
Efficient Clustering Techniques for Big Data

Sami Al Ghamdi

Submitted in partial fulfilment of the requirements of
the University of Reading for the degree of
Doctor of Philosophy in Computer Science

Supervisor
Dr. Giuseppe Di Fatta

Department of Computer Science
School of Mathematical, Physical and Computational Sciences

University of Reading

September 2018

Abstract

Clustering is an essential data mining technique that divides observations into

groups where each group contains similar observations. K-Means is one of the

most popular and widely used clustering algorithms that has been used for over

fifty years. The majority of the running time in the original K-Means algorithm

(known as Lloyd’s algorithm) is spent on computing distances from each data

point to all cluster centres to find the closest centre to each data point. Due to

the current exponential growth of the data, it became a necessity to improve K-

Means even further to cope with large-scale datasets, known as Big Data. Hence,

the main aim of this thesis is to improve the efficiency and scalability of Lloyd’s

K-Means.

One of the most efficient techniques to accelerate K-Means is to use triangle

inequality. Implementing such efficient techniques on a reliable distributed model

creates a powerful combination. This combination can lead to an efficient and

highly scalable parallel version of K-Means that offers a practical solution to the

problem of clustering Big Data.

MapReduce, and its popular open-source implementation known as Hadoop,

provides a distributed computing framework that efficiently stores, manages, and

processes large-scale datasets over a large cluster of commodity machines. Many

studies introduced a parallel implementation of Lloyd’s K-Means on Hadoop in

order to improve the algorithm’s scalability. This research examines methods

based on triangle inequality to achieve further improvements on the efficiency of

i

the parallel Lloyd’s K-Means on Hadoop.

Variants of K-Means that use triangle inequality usually require extra informa-

tion, such as distance bounds and cluster assignments, from the previous iteration

to work efficiently. This is a challenging task to achieve on Hadoop for two reasons:

1) Hadoop does not directly support iterative algorithms; and 2) Hadoop does not

allow information to be exchanged between two consecutive iterations. Hence, two

techniques are proposed to give Hadoop the ability to pass information from an

iteration to the next. The first technique uses a data structure referred to as an

Extended Vector (EV), that appends the extra information to the original data

vector. The second technique stores the extra information on files where each file

is referred to as a Bounds File (BF).

To evaluate the two proposed techniques, two K-Means variants are imple-

mented on Hadoop using the two techniques. Each variant is tested against vari-

able number of clusters, dimensions, data points, and mappers. Furthermore, the

performance of various implementations of K-Means on Hadoop and Spark is in-

vestigated. The results show a significant improvement on the efficiency of the

new implementations compared to the Lloyd’s K-Means on Hadoop with real and

artificial datasets.

ii

Acknowledgements

First, I would like to express my sincere gratitude to my supervisor Dr Giuseppe Di

Fatta. His tremendous academic support, consistent encouragement and concise

comments had a huge impact on this work.

I thank my fellow labmates, Hassan, Chris and the nicer Kris, Anas, Salwa,

Manal, Mosab and Perusha for their endless support and for all the fun we have

had in the last four years. A special thanks to Mark who has a solution for every

problem and offers to help before I even ask.

My special regards to Professor Babak Forouraghi who inspired me during my

Master’s studies and his enthusiasm and integrity left a great impression on me.

My profound gratitude goes to the people who has a special place in my heart,

my beloved parents, and my brothers and sisters. My father, Abdulrahman, and

my mother, Badryah, your exceptional support and unconditional love have made

me who I am today. My extended respect goes to my brothers and sisters, Ahmad,

Bandar, Mohammed, Mohannad, Rashed, Bushra and Bashier for standing beside

me at all times.

I am deeply grateful to my second half, soon to be, Dr. Sally for her eternal

support and patience throughout this journey. Without her non of this would have

been accomplished. My sincere thanks go to the joy of my life, Sarah, Fatimah

and Yousuf for sacrificing too many weekends and trying to make sense of all of

this. Without them, my life is tasteless.

iii

Table of Contents

Abstract i

Acknowledgements iii

Table of Contents vii

List of Tables viii

List of Figures xii

1 Introduction 1

1.1 Clustering Big Data . 1

1.2 Iterative Clustering Algorithms on MapReduce/Hadoop 3

1.3 Why MapReduce? . 5

1.4 Objectives . 6

1.5 Contributions . 7

1.6 Thesis Outline . 8

2 Background 10

2.1 Cluster Analysis . 10

2.1.1 Clustering Techniques . 11

2.1.2 Distance Measures . 14

2.2 K-Means . 14

2.2.1 Introduction . 14

iv

2.2.2 Lloyd’s Algorithm . 15

2.2.3 Complexity . 16

2.2.4 Convergence . 18

2.2.5 Limitations . 18

2.3 Sequential K-Means Optimisations 19

2.3.1 K-Means and Triangle Inequality 23

2.3.1.1 How Can Triangle Inequality Accelerate K-Means? 24

2.3.1.2 Clustering Quality 27

2.3.1.3 Compare-means and Sort-means 28

2.3.1.4 Elkan’s Algorithm 29

2.3.1.5 Hamerly’s Algorithm 33

2.4 MapReduce . 35

2.4.1 MapReduce Dataflow . 35

2.4.2 Iterative Process on MapReduce 39

2.4.3 Limitations of MapReduce 41

2.5 Apache Hadoop . 42

2.5.1 Hadoop Distributed File System 43

2.5.2 Hadoop Generations . 43

2.5.3 Hadoop Counters . 47

2.5.4 Distributed Cache . 47

2.6 Apache Spark . 48

2.6.1 Main Abstractions . 48

2.6.2 Spark Architecture . 50

2.7 Iterative MapReduce Implementations 52

2.8 Summary . 59

3 Parallel and Distributed K-Means 65

3.1 Related Work to Parallel K-Means Implementations 66

v

3.2 Related Work to Parallel K-Means Based on Distributed Computing

Frameworks . 68

3.3 Implementation of Naive K-Means on Hadoop (NKM-H) 75

3.3.1 Implementation of NKM-H with Basic MapReduce Model . 76

3.3.2 Implementation of NKM-H with a Combiner 80

3.3.3 Implementation of NKM-H with in-mapper-combiner 82

3.4 Implementation of Naive K-Means on Spark (NKM-S) 83

3.5 Summary . 87

4 Efficient Parallel K-Means using Triangle Inequality 89

4.1 Introduction . 89

4.2 K-Means on Hadoop using an Extended Vector (EV) 90

4.2.1 Elkan’s Algorithm on Hadoop using an Extended Vector

(ELK-H-EV) . 91

4.2.2 Compare-means on Hadoop using an Extended Vector (CMP-

H-EV) . 99

4.3 K-Means on Hadoop using a Bounds File (BF) 103

4.3.1 Elkan’s Algorithm on Hadoop using a Bounds File (ELK-H-

BF) . 105

4.3.2 Compare-means on Hadoop using a Bounds File (CMP-H-BF)110

4.4 Extended Vectors vs. Bounds Files 112

4.5 Triangle Inequality K-Means on Hadoop (TIKM-H) 113

4.6 Triangle Inequality K-Means on Spark (TIKM-S) 115

4.7 Overhead Analysis . 116

4.8 Summary . 118

5 Experimental Results 120

5.1 Datasets . 121

5.2 Hardware and Software Setup . 125

vi

5.3 Experimental Design . 126

5.3.1 Evaluation Metrics . 128

5.3.2 Clustering Quality . 132

5.4 Comparative Analysis of All Implementations on Hadoop 132

5.4.1 Variable Number of Clusters 133

5.4.2 Variable Number of Dimensions 139

5.5 Detailed Analysis of Implementations using a BF 141

5.5.1 Variable Number of Clusters and Dimensions 141

5.5.2 Variable Number of Data Points 150

5.5.3 Variable Number of Mappers 151

5.6 Comparative Analysis of K-Means Implementations on Hadoop and

Spark . 153

5.7 Summary . 155

6 Conclusions 158

6.1 Contributions . 160

6.2 Key Findings . 161

6.3 Future Work . 162

Appendices 164

A Publications 165

vii

List of Tables

2.1 Description of notations used in implementations of sequential al-

gorithms based on triangle inequality 27

2.2 Summary of features of the distributed computing frameworks Hadoop,

HaLoop, iMapReduce, Spark and Twister. 62

2.3 A comparison between the optimised K-Means implementation on

Hadoop using triangle inequality (this research) and the standard

K-Means implementations based on iterative MapReduce platforms

including HaLoop, iMapReduce, Spark and Twister. 64

3.1 Description of notations used in implementations of NKM-H. 75

4.1 Description of notations and data structures used by ELK-H, CMP-

H, and TIKM. 93

4.2 The asymptotic overhead (where NKM-H is the baseline) for each

algorithm in terms of: memory space, and time to write extra in-

formation to HDFS. All algorithms takes k2 extra time to compute

centre-centre distances. The examined overhead is for each mapper

per one iteration. (n: No. of data points, d: No. of dimensions, k:

No. of clusters, p: No. of mappers). 117

5.1 Characteristics of artificially generated datasets. (MB=Megabyte) . 122

5.2 Characteristics of real-world datasets. (MB=Megabyte) 124

viii

List of Figures

2.1 Illustration of clustering two dimensional input dataset into three

clusters using K-Means algorithm. In iteration 1, the initial seeds

are selected. Next, iterations (2-5) the centres are updated and

moved in each iteration to their new locations. Iteration 6 shows

the final clustering results. 17

2.2 Triangle Inequality Property . 24

2.3 MapReduce framework dataflow . 38

2.4 Iterative process on MapReduce. Each MapReduce job represents

one iteration and the input/output files are read and written from/to

HDFS. In this specific case, the reducer’s output in one iteration is

the mapper’s input in the next. 40

2.5 The Components of Hadoop 1.x and YARN (Hadoop 2.x). [1] . . . 46

2.6 Apache Spark basic architecture. 51

4.1 Structure of an Extended Vector in ELK-H-EV. 92

4.2 Dataflow in one iteration of K-Means on Hadoop using Bounds Files.104

ix

5.1 2D representation of data points in four datasets with variable stan-

dard deviation (SD) and constant values n = 5000, d = 2, and

k = 8. All datasets are generated with the same initial prototype

vectors (centres). SD value varies in the range [0.01,0.5], where clus-

ters in dataset with SD = 0.01 are well-separated (Figure 5.1a),

while clusters in dataset with SD = 0.5 are heavily overlapped

(Figure 5.1d). 123

5.2 Figure 5.2a shows an example of four images of hand written digits

(5, 0, 4, 1) from the mnist dataset. Figure 5.2b shows an image of

the hand written digit (1) when represented in a 14× 14 matrix of

pixels [2]. 125

5.3 An illustration of three different times for each algorithm: 1) The

running time of the first iteration, 2) the average running time per

iteration and the standard deviation including the first iteration

time, and 3) the average running time per iteration and the standard

deviation excluding the first iteration time. (Dataset: DS4, n =

100000, d = 512, k = 128, e = 20). 131

5.4 Average number of distance computations performed per iteration

for four K-Means algorithms with variable number of clusters. (Dataset:

DS4, n = 100000, d = 512, e = 20) 133

5.5 Speedup per iteration for five parallel implementations of K-Means

on Hadoop relative to NKM-H, tested against variable number of

clusters. (n = 100000, d = 512, e = 20) 135

x

5.6 Average running time per iteration for six K-Means implementations

tested against variable number of clusters (k). Each bar represents

the average iteration time over 20 iterations for one algorithm di-

vided into four operations times, 1) Time to compute point-centre

distances, 2) Time to compute centre-centre distances, 3) Time to

write extra information to HDFS, and 4) Time for the rest of all

other operations. 138

5.7 Results of testing each algorithm against variable number of dimen-

sions (d). Figure 5.7a shows the speedup of each algorithm rela-

tive to NKM-H, Figure 5.7b depicts the average number of distance

computations per iteration over the total number of iterations, and

Figure 5.7c illustrates the average time per iteration to write EVs

and BFs to HDFS. (k = 128, n = 100000, e = 20) 140

5.8 Speedup of each optimised algorithm relative to NKM-H. The Fig-

ures from 5.9a to 5.9d show the results for experiments on clustered

datasets DS[1-4]. Figure 5.9e shows results for experiments on uni-

form random dataset DS7. Speedup is defined here as: avg iteration

time(NKM-H)/avg iteration time(optimised). (n = 100, 000, e = 20) 143

5.9 Average number of distance calculations per iteration over the num-

ber of iterations for each algorithms. The Figures from 5.9a to 5.9d

show the results for experiments on clustered datasets DS[1-4]. Fig-

ure 5.9e shows results for experiments on uniform random dataset

DS7. (n = 100, 000, e = 20) . 144

5.10 Average shuffle time per iteration over the number of iterations for

each algorithms. The Figures from 5.10a to 5.10d show the re-

sults for experiments on clustered datasets DS[1-4]. Figure 5.10e

shows results for experiments on uniform random dataset DS7.

(n = 100, 000, e = 20) . 145

xi

5.11 Average time to write extra information to HDFS per iteration over

the total number of iterations for the optimised algorithms ELK-

H-BF, and CMP-H-BF. The Figures from 5.11a to 5.11d show the

results for experiments on clustered datasets DS[1-4]. Figure 5.11e

shows results for experiments on uniform random dataset DS7. (n =

100, 000, e = 20) . 146

5.12 Results of testing each algorithm on the real-world dataset cover-

type. Figure 5.12a depicts the speedup of each algorithm relative to

NKM-H, Figure 5.12b shows the average number of distance com-

putations per iteration, Figure 5.12c shows average shuffle time per

iteration, and Figure 5.12d illustrates the average time to write BFs

to HDFS. Each algorithm is tested with respect to variable number

of clusters. (Dataset: mnist, n = 581, 012, d = 55, e = 20) 149

5.13 Results of testing each algorithm against variable number of data

points (n), (d = 128, k = 128, e = 20) 151

5.14 Results of testing each algorithm against variable number of map-

pers (p), (Dataset: DS6, n = 1, 000, 000, d = 128, k = 128, e = 20) . 152

5.15 Results of testing algorithms on Hadoop using BFs and algorithms

on Spark on real dataset mnist with respect to variable number of

clusters. Figure 5.15a shows the average iteration time for each

algorithm, Figure 5.15b shows the speedup of each algorithm rel-

ative to NKM-H, and Figure 5.15c shows the average number of

distance computations for each algorithm. Note that algorithms

NKM-S and TIKM-S are not included in Figure 5.15c because the

number of distance calculations in NKM-H and NKM-S is identical,

and this can be also applied to TIKM-H and TIKM-S. (Dataset:

mnist, n = 60, 000, d = 784, e = 20) 154

xii

Chapter 1

Introduction

1.1 Clustering Big Data

The last two decades witnessed an exponential growth of the data generated by

many sources such as, scientific experiments, social media Web sites, government

statistics, sensor networks, and many other sources. For example, the Large

Hadron Collider project (LHC), which provides more knowledge about the uni-

verse by accelerating particles and examining the results from their collisions,

is expected to produce around 50 petabytes of data in 2017, and the collected

data could reach 10 gigabytes per second [3]. YouTube users eceeded 1 billion

users, where 100 hours of videos are uploaded every minute, and 135,000 hours

are watched [4]. eBay stores and preocess about 150 billion new records daily [5].

In order to cope with this rapid increase, novel solutions are developed to manage

and process large-scale datasets known as Big Data.

The term Big Data had many definitions since the early 2000s. Most of these

defintions summarise the characteristics of Big Data in what is known as the multi

V model. For example, [6] and [7] define Big Data through the 3V model, where

datasets have high Volume, generated in high Velocity, and with high Variety

of data types that require new innovative technologies which could improve the

1

decision making. Some works (e.g. [8]) extend the 3V model to a 4V model by in-

cluding Value, which refers to the value gained by an organisation from extracting

hidden data. While others (e.g. [9] and [10]) use a 5V model by adding Veracity,

which refers to the degree of reliability, quality, and trustworthiness of the data

source. In an attempt to clear the ambiguity and inconsistency in the various def-

nitions of Big Data, the work in [11] surveys the definition of Big Data in various

works and concluded that all definitions mention at least one of the following char-

acteristics: the size of the data, the complexity (e.g. structured, semi-structured,

unstructured), and the technologies designed to process such data. The authors in-

troduced their own definition, which states that: “Big data is a term describing the

storage and analysis of large and or complex data sets using a series of techniques

including, but not limited to: NoSQL, MapReduce and Machine Learning”.

Collecting, storing, and managing the data is a crucial process. However, the

data itself is worthless unless meaningful knowledge can be extracted from it. For

this reason, various innovative techniques were developed over the years dedicated

to knowledge discovery. One of the essential approaches to unveil hidden pat-

terns in a given set of observations is to divide these observations into a number

of groups (clusters), such that observations in one group have more similarities

than observations in other groups. This process is known as clustering or clus-

ter analysis. Clustering algorithms are developed and used in many fields, such

as engineering, computer science, life and medical sciences, astronomy and earth

sciences, social sciences and economics [12]. Most clustering algorithms, however,

are computationally expensive or iterative in nature (e.g. K-Means). This makes

the clustering task very challenging, especially when dealing with large and high-

dimensional datasets. For this reason, the focus has been shifted lately to parallel

clustering solutions on distributed processing models to overcome these challenges.

One of the most popular and attractive distributed processing models is known as

MapReduce.

2

Despite the existence of various clustering algorithms, the focus of this project

is on the K-Means clustering algorithm for the following reasons. The popularity

and the importance of K-Means where it is used as a clustering solution in many

fields and for many applications. Furthermore, the target of this project is to clus-

ter Big Data where the volume of the data is very large that only algorithms with

sub-linear, linearthmic, and linear time complexity can be used [13]. While most

clustering algorithms (e.g. hierarchical clustering algorithm) run in a quadratic

time, K-Means is linear in the number of data points, clusters, and dimensions.

The linear time complexity makes K-Means more suitable for Big Data. Therefore,

making K-Means even faster and highly scalable shall contribute in the develop-

ment of a powerful clustering algorithm that can cope with the recent exponential

growth of data.

1.2 Iterative Clustering Algorithms on MapRe-

duce/Hadoop

The distributed computing framework MapReduce [14], and its open-source im-

plementation known as Hadoop [15], became the de-facto standard for Big Data

computing [16]. The popularity of MapReduce comes from its ability to provide a

reliable and fault-tolerant parallel programming paradigm without having to deal

with the underlying details of the distributed system, such as data distribution

and tasks scheduling. However, this programming model faces several limitations

when it handles iterative Machine Learning algorithms because the iterative pro-

cess is not directly supported. For instance, the framework is not loop-aware. In

each iteration, map and reduce tasks are not reusable where new tasks must be

started and destroyed. Moreover, static data must be loaded repeatedly in each

iteration, which wastes network bandwidth and consumes more CPU resources.

Ranked as one of the top ten data mining algorithms [17], K-Means takes the

3

number of clusters as an input and iterates over the input data points until it

converges. In each iteration, the standard implementation of K-Means, known

as Lloyd’s K-Means [18], must compute the distance from each data point to all

cluster centroids. This process is considered as a bottleneck in K-Means. Most of

these distance calculations, however, are redundant and can be avoided.

One of the most effective methods to reduce the number of distance calculations

in K-Means is to apply geometric approaches based on triangle inequality. How-

ever, most of these approaches must keep extra information (e.g. distance bounds

and cluster assignments) in one iteration and use it in the next. Many works (e.g.

[19]) [20] [21], shown how triangle inequality cab be very effective on accelerat-

ing the running time of K-Means. Implementing such optimisations on Hadoop

should lead to a powerful clustering algorithm that can cluster vast amounts of

data in a fast time. However, Hadoop does not offer a mechanism to cache infor-

mation between MapReduce jobs (each iteration is represented by a MapReduce

job) which makes the implementation of such optimisations on Hadoop a complex

task. Hence, this work provides solutions that allow Hadoop to pass information

from one iteration to the next in order to be able to implement K-Means variants

based on triangle inequality. Two methods are introduced to pass information from

one iteration to the next in Hadoop: For each input data point, the first method

appends the required extra information to the data point vector and creates what

we refer to as an Extended Vector. Each Extended Vector is read in the iterations

to follow along with its appended extra information. The second method writes

only the required extra information into files referred to as Bounds Files. Bounds

Files are stored on the distributed file system in one iteration and read in the

following iteration.

To evaluate the effectiveness of the proposed methods, two optimised algo-

rithms are implemented and tested on Hadoop using each method; in addition to

an algorithm that employs a basic triangle inequality approach to skip distance

4

computations. The performance of the newly implemented algorithms is compared

against the performance of Lloyd’s K-Means on Hadoop. This is because Lloyd’s

algorithm is the straight-forward approach to find the clustering solution where

the distance from all data points to all cluster centres is computed. Moreover, the

performance of Lloyd’s K-Means and the basic triangle inequality K-Means based

on a popular distributed framework known as Spark [22] is investigated. The

experiments are executed for a predefined number of iterations and not to con-

vergence. This is because the impact of triangle inequality on avoiding distance

computations can be observed in the first few iterations. Furthermore, triangle in-

equality optimisations are guaranteed to converge in the same number of iterations

as Lloyd’s algorithm while maintaining the exact same output.

1.3 Why MapReduce?

This work implements K-Means optimisations on Hadoop, which adopts the stan-

dard MapReduce programming model. Despite the existence of alternative dis-

tributed computing systems that are based on MapReduce and support iterative

algorithms, these systems usually enhance the iterative process at the expense of

other essential components such as fault-tolerance. Twister [23], for example, pro-

vides a distributed framework that can efficiently process iterative algorithms by

caching the input data in the memory of the worker machines in the first iteration

and reuse it in following iterations. However, one of its major limitations is its

limited capabilities of handling task failures compared to Hadoop. Furthermore,

the stability of the framework was taken into consideration. Hadoop and Spark are

adopted by many industrial companies to manage and process their Big Data. In

addition the continues contributions from the academic field, Hadoop and Spark

are constantly updated which maintain their stability. On the other hand, some

iterative MapReduce frameworks (e.g. HaLoop, iMapReduce) were reported to be

5

unstable [24]. A quick look at the release dates of the latest versions for different

distributed platforms gives an insight on the scale of support each one has. For

example, the latest versions for Hadoop and Spark were released on 2018, while

the latest ones for Twister, iMapReduce and HaLoop were on 2011. The focus in

this research is on providing parallel clustering solutions on reliable, stable and

widely supported distributed platforms, and that is why Hadoop and Spark were

chosen.

1.4 Objectives

The following is the list of objectives that are designed to achieve the main aim of

this project which is to improve the efficiency and scalability of Lloyd’s K-Means

on Hadoop:

• Design and implement parallel solutions for K-Means on Hadoop that are

more efficient and deterministically produce the same clustering results of

Lloyd’s algorithm.

• Adopt optimisation techniques based on triangle inequality.

• Provide a mechanism to carry extra information from one iteration to the

next on Hadoop.

• Measure the ability of the new solutions to improve the efficiency of Lloyd’s

K-Means on Hadoop and their ability to scale with an increased number of

clusters, dimensions and data points.

Adopt optimisation techniques based on triangle inequality. Provide a mecha-

nism to carry extra information from one iteration to the next on Hadoop. Measure

the ability of the new solutions to improve the efficiency of Lloyd’s K-Means on

Hadoop and their ability to scale with an increased number of clusters, dimensions

and data points.

6

1.5 Contributions

The standard Lloyd’s K-Means can achieve significant speedups by using triangle

inequality optimisations that reduce the computation time while maintaining the

exact output as the standard K-Means. Such optimisations have not been explored

on the standard MapReduce distributed framework and its popular implementa-

tion known as Hadoop. This is because Hadoop does not support iterative algo-

rithms and does not maintain data between iterations, which is a requirement in

K-Means optimisations based on triangle inequality. Although other distributed

platforms (e.g. Twister and HaLoop) overcome these limitations in Hadoop by

caching the data between iterations, these solutions usually come at the cost of

other crucial properties such as fault-tolerance.

The challenge in this research is to be able to achieve considerable improvements

on the efficiency of K-Means using triangle inequality optimisations on MapRe-

duce. In Hadoop, the lack of support for iterative algorithms and of providing a

mechanism that passes information between iterations is a limiting and challenging

factor. The main contribution of this work is that we were able to show that it is

possible to speedup the standard K-Means on Hadoop and make it highly scalable

while maintaining the exact final results as the original Lloyd’s algorithm.

The following contributions are part of the main contribution of this research:

1. The design and the development of two techniques: K-Means on Hadoop

using an Extended Vector (EV), and K-Means on Hadoop using a Bounds

File (BF). These techniques give Hadoop the ability to pass information from

one iteration to the next on iterative algorithms.

2. Parallel implementations of K-Means variants on Hadoop using EVs and BFs

to evaluate the effectiveness of the new approaches. The implemented vari-

ants accelerate K-Means by using triangle inequality to reduce the number

of distance computations. To achieve this purpose, these variants require

7

extra information, such as cluster assignments, from the previous iteration.

3. An extensive experimental analysis that tests the scalability and efficiency

of implementations of K-Means on Hadoop using BFs and EVs with respect

to the number of clusters, dimensions, data points, and mappers.

4. An investigation on the impact of the I/O overhead that is created by each

proposed approach. Each approach needs to write extra information to

Hadoop Distributed File System (HDFS) to use these information in subse-

quent iterations. This operation could impact the performance and eventu-

ally becomes the dominant cost.

5. A comparative analysis of implementations of K-Means on Hadoop using

BFs and two K-Means implementations on Apache Spark. The in-memory

caching mechanism provided by Apache Spark makes it one of the best dis-

tributed computing frameworks designed to process iterative algorithms.

1.6 Thesis Outline

The reminder of this thesis is organised as follows:

Chapter 2 briefly overviews the sequential implementations of K-Means includ-

ing Lloyd’s algorithm and other K-Means optimisations. In addition, the use of

triangle inequality to improve the efficiency of K-Means is explained. Finally, an

overview of the MapReduce framework, Apache Hadoop, and Apache Spark is

presented.

Chapter 3 discusses the related work to parallel implementations of K-Means

in general, and to parallel implementations of K-Means on distributed systems, in

particular. The chapter also describes the implementations of Lloyd’s K-Means on

Apache Hadoop and Apache Spark.

Chapter 4 introduces two techniques to pass information from one iteration

8

to the next in parallel K-Means on Hadoop. Furthermore, a detailed description

of the implementation of two K-Means variants using each proposed approach is

discussed.

The evaluation of the proposed solutions to improve K-Means efficiency and

scalability is discussed in Chapter 5 where each algorithm is tested against various

parameters and an extensive comparative analysis of all algorithms.

Finally, Chapter 6 concludes this thesis and discusses the improvements this

work could benefit from in the future.

9

Chapter 2

Background

This chapter presents background concepts related to sequential implementations

of K-Means and distributed computing frameworks. First, an introduction to

cluster analysis and the naive K-Means implementation is presented. Next, an

overview of the work related to the sequential variants of K-Means that aim to en-

hance the clustering quality and the efficiency of K-Means is introduced. Further-

more, optimisations of K-Means based on triangle inequality are discussed. The

chapter also explains the workflow and the limitations of the distributed comput-

ing framework MapReduce and its open-source implementation Hadoop. Several

alternative distributed frameworks are explained at the end of the chapter.

2.1 Cluster Analysis

Clustering [25] [26] [27] is the process of partitioning data points in a given dataset

into groups (clusters), where data points in one cluster are more similar than data

points in other clusters. Similarity of data points is determined by a similarity or

distance measure such as Euclidean distance, which is explained in section 2.1.2.

Clustering is an important technique that has been applied in many areas such

as, data mining, pattern classification, Web applications, and text mining [28]

[29]. Clustering has been used in many applications such as, analysing gene ex-

10

pression data [30], image segmentation [31] to locate objects’ borders in an image,

and in market segmentation [32] where markets are broken down into meaningful

segments, such as segmenting buyers habits based on age groups.

In many clustering problems, only little prior information about the data is

known which makes it difficult to find a meaningful relationship between patterns.

For this reason, few assumptions have to be made about the data by the decision

maker.

2.1.1 Clustering Techniques

Clustering techniques can be divided into two general approaches [25]:

1. Hierarchical Clustering: Methods belong to this technique represent the

data hierarchically through a dendogram. This hierarchical representation is

created in an agglomerative (bottom-up) or a divisive (top-down) fashion.

Algorithms that follow the agglomerative approach start with a single data

point as a cluster, then recursively merge pairs of clusters together based on

their similarities until the algorithm meets a conversion criterion. On the

contrary, algorithms that follow the divisive approach start with one cluster

that contains all data points. Clusters are then split up in each iteration

until each data point is in a single cluster.

The most popular examples of agglomerative algorithms are single-linkage,

all-pairs or complete linkage, centroid-linkage, and sampled-linkage cluster-

ing. The single-linkage method uses the shortest distance between any pair of

points in two clusters. While the average over all pairs is used in the all-pairs

linkage method, the sampled linkage method uses a sample of the data points

in the two clusters for calculating the average distance. In centroid-linkage

method the distance between the centroids is used. Such clustering tech-

niques require the construction of a similarity matrix of size n x n, where

n is the number of data points. This means that the time and memory

11

space complexity for these algorithms is at least quadratic. In the Big Data

problem, the number of data points is usually very large. Algorithms with

a quadratic time and memory space complexity are not suitable for these

targeted problems.

Many hierarchical algorithms were proposed to deal with large-scale datasets.

For example, The algorithm Balanced Iterative Reduction and Clustering

using Hierarchies (BIRCH) [33] is a well-known clustering algorithm because

it is one of the earliest algorithms to scan the data and use data squashing

techniques to reduce the I/O cost when the input dataset gets larger than

the size of memory. BIRCH creates a height-balanced tree of nodes that

summarises the data. Each node in the tree is called a Cluster Feature

(CF). Hence, the tree is known as CF-tree. There are two main steps in the

BIRCH algorithm. BIRCH scans the input data points and builds a CF-tree

by inserting the data points where size of the tree is controlled by a certain

threshold T. The default threshold T = 0. The size of the tree, however,

could get very large such that it does not fit in memory. In addition to the

need to set T, two other parameters (branching factor, maximum of points

per leaf) must be set to control the tree structure.

The algorithm known as CURE [34] (Clustering Using REpresentatives) dis-

covers clusters with irregular shapes by using multiple representative data

points for each cluster. CURE adopts sampling to speedup the clustering

process. However, the time complexity for CURE is quadratic even in two-

dimensional space.

2. Partitional Clustering: Algorithms that follow the partitional clustering

technique divide the input data points into a number of partitions (clusters).

Data points are then iteratively reallocated from one cluster to the another

based on a certain criterion, such as the sum of squared errors SSE, see

12

section 2.2.4. In doing so they try to discover clusters either by iteratively

relocating points between subsets, or by identifying areas heavily populated

with data. CLARANS [35] and the mean shift algorithm [36] are examples

of partitional clustering algorithms.

Clustering Large Applications based upon RANdomized Search (CLARANS)

[35] extends the clustering algorithm called K-Medoid, which cluster data

points around medoids instead of cluster centroids as in K-Means. CLARANS

uses randomized search to overcome the exponential search space in K-

medoid. CLARANS, however, has a quadratic time complexity.

The mean shift algorithm [36] is a simple partitional procedure that iterates

over data points and shifts each data point to the average of data points in

its neighborhood. Despite the simplicity of the algorithm, it has a quadratic

time complexity which make it unsuitable to process large datasets.

Other examples of well-known clustering algorithms is the Density-Based Spa-

tial Clustering of Applications with Noise algorithm (DBSCAN)[37]. DBSCAN

is density-based algorithm that aims to discover arbitrarily shaped clusters. DB-

SCAN can efficiently cluster data points that are packed (where density is high)

and mark out outliers. Despite the popularity of DBSCAN, its worst case time

complexity O(n2) where n is the number of data points. It is possible to accelerate

the algorithm by constructing a distance matrix between data points. This matrix,

however, requires O(n2) memory space, which is worse than the one required by

the original DBSACN (O(n)).

The focus in this research is on the poplar partitional algorithm known as

K-Means algorithm. Although K-Means has several limitations in terms of its

sensitivity to the initial centres and outliers, it is one of the most adopted clustering

algorithms in real-life mainly due to its simplicity and efficiency. The next sections

describe K-Means in details and review several variants of the algorithm.

13

2.1.2 Distance Measures

In order to determine if two objects in a dataset are similar, a similarity or distance

measure is needed. The distance measure needs to be carefully chosen based on

the type of data to be processed [25]. There is a variety of distance measures such

as, Euclidian distance or L2 − norm, Manhattan distance or L1 − norm, Jaccard

index, and Cosine distance, used for different types of data. However, the focus

will be on the Euclidian distance because this work mostly deals with numerical

data and Euclidian distance is the most popular distance measure for this type of

data [25]. Let x = (x1, x2, . . . , xd), and y = (y1, y2, . . . , yd), are two data points in

d-dimensional space Rd, the Euclidean distance between x and y is defined as:

d(x, y) =

√√√√ d∑
i=1

(xi − yi)2 (2.1)

where d(., .) is the distance between any two points, and i is the i-th attribute

of points x and y.

2.2 K-Means

2.2.1 Introduction

Ranked as one of the top ten most influential data mining algorithms [17], K-

Means is a well-known clustering algorithm that partitions data into clusters of

similar features. Simplicity, efficiency, and straight-forward implementation made

K-Means one the most used algorithms in cluster analysis [38]. K-Means was

proposed independently in different works [39] [18] [40] [41] targeting different

problems.

K-Means is used in many fields to cluster various types of data. Some of the

applications that K-Means has been applied to are:

• Colour quantisation where the pixels of an image grouped into clusters [42]

14

[43] [44].

• Market segmentation [45], where markets are broken down into meaningful

segments, such as segmenting buyers habits based on age groups.

• Analysis of gene expression data [46] [47].

• Documents clustering [48] [49], where similar documents are grouped into

one cluster while other documents are assigned to other clusters.

2.2.2 Lloyd’s Algorithm

The basic K-Means algorithm was independently proposed by Steinhaus [39], Lloyd

[18], Ball and Hall [40], and Macqueen [41]. The focus of this reserach is on Lloyd’s

algorithm which is the most commonly used version of K-Means [50] [21]. Lloyd’s

algorithm is referred to in the remainder of this thesis as Naive K-Means.

As shown in Algorithm 1, given a set X of n data points X = {x1, x2, ..., xn} in

a d-dimensional space Rd, and an integer k that represents the number of clusters,

where k � n. The initial set of centroids C = {c1, c2, ..., ck} is randomly chosen

from X. Let i be the i-th point in dataset X, and j be the j-th in the set of centroid

C. The inner loop from line 4 to 7 uses a distance measure, in this work Euclidean

distance in equation 2.1, to find the minimum distance between each data point xi

and each centroid cj. Then xi is assigned to its nearest centroid ca in line 7. After

each point gets assigned to its closest centroid, the mean of the points assigned

to each centroid is calculated and this mean represents the location of the new

centroid. This process is repeated for all points (the outer loop from line 3 to 8)

until convergence, i.e. centroids stop moving, or an early termination condition is

met. Figure 2.1 illustrates the clustering stages for a two dimensional dataset into

three clusters using K-Means.

While the majority of the Naive K-Means running time is spent on computing

the distances in the inner loop (lines 4-6) to find the closest centroid, most of these

15

Algorithm 1: Sequential Naive K-Means(X, k)
1 select k initial cluster centroids randomly from X
2 while not converged or an early termination condition is not met do
3 for i = 1 to n do
4 for j = 1 to k do
5 compute d(xi, cj)
6 find cj with minimum distance from xi

7 end
8 assign xi to its closest ca

9 end
10 for j = 1 to k do
11 compute the mean of all xi assigned to ca

12 move each ca to its updated mean
13 end
14 end

computations are unnecessary and can be avoided. The focus of this work is to in-

vestigate and compare the behaviour of different variants of K-Means that attempt

to reduce the number of distance computations and introduce implementations of

these variants on Hadoop.

2.2.3 Complexity

Naive K-Means computes the distance from n data points, where each point is in

d dimensions, to k number of cluster centroids in order to assign each data point

to its closest cluster centroid. The algorithm needs to iterate for e number of

iterations until it finds the final clustering solution. Hence, the time complexity

for Naive K-Means is O(nkde).

16

Figure 2.1: Illustration of clustering two dimensional input dataset into three clusters using K-Means algorithm. In iteration 1, the
initial seeds are selected. Next, iterations (2-5) the centres are updated and moved in each iteration to their new locations. Iteration
6 shows the final clustering results.

17

2.2.4 Convergence

The goal of K-Means is to minimise a given criterion function. The most popular

criterion function used in partitional clustering in general and K-Means in partic-

ular is the sum of square errors (SSE) [25]. Given a dataset X = {x1, x2, ..., xn}

in a d dimensional space, where x is a data point in X and n is the number of

data points, and a set of k cluster centroids C = {c1, c2, ..., ck}, SSE is defined as:

SSE =
k∑

j=1

n∑
i=1
‖ xi − cj ‖2

where i is the i-th data point belongs to the j-th cluster with mean cj. The

function simply squares the distance from each data point to its centroid and then

sums up all the squared distances for all clusters. The mean (average) of cluster

cj is:

cj = 1
|cj|

∑
xi∈cj

xi

where |cj| is the number of points in cluster cj, and i is the i-th point belongs

to cluster cj.

K-Means achieves full convergence when the SSE does not change, which means

data points in each cluster do not change assignments any more. Furthermore, K-

Means can be terminated when it meets one or more of the following conditions

[20]:

• The algorithm reaches a predefined number of iterations,

• The total value of criterion function, SSE, is below a certain threshold.

2.2.5 Limitations

Despite its linear compleixty in n, d, and k, which makes it faster than most

clustering algorithms [50], K-Means has some notable drawbacks that many works

18

has tackled since its emergence about fifty years ago. K-Means drawbacks [51] can

be summarized as:

• The number of clusters must be given as an input, which is a hard task to

determine the best number of clusters in a given dataset.

• The quality of the final results relies heavily on the initial choice of centroids.

• The algorithm converges to local minimum.

• It is sensitive to outliers.

• It does not scale well with large datasets because all data points must be

loaded to memory in each iteration.

This project aims to enhance the last drawback by proposing solutions to im-

prove the K-Means efficiency and scalability while maintaining the clustering qual-

ity. The next section reviews some of the proposed approaches to solve these

drawbacks.

2.3 Sequential K-Means Optimisations

One of the advantages of K-Means is that it can be optimised almost in every

aspect [50]. These aspects include, enhancing centroids initialisation, determining

the number of clusters k, and accelerating distance computations in each iteration.

This section overviews some variants of K-Means that firstly, improve the method

of the centroids’ initialisation step. Secondly, determine the number of clusters k.

Finally, accelerate the distance computation per iteration, which is the main focus

of this work.

19

Finding the best initial centres

The choice of initial centroids affects the quality and efficiency of K-Means [52].

A good set of initial centroids produces more accurate clusters, and can lead to

a reduction in the number of iterations which, as a result, improves the overall

running time. This aspect of K-Means has been extensively investigated and many

approaches have been proposed to improve it.

MacQueen [41] proposed two approaches to select the initial centroids. The

first approach selects the first k points in dataset X as initial centroid, which

is sensitive to the order of the data. The second approach selects k number of

centroids randomly from dataset X, which is much like Lloyd’s algorithm. To

determine which set of initial centroids is the best, the algorithm is run many times,

each run is with a different initial sets of centroids and the run with the lowest

SSE is chosen. The difference between MacQueen’s and Lloyd’s algorithms is in

the way new centroids are updated. While Lloyd’s algorithm updates the cluster

centroid once per pass, MacQueen’s algorithm updates the centroid each time a

point is assigned or removed from the cluster. This process makes MacQueen’s

algorithm more like an online algorithm, while Lloyd’s algorithm is more like a

batch algorithm.

In [53], the authors presented the furthest-first algorithm to provide an approxi-

mate solution to the k-center problem. The algorithm was used as an initialisation

method to K-Means, where a point is randomly selected as the first centre. The

next centre is selected as the furthest point from the current chosen centre. This

process is repeated until k centres are collected. The main drawback of this method

is that it is susceptible to choose outliers as the initial centres.

Arthur and Vassilvitskii [54] proposed K-Means++, which carefully selects the

initial set of centroids. Consider D(x) the shortest distance from a data point

x ∈ X, where X is the input dataset, to the nearest cluster centroid that was

already chosen. K-Means++ proceeds as follows:

20

1. pick one centroid c randomly from dataset X.

2. Select the next centroid cj with probability D(x)2∑
x∈X

D(x)2 , where x is a data

point that belongs to dataset X and D(x) is the minimum squared distance

from x to its nearest centroid.

3. Repeat step 1 until k number of centroids is collected.

4. Run Naive K-Means on the collected set of centroids.

Bradley and Fayyad [55] proposed a refined K-Means algorithm that proceeds

by partitioning the original dataset randomly into P subsets. Then each subset is

clustered using K-Means and produces P sets of solutions (centroids) each with K

points. Those sets are then combined together into one set and clustered by K-

Means P times. Each run of K-Means is initialised by a different set of centroids.

The solution with the lowest SSE is picked as the final set of centroids.

Finding the best k

The number of clusters (k) is an essential factor that affects the quality and ef-

ficiency of K-Means. The classic approach for picking the number of k is to run

K-Means a number of times, each time with a different number of k and choose

the number of k that produces the least SSE. Elkan and Hamerly [56] introduced a

variant of K-Means called G-Means that automatically determines k in K-Means.

G-Means proceeds with a small number of k. Then, in each iteration, clusters

with data points that do not fit a Gaussian distribution are split up. The current

solution is refined by applying K-Means between each round of the splitting.

Another variant called X-Means [57] was developed to improve the efficiency

of K-Means and to provide a good estimation of the number of clusters in an

input dataset. After each run of K-Means, X-Means makes local decisions about

which subset of the current centroids should split themselves in order to better fit

21

the data. The splitting decision between the children of each centre and itself is

done by computing the Bayesian Information Criterion (BIC). BIC is a statistical

method that selects models among a finite set of models where the model with

the lowest BIC is selected [58]. The authors developed X-Means based on a prior

work [59] that accelerates K-Means by storing the input data points on a binary

search tree known as kd-tree. In kd-tree, the points are stored at the nodes of the

tree along with sufficient statistics (the number of points and their vector sum).

In the same work, a technique the authors call blacklisting, which is an additional

geometric computation, is used to quickly estimate the number of clusters required

for a dataset. The technique keeps a list of only those centroids that need to be

considered for a given region. X-Means can be a potential candidate to overcome

the problem of choosing the best number of k in K-Means. However, X-Means was

not considered to be parallelised because it involves the construction of a kd-tree

at the beginning of each iteration which require nd+nlog(n) time, considering n as

the number of data points in d dimensions. Another reason is that it was reported

in [59] and [43] that kd-trees are not efficient with high demensional datasets (i.e

d > 20) which is not the case when dealing with large-scale datests. Furthermore,

kd-tree approachers depend heavily on the structure of the data where the tree

could suffer from load imbalance when implemented on a parallel environment [60].

For these reasons X-Means is not a suitable clustering solution when the target is

to cluster large-scale datasets.

Accelerating the iteration time

Assigning data points to their closest cluster centroids requires calculating the

distance from each data point to each centroid. While this operation consumes

the majority of the K-Means running time, most of these distance computations are

redundant and can be avoided because after the few first iterations the centroids

move slightly and most points do not change assignment [19]. Therefore, the aspect

22

of reducing the number of distance calculations per iteration to gain more speed

has been extensively studied and various approaches have been proposed regarding

this matter.

One approach is based on using tree data structures to store data points where

nearest data points to some query point (e.g. centroid) are in the same sub-tree.

kd-trees [61] were proposed independently by Pellge and Moore [59], Alsabti et al.

[62], and Kanungo et al. [43], to accelerate K-Means by reducing the number of

distance calculations from each data point to each centroid.

A kd-tree is a binary search tree that is used for storing data points in a multi-

dimensional space [61]. kd-trees have been generally used to accelerate nearest-

neighbour queries. Therefore, they can be applied to K-Means to find the nearest

cluster centroid for a given data point and reduce the expensive computational

cost of distance calculations per iteration. However, [59] and [43] have reported

that kd-trees performance degrades as the number of dimensions gets larger (d > 8

in [59], and d > 20 in [43]). Furthermore, Pettinger and Di Fatta [60] presented

a parallel implementation of kd-trees and reported that kd-trees may suffer from

load imbalance when it is implemented in a parallel fashion depending on the

structure of the input data. Moore [63] introduced the anchor hierarchy (tree-like)

data structure to accelerate the clustering process in high-dimensional datasets.

Optimisations based on tree-structured approaches can be effective in speed-

ing up K-Means running time. However, Elkan [19] showed that using triangle

inequality can be more effective at pruning large numbers of redundant distance

computations, which is the focus of this research and will be discussed in the

following sections.

2.3.1 K-Means and Triangle Inequality

Despite the simplicity of triangle inequality, it is considered as a powerful geomet-

ric tool that can be useful in reducing the number of distance computations in

23

K-Means. First, the basic triangle inequality principle is explained, then an expla-

nation of how can it be applied to K-Means is presented, and finally, an overview

of popular optimised algorithms is provided. For a given three points x, y, z ∈ Rd,

and d(., .) is the distance between two points, the triangle inequality states that:

d(x, z) ≤ d(x, y) + d(y, z) (2.2)

Figure 2.2: Triangle Inequality Property

In other words, triangle inequality means that the sum of the lengths of two

sides of a triangle must be larger then the length of the remaining side. The next

triangle inequality properties can be inferred from 4xyz in Figure 2.2:

d(x, y) + d(y, z) > d(x, z)

d(x, y) + d(x, z) > d(y, z)

d(x, z) + d(y, z) > d(x, y)

The next section shows the benefits of using triangle inequality and how these

properties can be applied to K-Means in order to speedup the algorithm’s running-

time.

2.3.1.1 How Can Triangle Inequality Accelerate K-Means?

The most expensive operation in K-Means is computing the distance from each

data point to all centres to find the centre with the minimum distance. One of the

most important remarks in K-Means is that after a few number of iterations, most

data points do not change their cluster assignment, especially with well-clustered

24

datasets. The reason behind this is that after a few number of iterations the

movement of cluster centroids is insignificant[19] [21]. Thus, most of the distance

calculations from points to centroids are redundant, and this is where triangle

inequality excels.

Generally, the main goal of using triangle inequality with K-means is to prove

that a given point in the input dataset is closer to a certain centroid without the

need to calculate the distance to other centroids. Given three points x, a, b ∈ Rd

where x is the input data point, and a and b are two centroids. Triangle inequality

aims to prove that d(x, b) ≥ d(x, a) without computing the exact distance from

x to b. However, achieving this goal usually comes with extra computational and

space costs. These costs varies from one algorithm to another depending on the

requiments of the algorithm. In some algorithms like Elkan’s [19] and Hamerly’s,

the computational cost comes from the need to compute k2 (k is the number

cluster centroids) centre-centre distances at the beginning of each iteration which

also requires k2 memory space. Moreover, some algorithms need to cache distance

bounds from points to centres in one iteration for them to be used in following

iterations.

Triangle inequality was used in different ways to prune distance calculations.

For a point x and two cluster centroids a and b, the following are some of the cases

that triangle inequality can be applied to K-Means [19] [21]:

1. Show that x is closer to a than b, with calculating only d(x, a) and d(a, b).

2. Form an upper-bound from x to its closest centroid.

3. Form a lower-bound from x to one or more centroid.

The following Lemma helps finding the closest centroid from a given point by

using pre-calculated centre-centre distances and the distance from the point to its

previously assigned centroid.

25

Lemma 2.3.1. [19] Let x be a point, and p and q be two centroids,

if d(p, q) ≥ 2d(x, p) then d(x, q) ≥ d(x, p)

Proof. From 2.2, it is known that

d(p, q) ≤ d(x, p) + d(x, q)

d(p, q)− d(x, q) ≤ d(x, p).

The left hand side can be written as:

d(p, q)− d(x, q) ≥ 2d(x, p)− d(x, p) = d(x, p).

Hence:

d(x, p) ≤ d(x, q).

The usage of triangle inequality to avoid unnecessary distance calculations was

investigated by many researchers. The usage of Lemma 2.3.1 was proposed by

Hodgson in [64]. Hodgson’s approach compared a given centroid c with only its

closest centroid c′, that is, if d(x, c) < d(c, c′) then the distance calculation to only

c′ is avoided.

In [65], triangle inequality was used to improve the search of the nearest-

neighbor. For a given point x and a candidate nearest-neighbor y, the author

showed that another point z cannot be closer to x if Lemma 2.3.1 holds. The same

approach was applied to K-Means in [66] by Phillips on an algorithm he called

Compare-means.

Judd et al. [20] noticed that in a square-error clustering algorithm they call

CLUSTER (similar to K-Means), a change in cluster assignments occurs mostly

(70–80%) at the first two iterations. Therefore, most distance calculations are

redundant and can be avoided. In an attempt to reduce the number of distance

calculations the authors proposed an approach called computing spheres of guar-

anteed assignment for cluster centroids. This approach computes and caches the

26

Notation Description
X The input dataset of size n
xi A data point, where xi ∈ X, with 1 ≤ i ≤ n

k Number of clusters
C The set of cluster centroids of size k
cj Cluster centroid, where cj ∈ C, with 1 ≤ j ≤ k

c′
j New location for centroid cj

ca Closest centroid to data point x, where 1 ≤ a ≤ k

hj Half minimum distance from cj to its closest centroid
ui An upper-bound from data point xi to its closest centroid ca

li,j A lower-bound from data point xi to centroid cj

Table 2.1: Description of notations used in implementations of sequential algo-
rithms based on triangle inequality

centre-centre distances along with the cluster assignments for all points from the

previous iteration. Given a point x and two centroids c and c′, where c is the

closest centroid to x in the past iteration and c′ is the closest centroid to c, from

Lemma 2.3.1, if d(x, c) < 1
2d(c, c′), then d(x, c′) ≥ d(x, c). This means c is closer

to x than c′ and distance computations to all other centroids can be skipped.

To fully understand the different approaches that triangle inequality was used

as an optimisation technique to accelerate K-Means, the following sections ex-

plain in detail some of the popular algorithms that apply triangle inequality. The

reasons behind choosing these particular algorithms is because triangle inequality

approaches almost always come with an extra cost (e.g. memory overhead, centre-

centre distance calculations), and these algorithms cover most of these extra costs

ranging from high-cost (e.g. Elkan’s algorithm) to low-cost (e.g. Compare-means).

2.3.1.2 Clustering Quality

Given the same input dataset and the same initial centroids, multiple runs of

the standard K-Means algorithm (Lloyd’s K-Means in this work) always produce

27

the same final clustering results. Most of the studies that aim to improve the

efficiency of Lloyd’s K-Means try to accelerate the algorithm without affecting

the final clustering results. Algorithms with this nature are aslo known as exact

algorithms [21]. In terms of K-Means variants based on triangle inequality, most of

these variants are exact algorithm where the quality of the final clustering output

is equivalent to the output in Lloyd’s K-Means.

Most data points do not change cluster assignments after the first few iterations

[20] [19]. As a result, many distance computations from points to cluster centroids

are redundant. Triangle inequality avoids computing these redundant distances.

Theoretically, this optimisation does not affect the final clustering outcome. In

practice, to ensure that the quality of the clustering results of the optimised algo-

rithms is intact, the cluster centroids produced by an optimised algorithm in each

iteration are compared with the cluster centroids produced by Lloyd’s K-Means

for the same iteration. If the two sets of centroids match, this indicates that the

results are intact and the optimised algorithm is an exact algorithm. More details

on how the clustering quality is investigated in this work are explained in later in

section 5.3 .

2.3.1.3 Compare-means and Sort-means

In [66], Phillips presented two approaches, Compare-means and Sort-means, to

accelerate K-Means using triangle inequality in order to avoid unnecessary distance

computations. Given a point x ∈ X, and two centroids c and c′ ∈ C, it is known

from the inequalities in (2.2) that d(c, c′) ≤ d(x, c) + d(x, c′), hence: d(x, c′) ≥

d(c, c′)− d(x, c). If it is already known from Lemma 2.3.1 that d(c, c′) ≥ 2d(x, c),

it can be concluded that d(x, c′) ≥ d(x, c), which means that centroid c is closer

to x than centroid c′ without the need to compute the exact distance from x to c′.

Compare-means starts by computing k2 matrix of centre-centre distances at

the beginning of each iteration each time the centres move and keeps the clus-

28

ter assignment ai from the previous iteration for each point x. Next, the test

d(cj, cai
) ≥ 2d(xi, cai

) is performed before computing d(xi, cj), if the test holds,

d(xi, cj) calculation is skipped.

Sort-means uses the inequality in Lemma 2.3.1 as well, but after computing k2

matrix of centre-centre distances, a new k × k matrix is constructed where row j

holds the sorted indices of k number of centres in increasing order of their distances

from centre cj. Then, before d(xi, cj) is calculated, the algorithm compares the dis-

tance from the previously assigned centroid to the currently processed point with

the centroid distances sorted in increasing order. If the distance of the compared

centroid is larger or equals to 2d(xi, cai
), the algorithm prunes all the remaining

centroids and proceeds to the next point.

2.3.1.4 Elkan’s Algorithm

Elkan [19] introduced an optimised version of K-Means that efficiently prunes

unnecessary distance calculations by applying triangle inequality along with a set

of updated upper and lower bounds. Elkan’s algorithm caches extra information

in one iteration and use it in the next. For n number of points in d dimensions,

and k number of clusters, the next information required by Elkan’s algorithms:

• n upper-bounds on the distance from each point to its closest centroid.

• n cluster assignments for the points from the previous iteration.

• nk lower-bounds on the distances from each point to each centroid.

• k2 centre-centre distances.

Unlike our implementation of Elkan’s algorithm on Hadoop, which will be ex-

plained Chapter 4, the sequential implementation caches the extra information in

memory.

Let c and c′ be two centroids, where c is the closest centroid to point x, and c′

is any other centroid, then from Lemma 2.3.1:

29

if 1
2d(c, c′) ≥ d(x, c)

then d(x, c′) ≥ d(x, c),

which means that x is closer to c than c′ and there is no need to calculate d(x, c′).

Upper Bound: Elkan’s algorithm sets an upper-bound (u) on the distance

between xi and its assigned closest centroid cai
, such that ui ≥ d(xi, cai

). The

pseudo-code in Algorithm 2 describes the sequential implementation of Elkan’s

algorithm. At the beginning of each iteration, the centre-centre distances, and the

values of hj are computed. Each value in hj corresponds the half the distance from

centroid cj to its closest other centroid in the set of centroids. Half the distance

from each centroid cj to its closest other centroid is computed in line 7 and stored

in a collection denoted as hj. If the upper-bound ui for point xi is less or equal

to half the distance from its owner centroid cj to its other closest centroid, then

according to Lemma 2.3.1 the distance from xi to all centroids can be avoided.

In lines 15-18 of Algorithm 2, the upper-bound ui is tested to see if it is out-

of-date (i.e. it is possible that ui 6= d(xi, cai
). To do this, the boolean variable r

is initialised to true in line 12. If r is true, this means the distance from xi to

its owner centroid cai
must be computed and ui is set to this distance (line 16).

Then, r can be set to false.

Lower Bounds: Furthermore, a lower-bound (l) is set on the distance between

each point xi to each centroid cj. Let cj′ and cj be the positions of centroid cj at

the previous and current iterations, respectively. A lower-bound l can be created

on d(xi, cj) by assuming that cj′ has moved towards point xi a distance of d(cj′ , cj),

that is:

d(xi, cj) ≥ d(xi, cj′)− d(cj′ , cj) (2.3)

The right side of (2.3) forms a lower-bound on d(xi, cj). This step can be seen

in line 38 in Algorithm 2. Lines 20-24 show that the distance from xi to cj is

30

Algorithm 2: Sequential Elkan K-Means(X, k) [19]
1 select k initial cluster centroids from X
/* upper and lower bounds initialisation */

2 li,j ← d(xi, cj)
3 ui ← minjd(xi, cj)
4 ai ← argminjd(xi, cj)
5 while not converged or an early termination condition is not met do
6 compute d(cj, cj′)), for all 1 ≤ j, j′ ≤ k
7 compute hj ← 1

2minj 6=j′d(cj, cj′), for all 1 ≤ j, j′ ≤ k
8 for i = 1 to n do
9 if ui ≤ hai

then
10 continue
11 end
12 r ← true //a boolean flag to check if ui is out-of-date
13 for j = 1 to k do
14 if j 6= ai AND ui > li,j AND ui > 1

2d(cj, cai
) then

/* check if ui needs to be updated */
15 if r == true then
16 ui ← d(xi, cai

)
17 r ← false

18 end
19 else
20 d(xi, cai

)← ui

21 end
22 if ui > li,j or ui > 1

2d(cj, cai
) then

23 li,j ← d(xi, cj)
24 if d(xi, cj) < d(xi, cai

) then
25 cai

← cj

26 end
27 end
28 end
29 end
30 end
31 for j = 1 to k do
32 c′

j ← 1
|cj |

∑
xi∈cj

xi //mean of points belong to cj

33 reposition cluster cj to c′
j

34 mj ← d(cj, c′
j) //the distance centroid cj has moved

35 end
/* update upper and lower bounds */

36 for i = 1 to n do
37 ui ← ui + mai

38 for j = 1 to k do
39 li,j ← li,j −mj

40 end
41 end
42 end

31

explicitly calculated only if ui > li,j or ui > 1
2d(cai

, cj), otherwise, all distance

computations associated to point xi can be avoided.

The algorithm then finds the locations of the new centroids, lines 30-34, by

computing the mean of points assigned to each cluster (c′
j in Algorithm 2). In

addition, the distance each centroid has moved (mj in Algorithm 2) is cached to

be used in updating the distance bounds.

Finally, the algorithm updates the bounds in lines 34-40, where each movement

of each centroid is added to each upper-bound, and subtracted from each lower-

bound.

As explained previously, while upper-bound ui stores the distance from data

point xi to its closest centroid, lower-bound li,j stores the distance from data point

xi to another centroid cj. The idea of employing these distance bounds in Elkan’s

algorithm is to avoid computing the exact point-centre distances. For example, the

test ui ≤ li,j compares the distance from data point xi to its previously assigned

cluster centroid with the distance from the same point to another centroid cj. If

this test holds, this means that the cluster centroid that xi was assigned to in

the previous iteration is closer to xi than centroid cj. In this case, the distance

computation from xi to centroid cj can be eliminated.

In the best case scenario where data points in the input dataset are distributed

on well-separated clusters, Elkan’s algorithm reduces the complexity of computing

the point-centre distances from O(nk) to closer to O(n) per iteration. However,

updating bounds at the end of the algorithm takes O(nk) time. This means the

time complexity of the algorithm remains at least O(nkd) per iteration adding to

it the time to compute centre-center distances which is O(dk2).

Elkan’s approach can be a promising candidate to deal with large-scale datasets.

However, the large memory overhead of O(nk + k2) makes it susceptible to an

out-of-memory exception. For this reason variants of Elkan’s algorithm were in-

troduced with the aim to prune the most possible number of distance calculations

32

with the least possible number of distance bounds. The following section overviews

one example of these variants that is called Hamerly’s algorithm.

2.3.1.5 Hamerly’s Algorithm

In [67], Hamerly proposed a fast K-Means algorithm using triangle inequality prop-

erties along with upper and lower bounds to avoid looping over all cluster centres

to find the closest centre for a certain point (the loop responsible for computing

distances is called the innermost loop in Hamerly’s paper). Hamerly’s algorithm

uses one upper-bound, as in Elkan’s algorithm, on the distance from each point

to its closest centre, and instead of using k lower-bounds as in Elkan’s algorithm,

it applies one lower-bound on the distance from each point to its second closest

centre.

For a given point xi, the algorithm tracks the movement of each centre from

one iteration to the next. Each time the centres move, the bounds get updated.

The lower-bound li is updated by subtracting it from the distance moved by the

furthest moved centre from xi. The upper-bound ui is updated by incrementing

its value by the distance moved by the centre cai
that point xi is assigned to. The

algorithm applies the following two tests to avoid the innermost loop:

1. ui ≤ li

2. ui ≤ minai 6=jd(cai
, cj)/2

If one of the above conditions is true, the assignment of xi does not change and

the algorithm avoids the innermost loop which calculates the distance from xi to

all k centres.

Hamerly’s approach avoids a number of distance computations that is higher

than the one in Elkan’s algoithm when it operates on data in small to medium

dimensions (d ≤ 50) [67]. Elkan’s algorithm, on the other hand, skips a large num-

ber of distance computations as the number of dimensions increases. To elaborate

33

more on this, we discuss the ”curse of dimensionality”. Generally, the curse of

dimensionality [68] refers to problems in the field of data analysis that are caused

by data with a large number of attributes [69]. The problem with processing high-

dimensional data is that, as the number of dimensions increases, the distribution

of data points becomes more sparse. The challenge in clustering high-dimensional

data is that the curse of dimensionality makes the distances less discriminative

and, in some cases, the distribution of the data becomes relatively uniform. In

such cases, finding the closest centroid to a point becomes very challenging [69].

So, why does Elkan’s algorithm works better than Hamerly’s algorithm with high-

dimensional data? Because Elkan’s method uses multiple lower-bounds each of

which is specialised in one cluster, while Hamerly’s algorithm uses only one lower-

bound for all clusters. In higher dimensions, using multiple bounds allows more

accurate tests to skip distance computations.

An obvious advantage in Hamerly’s algorithm as compared to Elkan’s is the

low memory overhead. The memory overhead created by Hamerly’s algorithm

is O(3n + 2k) compared to Elkan’s memory overhead of O(nk + k2). Hamerly’s

memory overhead comes from keeping the following information:

• n upper-bounds,

• n lower-bounds,

• n cluster assignments,

• k distances moved by centres in the previous iteration, and

• k distances from each centre to its closest other centre.

The time per iteration for Hamerly’s algorithm is O(ndk + dk2), where ndk is

the time for the Naive K-Means and dk2 is the time to calculate the distance from

each centroid to its other closest centroid.

34

The previous sections reviewed several sequential variants of K-Means that used

triangle inequality to improve the efficiency of the Naive K-Means. The following

sections presents a background about distributed computing frameworks that can

be used as parallel environments to improve the scalability of K-Means.

2.4 MapReduce

Dean and Ghemawat [70], introduced MapReduce in a Google white paper in

2004. MapReduce is a programming paradigm that is designed to store and pro-

cess large-scale datasets efficiently and reliably on large clusters of commodity

machines. MapReduce is designed to provide a high performance parallel execu-

tion of programs without dealing with underlying details of the distributed system

such as scheduling, distribution and fault-tolerance.

Fault-tolerance in MapReduce is achieved by dividing each job into many small

tasks where each task is processed by an independent machine. The input of a

job is replicated over the distributed file system. In case of a failed task, a replica

can be loaded to that task to continue the work without the need to resubmit the

whole job.

In addition, a system that deploys MapReduce can scale its performance up

and down as the computation requirements change. Currently, many cloud com-

puting service providers offer MapReduce as a Web service (e.g. Amazon Elastic

MapReduce or Amazon EMR [71]) where one can use the ”pay-as-you-go” service

model to run data-intensive applications on an expandable and low-spec. cluster

that implements the MapReduce framework.

2.4.1 MapReduce Dataflow

In the MapReduce paradigm, the input data is stored on a distributed file sys-

tem such as Google File System (GFS) [72], or Hadoop Distributed File System

35

(HDFS) [73]. The input and output data are in the form of key-value pairs. The

computation process is expressed by implementing two functions: map and reduce

from the MapReduce library, which are typically implemented by the user. The

dataflow and main phases in the MapReduce model are illustrated in Figure 2.3.

The three main phases in this framework are: the Map Phase, the Shuffle Phase,

and the Reduce phase. In addition, there is an optional phase called the Combine

Phase that implements a function called combine. The MapReduce phases are

explained as follows:

Map Phase: the map phase consists of three main operations: map, partition,

and sort. When the input dataset is loaded to HDFS, it is split into what is known

as input-splits. The number of mappers equals the number of input-splits and the

size of each input-split can be modified (default 128 MB). Each mapper processes

one input-split independently on a separate node. The map function takes as an

input the records in each input-split in the form of key (K) and value (V) pairs.

The map function processes one <K1,V1> pair at a time. Once processed, the

map function outputs a new <K2,V2> pair that is written to a circular buffer.

The buffer spills its contents to spill files on the local-disk of the mapper’s node

when it reaches a certain threshold (default is 512 MB). Before data is written to

disk, a partitioner is invoked to partition data by reducer. The data within each

partition gets sorted in-memory by key (K2). If a combiner is defined, it runs on

the output of the sorted data. However, it is not guaranteed that the combiner will

run at all, since it will only run if the number of spill files is at least three. Finally,

these partitioned sorted <K2,V2> pairs are spilled to the disk of the machine the

mapper is running on.

Shuffle Phase: The shuffle phase makes sure that each partition is transferred

to the right reducer. Each reducer uses HTTP protocol to fetch its own partition

from the mappers’ output files that reside on the mappers’ nodes. The shuffling

phase can be the performance bottleneck in many cases where the MapReduce job

36

performance is limited by the available network bandwidth. That is why many

studies attempt to refine and improve this phase [16] [74]. The shuffle process starts

as a predefined percentage (default is 5%) of mappers complete their work. This

makes this phase overlap with the Map phase where a portion of the intermediate

data is shuffled while some mappers are still running.

Reduce Phase: The reduce phase starts after each reducer fetches its own par-

tition from the mapper’s output files. Before invoking the reduce method, the

reducer merges and sorts the mappers’ output files fetched from different mappers

and then the reduce method is invoked. The reduce method receives the input key

associated with the list of the values that belong to the input key. Each reducer

processes an individual input key with its associated list of values. After processing

all the data, each reducer outputs the resulted <K3,V3> pairs to the distributed

file system DFS, in our case Hadoop Distributed File System HDFS.

37

Figure 2.3: MapReduce framework dataflow

38

Combine Phase: The goal of the combiner is to minimise the amount of interme-

diate data transferred from mappers to reducers across the cluster. The combiner

works as follows, the combine function takes the mapper output as an input and

makes it more compact by doing a local aggregation over the intermediate data

on the map phase. Simply, instead of outputting a single pair of <K2,V2>, it

groups the <K2,V2> pairs by (K2) and outputs a pair of <K2,list<V2>> to the

reducer. The combiner can be thought of as a ”mini reducer” [5], because in many

cases the implantation of both is the same. However, the reduce function has to

be associative and commutative [16], meaning that the order of the operations and

operands does not matter (e.g. addition and multiplication). There are some cases

where these conditions are not met and a combiner can still be implemented (e.g.

calculate the average). However, the combiner has to be implemented separately.

As mentioned earlier in the Map Phase, the combiner runs only if the number of

spilled files from the circular buffer is more than three. The reason behind that is

that if there is only one or two spill files, the generated overhead from invoking the

combiner is not worth the potential benefit from reducing the size of the mapper

output. This means that the combiner might not be invoked at all, which is the

reason why the reducer’s implementation must outputs the same results as if there

is no combiner is defined [16].

The combiner does not have a predefined interface. Therefore, it must imple-

ment the reduce method that belongs to the reducer interface.

2.4.2 Iterative Process on MapReduce

This section explains the general approach of managing the iterative process on

MapReduce. It will also present an overview of some tools provided by Hadoop to

declare global counters, and distribute files over all the nodes of a cluster.

39

Figure 2.4: Iterative process on MapReduce. Each MapReduce job represents one iteration and the input/output files are read and
written from/to HDFS. In this specific case, the reducer’s output in one iteration is the mapper’s input in the next.

40

2.4.3 Limitations of MapReduce

Despite the advantages that MapReduce offers to store, manage, and process large-

scale datasets, several limitations were addressed in many works [9] [10] [75] [76]

[77] [78] [79] [74] [80] [81] [24] [82]. Since the focus of this work is on iterative

clustering algorithms on MapReduce, the following limitations are related to pro-

cessing such algorithms on MapReduce:

First, iterative machine learning algorithms, such as K-Means, PageRank [83],

and logistic regression [84], require caching some information from former itera-

tions in order to process the data in the current iteration. To achieve this in a

MapReduce framework, first, a Driver program must be implemented to control

the iterative process. The Driver sets up and triggers a MapReduce job for each

iteration in the algorithm. In addition, the Driver manages the input and output

files for each iteration. Figure 2.4 illustrates a particular case where the output of

the reducer in one iteration is used as an input for the next iteration. To maintain

fault tolerance, the output of each iteration should be stored on the distributed

file system, or HDFS as in Hadoop, to be replicated.

• Absence of loop-aware task scheduling: For each iteration in an iterative algo-

rithm, MapReduce creates a new MapReduce job. This means a considerable

amount of time is wasted in repeated operations such as, the initialisation

and termination of map and reduce tasks.

• Reload and reshuffle static data: Some iterative algorithms such as K-Means

have two types of data, static, and state data. Unlike state data, static data

is the data that does not change during iterations. MapReduce reloads and

reshuffles static data in each iteration which creates an unnecessary I/O and

communication overheads.

• Synchronous execution of map and reduce tasks: This means reduce tasks

cannot start until all map tasks are finished. In some algorithms, reduce

41

tasks can process data as it is omitted from map tasks without the need to

wait for all map tasks to finish. In this case, asynchronous execution of map

and reduce tasks would accelerate the iterative process. However, K-Means

algorithm would not benefit from asynchronous execution because reducers

needs all values (points) related to each key (centre) to be present to be able

to calculate their mean and produce new centres.

• Extra one iteration to terminate: MapReduce may need to perform one extra

MapReduce job to check for the termination condition to terminate the iter-

ative process. This process creates an overhead that is caused by scheduling

tasks, reloading data, and managing nodes’ communications.

• Retrieve information from previous iterations: Since each iteration in Hadoop

is an independent MapReduce job, and memory is not shared between those

jobs, Hadoop does not have the ability to retrieve any information from pre-

vious iterations. This limitation imposes extra complexities on iterative algo-

rithms that require information from previous iterations in order to proceed

their work efficiently. This project investigates this limitation in particular.

2.5 Apache Hadoop

Apache Hadoop [15] is an open-source platform that implements the MapReduce

programming paradigm to process large-scale datasets across large clusters of com-

modity machines. Hadoop delivers a reliable, high performance, low cost, and fault

tolerant distributed computing framework where each machine has the ability to

compute and store data independently. Hadoop has been widely used by many

companies such as Yahoo!, Facebook, Twitter, and IBM to manage and analyse

massive amounts of daily generated data [16].

To understand the dataflow in Hadoop, first, an introduction to Hadoop Dis-

tributed File System (HDFS), and the main components of Hadoop’s architecture

42

is presented in the following sections.

2.5.1 Hadoop Distributed File System

The design of Hadoop Distributed File System (HDFS) was inspired by the Google

File System (GFS) [72]. It was designed to store massive datasets across hundreds

or thousands of commodity servers, and transfer those data to user applications

at a high bandwidth. More commodity servers can be easily added based on the

demand of storage and computation while maintaining the cost of expansion. The

main characteristics of HDFS are its ability to partition, replicate, and store input

files on different locations in the cluster. To store a file, HDFS partitions the file

into m partitions and stores them on blocks distributed across DataNodes. Each

block is of size 64MB or 128MB (can be modified). These blocks are replicated

(default is 3 replicas) based on a block placement policy that stores the first replica

on a DataNode on the same rack of the original copy, the second and third replicas

are stored in two different nodes on different racks [73].

2.5.2 Hadoop Generations

Hadoop 1.x: Hadoop 1.x [15] is the first generation of Hadoop. The architecture

of Hadoop 1.x consists of four components: JobTracker, NameNode, TaskTracker,

and DataNode.

The JobTracker is the service within Hadoop 1.x that is responsible for re-

source management, tasks scheduling and monitoring. The JobTracker farms out

MapReduce tasks to specific nodes in the cluster, ideally the nodes where data

resides.

The NameNode keeps the directory tree of all files in the file system, and tracks

where across the cluster the data is located. Moreover, the NameNode manages

the HDFS namespace.

43

The TaskTracker is a process exists in each node and controlled by the Job-

Tracker to manage map, reduce and shuffle tasks on these nodes.

The DataNode stores data on HDFS where client applications can talk directly

to a DataNode once the NameNode has provided the location of the data. DataN-

ode instances can also talk to each other, which is what they do when they are

replicating data.

Data Flow: When a MapReduce job is submitted, the JobTracker schedules

map and reduce tasks to run on TaskTrackers. TaskTrackers send reports to the

JobTracker with the status of the task and the progress of the job in general. If a

task fails, the JobTracker reschedule this task to run on a different TaskTracker.

Each map task starts by taking as input one partition of the data stored on

HDFS called input-split, or split. Hadoop is designed to run map tasks on the same

node where input data are stored. This technique is referred to as data locality

optimization. Map tasks write their intermediate data to local disks instead of

HDFS and then this data get sorted and shuffled and sent to reducers. The number

of reducers can be specified by the user (default is 1). The output of the reduce

tasks written on HDFS and replicated afterwards. The Data Flow in both versions

of Hadoop is illustrated in Figure 2.5.

Despite the fact that Hadoop 1.x provides a reliable, scalable and fault tolerant

MapReduce framework, it has several limitations [16] [1] that can be summarised

as follows:

• Slave nodes could only scale up to ≈4000 nodes because the JobTracker and

NameNode become a bottleneck if more nodes are added.

• JobTracker and NameNode are a single point of failure (SPOF).

• NameNode is not highly available and could not be scaled horizontally.

• It supports only MapReduce applications.

44

Hadoop community was motivated to upgrade the system to overcome these

limitations. As a result, YARN or Hadoop 2.x was introduced.

YARN/Hadoop 2.x: YARN, which stands for Yet Another Resource Nego-

tiator, addresses Hadoop 1.x drawbacks that were mentioned above by applying

the following improvements [1]:

• As shown in Figure 2.5-b, YARN breaks the two essential tasks of the Job-

Tracker, resource management, and tasks scheduling and monitoring, into

two separate daemons: a global ResourceManager that orchestrates the com-

pute resources assignment to applications but does not interfere with per-

application state management, and an ApplicationMaster that is responsible

for negotiating resources, referred to as Containers, from the ResourceMan-

ager. A Container holds a collection of resources such CPU and memory that

the application requires. It is created by the ApplicationMaster, monitored

by NodeManager, and scheduled by the ResourceManager. The NodeMan-

ager is a per-node agent that monitors application containers in a single node

and reports node status to the ResourceManager.

• NameNode can scale-up horizontally and it is Highly-Available because it is

not a single point of failure (SPOF) any more.

• YARN supports Non-MapReduce applications like MPI.

• YARN can scale-up to ≈10000 nodes.

45

Figure 2.5: The Components of Hadoop 1.x and YARN (Hadoop 2.x). [1]

46

2.5.3 Hadoop Counters

Hadoop provides two types of counters, built-in counters, and user-defined coun-

ters.

Built-in counters are counters that collect statistics about each MapReduce

job and report different metrics for the job. Built-in counters are divided into

several groups based on the information the counters’ report. For example, the

counters: map skipped records, map output records, and map output bytes, be-

longs to a group of counter called MapReduce Task Counters. Furthermore, the

counters: filesystem bytes read, and filesystem bytes written belong to a group of

counters called Filesystem Counters.

User-defined counters are counters that are defined by the user and can

be incremented in mappers or reducers. These counters are global, which means

they are aggregated across all map and reduce tasks and their total is produced

at the end of the job. These counters can be useful to iterative algorithms in

terms of using them to track the condition of the algorithm’s convergence it will

be explained in later sections when K-Means on MapReduce is implemented on

MapReduce.

2.5.4 Distributed Cache

Distributed Cache is a feature provided by Hadoop to allow applications and tasks

to have a local access to files that are stored on some data nodes on the distributed

system. When a file is cached, it is copied to the local-disk (the term cache is not

accurate in this case, because the files are not stored in-memory but on the local-

disks of data nodes) of each and every data node. Mappers and reducers can then

read the files locally. In order to make room for new files, cached files are deleted

when their size reaches a predefined threshold (default is 10 GB). The cached files

are read-only files that are loaded to the Distributed Cache in the driver program

and they cannot be modified while the job is running.

47

To ensure that the cached files are consistence, the Distributed Cache tracks the

modification timestamps of cache files. To determine on which node a particular

key-value pair resides, the cache engine uses a hashing algorithm. The files are

guaranteed to be always consistence since there is always a single state of the cache

cluster.

In the case of processing iterative algorithms on Hadoop, each iteration is rep-

resented by a new MapReduce job. In this case, map and reduce tasks and Dis-

tributed Cache components are not persistent between jobs where each job must

configure new tasks and Distributed Cache. This means intermediate data that

is cached in the Distributed Cache in one iteration will not exist in the following

iteration. The distributed Cache is used in this work to cache centroid files into

mappers and reducers.

2.6 Apache Spark

Apache Spark [22] is a distributed framework that is designed to process large-scale

working sets that are reused over multiple parallel operations in-memory. The goal

of Spark is to process iterative machine learning algorithms and interactive analyt-

ics problems faster than Hadoop MapReduce while maintaining MapReduces’ fault

tolerance and scalability. Spark can operate on Hadoop YARN, Apache Mesos [85],

a cluster resource manager that allows different distributed frameworks to share

the same resources on one cluster, Amazon Elastic Cloud (EC2) [86], or as a

standalone system.

2.6.1 Main Abstractions

Two main abstractions are provided by Spark to process parallel applications:

1. Resilient Distributed Datasets (RDD). An RDD is a collection of immutable

(read-only) objects partitioned among cluster nodes that can be rebuilt in

48

case a partition is lost. RDDs can be cached in-memory once across worker

nodes (executors) and reused by applications that run on multiple parallel

operations. This process aims to reduce the I/O and communication over-

heads that Hadoop encounters. In case of a node failure, RDDs can be

rebuilt and reconstructed which makes Spark fault-tolerant. Constructing

RDDs can be done by:

• Loading a file that is stored on a distributed file system such as HDFS.

• Partitioning and parallelising a collection data structure, such as an

array, and distributing these partitions over multiple nodes.

• Performing a transformation on an existing RDD to produce a new

RDD.

• Persisting existing RDDs in-memory. After the first action is performed

on an RDD, Spark discards this RDD from memory, unless there is a

hint (by using the cache action) that this RDD needs to be persisted

in memory for future operations. In this case, the RDD will resides

in-memory (if there is a sufficient memory space) for later operations.

2. Parallel operations. Parallel operations can be divided into two types:

• Transformations, where an RDD can be transformed from a file on sta-

ble storage, or from another existing RDD. Transformation operations

are lazy operations. That is, a transformed RDD does not get evalu-

ated until an action (e.g. count) is triggered. Some examples of main

transformation operations are: map, reduce, join, groupBy, and filter.

• Actions, where a value is returned to the application driver, or stored

on a data storage. Examples of action operations are: count, collect,

take.

Spark provides two types of shared variables:

49

1. Accumulators: accumulators are variables that can aggregate values across

multiple tasks that run on different executers, and return their aggregated

value to the driver.

2. Broadcast variables: broadcast variables allow Spark applications to send

read-only variables to all working nodes and keep these variables in-memory.

2.6.2 Spark Architecture

Spark core is the engine for processing parallel data. The responsibilities of Spark

core include: managing jobs’ scheduling and distribution on a cluster, managing

the memory and recovering failed RDDs, communicating with storage file systems.

To run a Spark job, a driver program must be written by the developer in a

Scala, Python, or Java API. The driver creates and distributes RDDs, controls par-

allel operations (transformations and actions), and retrieves the results returned

by action operations. As shown in Figure 2.6, the driver creates a SparkCon-

text object, which establishes a connection with the computing cluster to schedule

the execution of the jobs. SparkContext also creates RDDs, accumulators, and

broadcast variables. As the execution of the driver starts, a logical directed acyclic

graph (DAG) is created. The created DAG represents the order of operations in

the driver. This graph is then converted into a physical execution plan. Spark

negotiates the resources needed for each job through a cluster manager. Spark

can run on top of different cluster managers such as, YARN, Mesos, or Spark’s

standalone cluster manager.

Spark is shipped with a library containing machine learning algorithms called

MLlib [87]. This library provides many machine learning algorithms such as, K-

Means, PageRank, and logistic regression.

50

Figure 2.6: Apache Spark basic architecture.

51

There are several solutions, in addition to Spark, that aim to overcome the

limitations of the MapReduce model on processing iterative algorithms. The next

section will overview some of these solutions.

2.7 Iterative MapReduce Implementations

Although the MapReduce programming model is a good solution for processing

large-scale datasets, it does not support data analytics algorithms that are iterative

in nature [80]. This section reviews three solutions, HaLdoop, iMapReduce, and

Twister, that aim to overcome the drawbacks (explained in section 2.4.3) of the

MapReduce framework on supporting iterative algorithms.

HaLoop

HaLoop [74] extends Hadoop MapReduce framework with the aim to support the

execution of iterative algorithms by providing the next properties:

1. Cache the mappers input on the local disks of the worker machines to avoid

reloading and reading invariant data in each iteration.

2. Avoid the extra MapReduce job that checks for the termination condition by

caching the reducer output and perform the test on a distributed fashion.

3. Cache reducers input on the local disks of the worker machines in order

to access invariant data without shuffling them from mappers to reducers.

However, it is required for the cached reducer’s input to be constant over all

iterations which is not the case in K-Means. This is because K-Means needs

to shuffle all data points and cluster centroids from mappers to reducers to

compute the average.

Moreover, HaLoop introduces a new API to automatically control the iterative

process without the need for the programmer to write a detailed driver program to

52

do this. In Addition, HaLoop modifies Hadoop’s task scheduler that assigns map

and reduce tasks that access the same data but are executed in different iterations

to the same physical machine.

In [74], the performance of HaLoop was compared against Hadoop’s. The results

show improvements in terms of speedup and the reduced amount of shuffled data

across the cluster nodes. K-Means performance is “marginally better” (≈ 5%

improvement in non-local reads).

As discussed in section 2.3.1.1, K-Means optimisations based on triangle in-

equality require caching extra information in one iteration in order to read this

information in the next and skip distance computations. To implement such algo-

rithms on HaLoop, the extra information could be cached, along with data points,

in the map phase in a given iteration. The following iteration will read the data

points with the required extra information at the beginning of the map phase.

HaLoop can be a promising MapReduce framework that handles iterative algo-

rithms efficiently. However, the latest version of HaLoop (released in 2012) works

only on top of old Hadoop releases (Hadoop 1.x) which is not supported by the

cluster that this project bases the experimental work on.

iMapReduce

iMapRedue [80] is a Hadoop extension that supports the processing of iterative

algorithms. The main goals for iMapReduce are:

1. To reduce the resulting overhead from creating a new job in each iteration.

2. To eliminate the static data shuffling between map and reduce tasks.

3. To execute iterations asynchronously, that is, an iteration can start before

all previous tasks have finished.

To achieve the first goal, the authors introduced persistent tasks concept which

keeps the map and reduce tasks alive during the iterative process until a termi-

53

nation condition is satisfied. Specifically, after map and reduce tasks process the

input data and output results, they stay idle waiting for input. The map tasks

wait for the reduce tasks output, and the reduce tasks wait for the input from the

map tasks.

The second goal is achieved by loading static data to the map tasks only once

and does not shuffle the static data to the reduce tasks. The state data that

is outputted from the reduce tasks is passed to map tasks without writing it to

the distributed file system. Before injecting data to map tasks, a join operation

is performed between state and static data to update state data then send it to

map tasks. This technique aims to significantly reduce the amount of shuffled

data between mappers and reducers. However this only applies to graph-based

algorithms because they only need state data in the reduce phase, while K-Means

and K-Means-like algorithms need both state and static data in both map and

reduce tasks. Furthermore, since a local connection is preferred, the task scheduler

always schedules a pair of a map and reduce tasks to the same machine to maintain

a local connection. This leads to a drawback where the number of map and reduce

tasks must be identical.

The third goal is achieved by making map and reduce tasks execute asyn-

chronously. That is, a map task can start as soon as its correspondent reduce task

sends its output to this map task as an input. This approach aims to speed up the

process of the framework. However, in K-Means this cannot be applied because

map tasks in K-Means need the centroids list that is calculated by all reduce tasks

and, hence, map tasks must wait for all reduce tasks to finish.

iMapReduce handles failures the same way as Hadoop. However, the state

data from a previous iteration must be all written to the distributed file system

in order to re-execute a failure iteration. The tasks in iMapReduce are persis-

tent which conflicts with the task scheduling mechanism followed in the standard

MapReduce. Therefore, iMapReduce cannot benefit from MapReduce mechanism

54

for load balancing.

In the same work [80], it was reported that iMapReduce improved K-Means

performance with a speedup factor of 1.2x compared to the standard MapReduce

programming model. The experimental work in this thesis shows that accelerat-

ing the standard K-Means on Hadoop by using triangle inequality could achieve

significant speedups (up to 34x). The benefit from implementing optimisations of

K-Means presented in this work on iMapReduce is not expected to be significant.

This is because the required extra information would be written/read to/from

the distributed file system and this is the major bottleneck in implementing such

optimisations on MapReduce.

Twister

Twister [23] is an enhanced MapReduce runtime that was designed to handle iter-

ative algorithms more efficiently than Hadoop. Twister has substantial differences

from Hadoop in terms of handling input/output data, transferring intermediate

data via a communication infrastructure, and scheduling map/reduce tasks. To

support iterative computations based on MapReduce, Twister introduces long-

running map/reduce tasks which are configured one and reused by subsequent

iterations. In addition, static data is cached into the memory of the worker nodes

to be reused in multiple iterations. Twister’s architecture and main differences

from Hadoop is discussed next.

The following sections describe the architecture of Twister. Moreover, the dif-

ferences between Twister and Hadoop are explained in general, and in particular

to the implementation of K-Means on both systems.

Architecture

The architecture of Twister consists of three major components:

1. Twister driver that controls the entire MapReduce job,

55

2. Twister daemon that runs on worker nodes, and

3. The broker network that is based on publish/subscribe messaging infrastruc-

ture.

A daemon process is started in each worker node as Twister starts running.

Each daemon maintains a worker pool to execute the map and reduce tasks as-

signed to it, checks the status of the tasks, and responds to the control events.

The driver handles the entire MapReduce job by converting Twister API calls to

control commands and sends the input data messages to the daemons that man-

ages map and reduce tasks through the broker network. The resulted outputs from

all reducers are then collected (combined) and returned to the driver to decide on

proceeding with a new iteration or not.

Twister vs. Hadoop

The main differences between Twister and Hadoop can be explained as follows.

• Task scheduling: While Hadoop must configure and terminate independent

map/reduce tasks for each iteration, Twister runs long-running map/reduce

tasks that are configured once and used many times. To guarantee the re-

usability of map/reduce tasks over many iterations, Twister schedules the

tasks statically (tasks scheduled to the same nodes over multiple iterations)

as opposed to dynamically scheduled tasks in Hadoop. Static scheduling,

however, could limit the resources of the computing infrastructure to a spe-

cific job even if they remain idle. This scheduling approach assumes that the

computing infrastructure can accommodate all persistent tasks simultane-

ously, which limits the number of MapReduce jobs that can run concurrently

[24].

• Cacheable tasks: Twister distinguishes between static and variable data.

While variable data can be modified (e.g. centroids in K-Means), static data

56

does not change over multiple iterations (e.g. input data points in K-Means).

Twister loads (caches) static data in the memory of worker nodes once in the

first iteration to eliminate the need of reloading it in each iteration. Hadoop,

on the other hand, reloads static data from HDFS in each iteration which

imposes an extra I/O cost when processing iterative algorithms. Although

Twister takes advantage of caching input and intermediate data, it can be a

limitation if the data does not fit in the memory of the worker nodes.

• Input data: Twister does not store input data on a distributed file system.

Instead, it assumes that the input dataset is manually partitioned by the

user and the partitions are stored as native files on the local disks of worker

nodes. These file are then cached to the memory of each worker node. This

caching mechanism can be a drawback in Twister because it assumes that the

partitions will fit in the memory of worker nodes, which cannot be guaranteed

when dealing with very large datasets [9]. This approach was adopted to

simplify the implementation of the platform and to be able to pass the data

files to any map/reduce task as a command line argument [23]. Hadoop, on

the other hand, automatically partitions the input dataset and replicates the

partitions over several nodes on HDFS to maintain fault tolerance and to try

to run map/reduce tasks on local file.

• Checking convergence: To decide whether to start a new iteration or stop

at the current one, Hadoop uses a controlling program (driver) that merges

the output files written by multiple reducers on HDFS into one file. The

driver then reads the merged file to check for the convergence or a stopping

condition and decides whether to start a new iteration or stop at the current

one. Twister, however, introduces a new phase called combine phase where

the outputs from multiple reducers are combined and passed directly to the

driver without writing/reading them to/from HDFS as in Hadoop. If the

57

stopping condition is not satisfied, a new iteration is started and variable

data is broadcasted to all worker nodes. However, this technique is not

beneficial if the iterative algorithm decided to stop at a predefined number

of iterations [24].

• Fault tolerance: Twister assumes that master node failures are rare; the

broker network is reliable; and the data is replicated over the worker nodes.

In case of a failure, Twister only guarantees restoring input data that can

be reloaded from the file system or static parameters inherited from the

driver. Any intermediate data processed by map and reduce tasks will be

lost. Hence, Twister supports only intra-iteration fault-tolerance. On the

contrary, Hadoop assumes that a failure could occur at any stage of the

MapReduce job. In case of a node failure, Hadoop can restore intermediate

data and re-assigns failure tasks to healthy nodes.

K-Means on Twister

K-Means is implemented on Twister as follows. First, the initial cluster centroids

are picked from the input dataset and broadcasted to all the worker nodes. Then,

the input dataset is manually partitioned into a number of files and loaded to

the local file system of the worker nodes. Since the input data points in each

partitioned file are considered as static data, each file is cached into the memory

of each worker node. Next, the iterative process starts where each mapper finds the

closest centroids from each data point and outputs the data point with the cluster

index of its closest centroid. The mappers send their results to the reducers via the

broker network where each reducer computes the new centroids. The new centroids

are sent to a user program (driver) that tests the convergence criterion and decides

whether to stop the iteration or start a new one. In the following iteration only the

centroids that will be broadcasted to the nodes while data points are reused from

the previous iteration. This technique reduces the amount of data transferred in

58

the network compared as opposed to Hadoop which must reloads the same data

in each iteration. Another advantage in this implementation is the long running

map and reduces tasks which eliminates the overhead from the need to generate

new tasks in each iteration in Hadoop. On the other hand, Twister assumes that

the input data will fit in the memory of the worker nodes which is not always the

case when the target is to cluster Big Data.

K-Means optimisations based on triangle inequality can use the caching mech-

anism in Twister to store the needed extra information (cluster assignments and

distance bounds) in-memory. The extra information can be associated with data

points and updated in the map phase. However, this could be a challenging task to

achieve since the data is expected to be very large and the memory of the worker

nodes might not fit the data and the extra information together. Therefore, we

expect that the performance of the optimised algorithms presented in this project

to excel if implemented on Twister as long as the memory can fit all data points

with extra information.

2.8 Summary

This chapter presented a background of several sequential implementations of K-

Means and showed how the efficiency of K-Means can be improved based on tri-

angle inequality. It was discussed how triangle inequality approaches improves

the efficiency of K-Means but with an extra cost from the need to maintain extra

information such as cluster assignments and distance bounds. Various K-Means

optimisations based on triangle inequality were reviewed and two of them (Elkan

and Compare-means) were chosen to be implemented on MapReduce.

The chapter also explained the main phases in the MapReduce programming

paradigm and introduced the architectures of two widely used distributed com-

puting platforms known as Hadoop and Spark. Furthermore, the chapter re-

59

viewed some distributed MapReduce platforms including, HaLoop, iMapReduce

and Twister. A detailed comparison between these platforms described the fea-

tures each platform offers to overcome the lack of support to iterative algorithms

in Hadoop. Table 2.2 summarises the features of each platform. The reviewed

MapReduce platforms can be categorised into two categories: disk-based and

memory-based, where the former store the data (static or variant) on the file

system (local or distributed), and the latter store the data in the memory of the

worker nodes. While Hadoop, HaLoop and iMapReduce are disk-based platforms,

Twister and Spark are memory-based.

Although iterative MapReduce platforms can outperform Hadoop when pro-

cessing iterative algorithms, some of these solutions (e.g. Spark and Twister)

require the dataset to be small enough to fit into the main memory of the worker

nodes. Otherwise, data will be spilled into the local disks of the worker nodes

and read/write operation will be performed from/to local disks which increases

the I/O overhead. Moreover, other platforms (e.g. HaLoop and iMapReduce) are

not stable and mature enough because they were basically built as research proto-

types [77]. Twister handles iterative algorithms efficiently by caching static data

in-memory but at the expense of fault-tolerance. Therefore, such platforms could

face serious challenges while operating on real-world settings [13].

Table 2.3 compares the implementations of K-Means based on the reviewed

iterative MapReduce platforms (HaLoop, iMapReduce, Spark and Twister) with

the optimised implementations of K-Means that will be presented later in Chapter

4. The first column in the table shows the name of the algorithm and the platform

it was implemented on. For example KM-Twister denotes the implementation of

K-Means on Twister. Since the new implementations of K-Means on Hadoop using

triangle inequality have not been explained yet, we call our implementation in the

table KM-Hadoop (our work). This method of naming K-Means implementations

is for the purpose of this particular table only. The comparison is based on the

60

method each implementation follows to load input data (data points) and cluster

centroids to worker nodes. In addition, the method each approach follows to check

for convergence is compared. Finally, a brief description of the advantages and

disadvantages of each implementation is provided.

Other solutions including, Piccolo [88], Pregel [89], MapReduce online [90] and

PrIter [91], proposed various techniques to support iterative algorithms on the

MapReduce programming model.

61

In-memory
System

Iterative Process Techniques File System Fault
Tolerance

Intermediate Data
Transfer

Hadoop No Iterative algorithms not sup-
ported

HDFS Strong File

HaLoop No Loop-aware task scheduling,
caching

HDFS Strong File

iMapReduce No Persistence tasks, asyn-
chronous iterations

HDFS Strong File

Spark Yes RDDs, DAG, caching HDFS,
Cassandra,
Amazon S3

Strong RDDs

Twister Yes Long running tasks, caching Local disks Weak Publish/Subscribe
messaging

Table 2.2: Summary of features of the distributed computing frameworks Hadoop, HaLoop, iMapReduce, Spark and Twister.

62

Input Data Centroids Convergence Advantages Disadvantages

KM-Hadoop
(our work)

Re-loaded in
each iteration

Broadcasted to
workers’
local-disks in each
iteration via
DistributedCache.

The driver compares
old and new
centroids and
decides whether or
not to start a new
iteration.

Computational
complexity is
reduced. Final
output is intact.
Strong
fault-tolerance.

Large I/O and
network overheads.
Sensitive to the
structure of the
dataset.

KM-HaLoop Loaded once to
local disks,
reused over next
iterations

Broadcasted to
each mapper’s
local-disk in each
iteration.

Reducers keep
centroids from the
previous iteration
and compares them
with centroids from
the current iteration.

Reusable input
data over
iterations.
Convergence is
checked in the
reduce phase

K-Means does not
benefit from
reducer input
cache.

KM-iMapReduce Loaded from
HDFS to local
disks once,
reused in
following
iterations

Reducers load
centroids directly
to mappers’
local-disks
without writing
them to HDFS.

Same as
KM-Hadoop

Long-running
tasks. Low I/O
and communication
overheads.

K-Means does not
benefit from
asynchronous
execution of map
tasks. Number of
map and reduce
tasks must be
identical.

Continued on next page

63

Input Data Centroids Convergence Advantages Disadvantages

KM-Spark Cached
in-memory in 1st

iteration, reused
over next
iterations.

Cached in the
memory of each
mapper in each
iteration.

Same as
KM-Hadoop

Data points cached
in-memory. Low
I/O and
communication
overheads. Long
running tasks

Not efficient when
input data does not
fit into memory.

KM-Twister Cached
in-memory in 1st

iteration, reused
over next
iterations

Same as Spark New operation
Combine aggregates
output from all
reducers and checks
for convergence.

Data points cached
in-memory. Long
running tasks.
Efficient in
checking
convergence.

Weak
fault-tolerance.
Static and
intermediate data
must fit in the
distributed
memory.

Table 2.3: A comparison between the optimised K-Means implementation on Hadoop using triangle inequality (this research) and the
standard K-Means implementations based on iterative MapReduce platforms including HaLoop, iMapReduce, Spark and Twister.

64

Chapter 3

Parallel and Distributed K-Means

This chapter aims to provide a general overview over various parallel implemen-

tations of K-Means on different parallel environments. Furthermore, the chapter

covers the related work to K-Means on Hadoop and Spark. To have a full under-

standing of how K-Means works on Hadoop and Spark, a detailed description of

the implementation steps of Naive K-Means on Hadoop and Spark will be intro-

duced. Understanding these implementations is of importance as the next chapter

describes the proposed approaches to improve the efficiency and scalability of Naive

K-Means on Hadoop and Spark.

The remainder sections in this chapter are organised as follows. The first sec-

tion overviews the related work to implementations of Naive K-Means on different

parallel environments. The following section presents the related work to paral-

lel K-Means implementations based on distributed computing platforms, such as

Hadoop and Spark. A detailed explanation of the parallel implementation of Naive

K-Means on Hadoop and Spark is presented in the following section. The final

section summarises the work that has been presented in this chapter.

65

Abbreviations

Note that the names of the implemented algorithms on Hadoop and Spark in

this chapter and the remainder chapters are abbreviated, where each abbreviation

consists of the following parts:

[K-Means version]-[distributed framework]-[approach to pass information]

For example, CMP-H-BF denotes the algorithm Compare-means on Hadoop

using a Bounds File. If the last part (approach to pass information to the next

iteration) is not present, this means the algorithm does not pass any information.

For example, the implementation of Naive K-Means on Spark is denoted as NKM-

S.

3.1 Related Work to Parallel K-Means Imple-

mentations

As one of the most popular and influential data mining algorithms, K-Means has

been extensively researched and extended to cope with the rapid growth of data.

As previously mentioned, one of the drawbacks of K-Means is its poor scalability

as the data grows larger in terms of the number of data points n, dimensions d, and

clusters k. This section reviews the previous studies that implemented K-Means

on various parallel models.

Several approaches [92] [20] [93] parallelised K-Means based on Message Passing

Interface MPI [94]. For example, Dhillon and Modha [92] introduced a parallel

implementation of K-Means on distributed memory multiprocessors based on MPI.

Their method partitions the original dataset into a number of subsets. Then,

each processor processes an independent subset where distance calculations are

performed between points and centroids and each point is assigned to its closest

centroid. Then, partial sums and partial SSEs are collected and new centroids are

calculated. This process is repeated until the algorithm converges. In [93], the

66

authors also implemented K-Means based on MPI using Erlang language which

communicates through hundreds of active processes via MPI and adopts concurrent

functional paradigm.

In [20], the authors presented a parallel version of a square-error clustering algo-

rithm called P-CLUSTER (P is for parallel) on a network of workstations (NOW).

The implementation of P-CLUSTER is based on the client-server network infras-

tructure. The server partitions the input dataset into blocks where each block is

assigned to a client process. The algorithm proceeds by sending the initial set of

centroids to each client process. Then, each client assigns each data point in the

block to its nearest centroid. After the assignment phase, each client calculates

the partial sum of points assigned to each cluster (block partial sum) and sends

it to the server where the new centroids are computed and returned to the clients

starting a new iteration of assignments. This process is repeated until conver-

gence or an early termination condition is met. Three approaches were proposed

to prune unnecessary distance calculations: 1) computing spheres of guaranteed

assignment for cluster centroids, 2) computing the maximum movement effect for

patterns across iterations, 3) and maintenance of partial sums for centroids. Since

these optimisations are related to triangle inequality, they were already discussed

in section 2.3.1.1. The experimental work shows improvement in speed while in-

creasing the size of data in terms of the number of data points, dimensions, and

the number of clusters.

The work presented in [21] is realted to the work presented in this project in

terms of testing the scalability of variants of K-Means that uses triangle inequality

to reduce the number of distance computataions on a parallel environment. The

authors presented Annular K-Means and Heap K-Means as two optimised versions

of K-Means using triangle inequality. Annular K-Means and Heap K-Means along

with other variants, including Lloyd’s K-Means [18], Compare-means, Sort-means

[66], Elkan’s [19], Hamerly’s [67], and adaptive K-Means algorithm [95], were par-

67

allelised on a multithreaded fashion to test the scalability of each algorithm. A

uniformly distributed dataset was used as an input in the experiments with vari-

able number of clusters (k), and constant number of data points (n = 106), and

dimensions (d = 8). The speedup of each algorithm was measured as a function of

the number of threads t, where speedup for t number of threads is defined as the

ratio of the running time on a single thread and the running time on t threads.

The results show that Naive K-Means is the most algorithm that benefits from

increasing the number of threads where its speedup is approximately linear to the

number of threads. The authors attributes this result to two reasons:

1. Synchronisation between threads, where Naive K-Means requires a small

amount of synchronisation.

2. The work per-thread in Naive K-Means is the most predictable, while in the

optimised versions it varies from one thread to another.

This section reviewed some of the works that are related to the work in this

project with respect to implementations of K-Means on various parallel processing

models. The following section presents the related work to this project with a con-

centration on implementations of K-Means based on MapReduce and distributed

computing platforms that are similar to MapReduce.

3.2 Related Work to Parallel K-Means Based on

Distributed Computing Frameworks

This section reviews the work related to this project with an emphasis on imple-

mentations of K-Means on MapReduce and other distributed computing frame-

works such as Spark and Twister.

Zhao et al. [96] implemented K-Means on MapReduce with a combiner. In

their experimental work, the authors show that K-Means performed well in terms

68

of speedup, scaleup, and sizeup with datasets that varies in size (1-8 GB) on

variable number of nodes (1-4 nodes). However, no further details were provided

regarding the nature of the datasets, e.g. the distribution of the data, the number

of data points n, or the number of dimensions d. Furthermore, the number of

clusters k was not mentioned. In [97] [98] [99], K-Means was implemented based

on the approach used in [96]. In [98], the created clusters are resized in the reduce

phase based on the number of data points in each cluster. That is, if the number

of points in a cluster is bigger than a certain threshold, a predefined number of

data points are reassigned from this cluster to a cluster that has a low number

of data points. This contradicts the main concept of clustering which is grouping

similar objects together, without trying to create balanced clusters. In this work

we take these straightforward implementations one step further and enhance the

efficiency of K-Means by applying triangle inequality optimisations.

Esteves et al. [100], evaluated the performance of parallel naive K-Means on

Apache Mahout [101], a library on Hadoop to support machine learning algorithms.

The authors reported that K-Means scales well on Mahout if the process involves

large-scale datasets. On the other hand, when datasets are small in size, the

overhead created by writing replicas, job initialisation, and shuffling intermediate

data, becomes the dominant cost.

In [102], the authors presented an implementation of parallel K-Means on

Twister [23]. Twister is an optimised MapReduce framework that supports iter-

ative algorithms based on publish/subscribe messaging infrastructure and caches

static data in-memory of compute nodes, explained in detail in section 2.7. The

aim of their work was to efficiently cluster high dimensional social images. Trian-

gle inequality was used to reduce the number of distance computations based on

Elkan’s [19] work. Except that instead of keeping a number of lower-bounds that

is equal to the number of clusters (k) for each point as in Elkan’s algorithm, fewer

number of lower-bounds was chosen. For example, in one test where thek = 3200,

69

the algorithm was tested with 400 and 800 lower-bounds instead of 3200 to inves-

tigate the impact of keeping a number of lower-bounds that is smaller than k. The

experimental results showed notable reductions in the number of distance compu-

tations. The paper, however, does not describe how the extra information (cluster

assignments and distance bounds) was cached. It is expected, however, that the

extra information was cached in-memory at the end of the map phase. It can be

noticed from this paper how the in-memory caching in Twister can be beneficial

to K-Means. The challenge in this paper would be to cache all k lower-bounds

instead of a just a small portion and show how Twister would react in case the

bounds does not fit in memory. Note that the idea of choosing a number of lower

bounds less than k was presented in other studies (e.g. [67] and [95]) and some

of them swere reviewed in section 2.3.1. The focus of this paper is on the effect

of using triangle inequality optimisations on the amount of shuffled intermediate

data between mappers and reducers. Limited information was introduced about

the impact of these optimisations on the running time. Moreover, the experimen-

tal analysis does not investigate the effect of the increase in dimensionality on the

performance. The work presented in this research focuses on the impact of the

number of clusters, dimensions, data points, and mappers on the performance of

several K-Means implementations Hadoop and Spark.

K-means|| or Scalable K-mean++ [103] and Competitive K-Means [104], are

two approaches that implements the popular K-Means++ (explained in section

2.3) algorithm on MapReduce. The two approaches address one of K-Means++

downsides which is its inherently sequential nature. The approach of K-means||

is to sample O(k) points in each round instead of sampling one point as in K-

means++. This process is repeated for approximately O(logn) rounds. At the final

round, the algorithm produces O(klogn) points. These points are then clustered

again into k initial centroids for the Naive K-Means iteration. Both K-means||

and Competitive K-Means can gain significant benefits from our work. Since the

70

process of computing distances from points to centres is independent from the

centroids initialisation methods presented in these algorithms, our work can be

integrated with these techniques to improve the algorithm’s accuracy in addition

to efficiency and scalability.

The work in [105] proposed a K-Means implementation on MapReduce that

attempts to eliminate the iteration dependence and uses only three MapReduce

jobs. In the first job, the input dataset is sampled using k as the number of

clusters and probability px = 1
ε2 N , where N is the number of data points, and

ε ∈ (0, 1) controls the sampling size. The sampling phase produces 2k samples.

The mappers of the second job perform the clustering on these samples using

k centres and generate 2k2 centres in total. These centres are sent to a single

reducer in order to be merged into k final centres. The analysis shows that this

algorithm outperforms traditional K-means, and Kmeans|| [103] in terms of the

total running time. However, it is not clear how to choose the value of ε. One

of the advantages of the work presented in this thesis is that there is no need to

present new parameters, such as ε in this paper. Although some optimisations that

present new input parameters could achieve significant efficiency and clustering

quality improvements, these approaches are not practical in real-world settings

where the focus is to simplify the existing solutions and not vice versa.

In [106], K-Means was implemented on MapReduce and its efficiency was im-

proved by using locality sensitive hashing (LSH) to divide points into buckets

where the original points are transformed into the weighted representative points.

This method is used to prune unnecessary distance computations by computing

the distance of a given point to only a small number of centres that exist in

the same bucket as the point. The algorithm was tested with real datasets and

showed improvement in speed by 67% and 76% when k was 1500 and 3000 re-

spectively, compared to scalable K-Means++. However, the algorithm was tested

with datasets with 26 and 41 dimensions which does not give an insight on the

71

algorithm’s behaviour with data in higher dimensions. While LSH approaches find

approximate nearest neighbours rather than exact neighbours, triangle inequality

approaches compute the exact distance from points to centroids which is leads to

more accurate solutions. This is one of the reasons triangle inequality approaches

are adopted in this work.

Lee et al. [24], presented a comparison between four iterative algorithms, includ-

ing K-Means, on five different distributed frameworks including three disk-based

systems: Hadoop, HaLoop [74] and iMapReduce [80]; and two memory-based sys-

tems: Twister [23] and Spark [22]. In the experimental work, the total elapsed

time, the total HDFS read, and the reduce shuffle I/O were measured for each

pair of system-algorithm. In addition, the normalised time is measured while

varying the size of datasets, and the number of iterations. Finally, the impact

of data skew on the total elapsed time was measured. K-Means algorithm was

executed on a real-world dataset where n = 147, 251, 521, d = 3, and the number

of k was not mentioned. In the results section, the normalised time of K-Means on

Hadoop is better than Spark when the data size was increased. The reason was not

explicitly mentioned but general observations were reported and the reason can be

derived from these observations. One remark with regards to testing the effect of

the data size was that as the data size increased and the memory-based systems

start using disk (because the dataset does not fit in the main memory), the elapsed

time of memory-based systems in some cases increased rapidly as a consequence.

Another observation was that the garbage collection in memory-based systems can

significantly affect the execution time when it is triggered. It was reported that,

in general, Spark performed better than the other four systems (i.e. Hadoop,

HaLoop, iMapReduce, and Twister). Another interesting remark is that some ex-

perimental results on iMapReduce were missing. The authors attribute this to the

instability of the iMapReduce framework where some tests stopped while execution

with no obvious reason. This paper reinforces our decision to adopt Hadoop and

72

Spark as the distributed systems in our work because of their advantageous fea-

tures (particularly, their excellent stability and strong fault-tolerance) over other

systems.

The study in [107] compares MapReduce and Spark in terms of three major

architectural components: shuffle, execution model, and caching. On both frame-

works, five algorithms were tested: Word Count, Sort, K-Means, linear regression,

and PageRank. In K-Means, three artificially generated datasets were used as

input where each point has 20 dimensions and the number of data points for each

dataset are: 1 million, 200 million, and 1 billion. The results showed that K-Means

on Spark was 1.5x faster than K-Means on MapReduce in the first iteration, and

5x faster in subsequent iterations. This is because of RDD caching in Spark (ex-

plained in section 2.6), where input data is transformed into RDDs and cached

into memory in the first iteration. Then, subsequent iterations read input data

directly from memory which eliminates disk I/O that Hadoop suffers from. In our

work, the performance of K-Means on Hadoop and on Spark is also compared. By

optimising K-Means using triangle inequality we were able to speedup the stan-

dard K-Means on Hadoop to the point where the average iterations time is almost

equal to the average iteration time of the standard K-Means on Spark.

In [108], the implementation of K-means-based clustering algorithms (e.g. fuzzy

c-means) on Spark was described. Two ways were provided for loading input

data: 1) if each instance of the data is represented by all features, data points

are loaded to RDDs as dense vectors; and 2) if each instance is represented by

a < AttrID, V al > tuple (AttrID is the ID of the attribute, and V al is the

corresponding attribute value), data points are transformed into sparse vectors.

The experimental work compared the clustering quality of the new implementation

with CLUTO [109], a software package that runs clustering algorithms on a single

machine, and the reported clustering quality was described as satisfactory. The

new implementation achieved 1.5x speedup compared to MLlib’s implementation

73

of K-Means on Spark. Furthermore, testing the new implementation while varying

the number of tasks (RDD partitions) showed that the decrease in the running

time of the new implementation is approximately log linear with the increase of

the number of tasks. This project accelerates K-Means on Spark using a simple

triangle inequality approach described in section 4.6. The experimental work shows

that this approach is 7x faster than standard K-Means while maintaining the exact

output as the standard K-Means.

The work in [110] compares the performance of K-Means on Hadoop using

Mahout [101], and Spark using MLlib [87]. The experiments are run on one and

two nodes with two datasets of sizes 64MB and 1240MB. The results show that

K-Means on Spark performs faster than K-Means on Hadoop because of the RDD

caching mechanism on Spark. However, the experimental work is very limited and

does not give the reader enough information about the behaviour of K-Means on

both frameworks with respect to various important parameters such as, number

of clusters, number of data points, number of mappers, and number of reducers.

The work presented in this thesis tests standard and optimised K-Means algorithms

with various parameters and provides a detailed analysis of the overhead generated

by each operation in each algorithm.

The literature shows that most of the works have studied the behaviour of the

Naive K-Means on Hadoop and compared its performance with implementations of

K-Means on other parallel models such as Spark and Twister. Furthermore, some

works have attempted to improve the clustering quality of K-Means on Hadoop

by implementing several techniques that enhance the choice of the initial set of

centroids. Other studies have tried to speedup the running time of K-Means on

Hadoop by implementing heuristic methods that reduce the number of iterations.

To our knowledge, no attempts have addressed the issue of improving the effi-

ciency of K-Means on Hadoop by using triangle inequality approaches to remove

redundant distance computations between points and cluster centroids. Since opti-

74

Notation Description

X Input dataset of size n

C Set of cluster centroids of size k

cj Cluster centroid, where cj ∈ C, with 1 ≤ j ≤ k

c′
j New location of centroid cj

ca Closest centroid to data point x, where 1 ≤ a ≤ k

Table 3.1: Description of notations used in implementations of NKM-H.

misations based on triangle inequality produce promising results on the sequential

versions of K-Means, this project takes these optimisations one step further and

proposes different techniques to implement them on Hadoop.

The following sections will describe the implementation of Naive K-Means on

Hadoop using different approaches.

3.3 Implementation of Naive K-Means on Hadoop

(NKM-H)

This section provides a detailed description of the implementation of Naive K-

Means on Hadoop (NKM-H). Three types of implementations of NKM-H are cov-

ered:

1. NKM-H using the standard MapReduce model.

2. NKM-H using a combiner.

3. NKM-H using in-mapper-combiner.

The combiner and in-mapper-combiner are two techniques that aim to enhance

the communication overhead by reducing the amount of intermediate data that is

transferred from mappers to reducers.

Table 3.1 describes the notations that are used in NKM-H implementations.

75

3.3.1 Implementation of NKM-H with Basic MapReduce

Model

This section describes the implementation of K-Means on Hadoop using the basic

or standard MapReduce programming model. The standard programming model

in MapReduce means that map and reduce methods are implemented without any

extensions or optimisations on these basic operations. The following section will

explain the implementation of the driver, mapper, and reducer in K-Means.

Driver

The driver takes the number of clusters k and the path to the input dataset as

input parameters. The pseudocode in Algorithm 3 describes the main steps in the

driver. The driver starts by randomly selecting the initial set of centroids from the

input dataset in line 1. Then, in line 5 the centroids file is sent to all computing

nodes in the cluster through Hadoop’s DistributedCache. The DistributedCache

is a Hadoop component that copies required files by applications to the local-

disk of each data nodes in the cluster (explained in section 2.5.4). Once a file

is broadcasted through DistributedCache, it is copied to the local disk of each

node that processes the MapReduce job. This process is performed before any

map or reduce task starts. As explained in section 2.5.4, the Distributed Cache

tracks the modification timestamps of cache files to ensure that the cached files

are consistence. The mapper, combiner, and reducer classes are then set in lines

6-8. Next, the MapReduce job is triggered in line 9. If the job contains more than

one reducer, the centroids’ files that were produced by all reducers are merged into

one file in line 11. The centroids’ files are merged to facilitate caching and reading

the centroids in the next iteration.

The convergence status is checked in line 13 by retrieving the value of a user-

defined counter from the reducer (Counters are explained in section 2.5.3). In

the reducer, a user-defined counter called centresCounter is defined to count the

76

Algorithm 3: Driver(X, k)
1 C ← select k initial cluster centroids from X randomly
2 iteration← 1
3 centresCounter ← 1 //stores the count of converged centroids
4 while centresCounter > 0 or an early termination condition is not met do
5 send the set of centroids C to all computing nodes through

DistributedCache
6 set mapper to NKM–H-Mapper //Algorithm 4
7 set combiner to NKM-H-Combiner (if applied)// Algorithm 6
8 set reducer to NKM-H-Reducer //Algorithm 5
9 run the MapReduce job

10 if numberofreducers > 1 then
11 merge reducers output into one file
12 end
13 centresCounter ← get the value of centresCounter for the current

iteration
14 iteration← iteration + 1
15 end

number of converged centroids. That is, each reducer increments the counter’s

value by one if the centroid does not converge, else the counter’s value is set to

0. Thus, the value of centresCounter that is retrieved in the driver represents the

number of converged centroids across all reducers. If the counter’s value is zero,

this means all the centroids have converged and the loop stops; otherwise a new

iteration is started.

Mapper

The MapReduce framework assigns each input-split received from the HDFS to

an individual mapper. The size of each input-split can be predefined by the user

through using the following two Java methods:

• TextInputFormat.setMinInputSplitSize(job, size), and

• TextInputFormat.setMaxInputSplitSize(job, size),

where job is the job to modify, and size is the desired input-split size.

77

Algorithm 4: NKM-H-Mapper(k)
1 Function setup():
2 load centroids from DistributedCache to C
3 Function map(offset, value)
4 x← value
5 minDistance←∞
6 a← −1
7 for j ← 1 to k do
8 d← d(x, cj)
9 if d < minDistance then

10 minDistance← d
11 a← j

12 end
13 end
14 output(a, x)

Each mapper contains three functions, setup, map, and cleanup. While the

map function is invoked for each record in the input-split, setup and cleanup are

executed only once on each run of the mapper class. As shown in Algorithm 4,

setup reads the set of centres from DistributedCache and loads them to the data

structure c. Then, the map function takes as an input, key-value pairs where the

key is the offset of the data point in the input file, and the value is the data point

itself. Subsequently, the map function, in lines 6-12, iterates over C to find the

centroid with the minimum distance from the input data point. In line 13, the

index of the closest centroid (a) is emitted to the reducers with its assigned data

point as a key-value pair.

Reducer

After each mapper outputs a key-value pair, these pairs are grouped by key and

sent to the reducer in the form of (key, list(values)) pairs, where key is the cluster

index j and values are the data points that were assigned to this centroid cj by

the mappers.

The number of reducers can be determined by the user. As in the mapper, the

78

Algorithm 5: NKM-H-Reducer(k)
1 Function setup():
2 load centroids from DistributedCache to C
3 centresCounter ← 0
4 Function reduce(j, values):
5 pointsCounter ← 0
6 sum ← (0,0,...,0)
7 foreach x ∈ values do
8 sum← sum + x //vector sum
9 pointsCounter ← pointsCount + 1

10 end
11 c′

j ← sum/pointsCounter

12 load c′ to C ′

13 if c′
j 6= cj then

14 //not converged yet
15 increment centresCounter by 1
16 end
17 Function cleanup():
18 write all new centroids in C ′ to HDFS

reducer also contains three functions: setup, reduce, and cleanup. In Algorithm

5, the setup function loads the set of centroids C, and initialises C ′, which holds

the set of updated centroids. In the loop from lines 7 to 10, the vector sum of

all the points in the list is calculated and stored in sum. Then, the updated

centroid, which is represented by the mean of the data points in each cluster, is

calculated in line 11 by dividing the sum over the count of the points in each

cluster. The test in lines 13 compares the new and old values of the centroid. If

the values are the same, this means the centroid has not move and the value of

the counter centresCounter remains zero; otherwise, the centroid has moved and

centresCounter ’s value is incremented by one. Since each centroid is processed by

an individual reducer, each reducer will set the value of centresCounter to 0 or

1. The driver will then aggregate the produced values of centresCounter that are

set by each reducer. If the aggregated value of centresCounter is zero, this means

that all the centroids have converged and the algorithm stops, otherwise, at least

one centroid has not converged yet and a new iteration is started.

79

Algorithm 6: NKM-H-Combiner(k)
1 Method setup():
2 load centroids from DistributedCache to C
3 Method reduce(j, list(values))
4 pCount← 0 //holds the partial count of data points in each cluster
5 pSum← (0,0,0,...,0) //holds the partial vector sum of data points in

each cluster
6 foreach x ∈ values do
7 pSum← pSum + x
8 pCount← pCount + 1
9 end

10 output(j, (pSum,pCount))

3.3.2 Implementation of NKM-H with a Combiner

The combiner is an optional component in Hadoop that aims to reduce the amount

of intermediate data shuffled from mappers to the reducers across the cluster. The

combiner achieve this aim by performing partial aggregations on the intermediate

data the mapper has just processed. If the operations on intermediate data are

associative (grouping of numbers is not important) and commutative (order of

numbers is not important), then the reducer can work as a combiner. In the case

of K-Means, these two properties do not hold when the mean value of data points

associated to each cluster is computed. Therefore, a separate combiner class must

be implemented.

As explained in section 2.4, there is no guarantee on how many times the com-

biner will run as it might not run at all. Therefore, this issue must be considered

on the reducer’s implementation in a way that the reducer must be able to run

and produce the correct output even if the combiner does not run. Algorithm 6

shows the pseudocode of the combiner class.

The implementation of the combiner class is almost the same as the reducer.

However, to make the reducer works properly with or without the presence of the

combiner, small changes have to be made to the mapper and reducer classes in

Algorithms 4 and 5, respectively. In fact, the implementation of both, mapper and

80

reducer, using a combiner and with a in-mapper-combiner is almost the same as

their implementation in NKM-H. For this reason the parts of mapper and reducer

algorithms that need to be changed will be highlighted.

The mapper proceeds as the mapper in Algorithm 4. The only change is in the

mapper’s output, where the value is a compound object that consists of the point

and integer one that represents the count of each point:

output(a, (point,1))

Each combiner receives a pair of key-list(values), where key is the cluster index

(a) and each value ∈ values consists of (point,1). The reduce function aggregates

the partial sum (pSum), and the partial count (pCount) of the data points in each

cluster. In Algorithm 6, the loop from line 6-8 shows the aggregation process on

data points in the input list(values) for each centroid’s index j. Line 10 outputs

key-value pairs where key is the cluster index j, and value consists of the pSum

and pCount of the data points assigned to j.

After the execution of the combiner, the reducer receives key-list(values) pairs,

where key is the centroid’s index j and each value ∈ values is composed of the

pSum and pCount. The reducer always expects to receive the pSum and pCount

for each value. However, if the combiner is not invoked, the reducer’s input comes

directly from the mapper and each value in the list of values is composed of the

data point and integer one, i.e (x,1). In this case, the reducer’s would not be

affected by the absence of the combiner because point replaces pSum and integer

one replaces pCount. Therefore, the changes in reducer Algorithm 5 start from

line 7, where the for loop iterates over each value ∈ values instead of x ∈ values,

and lines 8 and 9 become:

count← count + value.get(pCount)

sum← sum + value.get(pSum),

where the values of count and sum will be extracted from each value in the

received list(values.

81

By sending partial sums and counts, the amount of intermediate data sent

from mappers to reducers is reduced. In addition, the reducer spends less time

aggregating those partial sums and counts.

3.3.3 Implementation of NKM-H with in-mapper-combiner

An alternative technique of the combiner is called in-mapper-combiner [5], where

the process of computing partial sums and counts for data points that belong to

each cluster centroid can be done inside the mapper itself. As can be seen in

Algorithm 7, the idea is to define two data structure (e.g. lists or arrays) of size k

in the mapper. The first data structure is called pSum and stores the partial sums

of data points, and the second is called pCount and stores the partial counts of

points assigned to each cluster. Each time the map function assigns a data point

to a cluster centroid, this data point is summed up with the data points that were

assigned to the same cluster centroid in previous map calls, and the count of the

assigned data points to this cluster is incremented by one. Instead of emitting

each point with its assigned cluster centroid to the reducer at the end of the map

function, the contents of pSum and pCount are emitted at the cleanup function,

which is invoked once on each run of the mapper class.

The implementation of the reducer is identical to the reducer in NKM-H using

a combiner in the previous section. The reducer operates on the partial sums and

partial counts of points.

Unlike the combiner, the programming style in the in-mapper-combiner does

not need to implement a separate reduce function. In addition, it is guaranteed

that intermediate data is aggregated before it is shuffled. However, a scalability

bottleneck can be caused. If the number of k is too large, the node that runs the

mapper must have a sufficient memory size to hold partial sums and counts [5], or

an out-of-memory exception is expected.

82

Algorithm 7: NKM-H-InMapperCombiner(k))
1 Function setup():
2 load centroids from DistributedCache to C
3 consider pSum a list that holds the partial sums of points in each

cluster
4 consider pCount a list that holds the partial counts of points in each

cluster
5 Function map(offset, value)
6 x← value
7 minDistance←∞
8 a← −1
9 for j ← 1 to k do

10 d← d(x, cj)
11 if d < minDistance then
12 minDistance← d
13 a← j

14 end
15 end
16 pSuma ← pSuma + point
17 pCounta ← pCounta + 1
18 Function cleanup():
19 for j ← 1 to k do
20 output(j, (pSumj,pCountj)
21 end

3.4 Implementation of Naive K-Means on Spark

(NKM-S)

Apache Spark is considered as one of the most important distributed computing

frameworks that gained huge popularity during the last five years. One of the

motivations behind Spark’s design is to overcome the limitation on Hadoop as it-

erative machine learning algorithms are not directly supported on Hadoop. Spark

provides an efficient abstraction for in-memory distributed computing called Re-

silient Distributed Dataset (RDD). RDDs can be transformed to new RDDs and

actions can be performed on each RDD. This feature in Spark could be useful

when running K-Means because K-Means needs to read all the input data in each

iteration in order to preform clustering. This section explains the implementation

83

Naive K-Means on Spark (NKM-S) and its performance will be compared with

multiple implementations of K-Means on Hadoop. See section 2.6 for more details

about Spark’s main abstractions and architecture.

An implementation of K-Means is provided in MLlib [87], which is library

shipped with Spark that provides various types of machine learning algorithms,

including K-Means. However, the provided version of K-Means does not show the

full implementation of the algorithm where the user needs to provide only the

path to the input dataset, number of clusters, and maximum number of iterations.

Therefore, an implementation of K-Means on Spark is provided to explore how

Spark operates. Note that since all algorithms are implemented with Java, the

description of NKM-S implementation and TIKM-S (will be explained in the next

chapter) is from the Java prospective, as other programming languages may differ

in some implementation details.

In general, each Spark application must have a driver program that configures

Spark’s job parameters and performs various parallel operations. The SparkCon-

text object allows the application to connect to the Spark computing cluster, and

can be used to build RDDs. Each RDD is divided into multiple partitions and can

be processed by multiple nodes across the distributed computing cluster. Once an

RDD is created, it can be transformed to a new RDD, or an action can be run on

it (transformations and actions are discussed in section 2.6.1).

To let Spark perform a specific computation, functions can be passed to Spark

after implementing one of Spark’s function interface from a specific package pro-

vided in Java. Spark’s API provides multiple functions to transform RDDs. As a

basic example, consider an RDD called rdd, the transformation rdd.map() applies

a function to each element in rdd and the result of the function is the new value

of each element in the returned RDD. In addition, many actions can be applied to

each RDD in order to return a result to the driver or output data to the distributed

file system. For example, the action reduce(), takes a function of two input values

84

Algorithm 8: NKM-S-Driver(X, k)
1 C ← select k initial cluster centroids from X randomly
/* transform X to an RDD and cache it */

2 JavaRDD<String> dataRDD ← read input dataset X and cache it
3 De-serialise String values in dataRDD into Vectors
4 converged← false
5 while converged == false or an early termination condition is not met do
6 JavaPairedRDD<Integer,Vector> mapPairRDD ←

dataRDD.mapToPair(FindClosest(C, k, point))
/* Count points in each cluster in mapRDD */

7 Map<Integer,Long> pointsCount← mapRDD.countByKey()
/* Calculate the vector sum of data points in
each cluster */

8 Map<Integer,Vector> pointsSum← mapRDD.reduceByKey()
/* compute new centroids */

9 for j ← 1 to k do
10 c′

j ← pointsSumj/pointsCountj

/* check for convergence */
11 if all centroids has converged then
12 converged← true
13 end
14 end

/* update the centroids list */
15 for j ← 1 to k do
16 cj ← c′

j

17 end
18 end

Algorithm 9: FindClosest(C, k, point)
1 x← point
2 minDistance←∞
3 for j ← 1 to k do
4 d← d(x, cj)
5 if d < minDistance then
6 minDistance← d
7 a← j

8 end
9 end

10 return(a,x)

of one type and returns a new value of the same type.

Algorithm: The pseudocode in Algorithm 8 illustrates the basic steps to im-

85

plement K-Means on Spark. In line 3, the input dataset file is read from HDFS.

Each data point in the file is represented as a String. Therefore, the data points

are transformed into a new RDD called dataRDD as Strings. Each data point

in dataRDD is de-serialised into a Vector. dataRDD is partitioned and cached

in the memory of the worker nodes so that it could be re-used in subsequent it-

erations. This step reduces the communication overhead compared to Hadoop’s

implementation of K-Means. In line 6, each data point in dataRDD is assigned

to its closest centroid and each cluster index with its associated data point are

returned to mapPairRDD as a pair of type <Integer,Vector>. Inside the func-

tion mapPairRDD, the function FindClosest(), illustrated in Algorithm 9, is

called where the list of centroids C, the number of clusters k, and the data point

point are passed as parameters. FindClosest() finds the closest centroid from the

passed data point and returns the index of the centroid with the data point as a

pair of type <Integer,Vector>. At this point each record in mapPairRDD is a

pair of < a, x > where a is the cluster index of the closest centroid from point

x. What is left is to find the count of points in each cluster and the vector sum

of these points in order to be able to compute the new centroids. Line 7 counts

the points in each cluster and returns the cluster index and the count of points

in this cluster to pointsCount as key-value pairs. To compute the vector sum of

data points in each cluster, line 8 uses the function reduceByKey() which groups

the points in mapRDD by key and the vector sum of points in each cluster is

calculated. The results are returned to pointsSum as key-value pairs, where key

is the cluster index and value is the vector sum of points in this cluster. At this

point the algorithm has acquired the count and the vector sum of data points in

each cluster and can proceed with computing the new centroids by dividing the

vector sum of points in each cluster over the count (lines 10-15). These steps are

then repeated in the following iterations until convergence.

Section 4.6 in the next chapter will present the implementation of Triangle In-

86

equality K-Means on Spark, which is similar to NKM-S with a simple optimisation

using a basic triangle inequality approach. The implementation of the driver will

be identical to the NKM-S-Driver in Algorithm 8. Therefore, some sections in the

next chapter will refer to Algorithm 8.

3.5 Summary

In this chapter, the early sections reviewed the related work to this project in

terms of parallel implementations of K-Means on parallel settings in general, and

on the standard MapReduce and other distributed systems based on MapReduce

in specific. It can be observed from the literature the lack of studies on parallel

implementations of K-Means using triangle inequality on the standard MapReduce

model. The focus of most studies was on methods that enhance the choice of the

initial cluster centroids in order to improve the clustering quality which usually

leads to better efficiency. Since the operation of computing point-centre distance

is independent, in most cases, from the one that chooses the initial centroids, our

work can be integrated with algorithms such as K-means|| and Competitive K-

Means. This integration is expected to produce a version of K-Means that is not

only efficient and highly scalable, but with better clustering quality.

Furthermore, a detail description of the implementation of Naive K-Means on

Hadoop with three different settings was presented. These settings include the

standard MapReduce model which uses only map and reduce tasks; a combiner

which is a functionality offered by Hadoop to reduce the amount of intermediate

data transferred from mappers to reducers; and the in-mapper-combiner which

shares the same concept as the combiner except that the intermediate data is

combined inside the map stage instead of being implemented in a separate stage.

This thesis considers the implementation of K-Means on Hadoop using the stan-

dard MapReduce model as the base-line for the accelerated version of K-Means on

87

Hadoop and Spark. This is because the Naive K-Means and the standard MapRe-

duce model are the straightforward and basic forms of K-Means and MapReduce,

respectively.

Although the implementation of Naive K-Means on Hadoop is straightforward,

it is a challenging task to implement variants of the same algorithm based on

triangle inequality. The reason is because such approaches require passing data

from one iteration to the next which Hadoop does not support. The next chapter

presents new methods that implement such approaches on Hadoop and explains

the deferences between these methods.

88

Chapter 4

Efficient Parallel K-Means using

Triangle Inequality

4.1 Introduction

As it was explained in section 2.4.3, one of Hadoop’s limitations is its lack of

support to cache intermediate data between two consecutive MapReduce jobs.

Several K-Means variants, such as Elkan’s algorithm [19], Hamerly’s algorithm

[67], Drake’s algorithm[95], and Compare-means algorithm [66], require informa-

tion from the previous iteration to use them in the current iteration to eliminate

unnecessary distance computations between points and centres. Therefore, this

chapter introduces two approaches: K-Means on Hadoop using an Extended Vec-

tor, and K-Means on Hadoop using a Bounds File. These approaches aim to allow

Hadoop to pass information from one iteration to the next to efficiently accelerate

the K-Means algorithm.

In section 2.7, several iterative MapReduce approaches were discussed. Some

of these approaches (e.g. Twister and HaLoop) are based on caching the static

data in-memory and the reuse of the same data over iterations. One problem with

such solutions is that the worker nodes need to have a large memory space to be

89

able to fit the input data. Approaches presented in this chapter, however, require

much less memory space since input data and extra information are stored on the

distributed file system. In addition, some platforms, such as Twister, has a limited

support to fault-tolerance compared to Hadoop because the data are stored on local

disks rather than a distributed file system. In general, algorithms implemented

on iterative MapReduce platforms could outperform those implemented on the

standard Hadoop’s MapReduce. However, this improvement in efficiency is usually

at the expense of other crucial features such as fault-tolerance.

To evaluate the proposed approaches, Elkan’s algorihtm [19], and Compare-

means algorithm [66] are implemented on Hadoop using each approach. Since

the steps of eliminating unnecessary distance computations for both, Elkan’s and

Compare-means algorithms, were explained in sections 2.3.1.4 and 2.3.1.3 respec-

tively, the focus in this chapter will be on how these algorithms can be implemented

on Hadoop using the proposed approaches.

In general, the assignment of data points to their closest centres in K-Means

on Hadoop is the responsibility of the mappers, while reducers are responsible

for aggregating points belonging to each centroid and producing the new set of

centroids. Therefore, the optimisation steps occur in the map phase and, as a

consequence, several mapper algorithms will be discussed in the next sections. On

the other hand, the implementation of only one reducer will be discussed because

the implementation of the reducer is identical in all of the proposed solutions.

4.2 K-Means on Hadoop using an Extended Vec-

tor (EV)

This section explains the use of a data structure called Extended Vector (EV) to

pass extra information from one iteration to the next. The idea of the Extended

Vector is to append any required information in the current iteration to the original

90

input data vector to form an EV. This EV will be the input in the next iteration,

where the input data along with any extra information associated with it, can be

read together. Therefore, the Extended Vector can be defined as: a data structure

that stores the input data vector and any extra information related to this data

vector in a given iteration, in order to be used in subsequent iterations. This can be

considered as the straight-forward solution to the problem of passing information

between iterations in Hadoop. Two K-Means variants are implemented using this

approach, Elkan’s algorithm [19] and Compare-means [66]. The following sections

will explain the implementation steps for each algorithm on Hadoop using an EV.

4.2.1 Elkan’s Algorithm on Hadoop using an Extended

Vector (ELK-H-EV)

The implementation of Elkan’s algorithm on Hadoop using an Extended Vector is

referred to as ELK-H-EV. As it was explained in section 2.3.1.4, Elkan’s algorithm

efficiently eliminates large number of unnecessary distance computations while

maintaining the same output as the Naive K-Means. In addition to the need of

computing the k2 centre-centre distances at the beginning of each iteration, the

algorithm needs to cache the following information in one iteration and use them

in the next:

1. n upper-bounds on the distance between each data point and its assigned

centroid.

2. nk lower-bounds on the distance between each data point and each centroid.

3. n cluster assignments for each data point from the previous iteration.

EV Size: Since extra information is associated with each data point, the re-

quired information will be appended to the data point, which forms the Extended

Vector (EV). Figure 4.1 illustrates the structure of an EV in ELK-H-EV. Each EV

in ELK-H-EV consists of:

91

Figure 4.1: Structure of an Extended Vector in ELK-H-EV.

• Data point vector in d dimensions.

• One upper-bound for the distance from the point to its closest centroid.

• One cluster assignment index from the previous iteration.

• k lower-bounds for the distances from the point to each centre.

Therefore, the size of each EV in ELK-H-EV is d+k +2. This means that each

mapper writes n
p
(d + k + 2) EVs to HDFS per iteration, where p is the number of

mappers.

Algorithm: The implementation of ELK-H-EV can be divided into three ma-

jor phases:

1. A driver that initiates the MapReduce jobs and controls the iterative process,

2. A map phase that assigns each point to its closest centroid (distance com-

putation elimination steps occur in this phase), and

3. A reduce phase that computes the means of points assigned to each cluster

centroid and produces new set of centroids.

Table 4.1 explains the notations that will be used in the pseudo-codes that will

be explained in the following sections.

Driver: Algorithm 10 shows the pseudo-code that describes the driver’s im-

plementation, where it is mostly similar to the NKM-H’s driver (Algorithm 3

illustrated in section 3.3.1). As explained in section 3.3.1 the driver starts by ran-

domly picking the initial k centroids. Then, in the while loop the centroids file is

92

Notation Description

X Input dataset of size n

C The set of cluster centroids of size k

k Number of clusters

cj Cluster centroid, where cj ∈ C, with 1 ≤ j ≤ k

c′
j New location for centroid cj

ca Closest centroid to data point x, where 1 ≤ a ≤ k

si,j Distance between centroids ci and ci, where 1 ≤ i, j ≤ k and i 6= j

hj Half minimum distance from cj to its closest centroid

mj The distance that centroid cj has moved in the last iteration, i.e.
d(cj,c′

j)

u An upper-bound from data point x ∈ X to its closest centroid ca

lj A lower-bound from data point x ∈ X to centroid cj

w An Extended Vector class object, which stores the data vector w.x
(x ∈ X) and required extra information (e.g. w.a, w.u)

b A collection (e.g. array, list) of all distance bounds and cluster
assignments associated to each data point.

p Number of mappers

Table 4.1: Description of notations and data structures used by ELK-H, CMP-H,
and TIKM.

sent to all computing nodes in the cluster through DistributedCache, which is a

component in Hadoop that copies desired files to all the computing nodes (section

2.5.4 explains DistributedCache in detail). The driver then sets the mapper to

ELK-H-EV-Mapper-1 in the first iteration, and to ELK-H-EV-Mapper-2 in later

iterations. Following that, the reducer is set to the Reducer in Algorithm 13. Next

the MapReduce job is submitted. Before starting a new iteration, the output from

each reducer (newly computed centroids) is merged with the output from all other

reducers into one file in case of multiple reducers. This file becomes the input

centroids file for the next iteration. The final step is to check the convergence

93

Algorithm 10: Driver(X, k)
1 select k initial cluster centroids randomly
2 iteration← 1
3 centresCounter ← 1
4 while centresCounter > 0 or an early termination condition is not met do
5 send the centroids’ file to all computing nodes through DistributedCache
6 if iteration == 1 then
7 set mapper to ELK-H-EV-Mapper-1 //Algorithm 11
8 else
9 set mapper to ELK-H-EV-Mapper-2 //Algorithm 12

10 end
11 set reducer to Reducer //Algorithm 13
12 run the MapReduce job
13 if numberOfReducers > 1 then
14 merge reducers output into one file
15 end
16 centresCounter ← get the value of centresCounter for the current

iteration
17 iteration← iteration + 1
18 end

status through checking the value of centresCounter. The iteration runs until con-

vergence or an early termination condition is met (section 3.3.1 gives more details

about checking the convergence status).

Note that only minor changes will occur in the driver’s implementation for

algorithms presented later in this chapter in comparison with the implementation

of this driver (Algorithm 10). Therefore, the implementation of this driver will be

referenced in the explanation of later algorithms and the changes will be pointed

out.

Map phase: The map phase is responsible of assigning each point to its clos-

est centroid. ELK-H requires two mapper implementations, the first mapper is

executed in the first iteration, and the second mapper is executed in subsequent

iterations. This is because in the first iteration distance bounds and cluster assign-

ments are not initialised yet. Therefore, the first mapper runs in the first iteration

and initialises distance bounds and cluster assignments, and the second mapper

runs in subsequent iterations and eliminates unnecessary distance computations.

94

Algorithm 11: ELK-H-EV-Mapper-1(k)
1 Function setup():
2 load centroids from DistributedCache to C
3 compute si,j ← d(ci, cj) //for all 1 ≤ i, j ≤ k

4 Function map(offset, point)
5 let w be an Extended Vector
6 let t be a boolean list of size k
7 w.x ← point
8 for j ← 1 to k do
9 tj ← false

10 end
11 minDistance←∞
12 for j ← 1 to k do
13 if tj then continue
14 d← d(w.x, cj)
15 w.lj ← d
16 if d < minDistance then
17 minDistance← d
18 w.u← minDistance
19 w.a← j
20 for z ← j + 1 to k do
21 if sj,z ≥ 2 ∗ d then
22 tz ← true
23 end
24 end
25 end
26 end
27 write w to HDFS
28 output(w.a, w.x)

Note that the detailed explanation of Elkan’s method to eliminate unnecessary

distance computations is presented in section 2.3.1.4, where the sequential version

of Elkan’s algorithm is also presented. For this reason this section briefly explains

Elkan’s approach to prune distance computations, and the main focus will be on

how the algorithm is implemented on Hadoop using the proposed methods.

• First Mapper: The pseudo-code in Algorithm 11 shows how upper and

lower bounds associated with each input data point x are initialised in ELK-

H-EV, where w represents an ExtendedVector (EV) class object, with the

index of the assigned cluster centroid (a), the upper-bound (u), the lower-

95

bound (l), and the data point (x), as members of w. First, a new Extended

Vector (w) is declared in line 5, then, the input data point is assigned to

w.x.

As previously mentioned, the first mapper initialises the distance bounds and

the cluster assignments. This means the first mapper would not eliminate

any distance computations and it would be much slower than subsequent

iterations. However, a modest number of distance computations, compared

to Elkan’s method, can be eliminated using Lemma 2.3.1 in section 2.3.1.1.

Lemma 2.3.1 simply states that: given two centres p and a, and a point

x, if d(p, a) ≥ 2d(x, p) then d(x, a) ≥ d(x, p). This Lemma can be used to

skip the distance computation from v.x to the next centroid in the centroids

list. To achieve this, t holds the skip status of each centroid, that is, if the

distance computation from v.x to centroid cj can be skipped, cj’s status in tj

will be true, otherwise, it is false. First, all values in t are set to false in line

9. Line 13 tests the status of the currently processed centroid. The distance

computation to this centroid is avoided if its status is true. Lines 14-19 find

the closest centroid from w.x. Then in line 20, the distance from the current

centroid to the next centroid is extracted from structure s, and line 20 tests

Lemma 2.3.1 to check if the distance to the next centroid can be eliminated.

If the test holds, the skip status of the next centroid is set to true and the

distance computation to it is skipped.

Each time the distance from point w.x to any centroid cj is computed, the

lower-bound w.lj that corresponds to cj is set to this distance. While the

upper-bound w.u is set to the distance from w.x to its closest centroid ca.

In line 27, w is written to HDFS. EVs that are written by each mapper will

be the input for the mappers in the next iteration and the map function

will read the data point with all extra information associated to this point.

Finally, the mapper outputs data point (w.x) and its assigned cluster index

96

(w.a) to reducers as a key-value pair.

Note that the input files for the next iteration will be larger in size than the

original input dataset the first mapper received because of the size of EVs.

This can cause an increase in the number of mappers in the next iteration,

which consequently increases the communication time.

• Second Mapper: Algorithm 12 illustrates the pseudo-code of the second

mapper in ELK-H-EV, which is executed on iterations > 1. The second map-

per takes as input key-value pairs, where each value represents an EV that

was stored by a mapper in the previous iteration. In lines 9-12, the lower

and upper bounds are updated. The distance (mj) centroid cj has moved

in the previous iteration is added to the upper-bound and subtracted from

each lower-bound. The centroid’s movement is part of the data structure

that holds the centroid’s vector and is computed and stored at the end of

the reduce stage. If the test in line 15 holds, all distance calculations asso-

ciated with the currently processed point are skipped. Furthermore, if any

of the three tests in lines 14-16 does not hold, the distance computation to

currently processed centroid is avoided. The distance from the point w.x to

any centroid other than the one assigned to it does not get calculated until

line 29, while the tests at line 28 repeats the tests at lines 18 and 19 but

with an updated upper-bound w.u. At this point w acquires updated values

for the assigned cluster index a, the upper-bound u, and the lower-bounds

lj (1 ≤ j ≤ k) and can be written to HDFS at line 39. Finally, the map-

per outputs the point w.x with the index of its closest centroid w.a to the

reducers.

Reduce phase: The reduce phase is responsible for computing the new cen-

troids and writes these centroids to HDFS. In section 3.3.1, the pseudo-code for

the NKM-H-Reducer (Algorithm 5) is explained in detail. Since the implementa-

97

Algorithm 12: ELK-H-EV-Mapper-2(k)
1 Function setup():
2 load centroids from DistributedCache to C
3 compute si,j ← d(ci, cj), for all 1 ≤ i, j ≤ k
4 compute hj ← minj 6=j′d(cj, cj′) ∗ 0.5, for all 1 ≤ j, j′ ≤ k

5 Function map(offset, value):
6 let w be an Extended Vector
7 w ← value
8 //update k lower-bounds
9 for j ← 1 to k do

10 w.lj ← max[w.lj −mj, 0]
11 end
12 w.u← w.u + mw.a //update upper-bound
13 g ← true //flag to check if u is updated
14 d1, d2← 0
15 if w.u ≤ hw.a then continue
16 for j ← 1 to k do
17 if (j 6= w.a)
18 &(w.u > w.lj)
19 &(w.u > sw.a,j ∗ 0.5) then
20 if g then
21 d1← d(w.x, cw.a)
22 w.u← d1
23 w.lw.a ← d1
24 g ← false

25 else
26 d1← w.u
27 end
28 if d1 > w.lj or d1 > sw.a,j ∗ 0.5 then
29 d2← d(w.x, cj)
30 w.lj ← d2
31 if d2 < d1 then
32 w.a← j
33 w.u← d2
34 g ← false

35 end
36 end
37 end
38 end
39 write w to HDFS
40 output(w.a, w.x)

tion of the reducer is identical in all algorithms including NKM-H, this section will

briefly explain the implementation of the reducer, and more details are in section

98

Algorithm 13: Reducer(k)
1 Function setup():
2 load centroids from DistributedCache to C
3 let C ′ be a list that stores the new centroids
4 centresCounter ← 0
5 Function reduce(a, points):
6 pointsCounter ← 0
7 sum ← (0,0,...,0)
8 foreach x ∈ points do
9 sum← sum + x //vector sum

10 pointsCounter ← pointsCount + 1
11 end
12 c′

j ← sum/pointsCounter

13 load c′
j to C ′

14 if c′
j 6= cj then

15 //not converged yet
16 increment centresCounter by 1
17 end
18 Function cleanup():
19 write all centroids in C ′ to HDFS

3.3.1.

In Algorithm 5, the reducer receives the index (a) of the cluster as the key

and the list of points that were assigned to a as a list of values. Each reducer

processes each a with its associated points independently. The reducer iterates

over the points to compute the vector sum. After that, the average is computed

by dividing the vector sum over the number of points to produce the new centroid.

The old and new centroids are compared, if they are not equal or results of the

comparison is not under a certain threshold, the centresCounter is incremented

by one, which consequently makes the driver runs one more iteration.

4.2.2 Compare-means on Hadoop using an Extended Vec-

tor (CMP-H-EV)

Compare-means [66] is a variant of K-Means that also uses triangle inequality to

skip redundant distance computations. While Elkan’s algorithm uses a combina-

99

tion of distance bounds and triangle inequality to eliminate unnecessary distance

computations, Compare-means uses only triangle inequality without any distance

bounds. The only required information from the previous iteration is the cluster

assignment for each data point. The method Compare-means used to reduce the

number of distance computations is presented in section 2.3.1.3. The implemen-

tation of Compare-means on Hadoop using an Extended Vector is referred to as

CMP-H-EV.

As in ELK-H-EV, CMP-H-EV needs to compute k2 centre-centre distances at

the beginning of each mapper. In addition, the algorithm needs to cache one

cluster assignment for each data point from last iteration.

Each EV in CMP-H-EV consists of:

• Data point vector of size d dimensions.

• One cluster assignment index from the previous iteration.

Therefore, the size of each EV in CMP-H-EV is d + 1. This means that each

mapper writes n
p
(d + 1) EVs to HDFS per iteration.

Algorithm: The implementation of CMP-H-EV can be also divided into three

major phases:

1. A driver that initiates the MapReduce jobs and controls the iterative process,

2. A map phase that assigns each point to its closest centroid (distance com-

putation elimination steps occur in this phase), and

3. A reduce phase that computes the means of points assigned to each cluster

centroid and produces new set of centroids.

driver: The driver’s implementation is similar to the driver in Algorithm 10,

section 4.2.1, but with minor changes. For example, CMP-H-EV has only one

mapper, therefore, there is no need to have an if statement to invoke two separate

mappers’ implementations.

100

Algorithm 14: CMP-H-EV-Mapper(k)
1 Function setup():
2 load centroids from DistributedCache to C
3 compute si,j ← d(ci, cj) //for all 1 ≤ i, j ≤ k

4 Function map(offset, value)
5 let w be an Extended Vector
6 if iteration == 1 then
7 w.x← value
8 w.a← 1
9 end

10 minDistance← d(w.x, cw.a)
11 d← 0
12 for j ← 1 to k do
13 if sj,w.a ≥ 2 ∗minDistance or j == w.a then
14 continue
15 end
16 d← d(w.x, cj)
17 if d < minDistance then
18 minDistance← d
19 w.a← j

20 end
21 end
22 write w to HDFS
23 output(w.a, w.x)

Map phase: Unlike ELK-H-EV, CMP-H-EV has only one mapper because it

does not need to initialise any distance bounds. As mentioned previously in this

section, the only extra information CMP-H-EV needs from the previous iteration

is the index of the assigned cluster to each data point (a), which needs to be

initialised in the first iteration. In this situation, a is initialised to 1 in the first

iteration for all data points, which is the index of the first centroid in the centroids

list C.

The pseudo-code in Algorithm 14 describes the steps of the mapper in CMP-H-

EV. First, it can be observed that CMP-H-EV’s algorithm is simpler than ELK-H-

EV with regards to the method each algorithm eliminates distance computations.

This simplicity makes the algorithm lighter than ELK-H-EV in terms of I/O over-

head, but this come at the cost of the amount of skipped distance computation.

101

In the first iteration, the map function receives the byte-offset of the input

record and the data point vector as a key-value pair. A new Extended Vector (w)

is declared in line 5 and the received value (data point) is assigned to w.x. The

index for the cluster centroid that was assigned to w.x in the previous iteration is

initialised to one for all data points, which is the index of the first centroids in the

centroids list. Consequently, minDistance in line 10 will be the distance from w.x

to the first centroid in the centroids list. Distance computations are avoided if the

test in line 13 holds. The test in line 13 uses Lemma 2.3.1 from section 2.3.1.1,

which states that: for two centres c1 and c2, and a data point x, if we know that

d(c1, c2) ≥ 2d(x, c1) then d(x, c2) ≥ d(x, c1), and d(x, c2) can be avoided. CMP-H-

EV performs this test at line 13 using the last centroid that point w.x was assigned

to in the previous iteration (w.a). If the test does not hold, the distance to the

centroid is computed as in NKM-H. Finally, w is written to HDFS, and the pair

(w.a,w.x) is emitted to the reducers.

In iterations > 1, the map function receives the value as an EV that contains the

data point w.x and cluster index for the centroids that point w.x was assigned to in

the previous iteration. The algorithm then attempts to skip distance computations

at line 13 as explained earlier.

Note that minDistance is initialised to the distance of the centroid that w.x was

assigned to in the previous iteration. This is because in many datasets where data

points are distributed into clusters, after the first few iterations, cluster centroids

do not move much. Meaning that the last centroid that was assigned to a given

data point has more potential to be the closest centroid in later iterations than

other centroids.

Reduce phase: The implementation of the reducer is identical to the reducer

in section 3.3.1, Algorithm 5.

102

4.3 K-Means on Hadoop using a Bounds File

(BF)

After presenting the first approach which passes information from one iteration

to the next in K-Means on Hadoop using EVs, this section introduces the second

approach called K-Means on Hadoop using a Bounds File (BF). The idea behind

this approach is motivated by the large overhead EVs create when processing large

number of clusters and dimensions. Thus, BFs attempt to reduce the overhead

from writing EVs to HDFS in each iteration.

A Bounds File (BF) can be defined as a flat file that is written to HDFS in

each mapper, where each record in this file represents extra information that is

associated to a data point in the input dataset. In other words, in a given iteration,

each mapper stores the desired extra information related to each input data point

on a file on HDFS, this file is called a Bounds File. Unlike implementations that

use EVs, each record in a BF stores only the extra information without the data

point. These files can then be read by the mappers in subsequent iterations and

each point is joined with its corresponding extra information. Figure 4.2 illustrates

the dataflow in one iteration of K-Means on Hadoop using BFs.

The following sections explain the implementations of two K-Means variants:

Elkan’s algorithm, and Compare-means on Hadoop using BFs. The sequential

implementations of these variants are discussed in sections 2.3.1.4, 2.3.1.3. In

addition, sections 4.2.1 and 4.2.2 explained the implementation steps of both algo-

rithms on Hadoop using EVs (ELK-H-EV and CMP-H-EV) with an explanation of

the method each algorithm follows to eliminate distance computations. Therefore,

the following sections focus on how to store extra information in one iteration and

retrieve it in the next using BFs.

103

Figure 4.2: Dataflow in one iteration of K-Means on Hadoop using Bounds Files.

104

4.3.1 Elkan’s Algorithm on Hadoop using a Bounds File

(ELK-H-BF)

Elkan’s algorithm uses a combination of triangle inequality and distance bounds to

reduce the number of distance computations. Elkan’s algorithm needs to maintain

the following information in one iteration and use them in the next:

1. n upper-bounds on the distance between each data point and its assigned

centroid.

2. nk lower-bounds on the distance between each data point and each centroid.

3. n cluster assignments for each data point from last iteration.

In a given iteration, each mapper in Elkan’s algorithm on Hadoop using a

Bounds File (ELK-H-BF) writes one upper-bound, k lower-bounds, and one cluster

assignment, that are associated to each data point to a BF on HDFS. In the next

iteration, each mapper finds the BF that corresponds the input-split that was

assigned to this mapper and loads all the extra information in this BF to memory.

At this point, each mapper acquired the extra information that each data point

needs to proceed with the elimination process.

How to identify which BF corresponds to which input-split? Hadoop

splits the original input dataset into a number of input-splits where each mapper

processes an individual input-split. The splitting mechanism does not change from

one iteration to another, that is, each input-split contains the same data points in

the same order from one iteration to the next. However, the input-split processed

by a given mapper in one iteration could be processed by a different mapper on

a different node in the next iteration. This issue causes a difficulty in associating

each BF to its corresponding input-split. To solve this issue, the BF’s name is

set to be the starting byte offset of the currently processed input-split. Hence, in

given iteration, the mapper searches HDFS for the BF with the name that matches

105

the starting byte offset of the input-split assigned to this mapper in the current

iteration. The contents of the BF are then loaded the memory of the mapper’s

node. Since the order of the records in the input-split does not change from one

iteration to another, the order of the records on the input-split will match the

order of records in the corresponding BF.

BF Size: In a given iteration, each mapper in ELK-H-BF writes the following

extra information for each data point to a BF:

• One upper-bound for the distance from the point to its closest centroid.

• One cluster assignment index from the previous iteration.

• k lower-bounds for the distances from the point to each centre.

Therefore, each record in a BF in ELK-H-BF is of size: K + 2, which makes

the size of each BF: n
p
(k + 2) per iteration, where n is the total number of data

points, and p is the number of mappers.

Algorithm: Similar to ELK-H-EV, ELK-H-BF consists of three major phases:

1. A driver that initiates the MapReduce jobs and controls the iterative process,

2. A map phase that assigns each point to its closest centroid (distance com-

putation elimination steps occur in this phase), and

3. A reduce phase that computes the means of points assigned to each cluster

centroid and produces new set of centroids.

Driver: The driver’s implementation is similar to the one described in section

4.2.1, Algorithm 10.

Map phase: Similar to ELK-H-EV (described in section 4.2.1), ELK-H-BF

requires two mappers’ implementations, the first mapper runs in the first itera-

tion and initialises the distance bounds and cluster assignments, while the second

mapper runs in subsequent iterations and performs the techniques for eliminating

unnecessary distance computations.

106

Algorithm 15: ELK-H-BF-Mapper-1(k)
1 Function setup():
2 load centroids from DistributedCache to C
3 compute si,j ← d(ci, cj) //for all 1 ≤ i, j ≤ k

4 Function map(offset, value)
5 x← value
6 let b be a collection that stores the extra information for x
7 for j ← 1 to k do
8 tj ← false
9 end

10 minDistance←∞
11 for j ← 1 to k do
12 if tj then continue
13 d← d(x, cj)
14 b.lj ← d
15 if d < minDistance then
16 minDistance← d
17 b.u← minDistance
18 b.a← j
19 for z ← j + 1 to k do
20 if sj,z ≥ 2 ∗ d then
21 tz ← true
22 end
23 end
24 end
25 end
26 write b to a BF on HDFS
27 output(b.a, x)

• First mapper: Algorithm 15 shows the pseudo-code of the first mapper in

ELK-H-BF, where most of the steps are similar to the steps in Algorithm

11, except that ELK-H-BF stores and reads extra information to/from BFs.

The following data structures are introduced in Algorithms 15 and 16:

1. b: is a collection of all the distance bounds and cluster assignments

associated to each data point. In ELK-H-BF, each b is of size k + 2

(k lower-bounds, one upper-bound, and one cluster assignment). Note

that in CMP-H-BF, the only required information is the index for the

assigned cluster from last iteration. This could be assigned to a variable.

107

However, in the pseudo-code, b is used to avoid confusion, maintain

consistency, and to consider this as a general approach to store any

information from previous iteration.

2. f : is a list that stores all b’s objects for all the points that are processed

by a certain mapper (in our implementation an ArrayList is used for

f). The size of f in ELK-H-BF n
p
(k +2), and in CMP-H-BF is n

p
, where

n is the number of data points, and p is the number of mappers. The

variable pointsCounter represents the index of b in f , where the order

of data points in f matches the order of data points in the input-split.

Each time the distance from the input data point to a given centroid cj is

calculated (line 13), the lower-bound b.lj is set to that distance in line 14.

Additionally, when the distance to the closest centroid is determined, the

upper-bound (b.u) is set to that distance in line 17, and the index of this

closets centroid is assigned to b.a in line 18. At this point all the extra

information for point x are acquired and can be written to a BF in line 26.

108

Algorithm 16: ELK-H-BF-Mapper-2(k)
1 Function setup():
2 load centroids from DistributedCache to C
3 compute si,j ← d(ci, cj), for all 1 ≤ i, j ≤ k
4 compute hj ← minj 6=j′d(cj, cj′) ∗ 0.5, for all j ∈ k
5 let f be a list that stores the cluster assignments for all data points
6 find the BF that corresponds to the input-split assigned to this mapper

and load its records to f
7 pointsCounter ← 1
8 Function map(offset, value):
9 x← value

10 let b be a collection that stores the cluster index assigned to x
11 b← f(pointsCounter)
12 //update k lower-bounds
13 for j ← 1 to k do
14 b.lj ← max[b.lj −mj, 0]
15 end
16 b.u← b.u + mb.a //update upper-bound
17 g ← true //flag to check if u is updated
18 d1, d2← 0
19 if b.u 6 hb.a then continue
20 for j ← 1 to k do
21 if (j 6= b.a) &(b.u > b.lj) &(b.u > sb.a,j ∗ 0.5) then
22 if g then
23 d1← d(x, cb.a)
24 b.u← d1
25 b.lb.a ← d1
26 g ← false

27 else
28 d1← b.u
29 end
30 if d1 > b.lj or d1 > sb.a,j ∗ 0.5 then
31 d2← d(x, cj)
32 b.lj ← d2
33 if d2 < d1 then
34 b.a← j
35 b.u← d2
36 g ← false

37 end
38 end
39 end
40 end
41 pointsCounter ← pointsCounter + 1
42 write b to a BF on HDFS
43 output(b.a, x)

109

• Second mapper: The pseudo-code of ELK-H-BF’s second mapper is shown

in Algorithm 16. ELK-H-BF follows the same method that ELK-H-EV uses

on eliminating distance computations, which was illustrated in Algorithm

12. The two algorithms differ in the method of reading and writing cluster

assignments and distance bounds from/to HDFS. The second mapper as-

sumes that the extra information was stored to a BF by a mapper in the

previous iteration. Therefore, each mapper searches HDFS for the BF that

corresponds to the input-split that is assigned to this mapper (line 6). When

the BF is located, each record in the BF is parsed to a collection structure

called b in the algorithm, where the size of b is k + 2 (k lower-bounds, one

upper-bound, and one cluster assignment). All b’s are then loaded to the

list f . The map function reads each b from f that corresponds to each data

point and uses the information in b to eliminate distance computations. Be-

fore sending the output to the reducers, each b is written to a BF on HDFS

in line 41. This BF is then read by a mapper in the following iteration.

Reduce phase: The implementation of the reducer is identical to the reducer

in section 3.3.1, Algorithm 5.

4.3.2 Compare-means on Hadoop using a Bounds File (CMP-

H-BF)

This section highlights the differences between implementations of Compare-means

on Hadoop using EVs and BFs. The method CMP-H follows to eliminate distance

computations is explained in section 2.3.1.3. Therefore, the focus in this section

is on how Compare-means on Hadoop writes and reads the cluster assignment for

each data point from the previous iteration using Bounds Files.

BF Size: In a given iteration, each mapper in CMP-H-BF writes the index for

the cluster assigned to each data point in the previous iteration to a BF. Therefore,

110

each mapper writes a BF of size: n
p

per iteration, where n is the total number of

data points, and p is the number of mappers.

Algorithm: CMP-H-BF consists of three major phases:

1. A driver that initiates the MapReduce jobs and controls the iterative process,

2. A map phase that assigns each point to its closest centroid (distance com-

putation elimination steps occur in this phase), and

3. A reduce phase that computes the means of points assigned to each cluster

centroid and produces new set of centroids.

Driver: The Driver’s implementation is similar to the Driver in Algorithm 10,

section 4.2.1, but with minor changes. For example, CMP-H-EV has only one

mapper, therefore, there is no need to have an if statement to invoke two separate

mappers’ implementations.

Map phase: The pseudo-code in Algorithm 17 illustrates the implementation

steps of the mapper in CMP-H-BF. In the first iteration, the index of the assigned

cluster to point x from previous iteration is initialised to one, which is the first

centroid in the centroids list C. If the test at line 20 holds, the distance com-

putation to centroid cj is skipped. After assigning x to its closest centroids cj,

index j is assigned to b.a which is then written to a BF on HDFS. This process is

repeated on subsequent iterations where previous cluster assignments can be read

from BFs. Therefore, in the setup function, the records of the BF that corresponds

the input-split that is assigned to the mapper is loaded to f . The map function

can read updated cluster assignments (line 15) from the previous iteration for each

data point.

Reduce phase: The implementation of the reducer is identical to the reducer

in section 4.2.1, Algorithm 13.

111

Algorithm 17: CMP-H-BF-Mapper(k)
1 Function setup():
2 load centroids from DistributedCache to C
3 compute si,j ← d(ci, cj) //for all 1 ≤ i, j ≤ k
4 if iteration > 1 then
5 let f be a list that stores the cluster assignments for all data point
6 locate the BF that corresponds to the input-split assigned to this

mapper and load its records to f
7 pointsCounter ← 1
8 end
9 Function map(offset, value)

10 x← value
11 let b be a collection that stores the cluster index assigned to x
12 if iteration == 1 then
13 b.a← 1 //initialise cluster assignment
14 else
15 b← f(pointsCounter)
16 end
17 minDistance← d(x, cb.a)
18 d← 0
19 for j ← 1 to k do
20 if sj,b.a ≥ 2 ∗minDistance or j == b.a then
21 continue
22 end
23 d← d(x, cj)
24 if d < minDistance then
25 minDistance← d
26 b.a← j

27 end
28 end
29 if iteration > 1 then
30 pointsCounter ← pointsCounter + 1
31 end
32 write b to a BF on HDFS
33 output(b.a, x)

4.4 Extended Vectors vs. Bounds Files

To distinguishes between EVs and BFs, we take a closer look at the type of infor-

mation each approach maintains between iterations and which of this information

is algorithm specific and which is generic.

In general, both methods (EVs and BFs) write/read the extra information

112

to/from files on HDFS. The type and size of extra information that each ap-

proach maintains is algorithm specific. To show the deference, consider the two

algorithms ELK-H and CMP-H where each algorithm is implemented on Hadoop

using EVs and BFs and run on the same input dataset. In each iteration, for

n number of data points in d dimensions, k number of cluster centroids, and p

number of mappers, ELK-H-EV writes n
p

number of EVs where the size of each

EV is (d + k + 2) consists of the data point, k lower-bounds, one upper-bound and

one cluster assignment. CMP-H-EV writes the same number of EVs (n
p
) but each

EV is of size (d + 1) because the algorithms only needs to maintain the cluster

assignments between iterations. Note that d is fixed in both algorithms and what

follows d depends on the extra information each algorithm needs to maintain. On

the other hand, the size of extra information in algorithms implemented with BFs

is independent from d. ELK-H-BF, for example, writes n
p

records in each BF where

the size of each record is (k + 2). CMP-H-BF writes the same number of records

in each BF but each record consists of only the index of the assigned cluster.

4.5 Triangle Inequality K-Means on Hadoop (TIKM-

H)

This section explains the implementation of Triangle Inequality K-Means on Hadoop

(TIKM-H). TIKM-H uses the most basic form of triangle inequality to skip redun-

dant distance computations from points to cluster centroids. That is why it was

named after triangle inequality. By the most basic form of triangle inequality we

mean that this approach does not require any information from the previous iter-

ation to skip distance computations. This approach only needs to compute intra

centre distances at the start of each mapper. In fact, the method TIKM-H follows

to skip distance computations is the same as the one used in the first mapper

of ELK-H-EV (Algorithm 11), and ELK-H-BF (Algorithm 15), where the centre-

113

Algorithm 18: TIKM-H-Mapper(k)
1 Function setup():
2 load centroids from DistributedCache to C
3 compute si,j ← d(ci, cj) //for all 1 ≤ i, j ≤ k

4 Function map(offset, value)
5 x ← value
6 //initialise all values in t
7 for j ← 1 to k do
8 tj ← false
9 end

10 minDistance←∞
11 for j ← 1 to k do
12 if tj then
13 continue
14 end
15 d← d(x, cj)
16 if d < minDistance then
17 minDistance← d
18 a← j
19 for z ← j + 1 to k do
20 if sj,z ≥ 2 ∗ d then
21 tz ← true
22 end
23 end
24 end
25 end
26 output(a, x)

centre distances are computed at the setup function of each mapper and the map

function tests the inequality in Lemma 2.3.1 in section 2.3.1.1 to see if the distance

to the next centroids in the list can be skipped.

This approach does not have the potential to prune lots of distance computa-

tions compared to ELK-H and CMP-H. However, its very small overhead could

make it a potential competitor to ELK-H and CMP-H on situations where the

overhead becomes the dominant cost.

Algorithm 18 shows how TIKM-H eliminates distance computations by simply

maintaining the skipping status of each centroid in the boolean list t, where the

distance to centroid cj is skipped if its status in the list tj is true. The status of

114

the centroids is set to true if the test in line 20 holds. The test basically checks

if the distance from the current centroid cj to the next centroid cj+1 (which were

precomputed in line 3 and stored in s) is larger or equal to double the distance

from the point x to centroid cj, which is the same inequality in Lemma 2.3.1 in

section 2.3.1.1.

4.6 Triangle Inequality K-Means on Spark (TIKM-

S)

Triangle Inequality K-Means on Spark (TIKM-S) uses the same approach used in

TIKM-H in the previous section. Basic triangle inequality optimisation is used to

eliminate unnecessary distance computations where the only required information

is the centre-centre distances before computing the distance from each point to

each centroid. The implementation of Naive K-Means on Spark is explained in

section 3.4. The implementation of TIKM-S-Driver is identical to NKM-S-Driver

in Algorithm 8 in section 3.4. The difference between NKM-S and TIKM-S is on

the implementation of the function FindClosest(), which finds the closest centroid

from each point by computing the distance between them. Therefore, to avoid

redundancy, only the implementation of FindClosest() will be presented in this

section.

As Algorithm 19 shows, centre-centre distances are computed at the beginning

of the function, and as in NKM-H, the skipping status of each centroid in the

boolean list t, where the distance to centroid cj is skipped if its status in the list

tj is true. The status of the centroids is set to true if the test in line 17 holds.

The test basically checks if the distance from the current centroid cj to the next

centroid cj+1 (which are precomputed in line 1 and stored in s) is larger or equal to

double the distance from the point x to centroid cj, which is the same inequality

in Lemma 2.3.1 in section 2.3.1.1. FindClosest returns each cluster index j with

115

Algorithm 19: FindClosest(C, k, point)
1 compute si,j ← d(ci, cj) //for all 1 ≤ i, j ≤ k
2 x← point
3 //initialise all values in t
4 for j ← 1 to k do
5 tj ← false
6 end
7 minDistance←∞
8 for j ← 1 to k do
9 if tj then

10 continue
11 end
12 d← d(x, cj)
13 if d < minDistance then
14 minDistance← d
15 a← j
16 for z ← j + 1 to k do
17 if sj,z ≥ 2 ∗ d then
18 tz ← true
19 end
20 end
21 end
22 end
23 return(a,x)

its assigned data point x as a pair.

4.7 Overhead Analysis

All the optimised algorithms generate extra overhead in order to gain speed relative

to NKM-H. This overhead can be in the form of extra memory space, computation,

or time to write/read information to/from HDFS. The cost is considered as an

overhead if it does not exist in NKM-H. Each type of overhead cost is examined

per iteration. In addition, the analysis will include only the overhead that occur

at the map phase, since most of the extra costs occur in this phase.

NKM-H requires a memory space of O(kd) to load k cluster centroids in d di-

mensions, in each mapper. Furthermore, each mapper needs to compute O(n
p
(kd))

116

distances from each data point to each centroid, where n is the number of data

points, and p is the number of mappers.

First, the overhead is examined in the simplest two algorithms; TIKM-H and

TIKM-S. Both algorithms have a memory overhead of O(k2), and a computational

overhead of O(k2), from computing centre-centre distance once in each mapper/ex-

ecuter. In fact, these two overheads can be applied to all the optimised algorithms

as all of them perform the same operation. Table 4.2 shows the asymptotic over-

head cost for each overhead type in each algorithm.

Algorithm Memory Space Write to HDFS Time
TIKM-H O(k2) -
TIKM-S O(k2) -
ELK-H-EV O(k2) O(n

p
(d + k + 2))

CMP-H-EV O(k2) O(n
p
(d + 1))

ELK-H-BF O(n
p
(k + 2) + k2) O(n

p
(k + 2))

CMP-H-BF O(n
p

+ k2) O(n
p
)

Table 4.2: The asymptotic overhead (where NKM-H is the baseline) for each
algorithm in terms of: memory space, and time to write extra information to
HDFS. All algorithms takes k2 extra time to compute centre-centre distances.
The examined overhead is for each mapper per one iteration. (n: No. of data
points, d: No. of dimensions, k: No. of clusters, p: No. of mappers).

For the rest of algorithms, the overhead is as follow:

• ELK-H-EV: In addition to the k2 extra memory space and k2 extra time

that was mentioned earlier, each mapper in ELK-H-EV needs to write n
p
(d+

k + 2) EVs to HDFS in each iteration. This increases the size of the input

dataset from nd to ndk + 2, which consequently increases the number of

mappers on iterations that follow the first iteration.

• CMP-H-EV: The time to write EVs to HDFS in CMP-H-EV is small rel-

ative to ELK-H-EV, because each EV in CMP-H-EV is of size d + 1. This

makes the time to write EVs to HDFS per mapper: O(n
p
(d + 1)).

117

• ELK-H-BF: In general, algorithms implemented using BFs require more

memory space, and spend less time in writing extra information to HDFS

compared to algorithms that use EVs. In a given iteration, each mapper

takes O(n
p
(k + 2)) time to write k lower bounds, one upper-bound and one

cluster assignment. In addition, each mapper in ELK-H-BF needs to load
n
p

records from each BF, where each record consists of k lower-bounds, one

upper-bound, and one cluster assignment. This makes the extra memory

space required by each mapper (adding to it the space for centre-centre

distances) O(n
p
(k + 2) + k2).

• CMP-H-BF: Each mapper in CMP-H-BF takes O(n
p
) time to write cluster

assignments to HDFS. Each mapper needs extra memory space of O(n
p

+ k2)

to store cluster assignments and centre-centre distances.

• Average time to write extra information to HDFS is the time each

mapper takes to write the required information using BFs or EVs.

4.8 Summary

This chapter introduced two proposed solutions: Extended Vectors (EVs) and

Bounds Files (BFs) to pass information from one iteration to the next in K-Mean on

Hadoop. These solutions were developed to facilitate the use of triangle inequality

approaches with K-Means. Each EV consists of the original data point vector

and the extra information related to it. EVs are written and read to and from

HDFS in the map phase. BFs, on the other hand, are files that consist of the extra

information related to each data point. These files are written to HDFS in one

iteration, and joined with their corresponding input-splits in the next.

The discussion about the overhead generated by each approach showed that

EVs are better than BFs in terms of memory space consumption where the records

in each BF must fit in the memory of the worker node that runs the mapper.

118

Conversely, the extra information in EVs are read as input in the map tasks along

with the data point. BFs, however, reduces the overhead generated by EVs from

rewriting data points of d dimensions to HDFS in each iteration. For a large

number of dimensions, algorithms that use BFs are expected to outperform those

that use EVs.

Earlier in this chapter, we explained that the main problem on implementing

K-Means variants based on triangle inequality is in caching the required extra

information in one iteration and read it in the next. An interesting idea to approach

this problem is to extend the Distributed Cache by adding a new functionality that

allows it to cache files in the map phase. This way we would be able to load the

extra information, stored as BFs or EVs, to Distributed Cache in one iteration and

read them in the next iteration. However, this approach is expected to face the

following challenges. The Distribute Cache is not persistence. This means that

in each iteration the Distributed Cache will have new configurations and old files

wont exist any more. Furthermore, in the implementations of K-Means using BFs,

each mapper needs to read only one BF that corresponds to the input split the

mapper is going to operate on. Distributed Cache, however, copies each cached file

to all the worker nodes in the cluster which is not the target in our case. Moreover,

the benefit from using Distributed Cache is not expected to be significant since it

will still writes/reads the files to/from disks and not to memory. This could be a

promising approach if the extra files are cached in memory and if we could find a

way to cache only the extra files that correspond to input splits processed by each

mapper without broadcasting each file to all the nodes in the cluster.

The next chapter will present a detailed analyses of the experimental work for

each algorithm.

119

Chapter 5

Experimental Results

This chapter presents and discusses the results of the experimental work that

has been carried out to evaluate the efficiency and scalability of the proposed

implementations of parallel K-Means on Hadoop and Spark.

The previous two chapters discussed the implementation steps for several K-

Means algorithms on Hadoop and Spark. These algorithms include: NKM-H,

ELK-H-EV, ELK-H-BF, CMP-H-EV, CMP-H-BF, TIKM-H, NKM-S, and TIKM-

S, which are eight algorithms in total. The algorithms are tested against various

parameters that affect the performance of K-Means in general, and the parallel

K-Means on Hadoop and Spark in particular.

The remaining sections in this chapter are organised as follows. First, a de-

scription of the datasets that are used in the experimental work is provided in

section 5.1. Section 5.2 describes the hardware and software specifications that

are used in the experiments. Section 5.3 explains the design of the experimental

work in terms of the evaluation metrics that have been chosen to measure the

performance of each algorithm, and the reason behind choosing certain values for

various parameters. A comparative analysis of optimised algorithms implemented

using EVs and BFs is discussed in section 5.4, which involves testing each algo-

rithm against variable number of clusters and dimensions, and a detailed analysis

120

of the overhead. Section 5.5.1 presents the results of comparing the performance of

algorithms implemented using a BF and tested against a variable number of clus-

ters, dimensions, data points, and mappers. Section 5.6 presents a comparative

analysis of algorithms implemented on Hadoop using a BF and two implementa-

tions of K-Means on Spark (NKM-S and TIKM-S). The final section summarises

the discussed issues in this chapter.

5.1 Datasets

The datasets used in the experimental work are either artificially generated datasets

or real-world datasets.

Artificial datasets: The reason behind generating artificial datasets is to

be able to study the performance of each algorithm within a range of parameters,

including the number of data points, number of clusters, and number of dimensions.

Furthermore, the effect of different distributions of data points is investigated by

running the algorithms on datasets with well-separated clusters as well as datasets

with uniformly (randomly) distributed data points where there are no clusters.

Table 5.1 describes the characteristics of each artificial dataset in terms of its

number of data points (n), number of dimensions (d), and the size in megabytes

(MB). The data points in all datasets in Table 5.1, except dataset DS7, are nor-

mally distributed around 128 centres to form 128 well-separated clusters.

A Java program was developed to generate the data points. The program takes

the following parameters as input: number of data points (n), number of dimen-

sions in each data point (d), number of clusters (k) and the standard deviation

(SD) where SD determines the density of the generated data points around each

cluster centroid. For each dataset configuration in Table 5.1, the main steps for

generating the data points are as follows:

1. A set of k centre vectors was generated with a uniform distribution with real

121

Name No. of points (n) No. of dimensions (d) Size (MB)

DS1

100,000

8 15
DS2 32 28
DS3 128 235
DS4 512 941
DS5 1024 1884
DS6 2048 3788
DS7 512 947

DS8 1,000,000

128

1638
DS9 3,000,000 3584
DS10 5,000,000 5836
DS11 7,000,000 8192
DS12 9,000,000 10588

Table 5.1: Characteristics of artificially generated datasets. (MB=Megabyte)

numbers in Rd.

2. For each centre, n
k

number of data points was generated with an independent

univariate Gaussian distribution for each dimension, and with a constant

standard deviation SD. Except for dataset DS7 (which will be described

later), datasets DS[1-12] have a constant standard deviation SD = 0.02.

The standard deviation determines the density of data points around each clus-

ter. The lower the standard deviation, the higher the density of data points around

the cluster centres. Generating data points with standard deviation SD = 0.02

creates well-separated clusters where the density of data points in each cluster is

high.

The data points in dataset DS7 are generated with a uniformly random dis-

tribution where there is no underlying structure in the data. The attempts to

accelerate the performance on this type of data, especially in high dimensional-

ity, gets very challenging because there are no meaningful clusters to be found

[63]. Therefore, dataset DS7 is used to test the worst scenario for the optimised

122

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1

(a) SD = 0.01

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.2 0.4 0.6 0.8 1 1.2

(b) SD = 0.05

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

(c) SD = 0.15

-1

-0.5

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1 1.5 2

(d) SD = 0.5

Figure 5.1: 2D representation of data points in four datasets with variable standard
deviation (SD) and constant values n = 5000, d = 2, and k = 8. All datasets are
generated with the same initial prototype vectors (centres). SD value varies in
the range [0.01,0.5], where clusters in dataset with SD = 0.01 are well-separated
(Figure 5.1a), while clusters in dataset with SD = 0.5 are heavily overlapped
(Figure 5.1d).

algorithms in section 5.5.1, where algorithms implemented using Bounds Files are

tested against a variable number of clusters and dimensions.

Datasets DS[1-7] are used as input to test the performance of each algorithm

with respect to variable number of clusters and dimensions. While dataset DS[8-

12] are used as input to test the efficiency and scalability of each algorithm im-

plemented using Bounds Files with respect to variable number of data points, and

mappers.

Figure 5.1 shows a graphical representation of the distribution of 2D data points

in four datasets with variations of SD values, and fixed n = 5000, d = 2, and

k = 8. Note how clusters separation start from well-separated in Figure 5.1a,

123

Name No. of points (n) No. of dimensions (d) Size (MB)

covertype 581,012 55 72

mnist 60,000 784 104

Table 5.2: Characteristics of real-world datasets. (MB=Megabyte)

where SD = 0.01, to heavily overlapped clusters in Figure 5.1d, where SD = 0.5.

Real-world datasets: To observe the practicality of the proposed algorithms

on real-world settings, two naturally-clustered datasets have been used in the ex-

perimental work. A brief description of the characteristics of real dataset is pro-

vided in Table 5.2.

The first dataset covertype, contains collected observations of trees from four

areas of the Roosevelt National Forest in Colorado. The dataset contains 581,012

observations, where each observation has 55 integer attributes. The collected data

represent information about the types of soil, the wilderness areas, elevation, slope,

forest cover type, and several other characteristics. This dataset is publicly avail-

able at the UCI Machine Learning Repository [111].

The second dataset mnist contains a total of 60,000 images of handwritten digits

(0-9) collected from approximately 250 writers. Each pixel in each image holds an

integer in the range [0,255], where 0 means the pixel is completely white, and 255

means the pixel is completely black. This produces a 28 × 28 matrix of integers.

This matrix is flattened to form a 784 (28× 28 = 784) dimensional vector.

The aim of using this dataset is to cluster similar hand written digits together

by using the integer values that represent the grey-level of each pixel.

Figure 5.2a shows an example of four images of the hand written digits 5, 0, 4

and 1. Figure 5.2b illustrates how a hand-written image of digit number 1 would

be represented as a 14× 14 matrix, where dimensions were reduced, and the value

of each pixel was normalised to the range [0,1].

This dataset has been used in many works to test the scalability and efficiency of

124

(a) Four hand written digits 5, 0, 4, and 1

(b) Sample matrix of size 14× 14 pixels representing digit number 1. The pixels’ values
are normalized to the range [0,1]

Figure 5.2: Figure 5.2a shows an example of four images of hand written digits (5,
0, 4, 1) from the mnist dataset. Figure 5.2b shows an image of the hand written
digit (1) when represented in a 14× 14 matrix of pixels [2].
.

K-Means. One of the reasons behind choosing this dataset is its high dimensional-

ity (d = 784), where the performance of K-Means is heavily affected by computing

point-centre distances. In section 5.6, mnist have been used as input to compare

the performance of implementations of K-Means variants using BFs with NKM-H,

TIKM-H, NKM-S, and TIKM-S. The dataset is available online at [112].

5.2 Hardware and Software Setup

Hardware: Apache Hadoop and Apache Spark are deployed on the same cluster

which consists of 1 master node and 16 worker nodes. The master node has 2

AMD CPUs running at 3.1GHz with 8 cores each, and 8x8GB DDR3 RAM, and

6x3TB Near Line SAS disks running at 7200 rpm. Each worker node has 1 Intel

125

CPU running at 3.1 GHz with 4 cores, 4x4GB DDR3 RAM, and a 1x1TB SATA

disk running at 7200 rpm. All the nodes run CentOS-6 (x86 64) operating system.

Software: The cluster uses Hadoop version 2.2.0 to run MapReduce on YARN.

HDFS is configured with 128 MB default block size, and a replication factor of 3

replicas for each file. The default JVM heap size is 1 GB per task.

Apache Spark 2.1.1 is deployed on the same cluster as Hadoop, where YARN

is used as the cluster manager, and HDFS as the distributed file system.

All algorithms were implemented in Java and compiled using JDK 1.7.0 79.

5.3 Experimental Design

The performance of parallel K-Means is affected by many factors. In order to give

a clear picture of the performance of each algorithm, the experimental work was

designed to address the major factors that could influence the performance of the

optimised algorithms in several domains including: number of cluster, number of

dimensions, number of data points, and number of mappers.

This section explains the configuration setup for the experimental work in terms

of, the initialisation method of cluster centroids, the definitions and the choice of

values for parameters related to Hadoop and K-Means, and an explanation of the

evaluation metrics that are used to evaluate the performance of each algorithm.

Initial centroids: as mentioned earlier in section 2.3, K-Means is sensitive to

the choice of initial centroids. This means running K-Means multiple times on a

given dataset, each time with a different set of initial centroids leads to different

final outputs for each run. To guarantee that this is not the case, all algorithms

in a given experiment operate on the same initial set of centroids, that is, all

algorithms use the same initialisation seed that is used to generate the initial set

of centroids from the input dataset.

Total number of iterations: is the number of iterations that an algorithm

126

executes until convergence or until reaching the maximum number of iterations.

Maximum number of iterations (e): is a parameter provided by the user

where an algorithm runs until it reaches this number or converges before that. The

number of maximum iterations is set to 20.

Most of the clustering work in K-Means usually occurs in the few first iterations

where the distance moved by cluster centroids is considrably large and data points

change assignments more rapidly. As the number of iterations gets larger and the

algorithm is closer to convergence, cluster centroids start to stabilise and do not

move much. Consequently, most data points do not change their cluster assignment

and stay at the same clusters that they were assigned to at the first few iterations

[20] [21]. This means that the most challenging part for the optimised algorithms is

in the early iterations and if these algorithms do well in the first iterations, they will

achieve even better efficiency in later iterations. Furthermore, triangle inequality

optimisations guarantee that the quality of the final clustering output is intact

and equivalent to the original Lloyd’s algorithm (clusterin quality is explained in

detail in sections 2.3.1.2 and 5.3.2). This is why we decided to stop the algorithms

at a fixed number of iterations in all the experiments in sections 5.4, 5.5 and 5.6.

Number of reducers (r): The number of reducers is set to 1 on experiments

that test each algorithm with a variable number of clusters and dimensions in

sections 5.4 and 5.5.1. This is because in these tests the reduce time is not the

performance bottleneck and increasing r would not have a significant effect on

performance. The number of reducers is 20 on tests with a variable number of

points in section 5.5.2 because the size of the datasets is relativity large, and after

testing against several number of reducers, it was observed that 20 reducers is the

optimal number for this particular test.

127

5.3.1 Evaluation Metrics

Each iteration of K-Means on Hadoop consists of three major phases: map, shuf-

fle, and reduce. The major operations that consumes the majority of K-Means

running time occur in the map phase. To fully understand the time consumed by

each operation in the map phase, the map time is broken down into three major

operations: 1) the average time to compute centre-centre distances, 2) the average

time to compute point-centre distances, and 3) the average time to write extra

information to HDFS. The shuffle time and reduce time are also reported.

The following is a detailed description of the evaluation metrics that are used

to evaluate the performance of each algorithm.

• Average iteration time is the average running time per iteration over

the total number of iterations that an algorithm has executed. This time

includes: the CPU time, the I/O time, and the communication time. To

compute the average time per iteration, the time for each iteration is obtained

from Hadoop’s job history log files at the end of each iteration. Then, after

all iterations complete running, the average time spent by each iteration is

computed by dividing the sum of all iterations’ times over the total number

of iterations. The iteration time does not include the time to initialise cluster

centroids because it is a one time cost that occurs only once in each test.

Later in this section, the average iteration time is inspected in terms of the

variation in the iteration times in each algorithm and whether it can be a

representative measurement index.

• Speedup: In general, speedup measures the improvement in speed for an

enhanced algorithm over a baseline algorithm [113]. In this work, the per-

formance of an optimised algorithm is reported as the speedup relative to

NKM-H algorithm, where speedup is defined as the ratio of the average

iteration time in NKM-H to the average iteration time of an optimised algo-

128

rithms. One exception is when algorithms are tested against variable number

of mappers where the baseline is the average iteration time on single mapper.

Hence, speedup in such experiments is defined as the ratio of the average it-

eration time of an algorithm on a single mapper to the average iteration

time for the same algorithm on a multiple number of mappers. For each

algorithm, the average speedup over 10 trials is reported.

• Average number of distance calculations is the average number of point-

centre distance calculations per iteration over the total number of iterations.

To obtain the average, each mapper performs a certain number of distance

computations, this number is aggregated with the number of computations

obtained from all mappers. The summation of the number of distance com-

putations that are obtained from all the mappers is maintained at the end

of each iteration. Finally, the total number of distance computations over

all iterations is computed and averaged over the total number of iterations.

• Average time to compute point-centre distances: To obtain the time

to compute point-centre distances, in a given mapper, the total time con-

sumed by point-centre distance computations for points assigned to this map-

per is computed. After the completion of all mappers, the average time per

mapper over the number of mapper is computed. After that, The total of

these averages is divided by the total number of iterations to obtain the

average time per iteration.

• Average time to compute centre-centre distances: Computing centre-

centre distances is part of the map stage where each mapper in the optimised

algorithms performs this process once in the setup function. First, the av-

erage time to compute centre-centre distances per mapper over the total

number of mappers is computed in each iteration. Then, the average time

to compute these distances per iteration over the total number of iterations

129

is reported.

• Average time to write extra information to HDFS is the time each

mapper takes to write the required information using BFs or EVs. Since

this operation is executed by each mapper, the average time to write extra

information per mapper over the number of mappers is computed, then the

average time per iteration over the total number of iterations is reported.

• Average shuffle time: The shuffle time is the time to transfer intermediate

data from mappers to reducers over the network. The shuffling of intermedi-

ate data starts as a predefined percentage (default is 5%) of the total number

of mappers complete successfully, and ends when the last record on the last

to finish mapper is transferred to its assigned reducer. The shuffle is part of

the reduce phase. The average shuffle time is obtained from Hadoop’s job

history log files. The average shuffle time per Reducer over the total number

of reducers is computed. This time is then averaged over the total number

of iterations.

• Average reduce time: The reduce time is the time taken by Reducers to

sort, merge and reduce the intermediate data fetched from mappers. The

reduce time is obtained from Hadoop’s history log files. The average time per

reducer over the total number of Reducers is then computed, and the average

reduce time per iteration over the total number of iterations is reported.

Is the Average Iteration Time a Representative Measurement Metric?

The section aims to examine the impact of the first iteration on the average it-

eration time and determine whether the average iteration time is qualified to be

used as a measurement metric. To achieve this aim, each algorithm is tested on

dataset DS4 and as Figure 5.3 shows, the first iteration time, the average iteration

time including the first iteration, and the average iteration time excluding the first

130

iteration are reported for each algorithm. Furthermore, the standard deviation

(SD) is computed for each averaged iteration time (including and excluding the

first iteration time) to show how much the iteration times differ from the average.

Figure 5.3 shows that there is no significant variation in the iteration times for

all algorithms except for ELK-H-EV and CMP-H-EV. In these two algorithms the

SD is relatively large. The average iteration time including the first iteration is

207(±22.2) in ELK-H-EV, and 225.1(±9.2) in CMP-H-EV. This variation in time

is a result of the effect of the time consumed by first iteration. The first iteration

takes longer time to complete compared to subsequent iterations as can noticed in

the figure.

The time of the first iteration differ in general between algorithms that use EVs

and all other algorithms because of the large time spent on writing EVs to HDFS.

In addition, the first iteration does not avoid as many distance computations as

0

50

100

150

200

250

300

350

T
im

e
 (

s
e
c
)

Algorithms

First iteration time

Avg. iteration time (inc. 1st iteration)

Avg. iteration time (exc. 1st iteration)

Figure 5.3: An illustration of three different times for each algorithm: 1) The
running time of the first iteration, 2) the average running time per iteration and
the standard deviation including the first iteration time, and 3) the average running
time per iteration and the standard deviation excluding the first iteration time.
(Dataset: DS4, n = 100000, d = 512, k = 128, e = 20).

131

subsequent iterations because the distance bounds and cluster assignments are not

effective yet. This leads to a slow performance in the first iteration which can be

even worse than the first iteration in NKM-H as Figure 5.3 illustrates. However,

the difference between the average iteration times (including and excluding the

first iteration time) in ELK-H-EV and CMP-H-EV is not significant. Therefore,

the average iteration time is used a measurement index and the reported average

in the experiments to follow includes the time of the first iteration.

5.3.2 Clustering Quality

In theory, the quality of the final output in the triangle inequality implementations

is guaranteed to be equivalent to Lloyd’s K-Means algorithm. In practice, the

quality of the clustering results of the optimised algorithms were validated, in

the early stages of this research, by comparing them with the clustering results

of NKM-H. Given an input dataset, all algorithms were executed with the same

initial centroids and were run until convergence. The produced cluster centroids

after each iteration in an optimised algorithm were compared with the cluster

centroids produced by NKM-H for the same iteration. If the sets of centroids in

the tested algorithms match, and the algorithms converge in the same number

of iterations, this indicates that the algorithms are deterministically equivalent,

which was the case in all our implementations.

5.4 Comparative Analysis of All Implementations

on Hadoop

The aim of this section is to investigate the scalability and efficiency of K-Means

implementations using EVs and BFs with a wide range of number of clusters (k)

and dimensions (d). Another aim is to determine the best and worse range of

k and d for each algorithm. To accomplish these aims, algorithms: ELK-H-EV,

132

CMP-H-EV, ELK-H-BF, and CMP-H-BF are tested against variable number of

clusters k and dimensions d.

First, the obtained results from testing the algorithms against a variable number

of clusters (8 ≤ k ≤ 2048) and fixed values for d and n (d = 512, n = 100000)

are analysed. Then, the results from running each algorithm on variable number

of dimensions (8 ≤ d ≤ 2048) and fixed values for k and n (k = 128, n = 100000)

are discussed.

5.4.1 Variable Number of Clusters

In order to give an insight on the effectiveness of the optimised algorithms on

avoiding distance computations, the number of distance computations for each

algorithm is discussed first.

Distance Calculations

Figure 5.4 shows the average number of distance computations per iteration over

the total number of iterations for NKM-H, ELK-H-BF, CMP-H-BF and TIKM-H.

0

50

100

150

200

250

8 32 128 512 2048

N
u

m
b

e
r

o
f

d
is

t.
 c

a
lc

.
(m

il
li
o

n
s
)

Number of k

NKM-H

ELK-H-BF

CMP-H-BF

TIKM-H

Figure 5.4: Average number of distance computations performed per iteration
for four K-Means algorithms with variable number of clusters. (Dataset: DS4,
n = 100000, d = 512, e = 20)

133

ELK-H-EV and ELK-H-BF perform an equal number of distance computations at

each iteration. This is also true for CMP-H-EV and CMP-H-BF. Thus, a discussion

about the number of distance computations for one algorithm can be applied to

the other.

ELK-H-BF efficiently eliminates a large number of distance computations with

all variations of k. Figure 5.4 shows that ELK-H-BF can eliminate around 76%

when k = 8, and around 98% when k = 512 and 2048.

CMP-H-BF works best with large number of clusters on well-separated clusters

where it eliminates 98% and 99% when k = 512 and 2048, but skips only 13% and

11% distance computations with k = 8 and 32 respectively.

Since TIKM-H implements the simplest approach to avoid distance computa-

tions, it does not prune many computations with small k. For instance, only 0.3%

and 5% of the distance computations are skipped when k = 8 and 32, respectively.

However, the skipped distance computations rises to up to 78% when k = 512,

and 94% when k = 2048.

Speedup

As explained in section 5.3.1, the performance of each optimised algorithm is re-

ported as speedup relative to the performance of NKM-H. Having higher speedups

means better performance.

Figure 5.5 shows the speedup per iteration over the total number of iterations

for five parallel implementations of K-Means on Hadoop relative to the NKM-

H algorithm. The algorithms are tested against variable number of clusters to

examine the influence of k on the performance of each algorithm. Dataset DS4

(d = 512, n = 100, 000) is the input in this experiment (see Table 5.1).

It can be noticed that, in general, the speedup for algorithms implemented with

BFs is higher than the ones implemented using EVs. When 8 ≤ k ≤ 128, ELK-

H-EV and CMP-H-EV perform the same or worse than NKM-H. This is due to

134

0

1

2

3

4

5

6

7

8

9

10

11

12

8 32 128 512 2048

S
p

e
e
d

u
p

Number of k

ELK-H-EV

CMP-H-EV

ELK-H-BF

CMP-H-BF

TIKM-H

Figure 5.5: Speedup per iteration for five parallel implementations of K-Means
on Hadoop relative to NKM-H, tested against variable number of clusters. (n =
100000, d = 512, e = 20)

the time to write EVs to HDFS in each iteration outweighs the time gained from

skipping distance computations.

Although speedups are achieved by all algorithms when 512 ≤ k ≤ 2048, it can

be clearly noticed that using BFs to write and read distance bounds and cluster

assignments is more effective than using EVs. For example, while the speedup

of ELK-H-BF is 6.6x and 5.4x where k = 512 and 2048 respectively, ELK-H-EV

achieves speedups of 3.4x and 4.4x for the same number of k. The difference is

even more clear for CMP-H-BF and CMP-H-EV. For instance, CMP-H-BF is 9.3x

and 9.6x faster than NKM-H when k = 512 and 2048, while CMP-H-EV is 3.8x

and 6.6x faster with the same numbers of k. The speedup in ELK-H-BF drops

from 6.6x when k = 512 to 5.4x when k = 2048 due to the increase in the time

to write BFs which is dependent on k. The difference in the performance between

EV and BF implementations is attributed to the amount of I/O overhead created

by each approach from writing extra information to HDFS. The impact of the

overhead is discussed in detail in the next section.

As the number of clusters gets larger than 32, TIKM-H starts to benefit from

135

the pruned distance computations combined with the light computational over-

head from centre-centre computations. The algorithm gains more speedups as the

number of clusters increases.

Overhead Analysis

This section presents a detailed analysis of the time consumed by each task per

iteration in each algorithm tested against variable number of clusters. To achieve

this, the average iteration time is broken down into three main operations: time

to compute point-centre distances, time to compute centre-centre distances, time

to write extra information to HDFS. In addition, the time to perform the rest of

operations is also reported. Section 5.3.1 explains all these measurement metrics

except for the time of rest of operations. The rest of operations time is the time

consumed by any operation other than the three operations just mentioned. Some

of the operations included in the time consumed by the rest of operations are:

the time to shuffle intermediate data, reduce time, time to merge the output of

multiple reducers, time to replicate the reducer output, job setup time, required

time by job tracker to contact application masters and assign map-reduce tasks,

time spent by worker nodes to send heartbeat signals to JobTracker, time taken

by NameNode to assign storage block and create input splits, etc.

In Figure 5.6, each bar represents the average time consumed by three major

operations, and the rest of all other operations. The x-axis represents variable

number of clusters k, and each k contains the set of algorithms that are tested

against. The main objective is to study the impact of the overhead and distance

computations on the performance of each algorithm. In addition, the figure shows

the bottleneck in each approach. The tested algorithms are: CMP-H-BF, CMP-

H-EV, ELK-H-BF, ELK-H-EV, TIKM-H, and NKM-H.

It might be noticed that the average iteration time in Figure 5.6 does not

reflect the exact speedup gained by some algorithms. That is because the rest of

136

operations time includes the time for all other operations, and the time for some of

these operations overlaps with other operations. One example is the shuffle time

where it overlaps with the map time. That is, Hadoop starts shuffling intermediate

data from mappers to reducers while mappers are still processing data.

The following remarks can be drawn from Figure 5.6:

• The bottleneck in NKM-H is the time consumed by distance computations.

The optimised approaches overcome this bottleneck but with a trade-off.

The trade-off is the time spent on writing and reading distance bounds and

cluster assignments, and computing centre-centre distances. As can be seen

in Figure 5.6, for number of clusters where 8 ≤ k ≤ 128, the impact of writ-

ing the extra information to HDFS can be clearly seen on CMP-H-EV and

ELK-H-EV, where the performance of both is either worse or almost equal

to NKM-H. The difference in performance between EV and BF implemen-

tations can be clearly noticed when k = 512 where the time to write extra

information to HDFS in ELK-H-EV and CMP-H-EV is much larger than the

time in ELK-H-BF and CMP-H-BF, respectively.

• The effect of centre-centre distance computations does not start to emerge

until k ≥ 512. The time consumed by these computations is not significant

when k = 512. However, when k = 2048, this time increases dramatically,

and in some cases, it becomes the dominant cost. For example, when k =

2048, CMP-H-BF and TIKM-H algorithms spend about 70% and 40% of

their time computing these distances, respectively.

• Although TIKM-H eliminates the least number of distance computations

compared to Elkan and Compare-means algorithms, the small overhead that

is created by computing k2 centre-centre distances makes it an excellent

competitor with all other optimised algorithms, especially when k ≥ 512.

137

0

500

1000

1500

2000

2500

3000

3500

C
M

P
-H

-B
F

C
M

P
-H

-E
V

E
L

K
-H

-B
F

E
L

K
-H

-E
V

T
IK

M
-H

N
K

M
-H

C
M

P
-H

-B
F

C
M

P
-H

-E
V

E
L

K
-H

-B
F

E
L

K
-H

-E
V

T
IK

M
-H

N
K

M
-H

C
M

P
-H

-B
F

C
M

P
-H

-E
V

E
L

K
-H

-B
F

E
L

K
-H

-E
V

T
IK

M
-H

N
K

M
-H

C
M

P
-H

-B
F

C
M

P
-H

-E
V

E
L

K
-H

-B
F

E
L

K
-H

-E
V

T
IK

M
-H

N
K

M
-H

C
M

P
-H

-B
F

C
M

P
-H

-E
V

E
L

K
-H

-B
F

E
L

K
-H

-E
V

T
IK

M
-H

N
K

M
-H

8 32 128 512 2048

T
im

e
(s

ec
)

Number of k

Time to compute point-centre distances

Time to compute centre-centre distances

Time to write extra info to HDFS

Time to perform rest of operations

Figure 5.6: Average running time per iteration for six K-Means implementations tested against variable number of clusters (k). Each
bar represents the average iteration time over 20 iterations for one algorithm divided into four operations times, 1) Time to compute
point-centre distances, 2) Time to compute centre-centre distances, 3) Time to write extra information to HDFS, and 4) Time for
the rest of all other operations.

138

5.4.2 Variable Number of Dimensions

In the previous experiment, it was shown in Figure 5.5 that the speedup of ELK-H-

EV, CMP-H-EV, CMP-H-BF, and TIKM-H relative to NKM-H keeps increasing as

the number of clusters increases. It can be also observed from Figure 5.5 that the

speedup for these algorithms started to increase when k = 128. In order to measure

the ability for the mentioned algorithms to accelerate with even higher dimensions,

each algorithm is tested with a variable number of dimensions (8 ≤ k ≤ 2048),

while the number of clusters is fixed at k = 128. Datasets DS[1-6] are used as

input in this experiment.

Figure 5.7a illustrates the speedup, relative to NKM-H, of the five optimised al-

gorithms: ELK-H-EV, CMP-H-EV, ELK-H-BF, CMP-H-BF, and TIKM-H tested

against variable number of dimensions.

In Figure 5.7a, the speedup of ELK-H-EV reaches the peak when d = 128 (2.2x)

and starts to decline as d gets larger than 128. Although ELK-H-EV eliminates

most distance computations (see Figure 5.7b) with all variations of d, the speedup

of ELK-H-EV drops to 0.3x when d = 2048. This drop in speed is caused by the

dramatic increase in the overhead from writing n
p

EVs to HDFS in each iteration,

where the size of each EV is d + k + 2 (illustrated in Figure 5.7c).

Figure 5.7c shows the average time per iteration to write EVs and BFs to HDFS

for each optimised algorithm. The time to write BFs is insignificant in ELK-H-BF

and CMP-H-BF as the number of dimensions increases. This is because the size

of each record stored to a BF is k + 2, which is independent from d. On the other

hand, ELK-H-EV and CMP-H-EV suffer from the increase of d, especially when

k ≥ 1024 where the time to write EVs becomes the dominant cost in ELK-H-EV.

139

0

1

2

3

4

5

8 32 128 512 1024 2048

S
p

e
e
d

u
p

Number of d

ELK-H-EV

CMP-H-EV

ELK-H-BF

CMP-H-BF

TIKM-H

(a) Speedup relative to NKM-H

0

2

4

6

8

10

12

14

8 32 128 512 1024 2048
N

u
m

b
e
r

o
f

d
is

t.
 c

a
lc

.
(m

il
li
o

n
s
)

Number of d

NKM-H ELK-H-BF CMP-H-BF TIKM-H

(b) Avg. no. of distance calculations

0

100

200

300

400

500

8 32 128 512 1024 2048

T
im

e
 (

s
e
c
)

Number of d

ELK-H-EV

CMP-H-EV

ELK-H-BF

CMP-H-BF

(c) Avg. time per iteration to write EVs and
BFs

Figure 5.7: Results of testing each algorithm against variable number of dimensions
(d). Figure 5.7a shows the speedup of each algorithm relative to NKM-H, Figure
5.7b depicts the average number of distance computations per iteration over the
total number of iterations, and Figure 5.7c illustrates the average time per iteration
to write EVs and BFs to HDFS. (k = 128, n = 100000, e = 20)

140

5.5 Detailed Analysis of Implementations using

a BF

It can be observed from the previous experiments that using BFs to implement

K-Means variants has more potential to scale with increasing numbers of k and

d than variants implemented with EVs. This is because algorithms that use BFs

generate smaller overhead than algorithms that use EVs. For this reason, the focus

on this section will be on optimised algorithms that are implemented using BFs.

5.5.1 Variable Number of Clusters and Dimensions

This section aims to show the impact of the number of clusters (k) and the number

of dimensions (d) on the performance of ELK-H-BF, CMP-H-BF, and TIKM-

H. The performance of these algorithms is compared against the performance of

NKM-H to examine if the proposed optimisations can achieve any speedups with

increased values of k and d. Another aim is to determine the range of k and d

where each algorithm achieves its best and worse performance.

The values of k and d varies from small, medium and large number of clusters

and dimensions, where 8 ≤ k ≤ 2048 and 8 ≤ d ≤ 512. The number of data points

is fixed at n = 100, 000, and the number of reducers r = 1. The datasets DS[1-4]

are used as input to test the performance of each algorithm with clustered data.

Dataset DS7 is used as an input to test each algorithm with uniform random data,

which is the worst case for the K-Means variants that were implemented in this

work. The real dataset covertype is used to test each algorithm with a real-world

dataset.

To examine the impact of the major operations that influences the behaviour

of each algorithm, Figures 5.8, 5.9, 5.10, and 5.11, show the average iteration

time, the average number of distance computations, the average shuffle time and

the average time to write extra information to HDFS, per iteration over the total

141

number of iterations, receptively. Each Figure contains five sub-figures where

each sub-figure represents an experiment on a given dataset with fixed number

dimensions and data points, and variable number of clusters. The sub-figures

are ordered based on the dataset that is used as an input. The sub-figures have

the same order in all Figures. For example, if we want to examine the speedup,

number of distance computations, shuffle time, and time to write extra information

to HDFS for dataset DS1 with d = 8, we will look at the Figures 5.8a, 5.9a, 5.10a.

and 5.11a.

Note that the sub-figures for the results of clustered datasets (DS[1-4]) and

the uniform random dataset (DS7) are shown together. The reason is to make it

easier to compare the impact of the underlying structure of the input data on the

performance of the optimised algorithms.

First, the analysis of the experimental work on clustered datasets (i.e. datasets

DS[1-4]) is discussed, followed by the analysis of the experimental work on the

uniform random dataset DS7. Finally, the results of the experimental work on the

real-dataset covertype are discussed.

Clustered Datasets (DS[1-4])

From Figure 5.8a to Figure 5.8d, it can be observed that, in general, CMP-H-BF

outperforms NKM-H, ELK-H-BF, and TIKM-H when 512 ≤ k ≤ 2048 for all the

tests on variations of d. The highest speedup that CMP-H-BF achieves relative to

NKM-H is 21.2x where d = 128 and k = 2048 (Figure 5.8c). This can be attributed

to two reasons: 1) CMP-H-BF eliminates larger number of distance computations

that is close to ELK-H-BF and larger than TIKM-H, which can be observed in

Figures 5.9[a-d], and 2) the small overhead CMP-H-BF generates compared to

ELK-H-BF, as can be seen in Figures 5.11[a-d].

The best performance for ELK-H-BF is when 128 ≤ d ≤ 512 and 128 ≤ k ≤

2048, as shown in Figures 5.8c and 5.8d. This is because distance computations

142

0

3

6

9

12

15

18

21

24

8 32 128 512 2048

S
p

e
e
d

u
p

Number of k

ELK-H-BF

CMP-H-BF

TIKM-H

NKM-H

(a) d = 8, DS1

0

3

6

9

12

15

18

21

24

8 32 128 512 2048

S
p

e
e
d

u
p

Number of k

ELK-H-BF

CMP-H-BF

TIKM-H

NKM-H

(b) d = 32, DS2

0

3

6

9

12

15

18

21

24

8 32 128 512 2048

S
p

e
e
d

u
p

Number of k

ELK-H-BF

CMP-H-BF

TIKM-H

NKM-H

(c) d = 128, DS3

0

3

6

9

12

15

18

21

24

8 32 128 512 2048

S
p

e
e
d

u
p

Number of k

ELK-H-BF

CMP-H-BF

TIKM-H

NKM-H

(d) d = 512, DS4

0

3

6

9

12

15

18

21

24

8 32 128 512 2048

S
p

e
e
d

u
p

Number of k

ELK-H-BF

CMP-H-BF

TIKM-H

NKM-H

(e) d = 512, DS7

Figure 5.8: Speedup of each optimised algorithm relative to NKM-H. The Fig-
ures from 5.9a to 5.9d show the results for experiments on clustered datasets
DS[1-4]. Figure 5.9e shows results for experiments on uniform random dataset
DS7. Speedup is defined here as: avg iteration time(NKM-H)/avg iteration
time(optimised). (n = 100, 000, e = 20)

143

0

50

100

150

200

250

8 32 128 512 2048

N
u

m
b

e
r

o
f

d
is

t.
 c

a
lc

.
(m

il
li
o

n
s
)

Number of k

NKM-H

ELK-H-BF

CMP-H-BF

TIKM-H

(a) d = 8, DS1

0

50

100

150

200

250

8 32 128 512 2048

N
u

m
b

e
r

o
f

d
is

t.
 c

a
lc

.
(m

il
li
o

n
s
)

Number of k

NKM-H

ELK-H-BF

CMP-H-BF

TIKM-H

(b) d = 32, DS2

0

50

100

150

200

250

8 32 128 512 2048

N
u

m
b

e
r

o
f

d
is

t.
 c

a
lc

.
(m

il
li
o

n
s
)

Number of k

NKM-H

ELK-H-BF

CMP-H-BF

TIKM-H

(c) d = 128, DS3

0

50

100

150

200

250

8 32 128 512 2048

N
u

m
b

e
r

o
f

d
is

t.
 c

a
lc

.
(m

il
li
o

n
s
)

Number of k

NKM-H

ELK-H-BF

CMP-H-BF

TIKM-H

(d) d = 512, DS4

0

50

100

150

200

250

8 32 128 512 2048

N
u

m
b

e
r

o
f

d
is

t.
 c

a
lc

.
(m

il
li
o

n
s
)

Number of k

NKM-H

ELK-H-BF

CMP-H-BF

TIKM-H

(e) d = 512, DS7

Figure 5.9: Average number of distance calculations per iteration over the num-
ber of iterations for each algorithms. The Figures from 5.9a to 5.9d show the
results for experiments on clustered datasets DS[1-4]. Figure 5.9e shows results
for experiments on uniform random dataset DS7. (n = 100, 000, e = 20)

144

0

500

1,000

1,500

2,000

2,500

8 32 128 512 2048

T
im

e
 (

s
e
c
)

Number of k

NKM-H

ELK-H-BF

CMP-H-BF

TIKM-H

(a) d = 8, DS1

0

500

1,000

1,500

2,000

2,500

8 32 128 512 2048

T
im

e
 (

s
e
c
)

Number of k

NKM-H

ELK-H-BF

CMP-H-BF

TIKM-H

(b) d = 32, DS2

0

500

1,000

1,500

2,000

2,500

8 32 128 512 2048

T
im

e
 (

s
e
c
)

Number of k

NKM-H

ELK-H-BF

CMP-H-BF

TIKM-H

(c) d = 128, DS3

0

500

1,000

1,500

2,000

2,500

8 32 128 512 2048

T
im

e
 (

s
e
c
)

Number of k

NKM-H

ELK-H-BF

CMP-H-BF

TIKM-H

(d) d = 512, DS4

0

500

1,000

1,500

2,000

2,500

8 32 128 512 2048

T
im

e
 (

s
e
c
)

Number of k

NKM-H

ELK-H-BF

CMP-H-BF

TIKM-H

(e) d = 512, DS7

Figure 5.10: Average shuffle time per iteration over the number of iterations for
each algorithms. The Figures from 5.10a to 5.10d show the results for experi-
ments on clustered datasets DS[1-4]. Figure 5.10e shows results for experiments
on uniform random dataset DS7. (n = 100, 000, e = 20)

145

0

500

1,000

1,500

2,000

2,500

8 32 128 512 2048

T
im

e
 (

s
e
c
)

Number of k

ELK-H-BF

CMP-H-BF

(a) d = 8, DS1

0

500

1,000

1,500

2,000

2,500

8 32 128 512 2048

T
im

e
 (

s
e
c
)

Number of k

ELK-H-BF

CMP-H-BF

(b) d = 32, DS2

0

500

1,000

1,500

2,000

2,500

8 32 128 512 2048

T
im

e
 (

s
e
c
)

Number of k

ELK-H-BF

CMP-H-BF

(c) d = 128, DS3

0

500

1,000

1,500

2,000

2,500

8 32 128 512 2048

T
im

e
 (

s
e
c
)

Number of k

ELK-H-BF

CMP-H-BF

(d) d = 512, DS4

0

500

1,000

1,500

2,000

2,500

8 32 128 512 2048

T
im

e
 (

s
e
c
)

Number of k

BF-Elkan

BF-Compare

(e) d = 512, DS7

Figure 5.11: Average time to write extra information to HDFS per iteration over
the total number of iterations for the optimised algorithms ELK-H-BF, and CMP-
H-BF. The Figures from 5.11a to 5.11d show the results for experiments on clus-
tered datasets DS[1-4]. Figure 5.11e shows results for experiments on uniform
random dataset DS7. (n = 100, 000, e = 20)

146

become the dominant cost in NKM-H and ELK-H-BF eliminates more than 95%

of these computations. Furthermore, the time gained from pruning distance com-

putations outweighs the time wasted on reading and writing distance bounds and

cluster assignments. Although ELK-H-BF eliminates the largest number of dis-

tance computations compared to the other two algorithms, the overhead it gener-

ates affects the performance greatly.

For small numbers of clusters and dimensions where 8 ≤ k, d ≤ 32, no significant

improvements in speed are reported for all the optimised algorithms. In fact, the

performance of ELK-H-BF is even worse than NKM-H in some cases (e.g. 0.1x of

speedup when d = 8 and k = 2048). This is because even though the optimised

algorithms eliminate some distance computations, the time that NKM-H spends

on distance computations is already small, and the time gained from eliminating

distance computations does not compensate the time spent on reading and writing

the extra information.

The impact of the performed distance computations on the shuffle time can

be seen in Figures 5.10[a-d]. Although the same amount of intermediate data in

each test for all algorithms (optimised and NKM-H) is transferred from mappers

to reducers over the network, the shuffle time can be affected by the amount of

performed distance computations because of the overlap between the map and

shuffle phases. The shuffle time in a given iteration starts as 5% of the total

number of mappers complete their work, and ends when the last pair of cluster

index and its associated data point in the last to finish mapper is transferred to its

assigned reducer. This gives the optimised algorithms the advantage to speedup

the shuffle time as these algorithms take less time to compute distances and, as

a consequence, start and finish shuffling intermediate data sooner than NKM-H.

This can be clearly seen in Figures 5.10d and 5.11e where both figures illustrate

the average shuffle time per iteration for tests on clustered and uniform datasets

where d = 512.

147

Uniform Random Dataset (DS7)

The optimised algorithms perform well when they operate on well-clustered datasets

[63] [19]. This is particularly true for CMP-H-BF because it does not use any

distance bounds and it relies only on the simple triangle inequality in Lemma

2.3.1 (see section 2.3.1.1 in Chapter 2) to skip redundant distance computations.

ELK-H-BF, however, uses a large set of distance bounds combined with trian-

gle inequality, which makes it more powerful on eliminating unnecessary distance

computations but with larger I/O overhead.

As Figure 5.8e shows, there is no gain in speedup for CMP-H-BF and TIKM-H

relative to NKM-H. This is caused by the small number of eliminated distance

calculations, which is bellow 1% of the total number of distance computations in

both algorithms (see Figure 5.9e). This also affects the shuffling time where both

algorithms spend the same time as NKM-H in shuffling the data from mappers to

reducers.

ELK-H-BF, on the other hand, eliminates up to 82% (when k = 2048) distance

computations from the total number of distance computations. This is reflected

on the speedup where ELK-H-BF was 2.8x times faster than NKM-H when the

number of clusters are in the range of 128 ≤ k ≤ 512.

This experiment clearly shows how the sparsity of clusters could effects the

performance of K-Means variants that rely on triangle inequality to skip distance

computations.

Real-world Dataset (covertype)

To study the performance of each algorithm with real-world settings, the real

dataset covertype is used as an input for each algorithm and tested against variable

number of clusters (8 ≤ k ≤ 2048). Please see section 5.1 and Table 5.2 for further

details regarding real datasets.

In general, CMP-H-BF and TIKM-H achieve high speedups relative to NKM-

148

0

5

10

15

20

25

30

35

8 32 128 512 2048

S
p

e
e
d

u
p

Number of k

NKM-H

ELK-H-BF

CMP-H-BF

TIKM-H

(a) Speedup relative to NKM-H

0

200

400

600

800

1000

1200

1400

8 32 128 512 2048

N
u

m
b

e
r.

 o
f

d
is

t
c
a
lc

 (
m

il
li
o

n
s
)

Number of k

NKM-H

ELK-H-BF

CMP-H-BF

TIKM-H

(b) Avg. no. of distance computations

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

8 32 128 512 2048

T
im

e
 (

s
e
c
)

Number of k

NKM-H

ELK-H-BF

CMP-H-BF

TIKM-H

(c) Avg. Shuffle time

0

200

400

600

800

1,000

1,200

8 32 128 512 2048

T
im

e
 (

s
e
c
)

Number of k

ELK-H-BF

CMP-H-BF

(d) Avg time to write BFs

Figure 5.12: Results of testing each algorithm on the real-world dataset covertype.
Figure 5.12a depicts the speedup of each algorithm relative to NKM-H, Figure
5.12b shows the average number of distance computations per iteration, Figure
5.12c shows average shuffle time per iteration, and Figure 5.12d illustrates the
average time to write BFs to HDFS. Each algorithm is tested with respect to
variable number of clusters. (Dataset: mnist, n = 581, 012, d = 55, e = 20)

H as the number of clusters increases, as it can be observed from Figure 5.12a.

The speedups for CMP-H-BF and TIKM-H, relative to NKM-H, are 33x and 15x,

respectively, where k = 2048. ELK-H-BF, on the other hand, achieves a speedup

of 7.2x when k = 128 then the speedup starts to drop as the number of clusters

gets larger until it reaches 3x when k = 2048. This drop in speed in ELK-H-BF is

due to the increase of the overhead that is generated from writing distance bounds

and cluster assignments to HDFS as Figure 5.12d shows.

149

5.5.2 Variable Number of Data Points

This section aims to test the performance of each algorithm against an increased

number of data points (n). Each algorithm is tested against five clustered datasets,

DS[8-12] (see Table 5.1), each with a variable number of data points and constant

number of clusters k = 128, and dimensions d = 128. The number of data points

starts at 1,000,000 and increases by 2,000,000 data points in the following datasets

until it reaches 9,000,000 data points. As the number of data points increases, the

number of mappers increases accordingly. The number of mappers is obtained by

dividing the total size of the dataset over the size of the HDFS block size (the block

size in this experiment is 128 MB). For example, dataset DS8 (n = 1, 000, 000) is

processed on 13 mappers, while dataset DS12 is processed on 83 mappers.

Figure 5.13b illustrates the average number of distance computations per iter-

ation and Figure 5.13a plots the average running time per iteration over the total

number of iterations for each algorithms. The impact of the reduction in distance

computations can be clearly observed in these two figures. When the number of

data points is in the range of 1, 000, 000 ≤ n ≤ 7, 000, 000, CMP-H-BF and TIKM-

H skip around 40% and 70% distance computations, respectively. The number of

skipped distance computations increases for both algorithms when n = 9, 000, 000

to about 85% for CMP-H-BF and 80% for TIKM-H, which in return reduces the

iteration time for both algorithms (see Figure 5.13a). Although ELK-H-BF elim-

inates most of the distance computations (about 95%), the time to write BFs to

HDFS, illustrated in Figure 5.13c, makes the algorithm runs at almost the same

speed as TIKM-H, except when n = 9, 000, 000, where TIKM-H is faster. This is

because TIKM-H takes advantage of the light overhead and the large amount of

skipped distance computations compared to the number of distance computations

that was skipped where n < 9, 000, 000.

150

0

100

200

300

400

500

600

1,000,000 3,000,000 5,000,000 7,000,000 9,000,000

T
im

e
 (

s
e
c
)

Number of n

KMN-H

ELK-H-BF

CMP-H-BF

TIKM-H

(a) Avg iteration time.

0

200

400

600

800

1000

1200

1400

1,000,000 3,000,000 5,000,000 7,000,000 9,000,000

N
u

m
b

e
r

o
f

d
is

t.
 c

a
lc

.
(m

il
li
o

n
s
)

Number of n

KMN-H

ELK-H-BF

CMP-H-BF

TIKM-H

(b) Avg. no. of distance computations.

0

10

20

30

40

50

60

70

80

1,000,000 3,000,000 5,000,000 7,000,000 9,000,000

T
im

e
 (

s
e
c
)

Number of n

ELK-H-BF

CMP-H-BF

(c) Avg. time to write BFs to HDFS.

Figure 5.13: Results of testing each algorithm against variable number of data
points (n), (d = 128, k = 128, e = 20)

5.5.3 Variable Number of Mappers

The aim of this section is to investigate the scalability of each algorithm as the

number of processing elements, which in this case is the number of mappers (p),

is increased. To achieve this purpose, all algorithms run on a fixed problem size

where n = 1, 000, 000, and d = 128, and the number of mappers is varied. The

number of mappers starts from p = 1 and increased by 4 mapper each time and

up to p = 12.

Figure 5.14a shows the speedup of each algorithm tested against variable num-

ber of mappers. The speedup in this experiment measures the relative gain in

performance of executing each algorithm in parallel against executing the same al-

151

0

2

4

6

8

10

12

14

1 4 8 12

S
p

e
e
d

u
p

Number of p

NKM-H

ELK-H-BF

CMP-H-BF

TIKM-H

linear

(a) Speedup relative to 1 mapper.

0

100

200

300

400

500

600

700

800

1 4 8 12

T
im

e
 (

s
e
c
)

Number of p

NKM-H

ELK-H-BF

CMP-H-BF

TIKM-H

(b) Avg. iterations time.

0

20

40

60

80

100

120

140

NKM-H ELK-H-BF CMP-H-BF TIKM-H

N
u

m
b

e
r

o
f

d
is

t.

c
a
lc

.
(m

il
li
o

n
s
)

Algorithms

(c) Avg. no. of distance computations.

0

50

100

150

200

250

1 4 8 12

T
im

e
 (

s
e
c
)

Number of p

ELK-H-BF

CMP-H-BF

(d) Avg. time to write BFs.

Figure 5.14: Results of testing each algorithm against variable number of mappers
(p), (Dataset: DS6, n = 1, 000, 000, d = 128, k = 128, e = 20)

gorithm on a single mapper. To compute the speedup, the average iteration time

for an algorithm is measured on a single mapper and multiple mappers, and the

former is divided by the latter. An ideal parallel algorithm achieves speedups linear

to p, which is hard to achieve considering the communication and I/O overheads

in the parallel system.

Note that the test results for the speedup of each algorithm in Figure 5.14a

is independent from the results of other algorithms. This is because the baseline

configurations for each test is different from the other. For example, the speedup

of NKM-H on multiple number of mappers is relative to the speed of the same

algorithm on a single mapper. For this reason Figure 5.14b illustrates the average

iteration time for each algorithm over the total number of iterations to be able to

152

compare the running time of the algorithms on a different number of mappers.

Figure 5.14a shows that NKM-H and TIKM-H gain more parallel speedups

from adding more mappers compared to ELK-H-BF and CMP-H-BF. This is be-

cause each mapper in NKM-H and TIKM-H computes larger numbers of distances

compared to ELK-H-BF and CMP-H-BF as Figure 5.14c shows. This means that

each mapper in NKM-H and TIKM-H spends a large amount of time computing

distances and distributing this workload over a multiple number of mappers would

lead to more gain in parallel speedups.

In Figure 5.14b modest improvement is achieved in terms of decreasing the

average iteration time for CMP-H-BF by adding more mappers. This is because

the algorithm has a small overhead (see Figure 5.14d) and prunes around 75% of

distance computations (see Figure 5.14c) which makes it already fast on a single

mapper (≈ 3 times faster than NKM-H).

ELK-H-BF avoids about 95% of distance computations which compensates the

time wasted on writing BFs to HDFS. Furthermore, because of this overhead, the

algorithm benefits from adding additional mappers, especially when p = 4 and 8,

as Figure 5.14d illustrates.

5.6 Comparative Analysis of K-Means Implemen-

tations on Hadoop and Spark

This section presents the results obtained from the experimental work on Apache

Spark and compares these results against experimental work on Apache Hadoop.

The goal of this experiment is to provide a comparative analysis between the

performances of NKM-H, ELK-H-BF, CMP-H-BF, TIKM-H, NKM-S, and TIKM-

S.

The experiments are executed on the real dataset mnist, and tested against

variable number of clusters where 32 ≤ k ≤ 2048, with fixed d = 748, and n =

153

0

20

40

60

80

100

120

140

160

180

200

32 128 512 2048

T
im

e
 (

s
e
c
)

Number of k

NKM-H

ELK-H-BF

CMP-H-BF

TIKM-H

NKM-S

TIKM-S

(a) Avg. iterations time.

0

2

4

6

8

10

12

14

16

32 128 512 2048

S
p

e
e
d

u
p

Number of k

ELK-H-BF

CMP-H-BF

TIKM-H

NKM-S

TIKM-S

(b) Speedup relative to NKM-H.

0

20

40

60

80

100

120

140

32 128 512 2048

N
u

m
b

e
r

o
f

d
is

t.
 c

a
lc

.
(m

il
li
o

n
s
)

Number of k

NKM-H

ELK-H-BF

CMP-H-BF

TIKM-H

(c) Avg. no. of distance computations.

Figure 5.15: Results of testing algorithms on Hadoop using BFs and algorithms
on Spark on real dataset mnist with respect to variable number of clusters. Figure
5.15a shows the average iteration time for each algorithm, Figure 5.15b shows the
speedup of each algorithm relative to NKM-H, and Figure 5.15c shows the average
number of distance computations for each algorithm. Note that algorithms NKM-
S and TIKM-S are not included in Figure 5.15c because the number of distance
calculations in NKM-H and NKM-S is identical, and this can be also applied to
TIKM-H and TIKM-S. (Dataset: mnist, n = 60, 000, d = 784, e = 20)

60000 (see section 5.1). Note that the size of the dataset is 104 MB, which is

smaller than the default HDFS block size of 128 MB. This means if 128 MB is

used as the size of the block size, the dataset will by processed by only one mapper.

Therefore, the HDFS block size is set to 20 MB instead of 128 MB in order to

make the dataset processed by more than one mapper/executor.

Figure 5.15a shows the average running time per iteration for all algorithms

where each algorithm is tested against variable number of clusters. It can be

154

observed that NKM-S is faster than all K-Means implementations on Hadoop for

32 ≤ k ≤ 128. This is attributed to the caching mechanism in Spark where

input data is distributed over the cluster executor nodes and cached in-memory

in the first iteration and reused in subsequent iterations in the form of Resilient

Distributed Datasets (RDDs). This feature, unlike Hadoop, reduces the I/O and

communication overheads. However, as k increases, distance computations become

the bottleneck and the running time starts to increase to the point where it comes

very close to the running time of CMP-H-BF and TIKM-H when k = 2048.

TIKM-S, on the other hand, outperforms all algorithms including NKM-S when

128 ≤ k ≤ 2048. This is because TIKM-S skips around 17%, 33%, and 45% of

distance computations when k = 128, 512, and 2048, respectively, as can be seen

in Figure 5.15c, with a small overhead from computing k2 centre-centre distances

performed by each executor.

Figure 5.15b plots the speedup per iteration relative to NKM-H for each algo-

rithm. CMP-H-BF and TIKM-H were able to reduce the large gap in speedup

between them and NKM-S when k = 2048. That is, when k = 2048, CMP-H-BF

and TIKM-H achieve 1.4x speedups, while NKM-S achieves and 1.9x. This makes

CMP-H-BF and TIKM-H compete with NKM-S when the number of clusters is

large.

5.7 Summary

This chapter presented the analysis of the experimental work that was carried out

to evaluate the effectiveness of the proposed K-Means optimisations based on tri-

angle inequality. NKM-H was used as a baseline for the new optimised implemen-

tations of K-Means using triangle inequality. The algorithms were tested against

variable number of clusters (k), dimensions (d), data points (n) and mappers (p).

The impact of the triangle inequality optimisations on the number of distance

155

computations was analysed first. The experiments showed that ELK algorithm

outperforms all other algorithms in terms of the number of skipped distance com-

putations. This can be attributed to the distance bounds that are used in ELK

which allows the algorithm to do more comparisons and avoid more computa-

tions. However, the generated overhead from writing these bounds to HDFS had

a considerable affected on the performance of ELK.

The performance of implementations of K-Means optimisations using EVs and

BFs was investigated. The results showed that the performance of K-Means im-

plementations with EVs can be greatly affected by the generated overhead from

writing extra information to HDFS. For example, when the algorithms were tested

against variable number of clusters, the speedup achieved by ELK-H-BF is much

greater than the one achieved by ELK-H-EV when k ≥ 128. Since CMP algo-

rithm writes only one cluster assignment to HDFS in each iteration, CMP-H-BF

algorithm was able to achieve notable speedups as the number of clusters and

dimensions was increased. An interesting finding is that the TIKM-H algorithm

achieved notable speedups, despite the fact that it adopts the simplest optimisa-

tion, due to its light-weight overhead.

The main operations that generated additional overheads in EVs and BFs im-

plementations were investigated. It was noticed that writing the extra information

to HDFS in each iteration affects the performance in implementations with both

methods, EVs and BFs. However, this overhead is more evident on EVs implemen-

tations because of the large size of each EV compared to each record stored on BFs.

Furthermore, the overhead from computing centre-centre distances is insignificant

when k ≤ 512. As k gets larger than 512, the impact of centre-centre computations

can degrade the performance. Testing the algorithms against variable number of d

showed the superiority of implementations with BFs. This is because the records

in BFs are independent from d where only the extra information are written. Im-

plementations with EVs, on the other hand, store data points in d dimensions with

156

the extra information. Therefore, as d increases, the overhead from writing EVs

also increases and becomes the performance bottleneck.

The performance of algorithms implemented with BFs was compared against

variable number of k, d, n and p. Three types of datasets were used as input: clus-

tered, uniform random dataset, and real-world datasets. With clustered datasets,

CMP-H-BF achieved the highest speedups (21x where d = 128 and k = 2048).

TIKM-H achieved moderate speedups but its speedup improved as k and d in-

creased. On the other hand, tests on uniform random datasets showed how ELK-H

had the advantage of using distance bounds to eliminate a large number of distance

computations compared to CMP-H and TIKM-H. In this setting, ELK-H-BF was

the only algorithm to be able to improve the speedups, while the other algorithms

had approximately the same performance as NKM-H.

A comparison of BF implementations on Hadoop and two implementations of

K-Means on Spark was discussed. The algorithms were tested against variable

number of k. The results showed that CMP-H-BF is a good candidate that can

accelerate the NKM-H to the point where its performance is close to NKM-S.

TIKM-S outperformed all other algorithms when 128 ≤ k ≤ 2048, taking advan-

tage of the cached in-memory datasets, and the gain in speed from eliminating

distance computations using the basic triangle inequality optimisation.

157

Chapter 6

Conclusions

This chapter summarises the main contributions of this thesis and presents the con-

clusions that can be drawn from the investigations that were carried out through

the journey of this work. Future work that could add valuable contributions to

this research is discussed in the last section.

The main aim of this thesis is to improve the efficiency and scalability of the

Naive K-Means algorithm on Hadoop (NKH-H). To achieve this aim, the rich body

of research was thoroughly investigated to identify efficient approaches that can

speedup the clustering process in the Naive K-Mean. Among the large number of

approaches that attempt to enhance the running time, using triangle inequality to

skip redundant distance computations can accelerate the performance of K-Mean

while maintaining the exact clustering results produced by the Naive K-Means.

Such approaches meet the first and second objectives of this research to design

and implement parallel solutions for K-Means on Hadoop that are more efficient

and deterministically produce the same clustering results of Lloyd’s algorithm and

to adopt optimisation techniques based on triangle inequality. .

The implementation of variants that use triangle inequality on Hadoop is a

challenging task. This is because these variants need to carry extra information

from one iteration to the next and Hadoop does not provide a mechanism to ex-

158

change intermediate data between two consecutive MapReduce jobs. Hence, two

new techniques: K-Means on Hadoop using an Extended Vector (EV), and K-

Means on Hadoop using a Bounds File (BF), were introduced in Chapter 4 to give

Hadoop the ability to transfer intermediate data from one iteration to the next

without modifying the internal components of Hadoop. The new proposed tech-

niques achieve the third objective of this project which is to provide a mechanism

to carry extra information from one iteration to the next on Hadoop. To achieve

this objective, two optimisations (Elkan’s algorithm and Compare-means) were

implemented on Hadoop using each technique to test the effectiveness of each one.

Furthermore, an implementation of K-Means on Hadoop using the basic triangle

inequality, which does not require any information from the previous iteration, was

introduced. This implementation attempted to compensate the small number of

skipped distance computations (compared to Elkan’s and Compare-means) with

the small overhead.

As for the final objective, which was to Measure the ability of the new solutions

to improve the efficiency of Lloyd’s K-Means on Hadoop and their ability to scale

with an increased number of clusters, dimensions and data points, the experimental

work in Chapter 5 compared the performance of implementations that used EVs

and BFs with respect to various numbers of clusters and dimensions. From these

tests it was found that algorithms that use BFs could scale better than those

using EVs. Therefore, further tests were performed on implementations with BFs

to examine the behaviour of these algorithms with variable number of clusters,

dimensions, data points and mappers. Finally, implementations of K-Means on

Hadoop using BFs were compared with two implementations of K-Means on Spark.

The results showed that our implementations could compete with the Naive K-

Means on Spark. However, implementing K-Means on Spark with the basic triangle

inequality optimisation made it outperform all other implementations on large

number of clusters.

159

6.1 Contributions

Two approaches were proposed to pass extra information from one iteration to

the next on Hadoop. The first approach used a data structure called Extended

Vector (EV), which stores the input data point vector and any extra information

related to this data point into one EV. This EV would then be the input for

the next iteration. The second approach stores the extra information into files

called Bounds Files (BFs), where each entry in a given BF is a collection of extra

information that is associated with an input data point. In both approaches, the

extra information are written to HDFS, which generated I/O and communication

overheads.

To evaluate each approach, two K-Means variants that adopt triangle inequality

to reduce the number of distances computations were implemented using each ap-

proach. The following K-Means variants were implemented on Hadoop to evaluate

each proposed techniques:

• Elkan’s algorithm on Hadoop using an Extended Vector (ELK-H-EV),

• Elkan’s algorithm on Hadoop using a Bounds File (ELK-H-BF),

• Compare-means on Hadoop using an Extended Vector (CMP-H-EV),

• Compare-means on Hadoop using a Bounds File (CMP-H-BF).

Furthermore, an optimised version of K-Means called Triangle Inequality K-

Means on Hadoop (TIKM-H) was introduced. This version used the most basic

form of triangle inequality to skip redundant distance computations, which do not

require any information from previous iterations.

In addition, two implementations of K-Means on Spark were provided to in-

vestigate and compare the performance of K-Means on Hadoop and Spark. In

particular, two implementations of K-Means on Spark were introduced: Naive K-

Means on Spark (NKM-S) and Triangle Inequality K-Means on Spark (TIKM-S).

160

The experimental work provided a comparison between implementations of K-

Means using EVs and BFs, implementations of K-Means using BFs tested against

variable numbers of clusters, dimensions, points and mappers, and implementa-

tions of K-Means on Hadoop using BFs and two implementations of K-Means on

Apache Spark.

6.2 Key Findings

To test the efficiency and scalability of each of the proposed algorithms relative

to NKM-H, each algorithm was tested against various number of parameters that

have a major impact on the performance of K-Means in general, and parallel

K-Means on Hadoop in particular. That is, the proposed implementations were

tested against variable number of clusters, dimensions, data points, and mappers.

The comparative analysis of EV and BF approaches showed that significant

speedups could be achieved by implementations using both approaches. However,

implementations that use BFs are more efficient and scalable than those that use

EVs to pass information to subsequent iterations. As the number of clusters and

dimensions increases, the overhead that is generated from writing EVs to HDFS

increases dramatically.

An extensive experimental investigation was conducted on algorithms that use

BFs to show the ability of this approach to scale with an increased number of

clusters and dimensions with artificial and real datasets. The following conclusions

can be drawn from the results of these experiments:

• It was found through the use of clustered and uniform random datasets that

the best performance of the optimised algorithms that use triangle inequality

is with datasets that have well-separated clusters. This is because more

distance computations can be avoided with well-clustered datasets.

• The optimised algorithms did not achieve any significant speedups relative

161

to NKM-H with low number of dimensions and clusters. The number of

distance computations must be large enough to compensate the time spent on

writing/reading extra information by the gained time from skipping distance

computations in the optimised algorithms.

• It was noticed that because of the overlap between the map phase and the

shuffle phase (i.e. mappers start transferring intermediate data as the work

of 5% of the total number of mappers is complete), the optimised algorithms

take advantage of this overlap by reducing the overhead created by distance

computations in the NKM-H, which resulted in a reduction in the shuffle

time.

The comparison between the performances of algorithms that were implemented

on Hadoop using BFs and the two implementations of K-Means on Spark showed

the superiority of TIKM-S over all the implementations on Hadoop and Spark as

the number of clusters was increased. Combining the in-memory caching mech-

anism that Spark employs with the simple triangle inequality optimisation gave

TIKM-S the ability to outperform all the other implementations.

6.3 Future Work

This section discusses the future work that could lead to valuable contributions to

this research.

Through out this work, it was shown that a parallel implementation of efficiently

optimised K-Means solutions can lead to a fast and highly scalable version of K-

Means. The key issue this project focused on was to use triangle inequality to

reduce the number of distance computations in parallel K-Means on Hadoop. This

work could be enhanced even more by considering other factors.

As it has been discussed earlier in this thesis, K-Means is sensitive to the choice

of the initial set of cluster centroids. In this work the initial cluster centroids

162

were chosen randomly from the input dataset. Therefore, there is still a scope

of further improvement on the efficiency by applying an effective centroids ini-

tialisation technique from the wide-range of techniques in the literature. A good

set of initial cluster centroids could lead to a faster convergence, and could also

make optimisations based on triangle inequality prune larger numbers of distance

computations.

The K-Means implementations that were presented in this work are imple-

mented on Hadoop and Spark. It would be interesting to compare these im-

plementations with implementations of K-Means on other distributed computing

frameworks such as Twister [23] and Piccolo [88].

This work chose two K-Means variants (Elkan’s algorithm and Compare-means)

to test the effectivness of the proposed approaches to pass information from one

iteration to the next on Hadoop. Future work could include implementations

of other variants that triangle inequality, or require information from previous

iterations, such as Hamerly’s algorithm [67], and adaptive K-Means [95].

The new implementations can be added to the clustering algorithms that are

provided by Apache Mahout [101]. Apache Mahout is a library implemented on

top of Apache Hadoop that offers various scalable Machine Learning algorithms

including clustering algorithms such as K-Means (Lloyd’s version).

163

Appendices

164

Appendix A

Publications

This appendix includes two published conference papers and one accepted journal

paper. My contributions to all the papers are as follows:

• Carried out literature review of related work.

• Designed and implemented the parallel algorithms.

• Run experiments on Hadoop and Spark, collected and analysed the results.

• Wrote the initial draft of the papers, integrated contributions from co-authors,

and led the submission.

[1] S. Al Ghamdi, G. Di Fatta, F. T. Stahl, “Optimisation Techniques for Parallel

K-Means on MapReduce,” in Proceedings of the 8th International Conference on

Internet and Distributed Computing Systems, IDCS 2015, Windsor, UK, pp. 193-

200, September 2015.

[2] S. Al Ghamdi, G. Di Fatta, “Efficient Parallel K-Means on MapReduce Using

Triangle Inequality,” in Proceedings of the 2017 IEEE 3rd International Conference

on Big Data Intelligence and Computing, Orlando, Florida, USA, pp. 985-992,

165

November 2017.

[3] S. Al Ghamdi, G. Di Fatta, “Efficient Clustering Techniques on Hadoop and

Spark,” International Journal of Big Data Intelligence, [in press].

166

Optimisation Techniques for Parallel K-Means on

MapReduce

Sami Al Ghamdi, Giuseppe Di Fatta, Frederic Stahl

School of Systems Engineering, University of Reading,

Whiteknights, Reading, RG6 6AY, United Kingdom
s.a.m.alghamdi@pgr.reading.ac.uk,

g.difatta@reading.ac.uk, f.t.stahl@reading.ac.uk

Abstract. The K-Means algorithm is one the most efficient and widely used

algorithms for clustering data. However, K-Means performance tends to get

slower as data grows larger in size. Moreover, the rapid increase in the size of

data has motivated the scientific and industrial communities to develop novel

technologies that meet the needs of storing, managing, and analysing large-

scale datasets known as Big Data. This paper describes the implementation of

parallel K-Means on the MapReduce framework, which is a distributed frame-

work best known for its reliability in processing large-scale datasets. Moreover,

a detailed analysis of the effect of distance computations on the performance of

K-Means on MapReduce is introduced. Finally, two optimisation techniques are

suggested to accelerate K-Means on MapReduce by reducing distance computa-

tions per iteration to achieve the same deterministic results.

Keywords: K-Means; Parallel K-Means; Clustering; MapReduce.

1 Introduction

Clustering is the process of partitioning data points in a given dataset into groups

(clusters), where data points in one group are more similar than data points in other

groups. Cluster analysis plays an important role in the Big Data problem. For exam-

ple, it has been used to analyse gene expression data, and in image segmentation to

locate objects’ borders in an image.

K-Means [1] is one of the most popular and widely used clustering algorithms. K-

means has been extensively studied and improved to cope with the rapid and expo-

nential increase in the size of datasets. One obvious solution is to parallelise K-

Means. K-Means have been parallelised based on different environments such as

Message Passing Interface (MPI) [2] and MapReduce [3].

For a given number of iterations, the computational complexity of K-Means is

dominated by the distance computations required to determine the nearest centre for

each data point. These operations consume most of the algorithm’s run-time because,

in each iteration, the distance from each data point to each centre has to be calculated.

Various optimisation approaches have been introduced to tackle this issue. Elkan [4]

applied the triangle inequality property to eliminate unnecessary distance computa-

tions on high dimensional datasets. An optimisation technique based on multidimen-

sional trees (KD-Trees) [5] was proposed by Pelleg and Moore [6] to accelerate K-

Means. Judd et al. [7] presented a parallel K-Means formulation for MPI and used

two approaches to prune unnecessary distance calculations. Pettinger and Di Fatta [8]

[9] proposed a parallel KD-Tree K-Means algorithm for MPI, which overcomes the

load imbalance problem generated by KD-Trees in distributed computing systems.

Different approaches have been proposed to improve K-Means efficiency on MapRe-

duce by reducing the number of iterations. However, we intend to accelerate K-Means

on MapReduce by reducing distance computations per iteration.

This paper describes the implementation of K-Means on MapReduce with a map-

per-combiner-reducer approach and how the iterative procedure is accomplished on

MapReduce. In Addition, it presents some preliminary results relative to the effect of

distance calculations on the performance of K-Means on MapReduce. Finally, two

approaches are suggested to improve the efficiency of K-Means on MapReduce.

The rest of the paper is organised as follows: Section 2 briefly introduces K-Means

and MapReduce, and presents a detailed description of Parallel K-Means on MapRe-

duce. Section 3 reports the experimental results. Section 4 presents the work in pro-

gress. Finally, section 5 concludes the paper.

2 Parallel K-Means on MapReduce

2.1 K-Means

Given a set of data points in a -dimensional space , and an integer that

represents the number of clusters, K-Means partitions X into clusters by assigning

each to its nearest cluster centre, or centroid, , where is the set of

centroids. Given a set of initial centroids, data points are assigned to clusters and clus-

ter centroids are recalculated: this process is repeated until the algorithm converges or

meets an early termination criterion. The goal of K-Means is to minimise the objec-

tive function known as the Sum of Squared Error (∑ ∑

 ,

where is the data point in the cluster and is the number of data points in the

 cluster. The time complexity for K-Means is per iteration.

2.2 MapReduce

MapReduce [3] is a programming paradigm that is designed to, efficiently and relia-

bly, store and process large-scale datasets on large clusters of commodity machines.

In this paradigm, the input data is partitioned and stored as blocks (or input-splits)

on a distributed file system such as Google File System (GFS) [10], or Hadoop Dis-

tributed File System (HDFS) [11]. The main phases in the MapReduce model are

Map, Shuffle, and Reduce. In addition, there is an optional optimisation phase called

Combine. The MapReduce phases are explained as follows:

In the Map phase, the user implements a map function that takes as an input the

records inside each input-split in the form of key1-value1 pairs. Each map function

processes one pair at a time. Once processed, a new set of intermediate key2-value2

pairs is outputted by the mapper. Next, the output is spilled to the disk of the local file

system of the computing machine. In the Shuffle phase the mappers’ output is sorted,

grouped by key (key2) and shuffled to reducers. Once the mappers’ outputs are trans-

ferred across the network, the Reduce phase proceeds where reducers receive the in-

put as key2-list(value2) pairs. Each reducer processes the list of values associated to

each unique key2. Then, each reducer produces results as key3-value3 pairs, which

are written to the distributed file system. The Combine phase is an optional optimisa-

tion on MapReduce. Combiners minimise the amount of intermediate data transferred

from mappers to reducers across the network by performing a local aggregation over

the intermediate data.

2.3 Parallel K-Means on MapReduce Implementation

Parallel K-Means on MapReduce (PKMMR) has been discussed in several papers

(e.g., [12][13]). However, in this paper we explain, in details, how counters are used

to control the iterative procedure. Moreover, we show the percentage of the average

time consumed by distance computations. PKMMR with a combiner consists of:

Mapper, Combiner, Reducer and a user program called Driver that controls the itera-

tive process. In the following sections, a data point is denoted as , a cluster identifi-

er as , the combiner’s partial sum and partial count as and .

Driver Algorithm

The Driver is a process that controls the execution of each K-Means iterations in

MapReduce and determines its convergence or other early termination criteria. The

pseudocode is described in Algorithm-1. The Driver controls the iterative process

through a user defined counter called (line 2). The global_counter is

used as a termination condition in the while loop. The counter is incremented in the

Reducer if the algorithm does not converge or an early termination condition is not

met, otherwise, the counter is set to zero and the while loop terminates. Besides con-

figuring, setting, and submitting the MapReduce job, the Driver also merges multiple

reducers’ outputs into one file that contains all updated centroids.

Algorithm-1: Driver

1: Select k initial cluster centroids randomly;

2: global_counter := 1 //initialised and modified in Reducer (Algorithm-4)

3: while global_counter > 0 or a termination condition is not met do

4: Configure and setup a MapReduce job;

5: Send initial set of centroids to computing nodes,

6: Run the MapReduce job;

7: if number of reducers > 1 then

8: Merge reducers output into one file

9: end if

10: global_counter := Counter(global_counter).getValue();

11: end while

Mapper Algorithm

Each Mapper processes an individual input-split received from HDFS. Each Mapper

contains three methods, setup, map and cleanup. While the map method is invoked

for each key-value pair in the input-split, setup and cleanup methods are executed

only once in each run of the Mapper. As shown in Algorithm-2, setup loads the cen-

troids to c_list. The map method takes as input the offset of the dp and the dp as key-

value pairs, respectively. In lines 4-10, where the most expensive operation in the

algorithm occurs, the loop iterates over the c_list and assigns the dp to its closest cen-

troid. Finally, the mapper outputs the c_id and an object consists of the dp and integer

1. Because it is not guaranteed that Hadoop is going to run the Combiner, Mapper and

Reducer must be implemented such that they produce the same results with and with-

out a Combiner. For this reason, an integer 1 is sent with the dp (line 11) to represent

p_count in case the combiner is not executed.

Algorithm-2: Mapper

Method setup ()

1: Load centroids to c_list;

Method map (key, value)

1: Extract dp vector from value;

2: c_id := -1;

3: min_distance := ∞;

4: for i := 0 to c_list.size -1 do

5: distance := EuclideanDistance(c_list[i], dp)

6: if distance < min_distance then

7: min_distance := distance;

8: c_id := i;

9: end if

10: end for

11: output (c_id, (dp, 1));

Algorithm-3: Combiner

Method setup ()

1: Load centroids to c_list;

Method reduce(c_id, list<values>)

1: p_count := 0, p_sum := 0;

2: for value in values do

3: Extract dp vector from value;

4: p_sum := p_sum + the vector sum of dps in d-dimensions;

5: p_count := p_count + 1;

6: end for

7: output(c_id, (p_sum, p_count))

Combiner Algorithm

As shown in Algorithm-3, the Combiner receives from the Mapper (key, list(values))

pairs, where key is the c_id, and list(values) is the list of dps assigned to this c_id

along with the integer 1. In lines 2-6, the Combiner performs local aggregation where

it calculates the p_sum, and p_count of dps in the list(values) for each c_id. Next, in

line 7, it outputs key-value pairs where key is the c_id, and value is an object com-

posed of the p_sum and p_count.

Reducer Algorithm

After the execution of the Combiner, the Reducer receives (key, list(values)) pairs,

where key is the c_id and each value is composed of p_sum and p_count. In lines 2-6

of Algorithm-4, instead of iterating over all the dps that belong to a certain c_id,

p_sum and p_count are accumulated and stored in total_sum and total_count, respec-

tively. Next, the new centroid is calculated and added to new_c_list. In lines 9-11, a

convergence criterion is tested. If the test holds, then the global_counter is increment-

ed by one, otherwise, the global_counter’s value does not change (stays zero) and the

algorithm is terminated by the Driver.

3 Experimental Results

To evaluate PKMMR, we run the algorithm on a Hadoop [14] 2.2.0 cluster of 1 mas-

ter node and 16 worker nodes. The master node has 2 AMD CPUs running at 3.1GHz

with 8 cores each, and 8x8GB DDR3 RAM, and 6x3TB Near Line SAS disks running

Algorithm-4: Reducer

Method setup ()

1: Load centroids to c_list; //holds current centroids

2: global_counter = 0;

3: Initialise new_c_list; //holds updated centroids

Method reduce(c_id, list<values>)

1: total_sum, total_count, new_centroid, old_centroid = 0;

2: for value in values do

3: Extract dp vector from value;

4: total_sum := total_sum + value.get_p_sum();

5: total_count := total_count + value.get_p_count();

6: end for

7: new_centroid := total_sum / total_count;

8: add new_centroid to new_c_list

9: if new_centroid has changed or a threshold is not reached then

10: Increment global_counter by 1

11: end if

12: output(c_id, dp)

Method cleanup()

1: Write new centroids in new_c_list to HDFS;

at 7200 rpm. Each worker node has 1 Intel CPU running at 3.1 GHz with 4 cores, and

4x4GB DDR3 RAM, and a 1x1TB SATA disk running at 7200 rpm.

The datasets used in the experiments are artificially generated where data points

are randomly distributed. Additionally, initial cluster centroids are randomly picked

from the dataset [1]. The number of iterations is fixed in all experiments at 10.

To show the effect of distance calculations on the performance of PKMMR, we run

the algorithm with different number of data points n, dimensions d and clusters k. The

percentage of the average time consumed by distance calculations in each iteration is

represented by the grey area in each bar in the Fig. 1-(a), 1-(b), and 1-(c). The white

dotted area represents the percentage of the average time consumed by other MapRe-

duce operations per iteration including job configuration and distribution, map tasks

(excluding distance calculations) and reduce tasks.

 In each run, we compute the average run-time for one iteration by dividing the to-

tal run-time over the number of iterations. Then, the average run-time consumed by

distance calculations per iteration is computed.

We run PKMMR with a varied number of d, while n is fixed at 1,000,000, and k is

fixed at 128. Fig.1-(a) shows that 39% (d=4) to 63% (d=128) of the average iteration

time is consumed by distance calculations.

(a) Avg. time consumption with variable

number of d. n=1000000, k=128.

(b) Avg. time consumption with variable

number of k. n=1000000, d=128.

(c) Avg. time consumption with variable

number of n. d=128, k=128.

Fig. 1. Percentage of the average consumed time by distance calculations per iteration with

variable number of d, k and n.

0%

20%

40%

60%

80%

100%

120%

2 4 8 16 32 64 128 256 512

of dimension

Avg. time of dist. calc.

0%

20%

40%

60%

80%

100%

120%

8 16 32 64 128 256 512

of clusters

Avg. time of dist. calc.

0%

20%

40%

60%

80%

100%

120%

of data points

Avg. time of dist. calc.

PKMMR is also run with a variable number of k, while n is set to 1,000,000 and d

is set to 128. In Fig.1-(b), it can be clearly seen the tremendous increase in the per-

centage of consumed time by distance calculations per iteration from 11% (k=8) to

79% (k=512). In this experiment, distance calculations become a performance bottle-

neck as the number of clusters increases, which is more likely to occur while pro-

cessing large-scale datasets.

Fig. 1-(c) illustrates the percentage of the average time of distance calculations

when running PKMMR with variable number of n, while d=128 and k=128. As it can

be observed, distance calculations consume most of the iteration time. About 65% of

the iteration time is spent on distance calculations when n=1,250,000. Therefore, re-

ducing the number of required distance calculations will most likely accelerates the

iteration run-time and, consequently, improves the overall run-time of PKMMR.

4 Work in Progress

We intend to accelerate the performance of K-Means on MapReduce by applying two

methods to reduce the distance computations in each iteration. Firstly, triangle ine-

quality optimisation techniques are going to be implemented and tested with high

dimensional datasets. However, such techniques usually require extra information to

be stored and transferred from one iteration to the next. As a consequence, large I/O

and communication overheads may hinder the effectiveness of this approach if not

taken into careful consideration. Secondly, efficient data structures, such as KD-trees

or other space-partitioning data structures [15], will be adapted to MapReduce and

used with K-Means. Two issues will be investigated in this approach. First, inefficient

performance with high dimensional datasets that has been reported in [6]. Second,

load imbalance that was addressed in [8][9].

5 Conclusions

In this paper we have described the implementation of parallel K-Means on the

MapReduce framework. Additionally, a detailed explanation of the steps to control

the iterative procedure in MapReduce has been presented. Moreover, a detailed analy-

sis of the average time consumed by distance calculations per iteration has been dis-

cussed. From the preliminary results, it can be clearly seen that most of the iteration

time is consumed by distance calculations. Hence, reducing this time might contribute

in accelerating K-Means on the MapReduce framework. Two approaches are under

investigations, which are, respectively, based on the triangle inequality property and

space-partitioning data structures.

References

1. S. Lloyd, “Least Squares Quantization in PCM,” IEEE Trans Inf Theor, vol. 28, no. 2, pp.

129–137, 1982.

2. I. S. Dhillon and D. S. Modha, “A Data-Clustering Algorithm on Distributed Memory

Multiprocessors,” in KDD’99 Workshop on High Performance Knowledge Discovery,

London, UK, 1999, pp. 245–260.

3. J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters,”

in Proceedings of the 6th Conference on Symposium on Operating Systems Design & Im-

plementation - Volume 6, Berkeley, CA, USA, 2004, pp. 10–10.

4. C. Elkan, “Using the Triangle Inequality to Accelerate k-Means,” presented at the Interna-

tional Conference on Machine Learning - ICML, 2003, pp. 147–153.

5. J. Bentley, “Multidimensional binary search trees used for associative searching,” Com-

mun ACM, vol. 18, no. 9, pp. 509–517, 1975.

6. D. Pelleg and A. Moore, “Accelerating Exact K-means Algorithms with Geometric Rea-

soning,” in Proceedings of the Fifth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, New York, NY, USA, 1999, pp. 277–281.

7. D. Judd, P. K. Mckinley, and A. K. Jain, “Large-scale parallel data clustering,” IEEE

Trans. Pattern Anal. Mach. Intell., vol. 20, pp. 871–876, 1998.

8. D. Pettinger and G. Di Fatta, “Scalability of efficient parallel K-Means,” in 2009 5th IEEE

International Conference on E-Science Workshops, 2009, pp. 96–101.

9. G. Di Fatta and D. Pettinger, “Dynamic Load Balancing in Parallel KD-Tree K-Means”,

IEEE Int.l Conference on Scalable Computing and Communications, 2010, pp. 2478-2485.

10. S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File System,” in Proceedings of

the 19th ACM Symposium on Operating Systems Principles, New York, NY, USA, 2003,

pp. 29–43.

11. K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop Distributed File Sys-

tem,” in Proceedings of the 2010 IEEE 26th Symposium on Mass Storage Systems and

Technologies (MSST), Washington, DC, USA, 2010, pp. 1–10.

12. W. Zhao, H. Ma, and Q. He, “Parallel K-Means Clustering Based on MapReduce,” in

Cloud Computing, 2009, pp. 674–679.

13. B. White, T. Yeh, J. Lin, and L. Davis, “Web-scale Computer Vision Using MapReduce

for Multimedia Data Mining,” in Proceedings of the Tenth International Workshop on

Multimedia Data Mining, New York, NY, USA, 2010, pp. 9:1–9:10.

14. Apache Hadoop [Online]. Available: http://hadoop.apache.org/. [Accessed: 03-Jan-2015].

15. D. Pettinger, G. Di Fatta, “Space Partitioning for Scalable K-Means”, IEEE The Ninth In-

ternational Conference on Machine Learning and Applications (ICMLA 2010), 12-14 Dec.

2010, Washington DC, USA, pp. 319-324.

Efficient Parallel K-Means on
MapReduce Using Triangle Inequality

Sami Al Ghamdi, Giuseppe Di Fatta
Department of Computer Science

University of Reading
Whiteknights, Reading, RG6 6AY, United Kingdom

Email: s.a.m.alghamdi@pgr.reading.ac.uk, g.difatta@reading.ac.uk

Abstract—K-Means is one of the most efficient and popular
clustering algorithms that has been around for more than 50
years. The naive implementation of K-Means spends the vast
majority of its time computing redundant distance calculations
from each point to all cluster centres. This issue has been
extensively studied and methods based on the triangle inequality
principle have been used to eliminate unnecessary distance
calculations. Most triangle inequality optimisations cache extra
information (distance bounds and cluster assignments) from one
iteration to eliminate the need of computing exact distances in the
next. This work takes these optimisations one step further and
integrates them into an accelerated version of K-Means on a well-
known distributed computing framework known as MapReduce
to produce an efficient and highly scalable K-Means for big
data. Although MapReduce is considered as one of the most
reliable and fault tolerant distributed computing frameworks,
one of its major drawback is that it does not support iterative
algorithms such as K-Means, and does not cache any data
between two consecutive iterations, which is required in most
triangle inequality optimisations. Therefore, this work introduces
two new approaches to pass information from one iteration to
the next to accelerate K-Means. The first approach is called K-
Means on MapReduce using Extended Vector (KMMR-EV). The
second approach is called K-Means on MapReduce using Bounds
Files (KMMR-BF). These approaches achieve speedups up to
4.5x for KMMR-EV and 6.8x for KMMR-BF, with respect to
the naive implementation of K-Means on MapReduce (KMMR-
N). An extensive experimental work, with real and synthetic
datasets, has been conducted on Apache Hadoop (an open-source
implementation of MapReduce), along with an overhead analysis
to show the effectiveness of both approaches.

I. INTRODUCTION

Due to the vast amounts of data that has been generated
during the last decade, new technologies and algorithms had
to be developed to cope with this exponential explosion
of generated data. Cluster analysis is one of the important
techniques that aims to explore the hidden structure of the
data. Clustering is the process of dividing the data into groups
(clusters), where data points in the same group has more
similarities than data points in other groups [1].
Selected as one the top ten data mining algorithms [2],

the K-Means algorithm [3] [4] [5] is considered as one the
most widely used clustering algorithms [6]. K-Means gained
its popularity from its simplicity and efficiency. Given a
set X = {x1, x2, ..., xn}, where n is the number of data
points in a d-dimensional space Rd, partitioned into k clusters
C = {C1, C2, ..., Ck}, K-Means aims to minimise the Sum

of Squared Error SSE =
∑k

j=1

∑
x∈cj ‖ x − cj ‖2, where

j is the index of the j-th C ∈ C, and cj is the centroid
(mean of points) of Cj . The most used and straightforward
implementation of K-Means is known as Lloyd’s algorithm
[1], which in this work is referred to as Naive K-Mean. The
Naive K-Means algorithm starts by randomly picking k initial
cluster centroids. Then, the distance from each x ∈ X to each
cj ∈ C is computed and x gets assigned to its closest cj .
Next, Cj is moved to the mean of all points assigned to it. The
algorithm iterates until it converges (where cluster centroids do
not move any more), or an early termination condition is met.
K-Means finds a local minimum solution in O(ndk) running
time per iteration.
This work aims to improve the scalability and efficiency of

the Naive K-Means, taking into consideration two conditions:
1) obtaining the exact same final centres as the Naive K-Mean;
2) working on an original and unmodified scalable distributed
framework. Therfore, this work introduces a parallel imple-
mentation of Elkan’s K-Means [6], which is deterministically
equivalent to Naive K-Mean, on a well-known distributed
framework known as MapReduce [7]. Apache Hadoop [8] is
the most famous open source implementation of MapReduce,
and the algorithms’ implementations in this work is based
on Hadoop’s programming API. Elkan’s algorithm, efficiently,
eliminates redundant distance computations related to each
data point and produces the same exact results as the Naive
K-Means. The number of distance computations is reduced to
be closer to O(n) instead of O(nk) per iteration as in the
Naive K-Means. Section III-A explains triangle inequality in
detail.
To apply triangle inequality to K-Means, extra information

(bounds and cluster assignments) is required to be passed
from one iteration to the next to avoid unnecessary dis-
tance computations. This is not a straightforward process in
MapReduce because the framework does not directly support
iterative algorithms, and does not cache data between two
consecutive MapReduce jobs [9]. Therefore, this work presents
two new approaches that pass information from one iteration
to the next in MapReduce to accelerate K-Means. The first
approach called, K-Means on MapReduce using Extended
Vector (KMMR-EV), appends the extra information in the
current iteration to the input data vector and forms an extended
vector that is used as an input in the next iteration. The second

2017 IEEE 15th Intl Conf on Dependable, Autonomic and Secure Computing, 15th Intl Conf on Pervasive Intelligence

and Computing, 3rd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress

978-1-5386-1956-8/17 $31.00 © 2017 IEEE

DOI 10.1109/DASC-PICom-DataCom-CyberSciTec.2017.163

985

approach is K-Means on MapReduce using Bounds Files
(KMMR-BF), where extra information is written into separate
files on Hadoop Distributed File System (HDFS), and the
required information is retrieved on next iterations from these
files. Both approaches have been extensively experimented on
Hadoop, with real and synthetic datasets with variable values
for d and k that range from 4 to 2048. The results show
improvement in efficiency for both approaches, compared to
Naive K-Means on MapReduce (KMMR-N), with speedups of
6.8x for KMMR-BF, and 4.5x for KMMR-EV when k = 1024
and d = 512.
Many alternative ditributed computing frameworks, such as

Spark [10] and Twister [9], that support iterative algorithms
could be used instead of Hadoop. However, this work shows
that significant speedups can be achieved when using the
MapReduce paradigm on Hadoop by optimising the algorithms
and using these optimised algorithms as drop-in solutions.
The rest of the paper is organised as follows: Section

2 reviews the related work. Section 3 explains the triangle
inequality and how it can be applied to K-Means and explains
the implementation of the two new approaches. Section 4
discusses the experimental results. Finally, section 5 concludes
the paper and discusses the future work.

II. RELATED WORK

Triangle inequality has been used in many works to elimi-
nate unnecessary distance computations. Elkan [6] introduced
an efficient K-Means algorithm, which this work builds on,
using triangle inequality. For each point, Elkan’s algorithm
keeps one upper-bound on the distance from that point to its
closest centroid, and k lower-bounds on the distance from the
same point to each centroid. Although the algorithm works
efficiently with high dimensional data, it needs to store and
retrieve: n upper-bounds, n cluster assignments (cid), and nk
lower-bounds. It also requires O(k2) time to compute centre-
centre distances. In [11] and [12], the authors, independently
and differently, extend Elkan’s algorithm to make it work with
fewer number of lower bounds in an attempt to reduce the
resulted overhead from maintaining nk lower-bounds as in
Elkan’s. In [13], Elkan’s algorithm has been parallelised over
a shared-memory, multicore machine, and compared against
other variants of K-Means.
A parallel implementation of K-Means on distributed mem-

ory multiprocessors based on Message Passing Interface MPI
was introduced by Dhillon and Modha in [14]. The algorithm
partitions the original dataset into a number of subsets. Then,
each processor works on an independent subset where distance
calculations are performed and each point is assigned to its
closest centroid. Then, partial sums and SSEs are collected
and new centroids are calculated. This process is repeated
until the algorithm converges. The authors in [15] introduced
parallel K-Means based on MPI and used a method called
Spheres of Guaranteed Assignment which follows the concept
of pruning unnecessary distance calculations per iteration
based on triangle inequality but without maintaining upper or
lower bounds.

In [16], the authors presented a parallel K-Means on Twister
[9], which is an optimised implementation of the MapRe-
duce framework that supports iterative algorithms based on
publish/subscribe messaging infrastructure and caches static
data in memory, to cluster high dimensional social image
data. The authors applied triangle inequality to reduce distance
computations based on Elkan’s [6] work, except that instead of
keeping nk lower-bounds, they keep fewer number of lower-
bounds. The work presented in this paper is different in terms
of using the standard unoptimised MapReduce programming
paradigm which is implemented by Haddop. The work in [17]
breaks down the running time of each iteration on K-Means
on MapReduce and shows that the time to compute distances
is the bottleneck in K-Means.
K-Means++ [18] is a variant of K-Means which carefully se-

lects the initial set of centroids that has a constant factor away
from the optimum solution. K-means‖ or Scalable K-mean++
[19] and Competitive K-Means [20], address a downside of
the k-means++ initialisation which is its inherently sequential
nature and provide solutions to make it work efficiently on a
parallel environment, specifically, MapReduce.
In [21], K-Means is implemented on MapReduce and its

efficiency is improved by using locality sensitive hashing
LSH to divide points into buckets where the original points
are transformed into weighted representative points. This
method is used to prune unnecessary distance computations
by computing the distance of a given point with only a
small number of centres that exist in the same bucket as
the point. The algorithm was tested with real datasets and
shows improvement in speed by 67% and 76% when k is
1500 and 3000 respectively, compared to scalable K-Means++.
However, the dimensionality of both datasets is low (26 and
41 dimensions) which does not give a full understanding of
the algorithm’s behaviour with high dimensional datasets.

III. K-MEANS ON MAPREDUCE

A. K-Means and Triangle Inequality

This section briefly reviews Elkan’s [6] method to reduce the
number of distance computations by using trinagle inequality.
The triangle inequality property states that, for any three points
a, b, and c, ‖ a−c ‖≤‖ a−b ‖ + ‖ b−c ‖. Elkan’s algorithm
applies the triangle inequality to K-Means as follows: let c and
c′ be two centroids, where c is the closest centroid to point x,
and c′ is any other centroid:

if 1
2 ‖ c− c′ ‖≥‖ x− c ‖ then ‖ x− c′ ‖≥‖ x− c ‖ (1)

which means that x is closer to c and there is no need to
calculate ‖ x− c′ ‖.
Elkan’s algorithm sets an upper-bound (u) on the distance

between x and c, where c is the closest centroid to x, such that
u ≥‖ x− c ‖. From (1), if u ≤ 1

2minc′ �=c ‖ c− c′ ‖, then all
distance calculations related to point x can be avoided because
no other centroid can be closer to x than the current centroid c.
Furthermore, a lower-bound (l) is set on the distance between
x and each centroid c′, such that l ≤‖ x− c′ ‖.

986

TABLE I
NOTATIONS DESCRIPTION

Notation Description

X The input dataset of size n
k Number of clusters
C[] An array of size k holds the list of centroids
newC[] An array of size k holds the list of new centroids
S[][] A 2D-array holds k× k centre-centre distances
P[] A boolean array of size k holds the status of centroids
H[] An array of size k holds half minimum distance to the

second closest centroid from each centroid
u upper-bound from each x ∈ X to closest c ∈ C
l k lower-bounds from each x ∈ X to all c ∈ C
cid Cluster index (ID) of the closest c ∈ C from x ∈ X

Before the end of each iteration, upper and lower bounds
are updated by, first, computing the distance moved by each
centroid, then adding this distance to the upper-bound, and
subtracting it from the each lower-bound. The algorithm
caches centre-centre distances along with half the distance
between each centre and its closest other centre. Further ex-
planation of the process of eliminating distance computations
can be found in section III-D.
Table I describes the notations that appear in following

sections.

B. MapReduce and Hadoop

MapReduce [7], is a distributed computing framework that
was introduced by Google in 2004, and Apache Hadoop [8]
is the most famous open-source platform that implements
MapReduce. In MapReduce, the input dataset is partitioned
into subsets, known as input-splits. These input-splits are
distributed over Hadoop Distributed File System (HDFS).
The input-splits are then transferred to the mappers as key-
value pairs. Each mapper represents a node in the cluster
and processes an individual input-split. The output of each
mapper is sorted by key and sent to the allocated reducer
as key-value pairs. Each reducer receives the output of the
mappers as key-list(values) pairs, which represent the values
that was associated to each key by the mapper. Finally, each
reducer outputs the results to HDFS. An optional optimisation
known as a combiner can be used to minimise the amount
of intermediate data transferred from mappers to reducers
across the network by performing a local aggregation over
the intermediate data [22].

C. KMMR-N: Naive K-Means on MapReduce

Due to the lack of support to iterative algorithms in the
MapReduce framework, a controller program, called here a
Driver, has been implemented to control the iterative process,
merge the centroids’ files that are emitted by Reducers, and
checks the algorithm’s convergence. In the map phase, each
mapper processes an individual input-split that is received
from HDFS. Inside the Mapper, centroids are loaded to
memory in the setup method. After that, the map function
receives the byte offset and the data point as key-value pairs.
The map function assigns each data point to its closest centroid

and outputs the centroid’s index (cid) as the key, and data
point as the value. Then, the Mapper’s output is sorted by cid
and sent or shuffled to the assigned Reducer. Each Reducer
receives the cid as key and the assigned data points to this
cid as a list of iterable values. After loading the centroids to
memory in the setup method, the reduce method re-computes
the new centroid and compares the new and old centroids. If
the centroids are not equal, the convergence status is set to
not converged, consequently, the Driver runs a new iteration.
Finally, each Reducer outputs the new centroids to HDFS and
the centroids from all Reducers are merged in the Driver.

D. K-Means on MapReduce using Triangle Inequality

To apply the triangle inequality to K-Means, the algorithm
requires extra information to be passed from one iteration
to the next. In particular, it requires the following for each
input data point: an upper-bound from the data point to
its closest centroid, the cid of the assigned cluster, and k
lower-bounds from each data point to each centroid. This
work introduces two approaches that implement KMMR with
triangle inequality:
1) KMMR-EV: K-Means on MapReduce using Extended

Vector: This approach applies the triangle inequality to
KMMR by extending the input data vector. That is, in the
current iteration, required extra information is appended to the
original data vector which forms the extended vector (EV) and
this vector is then written to HDFS and used as an input in the
next iteration. Fig. 1 shows the structure of the extended vector
which starts with k lower-bounds, followed by an upper-bound,
the assigned cid, and the original vector of size d dimensions.
So, the EV’s size becomes: d+ k + 2.

Fig. 1. Structure of Extended Vector (EV)

The implementation of KMMR-EV consists of three major
phases, a driver that controls the iterative process, a map phase
that assigns each point to its closest centroid, and a reduce
phase that computes the means of the points assigned to each
cid and produce new centroids. The detailed explanation of
the phases is as follows:
Driver: The Driver (Algorithm 1) randomly picks the initial

set of centroids, initialises the MapReduce job, and controls
the iterative process.
Map phase: Since distances are not initialised yet, the

mapper in the first iteration (Algorithm 2) works as an initial-
isation step to initialise upper and lower bounds. Each time
the distance from ev.point to any centroid cj is calculated, the
lower-bound that corresponds cj is set to that distance in line
11. Line 14 sets the upper-bound to the distance from the point
to its closest centroid. The boolean array skip[] is initialised
to false and holds the status of each centroid. In line 9, if true,
the distance calculation to centroid cj is skipped, otherwise,

987

Algorithm 1: Driver(k, X)
1 select k initial cluster centroids randomly
2 iteration ← 1
3 while not converged or an early termination condition is
not met do

4 send the centroids’ file to all computing nodes
5 if iteration == 1 then
6 set mapper to EVInitMapper //Algorithm 2
7 else
8 set mapper to EVElkanMapper //Algorithm 3
9 end
10 run the MapReduce job
11 if numberofreducers > 1 then
12 merge reducers output into one file
13 end
14 reducer/s (Algorithm 4) check for convergence
15 iteration← iteration+ 1
16 end

the distance is calculated. Lines 16-20 uses inequality (1) to
set the skip status of the next centroid in the centroids array
C[] .
The second mapper (Algorithm 3), which is executed on

iterations > 1, takes as input a key-value pair, where value
is the Extended Vector that was stored by the mapper in
the previous iteration. In lines 5-8, the upper and lower-
bounds are updated by adding the centroid’s movement to
the upper-bound, and subtracting it from each lower-bound.
The centroid’s movement is part of the data structure that
holds the centroid’s vector and is computed and stored at
the end of the reduce stage. The movement can be retrieved
by calling getMovement(). In line 11, H[ev.cid] is half the
distance from the centroid associated with the current point
to its closest other centroid. If the test holds, all distance
calculations associated to the currently processed point are
skipped. In line 15, S[ev.cid][j] is the distance from the
centroid that was assigned to the current point to centroid cj . If
the tests in lines 13-15 does not hold, the distance computation
to currently processed centroid is skipped. The distance from
the current point to any centroid other than one assigned to
the point does not get calculated until line 24, where the tests
at line 23 repeats the tests at line 13 but with an updated u.
All the bounds are stored to the ExtendedVector object (ev)
and, finally, ev is written to HDFS, and the mapper outputs the
point (ev.point) with the index of its closest centroid (ev.cid).
Reduce phase: the implementation of the reducer (Algo-

rithm 4) is the same in all approaches including KMMR-
N. Each reducer receives the cid as the key and the list of
points assigned to cid as list of values. Each reducer processes
each cid with its associated points independently. The reducer
iterates over the points and computes the average of all points
assigned to input cid to produce the new centroid. The old
and new centroids are compared and if they are not equal or
does not satisfy a certain threshold, the convergence status is

Algorithm 2: EVInitMapper(k, C)
1 Function setup():
2 compute S[][]
3 Function map(key, value)
4 declare new ExtendedVector ev
5 ev.point ← value
6 initialise all values in skip[k] to false
7 min distance ←∞
8 for j ← 0 to k − 1 do
9 if skip[j] then continue
10 distance ← getDistance(ev.point, C[j])
11 ev.l(j, distance) //set l(x, j)
12 if distance < min distance then
13 min distance ← distance
14 ev.u ← min distance //set u(x)
15 ev.cid ← c //set cid
16 for z ← j + 1 to k − 1 do
17 if S[j][z] ≥ 2 ∗ distance then
18 skip[z] ← true
19 end
20 end
21 end
22 end
23 writeToHDFS(ev)
24 output(ev.cid, ev.point)

set to not converged, which, consequently, makes the Driver
runs one more iteration.
2) KMMR-BF: K-Means on MapReduce using Bounds

Files: This approach stores the extra information into files
called Bounds Files (BF). For each point, each mapper stores
one upper-bound, k lower-bounds, and the cid of the assigned
cluster centroid to the point. Each BF corresponds to an input-
split processed by a mapper. To find out which BF corresponds
to which input-split, the BF’s name is set to be the starting
byte offset of the currently processed input-split. So, in the
current iteration the mapper looks in HDFS for the BF’s name,
which was stored in last iteration, that matches the currently
processed input-split’s starting byte offset and loads all the
extra information to memory. The size of each BF would be
n
p (k + 2), where p is the number of mappers.
Since most of this algorithm’s implementation matches

KMMR-EV implementation in the last section, the main im-
plementation’s differences will be pointed out in this section.
As in KMMR-EV, KMMR-BF has two mapper implementa-
tions, the first mapper runs on the first iteration and the second
runs on iterations > 1. The triangle inequality is also applied
in the same way as KMMR-EV. The main difference is in
the way of storing and retrieving extra information. KMMR-
BF reads the bounds from BF and loads them to memory in
the setup method. Then, it proceeds the centres elimination
process as in KMMR-EV. After that it assigns the point to
its closest centre and outputs the cid with its associated point
to reducers. Next, when each mapper finishes processing all

988

Algorithm 3: EVElkanMapper(k, C)
1 Function setup():
2 compute S[][]
3 Function map(key, value):
4 create a new ExtendedVector ev from value
5 for j ← 0 to k − 1 do
6 ev.l(j) ← max[ev.l(j) − getMovement(j), 0]
7 end
8 ev.u ← ev.u + getMovement(ev.cid)
9 update u ← true //flag to check if u is updated
10 d1, d2 ← 0
11 if ev.u � H[ev.cid] then continue
12 for j ← 0 to k − 1 do
13 if (j 	= ev.cid)
14 & (ev.u > ev.l(j))
15 & (ev.u > S[ev.cid][j] ∗ 0.5) then
16 if update u then
17 d1 ← getDistance(ev.point, c(ev.cid))
18 ev.u ← d1
19 ev.l(ev.cid) ← d1
20 update u ← false
21 end
22 d1 ← ev.u
23 if d1 > ev.l(j) or d1 > S[ev.cid][j] ∗ 0.5

then
24 d2 ← getDistance(ev.point, c(j))
25 ev.l(j) ← d2
26 if d2 < d1 then
27 ev.cid ← j
28 ev.u ← d2
29 update u ← false
30 end
31 end
32 end
33 writeToHDFS(ev)
34 output (ev.cid, ev.point)
35 end

n/p records, where p is the number of mappers, the updated
bounds are written to a BF on HDFS in the cleanup method.

E. Overhead Analysis

Both approaches generate I/O and memory overheads that
could become the performance bottleneck for large number of
k clusters and n points in d dimensions. Because Hadoop’s files
are immutable (i.e. records cannot be modified). Therefore,
any information that needs to be passed from one iteration to
the next must be written to a file and then read in the next
iteration. In case of KMMR-EV, for p number of mappers,
each mapper writes n/p EVs, each EV contains d input data
vector, k lower-bounds from each point to all centroids, an
u from each point to its closest centroid, and the cid of the
closest centroid. So, KMMR-EV writes n

p (d+ k + 2) EVs to
HDFS in each iteration.

Algorithm 4: EVReducer(k, C)
1 Function setup():
2 initialise newC[k]
3 Function reduce(cid, points):
4 sum ← (0,0,0,...,0)
5 foreach p ∈ points do
6 sum← sum+ p
7 end
8 newC[cid]← sum/|points|
9 if newC[cid] 	= C[cid] then not converged yet
10

11 Function cleanup():
12 writeToHDFS(newC)

KMMR-BF, on the other hand, requires n
p (k+2) read/write

operations for k lower-bounds, an upper-bound, and a cid,
which results in lower overhead compared to KMMR-EV.
In terms of memory overhead, both approaches require

O(k2) memory space and time for centre-centre distances in
each iteration. Furthermore, KMMR-BF requires n

p (k + 2)
memory for lower/upper bounds and cluster assignments.
So, the whole memory space required by KMMR-BF is
O(np (k + 2) + k2).

IV. EXPERIMENTAL RESULTS
A. Experiment Setup
The experiments are executed on a Hadoop 2.6.0 cluster of

1 master node and 16 worker nodes. The master node has 2
AMD CPUs running at 3.1GHz with 8 cores each, and 8x8GB
DDR3 RAM, and 6x3TB Near Line SAS disks running at 7200
rpm. Each worker node has 1 Intel CPU running at 3.1 GHz
with 4 cores, and 4x4GB DDR3 RAM, and a 1x1TB SATA
disk running at 7200 rpm.
The number of iterations is fixed to 20 iterations for all

tests. We chose 20 because, after few iterations the centres
do not move much [6], hence, 20 iterations will give a good
intuition of the performance in general and the number of
skipped distance calculations per iteration. Each experiment
is run for 10 times and the average is reported. The number
of reducers in all experiments = 1.
The wall-clock time is measured for all experiments and af-

ter measuring the average time spent by each mapper/reducer,
the average time per iteration is calculated. For example, let
each mapper runs in Tm time, then the average map time
per iteration TM for M number of mappers where m ∈ M ,
that iterates for E number of iterations where e ∈ E is
TM = 1

E

∑E
e=1

∑M
m=1

Tm
M .

The speedup of the new approaches is compared against the
KMMR-N where speedup is calculated as the average iteration
time of KMMR-N divided by the average iteration time of the
optimised approach.

B. Datasets
Real and synthetic datasets have been used in the experi-

ments. The real dataset is:

989

0

1

2

3

4

5

6

7

8

9

Sp
ee

du
p

Number of k

KMMR-EV

KMMR-BF

Fig. 2. Speedup relative to KMMR-N with variable k

0

500

1,000

1,500

2,000

2,500

3,000

3,500

Ti
m

e
(s

ec
)

Number of k

KMMR-N

KMMR-EV

KMMR-BF

Fig. 3. Average run time per iteration with variable k

1) KDD04: A public dataset for protein homology predic-
tion task of KDDCUP 2004 [23]. It contains 145751
points in 74 dimensions which describe the sequence
alignment match between the native protein sequence
and the sequence that is tested for homology with size
of 63 MB (MB=Megabyte, GB=Gigabyte).
The next synthetic datasets were generated with well
separated spherical Gaussian clusters:

2) GaussianD-d: 10 datasets have been generated to test
the performance with variable dimensions d, where d
= 4, 8, 16, 32, 64, 128, 256, 512, 1024 and 2048, n
= 100,000 and k = 128, and the size ranges from 7
MB for GaussianD-4 to 3.7 GB for GaussianD-2048.
GaussianD-512 was used on testing the performance
with variable k.

3) GaussianN-n: Four datasets have been artificially gen-
erated to test the performance with variable number of
data points n, where n = 5× 105, 106, 5× 106 and 107,
in 64 dimensions and with the size ranges from 590 MB
for GaussianN-5× 105 to 11.5 GB for GaussianN-107.

C. Results

The dataset GaussianD-512 is used in testing the effect of
variable number of clusters k. Fig. 2 and 3 show the speedup
and the runtime per iteration for KMMR-BF and KMMR-
EV relative to KMMR-N with variable number of clusters
k. For low to medium k (4-32), KMMR-BF and KMMR-
EV run almost with the same speed as KMMR-N. However,
the gain in speed for both starts when k=64 and reaches the
peek when k=1024 (6.8x for KMMR-BF and 4.5x for KMMR-
EV) where the benefit from eliminating distance calculations

0

500

1,000

1,500

2,000

2,500

3,000

Ti
m

e
(s

ec
)

Number of k

KMMR-N
KMMR-EV
KMMR-BF

Fig. 4. Average time to compute distances per iteration with variable k

76%
89% 96% 98% 99%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

8 32 128 512 2048

Pe
rc

en
ta

ge

Number of k

Fig. 5. Percentage of skipped dist. calc. per iteration with variable k

0

500

1000

1500

2000

2500

3000

3500

BF EV N BF EV N BF EV N BF EV N BF EV N

8 32 128 512 2048

Ti
m

e
(s

ec
)

Number of k

overhead

rest of operations

Fig. 6. Average overhead per iteration vs. rest of operations with variable k

0
50

100
150
200
250
300
350
400
450
500

BF EV BF EV BF EV BF EV BF EV

8 32 128 512 2048

Ti
m

e
(s

ec
)

Number of k

avg time to load bounds to mem.

avg. time to write BFs and EVs

avg. time to compute dist. matrix

Fig. 7. Overhead average time per iteration broken down into three main
operations with variable k

outweighs the overhead from computing distance matrix, and
reading/writing bounds. Both algorithms start to get slower
when k=2048 because the amount of overhead that increases
with respect to k. However, even with the large amount
of overhead, both algorithms are still faster than KMMR-N
because as the overhead time in KMMR-BF and KMMR-EV

990

0

1

2

3

4

Sp
ee

du
p

Number of d

KMMR-EV

KMMR-BF

Fig. 8. Speedup relative to KMMR-N with variable d, (k = 128)

0

50

100

150

200

250

300

350

400

450

Ti
m

e
(s

ec
)

Number of d

KMMR-EV

KMMR-BF

Fig. 9. Average time per iteration to write EVs and BFs with variable d

0

1

2

3

5E+5 2E+6 3E+6 4E+6 5E+6 6E+6 7E+6 8E+6 9E+6 1E+7

Sp
ee

du
p

Number of n

KMMR-EV

KMMR-BF

Fig. 10. Speedup relative to KMMR-N with variable n

0

1

2

3

0 100 200 300 400 500 600 700 800 900 1000

Sp
ee

du
p

Number of k

KMMR-EV

KMMR-BF

Fig. 11. Speedup relative to KMMR-N for dataset KDD04 with variable k

increases with respect to k, the time of computing distances
also increases in KMMR-N and the time consumed by the
overhead in KMMR-BF and KMMR-EV is compensated by
the saved time from eliminating distance computations.
Fig. 4 shows the average time of distance calculations

per iteration which is linear to k and dominates the runtime
in KMMR-N, while its insignificant and almost constant in

KMMR-BF and KMMR-EV. Fig. 5 shows the percentage of
the average skipped distance computations per iteration where
it reaches 99% for large k.
For lack of space in Fig. 6 and 7, KMMR-N, KMMR-EV,

and KMMR-BF are shortened to N, EV, and BF, respectively.
In Fig. 6, each bar represents the average iteration time
divided into: overhead time, and rest of operations time, where
the former does not apply to KMMR-N. The overhead time
consists of three major operation: 1) computing k2 centre-
centre distances, 2) reading bounds from HDFS and loading
them into memory (occurs in KMMR-BF only), and 3) writing
EVs and BFs to HDFS. The rest operations time includes:
the time to stup and distribute the job, point-centre distance
calculations, shuffle, reduce, data files replication, etc. Three
remarks can be noticed: 1) For large number of k (k > 512)
the overhead becomes the performance bottleneck instead
of distance calculations. 2) Despite the generated overhead,
both approaches run faster than KMMR-N because of the
gain in speed from skipping distance calculations. 3) For a
small number of k, the overhead in KMMR-EV dominates the
iteration run time which makes it slower than KMMR-N and
KMMR-BF.
Fig. 7 shows the average time of overhead per iteration

broken into three three major operations that were mentioned
previously. It can be seen that KMMR-EV struggles more
than KMMR-BF with the large overhead created from writing
EVs to HDFS even with small k. The time to compute the
matrix of centre-centre distances is obviously the same in both
approaches and can significantly affects the running time with
large values of k as can be notices in k = 2048. The time
to load BFs to memory is not significant in KMMR-BF even
with large values of k.
Fig. 8 shows the speedup relative to KMMR-N, and Fig.

9 shows the average time to write EVs and BFs to HDFS
in KMMR-BF and KMMR-EV per iteration. The datasets
GaussianD-d have been used in this test, where d varies from
4 to 2048, and k is fixed at 128 clusters. As the number
of d increases, KMMR-BF gains speedups (up to 3.7x when
d = 512), while KMMR-EV gains speedup up to 2.1x when
d = 256 and its performance drops as d increases (0.3x when
d=2048) because of the large overhead generated from writing
n
p (d+k+2) EVs per mapper in each iteration, where p is the
number of mappers. As can be seen in Fig. 9 that the time to
write EVs to HDFS increases dramatically as d increases in
KMMR-EV.
Fig. 10 shows the speedup of KMMR-EV and KMMR-

BF relative to KMMR-N using the datasets GaussianN-n for
variable number of n and fixed values for d=64 and k=100.
As the number of n increases, speedup for both approaches
reaches ≈ 2x when n=106 and declines when n = 107 because
the I/O overhead and the shuffle time become the dominant
costs. This is because as n increases to very large values,
the number of mappers also increases which, consequently,
increases the time to write EVs and BFs (which are replicated
over data nodes), and increases the communication between
mappers and reducers. Adding to these reasons, the limitation

991

in KMMR-EV which makes the algorithm increases the initial
number of mappers assigned to the MapReduce job (see
section III-D1), testing KMMR-EV with n = 107 required
a large number of mappers (90 mappers), which made the test
hard to execute.
Fig. 11 shows the speedup for KMMR-BF and KMMR-

EV relative to KMMR-N for the real dataset KDD04. The
dataset has been tested with variable values of k = 50, 100,
500 and 1000. When k is 50 to 100, the speedup is ≈ 1.6x
for both algorithms. When 500 ≤ k ≤ 1000, KMMR-BF’s
speedup increases to 2x, while KMMR-EV’s decreases to ≈
1.3x for both k values. This is because the time to write
EVs in KMMR-EV is larger than the time to write BFs, and
KMMR-EV reaches the point where it cannot compensate the
time spent on reading/writing EVs with the time saved from
skipping distance computations.

V. CONCLUSION

This paper has presented the implementation of two new
techniques to introduce triangle inequality optimisations to
K-Means on MapReduce. The first approach, KMMR-EV,
appends the required bounds to the original input data vec-
tor and uses this extended vector (EV) as an input in the
next iteration. While in the second approach, KMMR-BF,
the bounds are stored on files called bounds files (BF) and
the required information are retrieved from these files. An
extensive experimental analysis has been carried out using
real world and synthetic datasets, to study the performance
and the overhead in a wide range of the input parameters,
such as variable n points, d dimensions, and k clusters. The
experimental results show that both approaches can decrease
the running time compared to KMMR-N with speedups of
4.5x for KMMR-EV and 6.8x for KMMR-BF. The trade-off
from using these two approaches has been examined in the
experimental work and explained in the overhead analysis.
KMMR-BF performs faster than KMMR-EV and KMMR-

N when applied to datasets with high dimensional space d,
where 128 ≤ d ≤ 2048, and large number of clusters k, where
256 ≤ k ≤ 2048. For large values of n, d and k (e.g. Fig 8 and
10), the overhead in KMMR-EV could outweighs the gained
time from eliminating distance computations and it becomes
slower than KMMR-N.
The future work will observe the effeciency of other K-

Means optimisations on MapReduce, such as Hamerly’s al-
gorithm [11] with only one lower-bound, and Compare-means
[24] using only triangle inequality with centre-centre distances.
Furthermore, the performance of these algorithms will be
examined and compared on different distributed frameworks
such as Spark and Twister.

REFERENCES

[1] A. K. Jain, “Data clustering: 50 years beyond K-means,” Pattern
Recognition Letters, vol. 31, no. 8, pp. 651–666, Jun. 2010.

[2] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J.
McLachlan, A. Ng, B. Liu, P. S. Yu, Z.-H. Zhou, M. Steinbach, D. J.
Hand, and D. Steinberg, “Top 10 algorithms in data mining,” Knowledge
and Information Systems, vol. 14, no. 1, pp. 1–37, Jan. 2008.

[3] E. Forgy, “Cluster analysis of multivariate data: efficiency versus inter-
pretability of classifications,” Biometrics, vol. 21, pp. 768–769, 1965.

[4] J. MacQueen, “Some methods for classification and analysis of mul-
tivariate observations.” The Regents of the University of California,
1967.

[5] S. Lloyd, “Least Squares Quantization in PCM,” IEEE Trans. Inf. Theor.,
vol. 28, no. 2, pp. 129–137, 1982.

[6] C. Elkan, “Using the Triangle Inequality to Accelerate k-Means,” 2003,
pp. 147–153.

[7] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters,” in Proceedings of the 6th Conference on Symposium on
Opearting Systems Design & Implementation - Volume 6, ser. OSDI’04.
Berkeley, CA, USA: USENIX Association, 2004, pp. 10–10.

[8] “Welcome to Apache Hadoop!” [Online]. Available:
http://hadoop.apache.org/

[9] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and
G. Fox, “Twister: A Runtime for Iterative MapReduce,” in Proceedings
of the 19th ACM International Symposium on High Performance Dis-
tributed Computing, ser. HPDC ’10. New York, NY, USA: ACM, 2010,
pp. 810–818.

[10] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster Computing with Working Sets,” in Proceedings of the
2Nd USENIX Conference on Hot Topics in Cloud Computing, ser.
HotCloud’10. Berkeley, CA, USA: USENIX Association, 2010, pp.
10–10.

[11] G. Hamerly, “Making k-means Even Faster,” in SDM, 2010, pp. 130–
140.

[12] J. Drake and G. Hamerly, “accelerated k-means with adaptive distance
bounds,” in OPT2012: the 5th NIPS Workshop on Optimization for
Machine Learning, 2012.

[13] G. Hamerly and J. Drake, Accelerating Lloyds Algorithm for k-Means
Clustering. Springer International Publishing, 2015, pp. 41–78, dOI:
10.1007/978-3-319-09259-1 2.

[14] I. S. Dhillon and D. S. Modha, “A Data-Clustering Algorithm on
Distributed Memory Multiprocessors,” in KDD99 Workshop on High
Performance Knowledge Discovery. London, UK: Springer-Verlag,
1999, pp. 245–260.

[15] D. Judd, P. K. Mckinley, and A. K. Jain, “Large-scale parallel data
clustering,” IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 20, pp. 871–876, 1998.

[16] J. Qiu and B. Zhang, “Mammoth Data in the Cloud: Clustering Social
Images,” in Cloud computing and big data. Amsterdam: IOS Press,
2013, pp. 231–246.

[17] S. Ghamdi, G. Fatta, and F. Stahl, “Optimisation Techniques for Parallel
K-Means on MapReduce,” in Proceedings of the 8th International
Conference on Internet and Distributed Computing Systems - Volume
9258, ser. IDCS 2015. Windsor, UK: Springer-Verlag New York, Inc.,
2015, pp. 193–200.

[18] D. Arthur and S. Vassilvitskii, “K-means++: The Advantages of Careful
Seeding,” in Proceedings of the Eighteenth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, ser. SODA ’07. Philadelphia, PA, USA:
Society for Industrial and Applied Mathematics, 2007, pp. 1027–1035.

[19] B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and S. Vassilvitskii,
“Scalable K-means++,” Proc. VLDB Endow., vol. 5, no. 7, pp. 622–633,
Mar. 2012.

[20] T. H. Rui Mximo Esteves, “A new approach for accurate distributed
cluster analysis for Big Data: competitive K-Means,” Int. J. of Big Data
Intelligence, vol. 1, no. 1/2, pp. 50 – 64, 2014.

[21] Q. Li, P. Wang, W. Wang, H. Hu, Z. Li, and J. Li, “An Efficient K-
means Clustering Algorithm on MapReduce,” in Database Systems for
Advanced Applications, ser. Lecture Notes in Computer Science, S. S.
Bhowmick, C. E. Dyreson, C. S. Jensen, M. L. Lee, A. Muliantara, and
B. Thalheim, Eds. Bali, Indonesia: Springer International Publishing,
Apr. 2014, pp. 357–371, dOI: 10.1007/978-3-319-05810-8 24.

[22] T. White, Hadoop: the definitive guide. Farnham: O’Reilly, 2012.
[23] “KDD Cup 2004 - Datasets.” [Online]. Available:

http://osmot.cs.cornell.edu/kddcup/datasets.html
[24] S. J. Phillips, “Acceleration of K-Means and Related Clustering Al-

gorithms,” in Revised Papers from the 4th International Workshop on
Algorithm Engineering and Experiments, ser. ALENEX ’02. London,
UK, UK: Springer-Verlag, 2002, pp. 166–177.

992

Int. J. Big Data Intelligence, Vol. 0, No. x, 2018 1

Efficient Clustering Techniques on Hadoop and
Spark

Sami Al Ghamdi
Department of Computer Science,
University of Reading,
Reading, UK
E-mail: s.a.m.alghamdi@pgr.reading.ac.uk

Giuseppe Di Fatta

Department of Computer Science,
University of Reading,
Reading, UK
E-mail: g.difatta@reading.ac.uk

Abstract: Clustering is an essential data mining technique that divides observations
into groups where each group contains similar observations. K-Means is one of the most
popular clustering algorithms that has been used for over fifty years. Due to the current
exponential growth of the data, it became a necessity to improve the efficiency and
scalability of K-Means even further to cope with large-scale datasets known as Big Data.
This paper presents K-Means optimisations using triangle inequality on two well-known
distributed computing platforms: Hadoop and Spark. K-Means variants that use triangle
inequality usually require caching extra information from the previous iteration, which
is a challenging task to achieve on Hadoop. Hence, this work introduces two methods to
pass information from one iteration to the next on Hadoop to accelerate K-Means. The
experimental work shows that the efficiency of K-Means on Hadoop and Spark can be
significantly improved by using triangle inequality optimisations.

Keywords: K-Means; Hadoop; Spark; MapReduce; Efficient Clustering; Triangle
Inequality K-Means

Biographical notes: Sami Al Ghamdi is a PhD candidate in the Department of
Computer Science at University of Reading. He earned his Master’ degree in Computer
Science from Saint Joseph’s University, Philadelphia, USA, in 2012. In 2003 he earned
his Bachelor’s degree in Computer Science from King Abdulaziz University, Jeddah,
Saudi Arabia. From 2004 to 2008, he worked as a Computer Engineer and joined the
Department of Computer Science in Al-Baha University, Saudi Arabia, as a Lecturer in
2009. His research interests include distributed computing, parallel algorithms and big
data solutions.

Dr. Giuseppe Di Fatta is an Associate Professor of Computer Science and the Head of
the Department of Computer Science at the University of Reading, UK. In 1999, he was
a research fellow at the International Computer Science Institute (ICSI), Berkeley, CA,
USA. From 2000 to 2004, he was with the High-Performance Computing and Networking
Institute of the National Research Council, Italy. From 2004 to 2006, he was with the
University of Konstanz, Germany. His research interests include data mining algorithms,
distributed and parallel computing, big data in sciences and data-driven multidisciplinary
applications. He has published over 100 articles in peer-reviewed conferences and journals.
He serves in the editorial board of the Elsevier Journal of Network and Computer
Applications. He is the co-founder of the IEEE ICDM Workshop on Data Mining in
Networks and has chaired several international events, such as the 2015 International
Conference on Internet and Distributed Computing Systems.

1 Introduction

The last two decades witnessed an exponential growth
of the data generated by many sources such as, scientific
experiments, social media Web sites, government
statistics, sensor networks, and many other. For
example, the Large Hadron Collider project (LHC),

which provides more knowledge about the universe
by accelerating particles and examining the results
from their collisions, is expected to produce around
50 petabytes of data in 2017, and the collected data
could reach 10 gigabytes per second (WLCG, 2017).
YouTube users eceeded 1 billion users, where 100 hours
of videos are uploaded every minute, and 135,000 hours

Copyright c© 201X Inderscience Enterprises Ltd.

2

are watched (YouTube, 2017). eBay stores and preocess
about 150 billion new records daily (Lin and Dyer, 2010).
In order to cope with this rapid increase in the data,
novel solutions are developed to manage and process
large-scale datasets known as big data.

Collecting, storing and managing the data is a crucial
process. However, the data itself is worthless unless
meaningful knowledge can be extracted from it. For
this reason, various innovative techniques were developed
over the years dedicated to knowledge discovery. One of
the essential approaches to unveil the hidden patterns
in a given set of observations is to divide these
observations into a number of groups (clusters), such
that observations in one group have more similarities
than observations in other groups. This process is
known as clustering or cluster analysis. Clustering
algorithms are developed and used in many fields
such as engineering, computer science, life and medical
sciences, astronomy and earth sciences, social sciences
and economics (Xu and Wunsch, 2009). Most clustering
algorithms, however, are computationally expensive or
iterative in nature. This made the clustering task
very challenging, especially when dealing with large
and high-dimensional datasets. Therefore, the focus
has been shifted lately to parallel clustering solutions
on distributed processing models to overcome these
challenges. One of the most popular and attractive
distributed processing models is known as MapReduce
(Dean and Ghemawat, 2008). Apache Hadoop (Apache,
2017) provides an open-source implementation of the
MapReduce programming model. The popularity of
MapReduce comes from its ability to offer a reliable and
fault-tolerant parallel programming paradigm without
the need to deal with the underlying details of the
distributed system, such as data distribution and tasks
scheduling.

Ranked as one of the top ten data mining algorithms
(Wu et al., 2008), K-Means takes the number of
clusters as an input and iterates over the input
data points until it converges. In each iteration, the
standard implementation of K-Means, known as Lloyd’s
algorithm (Lloyd, 1982), computes the distance from
each data point to all cluster centroids. This process
is a performance bottleneck in K-Means. Most of
these distance calculations, however, are redundant
and can be avoided using geometric approaches based
on triangle inequality. Although these approaches
could produce efficient versions of K-Means, most
of them require using extra information from the
previous iteration. This is not a straightforward task to
achieve under the MapReduce programming paradigm
that Hadoop implements. MapReduce does not have
the ability to cache any information between two
consecutive iterations. Therefore, this paper introduces
two approaches that allow Hadoop to pass intermediate
data from one iteration to the next in order to be able
to implement highly scalable and efficiently optimised
K-Means algorithms based on triangle inequality.

The aim of this paper is to improve the efficiency
and scalability of Lloyd’s K-Means on Hadoop while
maintaining the same deterministic clustering results
that Lloyd’s algorithm produces. Some K-Means variants
that are based on triangle inequality can be more efficient
and deterministically equivalent to Lloyd’s K-Means.
However, implementing such variants on Hadoop is a
challenging task. This is because most of these variants
require the use of some extra information (e.g. distance
bounds and cluster assignments) from the previous
iteration to be able to eliminate unnecessary distance
computations and Hadoop does not cache intermediate
data between two consecutive iterations. Therefore,
this work presents two techniques to store required
intermediate data in one iteration for it to be used in the
next. The first technique appends the extra information
to the original input data vector and forms an Extended
Vector (EV). The second technique stores the extra
information that corresponds to each data point into a
file called a Bounds File (BF).

To evaluate the effectiveness of the proposed
techniques, two optimised algorithms, Elkan’s algorithm
and Compare-means algorithm, are implemented using
each technique and tested with real and artificially
generated datasets. The performance of each optimised
algorithm is compared against the performance of
Lloyd’s K-Means on Hadoop, which is referred to in
the remaining of this work as Naive K-Means on
Hadoop (NKM-H). Furthermore, an implementation of
K-Means on Hadoop and Spark using the most basic
form of triangle inequality to skip distance computations
is introduced and also compared with the algorithms
mentioned earlier. The experimental work investigates
the impact of several important factors that influence
the performance of K-Means. These factors include
variable number of clusters (k), dimensions (d) and data
points (n). The results show that variants of K-Means
based on triangle inequality implemented on Hadoop
with the proposed techniques can achieve significant
speedups relative to NKM-H. For example, Elkan’s K-
Means and Compare-means on Hadoop using Bounds
Files outperform NKM-H by upto 7x and 33x speedups,
respectively.

The remainder of the paper is organised as follows:
Section 2 reviews the related work. Section 3 presents
a background about K-Means and how it can be
optimised using triangle inequality. A brief introduction
to MapReduce, Hadoop, and Spark is also presented in
Section 3. Section 4 explains the implementation of the
Naive K-Means on Hadoop. Section 5 Introduces the
new implementations of efficient K-Means on Hadoop.
Section 6 explains the implementation of two K-Means
implementations on Spark. Section 7 discusses the
experimental results. Finally, section 8 concludes the
paper and discusses the future work.

1.1 Contributions

The contributions of this paper are:

Efficient Clustering Techniques on Hadoop and Spark 3

• The design and the development of two techniques:
K-Means on Hadoop using an Extended Vector
(EV) and K-Means on Hadoop using a Bounds File
(BF). These techniques give Hadoop the ability to
pass information from one iteration to the next on
iterative algorithms;

• Parallel implementations of K-Means variants on
Hadoop using EVs and BFs to evaluate the
effectiveness of the proposed approaches;

• An extensive experimental analysis that tests the
scalability and efficiency of implementations of K-
Means on Hadoop using BFs and EVs with respect
to the number of clusters, dimensions, data points,
and mappers;

2 Realted Work

A parallel implementation of K-Means on distributed
memory multiprocessors based on Message Passing
Interface MPI was introduced by (Dhillon and Modha,
2002). The algorithm partitions the original dataset
into a number of subsets. Then, each processor works
on an independent subset where distance calculations
are performed and each point is assigned to its closest
centroid. Then, partial sums and SSE s are collected and
new centroids are calculated. This process is repeated
until the algorithm converges. (Judd et al., 1998)
introduced parallel K-Means based on MPI and used a
method called Spheres of Guaranteed Assignment which
follows the concept of pruning unnecessary distance
calculations per iteration based on triangle inequality
but without maintaining upper or lower bounds.

(Zhang and Qiu, 2013) presented a parallel K-
Means on Twister (Ekanayake et al., 2010), which
is an optimised implementation of the MapReduce
framework that supports iterative algorithms based on
publish/subscribe messaging infrastructure and caches
static data in memory to cluster high dimensional social
image data. Triangle inequality was used to reduce
distance computations based on (Elkan, 2003) work,
except that instead of keeping nk lower-bounds, a
fewer number of lower-bounds is maintained. The work
presented in this paper is different in terms of adopting
the standard unoptimised MapReduce programming
paradigm which is implemented by Hadoop.

K-Means++ (Arthur and Vassilvitskii, 2007) is a
variant of K-Means which carefully selects the initial
set of centroids that has a constant factor away from
the optimum solution. K-means‖ or Scalable K-mean++
(Bahmani et al., 2012) and Competitive K-Means
(Esteves et al., 2014), address a downside of the k-
means++ initialisation which is its inherently sequential
nature and provide solutions to make it work efficiently
on a parallel environment, specifically, MapReduce.

In (Li et al., 2014), K-Means was implemented on
MapReduce and its efficiency was improved by using

locality sensitive hashing LSH to divide points into
buckets where the original points are transformed into
weighted representative points. This method is used to
prune unnecessary distance computations by computing
the distance of a given point with only a small number
of centres that exist in the same bucket as the point.
The algorithm was tested with real datasets and shows
improvement in speed by 67% and 76% when k is
1500 and 3000 respectively, compared to scalable K-
Means++. However, the dimensionality of both datasets
is low (26 and 41 dimensions) which does not give a full
understanding of the algorithm’s behaviour with high
dimensional datasets.

The work in (Shi et al., 2015), compares MapReduce
and Spark in terms of three major architectural
components: shuffle, execution model, and caching. On
both frameworks, five algorithms were tested: Word
Count, Sort, K-Means, linear regression, and PageRank.
In K-Means, three artificially generated datasets were
used as input where each point has 20 dimensions and the
number of data points for each dataset are: 1 million, 200
million, and 1 billion. The results showed that K-Means
on Spark was 1.5x faster than K-Means on MapReduce in
the first iteration, and 5x faster in subsequent iterations.

3 Background

3.1 K-Means

Ranked as one of the top ten most influential data
mining algorithms (Wu et al., 2008), K-Means is a well-
known clustering algorithm that partitions data into
clusters of similar features. Simplicity, efficiency, and
straight-forward implementation made K-Means one the
most used algorithms in cluster analysis (Jain, 2010).
K-Means was proposed independently in different works
(Steinhaus, 1956); (Lloyd, 1982); (Ball and Hall, 1965);
(MacQueen, 1967) targeting different problems.

K-Means has been used in many fields to cluster
variant types of data. Some of the applications that K-
Means was applied to are:

• Colour quantisation where the pixels of an image
grouped into clusters (Celebi, 2011); (Kanungo
et al., 2002).

• Market segmentation (Kuo et al., 2002), where
markets are broken down into meaningful
segments, such as segmenting buyers habits based
on age groups.

• Analysis of gene expression data (Tavazoie et al.,
1999); (Yeung et al., 2003).

• Documents clustering (Effat et al., 2016);
(Steinbach et al., 2000), where similar documents
are grouped into one cluster while other documents
are assigned to other clusters.

4

Algorithm 1: Sequential Naive K-Means(X, k)

1 select k initial cluster centroids randomly from X
2 while not converged and an early termination

condition is not met do
3 for i = 1 to n do
4 minDistance←∞
5 for j ← 1 to k do
6 d← d(xi, cj)
7 if d < minDistance then
8 minDistance← d
9 assign xi to cj

10 end

11 end

12 end
13 for j ← 1 to k do
14 cj ← 1

|cj |
∑

x∈cj
x //Compute the mean

15 end

16 end

Lloyd’s K-Means

The basic K-Means algorithm was independently
proposed by (Steinhaus, 1956); (Lloyd, 1982); (Ball
and Hall, 1965); and (MacQueen, 1967). The focus of
this paper is on Lloyd’s algorithm which is the most
commonly used version (Celebi et al., 2013); (Hamerly
and Drake, 2015). Lloyd’s algorithm is referred to in the
remainder of this paper as Naive K-Means.

Given a set X = {x1, x2, ..., xn}, where n is the
number of data points in a d-dimensional space Rd,
partitioned into k clusters C = {C1, C2, ..., Ck}, K-Means
aims to minimise the Sum of Squared Error SSE =∑k

j=1

∑
x∈cj

d(x− cj)
2, where j is the index of the j-th

C ∈ C, cj is the centroid (mean of points) of Cj , and d(.,.)
is the Euclidean distance between two points. Algorithm
1 describes the pseudo-code of the Naive K-Means where
it starts by randomly picking k initial cluster centroids.
Then, the distance from each x ∈ X to each cj ∈ C is
computed and x gets assigned to its closest cj . In line 14,
the location of each cj is updated by computing the mean
of all points assigned to each cluster, where |cj | is the
number of points assigned to cluster Cj . The algorithm
iterates until it converges where cluster centroids do
not move any more or an early termination condition is
met. K-Means finds a local minimum solution in O(ndk)
running time per iteration.

The next section explains how triangle inequality can
be used on eliminating redundant distance computations
from data points to centroids in the Naive K-Means.

3.2 Using Triangle Inequality to Accelerate
K-Means

The most expensive operation in K-Means is computing
the distance from each data point to all centres to
find the centre with the minimum distance. One of the
most important remarks in K-Means is that after a few

number of iterations, most data points do not change
their cluster assignment, especially with well-clustered
datasets. The reason behind this is that after a few
number of iterations the movement of cluster centroids is
insignificant (Elkan, 2003); (Hamerly and Drake, 2015).
Thus, most of the distance calculations from points
to centroids are redundant, and this is where triangle
inequality excels.

In general, the main goal of using triangle inequality
with K-Means is to prove that a given point in the input
dataset is closer to a certain centroid without the need
to calculate the distance to other centroids. Triangle
inequality was used in different ways to prune distance
calculations. For a point x and two cluster centroids a
and b, the following are some of the cases that triangle
inequality can be applied to K-Means (Elkan, 2003);
(Hamerly and Drake, 2015):

1. Show that x is closer to a than b, with calculating
only d(x, a) and d(a, b).

2. Form an upper-bound from x to its closest
centroid.

3. Form a lower-bound from x to one or more
centroid.

The following Lemma is used in finding the closest
centroid from a given point by using pre-calculated
centre-centre distances and the distance from the point
to its previously assigned centroid.

Lemma 1 Let x be a point, and p and q be two centroids,

if d(p, q) ≥ 2d(x, p) then d(x, q) ≥ d(x, p)

Proof. From the triangle inequality property, it is known
that:

d(p, q) ≤ d(x, p) + d(x, q)
d(p, q)− d(x, q) ≤ d(x, p).

The left hand side can be written as:

d(p, q)− d(x, q) ≥ 2d(x, p)− d(x, p) = d(x, p).

Hence:

d(x, p) ≤ d(x, q).

�

The usage of Lemma 1 was proposed by (Hodgson,
1988). Hodgson’s approach compared a given centroid
c with only its closest centroid c′, that is, if d(x, c) <
d(c, c′) then the distance calculation to only c′ is avoided.
In (Orchard, 1991), triangle inequality was used to
improve the search of the nearest-neighbor. For a given
point x and a candidate nearest-neighbor y, the author
showed that another point z cannot be closer to x if
Lemma 1 holds. The same approach was applied to
K-Means by (Phillips, 2002) on an algorithm called
Compare-means. (Elkan, 2003) algorithm uses Lemma 1

Efficient Clustering Techniques on Hadoop and Spark 5

with a set of upper and lower bounds on the distance
from each data point to cluster centroids to avoid a large
number of distance computations. The following sections
show how the scalability of Compare-means and Elkan’s
algorithms can be improved by implementing them on
distribution fashion on Hadoop.

3.3 MapReduce and Apache Hadoop

MapReduce is a programming paradigm that is designed
to store and process large-scale datasets efficiently
and reliably on large clusters of commodity machines.
MapReduce is designed to provide a high performance
parallel execution of programs without dealing with
underlying details of the distributed system such as
scheduling, distribution and fault-tolerance.

In the MapReduce paradigm, the input data is stored
on a distributed file system (e.g. Hadoop Distributed
File System (HDFS)). The input and output data are
in the form of key-value pairs. The computation process
is expressed by implementing two functions: map and
reduce from the MapReduce library, which are typically
implemented by the user.

Hadoop is a popular open-source implementation of
MapReduce that is widely used by many organisations
such as Yahoo!, Facebook, Twitter and IBM to manage
and analyse massive amounts of daily generated data
(White, 2012). The dataflow in Hadoop consists of three
phases: 1) map phase; 2) shuffle phase; and 3) reduce
phase.

In the map phase, as the input dataset loaded to
HDFS, it is split into what is known as input-splits.
The number of mappers equals the number of input-
splits and the size of each input-split can be modified
(default 128 MB). Each mapper processes one input-
split independently. The map function takes as an input
the records in each input-split in the form of key and
value (<K,V>) pairs and outputs a new <K2,V2> pair.
In the shuffle phase, each reducer uses HTTP protocol
to fetch its own partition from the mappers’ output
files that reside on the mappers’ nodes. The shuffle
starts as a predefined percentage (default is 5%) of
mappers complete their work. Finally, the reduce phase
starts after each reducer fetches its own partition from
the mapper’s output files. Before invoking the reduce
function, the reducer merges and sorts the the mappers’
output files fetched from different mappers and then the
reduce method is invoked and each reducer outputs the
resulted <K3,V3> pairs to HDFS.

Limitations: despite the advantages that Hadoop
offers to store, manage, and process large-scale datasets,
several limitations are addressed in many works (e.g.
(Mohebi et al., 2016); and (Grolinger et al., 2014)). Some
of the limitations that are specific to the support of
iterative Machine Learning algorithms such as K-Means
are:

• Absence of loop-aware task scheduling where each
iteration is a new MapReduce Job.

• Reload and reshuffle of static data which creates an
unnecessary I/O and communication overheads.

• Lack of support to cache and retrieve information
from previous iterations. This limitation imposes
extra complexities on iterative algorithms that
require information from previous iterations in
order to proceed their work efficiently. This paper
investigates this limitation in particular.

3.4 Apache Spark

Apache Spark (Zaharia et al., 2010) is a distributed
framework that is designed to process large-scale
working sets that are reused over multiple parallel
operations in-memory. The goal of Spark is to process
iterative machine learning algorithms and interactive
analytics problems faster than Hadoop MapReduce
while maintaining the fault tolerance and scalability
of MapReduce. Spark can operate on several clusters
managers (e.g. Hadoop YARN) or as a standalone
system.

Two main abstractions are provided by Spark
to process parallel applications, Resilient Distributed
Datasets (RDDs) and parallel operations. An RDD is a
collection of immutable (read-only) objects partitioned
among cluster nodes that can be rebuilt in case a
partition is lost. RDDs can be cached in-memory
once across worker nodes (executors) and reused by
applications that run on multiple parallel operations.
Parallel operations can be either transformations, where
an RDD can be transformed from a file on stable storage,
or from another existing RDD; or actions, where a value
is returned to the application driver, or stored on a data
storage.

4 Naive K-Means on Hadoop

This section explains the implementation of the Naive
K-Means on Hadoop (NKM-H). The implementation of
NKM-H consists of three main classes: Driver, Mapper
and Reducer.

Driver: The Driver starts by randomly selecting the
initial set of centroids from the input dataset and sends
the centroids file to the mappers. The Driver controls
the iterative process where a new MapReduce job is set
and initiated for each iteration. In case of having more
than one reducer, the Driver merges the centroid files
produced by each reducer into one file which becomes the
input centroids file in the following iteration. Algorithm
2 describes the pseudo-code of the Driver.

Mapper: Each mapper consists of three functions,
setup, map, and cleanup. While the map function is
invoked for each record in the input-split, setup and
cleanup are executed only once on each run of the
mapper class. As shown in Algorithm 3, setup reads
the set of centres and loads them to C. Then, the map
function takes as an input, key-value pairs where the

6

Algorithm 2: Driver(X, k)

1 C ← select k initial cluster centroids from X
randomly

2 while not converged or an early termination
condition is not met do

3 send the set of centroids C to mappers
4 set mapper to NKM–H-Mapper
5 set reducer to NKM-H-Reducer
6 run a new MapReduce job
7 if numberOfReducers > 1 then
8 merge reducers output into one file
9 end

10 end

Algorithm 3: NKM-H-Mapper(k)

1 Function setup():
2 load centroids from HDFS to C
3 Function map(offset, value)
4 x← value minDistance←∞
5 a← −1
6 for j ← 1 to k do
7 d← d(x, cj)
8 if d < minDistance then
9 minDistance← d

10 a← j

11 end

12 end
13 output(a, x)

key is the offset of the data point in the input file, and
the value is the data point itself. Subsequently, the map
function iterates over C to find the centroid with the
minimum distance from the input data point. Finally,
the index of the closest centroid (a) is emitted to the
reducers with its assigned data point as a key-value pair.

Reducer: After each mapper outputs a key-value
pair, these pairs are grouped by key and sent to the
reducer in the form of (key, list(values)) pairs, where
key is the cluster index j and values are the data points
that were assigned to centroid cj by the mappers. In
Algorithm 4, the setup function initialises C ′ which holds
the set of updated centroids. In the reduce function,
the vector sum of all the points in the list is calculated
and stored in sum. The updated centroid, which is
represented by the mean of the data points in each
cluster, is calculated by dividing the sum over the count
of the points in each cluster. Finally, each reducer writes
the new centroids in C ′ to HDFS. Note that since the
Reducer’s implementation is identical in all the following
implementations of K-Means it implementation will not
be discussed in further section.

As discussed in section 3.3, Hadoop does not
support iterative algorithms, particularly, Hadoop does
not have the ability to cache intermediate data
between two consecutive MapReduce jobs. The following

Algorithm 4: NKM-H-Reducer

1 Function setup():
2 let C‘ be a list holds the new centroids
3 Function reduce(j, values):
4 pointsCounter ← 0
5 sum ← (0,0,...,0)
6 foreach x ∈ values do
7 sum← sum + x //vector sum
8 pointsCounter ← pointsCount + 1

9 end
10 c′j ← sum/pointsCounter

11 load c′ to C ′

12 Function cleanup():
13 write recodes in C ′ to HDFS

sections discuss the challenge of implementing K-Means
variants that use triangle inequality and require extra
information from the previous iteration and presents two
techniques to overcome such challenge.

5 Efficient K-Means based on Triangle
Inequality on Hadoop

As it was explained in section 3.3, one of Hadoop’s
limitations is its lack to cache intermediate data
between two consecutive MapReduce jobs. Several K-
Means variants, such as Elkan’s algorithm (Elkan,
2003), Hamerly’s algorithm (Hamerly, 2010), Adaptive
algorithm (Drake and Hamerly, 2012), and Compare-
means algorithm (Phillips, 2002), require information
from the previous iteration to use them in the
current iteration to avoid computing the exact distances
from data points to centroids. Therefore, this section
introduces two approaches: K-Means on Hadoop using
an Extended Vector (EV); and K-Means on Hadoop
using a Bounds File (BF). These approaches aim to
allow Hadoop to pass information from one iteration
to the next to efficiently accelerate the K-Means
algorithm. Furthermore, the implementation of two
optimised algorithms, Elkan’s algorithm and Compare-
Means algorithm, on Hadoop using each approach is
explained.

In general, the assignment of data points to
their closest centres in K-Means on Hadoop is the
responsibility of the mappers, while the reducers are
responsible for aggregating points belonging to each
centroid and producing the new set of centroids.
Therefore, the optimisation steps occur in the map phase
and, as a consequence, several mapper algorithms will
be discussed in the next sections. On the other hand,
the implementation of the reducer in all of the proposed
solutions is identical to the reducer in Algorithm 4.

Efficient Clustering Techniques on Hadoop and Spark 7

5.1 K-Means on Hadoop using an Extended
Vector (EV)

This section explains the use of a data structure called
Extended Vector (EV) to pass extra information from
one iteration to the next. The idea of the Extended
Vector is to append any required information in the
current iteration to the original input data vector to form
an EV. This EV will be the input in the next iteration
where the input data along with any extra information
associated to it can be read together. Therefore, the
Extended Vector can be defined as: a data structure that
stores the input data vector and any extra information
related to this data vector in a given iteration, in
order to be used in subsequent iterations. This can
be considered as the straight-forward solution to the
problem of passing information between iterations in
Hadoop. Two K-Means variants are implemented using
this approach, Elkan’s algorithm and Compare-means.
The following sections will explain the implementation
of each algorithm on Hadoop using an EV.

5.1.1 Elkan’s Algorithm on Hadoop using EVs
(ELK-H-EV)

The implementation of Elkan’s algorithm on Hadoop
using an Extended Vector is referred to as ELK-H-EV.
Elkan’s algorithm efficiently eliminates a large number
of unnecessary distance computations while maintaining
the same output as the Naive K-Means. In addition to
the need of computing the k2 centre-centre distances at
the beginning of each iteration, the algorithm needs to
cache the following information in one iteration and use
them in the next:

• n upper-bounds on the distance between each data
point and its assigned centroid.

• nk lower-bounds on the distance between each data
point and each centroid.

• n cluster assignments for each data point from the
previous iteration.

Figure 1: Structure of an Extended Vector in ELK-H-
EV.

EV Size: Since extra information is associated
with each data point, the required information will be
appended to the data point, which forms the Extended
Vector (EV). Figure 1 illustrates the structure of an
EV in ELK-H-EV. Each EV in ELK-H-EV consists of
a data point vector in d dimensions, one upper-bound
for the distance from the point to its closest centroid,
one cluster assignment index from the previous iteration

Notation Description

X Input dataset of size n
C The set of cluster centroids of size k
k Number of clusters
cj Cluster centroid, where cj ∈ C, with 1 ≤ j ≤

k
c′j New location for centroid cj
ca Closest centroid to data point x, where 1 ≤

a ≤ k
si,j Distance between centroids ci and ci, where

1 ≤ i, j ≤ k and i 6= j
hj Half minimum distance from cj to its closest

centroid
mj Distance that centroid cj has moved in the

last iteration, i.e. d(cj ,c
′
j)

u An upper-bound from data point x ∈ X to
its closest centroid ca

lj A lower-bound from data point x ∈ X to
centroid cj

w An ExtendedVector class object which stores
the data vector w.x (x ∈ X) and required
extra information

Table 1 Notations description

and k lower-bounds for the distances from the point to
each centre. Therefore, the size of each EV in ELK-H-
EV is d + k + 2. This means that each mapper writes
n
p (d + k + 2) EVs to HDFS per iteration.

Table 1 describes the notations that are used in the
pseudo-codes.

Algorithm

The implementation of each of the following algorithms
can be divided into three major phases:

1. A driver that initiates the MapReduce jobs
and controls the iterative process. Because the
implementation of the driver in all algorithms is
similar to the driver in section 4, Algorithm 2,
only significant changes will be highlighted to avoid
redundancy.

2. A map phase that assigns each point to its closest
centroid (distance computation elimination steps
occur in this phase).

3. A reduce phase that computes the means of points
assigned to each cluster centroid and produces new
set of centroids. The implementation of the reducer
is identical to the reducer in Algorithm 4, section
4.

Driver: The driver in ELK-H-EV and ELK-H-BF,
which will be explained later in section 5.2.1, is similar
to the driver’s implementation in Algorithm 2. One
exception is that because ELK-H’s implementation has
two mappers’ implementations, it runs the first mapper

8

Algorithm 5: ELK-H-EV-Mapper-1(k)

1 Function setup():
2 load centroids C
3 compute si,j ← d(ci, cj) //for all 1 ≤ i, j ≤ k

4 Function map(offset, point)
5 let w be an Extended Vector
6 let t be a boolean list of size k
7 w.x ← point
8 for j ← 1 to k do
9 tj ← false

10 end
11 minDistance←∞
12 for j ← 1 to k do
13 if tj then continue
14 d← d(w.x, cj)
15 w.lj ← d
16 if d < minDistance then
17 minDistance← d
18 w.u← minDistance
19 w.a← j
20 for z ← j + 1 to k do
21 if sj,z ≥ 2 ∗ d then
22 tz ← true
23 end

24 end

25 end

26 end
27 write w to HDFS
28 output(w.a, w.x)

(Algorithm 5) in the first iteration, and the second
mapper (Algorithm 6) in subsequent iterations.

Map phase: ELK-H requires two mappers’
implementations, the first mapper is executed in the
first iteration, and the second mapper is executed
in subsequent iterations. This is because in the first
iteration distance bounds and cluster assignments are
not initialised yet. Therefore, the first mapper runs in
the first iteration and initialises the distance bounds
and cluster assignments, and the second mapper runs
in subsequent iterations and performs the techniques for
eliminating unnecessary distance computations.

First Mapper: The first mapper initialises
the distance bounds and the cluster assignments.
Furthermore, the algorithm uses Lemma 1 to skip
some distance computations where information from
the previous iteration is not required. The pseudo-code
in Algorithm 5 shows how upper and lower bounds
associated to each input data point x are initialised in
ELK-H-EV. w represents an ExtendedVector (EV) class
object with the index of the assigned cluster centroid
(a), the upper-bound (u), the lower-bound (l), and the
data point (x), as members of w. First, a new Extended
Vector (w) is declared in line 5, then, the input data
point is assigned to w.x. The distance from the input
data point w.x to the closest centroid is assigned to the
upper-bound w.u. The lower-bound w.lj is set to the

distance from point w.x to any centroid cj . Lemma 1
states that: given two centres p and a, and a point x,
if d(p, a) ≥ 2d(x, p) then d(x, a) ≥ d(x, p). This Lemma
can be used to skip the distance computation from w.x
to the next centroid in the centroids list. To achieve
this, t holds the skip status of each centroid, that is, if
the distance computation from w.x to centroid cj can
be skipped, cj ’s status in tj will be true, otherwise, it is
false. Line 13 tests the status of the currently processed
centroid. The distance computation to this centroid is
avoided if its status is true. Lines 14-19 find the closest
centroid from w.x. Then in line 20 the distance from the
current centroid to the next centroid is extracted from
structure s, and line 21 tests Lemma 1 to check if the
distance to the next centroid can be eliminated. If the
test holds, the skip status of the next centroid is set to
true and the distance computation to it is skipped. In
line 27 w is written to HDFS. EVs that are written by
each mapper will be the input for the mappers in the
next iteration. Finally, the mapper outputs data point
(w.x) and its assigned cluster index (w.a) to reducers as
a key-value pair.

Second Mapper: Algorithm 6 illustrates the
pseudo-code of the second mapper in ELK-H-EV, which
is executed on iterations > 1. The second mapper takes
as input key-value pairs, where each value represents
an EV that was stored by a mapper in the previous
iteration. In lines 9-12, the lower and upper bounds are
updated. The distance (mj) that centroid cj has moved
in the previous iteration is added to the upper-bound
and subtracted from each lower-bound. The centroid’s
movement is part of the data structure that holds the
centroid’s vector and is computed and stored at the
end of the reduce stage. If the test in line 15 holds,
all distance calculations associated to the currently
processed point are skipped. Furthermore, if any of the
three tests in lines 14-16 does not hold, the distance
computation to currently processed centroid is avoided.
The distance from the point w.x to any centroid other
than the one assigned to the it does not get calculated
until line 29, where the tests at line 28 repeats the tests
at lines 18 and 19 but with an updated upper-bound
w.u. At this point w acquires updated values for the
assigned cluster index a, the upper-bound u, and the
lower-bounds lj (1 ≤ j ≤ k) and can be written to HDFS
at line 39. Finally, the mapper outputs the point w.x
with the index of its closest centroid w.a to the reducers.

5.1.2 Compare-means on Hadoop using EVs
(CMP-H-EV)

Compare-means (Phillips, 2002) is a variant of K-Means
that also uses triangle inequality to skip redundant
distance computations. While Elkan’s algorithm uses a
combination of distance bounds and triangle inequality
to eliminate unnecessary distance computations,
Compare-means uses only triangle inequality without
any distance bounds. The only required information
from the previous iteration is the cluster assignment for

Efficient Clustering Techniques on Hadoop and Spark 9

Algorithm 6: ELK-H-EV-Mapper-2(k)

1 Function setup():
2 load centroids to C
3 compute si,j ← d(ci, cj), for all 1 ≤ i, j ≤ k
4 compute hj ← minj 6=j′d(cj , cj′) ∗ 0.5, for all

1 ≤ j, j′ ≤ k

5 Function map(offset, value):
6 let w be an Extended Vector
7 w ← value
8 //update k lower-bounds
9 for j ← 1 to k do

10 w.lj ← max[w.lj −mj , 0]
11 end
12 w.u← w.u + mw.a //update upper-bound
13 g ← true //flag to check if u is updated
14 d1, d2← 0
15 if w.u ≤ h(w.a) then continue
16 for j ← 1 to k do
17 if (j 6= w.a)
18 &(w.u > w.lj)
19 &(w.u > sw.a,j ∗ 0.5) then
20 if g then
21 d1← d(w.x, cw.a)
22 w.u← d1
23 w.lw.a ← d1
24 g ← false

25 else
26 d1← w.u
27 end
28 if d1 > w.lj or d1 > sw.a,j ∗ 0.5 then
29 d2← d(w.x, cj)
30 w.lj ← d2
31 if d2 < d1 then
32 w.a← j
33 w.u← d2
34 g ← false

35 end

36 end

37 end

38 end
39 write w to HDFS
40 output(w.a, w.x)

each data point. The implementation of Compare-means
on Hadoop using an Extended Vector is referred to as
CMP-H-EV.

As in ELK-H-EV, CMP-H-EV needs to compute k2

centre-centre distances at the beginning of each mapper.
In addition, the algorithm needs to cache one cluster
assignment for each data point from last iteration. Each
EV in CMP-H-EV consists of a data point vector of size
d dimensions, and one cluster assignment index from
the previous iteration. Therefore, the size of each EV
in CMP-H-EV is d + 1. This means that each mapper
writes n

p (d + 1) EVs to HDFS per iteration.

Algorithm 7: CMP-H-EV-Mapper(k)

1 Function setup():
2 load centroids to C
3 compute si,j ← d(ci, cj) //for all 1 ≤ i, j ≤ k

4 Function map(offset, value)
5 let w be an Extended Vector
6 if iteration == 1 then
7 w.x← value
8 w.a← 1

9 end
10 minDistance← d(w.x, cw.a)
11 d← 0
12 for j ← 1 to k do
13 if sj,w.a ≥ 2 ∗minDistance or j == w.a

then
14 continue
15 end
16 d← d(w.x, cj)
17 if d < minDistance then
18 minDistance← d
19 w.a← j

20 end

21 end
22 write w to HDFS
23 output(w.a, w.x)

Algorithm

Map phase: Unlike ELK-H-EV, CMP-H-EV has only
one mapper because it does not need to initialise any
distance bounds. As mentioned previously in this section,
the only extra information CMP-H-EV needs from the
previous iteration is the index (a) of the assigned cluster
to each data point, which needs to be initialised in the
first iteration. In this situation, a is initialised to 1 in the
first iteration for all data points, which is the index of
the first centroid in the centroids list C.

The pseudo-code in Algorithm 7 describes the steps
of the mapper in CMP-H-EV. First, it can be observed
that CMP-H-EV’s algorithm is simpler than ELK-
H-EV with regards to the method each algorithm
eliminates distance computations. This simplicity makes
the algorithm lighter than ELK-H-EV in terms of I/O
overhead, but this come on the cost of the amount of
skipped distance computation.

In the first iteration, the map function receives the
byte-offset of the input record and the data point vector
as a key-value pair. A new Extended Vector (w) is
declared in line 5 and the received value (data point)
is assigned to w.x. The index for the cluster centroid
that was assigned to w.x in the previous iteration is
initialised to one for all data points, which is the index
of the first centroids in the centroids list. Consequently,
minDistance in line 10 will be the distance from w.x
to the first centroid in the centroids list. Distance
computations are avoided if the test in line 13 holds. The
test in line 13 uses Lemma 1, which states that: for two

10

centres c1 and c2, and a data point x, if we know that
d(c1, c2) ≥ 2d(x, c1) then d(x, c2) ≥ d(x, c1), and d(x, c2)
can be avoided. CMP-H-EV performs this test at line 13
using the last centroid that point w.x was assigned to
in the previous iteration (w.a). If the test does not hold,
the distance to the centroid is computed as in NKM-H.
Finally, w is written to HDFS, and the pair (w.a,w.x) is
emitted to the reducers.

In iterations > 1, the map function receives the value
as an EV that contains the data point w.x and cluster
index for the centroids that point w.x was assigned to in
the previous iteration. The algorithm then attempts to
skip distance computations at line 13.

5.2 K-Means on Hadoop using a Bounds File
(BF)

This section introduces the second approach called K-
Means on Hadoop using a Bounds File (BF). The idea
behind this approach is motivated by the large overhead
EVs create when processing large number of clusters and
dimensions. Thus, BFs attempt to reduce the overhead
from writing EVs to HDFS in each iteration.

A Bounds File (BF) can be defined as a flat file that
is written to HDFS in the each mapper, where each
record in this file represents an extra information that
is associated to a data point in the input dataset. In
other words, in a given iteration, each mapper stores
the desired extra information related to each input data
point on a file on HDFS, this file is called a Bounds File.
Unlike implementations that use EVs, each record in a
BF stores only the extra information without the data
point. These files can then be read by the mappers in
subsequent iterations and each point is joined with its
corresponding extra information.

The following sections explain the implementations of
two K-Means variants: Elkan’s algorithm, and Compare-
means on Hadoop using BFs. Sections 5.1.1 and 5.1.2
explained the implementation steps of both algorithms
on Hadoop using EVs (ELK-H-EV and CMP-H-EV)
with an explanation of the method each algorithm
follows to eliminate distance computations. Therefore,
the following sections will focus on how to store extra
information in one iteration and retrieve it in the next
using BFs.

5.2.1 Elkan’s Algorithm on Hadoop using BFs
(ELK-H-BF)

In a given iteration, each mapper in Elkan’s algorithm
on Hadoop using a Bounds File (ELK-H-BF) writes
one upper-bound, k lower-bounds, and one cluster
assignment, which are associated to each data point
to a BF on HDFS. In the following iteration, each
mapper finds the BF that corresponds the input-split
that was assigned to that mapper and loads all the extra
information in the BF to memory. At this point, each
mapper acquires the extra information that each data
point needs to proceed with the elimination process.

How to identify which BF corresponds to
which input-split? Hadoop splits the original input
dataset into a number of input-splits where each
mapper processes an individual input-split. The splitting
mechanism does not change from one iteration to
another, that is, each input-split contains the same data
points in the same order from one iteration to the next.
However, the input-split processed by a given mapper in
one iteration could be processed by a different mapper
on different node in the next iteration. This issue causes
a difficulty in associating each BF to its corresponding
input-split. To solve this issue, the BF’s name is set to be
the starting byte offset of the currently processed input-
split. Hence, in given iteration, the mapper searches
HDFS for the BF with the name that matches the
starting byte offset of the input-split assigned to this
mapper in the current iteration. The contents of the BF
are then loaded the memory of the mapper’s node. Since
the order of the records in the input-split does not change
from one iteration to another, the order of the records
on the input-split will match the order of records in the
corresponding BF.

BF Size: In a given iteration, each mapper in
ELK-H-BF writes the following extra information for
each data point to a BF: one upper-bound for the
distance from the point to its closest centroid, one cluster
assignment index from the previous iteration, and k
lower-bounds for the distances from the point to each
centre. Therefore, each record in a BF in ELK-H-BF is
of size: K + 2, which makes the size of each BF n

p (k + 2)
per iteration, where n is the total number of data points,
and p is the number of mappers.

Algorithm

Map phase: Similar to ELK-H-EV (section 5.1.1),
ELK-H-BF requires two mappers’ implementations, the
first mapper runs in the first iteration and initialises
the distance bounds and cluster assignments, while
the second mapper runs in subsequent iterations and
performs the techniques for eliminating unnecessary
distance computations.

First mapper: Algorithm 8 shows the pseudo-code
of the first mapper in ELK-H-BF, where most of the
steps are similar to the steps in Algorithm 5, except that
ELK-H-BF stores and reads extra information to/from
BFs.

Each time the distance from the input data point to
a given centroid cj is calculated (line 13), the the lower-
bound b.lj is set to that distance in line 14. Additionally,
when the distance to the closest centroid is determined,
the upper-bound (b.u) is set to that distance in line 17,
and the index of this closets centroid is assigned to b.a in
line 18. At this point all the extra information for point
x are acquired and can be written to a BF in line 26.

Second mapper: The pseudo-code of ELK-H-BF’s
second mapper is shown in Algorithm 9. ELK-H-BF
follows the same method that ELK-H-EV uses on
eliminating distance computations, which was illustrated

Efficient Clustering Techniques on Hadoop and Spark 11

Algorithm 8: ELK-H-BF-Mapper-1(k)

1 Function setup():
2 load centroids to C
3 compute si,j ← d(ci, cj) //for all 1 ≤ i, j ≤ k

4 Function map(offset, value)
5 x← value
6 let b be a collection that stores the extra

information for x
7 for j ← 1 to k do
8 tj ← false
9 end

10 minDistance←∞
11 for j ← 1 to k do
12 if tj then continue
13 d← d(x, cj)
14 b.lj ← d
15 if d < minDistance then
16 minDistance← d
17 b.u← minDistance
18 b.a← j
19 for z ← j + 1 to k do
20 if sj,z ≥ 2 ∗ d then
21 tz ← true
22 end

23 end

24 end

25 end
26 write b to a BF on HDFS
27 output(b.a, x)

in Algorithm 6. The two algorithms differ in the method
of reading and writing cluster assignments and distance
bounds from/to HDFS. The second mapper assumes that
the extra information was stored to a BF by a mapper in
the previous iteration. Therefore, each mapper searches
HDFS for the BF that corresponds to the input-split
that is assigned to this mapper (line 6). When the BF is
located, each record in the BF is parsed to a collection
structure called b in the algorithm, where the size of b is
k + 2 (k lower-bounds, one upper-bound, and one cluster
assignment). All b’s are then loaded to the list f . The
map function reads each b from f that corresponds to
each data point and uses the information in b to eliminate
distance computations. Before sending the output to the
reducers, each b is written to a BF on HDFS in line
41. This BF is then read by a mapper in the following
iteration.

5.2.2 Compare-means on Hadoop using BFs
(CMP-H-BF)

The detailed explanation of the method Compare-means
follows to eliminate accelerate K-Means is discussed in
section 5.1.2. Therefore, the focus of this section is on
how Compare-means on Hadoop writes and reads the
cluster assignment for each data point from the previous
iteration using Bounds Files.

Algorithm 9: ELK-H-BF-Mapper-2(k)

1 Function setup():
2 load centroids from DistributedCache to C
3 compute si,j ← d(ci, cj), for all 1 ≤ i, j ≤ k
4 compute hj ← minj 6=j′d(cj , cj′) ∗ 0.5, for all

j ∈ k
5 let f be a list that stores the cluster

assignments for all data point
6 find the BF that corresponds to the

input-split assigned to this mapper and load
its records to f

7 Function map(offset, value):
8 x← value
9 let b be a collection that stores the cluster

index assigned to x
10 b← f(pointsCounter)
11 //update k lower-bounds
12 for j ← 1 to k do
13 b.lj ← max[b.lj −mj , 0]
14 end
15 b.u← b.u + mb.a //update upper-bound
16 g ← true //flag to check if u is updated
17 d1, d2← 0
18 if b.u 6 hb.a then continue
19 for j ← 1 to k do
20 if (j 6= b.a) &(b.u > b.lj)

&(b.u > sb.a,j ∗ 0.5) then
21 if g then
22 d1← d(x, cb.a)
23 b.u← d1
24 b.lb.a ← d1
25 g ← false

26 else
27 d1← b.u
28 end
29 if d1 > b.lj or d1 > sb.a,j ∗ 0.5 then
30 d2← d(x, cj)
31 b.lj ← d2
32 if d2 < d1 then
33 b.a← j
34 b.u← d2
35 g ← false

36 end

37 end

38 end

39 end
40 pointsCounter ← pointsCounter + 1
41 write b to a BF on HDFS
42 output(b.a, x)

BF Size: In a given iteration, each mapper in CMP-
H-BF writes the index for the cluster assigned to each
data point in the previous iteration to a BF. Therefore,
each mapper writes a BF of size: n

p per iteration, where
n is the total number of data points, and p is the number
of mappers.

12

Algorithm

Map phase: The pseudo-code in Algorithm 10
illustrates the implementation steps of the mapper in
CMP-H-BF. In the first iteration, the index of the
assigned cluster to point x from previous iteration is
initialised to one, which is the first centroid in the
centroids list C. If the test at line 20 holds, the distance
computation to centroid cj is skipped. After assigning
x to its closest centroids cj , index j is assigned to b.a
which is then written to a BF on HDFS. This process is
repeated on subsequent iterations where previous cluster
assignments can be read from BFs. Therefore, in the
setup function, the records of the BF that corresponds
the input-split that is assigned to the mapper is loaded
to f . The map function can read updated cluster
assignments (line 15) from the previous iteration for each
data point.

5.3 Triangle Inequality K-Means on Hadoop
(TIKM-H)

This section explains the implementation of Triangle
Inequality K-Means on Hadoop (TIKM-H). As
illustrated in Algorithm 11, TIKM-H uses the most
basic form of triangle inequality to skip redundant
distance computations from points to cluster centroids.
That is why it was named after triangle inequality. By
the most basic form of triangle inequality we mean that
this approach does not require any information from
the previous iteration to skip distance computations.
This approach needs to compute only the intra centre
distances at the start of each mapper. In fact, the
method TIKM-H follows to skip distance computations
is the same as the one used in the first mapper of
ELK-H-EV (Algorithm 5), and ELK-H-BF (Algorithm
8), where the centre-centre distances are computed at
the setup function of each mapper and the map function
tests the inequality in Lemma 1 to check if the distance
to the next centroids in the list can be skipped (see
Algorithms 5 or 8 for a detailed explanation).

This approach does not have the potential to prune
lots of distance computations compared to ELK-H and
CMP-H. However, its very small overhead could make it
a good competitor to ELK-H and CMP-H on situations
where the overhead becomes the dominant cost.

6 K-Means on Spark

Two versions of K-Means are implemented on Spark.
The first version implements the Naive K-Means on
Spark (NKM-S), and the second implements the Triangle
Inequality K-Means on Spark (TIKM-S).

6.1 Naive K-Means on Spark (NKM-S)

The driver caches the input dataset in-memory for both
algorithms in the first iteration as an RDD (RDD-1).

Algorithm 10: CMP-H-BF-Mapper(k)

1 Function setup():
2 load centroids to C
3 compute si,j ← d(ci, cj) //for all 1 ≤ i, j ≤ k
4 if iteration > 1 then
5 let f be a list that stores the cluster

assignments for all data point
6 locate the BF that corresponds to the

input-split assigned to this mapper and
load its records to f

7 pointsCounter ← 1

8 end

9 Function map(offset, value)
10 x← value
11 let b be a collection that stores the cluster

index assigned to x
12 if iteration == 1 then
13 b.a← 1 //initialise cluster assignment
14 else
15 b← f(pointsCounter)
16 end
17 minDistance← d(x, cb.a)
18 d← 0
19 for j ← 1 to k do
20 if sj,b.a ≥ 2 ∗minDistance or j == b.a

then
21 continue
22 end
23 d← d(x, cj)
24 if d < minDistance then
25 minDistance← d
26 b.a← j

27 end

28 end
29 if iteration > 1 then
30 pointsCounter ← pointsCounter + 1
31 end
32 write b to a BF on HDFS
33 output(b.a, x)

RDD-1 is partitioned and distributed over a number of
worker nodes (executors) where each executor finds the
closest centroid from each data point and returns the
index of the cluster centroid associated with the data
point as a pair to driver. The driver creates a new RDD
(RDD-2) of size n composed of pairs of data points
and the index of their assigned centroids. To update
the location of each centroid, the vector sum of points
assigned to each centroid and the count of these points
are required to compute the mean of points in each
cluster. Therefore, RDD-2 is reduced by key (key is the
centroid’s index) to compute the vector sum and the
number of points in each cluster is counted. Finally,
the mean of points in each cluster (represents the new
centroid) is computed in the driver. The old and new
centroids are compared in the driver and new a iteration
starts in case of failed convergence.

Efficient Clustering Techniques on Hadoop and Spark 13

Algorithm 11: TIKM-H-Mapper(k)

1 Function setup():
2 load centroids to C
3 compute si,j ← d(ci, cj) //for all 1 ≤ i, j ≤ k

4 Function map(offset, value)
5 x ← value
6 //initialise all values in t
7 for j ← 1 to k do
8 tj ← false
9 end

10 minDistance←∞
11 for j ← 1 to k do
12 if tj then
13 continue
14 end
15 d← d(x, cj)
16 if d < minDistance then
17 minDistance← d
18 a← j
19 for z ← j + 1 to k do
20 if sj,z ≥ 2 ∗ d then
21 tz ← true
22 end

23 end

24 end

25 end
26 output(a, x)

6.2 Triangle Inequality K-Means on Spark
(TIKM-S)

TIKM-S uses the same approach used in TIKM-H
(section 5.3). A basic triangle inequality optimisation
based on Lemma 1 is used to eliminate unnecessary
distance computations where the only required
information is the centre-centre distances before
computing the distance from each point to each centroid.

TIKM-S was implemented because it has a light
overhead compared to Elkan and Compare-means
algorithms. This gives TIKM-S the potential to gain
speedup with a relatively small overhead.

7 Experimental Work

7.1 Software and Hardware

Hardware: Apache Hadoop and Apache Spark are
deployed on the same cluster which consists of 1 master
node and 16 worker nodes. The master node has 2 AMD
CPUs running at 3.1GHz with 8 cores each, and 8x8GB
DDR3 RAM, and 6x3TB Near Line SAS disks running
at 7200 rpm. Each worker node has 1 Intel CPU running
at 3.1 GHz with 4 cores, 4x4GB DDR3 RAM, and a
1x1TB SATA disk running at 7200 rpm. All the nodes
run CentOS-6 (x86 64) operating system.

Software: The cluster uses Hadoop version 2.2.0 to
run MapReduce on YARN. HDFS is configured with
128 MB default block size, and a replication factor of 3
replicas for each file. The default JVM heap size is 1 GB
per task.

Apache Spark 2.1.1 is deployed on the same cluster
as Hadoop, where YARN is used as the cluster manager,
and HDFS as the distributed file system.

All algorithms were implemented in Java and
compiled using JDK 1.7.0 79.

7.2 Datasets

The datasets used in the experimental work are either
artificially generated datasets or real-world datasets.

Artificial datasets: Table 2 describes the
characteristics of each artificial and real-world dataset
in terms of its number of data points (n), number
of dimensions (d), and the size in megabytes (MB).
The data points in datasets DS[1-6] and DS[8-
12] are normally distributed around 128 centres to
form 128 well-separated clusters. This was done by,
first, generating 128 centre vectors with a uniform
distribution in Rd. Then, an equal number of data
points was generated and assigned to each centre with
an independent univariate Gaussian distribution for
each dimension. Except for dataset DS7, datasets DS[1-
12] have a constant standard deviation SD = 0.02.
This low SD generates clusters with high density
around the centre vectors which creates well-separated
clusters. The data points in dataset DS7 are generated
with a uniformly random distribution where there
is no underlying structure in the data. Dataset DS7
was generated to test the worst performance for the
optimised algorithms where there are no meaningful
clusters to be found.

Real-world datasets: To observe the practicality
of the proposed algorithms on real-world settings, two
naturally-clustered datasets haven been used in the
experimental work.

The first dataset covertype, contains collected
observations of trees from four areas of the Roosevelt
National Forest in Colorado. The dataset contains
581,012 observations, where each observation has
55 integer attributes. The collected data represent
information about the types of soil, the wilderness
areas, elevation, slop, forest cover type, and several
other characteristics. The dataset is publicly available at
the UCI Machine Learning Repository (Blackard et al.,
1998).

The second dataset mnist contains images of
handwritten digits. Each image is represented by a 28×
28 array. This array is flattened to form a 784 (28× 28 =
784) dimensional vector, where each number in each
dimension describes the darkness level of a specific pixel.
The total number of images in this dataset is 60,000
images. The dataset is available online at (LeCun et al.,
1998).

14

Name Points (n) Dimensions (d) Size (MB)

DS1

100,000

8 15

DS2 32 28

DS3 128 235

DS4 512 941

DS5 1024 1884

DS6 2048 3788

DS7 512 947

DS8 1,000,000

128

1638

DS9 3,000,000 3584

DS10 5,000,000 5836

DS11 7,000,000 8192

DS12 9,000,000 10588

covertype 581,012 55 72

mnist 60,000 784 104

Table 2 Characteristics of artificial and real-world
datasets.

7.3 Evaluation Metrics

Each iteration of K-Means on Hadoop consists of three
major phases: map, shuffle, and reduce. The major
operations that consumes the majority of K-Means
running time occur in the map phase. Therefore, to fully
understand the time consumed by each operation in the
map phase, the map time is broken down into three
major operations: 1) the average time to compute centre-
centre distances, 2) the average time to compute point-
centre distances, and 3) the average time to write extra
information to HDFS. The shuffle time and reduce time
are also reported.

The following is a detailed description of the
evaluation metrics that are used to evaluate the
performance of each algorithm.

• Average iteration time is the average running
time per iteration over the total number of
iterations that an algorithm has executed. This
time includes: the CPU time, the I/O time, and
the communication time. To compute the average
time per iteration, the time for each iteration is
obtained from Hadoop’s job history log files at the
end of each iteration. After all iterations complete
running, the average time spent by each iteration
is computed by dividing the sum of all iterations’
times over the total number of iterations. The
iteration time dose not include the time to initialise
cluster centroids because it is a one time cost that
occurs only once in each test.

• Speedup: In general, speedup measures the
improvement in speed for an enhanced algorithm
over a baseline algorithm (Grama et al., 2003).
In this work, the performance of an optimised
algorithm is reported as the speedup relative to
NKM-H algorithm, where speedup is defined as the

ratio of the average iteration time in NKM-H to the
average iteration time of an optimised algorithms.
For each algorithm, the average speedup over 10
trials is reported.

• Average number of distance calculations
is the average number of point-centre distance
calculations per iteration over the total number of
iterations.

• Average time to compute point-centre
distances: To obtain the time to compute
point-centre distances, in a given mapper, the
total consumed time by point-centre distance
computations for points assigned to this mapper
is computed. After the completion of all mappers,
the average time per mapper over the number
of mapper is computed. After that, The total of
these averages is divided by the total number of
iterations to obtain the average time per iteration.

• Average time to compute centre-centre
distances: The average time to compute centre-
centre distances per mapper over the total number
of mappers is computed in each iteration. Then,
the average time to compute these distances per
iteration over the total number of iterations is
reported.

• Average shuffle time: The average shuffle time
per reducer over the total number of reducers is
computed. This time is then averaged over the
total number of iterations.

7.4 Comparative Analysis of All Implementations
on Hadoop

The aim of this section is to investigate the scalability
and efficiency of K-Means implementations using EVs
and BFs with a wide range of number of clusters (k)
and dimensions (d). Another aim is to determine the
best and worse range of k and d for each algorithm. To
accomplish these aims, algorithms: ELK-H-EV, CMP-
H-EV, ELK-H-BF, and CMP-H-BF are tested against
variable number of clusters k and dimensions d.

7.4.1 Variable Number of Clusters

This experiment uses dataset DS4 as input to test
the performance of each algorithm with a variable
number of clusters (k). Note that the number of
distance computations in ELK-H-EV and CMP-H-EV is
equivalent to ELK-H-BF and CMP-H-BF respectively.
As shown in Figure 2(a) ELK-H-BF efficiently eliminates
a large number of distance computations with all
variations of k. ELK-H-BF eliminates around 76% when
k = 8, and around 98% when k = 512 and 2048. CMP-
H-BF works best with large number of clusters on well-
separated clusters where it eliminates 98% and 99%
when k = 512 and 2048, but skips only 13% and 11%
distance computations with k = 8 and 32 respectively.

Efficient Clustering Techniques on Hadoop and Spark 15

Since TIKM-H implements the simplest approach to
avoid distance computations, it does not prune many
computations with small k. For instance, only 0.3% and
5% of the distance computations are skipped when k =
8 and 32, respectively. However, the skipped distance
computations rises to up to 78% when k = 512, and 94%
when k = 2048.

It can be noticed from Figure 2(b) that, in general,
the speedup for algorithms implemented with BFs is
higher than the ones implemented using EVs. When
8 ≤ k ≤ 128, ELK-H-EV and CMP-H-EV perform the
same or worse than NKM-H. This is because the time
to write EVs to HDFS in each iteration outweighs the
time gained by skipping distance computations. When
k = 512 and 2048, the speedups of ELK-H-BF are 6.6x
and 5.4x, while ELK-H-EV achieves speedups of 3.4x and
4.4x. CMP-H-BF, on the other hand, is 9.3x and 9.6x
faster than NKM-H when k = 512 and 2048, while CMP-
H-EV is 3.8x and 6.6x faster with the same numbers of
k. The speedup in ELK-H-BF drops from 6.6x when k =
512 to 5.4x as k in creases to 2048 due to the increase
in the time to write BFs which is dependent on k. As
the number of clusters gets larger than 32, TIKM-H
starts to benefit from the pruned distance computations
combined with the light computational overhead from
centre-centre computations. The algorithm gains more
speedups as the number of clusters increases.

7.4.2 Variable Number of Dimensions

It can be observed from Figure 2(b) in the previous
experiment that the speedup of ELK-H-EV, CMP-H-
EV, CMP-H-BF, and TIKM-H started to increase when
k = 128. In order to measure the ability to accelerate
with higher dimensions, each algorithm is tested with
variable number of dimensions (8 ≤ k ≤ 2048), while the
number of clusters is fixed at k = 128. Datasets DS[1-6]
are used as input in this experiment.

In Figure 3(b), the speedup of ELK-H-EV reaches
the peek when d = 128 (2.2x) and starts to decline as
d gets larger than 128. Although ELK-H-EV eliminates
most distance computations (see Figure 3(a)) with all
variations of d, the speedup of ELK-H-EV drops to 0.3x
when d = 2048. This drop in speed is caused by the
dramatic increase in the overhead from writing EVs to
HDFS (see Figure 3(c)).

7.5 Detailed Analysis of Implementations using
BFs

It can be observed from the previous experiments that
using BFs to implement K-Means variants has more
potential to scale with increasing numbers of k and d
than variants implemented with EVs. Therefore, further
tests were carried on with BF implementations on
various datasets with various number of clusters (k),
dimensions (d) and data points (n).

7.5.1 Variable Number of Clusters and
Dimensions

This section aims to investigate the impact of the number
of clusters (k) and the number of dimensions (d) on
the performance of ELK-H-BF, CMP-H-BF, and TIKM-
H compared with NKM-H. The values of k and d
varies from small, medium and large where 8 ≤ k ≤
2048 and 8 ≤ d ≤ 512. The number of data points is
fixed at n = 100, 000, and the number of reducers r =
1. While datasets DS[1-4] are used as input to test
the performance of each algorithm with clustered data,
dataset DS7 is used as an input to test each algorithm
with uniform random data, which is the worst case for
the optimised K-Means implementations presented here.
The real dataset covertype is used to test each algorithm
with a real-world dataset.

From Figure 4 to Figure 7, it can be observed that,
in general, CMP-H-BF outperforms NKM-H, ELK-H-
BF, and TIKM-H when 512 ≤ k ≤ 2048 for all the tests
on variations of d. The highest speedup that CMP-H-
BF achieves relative to NKM-H is 21.2x where d = 128
and k = 2048 (Figure 6(b)). This can be attributed to
two reasons: 1) CMP-H-BF eliminates larger number of
distance computations that is close to ELK-H-BF and
larger than TIKM-H, which can be observed in Figures
4(a), 5(a), 6(a) and 7(a); and 2) the small overhead
CMP-H-BF generates compared to ELK-H-BF, as can
be seen in Figures 4(c), 5(c), 6(c) and 7(c).

The best performance for ELK-H-BF with artificial
datasets is when 128 ≤ d ≤ 512 and 128 ≤ k ≤ 2048,
as shown in Figures 6(b) and 7(b). This is because
distance computations become the dominant cost in
NKM-H and ELK-H-BF eliminates more than 95%
of these computations. Furthermore, the time gained
from pruning distance computations outweighs the time
wasted on reading and writing distance bounds and
cluster assignments. Although ELK-H-BF eliminates the
largest number of distance computations compared to
the other two algorithms, the overhead it generates
affects the performance greatly.

For small numbers of clusters and dimensions where
8 ≤ k, d ≤ 32, no significant improvements in speed are
reported for all the optimised algorithms. This is because
even though the optimised algorithms eliminate some
distance computations, the time that NKM-H spends
on distance computations is already small, and the time
gained from eliminating distance computations does not
compensate the time spent on reading and writing the
extra information.

The results of tests on uniformly random dataset
DS7 is illustrated in Figure 8(b). Figure 8(b) shows
that there is no gain in speedup for CMP-H-BF and
TIKM-H relative to NKM-H. This is caused by the small
number of eliminated distance calculations, which is
bellow 1% of the total number of distance computations
in both algorithms (see Figure 8(a)). ELK-H-BF, on
the other hand, eliminates up to 82% (when k = 2048)
distance computations from the total number of distance

16

0

50

100

150

200

250

8 32 128 512 2048

N
u

m
b

e
r

o
f

d
is

t.
 c

a
lc

.
(m

il
li
o

n
s
)

Number of k

NKM-H

ELK-H-BF

CMP-H-BF

TIKM-H

(a) Average number of distance calculations

0

1

2

3

4

5

6

7

8

9

10

11

12

8 32 128 512 2048

S
p

e
e
d

u
p

Number of k

ELK-H-EV

CMP-H-EV

ELK-H-BF

CMP-H-BF

TIKM-H

(b) Speedup relative to NKM-H

Figure 2: Average distance computations per iteration over the total number of iterations shown in Figure 2(a), and
speedup relative to NKM-H shown in Figure 2(b). Each algorithm is tested against variable number of clusters (k).

0

2

4

6

8

10

12

14

8 32 128 512 1024 2048

N
u

m
b

e
r

o
f

d
is

t.
 c

a
lc

.
(m

il
li
o

n
s
)

Number of d

NKM-H ELK-H-BF CMP-H-BF TIKM-H

(a) Average number of distance
calculations

0

1

2

3

4

5

8 32 128 512 1024 2048

S
p

e
e
d

u
p

Number of d

ELK-H-EV

CMP-H-EV

ELK-H-BF

CMP-H-BF

TIKM-H

(b) Speedup relative to NKM-H

0

100

200

300

400

500

8 32 128 512 1024 2048

T
im

e
 (

s
e
c
)

Number of d

ELK-H-EV

CMP-H-EV

ELK-H-BF

CMP-H-BF

(c) Avg. time per iteration to write EVs
and BFs

Figure 3: Average distance computations per iteration over the total number of iterations shown in Figure 3(a),
speedup relative to NKM-H shown in Figure 3(b), and the average time to write EV’s and BFs to HDFS shown in
Figure 3(c). Each algorithm is tested against variable number of dimensions (d).

0

50

100

150

200

250

8 32 128 512 2048

N
u

m
b

e
r

o
f

d
is

t.
 c

a
lc

.
(m

il
li
o

n
s
)

Number of k

NKM-H

ELK-H-BF

CMP-H-BF

TIKM-H

(a) Avg. no. of distance calculations

0

3

6

9

12

15

18

21

24

8 32 128 512 2048

S
p

e
e
d

u
p

Number of k

ELK-H-BF

CMP-H-BF

TIKM-H

NKM-H

(b) Speedup relative to NKM-H

0

500

1,000

1,500

2,000

2,500

8 32 128 512 2048

T
im

e
 (

s
e
c
)

Number of k

ELK-H-BF

CMP-H-BF

(c) Avg. time to write EVs and BFs

Figure 4: Average distance computations per iteration (Figure 4(a)), speedup relative to NKM-H (Figure 4(b)), and
average time to write EVs and BFs (Figure 4(c)). (Dataset: DS1, d = 8)

computations. This is reflected on the speedup where
ELK-H-BF was 2.8x times faster than NKM-H when the
number of clusters are in the range of 128 ≤ k ≤ 512.

To study the performance of each algorithm with
real-world settings, the real dataset covertype is used as
an input for each algorithm and tested against variable
number of clusters (8 ≤ k ≤ 2048). In general, CMP-
H-BF and TIKM-H achieve high speedups relative to
NKM-H as the number of clusters increases, as it can
be observed from Figure 9(b). The speedups for CMP-

H-BF and TIKM-H, relative to NKM-H, are 33x and
15x, respectively, where k = 2048. ELK-H-BF, on the
other hand, achieves a speedup of 7.2x when k = 128
then the speedup starts to drop as the number of clusters
gets larger until it reaches 3x when k = 2048. This drop
in speed in ELK-H-BF is due to the increase of the
overhead that is generated from writing distance bounds
and cluster assignments to HDFS as Figure 9(c) shows.

Efficient Clustering Techniques on Hadoop and Spark 17

0

50

100

150

200

250

8 32 128 512 2048

N
u

m
b

e
r

o
f

d
is

t.
 c

a
lc

.
(m

il
li
o

n
s
)

Number of k

NKM-H

ELK-H-BF

CMP-H-BF

TIKM-H

(a) Avg. no. of distance calculations

0

3

6

9

12

15

18

21

24

8 32 128 512 2048

S
p

e
e
d

u
p

Number of k

ELK-H-BF

CMP-H-BF

TIKM-H

NKM-H

(b) Speedup relative to NKM-H

0

500

1,000

1,500

2,000

2,500

8 32 128 512 2048

T
im

e
 (

s
e
c
)

Number of k

ELK-H-BF

CMP-H-BF

(c) Avg. time to write EVs and BFs

Figure 5: Average distance computations per iteration (Figure 5(a)), speedup relative to NKM-H (Figure 5(b)), and
average time to write EVs and BFs (Figure 5(c)). (Dataset: DS2, d = 32)

0

50

100

150

200

250

8 32 128 512 2048

N
u

m
b

e
r

o
f

d
is

t.
 c

a
lc

.
(m

il
li
o

n
s
)

Number of k

NKM-H

ELK-H-BF

CMP-H-BF

TIKM-H

(a) Avg. no. of distance calculations

0

3

6

9

12

15

18

21

24

8 32 128 512 2048

S
p

e
e
d

u
p

Number of k

ELK-H-BF

CMP-H-BF

TIKM-H

NKM-H

(b) Speedup relative to NKM-H

0

500

1,000

1,500

2,000

2,500

8 32 128 512 2048

T
im

e
 (

s
e
c
)

Number of k

ELK-H-BF

CMP-H-BF

(c) Avg. time to write EVs and BFs

Figure 6: Average distance computations per iteration (Figure 6(a)), speedup relative to NKM-H (Figure 6(b)), and
average time to write EVs and BFs (Figure 6(c)). (Dataset: DS3, d = 128)

0

50

100

150

200

250

8 32 128 512 2048

N
u

m
b

e
r

o
f

d
is

t.
 c

a
lc

.
(m

il
li
o

n
s
)

Number of k

NKM-H

ELK-H-BF

CMP-H-BF

TIKM-H

(a) Avg. no. of distance calculations

0

3

6

9

12

15

18

21

24

8 32 128 512 2048

S
p

e
e
d

u
p

Number of k

ELK-H-BF

CMP-H-BF

TIKM-H

NKM-H

(b) Speedup relative to NKM-H

0

500

1,000

1,500

2,000

2,500

8 32 128 512 2048

T
im

e
 (

s
e
c
)

Number of k

ELK-H-BF

CMP-H-BF

(c) Avg. time to write EVs and BFs

Figure 7: Average distance computations per iteration (Figure 7(a)), speedup relative to NKM-H (Figure 7(b)), and
average time to write EVs and BFs (Figure 7(c)). (Dataset: DS4, d = 512)

7.5.2 Variable Number of Data Points

This section aims to test the performance of each
algorithm against a variable number of data points (n),
where 1, 000, 000 ≤ n ≤ 9, 000, 000. Each algorithm is
tested against five clustered datasets, DS[8-12], each with
a variable number of data points and constant number
of clusters k = 128, and dimensions d = 128.

Figure 10(a) illustrates the average number of
distance computations per iteration and Figure 10(b)
plots the average running time per iteration over the
total number of iterations for each algorithms. The
impact of the reduction in distance computations can

be clearly observed in these two figures. When the
number of data points is in the range of 1, 000, 000 ≤
n ≤ 7, 000, 000, CMP-H-BF and TIKM-H skip around
40% and 70% distance computations, respectively. The
number of skipped distance computations increases for
both algorithms when n = 9, 000, 000 to about 85% for
CMP-H-BF and 80% for TIKM-H, which in return
reduces the iteration time for both algorithms (see
Figure 10(b)). Although ELK-H-BF eliminates most of
the distance computations (about 95%), the time to
write BFs to HDFS, illustrated in Figure 10(c), makes
the algorithm runs at almost the same speed as TIKM-
H, except when n = 9, 000, 000, where TIKM-H is faster.

18

0

50

100

150

200

250

8 32 128 512 2048

N
u

m
b

e
r

o
f

d
is

t.
 c

a
lc

.
(m

il
li
o

n
s
)

Number of k

NKM-H

ELK-H-BF

CMP-H-BF

TIKM-H

(a) Avg. no. of distance calculations

0

3

6

9

12

15

18

21

24

8 32 128 512 2048

S
p

e
e
d

u
p

Number of k

ELK-H-BF

CMP-H-BF

TIKM-H

NKM-H

(b) Speedup relative to NKM-H

0

500

1,000

1,500

2,000

2,500

8 32 128 512 2048

T
im

e
 (

s
e
c
)

Number of k

BF-Elkan

BF-Compare

(c) Avg. time to write EVs and BFs

Figure 8: Average distance computations per iteration (Figure 8(a)), speedup relative to NKM-H (Figure 8(b)), and
average time to write EVs and BFs (Figure 8(c)). (Dataset: DS7 (uniform), d = 512)

0

200

400

600

800

1000

1200

1400

8 32 128 512 2048

N
u

m
b

e
r.

 o
f

d
is

t
c
a
lc

 (
m

il
li
o

n
s
)

Number of k

NKM-H

ELK-H-BF

CMP-H-BF

TIKM-H

(a) Avg. no. of distance calculations

0

5

10

15

20

25

30

35

8 32 128 512 2048

S
p

e
e
d

u
p

Number of k

NKM-H

ELK-H-BF

CMP-H-BF

TIKM-H

(b) Speedup relative to NKM-H

0

200

400

600

800

1,000

1,200

8 32 128 512 2048

T
im

e
 (

s
e
c
)

Number of k

ELK-H-BF

CMP-H-BF

(c) Avg. time to write EVs and BFs

Figure 9: Average distance computations per iteration (Figure 9(a)), speedup relative to NKM-H (Figure 9(b)), and
average time to write EVs and BFs (Figure 9(c)). (Dataset: covertype, d = 55)

0

200

400

600

800

1000

1200

1400

1,000,000 3,000,000 5,000,000 7,000,000 9,000,000

N
u

m
b

e
r

o
f

d
is

t.
 c

a
lc

.
(m

il
li
o

n
s
)

Number of n

KMN-H

ELK-H-BF

CMP-H-BF

TIKM-H

(a) Avg. no. of distance calculations

0

100

200

300

400

500

600

1,000,000 3,000,000 5,000,000 7,000,000 9,000,000

T
im

e
 (

s
e
c
)

Number of n

KMN-H

ELK-H-BF

CMP-H-BF

TIKM-H

(b) Speedup relative to NKM-H

0

10

20

30

40

50

60

70

80

1,000,000 3,000,000 5,000,000 7,000,000 9,000,000

T
im

e
 (

s
e
c
)

Number of n

ELK-H-BF

CMP-H-BF

(c) Avg. time to write EVs and BFs

Figure 10: Results of tests on variable number of points (n). Average distance computations per iteration (Figure
10(a)), average iteration time (Figure 10(b)), and average time to write EVs and BFs (Figure 10(c)). (Dataset:
DS[8-12], d = 128, k = 128)

This is because TIKM-H takes advantage of the light
overhead and the large amount of skipped distance
computations compared to the number of distance
computations that was skipped where n < 9, 000, 000.

7.5.3 Comparative Analysis of K-Means
Implementations on Hadoop and Spark

This section presents the results obtained from the
experimental work on Apache Spark and compares these
results against experimental work on Apache Hadoop.
The goal of this experiment is to provide a comparative

analysis between the performances of NKM-H, ELK-H-
BF, CMP-H-BF, TIKM-H, NKM-S, and TIKM-S.

The experiments are executed on the real dataset
mnist, and tested against variable number of clusters
where 32 ≤ k ≤ 2048, with fixed d = 748 and n = 60000.
It can be observed from Figure 11(b) that NKM-S is
faster than all K-Means implementations on Hadoop
for 32 ≤ k ≤ 128. This is attributed to the caching
mechanism in Spark where input data is distributed
over the cluster executer nodes and cached in-memory
in the first iteration and reused in subsequent iterations
in the form of Resilient Distributed Datasets (RDDs).

Efficient Clustering Techniques on Hadoop and Spark 19

0

20

40

60

80

100

120

140

32 128 512 2048

N
u

m
b

e
r

o
f

d
is

t.
 c

a
lc

.
(m

il
li
o

n
s
)

Number of k

NKM-H

ELK-H-BF

CMP-H-BF

TIKM-H

(a) Avg. no. of distance calculations

0

2

4

6

8

10

12

14

16

32 128 512 2048

S
p

e
e
d

u
p

Number of k

ELK-H-BF

CMP-H-BF

TIKM-H

NKM-S

TIKM-S

(b) Speedup relative to NKM-H

Figure 11: Results of testing algorithms on Hadoop using BFs and algorithms on Spark on real dataset mnist with
variable number of clusters (k). Average distance computations per iteration illustrated in Figure 11(a) and speedup
relative to NKM-H illustrated in Figure 11(b). (Dataset: mnist, d = 748, n = 60000)

This feature, unlike Hadoop, reduces the I/O and
communication overheads. However, as k increases,
distance computations become the bottleneck and the
speedup of NKM-S starts to decline to the point where
it becomes very close to the running time of CMP-H-BF
and TIKM-H when k = 2048.

TIKM-S, on the other hand, outperforms all
algorithms including NKM-S when 128 ≤ k ≤ 2048. This
is because TIKM-S skips around 17%, 33%, and 45%
of distance computations when k = 128, 512 and 2048,
respectively, as can be seen in Figure 11(a), with a small
overhead from computing k2 centre-centre distances
performed by each executer. CMP-H-BF and TIKM-H
were able to reduce the large gap in speedup between
them and NKM-S when k = 2048. That is, when k =
2048, CMP-H-BF and TIKM-H achieve 1.4x speedups,
while NKM-S achieves and 1.9x. This makes CMP-H-BF
and TIKM-H compete with NKM-S when the number of
clusters is large.

8 Conclusion

The aim of this paper was to improve the efficiency
and scalability of K-Means. To achieve this aim efficient
variants of K-Means were implemented on Hadoop and
Spark. The variants used triangle inequality to reduce
the number of distance computations in each iteration.
Some of these variants required extra information from
the previous iteration, which Hadoop does not support.
Therefore, two techniques , Extended Vectors (EVs) and
Bounds Files (BFs), were proposed to allow Hadoop
to pass required extra information from one iteration
to the next. Furthermore, the performance of several
optimisations of K-Means was investigated on Hadoop
and Spark.

The comparative analysis of EV and BF approaches
showed that significant speedups could be achieved
by implementations using both approaches. However,
implementations that use BFs are more efficient and

scalable than those that use EVs to pass information
to subsequent iterations. As the number of clusters and
dimensions increases, the overhead that is generated
from writing EVs to HDFS increases dramatically.

It was found through the use of clustered and
uniform random datasets that the best performance of
the optimised algorithms that use triangle inequality is
with datasets that have well-separated clusters. This is
because more distance computations can be avoided with
well-clustered datasets.

The optimised algorithms did not achieve any
significant speedups relative to NKM-H with low number
of dimensions and clusters. The number of distance
computations must be large enough to compensate the
time spent on writing/reading extra information by the
gained time from skipping distance computations in the
optimised algorithms.

The comparison between the performances of
algorithms that were implemented on Hadoop using
BFs and the two implementations of K-Means on
Spark showed the superiority of TIKM-S over all the
implementations on Hadoop and Spark as the number
of clusters was increased. Combining the in-memory
caching mechanism that Spark employs with the simple
triangle inequality optimisation gave TIKM-S the ability
to outperform all the other implementations.

In the future work it would be interesting to
compare these implementations with implementations
of K-Means on other distributed computing frameworks
such as Twister (Ekanayake et al., 2010) and Piccolo
(Power and Li, 2010). In addition, implementations
of other variants based on triangle inequality such as
Hamerly’s algorithm (Hamerly, 2010), and Adaptive K-
Means (Drake and Hamerly, 2012) could be tested and
compared on Hadoop and Spark.

20

References

Apache (2017). Welcome to Apache Hadoop. http://

hadoop.apache.org/ [Accessed: 15/10/2017].

Arthur, D. and Vassilvitskii, S. (2007). k-means++: The
advantages of careful seeding. In Proceedings of the
eighteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 1027–1035. Society for Industrial
and Applied Mathematics.

Bahmani, B., Moseley, B., Vattani, A., Kumar, R.,
and Vassilvitskii, S. (2012). Scalable k-means++.
Proceedings of the VLDB Endowment, 5(7):622–633.

Ball, G. and Hall, D. (1965). Isodata: A novel method
of data analysis and pattern classification. Technical
report, Stanford Research Institute, Menlo Park.

Blackard, J., Dean, D., and Anderson, C. (1998).
Covertype Data Set. https://archive.ics.

uci.edu/ml/datasets/covertype [Accessed:
02/04/2017].

Celebi, M. (2011). Improving the performance of k-
means for color quantization. Image and Vision
Computing, 29(4):260–271.

Celebi, M., Kingravi, H., and Vela, P. (2013). A
comparative study of efficient initialization methods
for the k-means clustering algorithm. Expert Systems
with Applications, 40(1):200–210.

Dean, J. and Ghemawat, S. (2008). Mapreduce:
Simplified data processing on large clusters. Commun.
ACM, 51(1):107–113.

Dhillon, I. and Modha, D. (2002). A data-clustering
algorithm on distributed memory multiprocessors.
In Large-Scale Parallel Data Mining, pages 245–260.
Springer.

Drake, J. and Hamerly, G. (2012). Accelerated k-means
with adaptive distance bounds. In 5th NIPS workshop
on optimization for machine learning, pages 42–53.

Effat, N., Divya, S., Sirisha, D., and Venkatesan,
M. (2016). Enhanced k-means clustering approach
for health care analysis using clinical documents.
International Journal of Pharmaceutical and Clinical
Research, 8(1):60–64.

Ekanayake, J., Li, H., Zhang, B., Gunarathne, T., Bae,
S., Qiu, J., and Fox, G. (2010). Twister: a runtime
for iterative mapreduce. In Proceedings of the 19th
ACM international symposium on high performance
distributed computing, pages 810–818. ACM.

Elkan, C. (2003). Using the triangle inequality
to accelerate k-means. In Proceedings of the
20th International Conference on Machine Learning
(ICML-03), pages 147–153.

Esteves, R. M., Hacker, T., and Rong, C. (2014). A new
approach for accurate distributed cluster analysis for
big data: competitive k-means. International Journal
of Big Data Intelligence 5, 1(1-2):50–64.

Grama, A., Gupta, A., Karypis, G., and Kumar, V.
(2003). Introduction to Parallel Computing. Pearson
Education. Addison-Wesley, 2 edition.

Grolinger, K., Hayes, M., Higashino, W. A., L’Heureux,
A., Allison, D. S., and Capretz, M. A. (2014).
Challenges for mapreduce in big data. In Services
(SERVICES), 2014 IEEE World Congress on, pages
182–189. IEEE.

Hamerly, G. (2010). Making k-means even faster.
In Proceedings of the 2010 SIAM international
conference on data mining, pages 130–140. SIAM.

Hamerly, G. and Drake, J. (2015). Accelerating lloyds
algorithm for k-means clustering. In Partitional
clustering algorithms, pages 41–78. Springer.

Hodgson, M. (1988). Reducing the computational
requirements of the minimum-distance classifier.
Remote Sensing of Environment, 25(1):117–128.

Jain, A. (2010). Data clustering: 50 years beyond K-
means. Pattern Recognition Letters, 31(8):651–666.

Judd, D., Mckinley, P., and Jain, A. (1998). Large-
scale parallel data clustering. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 20:871–
876.

Kanungo, T., Mount, D., Netanyahu, N., Piatko,
C., Silverman, R., and Wu, A. (2002). An
efficient k-means clustering algorithm: Analysis and
implementation. IEEE transactions on pattern
analysis and machine intelligence, 24(7):881–892.

Kuo, R., Ho, L., and Hu, C. (2002). Integration of
self-organizing feature map and k-means algorithm
for market segmentation. Computers & Operations
Research, 29(11):1475–1493.

LeCun, Y., Cortes, C., and Burges, C. (1998). THE
MNIST DATABASE. http://yann.lecun.com/

exdb/mnist/ [Accessed: 02/04/2017].

Li, Q., Wang, P., Wang, W., Hu, H., Li, Z., and Li, J.
(2014). An efficient k-means clustering algorithm on
mapreduce. In International Conference on Database
Systems for Advanced Applications, pages 357–371.
Springer.

Lin, J. and Dyer, C. (2010). Data-Intensive Text
Processing with Mapreduce. Morgan & Claypool
Publishers, San Rafael, Calif.

Lloyd, S. (1982). Least squares quantization in pcm.
IEEE transactions on information theory, 28(2):129–
137.

Efficient Clustering Techniques on Hadoop and Spark 21

MacQueen, J. (1967). Some methods for classification
and analysis of multivariate observations. In
Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability, volume 1,
pages 281–297. Oakland, CA, USA.

Mohebi, A., Aghabozorgi, S., Ying Wah, T., Herawan,
T., and Yahyapour, R. (2016). Iterative big data
clustering algorithms: a review. Software: Practice and
Experience, 46:107–129.

Orchard, M. (1991). A fast nearest-neighbor search
algorithm. In Acoustics, Speech, and Signal
Processing, 1991. ICASSP-91., 1991 International
Conference on, pages 2297–2300. IEEE.

Phillips, S. (2002). Acceleration of k-means and related
clustering algorithms. In Workshop on Algorithm
Engineering and Experimentation, pages 166–177.
Springer.

Power, R. and Li, J. (2010). Piccolo: Building fast,
distributed programs with partitioned tables. In
OSDI, volume 10, pages 1–14.

Shi, J., Qiu, Y., Minhas, U. F., Jiao, L., Wang, C.,
Reinwald, B., and Özcan, F. (2015). Clash of the
titans: Mapreduce vs. spark for large scale data
analytics. Proceedings of the VLDB Endowment,
8(13):2110–2121.

Steinbach, M., Karypis, G., and Kumar, V. (2000). A
comparison of document clustering techniques. In
KDD workshop on text mining, volume 400, pages
525–526. Boston.

Steinhaus, H. (1956). Sur la division des corp materiels
en parties. Bull. Acad. Polon. Sci, 1:801–804.

Tavazoie, S., Hughes, J., Campbell, M., Cho, R.,
and Church, G. (1999). Systematic determination
of genetic network architecture. Nature genetics,
22(3):281.

White, T. (2012). Hadoop: the definitive guide. O’Reilly,
Farnham.

WLCG (2017). WLCG - Worldwide LHC Computing
Grid. Website. http://wlcg-public.web.cern.ch/

about [Accessed: 03/10/2017].

Wu, X., Kumar, V., Quinlan, R., Ghosh, J., Yang, Q.,
Motoda, H., McLachlan, G., Ng, A., Liu, B., Yu, P.,
Zhou, Z., Steinbach, M., Hand, D., and Steinberg, D.
(2008). Top 10 algorithms in data mining. Knowledge
and Information Systems, 14(1):1–37.

Xu, R. and Wunsch, D. (2009). Clustering, volume 10.
Wiley-IEEE Press.

Yeung, K., Medvedovic, M., and Bumgarner, R.
(2003). Clustering gene-expression data with repeated
measurements. Genome biology, 4(5):R34.

YouTube (2017). YouTube Statistics. http://

www.youtube.com/yt/press/statistics.html

[Accessed: 03/10/2017].

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker,
S., and Stoica, I. (2010). Spark: Cluster computing
with working sets. HotCloud, 10(10-10):95.

Zhang, J. and Qiu, B. (2013). Mammoth data in the
cloud: Clustering social images. volume 23, page 231.
IOS Press.

Bibliography

[1] A. C. Murthy, V. K. Vavilapalli, D. Eadline, J. Niemiec, and J. Markham,

Apache Hadoop YARN: Moving Beyond MapReduce and Batch Processing

with Apache Hadoop 2, 1st ed. Upper Saddle River, NJ: Addison Wesley,

mar 2014.

[2] “Visualizing MNIST: An Exploration of Dimensionality Reduction,”

accessed 2018-07-28. [Online]. Available: http://colah.github.io/posts/

2014-10-Visualizing-MNIST/

[3] “The Worldwide LHC Computing Grid (WLCG),” accessed 2017-01-20.

[Online]. Available: http://wlcg-public.web.cern.ch/about

[4] “Youtube statistics,” accessed 2017-09-16. [Online]. Available: http:

//www.youtube.com/yt/press/statistics.html

[5] J. Lin and C. Dyer, Data-Intensive Text Processing with Mapreduce, G. Hirst,

Ed. San Rafael, Calif.: Morgan & Claypool Publishers, April 2010.

[6] D. Laney, “3d data management: Controlling data volume, velocity, and

variety,” Department of Computer Science, Michigan State University, East

Lansing, Michigan, Tech. Rep. 949, February 2001.

[7] M. A. Beyer and D. Laney, “The importance of big data: A definition,”

Gartner Publications, pp. 1–9, 2012.

204

http://colah.github.io/posts/2014-10-Visualizing-MNIST/
http://colah.github.io/posts/2014-10-Visualizing-MNIST/
http://wlcg-public.web.cern.ch/about
http://www.youtube.com/yt/press/statistics.html
http://www.youtube.com/yt/press/statistics.html

[8] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and S. U.

Khan, “The rise of “big data” on cloud computing: Review and open research

issues,” Information Systems, vol. 47, pp. 98–115, 2015.

[9] A. Mohebi, S. Aghabozorgi, T. Ying Wah, T. Herawan, and R. Yahyapour,

“Iterative big data clustering algorithms: a review,” Software: Practice and

Experience, vol. 46, no. 1, pp. 107–129, Jan. 2016.

[10] M. D. Assunção, R. N. Calheiros, S. Bianchi, M. A. S. Netto, and R. Buyya,

“Big Data computing and clouds: Trends and future directions,” Journal of

Parallel and Distributed Computing, vol. 79–80, pp. 3–15, May 2015.

[11] J. S. Ward and A. Barker, “Undefined by data: a survey of big data defini-

tions,” arXiv preprint arXiv:1309.5821, 2013.

[12] R. Xu and D. Wunsch, Clustering. John Wiley & Sons, 2009, vol. 10.

[13] S. Shahrivari and S. Jalili, “Single-pass and linear-time k-means clustering

based on mapreduce,” Information Systems, vol. 60, pp. 1–12, 2016.

[14] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on

Large Clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[15] “Welcome to apache hadoop!” accessed 2017-04-16. [Online]. Available:

http://hadoop.apache.org/

[16] T. White, Hadoop: the definitive guide. Farnham: O’Reilly, 2012.

[17] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J.

McLachlan, A. Ng, B. Liu, P. S. Yu, Z.-H. Zhou, M. Steinbach, D. J. Hand,

and D. Steinberg, “Top 10 algorithms in data mining,” Knowledge and In-

formation Systems, vol. 14, no. 1, pp. 1–37, Jan. 2008.

[18] S. Lloyd, “Least Squares Quantization in PCM,” IEEE Trans. Inf. Theor.,

vol. 28, no. 2, pp. 129–137, 1982.

205

http://hadoop.apache.org/

[19] C. Elkan, “Using the triangle inequality to accelerate k-means,” in Proceed-

ings of the 20th International Conference on Machine Learning (ICML-03),

2003, pp. 147–153.

[20] D. Judd, P. K. Mckinley, and A. K. Jain, “Large-scale parallel data clus-

tering,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 20, pp. 871–876, 1998.

[21] G. Hamerly and J. Drake, “Accelerating Lloyd’s Algorithm for k-Means Clus-

tering,” in Partitional Clustering Algorithms, M. E. Celebi, Ed. Springer

International Publishing, 2015, pp. 41–78, dOI: 10.1007/978-3-319-09259-

1 2.

[22] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark:

Cluster Computing with Working Sets,” in Proceedings of the 2Nd USENIX

Conference on Hot Topics in Cloud Computing, ser. HotCloud’10. Berkeley,

CA, USA: USENIX Association, 2010, pp. 10–10.

[23] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and

G. Fox, “Twister: A Runtime for Iterative MapReduce,” in Proceedings of

the 19th ACM International Symposium on High Performance Distributed

Computing, ser. HPDC ’10. New York, NY, USA: ACM, 2010, pp. 810–

818.

[24] H. Lee, M. Kang, S.-B. Youn, J.-G. Lee, and Y. Kwon, “An experimental

comparison of iterative mapreduce frameworks,” in Proceedings of the 25th

ACM International on Conference on Information and Knowledge Manage-

ment, ser. CIKM ’16. New York, NY, USA: ACM, 2016, pp. 2089–2094.

[25] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data Clustering: A Review,”

ACM Comput. Surv., vol. 31, no. 3, pp. 264–323, Sep. 1999.

206

[26] J. Han, Data mining: concepts and techniques, 3rd ed. Burlington, MA:

Elsevier, 2011.

[27] P. Berkhin, A Survey of Clustering Data Mining Techniques. Berlin, Hei-

delberg: Springer Berlin Heidelberg, 2006, pp. 25–71.

[28] D. R. Cutting, D. R. Karger, J. O. Pedersen, and J. W. Tukey, “Scatter/-

gather: A cluster-based approach to browsing large document collections,”

in Proceedings of the 15th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval, ser. SIGIR ’92. New

York, NY, USA: ACM, 1992, pp. 318–329.

[29] M. Steinbach, G. Karypis, and V. Kumar, “A comparison of document clus-

tering techniques,” in In 6th ACM SIGKDD, World Text Mining Conference,

2000.

[30] de Souto Marcilio CP, C. I. G., de Araujo Daniel SA, L. T. B., and S. Alexan-

der, “Clustering cancer gene expression data: a comparative study,” BMC

Bioinformatics, vol. 9, no. 1, p. 497, Nov 2008.

[31] J. Hou, W. Liu, E. Xu, and H. Cui, “Towards parameter-independent data

clustering and image segmentation,” Pattern Recognition, vol. 60, pp. 25–36,

2016.

[32] R. J. Kuo, L. Ho, and C. Hu, “Cluster analysis in industrial market segmenta-

tion through artificial neural network,” Computers & Industrial Engineering,

vol. 42, no. 2, pp. 391–399, 2002.

[33] T. Zhang, R. Ramakrishnan, and M. Livny, “Birch: an efficient data cluster-

ing method for very large databases,” in ACM Sigmod Record, vol. 25, no. 2.

ACM, 1996, pp. 103–114.

207

[34] S. Guha, R. Rastogi, and K. Shim, “Cure: an efficient clustering algorithm

for large databases,” in ACM Sigmod Record, vol. 27, no. 2. ACM, 1998,

pp. 73–84.

[35] L. I. Kuncheva and S. T. Hadjitodorov, “Using diversity in cluster ensem-

bles,” in Systems, man and cybernetics, 2004 IEEE international conference

on, vol. 2. IEEE, 2004, pp. 1214–1219.

[36] Y. Cheng, “Mean shift, mode seeking, and clustering,” IEEE transactions on

pattern analysis and machine intelligence, vol. 17, no. 8, pp. 790–799, 1995.

[37] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based algorithm

for discovering clusters in large spatial databases with noise.” in Kdd, vol. 96,

no. 34, 1996, pp. 226–231.

[38] A. K. Jain, “Data clustering: 50 years beyond K-means,” Pattern Recogni-

tion Letters, vol. 31, no. 8, pp. 651–666, Jun. 2010.

[39] H. Steinhaus, “Sur la division des corp materiels en parties,” Bull. Acad.

Polon. Sci, vol. 1, pp. 801–804, 1956.

[40] G. Ball and D. Hall, “Isodata: A novel method of data analysis and pattern

classification,” Stanford Research Institute, Menlo Park, Tech. Rep., 1965.

[41] J. MacQueen et al., “Some methods for classification and analysis of mul-

tivariate observations,” in Proceedings of the fifth Berkeley symposium on

mathematical statistics and probability, vol. 1, no. 14. Oakland, CA, USA.,

1967, pp. 281–297.

[42] Celebi and M. Emre, “Improving the performance of k-means for color quan-

tization,” Image and Vision Computing, vol. 29, no. 4, pp. 260–271, 2011.

[43] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman,

and A. Y. Wu, “An Efficient k-Means Clustering Algorithm: Analysis and

208

Implementation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7,

pp. 881–892, Jul. 2002.

[44] Juang, Li-Hong, Wu, and Ming-Ni, “Mri brain lesion image detection based

on color-converted k-means clustering segmentation,” Measurement, vol. 43,

no. 7, pp. 941–949, 2010.

[45] R. Kuo, L. Ho, and C. Hu, “Integration of self-organizing feature map and

k-means algorithm for market segmentation,” Computers and Operations

Research, vol. 29, no. 11, pp. 1475 – 1493, 2002.

[46] S. Tavazoie, J. D. Hughes, M. J. Campbell, R. J. Cho, and G. M. Church,

“Systematic determination of genetic network architecture,” Nature Genet-

ics, vol. 22, no. 3, pp. 281–285, Jul. 1999.

[47] K. Y. Yeung, M. Medvedovic, and R. E. Bumgarner, “Clustering gene-

expression data with repeated measurements,” Genome Biology, vol. 4, no. 5,

p. R34, Apr. 2003.

[48] E. Naaz, D. Sharma, D. Sirisha, and V. M, “Enhanced k-means clustering

approach for health care analysis using clinical documents,” International

Journal of Pharmaceutical and Clinical Research, vol. 8, no. 1, pp. 60–64,

2016.

[49] M. Steinbach, G. Karypis, V. Kumar et al., “A comparison of document

clustering techniques,” in KDD workshop on text mining, vol. 400, no. 1.

Boston, 2000, pp. 525–526.

[50] M. E. Celebi, H. A. Kingravi, and P. A. Vela, “A comparative study of

efficient initialization methods for the k-means clustering algorithm,” Expert

Systems with Applications, vol. 40, no. 1, pp. 200–210, Jan. 2013.

209

[51] P. Berkhin, “A Survey of Clustering Data Mining Techniques,” in Group-

ing Multidimensional Data, J. Kogan, C. Nicholas, and M. Teboulle, Eds.

Springer Berlin Heidelberg, Jan. 2006, pp. 25–71.

[52] J. M. Peña, J. A. Lozano, and P. Larrañaga, “An empirical comparison of

four initialization methods for the K-Means algorithm,” Pattern Recognition

Letters, vol. 20, no. 10, pp. 1027–1040, Oct. 1999.

[53] D. S. Hochbaum and D. B. Shmoys, “A best possible heuristic for the k-

center problem,” Math. Oper. Res., vol. 10, no. 2, pp. 180–184, May 1985.

[54] D. Arthur and S. Vassilvitskii, “K-means++: The Advantages of Careful

Seeding,” in Proceedings of the Eighteenth Annual ACM-SIAM Symposium

on Discrete Algorithms, ser. SODA ’07. Philadelphia, PA, USA: Society for

Industrial and Applied Mathematics, 2007, pp. 1027–1035.

[55] P. S. Bradley and U. M. Fayyad, “Refining Initial Points for K-Means Clus-

tering,” in Proceedings of the Fifteenth International Conference on Machine

Learning, ser. ICML ’98. San Francisco, CA, USA: Morgan Kaufmann Pub-

lishers Inc., 1998, pp. 91–99.

[56] G. Hamerly and C. Elkan, “Learning the k in k-means,” in Advances in

neural information processing systems, 2004, pp. 281–288.

[57] D. Pelleg and A. Moore, “X-means: Extending k-means with efficient esti-

mation of the number of clusters,” in In Proceedings of the 17th International

Conf. on Machine Learning. Morgan Kaufmann, 2000, pp. 727–734.

[58] R. E. Kass and L. Wasserman, “A reference bayesian test for nested hypothe-

ses and its relationship to the schwarz criterion,” Journal of the american

statistical association, vol. 90, no. 431, pp. 928–934, 1995.

210

[59] D. Pelleg and A. Moore, “Accelerating exact k-means algorithms with geo-

metric reasoning,” in Proceedings of the Fifth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, ser. KDD ’99. New

York, NY, USA: ACM, 1999, pp. 277–281.

[60] D. Pettinger and G. Di Fatta, “Scalability of efficient parallel K-Means,”

in 2009 5th IEEE International Conference on E-Science Workshops, Dec.

2009, pp. 96–101.

[61] J. Bentley, “Multidimensional binary search trees used for associative search-

ing,” Commun. ACM, vol. 18, no. 9, pp. 509–517, 1975.

[62] K. Alsabti, S. Ranka, and V. Singh, “An Efficient K-Means Clustering Al-

gorithm,” in In Proceedings of IPPS/SPDP Workshop on High Performance

Data Mining, 1998.

[63] A. W. Moore, “The anchors hierarchy: Using the triangle inequality to sur-

vive high dimensional data,” in Proceedings of the Sixteenth conference on

Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc.,

2000, pp. 397–405.

[64] M. E. Hodgson, “Reducing the computational requirements of the minimum-

distance classifier,” Remote Sensing of Environment, vol. 25, no. 1, pp. 117

– 128, 1988.

[65] M. T. Orchard, “A fast nearest-neighbor search algorithm,” in [Proceedings]

ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal

Processing, Apr. 1991, pp. 2297–2300 vol.4.

[66] S. J. Phillips, “Acceleration of K-Means and Related Clustering Algorithms,”

in Revised Papers from the 4th International Workshop on Algorithm Engi-

neering and Experiments, ser. ALENEX ’02. London, UK, UK: Springer-

Verlag, 2002, pp. 166–177.

211

[67] G. Hamerly, “Making k-means even faster,” in Proceedings of the 2010 SIAM

international conference on data mining. SIAM, 2010, pp. 130–140.

[68] R. E. Bellman, Adaptive control processes: a guided tour. Princeton uni-

versity press, 2015, vol. 2045.

[69] M. Steinbach, L. Ertöz, and V. Kumar, “The challenges of clustering high

dimensional data,” in New directions in statistical physics. Springer, 2004,

pp. 273–309.

[70] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on

Large Clusters,” in Proceedings of the 6th Conference on Symposium on

Opearting Systems Design & Implementation - Volume 6, ser. OSDI’04.

Berkeley, CA, USA: USENIX Association, 2004, pp. 10–10.

[71] “Amazon emr,” accessed 2017-09-16. [Online]. Available: https://aws.

amazon.com/emr/

[72] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File System,” in

Proceedings of the Nineteenth ACM Symposium on Operating Systems Prin-

ciples, ser. SOSP ’03. New York, NY, USA: ACM, 2003, pp. 29–43.

[73] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop Dis-

tributed File System,” in Proceedings of the 2010 IEEE 26th Symposium

on Mass Storage Systems and Technologies (MSST), ser. MSST ’10. Wash-

ington, DC, USA: IEEE Computer Society, 2010, pp. 1–10.

[74] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “HaLoop: Efficient Iter-

ative Data Processing on Large Clusters,” Proc. VLDB Endow., vol. 3, no.

1-2, pp. 285–296, Sep. 2010.

212

https://aws.amazon.com/emr/
https://aws.amazon.com/emr/

[75] P. C. Zikopoulos, D. DeRoos, K. Parasuraman, T. Deutsch, D. Corrigan,

and J. Giles, Harness the power of Big Data: the IBM Big Data platform.

New York; Singapore: McGraw-Hill, 2013, oCLC: 829742565.

[76] K. Grolinger, M. Hayes, W. Higashino, A. L’Heureux, D. Allison, and

M. Capretz, “Challenges for MapReduce in Big Data,” in 2014 IEEE World

Congress on Services (SERVICES), Jun. 2014, pp. 182–189.

[77] K.-H. Lee, Y.-J. Lee, H. Choi, Y. D. Chung, and B. Moon, “Parallel Data

Processing with MapReduce: A Survey,” SIGMOD Rec., vol. 40, no. 4, pp.

11–20, Jan. 2012.

[78] D. Singh and C. K. Reddy, “A survey on platforms for big data analytics,”

Journal of Big Data, vol. 2, no. 1, p. 8, Oct. 2014.

[79] F. Li, B. C. Ooi, M. T. Özsu, and S. Wu, “Distributed Data Management

Using MapReduce,” ACM Comput. Surv., vol. 46, no. 3, pp. 31:1–31:42, Jan.

2014.

[80] Y. Zhang, Q. Gao, L. Gao, and C. Wang, “iMapReduce: A Distributed

Computing Framework for Iterative Computation,” in Proceedings of the

2011 IEEE International Symposium on Parallel and Distributed Processing

Workshops and PhD Forum, ser. IPDPSW ’11. Washington, DC, USA:

IEEE Computer Society, 2011, pp. 1112–1121.

[81] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden,

and M. Stonebraker, “A comparison of approaches to large-scale data anal-

ysis,” in Proceedings of the 2009 ACM SIGMOD International Conference

on Management of Data, ser. SIGMOD ’09. New York, NY, USA: ACM,

2009, pp. 165–178.

213

[82] C. Doulkeridis and K. Nørv̊ag, “A survey of large-scale analytical query

processing in mapreduce,” The VLDB Journal, vol. 23, no. 3, pp. 355–380,

Jun. 2014.

[83] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation

ranking: Bringing order to the web,” in Proceedings of the 7th International

World Wide Web Conference, Brisbane, Australia, 1998, pp. 161–172.

[84] “Logistic regression,” accessed 2017-04-16. [Online]. Available: https:

//en.wikipedia.org/wiki/Logistic regression

[85] “Apache mesos,” accessed 2015-01-03. [Online]. Available: http://mesos.

apache.org/

[86] “AWS |Amazon Elastic Compute Cloud (EC2) - Scalable Cloud Hosting,”

accessed 2015-01-03. [Online]. Available: http://aws.amazon.com/ec2/

[87] “MLlib is Apache Spark’s scalable machine learning library,” accessed

2017-09-16. [Online]. Available: https://spark.apache.org/mllib/

[88] R. Power and J. Li, “Piccolo: Building fast, distributed programs with par-

titioned tables.” in OSDI, vol. 10, 2010, pp. 1–14.

[89] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,

and G. Czajkowski, “Pregel: a system for large-scale graph processing,” in

Proceedings of the 2010 ACM SIGMOD International Conference on Man-

agement of data. ACM, 2010, pp. 135–146.

[90] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and

R. Sears, “Mapreduce online.” in Nsdi, vol. 10, no. 4, 2010, p. 20.

[91] Y. Zhang, Q. Gao, L. Gao, and C. Wang, “Priter: a distributed framework

for prioritized iterative computations,” in Proceedings of the 2nd ACM Sym-

posium on Cloud Computing. ACM, 2011, p. 13.

214

https://en.wikipedia.org/wiki/Logistic_regression
https://en.wikipedia.org/wiki/Logistic_regression
http://mesos.apache.org/
http://mesos.apache.org/
http://aws.amazon.com/ec2/
https://spark.apache.org/mllib/

[92] I. S. Dhillon and D. S. Modha, “A Data-Clustering Algorithm on Dis-

tributed Memory Multiprocessors,” in KDD’99 Workshop on High Perfor-

mance Knowledge Discovery. London, UK: Springer-Verlag, 1999, pp. 245–

260.

[93] K. Kerdprasop and N. Kerdprasop, “Parallelization of K-means Clustering

on Multi-core Processors,” in Proceedings of the 10th WSEAS International

Conference on Applied Computer Science, ser. ACS’10. Stevens Point,

Wisconsin, USA: World Scientific and Engineering Academy and Society

(WSEAS), 2010, pp. 472–477.

[94] E. Lusk, N. Doss, and A. Skjellum, “A high-performance, portable implemen-

tation of the MPI message passing interface standard,” Parallel Computing,

vol. 22, pp. 789–828, 1996.

[95] J. Drake and G. Hamerly, “Accelerated k-means with adaptive distance

bounds,” in 5th NIPS workshop on optimization for machine learning, 2012,

pp. 42–53.

[96] W. Zhao, H. Ma, and Q. He, “Parallel K-Means Clustering Based on MapRe-

duce,” in Cloud Computing, ser. Lecture Notes in Computer Science, M. G.

Jaatun, G. Zhao, and C. Rong, Eds. Springer Berlin Heidelberg, Jan. 2009,

pp. 674–679.

[97] A. A. Golghate and S. W. Shende, “Parallel k-means clustering based on

hadoop and hama,” International Journal of Computing and Technology,

vol. 1, no. 2014, pp. 33–37, 2014.

[98] P. Anchalia, A. Koundinya, and N. Srinath, “MapReduce Design of K-Means

Clustering Algorithm,” in 2013 International Conference on Information

Science and Applications (ICISA), Jun. 2013, pp. 1–5.

215

[99] I. K. Savvas and M. T. Kechadi, “Mining on the cloud-k-means with mapre-

duce.” in CLOSER, 2012, pp. 413–418.

[100] R. Esteves, R. Pais, and C. Rong, “K-means Clustering in the Cloud –

A Mahout Test,” in 2011 IEEE Workshops of International Conference on

Advanced Information Networking and Applications (WAINA), Mar. 2011,

pp. 514–519.

[101] “Apache mahout: Scalable machine learning and data mining,” accessed

2017-04-16. [Online]. Available: https://mahout.apache.org/

[102] J. Zhang and B. Qiu, “Mammoth data in the cloud: Clustering social im-

ages,” in Cloud Computing and Big Data. IOS Press, 2013, vol. 23, p.

231.

[103] B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and S. Vassilvitskii, “Scal-

able K-means++,” Proc. VLDB Endow., vol. 5, no. 7, pp. 622–633, Mar.

2012.

[104] T. H. Rui Máximo Esteves, “A new approach for accurate distributed cluster

analysis for Big Data: competitive K-Means,” Int. J. of Big Data Intelli-

gence, vol. 1, no. 1/2, pp. 50 – 64, 2014.

[105] X. Cui, P. Zhu, X. Yang, K. Li, and C. Ji, “Optimized big data k-means

clustering using mapreduce,” The Journal of Supercomputing, vol. 70, no. 3,

pp. 1249–1259, 2014.

[106] Q. Li, P. Wang, W. Wang, H. Hu, Z. Li, and J. Li, “An Efficient K-means

Clustering Algorithm on MapReduce,” in Database Systems for Advanced

Applications, ser. Lecture Notes in Computer Science, S. S. Bhowmick, C. E.

Dyreson, C. S. Jensen, M. L. Lee, A. Muliantara, and B. Thalheim, Eds.

Bali, Indonesia: Springer International Publishing, Apr. 2014, pp. 357–371,

dOI: 10.1007/978-3-319-05810-8 24.

216

https://mahout.apache.org/

[107] J. Shi, Y. Qiu, U. F. Minhas, L. Jiao, C. Wang, B. Reinwald, and F. Özcan,

“Clash of the titans: Mapreduce vs. spark for large scale data analytics,”

Proc. VLDB Endow., vol. 8, no. 13, pp. 2110–2121, Sep. 2015.

[108] B. Wang, J. Yin, Q. Hua, Z. Wu, and J. Cao, “Parallelizing k-means-based

clustering on spark,” in International Conference on Advanced Cloud and Big

Data, CBD 2016, Chengdu, China, August 13-16, 2016, 2016, pp. 31–36.

[109] “Cluto–software for clustering high-dimensional datasets, version 2.1.1,”

accessed 2017-07-16. [Online]. Available: http://glaros.dtc.umn.edu/

gkhome/views/cluto

[110] S. Gopalani and R. Arora, “Comparing apache spark and map reduce with

performance analysis using k-means,” International Journal of Computer

Applications, vol. 113, no. 1, pp. 8–11, March 2015, full text available.

[111] J. Blackard, D. Dean, and C. Anderson, “Covertype data set,” accessed

2017-09-16. [Online]. Available: https://archive.ics.uci.edu/ml/datasets/

covertype

[112] Y. LeCun, C. Cortes, and C. Burges, “The mnist database,” accessed

2017-09-16. [Online]. Available: http://yann.lecun.com/exdb/mnist/

[113] A. Grama, A. Gupta, G. Karypis, and V. Kumar, Introduction to Parallel

Computing, 2nd ed., ser. Pearson Education. Addison-Wesley, 2003.

217

http://glaros.dtc.umn.edu/gkhome/views/cluto
http://glaros.dtc.umn.edu/gkhome/views/cluto
https://archive.ics.uci.edu/ml/datasets/covertype
https://archive.ics.uci.edu/ml/datasets/covertype
http://yann.lecun.com/exdb/mnist/

	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Clustering Big Data
	Iterative Clustering Algorithms on MapReduce/Hadoop
	Why MapReduce?
	Objectives
	Contributions
	Thesis Outline

	Background
	Cluster Analysis
	Clustering Techniques
	Distance Measures

	K-Means
	Introduction
	Lloyd's Algorithm
	Complexity
	Convergence
	Limitations

	Sequential K-Means Optimisations
	K-Means and Triangle Inequality
	How Can Triangle Inequality Accelerate K-Means?
	Clustering Quality
	Compare-means and Sort-means
	Elkan's Algorithm
	Hamerly's Algorithm

	MapReduce
	MapReduce Dataflow
	Iterative Process on MapReduce
	Limitations of MapReduce

	Apache Hadoop
	Hadoop Distributed File System
	Hadoop Generations
	Hadoop Counters
	Distributed Cache

	Apache Spark
	Main Abstractions
	Spark Architecture

	Iterative MapReduce Implementations
	Summary

	Parallel and Distributed K-Means
	Related Work to Parallel K-Means Implementations
	Related Work to Parallel K-Means Based on Distributed Computing Frameworks
	Implementation of Naive K-Means on Hadoop (NKM-H)
	Implementation of NKM-H with Basic MapReduce Model
	Implementation of NKM-H with a Combiner
	Implementation of NKM-H with in-mapper-combiner

	Implementation of Naive K-Means on Spark (NKM-S)
	Summary

	Efficient Parallel K-Means using Triangle Inequality
	Introduction
	K-Means on Hadoop using an Extended Vector (EV)
	Elkan's Algorithm on Hadoop using an Extended Vector (ELK-H-EV)
	Compare-means on Hadoop using an Extended Vector (CMP-H-EV)

	K-Means on Hadoop using a Bounds File (BF)
	Elkan's Algorithm on Hadoop using a Bounds File (ELK-H-BF)
	Compare-means on Hadoop using a Bounds File (CMP-H-BF)

	Extended Vectors vs. Bounds Files
	Triangle Inequality K-Means on Hadoop (TIKM-H)
	Triangle Inequality K-Means on Spark (TIKM-S)
	Overhead Analysis
	Summary

	Experimental Results
	Datasets
	Hardware and Software Setup
	Experimental Design
	Evaluation Metrics
	Clustering Quality

	Comparative Analysis of All Implementations on Hadoop
	Variable Number of Clusters
	Variable Number of Dimensions

	Detailed Analysis of Implementations using a BF
	Variable Number of Clusters and Dimensions
	Variable Number of Data Points
	Variable Number of Mappers

	Comparative Analysis of K-Means Implementations on Hadoop and Spark
	Summary

	Conclusions
	Contributions
	Key Findings
	Future Work

	Appendices
	Publications

