, an oligosaccharide comprising β (2-1)-fructans, (DPave=8), induced 

the greatest bifidogenic effect between 0-24h with a 1.65 log10 cell increase in bifidobacteria. 

Shorter chain oligofructose is a well-documented prebiotic, with many strains of 

bifidobacteria selectively and preferentially metabolising OFS (Bouhnik et al., 1996, Gibson et 

al., 1995). The only substrate to induce significant bifidogenic effects between both 0-24h 

(P=0.02) and 24-48h (P=0.01) was LC-FOS, a fructan-type polysaccharide comprising of (2→1) 

linked β-D-fructosyl residues (n=2-60) and a α-D-glucose moiety (Mensink et al.,2015) Though 

Bifidobacterium prefer the shorter chain OFS, some species such as Bifidobacterium 

adolescentis can metabolise inulin by utilising β-fructofuranosidases to hydrolyse the β(2,1) 

bonds (Rossi M et al.,2005). XOS, an oligosaccharide with β (1–4)-Linked xylose, (DPave=2-6) 

induced the 2nd greatest bifidogenic effects between 0-24h (P=0.01). A large increase in 

bifidobacterial numbers (P-<0.00) along with acetate and butyrate levels was also reported 

during an in vitro 48 batch culture of XOS (Makelainen et al 2010). Furthermore, in Amaretti 

et al, in vitro investigation of XOS, reported that Bifidobacterium adolescentis was most likely 

to utilise β-xylosidase to hydrolyse XOS (Amaretti et al., 2013). Fermentation of GLOS, an 

oligosaccharide with alternating α-(1,3)/α-(1,6)-linked glucosyl residues (DPave =3-6) also 

resulted in significant bifidogenic effects between 0-24h (P=0.02). Increased bifidobacterial 

activity from is reflected in the significant and elevated concentration of acetate. 
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Fermentation of R-MLX, comprised of α(1-4), α(1-6), α/β(1-2), and α/β (1-3) linkages 

(DPave=12) led to an increase in bifidobacterial numbers as  is reflected in the significant 

increases in acetate production, however this was not significant, most likely due to variation 

across the batches in terms of starting inoculum. Previous batch culture experiments by Rosch 

et al, reported that R-MLX fermentation leads to increased Bifidobacterium and that following 

analysis of the culture afterwards, reported that glucosidases were present. This is an enzyme 

commonly utilised by bifidobacterial strains (Rosch et al., 2015). The significant growth in 

Lactobacillus numbers could also account for the significant rise in propionate as this bacterial 

group produces lactate, which via the acrylate pathway may be converted to propionate 

(Louis & Flint, 2017). 

 

MV-ABX is a polysaccharide comprised of a linear chain backbone with ß-d-xylopyranosyl 

(Xylp) residues linked through (1 → 4) glycosidic linkages. α-l-Arabinofuranosyl (Araf) 

residues. There was significant growth of Bifidobacterium and Lactobacillus between 0-24h, 

correlating with significant acetate production at this time point. As with LV-ABX, it is possible 

that Bifidobacterium adolescentis utilised arabinofuranohydrolases to cleave the outer 

arabinofuranosyl residues of the wheat LV-ABX (Rivere et al.,2014). Regarding the shift 

towards Bacteroides growth later in the culture could be due to Bacteroides 

thetaiotaomicron, a bacterial group that have been shown to utilise many glycosidases for 

polysaccharide degradation (Flint et al, 2012). Furthermore, Bacteroides ovatus contain two 

PUL, integral that are activated when grown on wheat arabinoxylan (Rogowski et al, 2015).  

 

β -GLU (DP-5-28) is a polysaccharide formed of glucose residues, and linked by β (1–4) and β 

(1–3) glycosidic bonds, and appears as though fermentation of this complex structure is 

initiated by Bifidobacterium, based on significant increases in cell numbers earlier on in the 

culture, and characterised by the elevated acetate concentration and a decrease in 

Desulfulvibrio cells numbers (P=0.03), possibly from competitive inhibition. In this study RS, 

exhibited a slower fermentation, with increases in bifidobacterial cell growth of 1.52log 

between 0-24h, however this was not significant, most likely due to variation in starting 

inoculum of the batches. During in vitro fermentation of RS, Wang et al reported that 

bifidobacterial groups can effectively metabolise high-amylose starch granules, (Wang et al., 
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1999). Further to this, in a metagenomics study, it was reported that genes coding for 

glycoside hydrolases (GH) required for degrading starch and starch hydrolysate were higher 

in most bifidobacterial strains than in strains of other genus, and that starch hydrolysates 

were favourable carbon sources for Bifidobacterium (Liu et al., 2016). 

 

 Only fermentation of PDX resulted in a decrease in Bifidobacterium cell numbers between 0-

24h followed by significant increases between 24-48h was PDX (structural description), 

indicating a more sustained fermentation, as was the observation by Probert et al, in which a 

continuous colonic model was used to assess the effects of fermentation on bacterial growth. 

Bifidobacterial levels were increased in vessels 2 and 3, simulating transverse and distal 

regions, and thereby demonstrating that PDX exerted a more sustained prebiotic effect 

throughout the model (Probert et al., 2004). 

 

Fermentation characteristics 

It appears that the fermentation of longer chain polysaccharides: LC-FOS, MV-ABX, RS, XOS 

was dominated by Bifidobacterium, with a shift towards Bacteroides growth between 24-48h, 

characterised by a significant elevation in acetate and propionate concentration at this time. 

Furthermore, substrate fermentation initially dominated by Bifidobacterium, but then shifting 

towards butyrate producing bacteria in the latter stages of the culture was: R-MLX, LV-ABX, 

GLOS, XOS and OFS, most of these substrates being oligosaccharide in structure. The 

difference in fermentation characteristics between oligosaccharides and polysaccharides is 

due to the structural differences between these two types of substrates. The ability of 

bacterial groups to metabolise different substrates is dependent on their capacity to utilise 

enzymes, and those with larger enzymatic abilities at their disposal can metabolise larger, 

more complex substrates. (Sarbini and Rastall, 2011). 

 

Bacteroides have a diverse array of enzymes at their disposal, and are more generally 

associated with glycan degradation, whereas bacterial groups such as Bifidobacterium, 

though they have glycan degrading capabilities, exhibit a selective preference for starch and 

fructans (Martens et al., 2008).  
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Effect of fermentation on acetate and propionate producing bacterial groups 

 A genomic study of Bacteroides, revealed that Bacteroides thetaiotaomicron strains possess 

complete polysaccharide utilising locus (PUL), which corresponds with a range of fructan 

metabolising capabilities (joglekar et al., 2018). This could account for the significant growth 

of Bacteroides between 24-48h during fermentation of both OFS and LC-FOS. There was a 

stimulation of bacterial growth in both earlier and later stages of the culture, indicating a 

slower fermentation profile, most likely through cross-feeding mechanisms, in which 

Bifidobacterium appears to have initiated fermentation, and then shifted towards Bacteroides 

growth. Lactate produced by bifidobacterial groups can be utilised by Bacteroides to produce 

acetate, which was significantly increased here, alternatively specific bifidobacterial groups 

can metabolism LC-FOS, but not all, leaving the majority to be fermented by Bacteroides. OFS 

fermentation stimulated the growth in Propionibacterium cells (P=0.02) in the initial 24h, but 

then shifted towards Lactobacillus. Propionibacterium are thought to metabolise FOS to 

produce propionate, and although this was increased, it was not significant.  Butyrate is likely 

to have appeared through cross-feeding mechanisms most likely from the conversion of 

lactate, which is produced during Lactobacillus growth (Kolida S & Gibson GR 2007). Similarly, 

to LC-FOS and OFS, MV-ABX fermentation shifted towards Bacteroides growth between 24-

48h (P<0.00), reflected in the elevated acetate reported between 0-24h. Again, it is likely that 

cross-feeding occurred, but possibly through a different mechanism than LC-FOS and OFS. 

Some bifidobacterial groups can cleave the LV-ABX side groups, using arabinofurinosidases 

(Wang et al., 2014), whereas groups such as Bacteroides, are able to metabolise the whole 

polysaccharide: ∼20% of Bacteroides genome is associated with the transport and breakdown 

of a wide variety of polysaccharides, such as ABX (Schwalm III and Groisman, 2017). 

 
RS is a soluble polysaccharide that comprises 60% amylose, a helical polymer of α-D-glucose 

units and 40% amylopectin with highly branched polymers of glucose, Bacterial growth 

shifted towards Propionibacterium growth between 24-48h (P=0.06). This slower 

fermentation could be attributed to the complex structure of RS, as a full set of glycosidases 

is required to fully metabolise polysaccharides, or a number of bacterial groups are required 

for full metabolism (Grondin et al., 2017) In Wang et al in vitro investigation of RS, it was 

reported that Propionibacterium  could degrade the amylopectin fraction of RS (Wang et al 
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1999) and this could potentially account for increases in this bacterial group, as well as 

elevated propionate levels at this time.  

 

Effect of fermentation on butryate producing bacterial groups 

The fermentation of XOS appears to have shifted from Bifidobacterium towards Roseburia 

(P<0.00) and Lactobacillus (P=0.03) between 24-48h. This indicates a slower fermentation, 

potentially through cross-feeding mechanisms. XOS may be degraded by Roseburia 

intestinalis, through their ability to ferment xylan (Mirande et al, 2010), and though Roseburia 

are generally butyrate producing bacteria, which was significantly increased here, Qing et al 

study observed that Roseburia intestinalis, were able to utilise the deoxy sugars rhamnose 

and fucose fractions, present in small quantities in XOS (Qing et al., 2013). Furthermore, a 

transcriptomics study by Scott et al, observed that through transcription profiling, Roseburia 

inulinivorans was able to convert the fucose fractions of XOS to propionate via the 

propanediol pathway (Scott et al, 2006). This could account for the significant rise in 

propionate production between both 0-24 and 24-48h. The fermentation of GLOS led to 

similar fermentation characteristics, whereby Bifidobacterial growth shifted towards 

Roseburia (P=0.03) later in the culture, characterised by elevated butyrate levels. LV-ABX is a 

polysaccharide that comprises a linear backbone with ß-d-xylopyranosyl (Xylp) residues linked 

through (1 → 4) glycosidic linkages, and α-l-Arabinofuranosyl (Araf) residues. In this 

experiment, LV-ABX exhibited a fast fermentation rate, only significantly increasing growth of 

bacterial groups between 0-24h. Bifidogenic effects were induced during this time (P=0.01) 

as did growth in Roseburia cell numbers, close to significance (P=0.06). The elevated acetate 

and butyrate production between 0-24h is evidence of increased activity by these bacterial 

groups. An in vitro investigation of arabinoxylan by Bifidobacterium adolescentis, reported 

that arabinofuranohydrolases were used to cleave the outer arabinofuranosyl residues of 

arabinoxylan (Rivere et al., 2014) and could account for their increase in numbers.  

 

R-MLX did not exhibit a slower fermentation profile as expected, instead Bifidobacterium and 

Eubacterium rectale were significantly increased between 0-24h, accounting for the elevated 

levels of both acetate and butyrate, but no significant results in the latter half of the culture.  
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Limitations 

There was a large SE across the batches, most likely from inter-individual differences in 

starting composition in faecal inoculate. Differences have been reported in microbial 

composition between lower and higher BMI (Andoh et al., 2016) and the BMI of the three 

donors ranged from normal to overweight (19.5-28 kg/m2) which may have contributed to 

the large SE.  

All three donors were from different parts of Europe, which may have caused different 

responses to the same prebiotic. Geographical/racial variation in the composition of gut 

microbiota is mainly attributed to varying environmental exposure such as diet (Gupta et al., 

2017). Individual responses to the same prebiotic were investigated in vitro, and when large 

differences in response were reported it was concluded that investigating potential prebiotic 

activity through in vitro substrate fermentation requires both low level nutrients and nutrient 

dense cultures to be carried out (Long et al., 2015). In future work, donors will be chosen from 

a very similar in phenotype, particularly BMI, as well as increasing experimental runs to 

reduce this type of variation, taking care to ensure there is still sufficient variation for a 

significant effect to be observed.  

Conclusion 

In conclusion, all substrates, on fermentation in batch culture conditions increased SCFA 

above control, and it appears that oligosaccharides and polysaccharides exhibit different 

pathways of metabolism, that can be potentially manipulated in future work, in order to 

obtain specific ratios of SCFAs, through stimulation of specific bacterial groups.   
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Abstract 

Human colonic microbiota can metabolise prebiotic carbohydrates to produce short chain 

fatty acids (SCFA) that may be associated with a myriad of health benefits. Our aim was to 

investigate the potential of blending prebiotic fibres, i.e. inulin + gluco-oligosaccharides 

(I+GLOS), inulin + arabinoxylan (I+ABX) and inulin + resistant starch (I+RS) to achieve sustained 

SCFA production through the large bowel. Here we assessed this possibility in vitro by using a 

continuous culture fermentation model of the colon simulating anatomically distinct regions 

of the large intestine. Blends of prebiotics were administered as a powder, at 1.33g twice daily 

for 18 days and samples collected over 3 days for analyses of SCFAs via HPLC as well as 

characterisation of changes in the microbial composition, using 16S rRNA based fluorescence 

in situ hybridisation. I+ABX induced a significant rise in propionate production during in vitro 

fermentation (P=0.04) as well as a significant 0.9 log10 cells/mL increase (P=0.02) in cell 

numbers of bifidobacterial species in V1, simulating the caecum. Acetate was significantly 

increased following fermentation of all 3 blends in V2: I+RS (P=0.028), I+ABX (P=0.44), I+GLOS 

(P=0.50). Acetate was also increased in V3, though not significantly, suggesting sustained 

saccharolytic activity in the transverse and distal regions of the colon. Combining 

complimentary blends, may increase SCFA production in areas of the colon they are less 

abundant i.e. towards the distal region, an area more associated with disease risk, due to an 

increase in proteolytic metabolites (H2S, ammonia), implicated in inflammatory disease 

aetiology. Creating a more saccharolytic environment could also be beneficial, for metabolic 

functions such as appetite regulation and take part in anti-carcinogenic, and anti-pathogenic 

mechanisms, however further in vivo testing is required. 
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Introduction 

The human microbiome comprises gut microbiota that integrate with organs such as the brain 

and liver to mediate metabolic functions (Evans et al., 2013). The majority of bacterial groups 

belong to the Bacteroidaceae and Bacillaceae families (Ley et al., 2008), however composition 

at genus and species levels is more individualistic and modifiable through dietary intervention 

with prebiotics, namely “a substrate that is selectively utilized by host microorganisms 

conferring a health benefit” (Gibson et al., 2017). These include the production of short 

chain fatty acids (SCFA), that can act signalling molecules, possibly stimulating satiety 

hormones via free fatty acid receptors (FFA2) (Tolhurst et al., 2012, Psichas et al., 2015). 

Furthermore, acetate and propionate have been implicated in lipogenesis and reduced 

cholesterol synthesis in the liver (Canfora et al., 2015). Additional health benefits associated 

with SCFAs include inhibiting potentially pathogenic bacterial groups such as certain 

Clostridium spp. and Desulfibrio spp., by reducing colonic pH (Macfarlane et al., 1992), and 

lowering the risk of carcinogenic development by regulating cell growth through butyrate 

production (Peluzio et al., 2009; Vanhoutvin et al., 2009).   

 

There are some naturally rich food sources of prebiotic fibre (Moshfegh et al., 1999) however 

enriched functional foods generally contain higher concentrations, and in a review of in vivo 

studies, consumption of  5g/d oligosaccharides for 11 days elicits bifidogenic effects 

(Delzenne, 2002). Well studied prebiotics such as fructo-oligosaccharides (FOS) are short 

chain in length and preferentially metabolised by Bifidobacterium (Gibson et al., 1995), One 

goal is to target prebiotic function towards the distal region of the colon, an area associated 

with higher disease risk, related to the production of metabolites of proteolytic metabolism, 

such as phenols and indoles compounds (Macfarlane et al., 1992; Hijova & Chmelarova 2007). 

It is thought that increasing saccharolytic metabolism towards this region may be beneficial 

to health. 

 

The physio-chemical structure of prebiotic substrates denotes functionality (Sarbini & Rastal, 

2011). By blending novel prebiotic fibres together, and in particular, longer chain fibres such 

as RS and ABX, the aim was to extend carbohydrate fermentation towards the distal region. 

Blends were chosen based on their ability to stimulate bacterial groups such as 

Bifidobacterium, Propionibacterium and Bacteroides that produce propionate and acetate, as 
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these metabolites been reported to take part in anorexigenic pathways of metabolism, which 

was desirable (Psichas , 2015 ). RS is a polysaccharide classified as RS1-RS4 (Sajilata et al., 

2006), defined by the amount of starch that reaches the colon (Englyst et al., 1982). High 

amylose resistant starch 2 (HAMRS-2), a prebiotic candidate that consists of ~60% amylose, 

a helical polymer of α-D-glucose units and 40% amylopectin, a soluble polysaccharide of 

highly branched polymers of glucose (Keenan et al., 2015). Arabinoxylan (ABX) is a 

hemicellulose with a linear xylan backbone with α-L-arabinofuranose units attached as side 

chains by β-1 → 4 linkages (Izydorczyk & Biliaderis, 1995, Vardakou et al., 2008, Dodd et al., 

et al., 2011, Van den Abbeele et al., 2013) as well as gluco-oligosacharides (GLOS), 

oligosaccharide with alternating α-(1,3)/α-(1,6)-linked glucosyl residues (DPave =3-6),  

(Wichienchot et al,. 2006). Through blending RS, ABX and GLOS with inulin (LC-FOS), a fructan-

type polysaccharide is comprised of (2→1) linked β-D-fructosyl residues (n=2-60) and a (1↔2) 

α-D-glucose moiety (Mensink et al., 2015), we aimed to assess any additive potential prebiotic 

effect in vitro.   

 

Here we utilise a 3 stage continuous colonic culture system (Macfarlane et al., 1998) to assess 

the impact of in vitro fermentation of carbohydrate blends: inulin + resistant starch (I+RS), 

inulin + α-gluco-oligosaccharides (I+GLOS), inulin + wheat arabinoxylan I+ABX on microbial 

ecology and SCFA production. This method enables analysis of fermentation in each 

anatomically distinct region, which was an important consideration as the aim was to sustain 

SCFA release through the colon.  

Methods  

Faecal Donors 

Feacal samples were collected on the day of inoculation and kept in an anaerobic container 

10% H2, CO2 and 80% N2 for no more than 1.5hrs prior to inoculation. Donors were three 

healthy females BMI 19–23 kg/m2, non-smokers, aged 25-40 with no history of gastro-

intestinal disorders, no anti-biotic use in the previous 6 months and had not consumed 

prebiotic/probiotic enriched functional foods within 3 weeks prior to participating.   Samples 

were diluted 1:10 w/w in anaerobic PBS 0.1 mol/L at pH 7.4 and homogenised in a stomacher 

Stomacher 400; Seward for 2 min at 240 paddle beats per minute. 

file:///C:/Users/tm023084/Downloads/Gut%20model%20write%20up%20for%20DC%20290317%20(4).docx%23_ENREF_54
file:///C:/Users/tm023084/Downloads/Gut%20model%20write%20up%20for%20DC%20290317%20(4).docx%23_ENREF_54
file:///C:/Users/tm023084/Downloads/Gut%20model%20write%20up%20for%20DC%20290317%20(4).docx%23_ENREF_14
file:///C:/Users/tm023084/Downloads/Gut%20model%20write%20up%20for%20DC%20290317%20(4).docx%23_ENREF_31
file:///C:/Users/tm023084/Desktop/Gut%20model%20chapter%20corrections%20011118.docx%23_ENREF_29
file:///C:/Users/tm023084/Desktop/Gut%20model%20chapter%20corrections%20011118.docx%23_ENREF_39


144 
 

 

Fermentation media g/L 

 The gut model medium consisted per Litre of: starch (5g), peptone water (5g), tryptone (5g), 

yeast extract (4.5g), NaCl (4.5g), KCl (4.5g), mucin (4g), casein (3g), pectin (2g), Xylan (2g), 

arabinogalactan (2g), NaHCO3 (1.5g), MgSO4 (1.25g), guar gum (1g), inulin (1g), cysteine 

(0.8g), HCl (0.8g), KH2PO4 (0.5g), K2HPO4 (0.5g), bile salts (0.4g), CaCl2.6H2 ( 0.15g), FeSO4.7H2 

O 0.005g), hemin (0.5g), tween 80 (1mL), vitamin K (10µL). 

 

A three-stage continuous gut model system that simulates the physio-chemical conditions of 

anatomically distinct areas in the large intestine was used to investigate the fermentation 

characteristics of the fibre blends. A trio of cascading connected glass fermentation vessels in 

descending order of smallest to largest volume corresponding with the caecum V1, 80ml at 

pH=5.5, transverse V2, 100ml at pH=6.2, and distal colon V3, 120ml at pH=6.8. The models 

were inoculated with 20% wt:v faeces from healthy weight donors aged 25-38 (Macfarlane et 

al., 1998).  

The system was operated at a retention time of 48hr, approximating the transition rate of 

dietary fibre through the adult human colon. Following inoculation, the gut model was left 

for 24h to equilibrate at which time the medium pump switched on, which fed medium into 

V1 and via gravity, through to the connected vessels V2 and V3.  The system was run for 8 full 

turnovers which took 15 days. A turnover representing the rate at which the full volume of 

the vessel was replenished by medium. At this point steady state 1 (SS1) was achieved, 

determined by carrying out HPLC analysis of SCFA production over 3 consecutive days   and 

intervention commenced with two 1.33g doses of the blend administered to V1 at 10.30am 

and again at 3pm. This continued until day 31 when the second steady state (SS2) was 

determined, again by HPLC analysis of SCFAs over 3 consecutive days.  Samples were 

additionally collected during SS1 and SS2 over 3 consecutive days and centrifuged at 13,000 

x g for 10min for analysis, with the supernatant used for SCFA analysis and the resultant pellet 

for 16S RNA bacterial enumeration.  
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Novel prebiotic blends 

Three different blends of commercially available fibres were chosen: inulin (Fruitafit) sourced 

from Chimab + resistant starch (RS) (HI-MAIZE® 260) supplied by Ingredion, inulin + α-gluco-

oligosacchairdes (I+GLOS) (Bioecolia) suppled byAston Chemicals and inulin + arabinoxylan 

(Megazyme) from Megazyme (Table 1). Blends were tested in triplicate in the continuous 

culture colonic model. Each blend was administered to the gut model system twice a day, at 

1.33g, representing a third of the 8g/d to be tested in a human trial later. The aim of scaling 

down the volume was to reduce the amount of media required to conserve resources.  
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Table 1. The physio-chemical composition of individual fibres blended together, and fermentation properties tested in a continuous 

gut model system 

Substrate Source DP 

insoluble 

fibre % 

soluble 

fibre % 

total 

fibre/100g kcal/g 

Brand 

name Supplier 

Inulin Chicory root 

10-

60 0 90 90 2.00 Fruitafit IQ Chimab 

Resistant starch 

High amylose 

corn 

40-

600 56 0 56 2.36 Hi-Maize Ingredion 

Gluco-

oligosaccahride Sucrose/maltose 

6-

17 0 87 87 2.00 Bioecolia 

Aston 

Chemicals 

Arabinoxylan Wheat bran 500 0 70 70 2.3 Megazyme Megazyme 
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Enumeration of specific bacterial groups with fluorescent in-situ hybridization FISH  

Enumeration of faecal bacterial groups was carried out by fluorescent in-situ hybridisation 

(FISH) and flow cytometry (FISH-FLOW).  Samples were taken from V1-V3 over 3 consecutive 

days at SS1 & SS2 and from each sample 750 µl was centrifuged for 5mins at 13000 x g for 5 

min, the supernatant then removed and pellet re-suspended with 375 µl filtered PBS 0.22μm 

filter Millipore, Bedford, MA and 1125 µL of 4% v/v paraformaldehyde. Following incubation 

at 4˚C for 4 hours, samples were centrifuged at 13 000 x g for 5 min and washed twice in 1ml 

filtered PBS. Washed cells were then re-suspended in 150 µl filtered PBS and 150 µl ethanol 

99% and stored at -20˚C as described by Grimaldi et al, (Grimaldi et al., 2016). 

 

For permeabilisation, 75ul of the fixed sample was mixed with 500μl of cold PBS at  4°C and 

centrifuged at 11300 × g for 3 min, the supernatant removed and pellet resuspended  with 

100 μL of filtered TE-FISH (Tris/HCl 1 M pH 8, EDTA 0.5 M pH 8, distilled H2O) filtered with 

0.22μm filter Millipore, Bedford, MA.  This was followed by hybridisation steps in which 

pellets were resuspended in 150 μL of hybridisation buffer (HB) (5 M NaCl, 1 M Tris/HCl pH 8, 

30% formamide, ddH2O, 10% SDS), then vortexed and centrifuged at 1136 × g for 3 min). 

Pellets were then resuspended in 1 mL of HB and 50 μL aliquoted into Eppendorf tubes, for 

individual bacterial groups to be enumerated using specific probes (Table 2) (Devereux et al., 

1992;  Wallner et al., 1993; Langendijk et al., 1995; Manz et al., 1996; Franks et al., 1998; 

Daims et al., 1999; Harmsen et al., 2002; Hold et al., 2003; Walker et al., 2005). For the control, 

no probes were added to the 50µl sample. NON EUB338 probe was used to control for non-

specific binding to EUB338. Simultaneously EUB338 I, II & III linked at their 5’ end either to 

Alexa488 and Alexa647 was used to target total bacterial species, as EUB338 I alone is 

insufficient for the detection of all bacterial groups and also using EUB I, II, III together allows 

for more accurate quantification (Daims et al., 1999). In each eppendorf, 4 µL of Eub338 I-II-

III linked to Alexa488 was added for total bacteria and 4µL of the specific probe linked with 

Alexa647 at the 5’ end, then incubated in a heating block at 35°C for a minimum of 12 hours 

to enable hybridisation.  
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Table 2. Oligonucleotide probes used during FISH for enumeration of bacterial groups. 

Probe 

Name 
Target species  Sequence 5’ to 3’ Reference 

Non Eub Non bacteria ACTCCTACGGGAGGCAGC Wallner et al., 1993 

Eub338‡ Most bacteria GCTGCCTCCCGTAGGAGT Daims et al., 1995 

Eub338II‡ Most bacteria GCAGCCACCCGTAGGTGT Daims et al., 1995 

Eub338III‡ Most bacteria GCTGCCACCCGTAGGTGT Daims et al., 1995 

Bif164 Bifidobacterium  spp. CATCCGGCATTACCACCC Langendijk et al., 1995 

Lab158 

Lactobacillus, 

Leuconostoc and 

Weissella spp.; 

Lactococcus lactis; 

all Enterococcus, 

Vagococcus, 

Melisococcus, 

Catellicoccus, 

Tetragenococcus, 

Pediococcus and 

Paralactobacillus 

spp. 

GGTATTAGCAYCTGTTTCCA Harmsen et al., 2002 

Bac303 

Most 

Bacteroidaceae and 

Prevotellacea 

CCAATGTGGGGGACCTT Manz et al., 1996 

Erec482 

Most Clostridium 

coccoides- 

Eubacterium rectale 

group 

(Clostridium cluster 

XIVa and XIVb) 

GCTTCTTAGTCARGTACCG Franks et al., 1998 



149 
 

Rrec584 
Roseburia - 

Eubacterium rectale  
TCAGACTTGCCGYACCGC Walker et al., 2005 

Ato291 

Atopobium, 

Colinsella, Olsenella 

and 

Eggerthella spp.; 

Cryptobacterium 

curtum; 

Mycoplasma 

equigenitalium and 

Mycoplasma 

elephantis 

GGTCGGTCTCTCAACCC Harmsen et al., 2002 

Prop853 

Propionibacterium 

(Clostridial Cluster 

IX) 

ATTGCGTTAACTCCGGCAC Walker et al., 2005 

Fprau655 
Faecalibacterium               

prausnitzii 
CGCCTACCTCTGCACTAC Devereux et al., 1992 

DSV687 

Most 

Desulfovibrionales 

and 

Desulfuromonales 

TACGGATTTCACTCCT Hold et al. 2003 

Chis150  

Clostridium 

histolyticum 

(Clostridium cluster I 

and II) 

TTATGCGGTATTAATCTYCCTTT Franks et al., 1998 
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Following hybridisation, samples were centrifuged for 3min at 13000 x g and supernatant 

removed. The negative control no probe was re-suspended with cold PBS (4˚C) and analysed 

using the flow using the BD Accuri™ C6 flow cytometer according to the manufacturer’s 

instructions to determine background noise and subtract this from the analysis.  Samples 

containing probes were then re-suspended with the same volume as negative control. Specific 

and total bacterial groups were then enumerated taking into account a dilution factor (DF) 

which was calculated from different volumes used during preparation of the samples and 

events/µl determined from NON EUB338 and EUB I-II-III probes that were analysed by flow 

cytometry. 

 

SCFA measured by HPLC 

The concentration of total and individual SCFAS was measured using HPLC (Agilent-2) as 

previously described (Grimaldi et al., 2016). A 20µL volume from each sample was injected 

into the HPLC system with a run time of 45 minutes to allow all peaks required to be 

measured, including internal standard (I/S) of 10mM 2-ethylbutiric acid. I/S is used to correct 

peaks and improve accuracy of quantitative analysis. Software (Agilent Chemstation, Hewlett 

Packard) was used to integrate peaks, and quantification was obtained using calibration 

curves of individual SCFAS: lactic, acetic, propionic and butyric acid of increasing 

concentration (12.5, 25, 50, 75, 100mM). 

Statistical analysis 

Statistical analysis was performed using SPSS for windows version 21.0. Tests for normality 

were carried out using Shapiro-Wilk. Most of the data were normally distributed. If not, 

distributions were compared using the Wilcoxon signed ranking tests. Data were analysed by 

two-way ANOVA and Tukeys post-hoc testing. Additional paired t-tests were applied to assess 

the significance of single pairs of data. Statistical significance was accepted at P < 0.05 for all 

analyses. 
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Results 

 

Bacterial analysis by fluorescent in situ hybridisation (FISH) 

 

Average bacterial counts of all groups enumerated by FISH detailed in Table 3 are expressed 

as log10cells/mL ± standard deviations.  

 

Total bacterial growth occurred following fermentation in all three treatments but was only 

significant following I+ABX fermentation with a 0.29 log10 cells/mL increase reported in V1 

(P=0.011). This increase was largely due to the significant 0.9 log10 cells/mL growth of 

Bifidobacterium observed with I+ABX (P=0.021) in V1. Fermentation of I+RS elicited a 

significant 0.54 log10 cells/mL growth of Bifidobacterium numbers in V1 (P=0.027). Growth of 

Bifidobacterium was observed during fermentation across all treatments in all 3 vessels but 

not significantly. There was a trend for Propionibacterium. increases (P=0.084) during I+ABX 

fermentation in V1. 
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Table 3: Bacterial populations in log10 cells/mL V1, V2 and V3 of the gut models before SS1 

and after SS2 treatment with I+RS, I+GLOS and I+ABX. Data presented as means of the three 

gut models ± standard deviations SS1 and SS2 and calculated as mean values over three 

consecutive days. *P < 0.05 significantly different from SS1. 

  

 

 

 

 

 

 

I+RS 
Total  

bacteria 
Bifidobacterium Bacteroides Propionibacterium 

SS1 SS2 SS1 SS2 SS1 SS2 SS1 SS2 

V1 9.51  ± 0.06 9.52  ± 0.17 7.92  ± 0.78 8.46  ± 0.43* 8.35 ± 0.26 8.82  ± 0.08 7.9 ± 0.65 7.92  ± 0.89 

V2 9.21 ± 0.01 9.45 ± 0.16 7.97  ± 0.64 8.59  ± 0.43 8.19 ± 0.13 8.08  ± 0.73 7.87 ± 0.64 8.04  ± 0.73 

V3 8.92 ± 0.14 9.36 ± 0.03 7.83  ± 0.66 8.51  ± 0.54 7.53 ± 0.26 7.99  ± 0.60 7.65 ± 0.53 7.96  ± 0.60 

I+GLS 
Total  

bacteria 
Bifidobacterium Bacteroides Propionibacterium 

SS1 SS2 SS1 SS2 SS1 SS2 SS1 SS2 

V1 9.51  ± 0.24 9.67  ± 0.14 8.39 ± 0.54 8.79 ± 0.75 7.92 ± 0.89 7.78 ± 0.86 7.61 ± 1.23 7.88 ± 1.22 

V2 9.41 ± 0.13 9.51 ± 0.25 8.28 ± 0.62 8.50 ± 0.65 7.69 ± 0.74 7.84 ± 0.90 7.64 ± 1.08 7.88 ± 0.84 

V3 9.00 ± 0.12 9.33 ± 0.29 7.97 ± 0.95 8.36 ± 0.65 7.17 ± 0.55 7.79 ± 0.95 7.26 ± 1.18 7.99 ± 0.80 

I+ABX 
Total  

bacteria 
Bifidobacterium Bacteroides Propionibacterium 

SS1 SS2 SS1 SS2 SS1 SS2 SS1 SS2 

V1 9.31 ± 0.10 9.60  ± 0.14* 8.15 ± 0.69 9.05 ± 0.35* 7.66 ± 0.14 7.76 ± 0.58 8.00 ± 0.57 8.79 ± 0.25 

V2 9.31 ± 0.33 9.57 ± 0.27 7.91 ± 1.12 8.96 ± 0.36 7.79 ± 0.97 7.99 ± 1.13 8.07 ± 0.19 8.63 ± 0.45 

V3 8.89 ± 0.41 9.23 ± 0.16 7.50 ± 1.13 8.80 ± 0.28 7.38 ± 0.75 7.78 ± 0.75 7.50 ± 0.42 8.59 ± 0.45 
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There was no significant reduction in bacterial groups, however following treatment with I+RS 

there was a reduction in the mean cell count for Bacteroides ssp., by 0.14 log10 cells/mL 

(P=0.703) and for Clostridium coccoides by 0.031 log10 cells/mL (P=0.858) in V1.  In V2, 

Bacteroides spp., number declined (0.22 log10 cells/mL) (P=0.607) and F. prausnitzii by 0.28 

log10 cells/mL (P=0.287). Furthermore, in V3, C.coccoides was reduced by 0.53 log10 cells/mL 

(P=0.849) and Propionibacterium and F. prausnitzii by 0.08 log10 cells/mL (P=0.178) and 0.09 

log10 cells/mL (P=0.207) respectively.  During I+ABX fermentation a reduction in Roseburia 

numbers by 0.18 log10 cells/mL (P=0.319) occurred and F. prausnitzii numbers declined by 

0.16 log10 cells/mL (P=0.634) in V1. In V2, Roseburia and F. prausnitzii were reduced by 0.19 

log10 cells/mL (P=0.600) and 0.08 log10 cells/mL (P=0.821) respectively. During I+GLOS 

fermentation, there was a small decline in Bacteroides spp., and C. coccoides numbers in V1:  

0.002 (P=0.991) and 0.002 (P=0.458) log10 cells/mL respectively.  

The potentially pathogenic bacterial group Desulfovibrio spp. was reduced in V3 following 

I+RS treatment by 0.42 log10 cells/mL and further to I+ABX fermentation, a reduction of 0.08 

log10 cells/mL in Desulfovibrio spp. numbers was observed in V1 while in V3 Desulfovibrio spp. 

numbers reduced by 0.22 log10 cells/mL. Through fermentation of I+GLOS, no reduction of 

Desulfovibrio spp. was observed, in fact in V1, V2 and V3 Desulfovibrio spp. numbers increased 

by 0.45, 0.57 and 0.59 log10 cells/mL respectively.  Clostridium histolyticum declined by 0.44 

log10 cells/mL during I+ABX fermentation in V3, and this was the only reduction in 

C.histolyticum observed in all three treatments.  

There was no significant increase or reduction in Atopobium spp., numbers.  

SCFA production 

SCFAs are expressed in mM ± standard deviations in Table 3. V1 simulates the proximal, V2, 

the transverse and V3 the distal regions of the human colon.  
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Table 3: SCFA production (mM) in V1, V2 and V3 of the gut models before SS1 and after SS2 

treatment with I+RS, I+GLOS and I+ABX. Data presented as means of the three gut models ± 

standard deviations SS1 and SS2 and calculated as mean values over three consecutive days. 

*P < 0.05 significantly different from SS1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

I+RS  
Acetate Propionate Butyrate Total SCFA 

SS1 SS2 SS1 SS2 SS1 SS2 SS1 SS2 
V1 52.21 ± 6.59 74.67 ± 16.21 26.44 ± 1.92 32.13 ± 3.77 18.08 ± 3.62 25.91 ± 2.34 96.75  ± 9.09  132.72 ± 11.10 

V2 61.45 ± 7.57 84.29 ± 5.87* 26.18 ± 3.12 28.38 ± 6.86 21.51 ± 1.24 28.85 ± 5.51 109.14 ± 8.06 141.52 ± 14.94 

V3 63.22 ± 14.14 90.21 ± 9.09 26.53 ±2.50 26.34 ± 3.12 23.21 ± 2.30 26.62 ± 6.00 112.96 ± 13.08 143.17 ± 18..01 

I+GLS 

Acetate Propionate Butyrate Total SCFA 
SS1 SS2 SS1 SS2 SS1 SS2 SS1 SS2 

V1 61.62 ± 13.51 84.99 ± 12.47 23.81 ± 2.55 28.78 ± 4.16 19.31 ± 7.48 22.50 ± 2.89 104.73 ± 18.99 136.27 ± 8.97 

V2 75.28 ± 7.08 112.22 ± 17.64* 22.58 ± 2.49 26.96 ± 4.54 19.56 ± 2.38 27.49 4.19* 117.43 ± 6.08 166.66 ± 13.30 

V3 76.98 ± 18.77 98.61 ± 26.44 23.10 ± 2.75 26.27 ± 6.06 21.86 ± 3.81 23.90 ± 0.31 121.94 ± 16.53 148.78 ± 29.49 

I+ABX 

Acetate Propionate Butyrate Total SCFA 
SS1 SS2 SS1 SS2 SS1 SS2 SS1 SS2 

V1 64.55 ± 1.66 111.39 ± 16.42* 44.085 ± 7.67 49.57 ± 6.28* 19.71 ± 6.23 30.28 ± 2.33 128.34 ± 3.28 191.24 ± 15.93* 

V2 75.47 ± 7.46 121.63 ± 14.61* 25.59 ± 1.49 34.79 ± 3.54 22.90 ± 1.81 33.033 ± 3.81 123.97 ± 6.00 189.45 ± 15.10* 
V3 90.25 ± 11.74 115.28 ± 24.11 30.32 ± 2.51 34.88 ± 4.54 23.10 ± 1.57 28.41 ± 5.79 143.67 ± 10.88 178.58 ± 24.23 
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Total SCFA production increased following fermentation of all 3 treatments, and though there 

was no two-way interaction, total SCFA production was significantly increased following 

I+ABX treatment in both V1 (P=0.01) and V2 (P=0.01). An increase of total SCFA was close to 

significance following I+RS fermentation in V3 (P=0.063). 

 

Acetate production did not increase significantly in V1, however during fermentation of all 3 

blends there was a significant elevation in acetate levels: I+RS (P=0.028), I+ABX (P=0.44), 

I+GLOS (P=0.50).  

The only significant increase in propionate production was induced by I+ABX fermentation in 

V1 (P=0.044) and was also close to significance in V2 (P=0.058). Fermentation of I+GLOS 

significantly increased butyrate production in V2 (P=0.011) only. Measurement of iso-butyric 

acid was below the detection limit for calculation. There was also no significant increase in 

lactic acid production during the fermentations in all three treatments. 

 

Discussion 

Blending LC-FOS with ABX elicited significant bifidogenic effects in V1, representing the 

proximal region of the colon. Significant increases in SCFA production also occurred in V2, as 

was observed during fermentation of all 3 blends, and though not significant there was an 

elevation in SCFA production in V3, indicating that a prolonged fermentation had occurred, 

and that the differences in fermentation characteristics are most likely denoted by their 

physico-chemical variation, such as chain length, linkages, and ability of bacterial groups to 

utilise enzymes implicit in metabolism of prebiotics.  

 

An increase in Bifidobacterium numbers was desirable as acetate and lactate, produced from 

their activity is considered beneficial. By reducing pH to create an anti-pathogenic 

environment, (Clarke et al., 2012) and mediating satiety mechanisms (Tolhurst et al., 2012; 

Canfora et al., 2015; Psichas et al., 2015), acetate and lactate can also take part in cross-

feeding with bacterial groups such as F. prausnitzii  and Bacteroides to produce butyrate and 

propionate. A bifidogenic effect did occur during fermentation of all 3 treatments, most likely 

through preferential metabolism of inulin (LC-FOS) by bacterial groups such as 

Bifidobacterium spp. (Gibson et al., 1995; Bouhnik et al., 1996; Kolida & Gibson 2007). 

file:///C:/Users/tm023084/Downloads/Gut%20model%20write%20up%20for%20DC%20290317%20(3).docx%23_ENREF_59
file:///C:/Users/tm023084/Downloads/Gut%20model%20write%20up%20for%20DC%20290317%20(3).docx%23_ENREF_6
file:///C:/Users/tm023084/Downloads/Gut%20model%20write%20up%20for%20DC%20290317%20(3).docx%23_ENREF_47
file:///C:/Users/tm023084/Downloads/Gut%20model%20write%20up%20for%20DC%20290317%20(3).docx%23_ENREF_19
file:///C:/Users/tm023084/Downloads/Gut%20model%20write%20up%20for%20DC%20290317%20(3).docx%23_ENREF_5
file:///C:/Users/tm023084/Downloads/Gut%20model%20write%20up%20for%20DC%20290317%20(3).docx%23_ENREF_33


156 
 

However, metabolism of arabinoxylan could account for increased bifidogenic effects 

reported during I+ABX fermentation bifidobacterial species cannot metabolise the xylan 

backbone (Rogowski et al., 2015), however some bifidobacterial species such as 

Bifidobacterium adolescentis possess arabinofuranohydrolase-D3 that can cleave arabinosyl 

side chains (Van den Broek et al., 2005), similarly Bifidobacterium longum utilise α-L-

arabinofuranosidase to break L-arabinose chains (Margolles et al., 2003). This partial 

fermentation of arabinoxylan could indicate selective metabolism by bifidobacterial species 

and therefore be a prebiotic candidate (Vardakou et al., 2008, Van den Abbeele et al., 2013).  

 

Desulfovibrio reduces sulphates to sulphides using electron donors (such as lactate, pyruvate 

or hydrogen) in the process (Marquet et al., 2009). Although not significant, a reduction of 

Desulfovibrio did occur during I+ABX and I+RS fermentation in V3 and this could be due to 

bifidogenic effects displacing these bacteria, it may also indicate extended saccharolytic 

fermentation in this region.  The growth in acetate producing Bifidobacterium spp., 

corresponds with significant increases in acetate concentration in V2 during all three 

treatments, simulating the transverse region of the colon and suggestive of prolonged SCFA 

output. 

 

Bacteroides comprise ~10%, (and was of interest in this research because of their ability to 

break down amylose from RS.  Bacteroides thetaiotaomicron genome was analysed and 

reported to  possess 172 glycosyl hydrolases, and a large number of proteins that associated 

with polysaccharide metabolism (Xu et al., 2003; Birt et al., 2013) and this ability to degrade 

a variety of glycosidic bonds, required to metabolise polysaccharides was observed in germ 

free rats colonised by Bacteroides thetaiotaomicron that were fed a high polysaccharide diet 

(Sonnenburg et al., 2005). Supplementation with high amylose resistant starch 2 (HAMRS-

2), was reported to increase butyrate production in the distal region of rats with 

azoxymethane-induced cancer, when euthanised (Le Leu et al., 2007) and this was most likely 

due to the complex and organised HAMRS-2  structure exhibiting slow fermentation (Lee et 

al., 2013; Zhou et al., 2013). However, there was a decline of Bacteroides spp., numbers 

during fermentation in V1 which may be due to increased Bifidobacterium. As 

competitiveness between bacterial groups is relative to specific strains and therefore species 

interactions and differing responses to prebiotics is a consideration for future research.  
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Propionibacterium was of interest because of their ability to utilise pentoses from 

arabinoxylans and colonic lactate to produce propionate through the succinate pathway 

(Hosseini et al., 2011), favouring decarboxylation of succinate (Delwich, 1958) through 

transcarboxylase enzymes to produce propionate (Houwen et al., 1991). Propionate is a 

precursor for de novo gluconeogenesis implicated in the attenuation of lipogenesis, through 

the inhibition of fatty acid synthase expression (Canfora et al., 2015) and is thought to 

positively impact energy homeostasis.  A significant increase in propionate production during 

I+ABX fermentation in V1 is likely related to the trend for growth in Propionibacterium in V1 

(P=0.079) during I+ABX treatment. 

 

Increased propionate production was reported in the proximal and distal regions of mice fed 

wheat arabinoxylan over 28d following euthanasia (Edwards & Eastwood, 1992) and batch 

culture fermentation of wheat arabinoxylans led to increased propionate production 

(Karppinen et al., 2000), possibly from metabolism of the xylose fraction (Mortensen et al., 

1988). 

 

SCFAs and propionate, in particular has been implicated in satiety mechanisms through in 

vitro research (Delmée et al., 2006, Reimer et al., 2012, Tolhurst et al., 2012, Chambers et al., 

2014, Zhou et al., 2015), human feeding studies with RS (Willis et al., 2009, Bodinham et al., 

2010, Harrold et al., 2014, Mollard et al., 2014) and human feeding studies with ABX (Isaksson 

et al., 2011, Hartvigsen et al., 2014). This effect could be due to the extended fermentation 

of these longer, more complex structures effectively increasing the concentration of colonic 

SCFA and potentially stimulating a greater response of satiety hormones over a sustained 

period. The overall effect, leading to earlier cessation of an eating episode and reduced food 

intake to positively impact appetite regulation. 

 

Though all three blends led to bifidogenic effects and a subsequent elevation in SCFA 

production, it was I+ABX that performed optimally in terms of having the greatest bifidogenic 

effect, as well as leading increases in Propionobacterium leading to a significant rise in SCFAs 

implicated in appetite regulation: acetate and propionate, and exhibiting sustained 

fermentation, which was desirable in this research in identifying an optimal blend with the 

aim of positively impacting appetite regulation.  
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Conclusion 

Blending novel prebiotic fibres results in sustained fermentation, as well as eliciting 

bifidogenic effects and, in the case of I+ABX an increased growth of Propionibacterium, 

however further testing in human randomised controlled intervention is required to 

determine if a prebiotic effect occurs.  
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Abstract 

Prebiotics such as inulin can beneficially modify the composition of the microbiota. The gut 

microbiota is increasingly implicated in the aetiology of the obese phenotype, and 

saccharolytic fermentation in the gut may influence appetite. By blending arabinoxylan with 

inulin (I+ABX) it was hoped that consumption would lead to significant bifidogenic effects in 

the colon and positively regulate satiety in healthy weight men. A double-blind, placebo-

controlled crossover study was carried out on 20 healthy weight men who consumed either 

9.46g I+ABX or 9.23g flavoured maltodextrin consumed in 2 doses daily for 21 days, followed 

by 21-day washout, followed by the alternate treatment. Changes to bacterial ecology (FISH-

FLOW), SCFA concentration (HPLC), satiety scores (VAS), systemic metabolites (NMR) were 

assessed and energy intake during an ad libitum meal and postprandial appetite were 

evaluated both before and after treatment with placebo and I+ABX. There was no change in 

satiety scores following treatment with I+ABX, however there were significant increases in 

the abundance of bifidobacteria (P=0.017), Propionibacterium (P=0.021), as well as elevated 

acetate production (P=0.009) and reduced food intake (P=0.030). This complimentary blend 

may be helpful to those in maintaining a healthy weight. 
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Introduction 

Prebiotics modulate gut bacterial composition and include long-chain fructo-oligosaccharide 

(LC-FOS), and oligofructose (OFS) (Roberfroid, 2007, Gibson et al., 2004). Fermentation 

products of prebiotics include short chain fatty acids (SCFAs) produced by bacterial groups 

such as Bifidobacterium. These play a role in mediating metabolic functions and influence 

appetite regulation (Psichas et al., 2015, Morrison and Preston, 2016, den Besten et al., 2013). 

Acetate and propionate are thought to attach to G-coupled receptors (GPR43) located on 

entero-endocrine cells that are situated along the length of the colon, and subsequently 

trigger a release of satiety hormones including glucagon like peptide (GLP-1) and peptide YY 

(PYY) aiding in reduced food intake.  

Inulin type fructans can be hydrolysed from chicory to produce inulin β(2←1) (DPav=12), and 

further isolated to form OFS (DPave=4) (Roberfroid, 2007). Bifidobacterium preferentially 

ferment OFS to produce acetate, (Gibson et al., 1995).  

Arabinoxylan, a hemi-cellulose comprising a linear xylan backbone with β-(1 → 4) linkages to 

which α-L-arabinofuranose units are attached as side residues α-(1 → 3) and/or α-(1 → 2) 

linkages (Izydorczyk and Biliaderis, 1995) are particularly abundant in the cell wall of rye and 

wheat (REF). Bacterial groups such as Bifidobacterium can utilise Arabinofuranosidases to 

cleave L-arabinofuranosyl residues on the arabinoxylans (Rivière et al., 2014). Metabolism of 

L-arabinofuranosyl residues by strains of Bifidobacterium mainly occurs in the proximal region 

of the colon, potentially leaving the resultant xylan backbone to be metabolised by other 

bacterial groups with different enzymatic glycosidases, such as Bacteroidetes further along 

the colon (Dodd et al., 2011). Increased metabolic activity of Propionibacterium can increase 

the concentration of metabolic end products such as propionate implicated in appetite 

regulation (Van den Abbeele et al., 2013).  

It is proposed that a blending prebiotic inulin and arabinoxylan (I+ABX), delivered in a single 

product will have an enhanced prebiotic effect, feeding a more diverse array of colonic 

saccharolytic bacteria. It is thought this may attenuate the rapid fermentation rate of the LC-

FOS (inulin) and thereby lead to a slow steady release of acetate and propionate in the gut. A 

3-stage continuous colonic model with separate but connected vessels simulating the 

anatomically distinct regions of the colon was utilised to investigate the fermentation 
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characteristics of 3 novel blends. I+ABX produced the greatest concentration of acetate and 

propionate in the vessels simulating the transverse and distal region, indicating an elongation 

of fermentation compared with inulin alone. Following in vitro assessment of the 

fermentation characteristics of this prebiotic blend (Chapter 5), it is suggested that the 

enhanced production of propionate and acetate in the colon may influence appetite 

regulation in man, and therefore the impact of chronic consumption of I+ABX on markers of 

appetite regulation are tested here in a population of healthy weight men.  A cross over study 

design was employed, with three-week intervention periods to assess the effect of a chronic 

intake of I+ABX on appetite, with use a visual analogue scale (VAS) to measure self-reported 

satiety in participants before and after consumption of I+ABX and an ad libitum lunch to 

measure changes in energy intake. Changes in bacterial ecology were assessed via 16sRNA 

FISH-FLOW, and fermentation metabolites by NMR.  

Methods 

Study Design  

A randomised, double blind, crossover acute within chronic appetite study was conducted to 

investigate the satiety inducing properties of a blended prebiotic fibre inulin + arabinoxylan 

(I+ABX). This study was approved by the Reading University Ethics Committee (UREC 16/23) 

and registered with clinicaltrials.gov.uk (Identifier: NCT02846454). There were two 21-day 

treatment periods and a 21-day washout in between (Figure 1). Participants were screened 

in a short visit to the Hugh Sinclair Unit of Human Nutrition (HSUHN), followed by a 

familiarisation visit and 4 subsequent study visits at the beginning and end of each treatment 

period.  

Study Days 

Participants would arrive at 8am and remain in the unit until 1.40pm on day 0, day 21, day 42 

and day 63 of the intervention. The day prior to study visits the participants were asked to 

keep a 24h record of food and activity. A standardised dinner meal of 400g macaroni cheese 

(Table 1) was provided to be eaten before 9pm, after which time participants were asked to 

fast for 10 hours prior to the study day. Participants were also asked to refrain from drinking 

alcohol and taking part in strenuous exercise, as this could affect appetite. Conditions were 
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controlled during the study day, with meals eaten in a cordoned off area, to minimise external 

stimuli and distractions. Participants were provided with a breakfast at 8.45am. The 

standardised breakfast meal comprised of toasted white bread, jam and butter and was the 

equivalent to 10% SACN daily recommendation energy intake for males (SACN, 2011). Lunch 

was provided ad libitum at 1pm and consisted of cheese and tomato pizza (Table 1). Weighed 

plates of pizza were bought out every 5 minutes, and previous plates removed rather than 

providing the food as a buffet style, which has been shown to impact the quantity of food 

consumed (Wansink et al., 2015). Water consumption was standardised on the visit on day 1 

and the same volume given to volunteers each subsequent visit days.  
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Figure 1: Time line showing the duration of the study (top) and time line of the study day (bottom): indicating the times that visual analogue 

scale (VAS) questionnaires for satiety scores were completed, also shows when anthropometrics, sample collection and meal times occurred. 
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Dietary Intervention 

Participants were asked to consume either product 1, or product 2 at 10.30am and 3pm (± 30 

minutes) daily throughout the 21-day period, and during the study day. The powdered drink 

was added to 150mL water and mixed in a shaker. Drinks were matched for energy, taste and 

viscosity and contained either 9.46g of I+ABX or 9.23g flavoured maltodextrin (Table 1). 
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Table 1: Nutritional composition of study meals and products consumed during the study period.  

 Meals Product Carbohydrate  Fibre Protein  Fat  
Weight 

(g) 
Energy 
(kcal) 

Breakfast 
Hovis Best of Both 

bread 
30.4 3 7.6 1.8 76 (2x38) 172 

  
Hartley’s 

strawberry Jam 
12.1 0 0.04 0 20 48.8 

  
Flora original 

margarine 
0 0 0 3.8 10 35 

Lunch  
Sainsbury’s 
Cheese and 

tomato pizza 
29.5 2.6 15 10.5 100 278 

Standardised dinner 
prior to study day 

Sainsbury’s 
Macaroni cheese  

16.9 1.9 7.6 7.4 400 168 

Placebo - maltodextrin Maltodextrin 19.21 0.23 5.97 0 9.23 34 

I+ABX I+ABX 0.41 6.83 1.33 0 9.46 20.7 

  



175 
 

Participants 

Out of the 153 people that responded, 40 people were screened and 33 were eligible to take 

part. A total of 20 healthy weight males completed the study, which was advertised on social 

media, free-ads, and poster boards in and around University of Reading campus.  

Participants attend a short screening visit, in which full details of the study was disclosed to 

the potential participant and informed consent was obtained. Following this, anthropometric 

measurements were taken including: height measured by wall mounted stadometer (m), 

body composition (Tanita ‘BC 418ma’ Analyser, Tanita Inc, USA), and blood pressure 

(OmoronM2). A blood sample was then taken by venepuncture. Participants also completed 

a three-factor eating questionnaire (TFEQ), which helps to establish if cognitive restraint is 

part of the habitual eating habit (Löffler et al., 2015), as well as the Pittsburgh sleep quality 

questionnaire (Beaudreau et al., 2013), which gives information about sleeping habits. 

Following the screening visit 2 x 24hr dietary recalls were conducted on 2 non-consecutive 

days in 1 wk, and this information was used for dietary analysis, to give an indication of fibre 

intake.  

Eligibility was assessed from the results of the  screening questionnaires, blood sample and 

dietary analysis, and this was based on the following inclusion criteria: aged 19–55y, normal 

weight (BMI: 18.5-24.9 kg/m2) resting blood pressure (<160/90 mmHg), fasted blood 

haemoglobin (>125g/l males), gamma GT (<80 IU/l), cholesterol (<6.5 mmol/l), triglycerides 

(<1.5 mmol/l) and glucose (<5.5 mmol/l), no recent blood donation, sleep duration < 5 hours, 

cognitive restraint in eating habits (<13 TEFQ), no recent surgery or current disease or taking 

medication, no history of drug or alcohol abuse, non-vegetarian or those regularly consuming 

>25 g/day fibre (AOAC definition), no anti-biotic use in the past 6 months or dietary 

supplementation with prebiotic/probiotic enriched products for at least 3 weeks prior to 

commencing the study.  

Anthropometrics 

On each study visit, Anthropometric measurements were taken, using the same equipment 

as screening and included BMI, hip-waist circumference, body fat percentage. Additionally, 

blood pressure was taken 3 times and the average recorded. A recent food intake and physical 
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activity questionnaire was completed by all fasted subjects on each visit.  The details of 

participant baseline anthropometric data are reported in Table 2. 
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Table 2: Participant demographics were collected at the screening process to assess eligibility 

for the study. Specific markers were measured to ensure they were within a range associated 

with healthy bodily function, through use of exclusion criteria.  

 Participants 
(n=20) 

 

  Mean ± SD  Range 

Age (y) 35.05 ± 9.33 22-55 

Height (cm) 1.76 ± 0.08 163-188 

Weight (kg) 72.1 ± 9.48 59.8-92.7 

BMI (kg/m2) 23.24 ± 2.27 19.9-26 

Body fat (%) 15.84 ± 4.66 7-22.3 

Haemoglobin 144.56 ± 35.46 136-154 

Gamma GT - liver enzyme (IU/L) 22.68 ± 11.06 12.4-45 

Cholesterol (mmol/L) 4.8 ± 1.94 3.12-6.3 

Triglycerides (mmol/L) 0.93 ± 0.47 0.40-1.47 

Fasted blood glucose (mmol/L) 4.96 ± 1.77 2.75-5.46 

Systolic mean blood pressure 
(mm/Hg) 

125.79 ± 11.64 105-148 

Dystolic mean blood pressure 
(mm/Hg)  

72.42 ± 8.58 59-92 

Factor 1 (cognitive restraint of 
eating) 

5.61 ± 3.13 0-11 

Factor 2 (disinhibition) 4.88 ± 2.87 0-11 

Factor 3 (hunger) 2.88 ± 3.21 0-10 

Exercise/wk (h) 2.00 ± 0.45 0-2 

Sleep (h/night) 7.2 ± 1.77 6.00-8.00 

Energy intake (Kcals/d) 2496.24 ± 595.78 
1497-
3500 

Protein (g/day) 113.94 ± 38.48 
68.5-

214.77 

Fibre (AOAC) g/day 18.75 ± 5.71 8.13-25.9 
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VAS analysis 

An unstructured 100mm line visual analogue scale (VAS) was used to measure satiety and 

hunger on a computer monitor using Compusense-at-hand software (version 8.8), developed 

in Guelph, Ontario, Canada by Compusense Inc. This software randomised and collated 

information about satiety scores. A total of 13 VAS questionnaires were completed by each 

participant during each study visit every half hour, except after meals when the questionnaire 

would be given every 15 minutes, totalling 13 questionnaires per visit. The computer monitors 

were in a cordoned off part of the HUSSN and participants used the same computer each visit 

to carry out these questionnaires.  

Bacterial enumeration with FISH-FLOW 

Enumeration of faecal bacterial groups was carried out by fluorescent in-situ hybridisation 

(FISH) and flow cytometry (FISH-FLOW).  Participants bought the samples in on the morning 

of the study day, collected in a pot, and kept in an anaerobic container with a gas generating 

kit (AnaeroGen™; Oxoid), whereby the atmospheric O2 is absorbed with the simultaneous 

generation of CO2 so that within 30 minutes O2 levels reach approximately 1% and CO2 

between 9% and 13%.  for no more than 1.5hrs after being voided. A small volume (10g) was 

used to make a 10% w/w faecal homogenate in 1 x PBS (0.1 M; pH 7.4), this was homogenised 

in a stomacher (Steward 400) for 2 min at 240 paddle beats per minute.  

 

A 375µl volume was taken from the 1:10 dilution, this was centrifuged for 5mins at 13000 x g 

for 5min, the supernatant then removed and pellet re-suspended with 1125µL of 4% v/v 

paraformaldehyde. Following incubation at 4˚C for 4 hours, samples were centrifuged at 

13000 x g for 5 min and washed twice in 1ml filtered PBS. Washed cells were then re-

suspended in 150 µl filtered PBS and 150µl ethanol 99% and stored at -20˚C as described by 

Grimaldi et al, 2016. 

 

For permeabilisation, 75µL of the fixed sample was mixed with 500μl of cold PBS at 4°C and 

centrifuged at 1136 × g for 3 min, the supernatant removed, and pellet resuspended with 100 

μL of filtered TE-FISH (Tris/HCl 1M pH 8, EDTA 0.5M pH 8, distilled H2O) filtered with 0.22μm 

filter (Millipore, Bedford, MA). This was followed by hybridisation steps in which pellets were 
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resuspended in 150μL of hybridisation buffer (Chambers et al., 2014) (5M NaCl, 1M Tris/HCl 

pH8, 30% formamide, ddH2O, 10% SDS), then vortexed and centrifuged at 1300 × g for 3 min). 

Pellets were then resuspended in 1 mL of HB and 50μL aliquoted into Eppendorf tubes, for 

individual bacterial groups to be enumerated using specific probes as detailed in Table 3 

(Wallner et al., 1993, Daims et al., 1999, Langendijk et al., 1995, Harmsen et al., 2002, Manz 

et al., 1996, Franks et al., 1998, Walker et al., 2005, Devereux et al., 1992 , Hold et al., 2003). 

For the control, no probes were added to the 50µl sample. NON EUB338 probe was used to 

control for non-specific binding to EUB338. Simultaneously EUB338 I, II & III linked at their 5’ 

end either to Alexa488 and Alexa647 was used to target total bacterial species, as EUB338 I 

alone is insufficient for the detection of all bacterial groups and also using EUB I, II, III together 

allows for more accurate quantification (Daims et al., 1999). In each eppendorf, 4 µL of 

Eub338 I-II-III linked to Alexa488 was added for total bacteria and 4µL of the specific probe 

linked with Alexa647 at the 5’ end, then incubated in a heating block at 35°C for a minimum 

of 12 hours to enable hybridisation.  
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Table 3. Oligonucleotide probes used during FISH for enumeration of bacterial groups. 

Probe 

Name 
Target species  Sequence 5’ to 3’ Reference 

Non Eub Non bacteria ACTCCTACGGGAGGCAGC Wallner et al., 1993 

Eub338‡ Most bacteria GCTGCCTCCCGTAGGAGT Daims et al., 1995 

Eub338II‡ Most bacteria GCAGCCACCCGTAGGTGT Daims et al., 1995 

Eub338III‡ Most bacteria GCTGCCACCCGTAGGTGT Daims et al., 1995 

Bif164 Bifidobacterium spp. CATCCGGCATTACCACCC 
Langendijk et al., 

1995 

Lab158 

Lactobacillus, 

Leuconostoc and 

Weissella spp.; 

Lactococcus lactis; 

all Enterococcus, 

Vagococcus, 

Melisococcus, 

Catellicoccus, 

Tetragenococcus, 

Pediococcus and 

Paralactobacillus 

spp. 

GGTATTAGCAYCTGTTTCCA Harmsen et al., 2002 

Bac303 

Most 

Bacteroidaceae and 

Prevotellacea 

CCAATGTGGGGGACCTT Manz et al., 1996 
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Erec482 

Most Clostridium 

coccoides- 

Eubacterium rectale 

group 

(Clostridium cluster 

XIVa and XIVb) 

GCTTCTTAGTCARGTACCG Franks et al., 1998 

Rrec584 
Roseburia - 

Eubacterium rectale  
TCAGACTTGCCGYACCGC Walker et al., 2005 

Ato291 

Atopobium, 

Colinsella, Olsenella 

and 

Eggerthella spp.; 

Cryptobacterium 

curtum; 

Mycoplasma 

equigenitalium and 

Mycoplasma 

elephantis 

GGTCGGTCTCTCAACCC Harmsen et al., 2002 

Prop853 

Propionibacterium 

(Clostridial cluster 

IX) 

ATTGCGTTAACTCCGGCAC Walker et al., 2005 

Fprau655 
Faecalibacterium               

prausnitzii 
CGCCTACCTCTGCACTAC 

Devereux et al., 

1992 

DSV687 

Most 

Desulfovibrionales 

and 

Desulfuromonales 

TACGGATTTCACTCCT Hold et al. 2003 

Chis150  

Clostridium 

histolyticum 

(Clostridium cluster I 

and II) 

TTATGCGGTATTAATCTYCCTTT Franks et al., 1998 
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Following hybridisation, samples were centrifuged for 3min at 13000 x g and supernatant 

removed. The negative control no probe was re-suspended with cold PBS (4˚C) and analysed 

using the flow using the BD Accuri™ C6 flow cytometer according to the manufacturer’s 

instructions to determine background noise and subtract this from the analysis. Samples 

containing probes were then re-suspended with the same volume as negative control. Specific 

and total bacterial groups were then enumerated taking into account a dilution factor (DF) 

which was calculated from different volumes used during preparation of the samples and 

events/µl determined from NON EUB338 and EUB I-II-III probes that were analysed by flow 

cytometry. 

 

Dietary analysis 

Weighed food diaries were completed in the 24h period prior to each study visit, which were 

then collected at the beginning of each study visit (n=4). Dietplan 6 was used for analysis to 

compare the intake of individual macronutrients (g/24h) and energy intake (Kcal/24h) both 

before and after treatment with placebo and I+ABX.  

SCFA analysis 

The concentration of total and individual SCFAs was measured using HPLC (Agilent 1260 

Infinity) as previously described by Grimaldi et al., 2016 From the faecal homogenate, 320µl 

of the supernatant was filtered using 0.22μm filter (Millipore, Bedford) and mixed with 

120µl internal standard (I/S) which was 2-ethylbutiric acid (10mM) giving a ratio of 1:4, and 

this was then added to HPLC vials. By adding the same amount of I/S to each sample and 

standard and using the ratio of the area of the peak analyte and I/S, the peaks can be 

corrected, and quantitative analysis is improved instead of keeping track of absolute peak 

area which may have volumetric losses in preparation and injection. A 20l volume was 

then injected into the HPLC system with a run time of 45 minutes to allow all peaks required 

to be measured.  Agilent (Chemstation) software was then used to integrate the peaks, 

using calibration curves of individual SCFAS: lactic, acetic, propionic and butyric acid of 

increasing concentration (12.5, 25, 50, 75, 100mM). 
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NMR 

Urine collection and storing 

Urine samples were collected from each fasted participant on the morning of each of the four 

study visits, on days: 0, 21, 42, 63. Urine samples were kept cold in transit to the unit with 

freezer blocks and cool bag. Once the sample was received, approximately 45mL was 

transferred into a 50mL falcon tube where it was spun for 12000 g at 4˚C for 10 mins and 

subsequently aliquoted into a labelled 1.5mL eppendorf and stored at -80˚C pending NMR 

analysis. 

Nuclear Magnetic Resonance Spectroscopic Analysis 

Based on the hypothesis that variation in metabolites will occur between treatment and 

control, an untargeted metabolic phenotyping approach was chosen to detect as many 

metabolites as possible (as opposed to detecting a defined set as is the case with targeted 

metabolic phenotyping approaches). The spectral data acquired following NMR analysis 

enables quantification of metabolite concentration as well as information on chemical 

structure to assist with assignment of metabolites. Based on the chemical composition of the 

molecule, a characteristic pattern of peaks is generated, where peak intensity is reflective of 

concentration and the number and multiplicity of peaks (splitting pattern) enables 

identification. In this study, 2D NMR experiments were conducted as well as 1D, allowing for 

overlapping peaks to be viewed, that may otherwise be hidden in the 1D axis (Alonso et al., 

2015). 

Store urine sample were defrosted in a fridge 4˚C for 30 minutes. Once thawed, 400 µl was 

taken from each sample and added to 200 µl phosphate buffer and transferred to a 5mm 

NMR tube. Phosphate buffer (1Ltr): comprising D2O (1Ltr), 28g of 2M disodium hydrogen 

phosphate (Na2HPO4), 4.8g of 0.04M sodium dihydrogen phosphate (NaH2PO4), 

172mgTrimethylsilylpropanoic acid (TSP) (C6H14O2Si) and 195mg sodium azide (NaN3) was 

prepared. The pH was adjusted to 7.4 with 5M HCl or NaOH. Buffer was added to the urinary 

samples to maintain a narrow range, since variations could cause peak shifts in the NMR 

spectra. Heavy water (D2O) was used in the phosphate buffer to serve as a lock signal for the 

spectrometer and thereby reducing interference. Also added to the buffer solution was TSP 



184 
 

which produces a singlet chemical shift at 0ppm (for calibration of acquired spectra) as well 

as sodium azide as a preservative. 

Quality controls (QC) were included in the experimental run to assess for potential instrument 

or technical variation and to provide confidence in the reproducibility of the acquired data. A 

composite QC sample was created by taking a 20ul volume from each participant sample and 

mixed together in a vial. This QC sample was run every 10 participant samples. The samples 

were randomised to address order biases, and 60 samples were run at a time (15min per 

sample) using an automated sample injector.  

The NMR analysis was carried out as previously described by Dona et al., (Dona et al., 2014). 

The 1D NMR experiment used to acquire data included a pulse sequence with pre-saturation 

of the water peak. Urine samples inherently contain a large volume of water, and it is 

therefore necessary to suppress this peak to focus on other peaks of biological interest, 

therefore a probabilistic quotient normalization approach was employed, based on 

calculating the most probable dilution factor by looking at the distribution of quotients of the 

amplitudes of a test spectrum by those of a reference spectrum. This method has been 

demonstrated to be a robust approach to correct for differential dilution in complex biological 

mixtures commonly measured in NMR-based metabolomics studies (Dieterle et al., 2005).  

Data processing 

To begin with, the NMR spectra were processed using Bruker Topspin software (version 3.5, 

Bruker, Karlsruhe, Germany) where spectra were phased, baseline corrected and referenced 

to the TSP singlet peak at 0ppm. To prepare for multivariate statistical analysis, data were 

imported into the Matlab environment where they were digitised into 32000 spectral 

descriptors (variables). Data were aligned, normalised, using the probabilistic quotient 

normalisation approach (Dieterle et al., 2006) and regions corresponding to the water signal 

(4.5-6.0ppm) and other regions not containing biological information (such as the TSP peak) 

were removed.  
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Data analysis 

Since NMR spectroscopic data can include peaks corresponding to one metabolite as well as 

multiple peaks corresponding to the same metabolite, it is most appropriate to use a 

multivariate statistical analysis approach to model the spectroscopic data, which enables 

observation of patterns based on the entire metabolite profile. Digitised spectral data was 

imported into the SIMCA-P software programme (version 14.1, Umetrics AB, Umea, Sweden) 

to conduct the multivariate analysis. Initially, unsupervised principal component analysis 

(PCA) was carried out to gauge an initial inspection of trends in the samples and define any 

outliers to be excluded from the analysis (based on those outside of the ellipse in the PCA 

scores scatter plot, which represents a 95% confidence level). A supervised model was then 

used to explore trends further, using orthogonal projections to latent structures discriminant 

analysis (OPLS-DA). OPLS-DA models were evaluated using R2, an estimate of goodness of fit 

of the model for the data, and Q2 as an estimate of the goodness of prediction. Models were 

constructed to identify trends before and after treatment, and with placebo and I+ABX 

treatment. Discriminatory metabolites correlating with these classes were interpreted using 

the “loadings line plot” feature in the SIMCA-P software programme. This enabled 

visualisation of regions of the spectra that correlated with each class in a format like that of 

the original NMR spectra, to ease in identification of chemical shift and multiplicity. 

Furthermore, this plot enabled identification of covariance (direction) of specific metabolites 

as well as correlation (importance of a metabolite in discriminating one group from the other). 

Chemical shifts and multiplicity of potentially discriminatory metabolites were confirmed by 

referring to the original NMR data, and then verified by referencing against chemical standard 

spectra in in-house databases or the Human Metabolome Database (HMDB) (Wishart et al., 

2007). Any peaks that could not be assigned using these approaches are labelled 

“unassigned”. 

The PCA score plots of NMR data offer a profile of each participant and respective visit (2 

timepoints). The plots are classed by either placebo or I+ABX. One outlier was identified as 

lying quite far away from the elipse, and so this was removed from further analysis. 
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Statistical Analysis 

A linear mixed model with repeated measures for crossover designed studies was used to 

compare differences in appetite, energy intake, changes to bacterial ecology and SCFA 

measurements. Fixed factors in the model were visit, treatment, timepoint, and visit* 

treatment*timepoint. Random factors were age and BMI.  Area under the curve (AUC) 

values were calculated for appetite data using the trapezoid method and a two-way ANOVA 

repeated measures.  Specifically, segmental appetite AUC values were calculated for key 

time periods: breakfast to morning preload, 45min post preload, 75 min after morning 

preload following by pre-lunch period >30 min and post-lunch period 30min. These time 

segments were chosen to explore the gastric, pre-absorptive and post absorptive effects of 

I+ABX. Data were analysed using SPSS version 21.0 for Windows (SPSS Inc., USA). A P value 

of < 0.05 was considered statistically significant. Paired t-tests were used to analyse pre-

treatment values.  
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Results 

Fasting measures  

There were no significant differences in fasting satiety or hunger scores measured using VAS 

either prior to treatment (P=0.731) or post-treatment (P=0.174) (Figure 2). 
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Figure 2: Fasting hunger and satiety ratings Before and after treatment with placebo and 

I+ABX. Data presented as estimated marginal means ± SD and using 2-way ANOVA repeated 

measured, no statistical difference was observed between treatments. Statistical significance 

set at P<0.05. 
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Post Breakfast Satiety  

AUC values were measured for the 75min period following consumption of the standardised 

breakfast. There were no significant differences between satiety scores pre-treatment with 

placebo or I+ABX (P=0.930), nor was there an effect of time on AUC satiety between placebo 

mean I+ABX (P=0.936), treatment (P=0.139) or time*treatment (P=0.557).  AUC hunger was 

also measured, however there was no difference in hunger scores pre-treatment with placebo 

or I+ABX (P=0.809), nor was there an effect of time (P=0.917), treatment (P=0.257) or 

time*treatment (P=0.219) (Figure 3). 
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Figure 3: Mean AUC satiety and hunger scores 75mins post breakfast period, 

measured both before and after treatment with placebo or I+ABX. Data 

presented as estimated marginal means ± SD and using two-way ANOVA 

repeated measured, there was no statistical difference between treatments set 

at P<0.05. 
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Preload effects 

AUC values satiety and hunger evaluated 115mins following consumption of the preload 

(placebo or I+ABX). This timeframe was considered sufficient to determine any pre-absorptive 

effects such as gastric distension (Benelam, 2009). No different in AUC satiety between 

treatments at day 0, (P=0.176) and there was no significant effect of time (P=0.745) treatment 

(P=0.358) or time*treatment (P=0.275) between treatments. There was also no significant 

difference in AUC hunger scores prior to treatment with placebo or I+ABX (P=0.216) and no 

significant effect of time (P=0.762), treatment (P=0.182) or time*treatment (P=0.917) (Figure 

4). 
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Figure 4: Mean AUC satiety and hunger scores measured 115mins post preload 

consumption, both before and after treatment with placebo or I+ABX. Data 

presented as estimated marginal means ± SD and using two-way ANOVA 

repeated measured, there was no statistical difference between treatments set 

at P<0.05.  
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Pre-lunch effects 

AUC satiety and hunger during the 30min period prior to lunch was evaluated.  No different 

in mean AUC satiety scores prior to treatment with placebo or I+ABX (P=0.693) and there was 

no significant effect of time (P=0.512) treatment (P=0.808) or time*treatment (P=0.765) 

between treatments. There was also no significant difference in AUC hunger scores prior to 

treatment (P=0.653) and no significant effect of time (P=0.819), treatment (P=0.676) or 

time*treatment (P=0.380) (Figure 5). 
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Figure 5: Mean AUC satiety and hunger scores measured during the 30mins prior 

to consumption of the ad libitum lunch meal, both before and after treatment 

with placebo or I+ABX. Data presented as estimated marginal means ± SD and 

using two-way ANOVA repeated measured, there was no statistical difference 

between treatments set at P<0.05. 
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Post Lunch Satiety  

AUC satiety and hunger were evaluated in the 30min period post ad libitum lunch meal. There 

was no significant difference in AUC satiety scores between prior to both treatments 

(P=0.693), but there was an effect of time (P=0.006) treatment (P<0.00) and time*treatment 

(P<0.00). There was a mean difference of AUCtotal 696.16 between placebo and I+ABX, with 

satiety scores being reduced significantly post lunch post-placebo treatment. 

There was no significant difference in AUC hunger scores prior to either placebo or I+ABX 

(P=0.127) and no significant effect of time (P=0.235), treatment (P=0.152) or time*treatment 

(P=0.782) (Figure 6). 
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Figure 6: Mean AUC satiety and hunger scores measured during the 30mins 

following consumption of the ad libitum lunch meal, both before and after 

treatment with placebo or I+ABX. Data presented as estimated marginal means 

± SD and using two-way ANOVA repeated measured, there was no statistical 

difference between treatments set at P<0.05. 
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Ad libitum food intake 

Prior to treatment with placebo or I+ABX there was no difference in energy intake (EI), 

however there was a significant difference in time*treatment post treatment (P<0.05). EI 

increased by 23.91 Kcal (P=0.204) following treatment with placebo and decreased by 

38.39Kcals (P=0.030) following treatment with I+ABX (Figure 7).  
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Figure 7: Energy intake during ad libitum lunch period. Significant differences 

between treatments (P<0.05) denoted by an asterisk (*). 
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Dietary analysis 

There was a mean difference of 52Kcal energy consumption in the 24h prior to the pre-

treatment visits that was close to being statistically different (P=0.62), however, there was a 

418Kcal mean difference in energy intake in the 24h prior to post-treatment visit (P=0.04). 

During this 24h period, there was a 318Kcal increase in energy consumption following placebo 

supplementation, which was significantly greater than the 14Kcal increase in energy 

consumption that occurred following I+ABX supplementation (Table 4). 

There was no significant difference in consumption of fat (P=0.146), protein (P=0.21) or 

carbohydrate (P=0.35) in the 24h prior to the pre-treatment visits. 

In the 24h prior to the post-treatment visits however, there was a difference in consumption 

of protein (P=0.077), fat (P=0.056) and carbohydrate (P=0.71) that was close to significance, 

and which relates to increased consumption of individual nutrients rather than a reduction, 

which was more desirable.  

There was however, a small reduction in the consumption of individual macronutrients 

following I+ABX treatment, with a mean 3.44g reduction in carbohydrate consumption over 

24h period, compared with pre-treatment over 24h. 

Fat and protein consumption increased following treatment with both placebo and I+ABX, 

however this increase was greater following placebo treatment than with I+ABX. 
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Table 4. Weighed food diaries collected at the beginning of each study visit (n=4) from 

volunteers were analysed using Dietplan 6 to compare the intake of individual 

macronutrients (g/24h) and energy intake (Kcal/24h) both before and after treatment 

with placebo and I+ABX. One-way ANOVA and paired t-tests were used to determine 

statistical differences, with significance set at P<0.05 and denoted by an asterisk (*). 

 

 

 

 

 

 

 

PRE-I+ABX  POST I+ABX PRE-PLACEBO POST-PLACEBO 

PROTEIN (g/24h) 95.41 ± 32.96 97.08 ± 40.19   123.91 ± 81.35 137.83 ± 60.45  

FAT (g/24hr) 100.66 ± 25.77 103.75 ± 24.9 130.75 ± 76.65 152.5 ± 67.98  

CARBOHYDRATE (g/24h) 229 ± 50.14 225.56 ± 72.40 273.41 ± 108.76  285.41 ± 108.03  

ENERGY (Kcal/24h) 2510 ± 228.2 2524 ± 205.04 2562 ± 289.52 2942 ± 254.21* 
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Faecal bacteria enumerated (FISH-FLOW) 

There was no significant difference in bifidobacterial numbers prior to treatment with placebo 

or I+ABX (P=0.627) with a 0.05 log10 cells difference, however there was a significant mean 

increase of 0.15log10cells/dry weight bifidobacteria (P=0.017) following chronic consumption 

of I+ABX. 

Propionibacterium growth was not statistically different prior to treatment with either 

placebo or I+ABX with a 0.015 log10 cells/dry weight difference, however there was a 

significant difference at the end of treatment with an increase of 0.16 log10 cells/dry weight 

(P=0.021) following I+ABX consumption (Table 5). 
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Table 5: Results from faecal analysis using FISH-FLOW. Significant difference as 

estimated marginal mean between treatments ± SD. Significant set at (P<0.05) and 

marked with an asterisk (*). 

   Placebo   I+ABX   

 
Day 0 Day 21 Day 0 Day 21 

Total bacteria (EUB I II III) 9.85±0.62 9.8±0.6 9.96±0.44 10.06±0.45 

Bifidobacterium genus (Bif164) 8.05±0.46 7.88±0.61 8.11±0.65 8.26±0.47 

Lactobacillus genus (Lab158) 7.44±1.81 7.15±1.8 7.74±0.45 7.78±0.54 

Propionobacterium (Prop853) 8.08±2 7.98±1.95 8.5±0.55 8.66±0.49 

Bacteroidetes 7.57±1.87 7.38±1.86 8.01±0.54 7.88±0.56 

Faecalibacterium Prausnitzii 

(Fprau655) 
8.12±1.99 8.17±0.96 8.56±0.46 8.68±0.46 

Eubacterium rectale (Rrec584) 7.95±1.99 7.89±1.94 8.45±0.49 8.45±0.6 

Clostridium cluster XIVa (Erec482) 8.29±2.02 8.3±2 8.84±0.48 8.91±0.53 

Desulfobrio (DSV) 7.28±1.81 6.93±1.77 7.6±0.53 7.52±0.62 

Clostridium histolyticum (Chis150) 7.4±1.81 7.21±1.75 7.76±0.49 7.86±0.47 
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There was a ~2% reduction of Faecalibacterium prausnitzii following consumption of both 

placebo and I+ABX. Potentially pathogenic bacterial group Desulfibrio (DSV) was reduced by 

~1% following placebo, however, there was no reduction in DSV following I+ABX intervention 

(Figure 8). I+ABX may have attenuated the growth of proteolytic bacterial group Bacteroides 

with a ~2% reduction in abundance during consumption of I+ABX, Atopobium was also 

reduced by ~1%, so the abundance may have shifted to a 1% and 2% increase in saccharolytic 

Lactobacillus and Propionibacterium respectively (Figure 9).  
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Fig 8. Comparison of the mean relative abundance of bacterial groups before and after 

treatments with placebo 

 

 Figure 9. Comparison of the mean relative abundance of bacterial groups before and after 

treatment with I+ABX. 
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Faecal SCFAs measured using HPLC 

There was no significant difference in total faecal SCFA concentration occurred between 

treatments at baseline (P=0.879), however there was a significant difference post-treatment 

(P=0.016) with an increase of 52.04mM/Kg following I+ABX intervention (Table 6). 

Prior to treatment there was no significant difference in acetate concentration between 

placebo and I+ABX (P=0.772), however there was a significant difference between treatments 

post-treatment (P=0.009) with a 33.81mM/Kg increase in acetate production following I+ABX 

consumption.  

There was no significant difference in propionate production pre-treatment with placebo and 

I+ABX (P=0.909). Following consumption of I+ABX there was a mean increase in 4.558mM/Kg 

compared with placebo, however this was not significant (P=0.582). 

There was also no significant difference in butyrate production between placebo and I+ABX 

pre-treatment (P=0.909). Following consumption of I+ABX there was a mean increase in 

10.594mM/Kg compared with placebo, however this was not significant (P=0.141). 

There was no difference in isobutyrate production between treatments or time points. 
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Table 6: Results from HPLC analysis of SCFA concentration (mM/Kg dry weight 

faeces) before and after treatment. Significant differences as estimated marginal 

mean between treatments ± SD and set at (P<0.05) and marked with an asterisk (*). 

 Placebo   I+ABX   

  Pre Post Pre Post 

Total SCFA 218 ± 80.36 213 ± 79.8 227 ± 91.25 273 ± 81.66 

acetate 115 ± 43.58 106 ± 35.67 116 ± 46.9 146 ± 49.51* 

propionate 55 ± 25.15 58 ± 32.91 56 ± 27.38 64 ± 20.67 

buyrate 41 ± 21.39 40 ± 26.49 47 ± 25.41 54 ± 23.86 

isobutyrate 6 ± 4.2 7 ± 7.3 7 ± 4.43 8 ± 6.61 
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NMR results 

There was no obvious trend identified from inspecting the unsupervised principal component 

analysis (PCA) plots following treatment with either placebo (Figure 10) or I+ABX (Figure 13) 

with no specific group in either quadrant observed. Therefore, the supervised model was 

produced by firstly carrying out orthogonal projections to latent structures discriminant 

analysis and using the S-line correlation determined from this to identify trends in this 

experiment and then comparing metabolic profile with treatments, placebo and I+ABX: 

baseline vs post treatment. Baseline samples were represented as negative on the S-line, 

whereas post treatment by the positive values. The height of the peaks denotes the 

concentration of the metabolite and the intensity of colour represents the correlation with 

the group (red is highly correlated near to 1, green is closer 0 representing no correlation). 

These models have good Q2 predictability, and comparable R2 goodness of fit. 
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Figure 10: Principal component analysis (PCA) scores scatter plot of the first two 

principal components to visualise any inherent trends or patterns in the data. Baseline 

(pre-treatment) is compared with placebo post treatment. 
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Figure 11: OPLS-DA scores scatter plot where the predictive component is the x axis, 

and orthogonal component is the y axis. This supervised model comparing before 

(green) and after (blue) treatment with placebo aimed to maximise separation 

between classes to view discriminatory metabolites. 
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There appears to be no signicant effect of treatment with placebo on systemic metabolic 

profile (Figure 10). However, levels of creatinine were similar before and after treatment with 

placebo, denoted by the large peak, which indicates a high concentration, nevertheless, as it 

is green in colour this denoted that there is little or no correlation between creatinine 

production both pre or post placebo treatment, therefore the placebo appears to have had 

no or little effect on creatinine levels (Figure 12). 

Trimethylamine-N-oxide (TMAO) produced from metabolism of meat, fish and dairy products, 

was weakly correlated with the post placebo group (0.24) as was 3-methyl-histidine (0.26) 

(Table 7). 
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Figure 12: OPLS-DA analysis loadings line plot of NMR spectra obtained before 

treatment (pointing down) and post treatment with placebo (pointing up). The colour 

indicates the strength of the correlation with class. 
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Table 7: Discriminatory metabolites identified following OPLS-DA. Chemical shift 

position and multiplicity allows identification of metabolites, and correlation value 

determines if the metabolite is more correlated with either pre or post treatment with 

placebo. 

Correlation 
Chemical 

shift 
(ppm) 

Multiplicity Metabolite Function 

0.24 3.27 singlet 
Trimethylamine-
N-oxide (TMAO) 

Produced by bacteria from 
breakdown fish, meat, dairy and 

eggs. High levels have been 
associated with heart disease, 

diabetes and bowel cancer 

0.544 3.735 singlet Unassigned   

0.42 3.97 singlet Unassigned   

0.26 7.03 singlet 
3-Methyl-L-

histidine 

Biomarker for meat consumption - 
chicken, biomarker of myofibrillar 

proteolysis, which may contribute to 
skeletal muscle loss 

0.434 7.13 singlet Unassigned   

0.401 7.36 doublet Unassigned   

0.361 7.55 triplet Hippurate 
Carboxylic acid usually those that 

consume phenolic compounds 

0.363 7.83 doublet Hippurate 
Carboxylic acid usually those that 

consume phenolic compounds 
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Figure 13: Principal component analysis scores scatter plot with predictive component 

in the x axis, orthogonal component in the y axis comparing before and after treatment 

with I+ABX. 
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Figure 14:  Orthogonal partial least squares discriminant analysis (OPLS-DA) 

scores with predictive component in the x axis, orthogonal component in the y 

axis comparing before (green) and after (blue) treatment with I+ABX. 
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Levels of dimethylamine, though small, were more strongly associated with pre-treatment of 

I+ABX, based on the correlation (0.54) (Figure 15), than post I+ABX treatment (Table 8). 

With reference to Table 8, creatinine production appears to be associated more with the pre-

treatment of I+ABX, based on the weak correlation (0.34) than post I+ABX treatment. 
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Figure 15: Orthogonal partial least squares discriminant analysis (OPLS-DA) loadings 

line plot of NMR spectra obtained before treatment with placebo (pointing down) and 

post treatment with I+ABX (pointing up). The colour indicates the strength of the 

correlation with class. 
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Table 8: Orthogonal partial least squares regression discriminant analysis (OPLS-DA) 

data. Information about the chemical shift allows identification of metabolites and 

determine if the metabolites is more correlated with either pre or post treatment with 

I+ABX. 

Correlation 
Chemical 

shift (ppm) 
Multiplicity Metabolite Function 

0.489 2.72 singlet Dimethylamine 

Ammonia type 
gas, possibly 

toxic effects in 
larger 

concentrations 

0.344 3.05 singlet creatinine 

Waste product 
of protein 

metabolism or 
muscle 

breakdown 
and creatine 
to creatinine 
can be toxic. 

0.41 3.88 singlet Unassigned   

0.25 3.273 singlet 
Trimethylamine-
N-oxide (TMAO) 

Produced by 
bacteria from 

breakdown 
fish, meat, 
dairy and 
eggs. High 
levels have 

been 
associated 
with heart 

disease, 
diabetes and 
bowel cancer 

0.368 7.14 doublet Unassigned   

 



218 
 

Discussion 

Investigating the impact of blended I+ABX on markers of appetite regulation is novel, as much 

of the research that explores the satiety inducing effects of prebiotics have involved individual 

fibres. Inulin (LC-FOS) is a well-documented prebiotic (Gibson et al., 1995, Kolida & Gibson 

2007, Rycroft et al., 2001) and there is some evidence that prebiotic supplementation can 

induce increased satiety and reduce energy intake, thought to be mainly through stimulation 

of SCFAs implicated in appetite regulation (Kaji  et al., 2011, Morrison & Preston, 2016). Most 

satiety studies with prebiotics are acute in design, and prebiotic induced compositional 

changes to the microbiota are transient and poorly characterised.  Here, the impact of chronic 

consumption of I+ABX on markers of satiety in healthy weight men is investigated. It was 

anticipated that blending prebiotics might induce significant prebiotic effects. 

The results from the satiety scores obtained throughout the study visits suggest that I+ABX 

did not have a significant impact on subjective satiety, or hunger. This may be due to inter-

individual variation or participant bias. The use of VAS as a measurement of subjective satiety 

was previously validated by Flint et al., as results are reproducible, although best utilised in a 

crossover design. In Flint et al., study, a difference of 10 mm on fasting and 5 mm on mean 

satiety ratings detected with 18 participants. A crossover design was used in this study, and it 

was hoped therefore that this type of variation would be minimised, however Flint et al., also 

suggests large variation can be reported, as it is subjective feelings that are being measured, 

which are prone to variation (Flint et al., 2000). Furthermore, the daily placebo dose (9.23g) 

contained 5.97g pf protein, whereas the daily dose of I+ABX (9.46g) contained only 1.33g 

protein. Increased protein content of the placebo treatment could have led to higher satiation 

during this treatment as protein is known to be the most satiating of the macronutrients 

(Astrup, 2005), and this could have obscured increases in satiety scores induced by I+ABX 

induced satiety, including those related to subjective satiety.  

There was a significant decrease in food intake of 38.39 Kcal (P=0.030) recorded during the 

ad libitum lunch meal following chronic consumption of I+ABX, compared with placebo that 

is not explained by the self-reported feelings of hunger and fullness. This conflict  has 

previously been reported in previous human studies investigating the satiating effects of RS2, 

Wheat bran, B-GLU and PDX (Bodinham et al., 2010, Freeland et al., 2009, Keogh et al., 2003 
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Olli et al., 2015, Ranawana et al., 2013). The subjective satiety scores may not corroborate 

the significant energy reduction reported here, however other objective measurements such 

as significantly greater acetate production, increased propionate production and growth of 

SCFA producing Bifidobacterium and Propionibacterium strengthens this result. There is 

growing evidence that SCFAs are implicated in appetite regulation by acting as signalling 

molecules to stimulate satiety hormonal response, that subsequently trigger anorexigenic 

pathways, resulting in reduce food intake (Lin et al., 2012, Chambers et al., 2014, Cani et al., 

2006, Greenway et al., 2007, Da Souza et el., 2014). Although it may be considered a limitation 

of the study that satiety hormones were not measured, the significant elevation in acetate 

concentration by 33.811mM/Kg dry weight faeces (P<0.00), produced, from stimulation in 

growth in bifidobacterial numbers, indicates that the mechanism by which food intake has 

been significantly reduced is through prebiotic induced changes to composition of the 

microbiota and subsequent elevation in SCFA production.  

The analysis from the weighed food diaries, completed in the 24h prior to each study visit 

both before and after treatment, show that energy consumption (Kcal) increased in the 24h 

period post-treatment visit, however this increase was significantly greater following placebo 

supplementation than with I+ABX, according to self-reported data. Additionally, fat and 

protein consumption increased following both treatments, again this increase was more 

associated with the placebo treatment. Weighed food diaries can be accurate and provide 

detailed information if carried out correctly, however they can be time consuming and require 

compliance for effective reporting (Laville et al., 2017).  In research, it has been reported that 

participants that are required to record their dietary habits are prone to modifying their diet, 

as they may be more conscious of what they consume, leading to under/over-reporting of 

foods as a result (Ortega et al., 2015). In this study however, under reporting does not seem 

to be an issue, but there was an increase in consumption. It may be that as volunteers were 

fasted for a minimum of 10 hours prior to the study visit, and because food intake was so 

tightly controlled during the study day, the volunteers’ response may have been to 

overcompensate as a result and consume more either consciously or otherwise.  

Consuming a greater amount of energy or macronutrients such as protein or fibre has been 

reported to be more satiating than carbohydrate or fat consumption, and an effect that may 

persist, potentially masking satiety induced by treatment (Chambers et al., 2015). There was 



220 
 

a 13.47g increase in protein consumption recorded in the 24h prior to the post-placebo visit, 

compared with 24h prior to the pre-placebo visit. However, this appears to have had little 

effect on food intake during the ad libitum meal the following day during the post-placebo 

visit as there was a 23.91 Kcal (P=0.204) increase in food intake. Conversely, protein 

consumption only increased by 1.67g during the 24h prior to the post-I+ABX visit, yet food 

intake was significantly reduced by 38.39Kcals (P=0.030) the following day, during the ad 

libitum meal post-I+ABX. Therefore, in this study the I+ABX treatment appears to have had a 

greater effect on food reduction than increased energy/protein consumption has.  This may 

be further evidence that supplementation with I+ABX has led to prebiotic induced changes to 

microbiota composition leading to greater satiation. 

Though consumption of most individual macronutrients increased during 24h period prior to 

post-treatment visits, carbohydrate intake reduced by 3.44g during the 24h period prior to 

post-I+ABX visit, though the result was not significant. However, the increase in fibre 

consumption from the I+ABX supplementation, might explain this small reduction as previous 

studies have reported sustained satiety following fibre supplementation (Bodinham et al., 

2010, Greenway et al., 2007), and again this could be due to prebiotic induced changes to 

microbiota composition, leading to elevated SCFA concentration, thereby inducing satiety 

mechanisms. This indicates that consumption of I+ABX might be useful tool in those on a 

lower carbohydrate diet, or those following a lower glycaemic diet.  

A limitation of this dietary analysis is that not all food diaries were completed, some were 

missing, leaving an uneven number of set and therefore care been taken when presenting 

these findings. A total of 13 volunteers completed a whole set for the placebo arm, and 15 

from the prebiotic arm. Also, as diet was only considered during the 24h period prior to visit, 

was only recorded for 24h, it may not have been long enough to ascertain any habitual 

changes to diet.   

Previous studies have reported some increases in SCFA production, but results are mixed 

regarding the reporting of significant increases to SCFA production following chronic 

consumption of individual prebiotics. This is most likely because SCFAs are quickly utilised by 

colonocytes as energy or transferred via the hepatic portal vein to the liver (Cummings and 

Overduin, 2007) leaving only around 5% of SCFAs measured in faecal samples (Cummings and 
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Macfarlane, 1991). However, in this study there was a significant increase in acetate levels 

following I+ABX treatment, which is reflective of the significant increases observed through 

in vitro fermentation studies carried out previously. Similar research by Koecher et al., 

observed LC-FOS blended with gum acacia and pea fibre, delayed SCFA production in 24h 

batch fermentation compared with LC-FOS alone, and in humans there was a 5mmol/L 

increase in total SCFA production (Koecher et al., 2013). 

Treatment with I+ABX in this study led to a significant Increase of 0.15 log10cells/dry weight 

faeces bifidobacteria cells (P=0.017), as well as a 0.16 log10 cells/dry weight increase in the 

numbers of Propionibacterium (P=0.021). This was surprising as the power calculation 

suggested that 30+ participants were required to observe a 0.22 log10 cell difference in 

bifidobacteria following chronic consumption of prebiotic fibre such as inulin (Bouhnik et al., 

2004, Tuohy et al., 2001), however only 20 participants completed the study in total.  In my 

previous exploration of 3 novel prebiotic blends, using a three-stage in vitro continuous 

culture model system, fermentation of I+ABX induced a significant increase in bifidobacterial 

growth compared with other two blends: I+RS, and I+GLOS. As there were significant 

bifidogenic effects following consumption of I+ABX reported in this study, it may be that 

combining the two distinct but complimentary substrates has led to an additive prebiotic 

effect, despite the power calculation not being fulfilled, it would suggest that combining LC-

FOS with ABX has enhanced or added to the bifidogenic capabilities of LC-FOS.  

Van den Abeele et al., 2013 reported that inulin and arabinoxylan, exhibit two distinct 

pathways of fermentation, with LC-FOS stimulating Bifidobacterium adoloscentis growth and 

ABX stimulating Bifidobacterium longum growth (Van den Abeele et al., 2013). Differences in 

their physico-chemical structure have most likely led to this distinction in fermentation profile 

with LC-FOS being shorter, less complex and lower molecular weight than arabinoxylan. 

Genomic studies of bifidobacterial strains reported that the Bifidobacterium longum genome 

encodes for a greater number of carbohydrate utilising enzymes, such as glycosyl hydrolases, 

and sugar ABC transporters compared with Bifidobacterium animalis (Pokusaeva et al., 2011) 

hence their ability to degrade more complex substrates, such as ABX. Unfortunately, within 

phyla characterisation was not possible, due to conservation of the 16rRNA sequence; 

however, it is worth considering these analyses in future work.   
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Urinary samples are subject to variation, with some being more dilute than other, and this 

can result in large variation between samples, that can impact or skew analysis. Therefore, 

probabilistic quotient normalisation of samples was carried out during analysis (Dieterle et 

al., 2006), to account for this type of variation. It is reported to be a robust method of dealing 

with variation in results based on the concentration of samples. Creatinine is a metabolite 

produced from protein metabolism, and though creatinine levels not be reported as toxic in 

healthy individuals, those consuming an excess of the recommended 0.8g/kg daily intake, 

may be at risk from kidney damage (Poortmans and Francaux, 2000). Creatinine was more 

associated with placebo treatment than with I+ABX treatment. Similarly, trimethylamine-N-

oxide (TMAO) which is a metabolite produced by colonic bacteria, via metabolism of fish, 

meat and dairy products, was also more associated with the placebo group as well as with 

participants on pre-treatment with I+ABX. TMAO is associated with increased risk of 

developing heart disease (Heianza et al., 2017) and in a genomic systems analysis, TMAO was 

genetically associated with colorectal cancer (Xu, Wang and Li, 2015) Dimethylamine, a 

potentially toxic metabolite found in seafood, was quite strongly associated with the placebo 

compared with I+ABX. 3-methyl-histidine, a biomarker of muscle breakdown (Sheffield-

Moore et al., 2014) was also more associated with placebo than I+ABX. The results of 

metabolites in this model, but only in this model, it is an indication however, that I+ABX has 

persisted towards the distal region as this is where the metabolites of protein digestion are 

produced.  

Conclusion 

Chronic supplementation with inulin blended with arabinoxylan may be useful as a weight 

management tool, and there may be other health benefits elucidated with further research 

testing the impact of consumption in other study populations such as those at risk from 

metabolic syndrome and diabetes. 
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Introduction 

As the rate of obesity has increased, along with the downward trend for consumption of fruit 

and veg, particularly in lower socio-economic populations (Booth et al., 2017) and  is a major 

public health concern. As there is some evidence of the efficacy of prebiotic supplementation 

in maintaining a healthy weight, through modification of gut microbiota, leading to increased 

SCFA production, which is implicated in appetite regulation (Kaji et al., 2011, Morrison & 

Preston, 2016) developing foods or ingredients that may help those at risk, by maintain a 

healthy weight is important.  

Experimental findings  

A 48h batch culture was used to screen 11 individual prebiotics/candidate prebiotics to 

explore the impact of in vitro fermentation on bifidobacterial growth, and other commensal 

bacterial groups, and to identify substrates that elicited the greatest increases in acetate and 

propionate production, particularly in the later stages of the culture (24-48h). This would 

suggest a longer fermentation, which was desirable, as the aim was to develop a blend that 

was hoped would extend carbohydrate metabolism towards the distal region of the colon in 

humans, leading to sustained SCFA production that might therefore positively impact on 

appetite regulation. The substrates performed optimally in batch culture were blended with 

LC-FOS and tested further in a realistic 3-stage colonic model. During colonic fermentation, it 

was anticipated that growth in Bifidodobacterium, Propionibacterium, and Bacteroides would 

occur and subsequently elevate acetate and propionate levels, principally in the vessels 

simulating conditions in the transverse region (V2), and the distal region (V3), as it was 

predicted and desirable that blending would induce a more sustained fermentation towards 

V3.  

As well-researched prebiotics (Gibson et al., 1995, Kolida, Meyer & Gibson, 2007). LC-FOS was 

expected to elicit bifidogenic activity during batch culture fermentation, and the results 

reflect this. LC-FOS was the only substrate to exert sustained bifidogenic effects during 0-24h 

(P=0.20) and 24-48h (P=0.01), corroborated by the significant acetate production (P=0.026), 

therefore LC-FOS was chosen to be blended with other substrates. 
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The fermentation of GLOS, through 48h batch culture led to bifidogenic effects (P=0.02) and 

increased numbers of Roseburia (P=0.03), which was reflected in the significant acetate 

production (P=0.01) and propionate (P=0.01). Previous research into the fermentation profile 

of GLOS have reported bifidogenic effects (Wichienchot et al., 2006), however data was 

limited, particularly in humans. Colonic model fermentation increased bifidobacterial 

numbers, however this was not significant, however there was elevated butyrate and acetate 

levels that were significant, in V2, therefore I+GLOS did perform somewhat as expected, 

exhibiting some sustained SCFA production towards V3.  

RS2 was chosen to blend with LC-FOS, due to effects observed in batch culture fermentation, 

whereby Propionibacterium growth between was close to significance 24-48h (P=0.06) and 

was the only substrates to do so. This growth reflected in the elevated propionate levels 

(P=0.039). Bacteroides numbers did not significantly increase as observed in previous 

research, (Upadhyaya et al., 2016, Lyte et al., 2016).However, there was growth of butyrate 

producing bacteria Roseburia between 0-24h and 24-48h, though not significantly, potentially 

due to variation in starting inoculum. Gut model fermentation of RS blended with LC-FOS 

(I+RS) led to significant increased bifidogenic effects in V1, as well as an increase in acetate in 

V2 (P=0.028), which is reflective of the increased bifidobacterial growth, so there is evidence 

of sustained fermentation in V3, simulating the distal region of the colon.   

MV-ABX fermented to produce significant bifidogenic effects during the earlier stages of the 

culture (0-24h) (P<0.00), and Bacteroides growth was more prevalent later in the culture (24-

48h) (P=0.03), and this reflected in the significant rise in acetate (P<0.00) and propionate 

(P=0.039). When blended with LC-FOS, gut model fermentation elicited a significant increase 

of Bifidobacterium (P=0.02) in V1 and Propionibacterium was close to significance (P=0.084), 

and this activity is reflected in the elevated and significant increases in acetate in V1 (P=0.04), 

and propionate in V1 (P=0.044), close to significance in V3 (P=0.059). Bifidogenic effects did 

occur in V2 and V3 with increases of 1.00Log10cells and 1.3log10cells respectively, however 

variation most likely meant it was not a significant growth.  

 

I+RS and I+ABX outperformed I+GLOS exhibiting a sustained fermentation towards V3, 

however I+ABX was the frontrunner, due to the levels of propionate produced, including 

those in V3, which was desirable. The significant bifidogenic effects and increased 
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Propionibacterium reported in vitro, were also observed in the human appetite study, as were 

significant acetate production. Although to a lesser extent, however, which to be expected as 

in vitro conditions were highly controlled compared to human studies. It was anticipated that 

consumption of I+ABX would result in a significant increase in satiety scores, particularly as 

food intake was reduced significantly following chronic consumption of I+ABX, however the 

results do not corroborate the objective measurements in this study. There was variation, 

observed by the large error bars in the results, unfortunately VAS, as a subjective 

measurement is prone to error and disparity has been reported in appetite studies between 

objective measurement of energy intake and subjective satiety scoring (Bodinham et al., 

2010, Hess et al., 2011, Ranawana et al., 2013). 

 The evidence from both in vitro and human study indicate that blending LC-FOS with ABX is 

complimentary and may induce additive prebiotic ability over LC-FOS alone. When blended 

together, they elicited bifidogenic effects, though their mechanism of action is different, 

whereby LC-FOS has been shown to stimulate Bifidobacterium longum growth, ABX 

stimulates Bifidobacterium adoloscentis, this indicates a different method of fermentation 

between the two so rather than competing against each other, there is a synergy between 

the two, that appears to be complimentary. Using statistical power calculation, it has been 

observed that at a significance level of 5% (one sided) a log change of 0.22 can be detected at 

a power of 90% with 30 volunteers (Costable et al, 2010). However, it is interesting to note 

that in the human study, though the power calculation of 33+ participants was not satisfied 

as only 20 participants completed, there was still significant bifidogenic effects and 

Propionibacterium growth, which could be an illustration of the benefits of blending 

complimentary fibres with prebiotic oligosaccharides. Reduced food intake was significant in 

the human study, which may be due to the increased acetate levels, which is thought to be 

beneficial metabolic marker of appetite regulation (Morrison & Preston, 2016). This indicates 

that I+ABX might be a useful if developed as a tool for weight maintenance in those at risk 

from becoming obese. 

 

Limitations 

Though it was anticipated that increasing bifidobacterial numbers would lead to increased 

SCFAs, implicated in appetite regulation through stimulation of satiety hormone such as GLP-
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1 and PYY these hormones were not measured. I am therefore unable to determine if the 

increased acetate production that I observed in the human study, had any benefit or 

correlation with production of satiety hormones. Though the reduced food intake does help 

to corroborate increases satiety, as the result from VAS did not support the reduced food 

intake, it would have been beneficial to have another objective measurement such as satiety 

hormones to strengthen the evidence that was significant in the human study.  

 

LC-FOS and ABX have been shown to have distinct fermentation profiles (Van den Abbeele et 

al., 2013). However, in this study I was unable to observe this, because the method (FISH-

FLOW) used to enumerate bacterial groups is unable to identify bacterial groups at species 

level. Though FISH-FLOW enables quantification of bacterial groups, which was beneficial, I 

was unable to identify which strains of bacteria were the functional groups.  

 
There was no increase in satiety scores in the human study, which was initially surprising. The 

ability of I+ABX ability to induce satiety is therefore inconclusive, and while this is a can occur 

with appetite studies (Bodinham et al., 2010, Hess et al., 2011, Ranawana et al., 2013), it was 

hoped that the bifidogenic effects and increased acetate observed would significantly 

increase satiety and reduce hunger. As Flint et al conceded however, though VAS is a 

reproducible method of measuring satiety, it is prone to error, as is the case when measuring 

subjective feelings (Flint et al., 2000) 

I was also surprised to observe that both Bifidobacterium and Propionibacterium increased 

significantly following chronic consumption of I+ABX in healthy weight men given the power 

calculation was not satisfied, as usually 30+ subjects are required to observe a 0.22log10 cells 

difference in bifidobacterial numbers (Costable et al.,2010). I think, however the synergistic 

partnership of LC-FOS and ABX, with their complimentary but distinct fermentation profiles 

(Marzorati et al., 2016) has elicited an additive prebiotic effect. 

Chronic studies testing the satiety inducing effects of prebiotics have shown increased satiety 

with this method (Anderson et al., 2002, Cani et al., 2009, Hull, 2012). In particular, when 

using a crossover design, as I did, so each participant is their own control, thought to reduce 

variability (Flint et al., 2000), however, this was not the case in this research. The use of VAS 

as a method of measurement of subjective satiety may be a weakness as the results conflict 



235 
 

with the objective measurements; however, there is not much of an alternative to this 

method at present. Although 18 single gender subjects have been reported to be sufficient to 

observe satiety increases (Flint et al., 2000), as only 20 participants completed, it may be that 

there was an insufficient participant numbers to observe an increase, and so this is also a 

limitation of the study. Extending the time frame to include more people in the study may 

have had benefit in satiety results. The protein content per 9.23g daily dose was 5.94g, 

compared with 1.33g protein content of I+ABX in the 9.46g daily dose. Protein is one of the 

most satiating of the macronutrients (Astrup, 2005) and may have obscured some of the 

satiety inducing effects of I+ABX, including subjective satiety measured by VAS. Reducing the 

protein content of the placebo to ensure this increase in protein does not lead obscuring the 

satiety inducing ability of I+ABX. 

In the batch culture fermentation, a growth of bacterial groups, such as Bifidobacterium was 

observed, however some of these were not statistically significant, due to large SE observed 

across the batches, thought to be due to inter-individual differences in starting composition 

in faecal inoculate. All three donors were from different parts of Europe, which may have 

caused different responses to the same prebiotic. Geographical/racial variation in the 

composition of gut microbiota is mainly attributed to varying environmental exposure such 

as diet (Gupta et al., 2017). Differences have been reported in microbial composition between 

lower and higher BMI (Andoh et al., 2016) and the BMI of the three donors ranged from 

normal to overweight (19.5-28kg/m2) which may have contributed to this SE.  

It may be that choosing donors with a very similar phonotype (a healthy BMI, and potentially 

low fibre consumers) and then screening potential donors to determine the initial 

composition of the microbiota, and choosing those with similar composition, might help with 

reducing variability.  

 

 

 

 



236 
 

Future work 

The reduced energy intake of 34.28 kcal in the human arm of this research indicates a 

potential for weight management, however if consumed for a longer period, say over 12 

weeks, there might be additional weight loss effect. However, given that appetite and 

markers of appetite regulation are very difficult to assess, compounded by neurological 

impact – it is important to have studies that recognise this neurological impact of satiety in 

conjunction with prebiotic efficacy and potentially work in collaboration with these disciplines 

to more fully understand the multi-mechanistic and complex physiological and neurological 

processes involved in appetite regulation and satiety mechanisms.  

 

The aim of this research focused on the satiety inducing ability of blending I+ABX, through 

increased saccharolytic metabolism. However, there is scope for investigation of LC-FOS with 

other dietary fibres or substrates, to manipulate the ratio of SCFAs produced by bacterial 

groups, depending on the SCFA of interest. In the 3-stage colonic fermentation experiments I 

carried out, in vitro fermentation of I+GLOS induced a significant increase in butyrate, in the 

vessel simulating the transverse region of the colon, most likely through the stimulation of 

butyrate producing bacteria such as Roseburia. SCFA and in particular butyrate is thought to 

have an anti-carcinogenic effect, through inhibition of histone deacetylases (HDACs) and 

regulation of cell growth  (Brouns et al., 2002) and as colon cancer, is the second biggest 

cancer killer in the UK (Marshall, Webb & Hall, 2016, Goncalves et al., 2013), developing a 

blend that might increase butyrate rate levels in the distal region of the colon might 

significantly increase butyrate production, could be useful tool in anti-carcinogenic strategies. 

 

In this research, consumption of I+ABX may have led to an attenuation of proteolytic 

metabolites such as 3-methylhistidine, high levels of which have been associated with kidney 

damage (Elia et al., 1981). This attenuation is most likely through an increase saccharolytic 

metabolism occurring towards a region more associated with proteolytic breakdown and 

therefore reducing the effects of metabolites associated with proteolytic metabolism, such 

as amines, SO4, further metabolomic research could highlight systemic metabolic effects of 

blending, to understand more fully if increasing sacchorlytic metabolism towards the distal 

region has an effect on metabolites associated with kidney damage.  
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IBS is a chronic condition that affects 2/10 people in the UK, mainly women (Gray, 2018). 

Though there has been some success in alleviating symptoms of IBS including: bloating, 

abdominal pain by supplementing the diet with LC-FOS as part of the FODMAP diet (Rao et 

al., 2015), consuming LC-FOS at higher doses >5g/d can result in increased bloating (Bonnema 

et al.,, 2010, Hernot et al.,2009). It might be that those suffering with IBS could benefit from 

blending inulin with more slowly fermenting fibres, as a more sustained and less rapid rate 

might be achieved, which could have the effect of reducing some of the symptoms of IBS and 

reduce bloating in general. During in vitro fermentation LC-FOS blended with acacia gum, 

fermentation was slower than LC-FOS alone (Marzorati et al., 2015). Furthermore, Goetze et 

al reported reduced incidence of belching in men and women following consumption of 10g 

OFS blended with acacia gum, compared with OFS alone (Goetze et al., 2008). 

Those with metabolic syndrome or at risk from metabolic syndrome might benefit from 

consumption of I+ABX. Metabolic syndrome is defined as a cluster of conditions that includes 

high blood pressure, central adiposity, increase cholesterol levels as well as high blood sugar 

(Alberti et al., 2005). Recently two sensory receptors: Olfactory receptor 78 (Olfr78) and G 

protein couple receptor 41 (Gpr41) were identified as receptors for SCFAs and may help 

modulate blood pressure (Pluznick et al., 2014) As there was a significant increase in acetate 

observed in the human study, this could contribute a positive effect to blood pressure. 

Furthermore, in a mouse study, SCFAs were implicated in reducing blood pressure by 

activating G-couple receptor 41, expressed in blood vessels (Pluznick et al., 2014).  

 

Furthermore, the reduced energy intake of 34.28Kcal that occurred during the human arm of 

this research indicates a potential for I+ABX to be used in weight management, and if 

consumed at a higher dose, for over 12 weeks, there might be additional benefit of weight 

loss effect in those that are overweight or obese. Prebiotic fibres can slow the transit time of 

food, reducing insulin spikes that cause disruption to glucose homeostasis, as well as 

improving lipogenesis and cholesterol synthesis (Morrison & Preston, 2016), which are 

metabolic processes that are disrupted through the development of metabolic syndrome, 

therefore further investigation as to any additional benefit to this population is worth 

consideration.  
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Conclusion 

Blending LC-FOS with ABX may provide some additional prebiotic activity, evident from the 

increased SCFA production and elongation of carbohydrate metabolism suggested by the 

attenuation of potentially toxic metabolites of protein. I+ABX may be a useful tool in weigh 

management but may also have other metabolic benefits to help that further research might 

elucidate. 
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