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Abstract 

 

High temperature and drought, together or alone, reduce rice (Oryza sativa L.) crop yield. Their 

effect at different periods during seed development and maturation on rice seed quality, and its 

development, was investigated with pot-grown plants in controlled-environment growth cabs 

(28/20°C,11h/13h) or glass-houses (28/20℃, 12h/12h). Ending irrigation early in japonica rice 

cv. Gleva at early- to mid-seed filling (7 or 14 days after anthesis, DAA) resulted in earlier 

plant senescence, more rapid decline in seed moisture content and initially more rapid seed 

quality development, but subsequently substantial decline in planta in ability to germinate 

normally. Subsequent seed storage longevity at 40℃ with c. 15% moisture content was 

ultimately greatest in the control (no drought); both drought treatments declined in subsequent 

longevity in planta from 16 or 22 DAA onwards, respectively. A similar investigation but with 

drought applied later (14 or 28 DAA) also showed poorer seed longevity in drought treatments 

at harvest maturity (42 DAA). In both investigations, the earlier the drought the greater the 

damage to subsequent seed quality. Well-irrigated plants exposed to 40/30℃ for 3 days 

provided poorer subsequent seed quality (shorter longevity) the earlier during development 

they received high temperature (HT) treatment. The effect was greatest with HT at around 

anthesis and histodifferentiation, with no effect of HT during the seed maturation phase. 

Damage to seed quality from combining both stresses (drought, HT) was greater than each 

alone; indica rice cv. Aeron 1 was affected less by these stresses than japonica cv. Gleva. It is 

concluded that drought, as well as HT, damages subsequent seed quality in rice, the period 

around anthesis is the most vulnerable stage of plant development for such damage to seed, 

and seed quality in japonica rices is more vulnerable than in indica rices to stress in the 

production environment. 
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CHAPTER 1 

 

GENERAL INTRODUCTION 

This thesis considers the changes of rice (Oryza sativa L.) seed quality, including 

subsequent seed storage longevity, in japonica cv. Gleva (and rice cv. Aeron 1) during seed 

development and maturation under well-watered or limited irrigation conditions or brief 

elevated high temperature at 40℃. Determination of the potential for subsequent longevity 

is important in order to know the ability of seed to generate subsequent crops. 

Climate change is now tremendously important to the agriculture sector worldwide 

with consequences for crop yield and also quality. Environmental conditions during rice 

cultivation affect seed quality (Ellis et al., 1993; Ellis, 2011;Tejakhod and Ellis, 2017) with  

drought and high temperature important elements to consider in order to reduce crop failure 

resulting from sowing poor quality seed. In rice, it also well documented that environmental 

stress has more impact during the reproductive phase compared to other growth phases. 

Many studies have emphasized the consequence for yield components from environmental 

stress (Krishnan et al., 2011; Singh et al., 2012), but there has been limited study of the 

effect of drought during rice cultivation on potential seed longevity.  

1.1 Oryza sativa 

Rice (Oryza sativa L.) is a major staple food for the world’s population with about two-

third of the total rice production grown under irrigation (Maclean et al., 2002). Asia 

accounts for over 90% of the world’s production of rice, with China, India and Indonesia 

producing the most (FAO, 2017). Rice provides 21% of global human per capita energy 

and 15% of per capita protein (IRRI, 2013). According to the Human Development Report 

(HDR) (1997), approximately 70% of the world’s poor people live in Asia, where rice is 

their staple. In countries such as Bangladesh, Vietnam, and Myanmar, the average citizen 

consumes 150-200 kg rice annually, which accounts for two-thirds or more of caloric intake 

and approximately 60% of daily protein consumption (IRRI, 2013). However, the growth 

of rice yield has dropped below 1% per year worldwide with an increase of more than 1.2% 

per year is required to meet the growing demand for food (Normile, 2008). 

Rice is a semiaquatic plant and its production is water intensive (Wassmann et al. 

2009;  Bouman et al. 2005). The rice plant usually takes 3–6 months from germination to 
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maturity, depending on the variety and the environment under which it is grown. Following 

the works of (Kato et al., 1930), the cultivated Oryza sativa L. is divided into two major 

types, japonica and indica. The classification of indica and japonica was carried out by 

pioneer research in the 1920's, based on morphological and physiological differences. 

1.1.1 Japonica rice 

Japonica is found in the cooler zones of the subtropics and in the temperate zones. Mostly 

planted mainly in the northeast plain and Yangtze River regions of China (Cheng, 1993; 

Qian, 2007; Wang et al., 2015) and is dominated by inbred varieties (Deng et al., 2006). In 

terms of plant characteristics, it is a relatively short plant with narrow, dark green leaves 

and medium-height tillers. Japonica rice grains are short and round, do not shatter easily 

and have low amylose content, making them moist and sticky when cooked (Ricepedia, 

2018). 

1.1.1.1 Javanica rice 

Javanica is a primitive type of japonica, less thoroughly differentiated, having many 

intermediate types between typical indica and typical japonica, both in morphological traits 

and in compatibility. It has been concluded, therefore, that javanica should be classified in 

an ecological group under japonica (Wang et al., 1998). Javanica plants have long grains, 

thick, but fewer culms (stems), and long and broad leaves (Sato, 1996). 

1.1.2 Indica rice 

Indica rice is the major type of rice grown in the tropics and subtropics, including 

the Philippines, India, Pakistan, Malaysia, Indonesia, central and southern China. In China, 

indica rice is planted mainly in southern China (Cheng, 1993; Qian, 2007; Min et al., 

2011, 2012) with mostly hybrid varieties (Deng et al., 2006). Indica plants are tall with 

broad to narrow, light green leaves. The grains are long to short, slender, somewhat flat, 

tend to shatter more easily and have high amylose content, making them drier and flakier 

when cooked than japonica varieties (Ricepedia, 2018). 

1.1.3 Japonica   rice cv. Gleva 

In Spain, rice is sown in May or sometime in June. The crop is usually harvested in October. 

Gleva is one of popular varieties sown in Spain and most cultivated in Cataluna (delta Del 

Ebro), which soils are very saline. The temperature during cultivation is 10-12℃ in seed 

germination stage and increases to 20-25℃ during crop flowering (Kraehmer et al., 2016). 

For example, mean maximum temperatures in July and August in rice fields in south and 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5671604/#B30
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5671604/#B42
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5671604/#B5
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5671604/#B4
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5671604/#B30
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5671604/#B21
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5671604/#B21
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5671604/#B20
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5671604/#B5
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southwest Spain range from 34.0 to 36.5°C and brief peaks above 40°C can occur, whilst 

night temperatures may on occasion reach 34°C (Duran et al., 2014). 

1.1.4 Indica rice cv. Aeron 1 

IRRI has developed aerobic rice varieties and MARDI (Malaysia Agriculture Research 

Development Institute) has tested them in local environments. Aeron 1 cultivar was 

recognized as an aerobic rice, broadly defined as a production system in which input 

responsive rice varieties with aerobic adaption are grown in non-puddled, non-saturated 

soils. In Malaysia, Aeron 1 is particularly sown under aerobic conditions. Aerobic rice 

cultivation is a new concept of growing rice with supplemental irrigation, without the 

necessity for standing water in the field. This is more efficient in terms of water use than 

puddle paddy rice. Variety AERON 1/05 showed superior in some yield component 

characteristics such as longer panicle, higher number of rachis, higher yield and heavier 

grains (Zainudin et al., 2014). Achieving high yield under aerobic soil conditions requires 

rice varieties that combine the drought-resistant characteristics of lowland rice. In addition, 

this aerobic rice, research undertaken by IRRI since 2001 has shown that aerobic rice 

varieties could produce yields of up to 6 t/ha. However, there had been little progress in the 

screening and selection of aerobic rice varieties for the tropics and semiarid tropics 

(Templeton and Bayot, 2011). 

1.2 Rice growing phase 

Rice varieties can be categorized into three groups based on their growth duration: i) short-

duration varieties which mature in 100–120 days, ii) medium duration, 120-140 days and 

iii) long duration between 140-160 days. They undergo four general growth 

phases: germination, vegetative, reproductive, and ripening (Yoshida, 1981). This is 

summarized in Figure 1.1. 
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Figure 1.1: Rice growth phase from direct seeding cultivation (From IRRI, 2018) 

1.2.1 Seed germination phase 

Germination in rice occurs when the first shoots and roots start to emerge from the seed 

and the rice plant begins to grow. To germinate, rice seeds need to absorb moisture and 

meet their favourable environment conditions such as a certain amount of water and 

suitable temperature. Maximum germination of a partially dormant population of seed is 

achieved at an optimum temperature which is about 27℃ and no germination occurred at 

42℃ (Roberts, 1962). Seed dormancy has been defined as the incapacity of a viable seed 

to germinate under favourable conditions (Bewley,1997; Finch-Savage and Leubner-

Metzger, 2006). Delouche (1980) and Kermode (2005) pointed out that dormancy is a 

means of reducing the adverse effects of environment on seed quality by providing the 

natural protection against seed deterioration while seed are still on the plant.  Induction of 

seed dormancy usually occurs during the maturation stage (Bewley et al., 2013) parallel 

with the development of desiccation tolerance (Goldberg et al., 1994) and then develops 

the capability to maintain their quality under hostile conditions (Delouche and 

Nguyen,1968). Recently, Shiratsuchi et al. (2017) reported that highly dormant rice seed 

cv. Hokuriku193 were able to germinate after using steam at 40℃ but this was not 

necessary for non-dormant rice seed such as japonica rice cv. Moeminori.  

1.2.2 Vegetative growth phase 

The vegetative phase of rice is characterized by the development of tillers and more 

leaves, and a gradual increase in plant height (Martínez-Eixarch et al., 2013). The number 

of days the vegetative stage takes varies depends on the rice variety (Hussain et al., 2014; 

Murshida et al., 2017), with the optimum mean temperature close to 27°C and photoperiods 

between 11 and 15 hd-1 (Summerfield et al., 1992) but is typically between 55 and 85 days 

after sowing (DAS). The early vegetative phase begins as soon as the seed germinates into 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4036127/#B10
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a seedling and ends at tillering. The seedling stage starts right after the first root and shoot 

emerge and lasts until just  

before the first tiller appears. The late vegetative phase starts when tillering begins, which 

extends from the appearance of the first tiller until the maximum number of tillers is 

reached. The number of tillers number which later produce panicles depends upon cultivar 

(Hussain et al., 2014), spacing (Counce et al., 1989; Bhowmik et al., 2013) and year of 

cultivation (Counce and Wells, 1990). The period of vegetative growth typically takes 

around 40 DAS in field environments (Counce et al., 1989).  The stem begins to lengthen 

late in the tillering stage and stops growing in height just before panicle initiation about 47-

56 days duration to period from culm to panicle emergence, which also signals the end of 

the vegetative phase (Counce et al., 1996). Tillering in rice is an important agronomic trait 

for panicle number per unit land area and so grain production (Moldenhauer and Gibbons, 

2003). The panicle-bearing tiller rate influences the grain yield of rice (Wang et al., 2007; 

Badshah et al., 2014). The high tillering capacity is considered desirable trait in rice 

production, as number of tiller per plant is closely related with number of panicles per plant 

(Miller et al., 1991), but excessive tillering leads to high tiller abortion, poor grain setting, 

small panicle size, and can reduce in grain yield (Peng et al., 1994; Ahmad et al., 2005). 

1.2.3 Reproductive phase 

Reproductive phase consists of four main stages, which are i) booting stage; ii) heading 

stage; iii) anthesis; and iv) seed grain filling. The first sign that the rice plant is getting 

ready to enter its reproductive phase is a bulging of the leaf stem that conceals the 

developing panicle, called the booting stage (Vergara, 1970). At booting stage, senescence 

of leaves and non-bearing tillers is noticeable at the base of the plant (Rice Knowledge 

Management Portal, 2018). Then the tip of the developing panicle emerges from the stem 

and continues to grow, which is called heading.  Rice plant is said to be at the heading stage 

when the panicle is fully visible. As heading progresses, flowering (anthesis) begins. Many 

studies reports that this period is critical and most sensitive to environmental conditions for 

example, high temperature (Shi et al., 2016), drought (Kores et al., 2017), and flooding 

(Tejakhod and Ellis, 2017).  
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1.2.3.1 Anthesis (flowering) stage 

Anthesis (flowering) refers to a series of events between the opening and closing of the 

spikelet. Anthesis can continue for about 3–9 consecutive days (Cecile-Julia and Dingkuhn, 

2013). Throughout my studies, this stage was very important in order to identify when 50% 

anthesis occurred to detect correct timing to imposed stress during rice plant cultivation. At 

the beginning of anthesis, tip portions of the lemma and palea begin to open, filaments 

elongate, and anthers begin to exsert with swelling pollen (Matsui et al., 1999). The 

filaments elongate further to bring the anthers out resulting in anther dehiscence (Adair, 

1934). Consequently, many pollen grains fall onto the stigma, allow pollination to occur. 

Since the florets of rice are adichogamous (pistils and stamens mature at similar times), 

most of the florets are self‐pollinated at the time of floret opening (Jagoe, 1931). The parts 

of florets (spikelet) is shown in Figure 1.2. 

Pollen grains are viable for only 5 minutes after emerging from the anther, whereas 

the stigma can be fertilized for 3–7 days and so pollen grains are more sensitive to high 

temperatures than the stigma (Jagadish et al., 2007). The date of anthesis of individual 

spikelets varies with the positions of the spikelets within the same panicle. Spikelets on the 

upper branches anthese earlier than those on the lower branches; within a branch, a spikelet 

at the tip flowers first (Cao et al., 2015). Time of day for anthesis varies among species and 

weather conditions. Under optimum temperatures in the tropics, most rice varieties (O. 

sativa) begin anthesis at about 0730 and end at about 1230 hours (Prasad et al., 2006). 

Jagadish et al. (2007) reported that peak anthesis occurred between 10.30 h and 11.30 h at 

29.2℃ for both indica and japonica rices. When temperatures are low, anthesis may start 

late in the morning and continue into the late afternoon (Gunawardena et al., 2003; Cruz et 

al., 2006). Upon double fertilization of the egg and endosperm (polar nuclei) two different 

structure are formed within the angiosperm seed, the embryo and endosperm, indicate grain 

seed filling begin to start. 
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Figure 1.2: Parts of rice spikelet (From Chang and Bernedas, 1965) 

 

 

1.2.3.2 Grain filling phase (Development of seeds) 

Seeds are the single most essential cultivated source of food, with wheat and rice providing 

the vast majority of food. Besides serving as food, seeds also give rise to the next generation 

of crops. At grain filling stage, florets on the main stem become immature grains of rice. 

Formation of grain results mainly from accumulation of carbohydrates in the pistils of the 

florets. Grain production phase of rice can be subdivided into three distinct sequential 

stages which are i) histodifferentiation, ii) cell expansion, and iii) seed maturation.  

 Initially, in phase i) there is the formation of different tissue types within the 

embryo, endosperm and surrounding seed as a result of extensive cell division which is 

called histodifferentiation (Borisjuk et al., 1995; Ishimaru et al., 2003). During this stage, 

the zygote undergoes extensive cell division and differentiation and is accompanied by 

development of the endosperm, which provide nutrient reserves for the embryo to grow 

and persist in the mature seed or be reabsorbed during the maturation (Finkelstein, 2004). 

 In the second phase, major reserves within embryo and storage tissue are laid down 

which is called cell expansion or seed filling stage (Venkateswarlu, 1976; Shi et al., 2017; 

Wang et al., 2018). As reserve deposition occurs, water is displaced. The primary source 

of the carbohydrate is from photosynthesis occurring in the uppermost three to four leaves 

and the stem (Yoshida, 1981), whilst stem reserves are converted into soluble sugars and 
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transported into the grains and increases the grain filling rate (Yang et al., 2001b).  Hence, 

the dry weight of the seed is increase and its proportional water content declines. This was 

supported and well documented by Sinniah and Ellis (1998b) in Brassica , Siddique and 

Wright (2003) in peas and Ellis (2011) in rice. The carbohydrate that accumulates in grain 

is stored in the form of starch, wherea this starchy portion of the grain is called endosperm 

(Nakamura et al., 1989). Initially, the starch is white and milky in consistency. When this 

milky accumulation is first noticeable inside florets on the main stem, the stage defined as 

milk stage. In this stage, Abayawickrama et al. (2017) suggest it is an early part of seed 

filling which about 14-15 days after heading (DAH). Prior to pollination, the panicle in 

most varieties is green, relatively compact and erect. During milk stage, the accumulation 

of carbohydrate increases spikilet weight. Nagata et al. (2001) reported that in japonica rice 

cv. Tanakari the percentage of ripened spikelets showed the greatest correlation with the 

total amount of carbohydrate supply per spikelet during 10 to 20 DAH. Since the florets 

that accumulate carbohydrate first are located near the tip of the panicle, the panicle begins 

to lean and eventually will turn down. The milky consistency of the starch in the endosperm 

changes as seed lose their moisture. When the texture of the carbohydrate on the main stem 

is firm, this stage is called dough stage which occurred at 20-23 DAH which is about at 

mid early seed filling (Abayawickrama et al., 2017). During the third phase, dry matter 

accumulation was slow and stops at physiological maturity, where seed begins the 

maturation phase. 

Zhu et al. (1997) and Cao et al. (1992) reported that most indica cultivars usually 

exhibit a faster grain filling rate than japonica cultivars. Meanwhile, the hybrid of 

japonica/indica rice usually shows a slower grain filling rate than other hybrid rice varieties 

(Yuan, 1994, 1998; Peng et al., 1999, 2003). 

1.2.4 Ripening (maturation) phase 

Agronomically, the duration of filling and ripening is from the date of heading to the time 

when the maximum grain weight is attained (Krishnan et al., 2011). Grain ripening can be 

subdivided into milky, dough, yellow, ripe, and maturity stages. These terms are primarily 

based on the texture and colour and widely used by farmers in observing growing grains.  

The length of ripening varies among varieties and depends upon by environmental 

condition with shorter durations in the tropics than cool temperate regions. Generally, the 

ripening phase starts when seed filling is completed and moisture content on mother plant 
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begins to decrease and completed when the grain is mature and ready to be harvested (Egli 

and TeKrony, 1997). 

Physiological maturity (PM), mass maturity (MM) and harvest maturity (HM); 

those terminology are important which are reflect to seed quality (Siddique and Wight, 

2003). Physiological maturity was defined by Shaw and Loomis (1950) as the stage in seed 

development when the seed reaches its maximum dry seed weight and yield. This same 

stage was also termed relative maturity by Aldrich (1943), morphological maturity by 

Anderson (1955), and recently termed as mass maturity by Ellis and Pieta-Filho (1992). 

Further desiccation on the mother plant need to be continue since the moisture content of 

the seed is relatively high for mechanical harvesting to apply at PM. Harvest maturity is 

defined as the first time the seed moisture declines to a harvestable level in those crops 

harvested as dry seeds and/or fruits (Egli and TeKrony, 1997). Maturity stage affects seed 

germination and vigour of common vetch (Vicia sativa L.). Delaying harvest of common 

vetch seed may improve seed germination and vigour under wide range of field conditions 

(Samarah and Mullen, 2004). Early harvest may lower seed germination and late harvest 

may increase seed losses due to shattering. The time between collection and extraction of 

seed is very important to maintain high germination and vigour especially seed moisture 

content at harvest (Siddique and Wright, 2003). In rice seed if they have already dried to 

moisture content <16%, they are close to the end of maturation drying (Chatelain et al., 

2012).  

Figure 1.3 shows a general outline of seed development and maturation through the 

three phases (I-III) histodifferentiation, seed filling (reserve deposition) and seed 

desiccation (maturation drying). In phase I (histodifferentiation), seed gain in fresh weight 

(fw) due to cell division and expansion; in phase II , seed gain in dry weight (dw) because 

of enlargement of storage cells and the deposition of insoluble stored reserves and the final 

phase  is a phase seed loss of their fw as the seeds undergoes maturation drying (Bewley 

and Black, 1994). 

 

http://www.scialert.net/asci/result.php?searchin=Keywords&cat=&ascicat=ALL&Submit=Search&keyword=moisture+content
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Figure 1.3: Pattern of seed development to show the changes in whole-seed fresh weight 

(fw), dry weight (dw), and water content (wc) (From Bewley and Black, 1994) 

1.3 Seed quality 

Seed quality involves the genetic, the physiological quality and the health of seeds. Good 

seed means that physiological quality, genetic suitability (McDonald, 1998; Nerling et al., 

2013) and sufficient healthy seeds. The quality of seed is important to improve as it is 

relevant not only to yield production but also to secure food sustainability. High seed 

quality not only ensures a stable source of food, but also provides the propagules for the 

next, successful growing season  

A few studies have shown that seed quality development can continue in planta 

until harvest maturity. Maximum seed viability and seed vigour may be achieved if seeds 

are harvested at the correct stage of maturity (Ellis et al., 1993; Siddique and Wright, 2003; 

Ellis, 2011). If harvesting is delayed seed quality may decline due to adverse environmental 

conditions such as high temperature, high humidity, rainfall, over drying, attacks by 

diseases, pests or damage by birds and animals (Copeland and McDonald, 1999). 

Therefore, seed should be harvested soon after achieving their maximum seed quality.  

Seed physical and physiological qualities develop during seed development. Seed 

quality traits in terms of seed’s ability to germinate and survive air-dry storage are acquired 

during the progress of seed development and maturation (Hay and Smith, 2003; Probert et 

al., 2007). Harrington (1972) suggested that developing seeds attain maximum viability 

and vigour at physiological maturity (end of seed filling) and that they then begin to age, 

http://www.scialert.net/asci/result.php?searchin=Keywords&cat=&ascicat=ALL&Submit=Search&keyword=high+temperature
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with viability and vigour declining thereafter. A recent study by Eskandari et al. (2015) 

concurs with Harrington’s hypothesis for sesame seeds. However, several studies 

contradict the Harrington (1972) hypothesis. Ellis and Pieta-Filho (1992) suggested that the 

maximum seed dry weight is obtained at the end of seed filling and that this should be 

defined as mass maturity because seed quality continued to improve beyond this point. In 

rice, potential longevity in air-dried storage continue to improve for about 2-4 weeks after 

mass maturity and only then began to deteriorate (Rao and Jackson 1996; Ellis, 2011). With 

other crops such as pea (Pisum sativum L.), harvesting seed crop’s at different moisture 

contents provided evidence that seed vigour improved after physiological maturity and this 

continued until some time later but then declined as harvesting was delayed (Siddique and 

Wright, 2003); similarly in pinto bean Phaseolus vulgaris cultivars (Ghassemi-Golezani 

and Mazloomi-Oskooti, 2008). 

 

1.3.1 Seed deterioration 

Deterioration of seeds during storage is a great concern and is defined as deleterious change 

with time (ageing) but it may also be considered as a change that occurs with reduced water 

content (desiccation damage) or high and low temperatures (denaturation or freezing 

damage respectively) (Kermode and Bewley, 1985). Studies have shown that as seeds 

undergo ageing or deterioration, seed germination and seed vigour are progressively lost 

during storage (Ellis and Roberts, 1981; Kermode and Bewley, 1985). Seeds lose vigour as 

they age, leading to poor seedling emergence, stand establishment, and low crop yield 

(McDonald, 1998). Deteriorated seeds have few viable cells that are incapable of 

organizing growth, or have little or no viability, due to critical cellular constituents being 

seriously degraded (Jyoti and Malik, 2013). The seed quality and viability during storage 

depend upon the initial quality of seed and also the manner in which it is stored. Several 

storage environmental factors contribute to seed deterioration and these conditions may 

make it difficult to maintain seed viability during storage. Two common practices applied 

to limit seed deterioration are to reduce seed storage moisture content and/to temperature 

(Roberts, 1973; Walter et al., 2004).  

1.3.2 Desiccation tolerance 

Rice produces orthodox seeds which develop desiccation tolerance and can easily be stored 

for many years in a dry, cool storage environment (Krishnan et al., 2011). During 
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development, the seeds of many species progressively gain the ability to withstand 

significant moisture loss (desiccation tolerance) (Bisht and Singh, 2013). At maturity, seed 

can be characterized by acquisition of its functional traits such as desiccation tolerance, 

remaining viable after as much as 90–95% of their water has been removed (Dasgupta et 

al., 1982). In this dehydrated state, the seed can survive for long periods and, unless 

dormant, will resume full metabolic activity, growth, and development when conditions are 

suitable for germination (Finch-Savage, 2003). Seed in desiccation tolerance will reduce 

their metabolic activity to a drastically low level and can be stored at low temperature for 

long periods in order to prolong viability while retaining their ability to germinate for 

considerable periods (Buitink and Leprince, 2008).  

Immature seeds, with relatively high moisture content (e.g. 60%), are very sensitive 

to damage from desiccation (Dasgupta et al., 1982; Ellis et al., 1987, 1993; Fischer et al., 

1988; Hong and Ellis, 1990, 1992). Similarly, at later stages of seed development such as 

at the end of the seed-filling phase, seed may still show damage upon desiccation to very 

low moisture contents (Hong and Ellis, 1992; Ellis et al., 1993; Ellis and Hong, 1994). 

Immature seeds of several legumes and other dicotyledonous plants have been reported not 

to germinate when removed from their parent plant in the fully hydrated state, but will only 

germinate after drying (Dasgupta et al., 1982; Bewley, 1985; Kermode et al., 1986). For 

example, freshly-harvested seeds of bean (Phaseolus vulgaris L.) have been reported to be 

capable of germinating only after they have first acquired tolerance to rapid desiccation and 

only after achievement of maximum seed dry weight once net water loss in situ has begun 

(Dasgupta et al., 1982; Kermode et al., 1986). 

Rice is an example where an effect of seed production environment on the 

development of desiccation tolerance to low moisture content has been shown. The 

achievement of maximum desiccation tolerance to low levels of moisture content (4%) in 

rice did not occur until some 2-3 weeks after mass maturity, when maturation drying on the 

mother plant had naturally reduced seed moisture contents to levels below 32% (Ellis and 

Hong, 1994). Similarly, in Norway maple (Acer platanoides L), the developing seeds did 

not attain desiccation tolerance to very low moisture contents (3%) until 3 to 4 weeks after 

mass maturity when maturation drying had reduced seed moisture content on the mother 

plant to about 27-30% (Hong and Ellis 1990, 1992).  
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1.3.3 Seed longevity 

Seed longevity is defined as the capacity to remain viable for long periods during storage 

in the quiescent dry state. It is one of the characteristics which determines seed quality. 

Determining seed survival period ex planta air-dry, in hermetic storage has shown that seed 

quality continues to improve during seed development and maturation for some 

considerable time after seed filling end’s for example, in rice (Ellis et al., 1993, 2011), and 

in barley and wheat (Filho and Ellis, 1991; Ellis and Pieta-Filho, 1992). 

Seed loss in viability results in failure to germinate, through ageing, even when 

there is no dormancy and all environmental requirements such as water and temperature 

are adequate for reactivation of biochemical processes (Robert, 1972). Ellis and Hong 

(2007) reported that seed lose their viability in air-dry storage at a rate dependent on seed 

storage moisture content and temperature, but in addition oxygen is also deleterious 

particularly with very dry seeds. Therefore, reducing seed moisture content and storage 

temperature and providing hermetic storage improved the longevity of orthodox seed, and 

is preferable for long-term seed storage (Pritchard and Dickie, 2003; Ellis and Hong, 2007; 

Whitehouse et al., 2015). There was a report that safe levels of seed moisture content for 

storage at -20℃ are about 12-14% in cereals to avoid freezing damage (Zewdie and Ellis, 

1991a).  

The accumulation of specific soluble carbohydrate has been implicated in the 

acquisition of desiccation tolerance and improved longevity in orthodox seeds, thus 

conclude that carbohydrate composition might be used as a diagnostic marker for seed 

storage category (Steadman et al., 1996). This was associated with Bernal-Lugo and 

Leopold (1992) and Wang et al. (2018) who reported that soluble sugars and antioxidants 

have been implicated in protecting seeds from the effects of ageing. Sinniah et al. (1998b) 

showed that maturing seed accumulated both late-embryogenesis abundant protein and 

oligosaccharides during maturation drying and these were correlated with subsequent 

longevity. 

The critical levels of moisture content of seeds at which more rapid loss in viability 

occurs during hermetic storage varies considerably with species, degree of maturity and 

method of seed handling. There is relationship between seed moisture content and 

equilibrium relative humidity (eRH) as shown in Figure 1.4 for rice by Whitehouse et al. 
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(2015). In general, seeds which are extracted at maturity tolerate desiccation to moisture 

contents in equilibrium with about 10-20% relative humidity (RH). Ellis et al. (1992) 

reported that in rice, the seed storage moisture content that provides the maximum 

longevity is in equilibrium with about 10-11 % RH. At 85-90% eRH, rice seed moisture 

content was about 15% and, seeds are shortest lived because damage accumulates rapidly 

(Whitehouse et al., 2015).  

As well as seed storage environment, the potential storage life of seeds is also 

affected by the pre and post-harvest environment and seed production practices (Hay et al., 

2006; Probert et al., 2007). For example, the longer rice plants are exposed to extreme 

temperature, particularly during flowering, lower seed viability (Tuay and Saitoh, 2017). 

This was also shown by Jatoi et al. (2001) in pea, however the effect of temperature on seed 

longevity was dependent upon the temperature range. Ellis et al. (1993) reported that the 

longevity of japonica rice produced in a warm regime was more damage than indica/ 

javanica rices. Dry conditions at harvest may increase physical injury and reduce quality if 

seeds are handled at low moisture levels (TeKrony et al.,1987). In addition, Yadav and Ellis 

(2016) showed that the greatest damage to longevity in wheat (Triticum aestivum L.) 

occurred from rainfall imposed during late in maturation. In contrast, seed longevity of the 

non-sprouted rice seed fraction in air-dry hermetic storage was not affected greatly by 

submergence (Tejakhod and Ellis, 2017).  

Seed longevity is compromised when seeds are harvested either prematurely or if 

harvest is delayed. From the time of fertilization and physiological maturity, environmental 

stresses can have occurred and influence longevity of mature seed. Rao and Jackson (1997) 

reported that mass maturity in rice was achieved in rice with moisture content between 20-

40% with potential longevity was greatest about 2 weeks after mass maturity. Also, the 

germination ability of seeds in the early stages of development varied significantly, but as 

mass maturity approached, germination increased to the maximum. Ellis et al. (1993) 

reported that the deleterious effect of high temperature on seed quality development was 

not detected until after mass maturity in rice. Moreover, Ki (the initial probit viability) was 

always greater in the cooler regime than in the warmer regime in later harvest.  

It is a major challenge for the conservation of plant biodiversity to improve seed 

longevity for crop success (Smith et al., 2003). Plant genetic resources are in particular 

danger and need to be conserved for the future by establishing modern gene banks around 

the world (Maxted et al., 1997). For many plant species, the most economical methods of 
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conserving germplasm are to store their seeds in a seed gene bank. In some cases, under 

this conservation, the longevity of desiccation tolerance of orthodox seeds might extend to 

hundreds of years (Linington and Pritchard, 2001).  

 

Figure 1.4: Relationship between rice seed moisture content and equilibrium relative 

humidity (eRH) during seed drying (From Whitehouse et al., 2015). 

1.3.4 Seed viability equation 

The longevity of orthodox seeds in storage can be predicted using viability equations after 

the determination of viability constants by controlled ageing experiments (Pritchard and 

Dickie, 2003). Seed longevity can be quantified by the equation introduced by Ellis and 

Roberts (1980). Not only in rice seed, this equation been used widely by many studies to 

predict potential of seed longevity for many other crop species; in peas (Siddique and 

Wright, 2003) and in wheat (Yadav and Ellis, 2016).  
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Transforming percent viability to probit viability resulted a straight-line 

relationship between viability and storage period. The slope of this line is the value of 1/σ 

and the intercept is the initial viability of the seeds, Ki. Estimates of percentage germination 

after different storage periods provided observations for seed survival curves which were 

fitted by probit analysis according to the modified equation proposed by Ellis and Roberts 

(1980),  

v=  Ki – p/σ     (1) 

where, v is probit percentage viability after p days in storage in a constant environment. Ki 

is a constant specific to seed lot. The reduction in seed viability overtime during storage 

depends on the slope (1/) of seed survival curve (percentage are transformed to probits) 

and relates with storage condition, particularly and  is the standard deviation of the 

frequency distribution of seed deaths in time (days). The parameters Ki and  can be 

estimated for any constant storage environment by probit analysis. As Ki is assumed to 

depend only on genotype and seed quality, Ellis and Roberts (1980) described the effect of 

storage moisture content and temperature on longevity, the parameter , in a second 

equation as, 

log10 = KE -Cwlog10m – CHt -CQt2    (2) 

where, m and t are the seed storage moisture content (% fresh weight) and temperature (℃), 

respectively meanwhile KE, Cw, CH, CQ are parameters constant to a species. The 

temperature range limits to use of this seed viability equation (2) is between -13°C to 90°C 

and would not differ between different seed lots of a particular species. Therefore, it would 

possible to predict the longevity of any seed lot of that species by estimating these 

parameters and Ki under any storage environment. For example, the temperature term of 

the seed viability equation has been shown to apply between those subzero temperatures 

used in conventional seed genebanks and the very high temperatures used in certain heated 

air seed driers. However, the application of the seed viability equation at temperatures 

cooler than about –20°C or so is not advised (Dickie et al. 1990), bcz thy showed the eqtn 

appld at least over th rnge -13 to plus 90 c. However, there are limits to the negative 

logarithmic relation between seed moisture content and seed longevity (Roberts and Ellis, 

1989). Lower moisture content limit to the seed viability equation also varies substantially 

among species. For example, the estimates of the low-moisture content limit of seed 
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longevity in hermetic storage at 65℃ was between 1.1 to 1.9% for sunflower (Helianthus 

annuus L.) (Ellis et al., 1988) and  4.3 to 4.5% for rice (Ellis et al., 1992). Notes that the 

main difference in these two species (seed oil vs starch contents) is different in moisture 

content but similar in equilibrium relative humidity. 

 

1.4 Environmental stresses  

Future climate scenarios are worrying. Climate projections indicate that global mean 

temperatures will rise by 0.4 to 1.6 °C by 2046-2065 and 2.6-4.8 °C by 2081-2100, 

depending on the emission scenario considered, with the potential to reduce crop 

production without adaptation (IPCC, 2014). This climatic anomaly is manifested in 

temperature and rainfall variability and will have negative impact on rice paddy production 

(Zainal et al., 2014). With the human population unlikely to stabilize before 2070, at around 

9 billion (Byrd, 2014) the prospect is that climate change will shape future agricultural 

practices and threaten natural habitats: and seeds and seed production are at the centre stage 

of food security and conservation of plant genetic resources. 

1.4.1 Drought 

Rice production, particularly in Asia, is increasingly constrained by water limitation 

(Arora, 2006). Agriculture consumes 70% of the fresh water resources, but less water is 

becoming available for irrigation owing to the global climate change and competition from 

urbanization and industrial development (Pennisi, 2008). Large areas of lowland and 

upland rainfed rice occupy 31% and 11% of the global rice-growing area, respectively 

(Murty and Kondo, 2001; Kamoshita et al., 2008). In particularly, increasing physical water 

scarcity is a major constraint for irrigated rice production (Bernier et al., 2008; Peng et al, 

2009; Mishra et al., 2014). It is estimated that more than 50% of the world’s rice production 

area is affected by drought (Bouman et al., 2005). Evenson et al. (1996) reported that the 

average annual global reduction of rice production due to drought was about 18 million 

metric ton.  

Rice is more susceptible to drought than other cereals because it is unable to 

regulate its transpirational water loss as effectively as other cereals (Austin, 1989). 

Generally, the rice plant uses less than 5% of the water absorbed through roots from the 

soil (Jose et al., 2004). The rest is lost through transpiration which helps to maintain leaf 

energy balance of the crop. Decreased leaf water potential leads to stomatal closure and 

ultimately results in low transpiration which in turn increases leaf temperature (Fukai et al., 



18 
 

1999). The plant’s strategy and adaptation to avoid drought according to Levitt (1980) and 

Bodner et al. (2015) shown as in Figure 1.5. Water deficit during the vegetative stage of 

growth may have relatively little effect on grain yield, perhaps owing to compensatory 

growth or changed partitioning of dry matter after the stress is relieved (Fukai and Lilley, 

1994). Plants have a variety of successful strategic adaptions to harsh environments 

however, adjustment of water uptake to soil-water availability through modifications to 

seed filling is crucial (Gooding et al., 2002). 

 

Figure 1.5: Drought resistance strategies and adaptive traits confer it. Avoidance of 

drought through efficient water uptake is most compatible with high crop yields. Based on 

Levitt (1980) and Bodner et al. (2015). From Korres et al. (2017). 

 

1.4.1.1 Effect of drought on seed quality  

Water deficit during the vegetative stage reduces tiller number, panicle length and grain 

percentage which prolongs days to maturity (Sikuku et al., 2010); sensitivity to drought is 

high during mid tillering (Sabetfar et al., 2013). Reduce 1000 seed weight from water 

limitation imposed on rice cultivars during vegetative growth (Mostajeran and Rahemi-

Eichi, 2009), has often been attributed to a limitation in carbohydrate supply reducing grain 

filling rate and so grain weight (Yang and Zhang, 2006). 

In cereals, extensive studies have demonstrated that post anthesis water deficit 

result in early senescence and increase mobilization of pre-stored assimilates to grains 

(Kobata et al., 1992; Yang et al., 2001, 2003). Drought during the grain-filling process 

induces early senescence and shortens the grain-filling period but increases remobilization 

of assimilates from the straw to the grains (Yang et al., 2001; Plaut et al., 2004). Senescence 

is a genetically programmed process that involves remobilization of nutrients from 
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vegetative tissues to grains (Buchanan-Wollaston, 1997 and Ori et al., 1999). Rice grain 

filling rates were more important than duration of filling for seed weight which is an 

essential determinant of grain yield in cereal crops (Yang et al., 2008). In wheat, water 

deficit enhances senescence by accelerating loss of leaf chlorophyll and soluble proteins 

and was more severe when water limitation was imposed from 14 DAA to maturity than 

earlier (Moradi, 2011).  Anthesis and fertilization are particularly sensitive to drought in 

rice. Water stress during flowering may reduce the harvest index by as much as 60%, 

largely as a result of a reduction in grain set (Garrity and O’Toole, 1994). The reduction in 

grain weight in response to drought during the early periods of grain filling can mainly be 

attributed to the lower number of endosperm cells (Nicolas et al.,1985) while during the 

later stages results in the impairment of starch synthesis either because of the limited supply 

of assimilates for the grain (Blum, 1998) or the direct effects on the synthetic processes in 

the grain (Yang et al., 2004). In millet, both biomass production and grain yield were 

severely reduced by drought prior to and at the beginning of flowering but had no affect at 

the end of flowering (Winkle et al., 1997).  

Vieira et al. (1991) reported that seed germination in soya bean was not affected 

when drought stress was imposed during seed filling in a greenhouse experiment, but yield 

was reduced. Nichols et al. (1978), working with potted plants of peas observed no effect 

of drought stress on seed conductivity or germination. Samarah and Alqudah (2011), in 

barley, that late-drought stress had no effect on standard germination but reduced the 

germination after the accelerated ageing test. However, for example, in soya bean and pea, 

water stress during the seed filling period induced a reduction in seed quality assessed by 

germination and conductivity results, however, this reduction was not seen with earlier 

water stress (Smiciklas et al., 1989; Fougereux et al., 1997).  

It is well-documented that seed sensitivity to drought is particularly acute during 

the reproductive phase, particularly during meiosis and seed filling (Pirdashti et al., 2004; 

Fukai and Lilley, 1994; Zeigler, 1995). In rice for example, soil water deficit during the 

grain filling period induces earlier senescence, shortening the grain-filling period and 

causing yield losses (Yeo at al., 1996; Bouman and Tong 2001; Sikuku et al., 2010) by 

reducing the supply of assimilate (Baruah et al., 2006) due to large reduction in total root 

length (Kato and Okami ,2011). However, McKersie and Ya’acov (1994) reported that the 

most sensitive phases to drought in rice reproductive development are during booting and 

anthesis meanwhile O’Toole and Namuco (1983) suggested during panicle exsertion and 

anther dehiscence. Drought stress later during the reproductive development decreases seed 
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size rather than seed number and it has been suggested that faster grain filling and enhanced 

mobilization of stored carbohydrates can minimize the effects of drought rice yield (Zhang 

et al., 1998).  It was reported that water stress has no significant effect on pinto bean 

(Phaseolus vulgaris) seed quality (Ghassemi-Golezani et al., 2010). In contrast, Zehtab-

Salmasi et al. (2006) in dill (Anethum graveolens L.) and Ghassemi-Golezani et al. (2012) 

in soyabean (Glycine max) showed that water deficit during grain filling led to significant 

reduction in seed quality, assessed by electrical conductivity and standard germination.  

Water stress during early stage of grain filling, results in a reduction of grain weight 

in rice (Yang et al., 2001), wheat (Zhang et al., 1998), maize (Ober and Setter, 1990). 

During seed maturation the cell ceases to expand, water content decrease, storage products 

are synthezised, and free ABA accumulates (Hilhorst and Toorop, 1997). Sinniah et al. 

(1998) reported that ending irrigation early during seed development in Brassica resulted 

in seed moisture content declining rapidly from 48-50% to about 6%. As plants dry, ABA 

accumulation in grain filling leads to enhanced water uptake and postpones water shortage 

in shoots (Brenner and Cheikh, 1995; Yang et al., 2001a).  

1.4.1.2 Effect of drought on seed longevity 

Extensive reports suggest that drought stress during seed development reduces seed quality 

(Barnabas et al., 2008; Stagnari et al., 2016), however, there have been limited studies on 

the effect on seed longevity. The potential storage life of seeds is affected by pre-and post-

harvest environments and practices (Probert et al., 2007; Whitehouse et al., 2015). 

Therefore, water limitation during seed development may also influence seed longevity.  

Reducing irrigation to rapid-cycling Brassica improved maximum seed longevity when 

irrigation ended at 16 or 24 day after pollination (DAP) (Sinniah et al., 1998). This might 

happen as seeds possess a wide range of systems (protection, detoxification, and repair) 

allowing them to survive in the dry state and to preserve high germination ability (Barnabas 

et al., 2008). In contrast, Samarah and Alqudah (2011) reported that late drought imposed 

to barley plants reduced seed longevity after a seed ageing test.  
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1.4.2 High temperature 

Rice is very sensitive to high temperature close to the time of anthesis, and most sensitive 

at about 9 days before anthesis (Yoshida, 1981). The increasing frequency and intensity of 

short-duration high temperature events (>33℃) pose a serious threat to agricultural 

production, especially in cereals such as wheat (Modarresi et al., 2010) and rice (Wassmann 

et al., 2009). The critical temperature (℃) (low, high and optimum) during the development 

of rice plants shown in Table 1.1. 

 

1.4.2.1 Effect of brief high temperature on seed quality  

High temperature stress during the grain filling stage reduces grain quality of rice and this 

is a serious problem in Asia, e.g. Japan (Tanamachi et al., 2016). An effect of high 

temperature during seed development on plant under stress and control is shown as in 

Figure 1.6 (Sreenivasulu et al., 2015). Morita (2008) reported that when rice plants were 

exposed to high temperature during ripening period, the sink-source balance of the 

carbohydrate was disrupted. High temperature stress effects during pre-anthesis, 

particularly during meiosis and growth of the ovaries which may impose an upper limit for 

potential grain weight (Calderini et al., 1999; Krishnan, 2011). Effect of a short period (8 

days) of high temperature (35℃) exposed during grain filling stage (8-15 d from heading) 

showed that rice plants stimulated the opening stomata yet preserved the diurnal pattern of 

stomatal variation (Yang and Heilman, 1991) resulting from oxidative damage in 

photosynthesis and respiration pathway (Fitter and Hay, 1987; Bernabas et al., 2008).  

However, these incidents often coincide with low water supply. Elevated temperatures 

reduce the duration between anthesis and physiological maturity which is associated with 

a reduction in grain weight (Madan et al., 2012; Tanamachi et al., 2016). Reduced grain 

weight (∼1.5 mg per day) can occur for every 1℃ above 15–20℃ (Streck, 2005).  

High temperature treatment during grain filling process may cause seeds attributed 

to a restricted carbohydrate supply and poor performance of vital enzymes (Yang et al., 

2001). Also, HT impose at anthesis may reduce anther dehiscence, pollen viability and 

depressed fertilization, which all lead to reduce spikelet fertility (Matsui et al., 2001; Prasad 

et al., 2006; Jagadish et al., 2010a, 2010b), thus, yield losses (Baker et al., 2004). Cessation 

of development of the nucellar epidermis occurred when HT exposed to rice plant (cv. 

Hinohikari) at 14 day after flowering (DAF), whereas it did not affect grain development 

(Tanaka et al., 2009) or 1000 grain weight (Tanamachi et al., 2016). In terms of a night 
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temperature study, Coast et al. (2014) mentioned that high day temperature was less 

damaging in terms of grain weight compared to night temperature. However, sterility 

induced by heat stress is more likely to be occurred in warm-humid than hot-arid 

environments due to humidity effects on transpiration cooling (Cécile-Julia and Dingkuhn, 

2013).  

High temperature (36/29℃) imposed beginning 10 DAA to maturity had no effect 

in wheat seed germination of cv. Oum-rabia, whereas it decreased seed germination of cv. 

Marzak (Grass and Burris, 1995). In contrast with recent studies by Nasehzadeh and Ellis 

(2017), reported that development of ability to germinate in wheat occurs sooner with 

higher temperature during seed filling and maturation. The high temperature treatments 

(34/26℃) showed no effect on the subsequent development of desiccation tolerance 

whereas, imposed this stress during seed development and seed maturation may affect seed 

quality. Also japonica rice is more sensitive to high temperature than indica rices (Ellis et 

al., 1993; Ellis, 2011). 

The severity of seed quality damage by brief period of HT depend also on the 

duration imposed. In rice for example spikelet fertility was reduced from 90% to 20% by 

only 2h exposure to 38℃ and 10% by <1h exposure to 41℃ and therefore seed quality in 

rice may reduce (Jagadish et al., 2007). Similar with wheat crop, plants exposed to 30℃ 

for 3 consecutive days, during seed grain filling stage showed substantially reduced grain 

set compared to 30℃ for 1 day (Saini and Aspinall,1982). Seed viability was significantly 

reduced in rice by 7-d exposure to 38 and 34°C at 1 to 7 d and 1 to 14 d after anthesis, 

respectively (Martinez-Eixarch and Ellis, 2015).  

Table 1.1: Critical temperatures (°C) for the development of rice plants at different 

growth stages (From Yoshida, 1978). 

 

 

Growth stage Critical temperature (°C) 

Low  High  Optimum 

Germination 16-19  45  18-40 

Seedling emergence 12 35 25-30 

Rooting 16 35 25-28 

Leaf elongation 7-12 45 31 

Tillering 9-16 33 25-31 

Initiation of panicle primordial 15 - - 

Panicle differentiation 15-20 30 - 

Anthesis 22 35-36 30-33 

Ripening 12-18 >30 20-29 
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Figure 1.6: The ontology of seed development covering import phase transitions. High 

temperature stress-induced perturbations occurring during seed development affect the 

grain quality, cooking quality, and eating quality of rice (From Sreenivasulu et al., 2015) 

 

1.4.2.2 Effect of high temperature on seed longevity 

The impact of extreme temperature on rice seed quality, particularly on seed longevity has 

received less attention than that on yield. Longevity in storage in the same environment is 

affected by seed production environment and the timing of harvest (Ellis et al., 1993). 

However, rice varieties are known to vary in longevity, with cultivars from temperate 

regions normally having shorter life-spans than tropical cultivars (IRRI, 1988).  Ellis et al. 

(1993) and Ellis and Hong (1994) showed that the potential longevity of the japonica 

cultivars which evolved in temperate environments was significantly less when produced 

under a warm seed production regime (32/24°C) than in a cooler regime (28/20°C).  

Sanhewe and Ellis (1996) reported for other crops e.g.  Phaseolus vulgaris L. resulted 

slightly poor in terms of maximum potential longevity in the warm regimes which tallies 

with Siddique and Goodwin (1980) in bean.  Sanhewe et al. (1996) presented a model of 

the effect of temperature before harvest on the potential longevity of wheat, indicated that 

there was a significant positive relation between the rate of increase in potential longevity 

and temperature. 
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1.4.2.3 Combined effect of drought and high temperature 

The combination of drought and high temperature represent an excellent example of two 

different abiotic stress conditions that occur in the field simultaneously (Moffat, 2002; Shah 

and Paulsen, 2003). During HT for example, plants open their stomata to cool their leaves 

by transpiration. However, if HT is combined with water limitation the plants are unable to 

open their stomata, so the leaf temperature is higher (Rizhsky et al., 2002). At present, 

however, information on the combined effect of HT and water limitation on the 

reproductive development of cereals is rather limited (Barnabas et al., 2008). The 

combination of HT and drought reduced the duration of grain filling more than each one in 

wheat (Altenbach et al., 2003; Shah and Paulsen, 2003). Also, it was greater affect than 

additive effects of HT or drought alone for leaf chlorophyll content, grain numbers and 

harvest index in spring wheat (Prasad et al., 2011). In sorghum (Machado and Paulsen, 

2001) and in lentil crops (Lens culinaris M.) (Sehgal et al., 2017), both authors reported 

that HT appeared to interact with drought by altering soil water content and later inducing 

damaged cell membranes and photosynthetic traits. 
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1.5 Research purpose 

Drought and high temperature stress are considered to be the two major environmental 

factors that influence various cellular and whole-plant processes that affect crop yield and 

quality. Drought coincident with high temperature often occurs in Asia, and this is 

increasing with global climate change. For example, Malaysia has experienced more 

frequent drought and severe extended late drought stress, resulting not only reducing seed 

production but also damaging seed quality. Drought is severe during May to October, 

particularly in north peninsular Malaysia, with average temperature ranging from 26℃ to 

28℃ and annual rainfall during the main season of about 1682 mm (Radin-Firdaus, et al., 

2012). For this reason, I used indica rice cv. Aeron 1 to see how these stresses may affect 

Malaysian rice seed quality and japonica rice cv. Gleva was chosen because it was known 

to be vulnerable to high temperature but nothing is known about its response to drought. In 

addition, the brief high temperature regime 40/30℃ was chosen according to temperature 

stress events currently occurring in some rice production in Spain and also in Malaysia. 

Moreover, study on effect of terminal drought and brief high temperature stress during seed 

development and maturation on seed quality particularly on potential seed longevity was 

limited. Thus, stress sensitivity during seed development and maturation deserves more 

attention, especially in the case of short exposures during fertilization and early grain 

filling. The development of seed needs to be considered, later to adopt appropriate 

strategies that may target several developmental stages in order to improve the subsequent 

seed longevity. As a consequence, my studies focused on the impact of ending irrigation 

early and brief elevated stress during seed development or maturation on rice seed 

development quality particularly on subsequent seed longevity. 

1.6 Objectives 

In sum, the objectives of this study are to: 

1.6.1 To determine the effect of ending irrigation early and/or brief elevated temperature 

during seed development and maturation in seed quality of japonica cv. Gleva. 

1.6.2 To identify the most sensitive stages of seed quality development to ending 

irrigation early and/or brief elevated temperature during seed development and 

maturation in seed quality of japonica cv. Gleva. 
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1.6.3 To investigate the effect of the combination of ending irrigation early and/or brief 

elevated temperature during seed development and maturation in seed quality of 

japonica cv. Gleva and/or indica cv. Aeron 1. 

1.7 General hypotheses 

General hypotheses in this thesis are as follows. 

1.7.1 Ending irrigation early and/or brief high temperature in cv. Gleva during seed 

development and maturation reduces the duration of seed filling phase, final seed 

dry weight, seed moisture content, and ability of seed to germinate normally, 

1.7.2 Ending irrigation early and/or brief high temperature in cv. Gleva during seed 

development and maturation reduces subsequent seed longevity in air-dry storage, 

1.7.3 Ending irrigation early and/or brief high temperature in cv. Gleva during seed 

development and maturation reduces maximum seed longevity, 

1.7.4 Combining ending irrigation early and brief high temperature in cv. Gleva and cv. 

Aeron 1 during seed development and maturation reduces seed quality compared to 

each stress alone. 

Aspects of hypotheses 1.7.1, 1.7.2, and 1.7.3 are tested in Chapters 2 to 5: drought in 

Chapters 2, 4 and 5; and high temperature in Chapters 3 and 5. Hypothesis 1.7.4 is tested 

in Chapter 5. Further hypotheses are introduced in each of experimental chapters (2 to 5). 

 

1.8 Thesis outline 

In this thesis, there are four main experimental chapters; Chapter 2, focuses on the impact 

of ending irrigation early during early and end of the seed filling phase on subsequent 

quality of rice cv. Gleva; Chapter 3,  investigates the effect of brief period of elevated 

temperature during seed development on seed quality of cv. Gleva; Chapter 4, studies the 

effect of ending  irrigation early during the end of the seed filling phase and maturation 

drying on subsequent rice seed quality (cv. Gleva) ; and Chapter 5, Effect of early ending 

irrigation and/ or elevated temperature combined during seed development on seed quality 

of indica rice cv. Aeron 1 and japonica cv. Gleva. The general discussion and conclusion 

are provided in Chapter 6.  
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CHAPTER 2 

Effect of drought on seed development and potential longevity of rice cv. Gleva 

 

2.1 Introduction 

One of the main constraints of rice (Oryza sativa L.) cultivation and production is water 

shortage during periods of low rainfall, which affects the vegetative growth rate and grain 

yield (Tao et al., 2006). Water shortage is often unpredictable and does not occur in all 

years in a target environment and thus affects the stability of rice grain production and 

quality, and hence resilience. Drought stress is a prolonged period of inadequate amount of 

available water in the soil for normal growth and development of the plant leading to 

permanent wilting and ultimately death (O'Toole, 1982). In rice the effect of drought varies 

with the variety, degree and duration of stress and when it occurs during development (Kato 

et al., 2006, Zeigler and Puckridge, 1995) 

Seeds are the most basic input for agriculture, and their quality is very crucial to 

successful crop production. Numerous studies have reported on rice physiology, 

morphology and also molecular aspects as affected by water deficiency during cultivation. 

However, there is only limited information of its effect on subsequent seed lifespan (seed 

longevity) in rice. 

Seed longevity is an important trait for both ecology and agronomy values. This 

study therefore investigated the effect of drought applied to the rice crop on subsequent 

seed quality. A series of harvests during seed development were made also to identify the 

timing of changes in seed quality under the different treatments to identify the ideal harvest 

time in order to obtain seeds of high quality with maximum potential longevity.  

 

2.2 Objectives 

This study investigated changes in seed quality, including subsequent seed storage 

longevity, in rice cv. Gleva during seed development and maturation under well-watered 

conditions or with terminal drought during the seed-filling stage in order to determine when 

maximum seed quality was attained and when seed deterioration begins on the mother 

plant, and the influence of drought on the above. 
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2.3 Hypotheses 

This study investigated changes of seed quality, including subsequent seed storage 

longevity, in rice cv. Gleva during seed development and maturation under well-watered 

or limited irrigation conditions. The following hypotheses were tested; 

2.3.1 Duration of seed filling and final seed dry weight are reduced, and seed desiccates 

sooner by ending irrigation early, 

2.3.2 Ending irrigation early leads to earlier development of ability to germinate and of 

ability to tolerate desiccation, 

2.3.3 Subsequent seed longevity improves earlier, maximum longevity occurs sooner and 

reduces by ending irrigation early during seed development and maturation. 

 

Hypotheses 2.3.1-2.3.3 relate to my general hypotheses 1.7.1-1.7.3 in relation to drought, 

but also consider effects on the temporal pattern of seed development and seed quality 

development and possible subsequent decline. 
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2.4 Materials and Methods 

This first experiment was sown on 25th November 2014 and carried out in controlled 

environment growth cabs at the Plant Environment Laboratory (PEL), Shinfield, University 

of Reading (UoR) (51⁰ 27′ N latitude and 00⁰ 56′ W longitude). 

2.4.1 Seed selection 

Gleva, a high-yielding early-maturing, japonica cultivar from Spain was selected for study. 

Seeds had been stored at 2-4℃ at UoR in a sealed laminated aluminum foil bag since receipt 

in 2012 from the Institute of Agrifood Research and Technology, Barcelona, Spain. Seeds 

were tested for viability before sowing. One hundred seeds were selected randomly, by pie 

sampling, and placed in moist rolled towel papers (Plate 2.1a). There were two replicates 

of 100 seeds each. They were kept in a loosely-folded clear plastic bag and incubated at 

34/11 0C (16h/8h) (Plate 2.1b) (Ellis et al., 1983). After five days in test, the sample showed 

89% germination.  This germination test (Plate 2.1c) indicated that this seed sample was 

suitable for this experiment. 

                                                                
(a)                               (b)             (c) 

Plate 2.1: (a) Rice cv. Gleva seed on moist paper towels; (b) Moist rolled paper towels in 

clear plastic bag; (c) Seeds germinated after 5 days at 34/11 0C. 

2.4.2 Planting Medium 

Three litre plastic pots were filled with the growing medium. This comprised vermiculite, 

sand, gravel and peat in the ratio of 4:2:4:1, respectively, mixed with 3kg/m3 of slow-

release fertilizer (Osmocote Pro 3-4M, Everris International BV, The Netherland). The 

growing medium was wetted with tap water until water drained out and then left to drain 

for 24 hours. 
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2.4.3 Plant Husbandry 

Seven seeds were sown approximately 15mm deep in each of 48 pots and placed in one 

growth cab (modified Saxcil cab with internal dimensions 1.4 x 1.4 x 1.5 m). Cool white 

fluorescent tubes provided 724 µmol m-2 s-1 (mean of four observations) photosynthetic 

photon flux density at pot level. The temperature regime was 28/20 0C day/night (11h/13h 

thermoperiod synchronized with 11h photoperiod) at 75% relative humidity. At 3 days after 

sowing (DAS), manual watering began and was continued every day. About 95% seeds had 

germinated by 7 DAS with first leaves emerged. At 14 DAS, weaker seedlings were thinned 

to leave 4 seedlings in each pot (Plate 2.2a). Pots were irrigated (water without nutrient 

adjusted to pH 4.8-5.0) using an automatic drip system after three leaves had emerged at 

16 DAS (Plate 2.2b) seven times per day for three minutes. After 42 DAS, irrigation was 

reduced to three times a day. To minimize the effect of any possible variation in 

environment, each pot was moved from centre to the sides of cab and vice versa three times 

a week until 50% of panicles had exserted. At panicle exsertion, treatment labels were 

shuffled to randomized and then inserted in the pots.  

     

Plate 2.2: (a) Rice seedlings at 14 DAS; (b) Start of drip irrigation at 16 DAS 

2.4.4 Irrigation Treatments 

Three irrigation treatments were applied: Treatment 1 (T1), plants were irrigated 

throughout the experiment, designated as control; T2 and T3 irrigation was stopped at 7 

days after 50% anthesis (DAA) or 14 DAA, respectively. Determination of 50% anthesis 

was based on the frequency of anthesis observed (Appendix 2.1). Only panicles that 

anthesed during the period 101-108 DAS were used in the study to limit the anthesis 

variation. Earlier and later anthesing panicles were cut and removed. Anthesis (0 DAA) 

(a) (b) 



31 
 

was 105 DAS (i.e. 50% anthesis). All treatments were completely randomized in terms of 

their location within the single cabinet. 

2.4.5 Data Collection 

Serial harvests of plants began at 7 DAA and continued at 4-6 days intervals on eight dates, 

until 40 DAA. Eight plants (2 pots) were harvested from each treatment on each date and 

the following data recorded on each occasion. 

2.4.5.1 Seed moisture content  

The two-stage method was necessary to determine moisture content of fresh seeds 

harvested well before harvest maturity. Panicles were gently threshed by hand to obtain 

filled seed, with any empty seeds removed. A weighed sample of 100 fresh seeds with 2 

replications was pre-dried in an open Petri dish for 1-2 days on top of  the constant 

temperature oven at 1300 C. Moisture content on the fresh weight basis was determined as:- 

m.c.(%) =   Original wt. of seed - pre-dried wt. of seed    X 100 

      Original wt. of seed   

  

The pre-dried seeds were ground using a mill grinder, then weighed and place in the oven 

at 1030 C for 17 h to determine the moisture content loss in the second stage of drying. The 

final moisture content of the sample was then calculated by the formula;  

m.c. (%)=(S1+ S2) −100(S1× S2) 

        100 

 

where S1 and S2 were the moisture loss in the first and second stages, respectively (ISTA, 

2010). 

2.4.5.2 Seed dry weight 

Eight samples of 100 fresh seeds were counted at random by hand sampling method to 

provide a working sample and weighed to estimate mean seed fresh weight. Seed dry 

weight was calculated from estimates of seed fresh weight and known seed moisture 

content (m.c.). 

Seed dry weight = Seed fresh weight -  Seed fresh weight x Seed moisture content  

        (mg)                        (mg)                       (mg)                            (%) 



32 
 

2.4.5.3 Germination of fresh seeds 

Samples of seeds (100; two replicates of 50) were tested for ability to germinate. Seeds 

were tested in an incubator at 34/11°C (16h/8h) for 21 days (Ellis et al., 1983) and 

considered as germinated when radicle protrusion reached more than one-half of the seed’s 

length. Numbers of normal and abnormal seedlings were also counted (ISTA, 2010) and 

percentage normal germination calculated. Seeds remaining firm after 21 days of test, were 

pricked in order to promote germination and the test extended to 28 days total test period 

where necessary. 

 

2.4.5.4 Germination of air-dried seeds 

 

Samples of weighed seeds inside a cotton bag were dried at 15-170 C with 12-15% relative 

humidity. After variable periods, seeds were removed when moisture content was estimated 

to have reduced to 10-14 %. This was managed by reweighing samples regularly. In early 

harvest, seeds took 1-2 weeks to dry but in later harvests only 1-2 days. Germination was 

re-assessed on a sample of dried seeds as outlined above. The remainder of the seed was 

stored hermetically in laminated aluminum foil bags at 2-4 ̊ C initially, then at -20˚C (when 

all samples were available) until the subsequent determination of longevity. 

2.4.5.5 Seed storage longevity 

Samples were withdrawn from storage and held sealed overnight at ⁓200 C before opening 

the packets. The moisture content either was adjusted to 15% moisture content above water 

at 20˚ C (seed lot in muslin bag placed on a gauze tray above water in a closed container) 

for 2-40 h or drying over silica gel at 20˚C (depending on initial value), the seed weight 

being checked regularly. Seed samples were left together in separate muslin bags in a sealed 

container at 2-4˚C for 3 d to allow moisture to equilibrate within samples and amongst 

samples. Samples were assumed to be at 14.5-15.5% moisture content based in the original 

moisture content determination and the change in weight. Moisture content was re-

determined at 1030 C for 17h and the seeds were prepared for longevity determination. 

About 10-14 samples (depending upon seed available) of 100 seeds were sealed in separate 

laminated aluminum foil bags for each combination of harvest date and drought treatment. 

Samples were stored in an incubator maintained at 40 ± 0.5˚ C and withdrawn at regular 

intervals for up to 40 days for germination testing 
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 The method for the determination of seed storage longevity followed that of Ellis 

et al. (1993). Estimates of percentage germination after different storage periods provided 

observations for seed survival curves which were fitted by probit analysis according to the 

following equation (Ellis and Robert, 1980):  

v=  Ki – p/σ  

          

In this equation, potential longevity, Ki , is the value of seed lot constant (y-axis, where 

p=0) and  v is probit percentage viability after p days in storage in a constant environment. 

2.4.6.6 Statistical Analysis 

GenStat  17th edition (2015, VSN International Ltd.) was used for probit analysis and to 

analyze the data in order to evaluate the treatment effects. Analysis of variance (ANOVA) 

was used and means comparison using Tukey’s Multiple range test at 5% error (P= 0.05).  
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2.5 Results  

 

2.5.1 Seed desiccation, dry weight and ability to germinate normally (fresh and 

dried-seeds) 

 

The timing of anthesis varied amongst plants, with 50% anthesis was at 105 DAS. 

Seed moisture content declined with seed development and occurred sooner the earlier 

irrigation ended (Fig.2.1a). Moisture content was affected significantly by treatment and 

by period of seed development and by their interaction (P < 0.001, Appendix 2.2). When 

plants were irrigated throughout, seed moisture content declined gradually, reaching 27.4% 

(s.e. 0.31) at 40 DAA. Where irrigation ended at 7 or 14 DAA, seed moisture content 

declined sooner and stabilized at 14-15% from about 26 DAA. From 11 DAA onwards, 

moisture content varied significantly within each harvest amongst treatments (Appendix 

2.3). Tukey’s test multiple range (Appendix 2.4) showed, seed moisture content in the 

control was significantly greater for drought treatments from 8 (14 DAA) or 9 (7 DAA) 

days after irrigation ended onwards.  

Seed dry weight was significantly affected by irrigation treatment, period of 

development, and their interaction (Appendix 2.5). From 11 DAA onwards, seed dry 

weight varied significantly within each harvest amongst treatments (Appendices 2.5 & 2.6). 

Seed dry weight was affected by irrigation treatment consistently from 16 DAA onwards 

(Fig. 2.1b). Where irrigation ended at 7 DAA, seed filling ended at about 11 DAA with 

subsequent seed weight averaging 8.6mg (s.e. 0.4). Where irrigation ended at 14 DAA, 

seed filling ended at just after 16 DAA with subsequent seed weight averaging 16.0mg (s.e. 

0.44). In contrast in the control, seed filling continues until 40 DAA with final seed weight 

of 28.4mg (s.e. 0.69). 
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Figure 2.1: Moisture content (a) and dry weight (b) for seeds of japonica rice cv. Gleva 

harvested serially during their development from plants grown in controlled environments 

at 28/200C (12h/12h), 12 h d-1 photoperiod with irrigation throughout (■), irrigation ended 

at 7 (●), or at 14 DAA (▲) with ±standard errors of mean shown where larger than symbols. 
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Figure 2.2: Changes in viability of fresh (a) or dried (b) seed, assessed by ability to 

germinate normally in standard tests at 34/11°C, for seeds of japonica rice cv. Gleva 

harvested serially during their development from plants grown in controlled environments 

at 28/200C (11h/13h), 11 h d-1 photoperiod with irrigation throughout (■), irrigation ended 

at 7 (●), or at 14 DAA (▲) with ±standard errors of mean shown where larger than symbols. 

 

The viability of fresh and dried seeds (assessed by ability of seed to germinate 

normally ex planta) improved during seed development (Fig. 2.2a & b). The main effect of 

irrigation treatment was significant for fresh and dried seeds (P<0.05), with harvest date 

and their interaction also significantly (Appendices 2.7 & 2.8).  

For fresh seeds, ability to germinate normally for drought at 7 DAA was 

tremendously lower. Initially, the germination percentage showed increasing pattern only 

until 16 DAA (4 days after imposed to drought) with a maximum of only 30% germination. 

This contrasted with 76% normal germination for the dried seeds. From 36 to 40 DAA, 

only the control provided 100% normal germination for fresh and dried seed samples. In 

the control, ability to germinate normally for dried seeds was improved greatly towards the 

final harvest. In drought treatments, however, dried seeds only improved greatly at early 

harvests and then declined towards the end. The decline began from 16 DAA (irrigation 

ended 7 DAA), or from 27 DAA (irrigation ended 14 DAA) (Fig. 2.2b). Maximum 

germination (90%) was recorded in the 7 DAA irrigation treatment at 16 DAA, in the 14 

DAA treatment at 22-26 DAA (97%), and in the control at 36-40 DAA (100%). As a 

consequence, normal germination at 40 DAA differed greatly amongst treatments for dried 

seeds, with the drought treatments providing poor germination. 
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2.5.2 Seed storage survival  

Seed survival in hermetic storage of the different irrigation treatments harvested at different 

periods throughout seed development generally conformed well to negative cumulative 

normal distributions (Fig. 2.3). Comparison of the survival curves within each harvest from 

11 to 40 DAA showed that the slopes did not differ significantly in slope amongst 

treatments except at 22 DAA (Appendix 2.10). In most cases, constraining the curves to a 

common value of Ki as well as a common value of σ was significant, however. Seed 

survival curves were fitted separately to each treatment combination and are shown in 

Figure 2.3a-x. These curves are quantified in Table 2.1. Good fit was provided by the fitted 

curves in most cases (e.g. Fig. 2.3 a,r,w) with acceptable but slightly poorer fit in a few 

cases (e.g. Fig. 2.3 h, m,n). The survival curves differed considerably amongst harvest, with 

brief longevity in the early harvest (Fig. 2.3a-f) to considerable longevity in the control in 

the last four harvests (Fig. 2.3m,p,s,v).  
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Period of storage (days) 

 

 

Figure 2.3. Loss in viability (estimated by change in ability to germinate normally) of seeds 

of japonica rice cv. Gleva harvested serially from 7-40 DAA during seed development in 

a growth cab (28/20 0C, 11h/13h, 11 h d-1 photoperiod) with irrigation throughout (■), 

irrigation ended at 7 (●), or at 14 DAA (▲) and stored hermetically at 40℃ with storage 

moisture content at 15%±0.5. Best fit survival curves for each treatment combination fitted 

by probit analysis are shown. These are quantified in Table 2.1. Note that only one sample 

of seeds was harvested at 7 DAA (before drought treatment were imposed) and these results 

are repeated in b and c to enable comparison with later harvests. 
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2.5.3 Longevity (p50) 

Seed storage longevity (p50 estimated by probit analysis) varied considerably during seed 

development and with treatment with quite different trends apparent over time due to 

irrigation treatment (Fig. 2.4). Comparison of treatments are made here for p50 . This period 

is the product of Ki and (1/)  (Ellis et al., 1980). The period p50 was used because the 

slopes (1/) differ amongst the seed survival curves (see above). Hence, it not possible to 

compare the survival curves using Ki alone. The period p50 is also the most accurate for 

determination period of longevity. The estimated parameters of the estimates of p50 the seed 

viability equation fitted by probit analysis shown as in Table 2.1.  

 

 

 

Figure 2.4: Longevity (p50 provided by parameters of seed viability equation fitted by 

probit analysis) of seeds of japonica rice cv. Gleva harvested serially during their 

development from plants grown in a controlled environment and stored hermetically at 

40℃ with seed storage moisture content at 15%±0.5. Plants were irrigated throughout (■), 

or until 7 (●), or 14 DAA (▲). The estimate of p50 is provided by the best fit curve for each 

treatment combination (Table 2.1).  

 

 

In the control treatment, subsequent longevity after harvest provided a consistent 

pattern of increase throughout the harvest period reaching the greatest value (23.6d) in the 

last harvest (40 DAA). The greatest increase occurred between 32 and 36 DAA (Fig. 2.4) 

when seed moisture content declined from 37.5-28.5% (Fig. 2.1a), the most rapid loss in 

moisture in the control. Where irrigation ended at 7 DAA, the greatest subsequent longevity 

(9.5d) was obtained only 9 days later (16 DAA) when seed moisture content had declined 
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to 21.8% (Fig.2.1a). Longevity declined thereafter, gradually until 32 DAA and then more 

rapidly. Ending irrigation at 14 DAA provided results intermediate between the two 

extreme treatments; longevity increased until 22 DAA with maximum value of 18.4d 

(Fig.2.4) at 21.9% seed moisture content (Fig. 2.1a), then declined only slightly at 26 DAA, 

and then substantially thereafter reaching values as low as the 7 DAA treatment from 32 

DAA onwards. 
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Treatments Harvest (DAA) 

 

Ki Slope(1/σ) p50 (days) 

estimate s.e estimate s.e estimate s.e. lower 95% upper 95% 

Irrigation 

throughout 

7   -0.71 0.14 0.085 0.018 -7.8 2.80 -15.0 -4.1 

11 0.03 0.11 0.094 0.009 0.3 1.14 -2.2 2.2 

16  0.08 0.10 0.090 0.009 0.9 1.13 1.1 -1.6 

22  0.82 0.10 0.085 0.006 9.6 0.69 8.2 10.9 

26  3.13 0.19 0.143 0.008 21.9 0.40 21.1 22.7 

32  2.84 0.15 0.128 0.007 22.2 0.41 21.4 23.0 

36  3.13 0.17 0.138 0.007 22.7 0.39 21.9 23.5 

40  3.49 0.18 0.148 0.008 23.6 0.38 22.8 24.3 

Ending irrigation 

at 7 DAA 

 

7   -0.71 0.14 0.085 0.018 -7.8 2.80 -15.0 -4.1 

11  0.27 0.11 0.107 0.011 2.5 0.89 0.6 4.0 

16  1.12 0.12 0.118 0.009 9.5 0.60 0.6 8.3 

22  0.77 0.11 0.101 0.008 7.7 0.77 6.1 9.1 

26  0.66 0.10 0.088 0.007 7.5 0.78 5.9 9.0 

32  0.72 0.11 0.104 0.009 6.9 0.70 5.5 8.2 

36  0.60 0.12 0.160 0.013 3.8 0.55 2.7 4.6 

40  0.20 0.11 0.133 0.014 1.5 0.78 -0.2 2.8 

Ending irrigation 

at 14 DAA 

7   -0.71 0.14 0.085 0.018 -7.8 2.80 -15.0 -4.1 

11 0.21 0.11 0.095 0.009 2.2 0.10  0.0 3.9 

16  0.89 0.11 0.104 0.008 8.6 0.68 0.6 7.2 

22  2.60 0.18 0.141 0.010 18.4 0.52 17.4 19.4 

26 2.36 0.17 0.136 0.009 17.4 0.52 16.4 18.4 

32 1.25 0.13 0.168 0.013 7.4 0.47 6.5 8.3 

36  0.98 0.13 0.204 0.019 4.8 0.46 3.9 5.7 

40  0.93 0.13 0.187 0.014 5.0 0.45 4.0 5.8 

Table 2.1: Longevity (parameters of seed viability equation fitted by probit analysis) of japonica rice cv. Gleva freshly harvested 

serially during their development from plants grown in controlled environments; irrigation throughout, irrigation ended at 7 DAA 

or at 14 DAA in hermetic storage at 40°C with seed storage moisture content at 15%±0.5. The 95% confidence intervals are shown 

for p50 
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2.6 Discussion 

 

Comparison amongst treatments showed considerably and consistent effects of the two drought 

treatments on the progress of seed development and maturation, seed desiccation and filling 

(Fig. 2.1a & b) and on fresh and dry seed quality development, ability to germinate (Fig. 2.2a 

& b) and subsequent air-dry seed storage longevity (Fig. 2.3). The drought treatments resulted 

in more rapid seed development but considerable poorer seed quality later on. 

At the end of this study, all chapter 2 hypotheses (2.3.1-2.3.3) in relation with general 

hypotheses (1.7.1-1.7.3) were accepted as they relate to the effects of drought. The hypotheses 

for the effects of ending irrigation at 7 and 14 DAA during seed development and maturation 

can now be answered.  

 

1. Ending irrigation early reduced the duration of seed filling and final seed dry weight 

and resulted earlier seed desiccation; it was reduced/earlier by the14 DAA treatment 

and reduced further/earliest by the 7 DAA treatment. 

 

2. Ending irrigation early resulted in ability to germinate (dry seed only) than the control 

and to tolerate desiccation earlier than control. Both drought treatments were similar in 

each other and earlier than the control. However, ability for fresh seed to germinate did 

not develop earlier than the control. 

 

3. Improvement in subsequent seed longevity during seed development and maturation 

occurred sooner by ending irrigation early; the improvement developed earlier than the 

control in both the 7 and 14 DAA treatments. The maximum longevity was detected 

earlier by ending irrigation early, as this was achieved earlier than the control in both 

the 7 and 14 DAA treatments. This value was greatest for the control; the control 

provided greater longevity than the 14 DAA treatment, which in turn was greater than 

the 7 DAA treatment.  

 

In the present study, loss of seed moisture content during seed development and 

maturation drying occurred earlier under water limitation. This reflects the plant’s strategy to 

respond to water shortage to ensure their survival by producing seed quickly. Water stress 

during seed development reduced the duration of seed filling (Fig. 2.1) and final seed dry 

weight (Fig. 2.1b). Seed dried earlier in the seed-filling phase when irrigation ended after the  
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end of the histodiffentiation phase (7 DAA treatment) and well before seed filling ended (14 

DAA treatment). This was supported by Yang and Zhang (2006) who showed that water stress 

during grain filling increased the remobilization of assimilate from the rice straw to grains and 

resulted in early senescence. Furthermore, water stress during grain filling induces the 

conversion of stem reserves into soluble sugars and the transport of these sugars into the grains 

(Blum, 2005). Nicolas et al. (1985) reported seed dry weight was reduced in response to early 

drought due to the development of a smaller number of endosperm cells. That is expected to 

have occurred here because all plants were irrigated until 7 DAA when the histodiffentiation 

phase was assumed to have been completed. I suggest that the reduction in final seed dry weight 

from ending irrigation early resulted from earlier plant senescence and reduced period for 

assimilate to be provided to the developing seeds compared to the control.  

It was surprising the seed dry weight in the control continued to increase throughout 

the investigation (Fig. 2.1a) whilst moisture content remained quite high (about 30% moisture 

content) (Fig. 2.1a). Ellis et al. (1993) have shown that seed filling ends at about 22 DAA with 

seed moisture content at about 40%, in similar environments. There was considerable variation 

in the timing of anthesis amongst plants (Appendix 2.9). It might be possible therefore that the 

seed filling in later harvests in the control represented those plants that had flowered much 

later.  However, this was prevented in my study because panicles that anthesed from 101-113 

DAS were selected for the experiment. Irrigation in the control continued until the final harvest 

at 40 DAA. This long period of irrigation might explain the long period of seed filling. 

From the result for dry seed germination (Fig. 2.2b), it can be concluded that germination 

capacity (dried seeds) for ending irrigation at 7 DAA increased for about 5 days after attaining 

maximum seed dry mass (Fig. 2.1b). For ending irrigation at 14 DAA, maximum germination 

capacity coincided with mass maturity at 22 DAA, meanwhile in the control, it was achieved 

before mass maturity. The present results for the 7 DAA treatment was consistent with results 

of Filho and Ellis (1991) who found that in barley, maximum germination was observed 

between 7-13 days after maximum seed mass. Those results in the control and ending irrigation 

at 14 DAA were slightly similar to Pereira et al. (2014) with Syngonanthus elegans, where 

maximum germination capacity was reached prior to seed mass maturity.  

The stage of seed development and maturation affects seed quality (eg. Martínez-Eixarch 

and Ellis, 2015; Ellis, 2011; and Sanhewe et al.,1996). Since the timing of development was 

significantly affected by the irrigation treatments (Appendices 2.0, 2.3, 2.6) it is possible that 

the different results at any one harvest time for seed quality might result from the more rapid 

development when irrigation ended early.  
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During seed development and maturation, fresh and dry seeds for both drought treatments 

declined in ability to germinate normally in later harvests (Fig. 2.2a & b). Moreover, fresh seed 

from the earlier drought during seed development showed an extremely low ability to 

germinate compared to other treatments (Fig. 2.2a). This circumstance might be due to loss in 

viability or increase in dormancy during seed development and maturation: since dried seeds 

showed much greater germination (Fig. 2.2b), the latter must be the explanation. In wheat, 

Yadav and Ellis (2016), showed similar development of ability for seed to germinate in both 

fresh and dry seed. However, for the control treatment, the present results are similar to 

Tejakhod and Ellis (2017) which presented that dry seed of rice cv. Gleva able to germinate 

normally throughout seed development and maturation. 

My hypothesis that improvement in subsequent seed longevity during seed development 

and maturation would occur sooner and maximum longevity occur earlier by ending irrigation 

early were accepted: improvement of subsequent longevity was developed earlier, and 

maximum longevity achieved earlier than the control in both the 7 and 14 DAA treatments 

(Fig. 2.4) This is similar to the conclusion Sinniah et. al. (1998a) with rapid-cycling brasicca. 

The earlier improvement in longevity also matched the earlier desiccation (Fig. 2.1a). 

Similarly, onset of ability to germinate and of desiccation tolerance for wheat develops early 

in development from the first harvest (14 DAA) at which time seeds were only about 10% 

filled (Ellis & Yadav, 2016). Consistent differences were apparent amongst all three treatments 

for longevity and compared with seed moisture content: with desiccation to 22% moisture 

content, longevity improved in all treatments, but beyond 32 DAA, longevity of the control > 

14 DAA > 7 DAA irrigation treatments. The declining in longevity for 7 DAA and 14 DAA, 

respectively with below 22% or 18% seed moisture content was only a small decline however 

much greater than control towards the end of harvest. These results are compatible with Sinniah 

et al. (1998a) who reported that when reducing irrigation to rapid-cycling brassica plants, the 

attainment of maximum potential longevity coincided with the rapid reduction in seed moisture 

content due to plant drought. 

Control provided greater maximum longevity (23.6 d) than the 14 DAA (18.4d) treatment 

which was greater than the 7 DAA (7.7d) treatment (Table 2.1). Thus, the hypothesis that 

maximum value of longevity is reduced by ending irrigation early was accepted. This result 

was unexpected (in terms of the published literature in other species) and is the subject of a 

future investigation. The result may have been due to the shorter duration of improvement in 

seed quality in the 7 DAA and to a lesser extent the 14 DAA treatments and the later decline 
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in longevity occurred sooner because seeds had reached lower moisture contents than in the 

control.  

In relation with seed moisture content, ability of dry seeds to germinate showed similar 

trends with desiccation to about 30% moisture content, plateaus with further loss in moisture 

content, but then declines below about 18% moisture content (Fig. 2.5a). The 7 and 14 DAA 

treatments were similar thereafter, with progressively reduced ability to germinate apparent as 

moisture content declined from about 22% to 16% (Fig. 2.5a). This decline was not detected 

in the control, perhaps because seed moisture content in planta did not fall below 30% in this 

study. Longevity increases until close to 22% moisture content (Fig. 2.6b), but the pattern is 

very different amongst irrigation treatments, and then declines at about 16% moisture content. 

The value of 16% moisture content is also the point at which Whitehouse et al. (2015) identified 

that rice seed longevity no longer benefitted from heated-air drying treatments. That is, 

longevity could not be improved further beyond that occurring in planta. The control samples, 

plants irrigated throughout did not dry below 26% moisture content during the investigation, 

and so no decline in ability to germinate or longevity was detected. 

From this present finding, my next study (Experiment 2) was continuing with similar stress 

(drought) with some modification, which include treatments ending irrigation during end seed 

filling and late maturation drying. 
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Figure 2.5: Seed moisture content in relation with ability to germinate (dried-seed) (a) and 

longevity p50 (b) for seeds of japonica rice cv. Gleva harvested serially during their 

development from plants grown in controlled environments at 28/200C (11h/13h), 11 h d-1 

photoperiod with irrigation throughout (■), irrigation ended at 7 (●), or at 14 DAA (▲). Data 

point linked in chronological order from first harvest (high moisture content) to the final 

harvest (low moisture content). 
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2.7 Conclusion 

 

The evidence from the present study indicates that drought treatments had a substantial effect 

on the pattern of increase and then decline in both seed viability and seed longevity during seed 

development and maturation of cv. Gleva. The results to date suggest that early plant 

senescence, from drought, accelerates the development of seed desiccation tolerance and 

longevity, but longer periods of development from continuous irrigation result in higher seed 

quality ultimately, with seed deterioration in the mother plant beginning to accumulate once 

seed moisture content declines to about 16% and so well within the air-dry range. 
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CHAPTER 3 

 

Effect of a brief period of elevated temperature during seed development on rice seed 

quality 

3.1 Introduction 

Abiotic stress such as extreme temperature frequently limits the growth and productivity of 

major crops species including rice. Short-term heat stress events have occurred frequently 

across the globe during the past 20-30 years and are likely to increase with global warming 

(Lobell et al., 2012). Only a limited number of reports have been published on the effect of 

elevated temperature during seed development on rice seed quality, particularly on seed 

longevity. 

In rice, the effect of high temperature depends on the developmental stage of the rice 

plant, particularly during reproductive stage. This was proved by many studies in rice, for 

example in terms of spikelet fertility Martinez-Eixarch and Ellis (2015) and Tuay and Saitoh 

(2017). Seed quality and potential longevity of japonica rice is particularly sensitive to high 

temperature (Ellis et al., 1993). Similar studies by Zakaria et al. (2002) discovered that japonica 

rice was less resistant to elevated temperature during the seed maturity phase than indica or 

javanica rices. Moreover, Ellis (2011) suggested that seed quality development may be less 

sensitive to high temperatures during late development and maturation than during early seed 

development.  

It is well established that high temperatures during seed development reduce grain yield 

and seed quality (Morita, 2008; Tanamachi et al., 2016). However, continuous extreme 

temperatures provided throughout an experiment are unrealistic in terms of the problem in the 

field. For this reason, I provided more realistic 3-days exposure to high temperature stress in 

this investigation. Moreover, the issue of which stage during seed development, high 

temperature most affects seed quality was explored. Thus, this study was focused on brief 

elevated high temperature at different stages during seed development and their effect on seed 

quality, particularly on seed longevity. The regime 40/30℃ was chosen according to 

temperature stress events currently occurring in some rice production in Spain.  

In this study, I added an additional seed vigour test which is electrical conductivity (EC) 

test of seed steep water. The conductivity test is a measurement of electrolytes leaking from 

seeds based on the principle that the deterioration process is the leaching of the cells of seeds 

soaked in water due to loss of integrity of cellular systems (Powell and Matthews, 1978). 
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Changes in the organization of cell membranes occur during the development of seeds prior to 

physiological maturity, seed desiccation before harvest, and during imbibition prior to 

germination (ISTA, 1995). However, there are factors which influence the conductivity values 

as the genotype, size, the initial water content, temperature and time of soaking and the number 

of seeds per sample (Ramos et al., 2012). 

 

3.2 Objectives 

This study investigated changes in seed quality, including seed viability and subsequent seed 

storage longevity, in the japonica rice cv. Gleva in response to 3-days treatment at 40/30℃ at 

different stages of seed development and maturation.  

3.3 Hypotheses 

The hypotheses for the investigations were as follows: 

3.3.1 Seed moisture content, seed dry weight and seed viability (ability to germinate normally 

of fresh and air-dried seed) at harvest maturity (42 DAA) are lowest by 3-days treatment 

at a high temperature of 40/30℃; 

3.3.2 Subsequent seed longevity in air-dry storage of seeds harvested at 42 DAA is lowest 

by 3-days treatment at a high temperature of 40/30℃. 

Hypotheses 3.3.1-3.3.2 relate to my general hypotheses 1.7.1 and 1.7.2 in relation to brief high 

temperature. 

Each of the above was tested for different 3-days periods during seed development and 

maturation, to test the hypothesis that each independent variable above varies in sensitivity to 

extreme high temperature during seed development. 
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3.4 Methodology 

This study was conducted in a controlled environment glass house and growth cab at the Plant 

Environmental Laboratory (PEL), Shinfield, University of Reading (UoR) (51⁰ 27′ N latitude 

and 00⁰ 56′ W longitude). It was carried out using RCBD experimental design with eleven 

treatments (including a control with no high temperature) provided to five pots of plants in 

each of four blocks. 

3.4.1 Seed Sowing 

Seeds of japonica rice cv. Gleva were sown in pots in blocks on 11 April 2015 in a temperature 

and photoperiod controlled heated and vented glasshouse (6.4 x 8.6 m). Pots were arranged on 

four mobile trolleys (each 3.5 x 2.1m) then kept inside the dark compartments in the close 

‘garage’ until they reached 50% germination (Plate 3.1). Each trolley held 55 experimental 

pots comprising one block. Four trolleys (blocks) in total held 220 experimental pots. A further 

25 pots on each trolley were also used to multiply seeds for later growing seasons and provided 

a dense stand of plants similar to a small plot field experiment. Seedlings were exposed to 

sunlight (Plate 3.2) after 11 DAS (22 April 2015). 

 

Plate 3.1: 50% rice (cv. Gleva) seed germinated (11 DAS) 

 

 

Plate 3.2: Rice (cv. Gleva) seedlings on mobile trolley exposed to daylight at 11 DAS 
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3.4.2 Vegetative growth 

Plants on the mobile trolleys were drawn into the glasshouse from the ‘garage’ manually in 

order to expose plants to a 12-hour photoperiod in a temperature of 28/200 C at about 75% 

relative humidity at 7 am and back in at 7 pm each day. After 13 DAS, plants were provided 

with drip irrigation five times per day where water pH was controlled in the range between 5.5-

6.5 (Plate 3.3a & b). Plants were thinned in early seedling stage (14 DAS) to give four strong 

plants to a uniform stand. 

 

     
a                                                             b 

Plates 3.3a & b: Rice (cv. Gleva) seedling provided with drip irrigation from 13 DAS. The 

night (dark) compartment (‘garage’) are shown closed in b. 

 

3.4.3 Anthesis  

The development of anthesis was monitored to obtain the pattern of variation in anthesis date 

prior to starting the treatments. This pattern is shown in Appendix 3.11. In order to limit the 

anthesis variation, only panicles that anthesed during the period 81-87 DAS were used in the 

study. Earlier and later anthesing panicles were cut and removed. Anthesis (0 DAA) was 85 

DAS (i.e. 50% anthesis) 

3.4.4 High temperature treatment 

Treatments began 82 DAS (-3 DAA) and ended up to 27 DAA. Pots in a treatment were 

transferred to the controlled growth cab (Saxcil) for 3-days at 40/300C with 11h/13h 

thermoperiod synchronized with 11h photoperiod (Plate 3.4). Each transfer consisted of 20 

treatment pots. Treatments T2 to T11 followed each other at 3 days intervals. The treated plants 

were moved back to the glass house at the end of the 3 days where they remained until maturity. 

The different periods of high temperature treatment were as below: 
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1. T1 = control (no high temperature treatment, in glasshouse throughout) 

2. T2 = -3-0 DAA 

3. T3 = 0 - 3 DAA 

4. T4 = 3 - 6 DAA 

5. T5 = 6 - 9 DAA 

6. T6 = 9 - 12 DAA 

7. T7 = 12 - 15 DAA 

8. T8 = 15 - 18 DAA 

9. T9 = 18 - 21 DAA 

10. T10 = 21-24 DAA 

11. T11= 24 - 27 DAA 

 

 
Plate 3.4: General view of (cv. Gleva) plants in cabs during 3-d period at 40/30℃ (11h/13h  

thermoperiod) 

3.4.5 Harvesting 

Irrigation of all treatments continued until the end of the experiment when panicles were 

harvested. The panicles were harvested on 11 August 2015 (42 DAA) at harvest maturity (Plate 

3.5). Seeds were threshed gently by hand and empty seeds were removed. 

 

Plate 3.5: Rice (cv. Gleva) plants at harvest maturity (42 DAA) 
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3.4.6 Data Collection 

The methods for the determination of germination and seed storage longevity were similar to 

Experiment 1.  

3.4.6.1 Seed dry weight  

The mean of eight samples of 100 seeds was recorded during the seed moisture content 

determination. Seed dry weight was calculated from estimates of seed fresh weight and seed 

moisture content. 

 

3.4.6.2 Seed Moisture Content 

As seeds were harvested at maturity, the two-stage method was not used. Samples of 10 g (210-

250 seeds) were divided into two replicates and placed in a constant temperature oven at 103℃ 

for 17 h and moisture content was calculated as, 

m.c.(%) =   Original wt. of seed - dry wt. of seed    X 100 

          Original wt. of seed 

 

3.4.6.3 Bulk Conductivity Test of seed steep water 

In some species, this test provides a quick, cheap and easy way to distinguish seed lots that 

differ in quality (Matthews and Bradnock, 1968). This test was included in this experiment to 

investigate by myself if it could be used for seed development study in rice. Sets of 100 seeds 

from each sample were soaked in 50 ml for distilled water at 250 C for 16h. A control with 

distilled water without seeds was maintained (control conductivity). Seed leachate was 

measured with a portable Electrical Conductivity meter (EcoTestr EC high, Eutech Instruments 

Pte. Ltd.) as electrical conductivity (E.C.) (µS cm-1 g-1) (Krishnan et al., 2004). The blank 

treatment sample was subtracted to provide the result of the solution conductivity. The weight 

(g) was taken from the seed dry weight determination. 

The reading is expressed as µS cm-1 g-1. It is calculated as follows, 

Conductivity (µS cm-1 g-1) = Solution conductivity – control conductivity 

     Weight (g) of replicate 

         (Sharma et al., 2011) 

3.4.6.4 Statistical analysis 

Similar analyses were carried out as in the earlier study in Experiment 1.  
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3.5 Results  

Elevated high temperature (HT) for 3-days at different periods of seed development 

considerably affected seed quality (final seed moisture content, dry weight, ability to germinate 

(fresh seeds)) and subsequent longevity (Figs. 3.1-3.4). All the independent variables above 

were affected significantly by the HT treatments, however not for electrical conductivity (E.C.) 

and ability of dried seed to germinate normally (Appendices 3.0-3.8). Comparisons amongst 

treatments were made using the Tukey’s multiple range test (Appendices 3.5-3.8). In each case, 

final seed moisture content, dry weight, ability to germinate (fresh seeds) of japonica rice cv. 

Gleva was more influenced by HT during the first three period HT treatments (at -3-0, at 3-6 

and at 6-9 DAA). Seed longevity was most affected by the first two periods of HT treatment. 

3.5.1 Seed moisture content, dry weight and ability to germinate (fresh and dry) 

The range of seed moisture contents at 42 DAA for all treatments was in the range 24.7-37.2%. 

The extreme seed moisture content in these samples was provided by the earliest (-3-0 DAA) 

timing of exposure to HT with 37.2% (Fig. 3.1a). The last treatment (24-27 DAA) and control 

provided similar estimates of about 25% seed moisture content. Moisture content was 

significantly affected by HT treatment (Appendix 3.0). 

The control provided the highest value (31.4mg, s.e. 0.7), whilst HT at -3-0 DAA provided 

significantly lower seed dry weight (20.2mg, s.e. 5.0) with all the remaining in between 

treatments (Fig. 3.1b, Appendix 3.6). The HT at 3-6 until 24-27 DAA (T4-T11) respectively 

did not differ significantly and ranged only from 27.4 to 31.4mg (Appendix 3.6). The first three 

HT treatments (HT at -3-0 until 3-6 DAA) showed a progressive rise in seed dry weight. Hence, 

HT imposed around anthesis reduced final seed dry weight. 

Solute leakage (measured as electrical conductivity) on seed steep water showed no significant 

difference amongst HT treatments (Appendix 3.2). The range of E.C. was in between 58.0 to 

78.3 µS cm-1 g-1. Hence, this study indicates that E.C. of  japonica rice cv. Gleva was not 

influenced by elevated HT during seed development and maturation.  
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Figure 3.1: Seed moisture content (a), dry weight (b), and electrical conductivity of seed steep 

water (c) for japonica rice cv. Gleva cultivated in a glasshouse (28/200 C:12h/12h) treated with 

elevated high temperature during seed development at 40/30℃ with 11h/day photoperiod in 

the growth cab for 3 days at harvest maturity (42 DAA). Different letters indicate significance 

difference at P< 0.05 amongst treatments using the Tukey’s multiple range test. 
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All treatments showed approaching 100% normal germination for seed harvested at 42 DAA, 

except for the first two high temperature treatments of fresh seeds (-3-0 and 0-3 DAA) where 

it was depressed (Fig. 3.2). This reduction was much greater for freshly-harvested than dried 

seeds. Significant difference was detected amongst HT treatment in fresh seeds (Appendix 3.3) 

but not in dried seeds (Appendix 3.4). The lowest percentage of seed to germinate was in fresh 

seed treated with HT at -3-0 DAA which achieved about 70% when harvested at 37.2% 

moisture content (Fig. 3.1a). Drying these seeds below 30% at harvest resulted in a much 

greater in ability to germinate.  

 

Figure 3.2: Ability to germinate normally of freshly-harvested and dried seed of japonica rice 

cv. Gleva cultivated in glass house (28/200 C,12h/12h) treated with high temperature during 

seed development at 40/300 C at the periods shown with 11h/day photoperiod for 3 days in the 

growth cab and harvested at 42 DAA. Mean values within treatments for freshly-harvested seed 

with the different capital letter; and within dried seed germination with different small letter 

indicate significance difference at P< 0.05 amongst treatments using the Tukey’s multiple 

range test. 

 

 

 

 

 

0

10

20

30

40

50

60

70

80

90

100

T1
Control

T2
-3-0

T3
0-3

T4
3-6

T5
6-9

T6
9-12

T7
12-15

T8
15-18

T9
18-21

T10
21-24

T11
24-27

A
b

ili
ty

 t
o

 g
e

rm
in

at
e

 n
o

rm
al

ly
 (%

)

Fresh
germination

Dry
germination

Timing of 3 days high temperature treatment (DAA) 

B

A

AB B B B BB B B Baa a a a aa a a a a



 

58 
 

3.5.2 Seed storage survival and Longevity (p50) 

The seed survival curves at 40/300C with 14.5-15.5% moisture content were fitted by probit 

analysis. The estimates for Ki, 1/σ and p50 for these survival curves are shown in Table 3.1. 

The seed survival curves of the 11 treatments (control and HT during different 3-days period 

in seed development) conformed well to negative cumulative normal distributions (Fig. 3.3). 

In some cases, the survival curves fit very well e.g. (Fig.3.3b,c,k), and some cases were less 

well (e.g. Fig. 3.3e,f).  Overall, the first HT treatment (-3-0 DAA) provided the shortest survival 

period (p50=10.6 d) and the second (0-3 DAA) the next (p50=12 d). The longest period was in 

the control (p50=25.4 d) with the final HT treatments (21-24 DAA, 24-27 DAA) almost as good 

as the control. Individual results in between were not quite consistent. For example, treatment 

at 9-12 and 18-21 DAA were particularly low, whereas 3-6 DAA, 6-9 DAA, 12-15 DAA and 

15-18 DAA were high (Fig. 3.4).  

In Appendix 3.9, the survival curves were compared amongst treatments with different models 

to describe the seed survival curves fitted by probit analysis. There was no significant 

difference detected in 1/σ, whereas Ki did differ significantly. The estimates of Ki with a 

common seed survival curve slope are shown in Appendix 3.10. The survival curves for -3-0 

DAA provided the lowest estimates of Ki (1.6), and so the lowest initial viability was detected 

before it loss in viability towards the end, meanwhile 21-24 DAA was provided the greatest of 

Ki value (4.1) (Table 3.1).   
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Figure 3.3: Seed survival curves (viability, estimated by ability to germinate) of seeds of 

japonica rice cv. Gleva produced in a glasshouse (28/200 C,12h/12h) treated with elevated 

temperature during seed development at 40/300 C with 11h/day photoperiod in the growth cab 

for 3-days period shown and harvested at 42 DAA. Seeds were stored hermetically at 40℃ 

with the moisture contents shown in Table 3.1. Best fit survival curves for each treatment 

combination fitted by probit analysis are shown. These are quantified in Table 3.1.  
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Figure 3.4: Longevity (p50 provided by parameters of seed viability equation fitted by probit 

analysis) of seeds of japonica rice cv. Gleva produced in a glasshouse (28/200 C,12h/12h) 

treated with high temperature during seed development at 40/300 C with 11h/day photoperiod 

in the growth cab for 3 days period shown and harvested at 42 DAA, and stored hermetically 

at 40℃ with seed storage moisture content as shown in Table 3.1.  
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Table 3.1. Longevity (parameters of seed viability equation fitted by probit analysis) of japonica (cv Gleva) rice harvest at maturity (42 DAA) in a glasshouse 

(28/200 C,12h/12h) treated with high temperature during seed development at 40/300 C with 11h/day photoperiod in the growth cabinet for 3 days periods 

shown and harvested at 42 DAA. Seeds were stored hermetically at 40℃ with the seed storage moisture contents shown in Table 3.1. The 95% confidence 

intervals are shown for p50. 

 

 

 

 

 

Treatment Storage 

moisture 

content (%) 

Ki Slope(1/σ) p50 (days) 

estimate s.e estimate s.e estimate s.e. lower 95% 

upper 

95% 

T1  

(Control) 

14.8 3.45 0.18 0.1355 0.007 25.4 0.46 24.6 26.34 

T2 

(3DBA) 

14.6 1.57 0.17 0.149 0.015 10.6 0.59 9.5 11.71 

T3 

(0-3DAA) 

14.9 2.10 0.19 0.176 0.014 12.0 0.40 11.2 12.73 

T4 

(3-6DAA) 

15.0 2.63 0.13 0.119 0.0059 22.2 0.48 21.3 23.14 

T5 

(6-9DAA) 

14.5 3.06 0.18 0.148 0.009 20.7 0.44 19.9 21.59 

T6 

(9-12DAA) 

14.8 1.14 0.09 0.085 0.006 13.3 0.65 12.1 14.61 

T7 

(12-15DAA) 

14.5 2.89 0.16 0.115 0.006 25.0 0.56 24.0 26.13 

T8 

(15-18DAA) 

14.7 2.16 0.14 0.106 0.007 20.3 0.71 19.0 21.74 

T9 

(18-21DAA) 

15.1 1.87 0.17 0.140 0.012 13.3 0.48 12.4 14.27 

T10 

(21-24DAA) 

15.2 4.13 0.25 0.172 0.010 23.9 0.42 23.1 24.71 

T11 

(24-27DAA) 

15.5 3.13 0.20 0.126 0.007 24.9 0.52 23.8 25.85 
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3.6 Discussion 

Rice is often cultivated currently in regions where temperatures are already above the optimal 

for growth (28/22°C), therefore, any further increase in mean temperature or incidents of HT 

during sensitive stages (e.g. flowering) may adversely affect the performance of the crop 

(Krishnan et al., 2011). Elevated HT for 3-days in japonica rice cv. Gleva did affect seed 

quality later at harvest maturity (42 DAA). Thus, the null hypothesis set up initially, for all 

study parameter was rejected for the first two, or the first three HT treatments (-3-0, 0-3, and 

3-6 DAA) depending upon the aspect of seed quality studied. The first HT treatment (-3-0 

DAA) generally provided the extreme results: the highest seed moisture content and the lowest 

seed weight; lowest ability to germinate (fresh seeds); and poorest longevity. The combination 

of highest seed moisture content at 42 DAA and lowest seed weight might reflect a delay to 

development of some seeds as a result of disruption around the time of anthesis.  

Seed desiccation was less sensitive to extreme HT during seed development and 

maturation as shown in Figure 3.1a. However, it was most pronounced in early 

histodifferentiation (-3-0 DAA) with highest seed moisture content at harvest (37.2%). This 

highest seed moisture content might indicate that seed had not yet achieved mass maturity at 

42 DAA, perhaps delayed in anthesis as consequence from HT imposed. This is supported by 

Dunand and Saichuk (2014) who in their review mentioned that most rice seed achieved 

physiological maturity (mass maturity) while moisture content was between 25-30%.  

Present study showed that seed dry weight was not affected by HT in later harvest from 3-6 

until 24-27 DAA. This circumstance might due because seed have completed their seed filling 

as early as 3-6 DAA. Dry seed weight was similar for each 3-days treatment during this seed 

development period, averaging 30.0mg (Fig. 3.1b). This agrees with Kobata et al. (2018) in 

their Figure 8, illustrated that rice cv. Koshikari in seed dry weight (g m-2) was not affected 

from about 6 to 40 DAA when plants were treated at 40℃  (HT).  

The low seed weight with HT at -3-0 DAA agrees with Wu et al. (2016), where HT at 

heading caused a lower 1000 grain weight due to reduced photosynthesis and reduced sink size 

(Makino et al., 1994). Kim et al. (2011), who reported that early seed development was the 

most critical phase of damage by HT, as at this stage cells were actively multiplying, thus HT 

limited grain growth by inhibiting subsequent dry matter translocation (Shi et al., 2016). 

 Electrical conductivity (E.C.) has been used as a possible method for 

measuring viability and vigour of seedlings in rice and other crops. In my present study, 

japonica rice cv. Gleva was not influenced by elevated HT imposed during seed development 
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and maturation, by using electrical the conductivity test (Fig. 3.1c) showed no significantly 

difference between treatment (Appendix 3.1). In contrast, Zhoa et al. (2009) showed in their 

study that E.C.  was suitable to evaluate sweet corn viability as E.C. was can indirectly 

determine seed membrane integrity of different quality seed lots. It also been listed in the 

International Rules for Seed Testing (ISTA, 1995) as a testing method for pea. High value of 

E.C. indicates more leaching of sugars with later increase in seed age and increased injury to 

endosperm (Abdul-Baki & Anderson 1970). Once the membrane stability is compromised, 

deterioration is enhanced. However, it can be suggested here that, E.C test was not suitable to 

evaluate seed viability in rice, even though there are some previous studies where this test was 

a success for example in some cotyledon spp. such as mungbean (Onwimol et al., 2016). As 

E.C. test did not give any difference among treatments, this test was not used in later 

experiments. 

Seed viability also depends on harvest time, particularly seed harvest moisture content 

(Olasoji et al., 2012; Demir et al., 2008) with high seed viability associated with seed 

desiccation (Ellis, 2011). Ability to germinate ex planta in this study after HT treatment was 

significant was affected was in terms of the maximum germination capacity of fresh seed 

(Appendix 3.3) but not in dried seed (Appendix 3.4). Almost all treatments for both seeds 

provided close to 100% ability to germinate normally except for fresh seeds at (-3-0 DAA) 

with only 69%. The significant effect occurred in fresh seed perhaps because of seed moisture 

content was considerably high during harvest at that period (-3-0 DAA). This support Ellis 

(2011) conclusion that low moisture content at harvest will produce high seed viability.  

Any effects of HT on seed quality development also depends on species and cultivar, 

level and duration of stress imposed. To support this, Jagadish et al. (2007) had reported that 

upland japonica rice cv. Azucena showed that high temperature had a significant interaction 

with temperature duration. For instance, temperature >35℃ at anthesis for five days resulted 

in sterile spikelets and complete failure seed production. Moreover, Madan et al. (2012) 

reported that grain yield in hybrid indica rice was affected by loss of their superior performance 

at a temperature of 38℃ for five days during flowering. The present study revealed during the 

period of 3-6 DAA onwards, seed were less sensitive to short duration 3-days HT than the 

earlier. This was supported by Martinez-Eixarch and Ellis (2015) who reported that, seed 

viability in Gleva was significantly reduced by 7-d exposure to 38/340C at 1 to 7 and 1 to 14 

DAA.  
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Seed longevity in air-dry storage is a good, sensitive indicator of differences in seed 

quality among high viability seed lots (Ellis and Roberts, 1981). In this study, the seed lot 

which produced a survival curve with a lowest estimate of p50 was that for -3-0 DAA HT 

treatment (Table 3.1) with final moisture content at harvest (42 DAA) was 37.2% (Fig.3.1a). 

Meanwhile, seed obtained from plants stressed at 21-24 and 24-27 DAA showed almost similar 

estimates of longevity with the control. The present result thus supports the conclusion of Ellis 

(2011), where little or no deleterious effect to subsequent seed storage longevity when plants 

were exposed to more than 280C from 2/3rd through the seed filling phase (late in seed 

development).  

It is noticeable also, potential longevity considerably coincides with reduction in seed 

moisture content at harvest (42 DAA) from -3-0 until 3-6 DAA (Fig.3.1a). Present study 

showed that once seed desiccate from mother plant from 37.2 to 26. 2% seed longevity improve 

from 10.6 to 22.2 d. whilst, this might indicate that there is relationship between seed longevity 

improvement and harvest moisture content. Indeed, this results strongly support by Whitehouse 

et al., (2015) which reported that rice seeds harvested at a moisture content where they are still 

metabolically active (≥16.5%) are considered to continue their desiccation phase and therefore 

able to improve longevity. In Brasicca for example, the attainment of maximum potential 

longevity coincided with the reduction in seed moisture content by maturation drying in planta 

to 6-7% (Sinniah et al., 1998a).  

In terms of p50, values, the estimates were variable between the third HT treatment at 3-

6 DAA and eight at 18-21 DAA (Fig. 3.4). Nevertheless, there is a tendency for them to be 

between the extremely poor values at -3-0 DAA and 0-3 DAA and the best values in the control 

and for HT from 21-24 or 24-27 DAA. This is broadly consistent with earlier conclusive that 

japonica rice seed quality was most vulnerable to damage from high temperature dose to 

anthesis and least vulnerable in late seed filling and thereafter (Ellis, 2011; Martinez-Eixarch 

and Ellis ,2015). In addition, it was suggested by Cromarty et al. (1982) that seed with high 

moisture content at harvest are easily seed easily damaged by high temperature.  

 

3.7 Conclusion 

In conclusion, well-irrigated plants of japonica rice cv. Gleva were able to tolerate 3-days HT 

treatment during late seed development period, whereas HT imposed around anthesis reduced 

seed quality. In many field environments, however, plants are subjected to HT and drought 

stress simultaneously. This is explored in a later experiment.  
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CHAPTER 4 

The effect of drought during seed development and maturation on subsequent rice seed 

quality (cv. Gleva) 

4.1 Introduction 

In Experiment 1 (Chapter 2), I showed that terminal drought before the end of the seed filling 

phase had a substantial effect on the subsequent pattern of increase and then decline in both 

seed viability and seed longevity during seed development and maturation. Those results 

suggested that early plant senescence, from drought, accelerates the development of seed 

desiccation tolerance and longevity, but longer periods of development with irrigation 

throughout resulted in higher seed quality ultimately. In addition, seed deterioration on the 

mother plant began to accumulate in the drought treatments once seed moisture content 

declined to about 16%.  

Drought escape by plants usually involves earlier maturity to avoid the most severe 

period of water scarcity whereas, generally, this adjustment to severe environmental stress 

limits crop yield especially when it occurs during anthesis and seed filling (Seiler et al., 2011). 

In addition to its effects on the physiological processes in plants, drought stress during seed 

development may reduce subsequent seed germination and vigour. As introduced in Chapter 2, 

the effects of drought on seed quality reported vary amongst different, and perhaps also within, 

crops (e.g. Yaklich, 1984; Sinniah et al., 1998a) 

4.2 Objectives 

This study investigated changes in seed quality, including subsequent seed storage longevity, 

in rice cv. Gleva during seed development and maturation under well-watered conditions or 

with terminal drought during late seed filling and late maturation drying (i.e. later than in 

Experiment 1) in order to determine when maximum seed quality was attained and when seed 

deterioration begins on the mother plant, and the influence of drought on the above. 
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4.3 Hypotheses 

The hypotheses for this study were as follows: 

4.3.1. Ending irrigation towards the end of seed filling or late in maturation drying reduce 

the progress of seed filling and desiccation and maximum seed weight but accelerates 

the development of ability to germinate in the former but not the latter case; 

4.3.2 Ending irrigation towards the end of seed filling or late in maturation drying 

accelerate the pattern of changes in subsequent longevity, and in the initial 

improvement and then subsequent decline; 

4.3.3 Seed deterioration will be detected in planta in all treatments once seed moisture 

content declines below 16% but will be avoided if maintained above 16-20%. 

Hypotheses 4.3.1-4.3.3 relate to my general hypotheses 1.7.1-1.7.3 in relation to drought, but 

also consider effects on the temporal pattern of seed development and of seed quality 

development and possible subsequent decline. Also, in relation with Chapter 2 however, in this 

chapter the hypotheses are tested by drought later in seed development (but with a common 

treatment for comparison). 
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4.4. Materials and Methods 

Experiment 3 began on 21st May 2016 and plant growth and seed production continued over 

the summer until the last harvest on 28th September 2016 in a controlled environment 

photoperiod glass-house at the Crop Environment Laboratory (CEL), Whiteknight Campus, 

University of Reading (51º 26' N latitude, 0º 57' W longitude). 

4.4.1 Seed selection 

Seeds of cv. Gleva were multiplied from additional plants grown in the control environment of 

Experiment 2 for this investigation. Seed were stored dry in a cold room (2-4 ºC) in laminated 

aluminium foil bags, before use, as in previous experiments. They provided more than 90% 

germination in tests before sowing (Plate 4.1).   

 

Plate 4.1: Germination test for seed viability; incubated seed of rice cv. Gleva, produced in 

2015, after 6 days in test at 34/11 0C (16h/8h) 

4.4.2 Growing medium 

Three litre re-useable plastic pots were filled with the same growing medium as previous 

experiments and 0.495 kg of the slow-release fertilizer (Osmocote Pro 3-4M, ICL, UK) added 

at about 3kg/m3. Pots were three-quarter filled, wetted with tap water, and then left to drain for 

24 h.  

4.4.3 Plant growth 

Seven seeds were sown in each pot and the pots placed on one of four trolleys in the glasshouse 

dark compartment at 20 °C  for germination to occur. Each trolley was 2.2 x 1.4 m and held 63 

pots comprising one block. Four trolleys (blocks) in total held 252 pots. Watering by hand 

started at 3 DAS and was carried out daily.  
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About 90% of seed had germinated at 13 DAS and the plants were then exposed to full sunlight 

(Plate 4.2(a)). The temperature in the glass house was controlled at 28/20 0C day/night 

(12h/12h) while relative humidity was maintained at about 70-80% by watering the floor of the 

glasshouse regularly (depending on the forecast). The trolleys automatically began to move out 

from dark compartment into the glasshouse at 7 a.m. and moved back in to the dark 

compartment at 7 p.m. to provide a photoperiod of just over 12 h d-1 synchronous with 

thermoperiod. 

                
(a)              (b) 

 

Plate 4.2: (a) Seedlings exposed to sunlight from 13 DAS showing trolleys and dark 

compartments; (b) Start of drip irrigation at 17 DAS showing irrigation looms. 

 

Plants were provided with drip irrigation (Plate 4.2(b)) from 17 DAS with water (without 

nutrient) at a pH of  4.5 to 5.5. They were irrigated 7 times per day for three minutes each 

time from 8 a.m until 7.10 p.m. Plants were thinned to four strong plants per pot at 17 DAS.  

4.4.4 Irrigation treatments 

For treatment 1 (T1), plants were irrigated throughout the experiment (control); for T2 and T3 

irrigation was stopped at 14 DAA or 28 DAA, respectively (i.e. in late seed filling and mid-

maturation drying, respectively). All pots (whichever treatment combination) were completely 

randomized in terms of their location within each trolley. 
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4.4.5 Flowering  

Flowering commenced 65 DAS (25th July 2016) and panicles were marked at 4 to 6 days 

intervals using sticky tags on the leaves. At 76 DAS (5th August 2016) plants achieved 50% 

flowering (0 DAA). Only seeds produced from panicles that anthesed between 70-81 DAS, 

inclusive, were included in the study in order to minimize this source of variation. 

4.4.6 Insecticide 

At the beginning of flowering, some plants were infested by red spider mites. Hence, the 

insecticide spray Matador (Koppert B.V., The Netherlands) with Fenazaquin at 1 ml per litre 

and Savona (Dow Agrosciences Ltd, U.K) with 10 ml per litre fatty acids was applied at 75 

and again at 82 DAS. 

4.4.7 Harvesting 

Serial harvests of plants began at 13 DAA and continued at 6-8 days intervals on seven dates, 

until 55 DAA. Twelve plants (3 pots) in each block were harvested from each treatment on 

each date. Seed harvest procedures and all laboratory tests on seeds were carried out as 

described in Experiment 1. 

4.4.8 Statistical Analysis 

GenStat  17th edition (2015, VSN International Ltd.) was used to analyse data, as described in 

Experiment 1.  
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4.5 Results 

4.5.1 Seed desiccation, filling and ability to germinate 

The different irrigation treatments affected seed desiccation in planta considerably but had 

little effect on either seed dry matter accumulation or the development of ability to germinate 

normally (Fig. 4.1). 

Seed moisture content showed significant differences due to either irrigation treatment, 

or harvest date, or their interaction (Appendix 4.0). Not surprisingly, there were no differences 

amongst treatments at 13 DAA, i.e. before drought was imposed, but later harvests provided 

significant differences (Appendix 4.1). Differences in the patterns of decline in moisture 

content (Fig. 4.1a) corresponded with the different irrigation treatments. When irrigation ended 

at 14 or at 28 DAA, seed moisture content declined rapidly soon afterwards and by 34 DAA it 

had stabilized at 12-15% in both these treatments. Where plants were irrigated throughout, seed 

moisture content declined only slightly, reaching 25% at the final harvest (55 DAA).  

According to Tukey’s multiple comparison test, seed moisture content in the control 

was significantly greater than both drought treatments from 4 (14 DAA treatment) or 6 (28 

DAA treatment) days after irrigation ended onwards (Appendix 4.2).  

The main effect of irrigation treatment, regardless of harvest date, was significant 

(Appendix 4.3): the highest mean moisture content was 26.4% for the control followed by 

irrigation ended at 28 DAA (20.3%), and finally 14 DAA (17.6%) (Appendix 4.4). 

Seed dry weight presented similar trends for each of the treatments, including the 

control (Fig. 4.1b). Statistically, irrigation treatments showed no significant difference as a 

main effect but significant differences occurred amongst harvest dates, and both main factors 

interacted (Appendix 4.5). Considerable seed filling had already occurred before the first 

harvest at 13 DAA and seed filling was probably completed in all treatments at around 18 DAA 

or shortly afterwards (Fig. 4.1b). Mean seed dry weight varied amongst treatments only for 

harvest at 13 and 55 DAA (Appendix 4.6), and amongst harvests within treatments only in 

irrigation ended at 14 DAA (Appendix 4.7). Ending irrigation at 14 DAA resulted in lighter 

seed at (only) the first and last harvests (Appendix 4.8). These differences were negligible, 

however. 

Ability of seeds to germinate normally ex planta after drying provided a very similar 

pattern during seed development and maturation amongst all three treatments (Fig.4.1c). 

Ability to germinate normally was already high at 13 DAA (>75%) and improved thereafter 
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(P<0.001, Appendix 4.9) reaching full (99-100%) ability to germinate normally in all 

treatments in later harvests (42 – 55 DAA).  

Angular transformation of the data was used for ANOVA and Tukey’s multiple 

comparison for this particular parameter. There was a significant main effect of irrigation 

treatment and harvest date (Appendix 4.9). In the latter case, the significant effect was detected 

for seed harvested at 27, 34 and 42 DAA (Appendix 4.10.1-3). In addition, the interaction 

between irrigation treatments and harvest date was significant (P<0.05, Appendix 5.9), with 

the 14 DAA drought treatment providing greater ability to germinate than the control at 27 and 

34 DAA. As noted above, the differences were small and none were detected in later harvests. 

 

 

 

 

 

 

 

 



 

 
72 

 

 

Figure 4.1: Moisture content (a), dry weight (b), and changes in viability of dried (15±0.5% 

moisture content) seed, assessed by ability to germinate normally in standard tests at 34/11° C 

(c), for seeds of japonica rice cv. Gleva harvested serially during their development from plants 

grown in a photoperiod glasshouse at 28/20 0C, (12h/12h), 12 h d-1 photoperiod with irrigation 

throughout (●), irrigation ended at 14 (■), or at 28 DAA (▲).  

 

a 

b 

c 
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4.5.2 Seed storage survival  

 

Seed survival in hermetic storage of the different irrigation treatments harvested at different 

periods throughout seed development generally conformed well to negative cumulative normal 

distributions (Fig. 4.2): good fit was provided in most cases (e.g Fig.4.2a, h, o) with acceptable 

but poorer fit in a few cases (e.g. Fig. 4.2e, j, p). Comparison of these curves within each harvest 

from 13 to 34 DAA showed no significant differences amongst irrigation treatments, but 

survival periods varied with harvest date (Appendix 4.13). Longevity differed amongst 

irrigation treatments but only after 34 DAA (Appendices 4.13). Besides that, seed survival 

curves for each block separately (84 curves) also have been analysed. Little variation occurred 

amongst the four blocks within a treatment at one harvest date (Appendix 4.14). 
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Period of storage (days) 

 

 

 

Figure 4.2. Loss in viability (estimated by change in ability to germinate normally) of seeds of 

japonica rice cv. Gleva harvested serially from 13-55 DAA during seed development in a 

photoperiod glass-house (28/200C; 12h/12h, 12 h d-1 photoperiod) with irrigation throughout 

(●-column 1), or ended at 14 (■-column 2) or at 28 DAA (▲- column 3) and stored 

hermetically at 40℃ with 15.0±0.5 moisture content. Results are means of four seed lots, each 

from separate blocks (for individual seed lot survival curves see Appendix 5.12): vertical bars 

are ±s.e. where larger than symbols. Best fit survival curves for each treatment combination 

fitted by probit analysis are shown. These are quantified in Table 5.1.  
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Table 4.1. Longevity (parameters of seed viability equation fitted by probit analysis) of 

japonica rice cv. Gleva harvested serially during their development from plants grown in glass-

houses. Plants were irrigated throughout, or until 14 DAA or 28 DAA. Seed in hermetic storage 

at 40° C with 15.0 ± 0.5% moisture content. Results for four blocks combined. See Appendix 

4.14 for the moisture contents of each seed lot from each block in storage. The 95% confidence 

intervals are shown for p50. 

 

 

 

 

 

 

 

 

 

 

 

Treatment Harvest 

(DAA) 

Ki Slope(1/σ) p50 (days) 

estimate s.e estimate s.e estimate s.e. 

lower 

95% 

upper 

95% 

Irrigation 

throughout 

(T1) 

13 1.49 0.14 0.164 0.013 9.1 0.47 8.2 10.0 

18 4.07 0.41 0.254 0.027 16.0 0.43 15.3 16.9 

27 2.50 0.17 0.143 0.010 17.5 0.55 16.5 18.7 

34 4.39 0.35 0.215 0.017 20.4 0.49 19.5 21.4 

42 2.19 0.14 0.100 0.006 21.9 0.65 20.6 23.1 

49 2.39 0.17 0.141 0.009 16.9 0.55 15.9 18.0 

55 1.52 0.11 0.097 0.007 15.7 0.67 14.4 17.0 

Irrigation 

ended at 

14 DAA 

(T2) 

 

13 1.76 0.15 0.182 0.0142 9.6 0.44 8.8 10.5 

18 2.62 0.19 0.160 0.012 16.4 0.52 15.4 17.4 

27 3.10 0.26 0.199 0.017 15.6 0.47 14.8 16.6 

34 3.58 0.26 0.179 0.013 20.1 0.52 19.1 21.1 

42 1.45 0.16 0.285 0.026   5.1 0.34 4.4 5.8 

49 2.49 0.23 0.290 0.025   8.6 0.34 7.9 9.3 

55 4.83 0.41 0.245 0.022 19.7 0.47 18.9 20.7 

Irrigation 

ended at 28 

DAA 

(T2) 

13 1.45 0.13 0.157 0.012   9.2 0.48 8.3 10.1 

18 3.85 0.38 0.248 0.025 15.5 0.42 14.7 16.3 

27 2.03 0.14 0.129 0.008 15.7 0.57 14.6 16.8 

34 3.83 0.29 0.189 0.014 20.3 0.51 19.3 21.3 

42 1.44 0.12 0.120 0.008 12.0 0.57 10.9 13.1 

49 1.90 0.17 0.233 0.019   8.2 0.38 7.4 8.9 

55 3.70 0.31 0.210 0.018 17.7 0.48 16.8 18.6 
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4.5.3 Longevity (p50) 

The control treatment provided a consistent pattern of increase in subsequent seed longevity 

(p50) during seed development and maturation from 13 to 42 DAA (Fig. 4.3). Maximum 

longevity at 42 DAA was 21.9d. Thereafter, longevity declined consistently in the control to 

only 15.7d at 55 DAA. The two drought treatments (irrigation ended at 14 or 28 DAA) 

presented an almost identical pattern of increase in subsequent seed longevity to each other and 

to the control from 13 to 34 DAA (Fig. 4.3, P>0.05, Appendix 4.13). At 34 DAA, the three 

irrigation treatments provided near identical values (P>0.05, Appendix 4.13) of 20.4 (control), 

20.1 (irrigation ended 14 DAA), and 20.3d (irrigation ended 28 DAA) for p50. In contrast to 

the further improvement in the control, longevity in the two drought treatments declined 

substantially immediately thereafter to values between 4.1 and 12.0 days at 42 and 49 DAA. 

Surprisingly, however, longevity in both drought treatments improved substantially and 

consistently between 49 and 55 DAA with all three treatments providing significant differences 

in longevity at 55 DAA and the control providing the lowest value (P<0.05, Appendix 4.13). 

Figure 4.3:  Longevity (p50 provided by parameters of seed viability equation fitted by probit 

analysis) of seeds of japonica rice cv. Gleva harvested serially during their development from 

plants grown in a photoperiod glass-house and stored hermetically at 40℃ with 15.0±0.5 

moisture content; vertical bars are ±s.e. where larger than symbols. Plants were irrigated 

throughout (●), or until 14 (■), or 28 DAA (▲). Each observation derived from results from 4 

blocks. The estimate of p50 is provided by the best fit curve for each treatment combination 

(Table 4.1).  
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During this experiment, the temperature in the glass house was set at 28/20 0C day/night 

(12h/12h). The minimum and maximum temperatures varied and were greater and lower an 

average than the set values (Appendix 4.15). 
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4.6 Discussion 

Drought treatments were imposed later in Experiment 3 than Experiment 1, towards the end of 

seed filling (T1) and late in maturation drying (T2) and seed harvests were continued well 

beyond maturity and normal harvest times (to 55 DAA). After seed filling ends, seed enter the 

ripening phase, where they gradually become hard and turn yellow. Maturation drying phase 

can represent as little as 19% or as much as 78% of total seed development time (LePrince et 

al., 2017). Cereal seed are usually at <15% moisture content when dried naturally and then 

harvested (Bewley, 1986). This was the case for the two drought treatments with rice here, 

whereas the continuous irrigation treatment provided a greater moisture content. The later value 

was within the range reported by Whitehouse et al. (2015) for paddy field harvested rice. 

At the end of this investigation, the hypotheses set regarding the effects of ending 

irrigation at the end of seed filling (14 DAA) or in late maturation drying (28 DAA) during 

seed development and maturation which were related with general hypotheses 1.7.1-1.7.3 can 

now be answered: - 

1. Ending irrigation early resulted in earlier and greater seed desiccation but did not 

affect the seed filling process and maximum seed dry weight, accelerated the 

development of ability to germinate of dried seed very slightly but no decline was 

later detected in any irrigation treatment despite harvest being extended to 55 DAA.  

2. Ending irrigation early did not accelerate the pattern of development in subsequent 

longevity air-dry seed storage longevity, compared with the control, but between 

34 and 42 DAA (the normal harvest date) the plant drought treatments resulted in a 

decline in seed longevity whilst the control continued to improve: and as a result, 

the control treatment harvested at 42 DAA provided the greatest seed longevity of 

all treatment combinations; with the two drought treatments providing poorer 

maximum quality than control. 

3. Seed deterioration did occur in both drought treatments when seed moisture content 

in planta was below 16%, but improvement in seed quality was also detected at 

<16% between 27 and 42 DAA (14 DAA treatment) or 34 and 42 DAA (28 DAA) 

and again later between 42 and 55 DAA (14 DAA treatment) or 49 and 55 DAA 

(28 DAA treatment); maintaining seed moisture content in planta at between 16-

20%, did not enable seed deterioration in planta to be avoided: the control was 

always above this range, but deteriorated after 42 DAA. 
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4.6.1 Drought effect on seed desiccation and seed filling 

The moisture content of seed decreased with the delay in the date of harvesting. The present 

study showed that seed moisture content was reduced to a minimum of 13.4 % and 15.3% in 

the drought stress treatments. Also seed desiccation occurred earlier and was greater when 

plants were subjected to drought. This finding is supported by, Sinniah et al. (1998) for 

Brassica and Siddique and Wright (2003) for pea. Seed desiccation and filling patterns showed 

that seed had moved from the development to the maturation phase from around 18 DAA and 

hence reduced seed metabolic activity. 

 The process of rice grain filling, the accumulation of reserve nutrients in the developing 

and maturing grain, is sensitive to environmental conditions affecting final yield quantitatively 

and qualitatively (Yang and Zhang, 2006). Dasgupta et al. (2015) reported that, drought stress 

imposed for indica rice eg cv. IR36 during seed filling had a more pronounced effect than in 

the flowering stage and affected grain filling. However, in my study drought beginning during 

late seed filling (14 DAA) had no impact on seed filling. 

 

4.6.2 Drought effect on seed dry weight 

Maximum seed dry weight (mass maturity) was obtained 4 days after drought began (14 DAA), 

only one day earlier than the 28 DAA treatment. This result implies that dry matter 

accumulation was largely completed before the stress began to be applied (14 DAA) and 

completed at about around 18 DAA (Fig. 4.1b). Seed filling occurred earlier than in the 

previous study probably due to higher day temperature in the photoperiod glass-house 

(Appendix 4.15).  Present results, showed that seed dry weight was not affected by both drought 

treatments imposed, control was 27.6mg meanwhile the other stresses were respectively 

26.9mg and 27.6mg. This study is supported by Sikuku et al. (2010), where NERICA 2 rice 

was not affected by water limitation as it is an early maturing variety. In addition, this 

circumstance might be due to deposition process of food storage reserves was completed before 

treatment been imposed. Ellis (2011) reported that non-impact on mean seed weight suggest 

no effect on yield however, seed quality more sensitive indicator than yield for climate change 

impacts on crops in real fields.  
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4.6.3 Drought effect on ability of air-dried seed to germinate normally  

Most seeds were already able to germinate normally before drought treatment were imposed 

(Fig.4.1C). The general temporal pattern of development in the ability of seeds to germinate 

during seed development and maturation was relatively as expected in the creals; rice (Ellis et 

al., 2011) and wheat (Yadav and Ellis, 2016). Onset of ability to germinate and of desiccation 

tolerance was apparent from the first harvest (13 DAA) early in the seed-filling phase (Fig. 

4.1C) at which time wheat seeds were only about 10% filled (Yadav and Ellis, 2016). Ability 

to germinate normally was achieved fully about 75% through the seed-filling phase and so well 

before mass maturity (Ellis and Pieta, 1992).  

4.6.4 Drought effect on subsequent longevity  

This study showed that, seed longevity was improved by drought stress during late seed 

filling and subsequent by during the maturation phase (Fig.4.3). Hence, longevity continued to 

improve after mass maturity. This supports the conclusions of Ellis and Pieta (1992) in wheat 

and most environment by Ellis et al. (1993) in which longevity continued improving in rice 

after maximum seed dry weight (mass maturity) was achieved and until harvest maturity. 

Drought stress reduced the period over which this improvement occurred, however, such that 

the control at 42 DAA (close to harvest maturity) provided the greatest longevity (Fig. 4.3). 

Surprisingly, after the drought treatments, longevity declined greatly (at 42 or 49 DAA) but 

then their longevity subsequently improved. The late improvement in longevity in both drought 

treatments is difficult to explain.  

In this study, seed survival in hermetic storage of all treatments generally conformed 

well to negative cumulative normal distribution (Fig.4.2). It well known that viability declines 

gradually during the early stages of seed storage, later in storage, there is a sharp decline, until 

the seed only produces a weak seedling that quickly succumbs to hostile environments for 

example.  

4.6.5 Seed deterioration in planta above and below 16% moisture content  

There was some evidence to support the suggestion that seeds did not deteriorate in planta until 

their moisture content had declined below 16%. For example, in the drought treatments 

longevity declined between 35 and 42 DAA when seed moisture content was about 15% whilst 

in the control longevity improved over this period when moisture content was 26.1% (Fig. 4.3). 

However, there were contradictory observations where seeds deteriorated above 16% moisture 
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content and improved below 16% moisture content here. Whitehouse et al. (2015) reported rice 

at >16.2% moisture content improves considerably in subsequent air-dried longevity when 

subjected briefly to 45℃. Hence the hypothesis of seed deterioration detected once moisture 

content fell below 16% are not accepted.  

Hypothesis 4.6 can be accepted: the control had the longest period of development and 

provided greater maximum seed longevity to the drought treatments. The stage of seed filling 

and maturity at harvest is the vital factor that influences seed longevity and seed establishment. 

Water deficit during grain filling effect grain affects quality of rice (Yang et al., 2003) and 

wheat (Saeedipour and Moradi, 2010).  

The hypothesis constructed that seed deterioration will be detected in planta in all 

treatments once seed moisture content declines below 16% can be accepted up to a point. Seed 

deterioration occurred in the two drought treatments after seed moisture content fell below 16% 

(Fig.4.1a), in terms of 35-42 or 35-49 DAA (Fig. 4.3) but not after only during at 42 and 49 

DAA respectively.  

However, in the 14 DAA drought treatment longevity improved between 27 and 34 

DAA despite moisture content below 16%, whilst improvement also occurred 49- 55 DAA. 

Meanwhile, in the 28 DAA drought treatment, longevity improved with the same period as 14 

DAA with moisture content at 15.3% (below 16%).  This study suggested that, particularly 

after normal harvest date (49 to 55 DAA), irrigation accelerated seed deterioration in contrast 

to results under drought stress. Delaying harvest increases the risks of seed deterioration in the 

field (Bewley, 1986). This statement is contradicted by the present study for drought stress but 

not the control treatment in a glasshouse environment. 

4.7 Conclusion 

Terminal drought during seed development and maturation accelerated seed desiccation, 

but the later drought treatments used here had little effect on seed filling or the development of 

ability to germinate after desiccation. The plant drought treatments did affect the development 

of subsequent seed longevity, however. Terminal drought treatments resulted in poorer 

maximum seed longevity, and also subsequent longevity declined in planta earlier in the 

control. Whilst delayed harvest resulted in a decline in longevity in the control, a surprising 

observation was a second prior of increase in the two drought treatments such as at 55 DAA 

all three treatments showed similar longevity.  
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CHAPTER 5 

Effect of elevated temperature and drought singly and combined during seed 

development on seed quality of indica rice cv. Aeron 1 and japonica cv. Gleva 

5.1 Introduction 

Indica rice is grown in the tropics and sub-tropics, and these regions provide 80 % of the 

world’s production (Ricepedia, 2018). Rice in these regions is susceptible to damage from 

periods of high temperature, particularly during anthesis (Jagadish et al., 2007, 2010b). The 

increase in temperature and drought; resulting from climate change (Korres et al., 2017) may 

adversely affect both the quantity and quality (seed germination and vigour) of seeds produced 

worldwide, and these two stresses commonly coincide. However, Krishnan et al. (2011) 

concluded that any effects of high temperature on seed quality development varied also with 

species and cultivar, as well as the level and duration of stress imposed.  

Although short episodes of high temperature do not greatly affect mean temperature 

during the whole grain-filling period, they can affect both grain yield and quality in wheat 

(Stone and Nicolas, 1994), although Sanhewe et al. (1996) showed in wheat, within certain 

limits, that warmer mean temperature during seed development in the U.K. improved 

subsequent seed longevity. In contrast, in Phaseolus vulgaris L. in warmer conditions 

increasing temperature resulted in poor subsequent seed quality (Sanhewe and Ellis, 1996). 

Tolerance and avoidance of high temperature during seed development are potentially useful 

traits for rice breeding programs for future climates (IRRI, 2017). 

The experiments reported in this chapter were planned from the results of the impact of 

drought (Experiment 1) and elevated temperature (Experiment 2) applied separately during 

seed development and maturation to the japonica rice cv. Gleva. In Experiment 2, only plants 

treated to high temperature (40/300C for 3 days) during early seed development (3 DBA (days 

before anthesis), during anthesis and early histodifferentiation) affected final moisture content 

and seed dry weight. This treatment also as provided seeds with lower seed longevity than 

those treated later during the maturation phase. Meanwhile in Experiment 1, terminal drought 

early in seed development accelerated all aspects of seed development and maturation, but also 

resulted in (earlier) seed deterioration later on. 
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In this experiment the effect of terminal drought and brief high temperature singly and 

in combination were investigated. Indica cultivars of rice are often more resilient to high 

temperature than the japonica rices (Ellis et al., 1993; Martinez-Eixarch & Ellis, 2015). Hence, 

two contrasting cultivars were used, indica and a japonica. As the cultivars differed in the 

timing of anthesis, two similar experiments were carried out, one with the indica and the other 

with the japonica rice, with similar hypotheses tested.  

5.2 Objectives 

This study investigated changes in seed quality, including seed viability and subsequent seed 

storage longevity, in the indica rice cv. Aeron 1 and japonica rice cv. Gleva in response to 

terminal drought and brief high temperature exposure, singly and combined, at different stages 

during seed development and maturation.  

 

5.3 Hypotheses 

The hypotheses for the investigations within each cultivar were as follows: 

5.3.1 Final seed dry weight, seed moisture content and seed viability (ability to 

germinate normally of air-dried seed) at harvest (42 DAA) is lowest by either a 

single period of high temperature (HT) at anthesis or during the seed filling 

phase, or terminal drought (TD) during the seed filling phase, or both these high 

temperature and drought stresses combined (HT, TD); 

5.3.2 Subsequent seed longevity in air-dry storage of seeds harvested at 42 DAA 

decline sooner by either a single period of high temperature (HT) at anthesis or 

during the seed filling phase, or terminal drought (TD) during the seed filling 

phase, or both these high temperature and drought stresses combined (HT, TD). 

Hypothesis 5.3.1 relates to 1.7.1 general hypothesis, whilst 5.3.2. relates to 1.7.2. The whole 

investigation relates to general hypothesis 1.7.4, where both stresses (high temperature and 

drought) are applied singly and together.  

From previous investigations my expectations were that cv. Gleva was more likely to 

be affected by these treatments than cv. Aeron 1, that the earlier stress was imposed the greater 

the effect, and that an interaction between the effects of elevated temperature and drought was 

likely with seed quality and size reduced further. 
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5.4 Materials and Methods 

This experiment was started on 17th September 2016 and carried out in two controlled-

environment growth cabs at the Crop and Environment Laboratory (CEL), Whiteknight 

Campus, University of Reading (51º 26' N latitude, 0º 57' W longitude). 

5.4.1 Cultivars and seed selection 

Two contrasting rice cultivars were selected: indica cv. Aeron 1 and japonica cv. Gleva. 

5.4.1.1 cv. Aeron 1  

Aeron 1 is an aerobic, high-yielding indica rice with early harvest maturity (Zainudin et al., 

2014), cultivated in Malaysia. Seeds were provided by Malaysia Agriculture Research 

Development Institute, Pulau pinang, Malaysia in January 2016. They were then stored at UoR 

in a sealed laminated aluminum foil bag at 2-4 ℃. The seed was tested for viability similar to 

Experiment 2. The sample showed 85% germination, after five days in test at 34/11 0C (16h/8h) 

to break any dormancy (Ellis et al., 1983). 

5.4.1.2 cv. Gleva  

Seeds were multiplied from additional plants grown in the control environment of Experiment 

2 for this investigation and stored dry in a cold room (2-4 ºC) in laminated aluminium foil bags. 

Testing at 34/11 0C (16h/8h) before sowing provided 100% germination. 

5.4.2 Planting Medium 

Growing medium was prepared in exactly the same way as in Experiment 3. 
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5.4.3 Plant Husbandry 

For each cultivar, seven seeds were sown per pot on 17th September 2016 and placed in two 

modified Saxil growth cabs (Cabs 1 and 2) with internal dimensions 1.4 x 1.4 x 1.5 m. Each 

cab contained 24 pots of each variety. 

Both cabs were maintained at 28/20 0C day/night (11h/13h thermoperiod synchronized 

with 11h photoperiod) at 75% (±10%) relative humidity. As will be discussed the actual relative 

humidity in both cabs declined greatly late in the investigation. Cool white fluorescent tubes 

provided about 710-740 µmol m-2 s-1 photosynthetic photon flux density at pot level. 

Manual, daily watering began 3 days after sowing (DAS). After 10 DAS (27th 

September 2016), cv. Gleva achieved 100% seedling emergence in both cabs, whereas, cv. 

Aeron 1 achieved 90% and 82%. 

At 14 DAS, weaker seedlings were thinned to leave 4 seedlings in each pot (Plate 5.1). 

Pots were irrigated (water without nutrient adjusted to pH 5.0-5.5) seven times per day for three 

minutes using an automatic drip system after three leaves had emerged at 16 DAS.  

 

Plate 5.1: Seedlings of cv. Aeron 1 (A)  and cv. Gleva (B) in a single controlled 

environment chamber after thinning at 26 DAS.  

 

A B 
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5.4.4 Drought and temperature treatments 

Six treatments were applied: treatment 1 (T1) irrigated throughout the experiment (designated 

as control); treatment 2 (T2), plants with high temperature (HT) at 0-3 DAA; treatment 3 (T3) 

irrigation stopped at 14 DAA; treatment 4 (T4) combination of HT at 0-3 DAA and drought at 

14 DAA; treatment 5 (T5), HT at 14-17 DAA with drought at 14 DAA; treatment 6 (T6) HT 

at 14 DAA. The 3-day high temperature treatment was 40/30℃ day/night (11h/13h 

thermoperiod synchronized with 11h photoperiod) with relative humidity controlled at 70%. 

Cabinets 1 (cab 1) and 2 (cab 2) represented two different blocks. Meanwhile another 

one cab was used to expose plants to HT treatments 40/30℃   with an 11h/day photoperiod 

(11h/13h thermoperiod) (Plate 5.2). Plants were returned back to the original cab at the end of 

the 3-day HT treatment and remained there until maturity. Each variety comprised eight pots 

per treatment combination (four pots in cab 1 and four pots in cab 2). Treatments within a 

variety were completely randomized in terms of their location within a cab.  

In both cultivars, irrigation ended at 35 DAA (7 days before final harvest, at 42 DAA) 

for those treatments not subjected to terminal drought at 14 DAA (T1, T2 and T6). 

 
 

Plate 5.2: Plants (cv Gleva) exposed to HT (40/30℃) for 3-days at 0-3 DAA 
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5.4.5 Anthesis 

The date of anthesis varied amongst cultivars. It also varied amongst cabs for cv. Gleva but not 

cv. Aeron 1. Cultivar Aeron 1 achieved 50% anthesis on 16th December 2016 (90 DAS). 

Cultivar Gleva achieved 50% anthesis in cab 1 on 10th January 2017 (114 DAS) but 8-days 

later (18th January 2017) in cab 2. It found that cv. Gleva was much longer period to anthesis 

than Aeron 1. Also, cv. Gleva in cab 2 showed longer to anthesis than in cab 1 (Appendix 5.9). 

To limit the variation in panicle development amongst plants at treatment times in the 

experiment, panicles of cv. Aeron 1 that anthesed/exserted before 88 DAS and also those that 

anthesed after 95 DAS were cut and removed from the investigation (Appendix 5.8). Similarly, 

in cv. Gleva (cab 1 and 2) only panicles that anthesed 110-118 DAS (cab 1) or 118-126 DAS 

(cab 2) were included (Appendix 5.9). Thus, due to the different timing of anthesis between 

cabs, plants of cv. Gleva from cab 1 and 2 were treated at 40/30 ℃ at different times but same 

time as DAA. 

5.4.6 Harvesting 

Only one harvest was taken at 42 DAA. For cv. Aeron 1, this was 26th January 2017 for both 

cabs. For cv. Gleva in cab 1, this was 21st February 2017 and in cab 2 1st March 2017. Seeds 

were threshed gently by hand and empty seeds removed. 

5.4.7 Data Collection 

Drought and HT treatment, singly or in combination, in each of Aeron 1 and Gleva affected 

seed moisture content, final seed dry weight, and the ability to germinate normally at maturity 

(Figs. 5.1 & 5.2). All analyses were conducted separately as cultivar (Aeron 1 and Gleva) and 

by cab (Cabs 1 & 2) were treated as four separate experiments. For all three variables (final 

moisture content, seed dry weight, ability to germinate) in each cab and for each cultivar, 

significant (P< 0.05) effects of the treatments applied were detected (Appendices 5.0-5.3). 

Germination data was arcsine transformed before statistical analysis (Appendices 5.0C-5.3C). 

Each independent variable is discussed in turn below. Comparisons amongst treatments were 

made using the Tukey multiple range test. 
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5.5 Results  

5.5.1 Seed moisture content 

Final seed moisture content for Aeron 1 in Cab 1 was between 9.9-10.2% (Fig. 5.1a). 

Meanwhile, cab 2 was between 10.6-11.2% (Fig. 5.1d). This is a very narrow range. Despite 

this, significant differences were apparent: in cab 1, the control provided the driest seeds and 

HT at 0-3 DAA (with and without drought at 14 days) the greatest values; in cab 2, HT at 0-3 

DAA (with and without drought at 14 days) and HT at 14-17 DAA provided the greatest values. 

 Moisture contents at harvest were lower for Gleva and also varied more (6.0-9.4% in 

cab 1; 7.8-9.2% in cab 2) amongst treatments (Fig.5.2a, d). The control was comparatively low 

in both cabs, but in Cab 1 (only) the result for HT 14-17 DAA with drought at 14 DAA was 

particularly low. 

5.5.2 Seed dry weight 

 In both cabs and both cultivars, the control treatment provided the greatest, or equal greatest, 

seed dry weight (Figs. 5.1b, e; 5.2b, e). In cab 1, combined treatment of HT 0-3 DAA with 

drought at 14 DAA provided the lowest seed dry weight in each cultivar (Fig. 5.1b; 5.2b). In 

Aeron 1, all other stress treatments were similar to the control whereas in cv. Gleva all stress 

treatments were slightly less than control. More variation was apparent amongst treatments in 

Cab 2: all stress treatments provided reduced seed weight, with HT 14-17 DAA combined with 

drought at 14 DAA the lowest in both cultivars. 

 

5.5.3 Ability to germinate 

 The control provided higher ability to germinate than stress treatments. In cv. Aeron 1 in cab 

1 most treatments gave close to 100% germination, the exception being HT14-17 DAA 

combined with drought at 14 DAA where it was reduced (Fig. 5.1c). The remaining results 

were more variable, but in all three cases ability to germinate was lowest for HT 14-17 DAA 

combined with drought at 14 DAA (Fig 5.1f, 5.2c & f). Values for cv. Gleva in this regime 

were considerably lower than those for cv. Aeron 1 and results for cv. Gleva were also more 

variable across treatments than cv. Aeron 1. 
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Figure 5.1: Moisture content (a & d), dry weight (b & e), and ability to germinate normally in 

standard tests at 34/11° C (c & f), for seeds of indica rice cv. Aeron 1 harvested at maturity (42 

DAA) produced in a growth cabinet (Cabs 1 & 2) at 28/20 0C (12h/12h, 12 h d-1 photoperiod) 

with irrigation throughout (T1); plants with high temperature (HT) at 0-3 DAA (T2); irrigation 

stopped at 14 DAA (T3); combination of HT at 0-3 DAA and drought at 14 DAA (T4); HT at 

14-17 DAA with drought at 14 DAA  (T5); or HT at 14 DAA (T6). Different letters indicate 

significance difference at P< 0.05 amongst treatments (Tukey’s multiple range test). Mean 

values within treatments in cab 1 with the different capital letter; and in cab 2 with the different 

small letter indicate significance difference at P< 0.05 amongst treatments using the Tukey’s 

multiple range test. 
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Figure 5.2: Moisture content (a & d), dry weight (b & e), and ability to germinate normally in 

standard tests at 34/11° C (c & f), for seeds of japonica rice cv. Gleva harvested at maturity (42 

DAA) produced in a growth cabinet (Cabs 1 & 2) at 28/20 0C (12h/12h, 12 h d-1 photoperiod) 

with irrigation throughout (T1); plants with high temperature (HT) at 0-3 DAA (T2); irrigation 

stopped at 14 DAA (T3); combination of HT at 0-3 DAA and drought at 14 DAA (T4); HT at 

14-17 DAA with drought at 14 DAA  (T5); or HT at 14 DAA (T6). Mean values within 

treatments in cab 1 with the different capital letter; and in cab 2 with the different small letter 

indicate significance difference at P< 0.05 amongst treatments using the Tukey’s multiple range 

test. 
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5.5.4 Seed storage survival  

The 24 seed survival curves were described well by negative cumulative normal distributions 

(Fig. 5.3, 5.4). Comparison of these curves found no significant difference in slope or in slope 

and intercept combined for cv. Aeron 1 in cab 1 (Appendix 5.4): that is all six curves could be 

described by a single line. Within cv. Aeron 1 in cab 2 (Appendix 5.5) and in cv. Gleva in cab 

1 (Appendix 5.6) and 6 (Appendix 5.7), the curves did differ significantly in slope amongst 

treatments. Hence, survival curves fitted separately to each treatment combination are shown 

in Figures 5.3 and 5.4. These are quantified in Table 5.1.  

Longevity (p50) varied greatly from -2.5 to 26.5 days (Table 5.1). It was greatest in the 

control in most cases (cv. Aeron 1, in cab 1; cv. Gleva in both cabs) but not in cv. Aeron 1, cab 

2. With the exception of cv. Aeron 1 cab 1 where treatments did not differ, the combined 

treatment of HT 14-17 DAA with drought at 14 DAA provided the shortest longevity, 

especially so in cv. Gleva in both cabs. The longevity of seeds of cv. Gleva (Fig.5.4) was more 

sensitive to the stress treatments than Aeron 1, with all five stress treatments reducing longevity 

in cv. Gleva in both cabs. Each of HT at 0-3 DAA or 14-17 DAA, or drought at 14 DAA on 

their own in cv. Gleva were roughly equally damaging to subsequent longevity, but not as 

damaging as HT at 14-17 DAA combined with drought at 14 DAA. 

 Estimates of Ki ranged from -0.32 to + 5.58 (Table 5.1). Those for σ were slightly less 

variable, ranging from 2.54 days (1/σ = 0.394) to 8.06 days (1/σ= 0.12). 
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Figure 5.3. Seed survival curves (viability, estimated by ability to germinate normally) of seeds of indica rice cv. Aeron 1 produced in a growth cabinet, Cab 1 (A) 

and Cab 2 (B) at 28/20 0C (12h/12h, 12 h d-1 photoperiod) with irrigation throughout (T1); plants with high temperature (HT) at 0-3 DAA (T2); irrigation stopped 

at 14 DAA (T3); combination of HT at 0-3 DAA and drought at 14 DAA (T4); HT at 14-17 DAA with drought at 14 DAA  (T5); or HT at 14 DAA (T6). Seeds were 

stored hermetically at 40℃ with the moisture contents shown in Table 5.1. Best fit survival curves for each treatment combination fitted by probit analysis are 

shown. These are quantified in Table 5.1. Estimated seed longevity (p50) is also shown.  
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Figure 5.4. Seed survival curves (viability, estimated by ability to germinate normally) of seeds of japonica rice cv. Gleva produced in a growth 

cab 1, Cab 1 (A) and Cab 2 (B) at  28/20 0C (12h/12h, 12 h d-1 photoperiod) with irrigation throughout (T1); plants with high temperature (HT) at 

0-3 DAA (T2); irrigation stopped at 14 DAA (T3); combination of HT at 0-3 DAA and drought at 14 DAA (T4); HT at 14-17 DAA with drought 

at 14 DAA  (T5); or HT at 14 DAA (T6). Seeds were stored hermetically at 40℃ with 15.0±0.5 m.c. Best fit survival curves for each treatment 

combination fitted by probit analysis are shown. These are quantified in Table 5.1. Estimated seed longevity (p50) is also shown.  
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Table 5.1. Longevity (parameters of seed viability equation fitted by probit analysis) of indica 

(c.v. Aeron 1) and japonica (c.v. Gleva) rice harvest at maturity (42 DAA) respectively in 

growth cab 1 and 2. Plants were irrigated with irrigation throughout (T1), plants with high 

temperature (HT) at 0-3 DAA (T2), irrigation stopped at 14 DAA (T3); combination of HT at 

0-3 DAA and drought at 14 DAA (T4); HT at 14-17 DAA with drought at 14 DAA (T5) or HT 

at 14 DAA (T6) and stored hermetically at 40℃ with the moisture contents shown in Table 5.1. 

The 95% confidence intervals are shown for p50. N. B comparisons are valid within individual 

cabs only. Negative estimates of p50 are shown where initial viability was less than 50% and 

the negative estimates represent extrapolation back to 50% viability. 

 

 

 

Cultivar 

(Cab) 

Treatment 

(Moisture 

content %) 

Ki Slope(1/σ) p50 (days) 

estimate s.e estimate s.e estimate s.e. 

lower 

95% 

upper 

95% 

Aeron 1 

(Cab 1) 

T1 (14.6) 5.52 0.56 0.344 0.035 16.1 0.33 15.4 16.7 

T2 (15.0) 5.58 0.55 0.394 0.038 14.2 0.30 13.6 14.8 

T3 (15.2) 4.68 0.46 0.323 0.031 14.5 0.33 13.8 15.1 

T4 (15.3) 3.32 0.27 0.211 0.016 15.7 0.41 14.9 16.5 

T5 (15.3) 2.83 0.24 0.217 0.017 13.1 0.40 12.3 13.8 

T6 (15.3) 5.25 0.54 0.388 0.040 13.5 0.30 12.9 14.1 

Aeron 1 

(Cab 2) 

 

T1 (14.8) 7.30 0.68 0.502 0.047 14.5 0.28 14.0 15.1 

T2 (14.9) 4.72 0.45 0.298 0.028 15.9 0.35 15.2 16.5 

T3 (15.0) 2.83 0.24 0.224 0.018 12.6 0.40 11.9 13.4 

T4 (15.5) 2.85 0.24 0.220 0.018 12.9 0.40 12.2 13.7 

T5 (14.8) 1.91 0.16 0.169 0.012 11.4 0.46 10.5 12.2 

T6 (14.8) 3.98 0.27 0.150 0.010 26.5 0.47 25.6 27.5 

Gleva 

(Cab 1) 

 

T1 (15.1) 4.21 0.39 0.300 0.027 14.0 0.39 13.3 14.8 

T2 (14.7) 2.41 0.23 0.246 0.022 9.8 0.40 9.1 10.6 

T3 (15.1) 1.48 0.18 0.324 0.031 4.6 0.33 3.9 5.2 

T4 (15.2) 1.43 0.17 0.292 0.027 4.9 0.40 4.2 5.6 

T5 (15.0) -0.32 0.12 0.124 0.018 -2.5 1.32 -5.7 -0.6 

T6 (15.5) 2.70 0.30 0.376 0.039 7.2 0.31 6.6 7.8 

Gleva 

(Cab 2) 

 

T1 (15.0) 2.41 0.18 0.182 0.013 13.3 0.46 12.4 14.2 

T2 (14.6) 2.19 0.24 0.341 0.034 6.4 0.32 5.8 7.0 

T3 (14.9) 1.27 0.13 0.152 0.011 8.3 0.51 7.4 9.3 

T4 (15.1) 1.89 0.17 0.194 0.015 9.8 0.44 8.9 10.6 

T5 (14.5) 0.12 0.11 0.137 0.016 0.9 0.80 -0.9 2.2 

T6 (14.8) 2.03 0.22 0.312 0.029 6.5 0.34 5.8 7.1 
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5.6 Discussion 

Drought and high temperature often occur simultaneously, but their effects on crops are usually 

investigated individually. This was also the case in Experiment 1-3. In rainfed rice ecosystems, 

plants are often subjected to a combination of abiotic stresses. Simultaneous occurrence of high 

temperature and drought underlines the potential severity of stress combinations, as well as its 

physiological, molecular and biochemical aspects (Mittler, 2006) which is expected with raised 

global temperatures, changes in the distribution of precipitation and intensify drought in arid 

and semiarid areas (Wrigley and Raper, 2001). In Malaysia for example, paddy fields will be 

exposed to water scarcity and high temperature as a result of climate change (Zainal et al., 

2014), threatening 85% of rice cultivation in this particular region (Radin-Firdaus et al., 2013).   

Cereal seed are usually at <15% moisture content when dried naturally (Bewley, 1986). 

Moisture content in rice at harvest maturity in paddy fields, influence on yield and cooking 

quality of rice were studied by many authors (Firouzi and Alizadeh, 2011; Ilieva et al., 2014), 

mainly reporting that seed quality eg. rice milling yield was highest at average highest moisture 

content at harvest (19.6% moisture content).  From the present study, both cultivars showed 

relatively low in moisture content when harvested at maturity (42 DAA), with Aeron 1 at 

between 9.9-11.2% (Fig. 5.1a & c), meanwhile Gleva was lower at 6.0-9.4% (Fig.5.2a & c).  

When all irrigation to the cabs ended (in the later flowering cv. Gleva at 152 DAS in 

cab 1 and at 160 DAS in cab 2), relative humidity in each cab declined greatly (Appendix 5.10). 

The difference in RH between cabs suggest declining RH most probably because irrigation was 

stopped one week before harvest for control treatment. The seed moisture contents at harvest, 

cab relative humidity at 42 DAA, and expected eRH from the isotherm of Whitehouse et al. 

(2015) are compared for each cultivar in each cab in Table 5.2. The lower moisture content of 

cv. Gleva at harvest compared with cv.Aeron 1 is explained by this reduction in cab relative 

humidity. However, in both cultivars seed moisture contents were lower at 42 DAA than would 

be expected from cab relative humidity and seed moisture content isotherm (Table 5.2). 

 

 

 

 

 

 

 



 

99 
 

Table 5.2. Seed moisture content (%) range at 42 DAA and relative humidity (%) in cabs 

compared with expected eRH from isotherm of Whitehouse et al. (2015). 

 

Cultivar Cab DAA DAS Seed m.c. 

range (%) 

Mean 

cab RH 

(%) 

Expected eRH (%) 

Whitehouse et al. 

(2015) at m.c. range. 

Aeron 1 5 42 132 9.9-10.8 72.9 ⁓50% 

Aeron 1 6 42 132 10.5-11.2 72.1 ⁓50% 

Gleva 5 42 158 6.0-9.4 47.2 ⁓20-40% 

Gleva 6 42 166 7.8-9.3 31.0 ⁓20-40% 

 

 

IRRI (2007) reported that rice seed harvested from paddy fields at optimum grain maturity 

have an average moisture content about 20−25 %. Higher moisture content results in more 

losses from poor grain quality while lower moisture content results in more losses from 

shattering (Ilieva et al., 2014). Since the seed in this study had already dried naturally in planta 

to below 14% moisture content, further desiccation was not required for storage. ISTA (2009) 

reported that rice seeds, which can withstand drying down to low m.c. of around 5% to 10% 

and successfully stored at low freezing temperature for long periods. In addition, in terms of 

seed moisture content at harvest maturity, this study suggests that japonica rice (Gleva) was 

less well adapted to drought and high temperature stresses than indica rice (Aeron 1).   

Rice in the reproductive stage is more sensitive to high temperature (Prasad et al., 2006; 

Martínez-Eixarch and Ellis, 2015) and water stress (Sikuku et al., 2010; Sabetfar et al., 2013) 

than in the vegetative stage. Water deficit during the reproductive stage reduces pollen viability 

(Rang et al., 2011) and grain yield (Kato et al., 2004). Similarly, this study indicates that high 

temperature at 14-17 DAA, particularly when combined with drought (Fig. 5.2C & F) caused 

large reductions in grain weight of japonica rice (Gleva). Similar results have been reported 

studied with other cereal crops by Shah and Paulsen (2003) in wheat; and Savin and Nicolas 

(1996) in barley. Futhermore, the present study consistently showed the heaviest rice seeds 

were provided by irrigation throughout (Fig. 5.1C & F; 5.2C & F) compared to those plants 

subjected to stress. This is supported by Zakaria et al. (2002) in their studies using japonica, 

indica and javanica rice. Also, Hurkman et al. (2003) reported that high temperature (37/17 

°C) from anthesis to maturity caused a significant reduction in the starch accumulation period 

in developing wheat grains compared with plants grown under control (24/17 °C) conditions. 
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Cultivar Gleva was more damaged by drought and high temperature stress combined, 

with only 20% (cab 1) and 52% (cab 2) normal germination (Fig. 5.2B &E) with seed moisture 

content at harvest of 6.0% and 7.8% (Fig.5.2A & C) respectively. This low viability of japonica 

rice after mother plant stress is supported by Martínez-Eixarch & Ellis (2015). The reported 

that the viability of Gleva seeds was reduced by extreme-temperature (38/34℃) treatments 

applied in the 7 or 14 d immediately after anthesis. Also, for other cereals, for example wheat 

(cv. Marzak) low was germination detected if exposed to heat stress (36/29 ℃) during seed 

development (Grass and Burris, 1995). 

The studies of Chang (1991) and Ellis et al. (1993) revealed that japonica rice cultivars 

often show poorer seed longevity than indica rice cultivars. Similarly, in the present study, the 

maximum potential longevity of japonica cultivar (Gleva) was less than indica (Aeron 1) 

(Table 5.1). The combined treatment of HT 14-17 DAA with drought at 14 DAA provided the 

shortest longevity, especially so in cv. Gleva. Each of HT at 0-3 DAA or 14-17 DAA, or 

drought at 14 DAA on their own in cv. Gleva were roughly equally damaging to subsequent 

longevity, but not as damaging as HT at 14-17 DAA combined with drought at 14 DAA. 

Longevity of a japonica rice (cv. Taipei 306) at 32/24°C reached a plateau from mass maturity 

onwards during the maturation drying phase, whereas longevity continued to improve over this 

period at 28/20°C and in other (indica) cultivars in both temperature regimes resulting in better 

longevity at harvest maturity (Ellis et al.,1993). In addition, the current study indicates that the 

treatment of japonica (cv. Gleva) plants by high temperatures at 0-3 DAA or 14-17 DAA 

damages the storage potential of the mature seed (Fig.5.4A & B).  

The hypotheses in this Chapter 5 (5.1-5.2), associated with general hypotheses (1.7-

1.7.2 and 1.7.4), were accepted. The results lead to the following conclusions. Seed at harvest 

maturity, were lighter after either a single period of high temperature (HT) at anthesis or during 

the seed filling phase, or terminal drought (TD) during the seed filling phase, or both these high 

temperature and drought stresses combined (HT, TD); and yet lighter with combined treatment 

(HT at 14-17 & drought at 14 DAA). Seed moisture content at harvest (42 DAA) was not 

greatly affected by treatment, except in cv. Gleva cabs where the combination of HT at 14-17 

DAA with drought at 14 DAA provided a very much lower value. Seed viability (ability to 

germinate normally of air-dried seed) at harvest (42 DAA) was lower after either a single period 

of high temperature (HT) at anthesis or during the seed filling phase, or terminal drought (TD) 

during the seed filling phase, or both these high temperature and drought stresses combined 

(HT, TD), and yet more so with at combined treatment (HT at 14-17 & drought at 14 DAA). 

Subsequent seed longevity in air-dry storage of seeds, harvested 42 DAA was reduced by either 
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a single period of high temperature (HT) at anthesis or during the seed filling phase, or terminal 

drought (TD) during the seed filling phase, or both these high temperature and drought stresses 

combined (HT, TD), and more damaging by combined treatment (HT at 14-17 & drought at 14 

DAA). 

 

5.7 Conclusion 

In conclusion, this study suggests that the quality of seed lots of indica cultivars (e.g. Aeron 1) 

produced in Malaysia will be comparatively less affected than japonica cultivars (e.g.Gleva) 

under combined heat and drought stresses. Furthermore, seed quality of either indica Aeron 1 

and japonica Gleva rice is reduced considerably more by the combined stresses than by either 

stress alone. Combination of both stresses had a significantly greater detrimental effect on rice 

seed quality particularly on japonica cv. Gleva compared with each of the different stresses 

applied separately. Greater tolerance to heat and drought stress are priority strategies for rice 

seed quality, to maintain future yield by adapting to climate change. Hence, overcoming the 

effects of high temperature and water stress on rice production is essential for food security in 

the future.  
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CHAPTER 6 

 

GENERAL DISCUSSION 

6.1 General summary 

The purpose of the study was to investigate whether water limitation and/or brief high 

temperature during seed development and maturation could affect seed quality especially 

subsequent longevity, in rice cv. Gleva and/ or cv. Aeron 1. The present findings clearly suggest 

that both environmental stresses considerably affected seed quality development in rice. Seed 

quality was more sensitive to water limitation during early grain filling and more sensitive to 

brief high temperature at histodifferentiation. However, seed seems more tolerant to the 

imposition of these environmental stresses towards the end of seed filling and during the 

maturation drying phase. Seed longevity improvement was more damaged by combination of 

both stresses during seed development, whereas indica rice cv. Aeron 1 was more resilient to 

environmental stress than japonica rice cv. Gleva.  

6.2 Hypotheses answer 

The general hypotheses set in Chapter 1 (1.7.1-1.7.4) are answered below. 

6.2.1 Ending irrigation early and/or brief high temperature in cv. Gleva during seed 

development and maturation reduced the duration of the seed filling phase, final seed dry 

weight, seed moisture content and the ability of seed to germinate normally. This hypothesis 

was accepted, but only in terms of the effect of ending irrigation early during early seed filling 

or well before end of seed filling; not during late seed filling and maturation drying; and 

similarly, for brief HT treatments only during the period of anthesis and histodifferentiation, 

less so for later treatments.   

6.2.2 Ending irrigation early and/or brief high temperature in cv. Gleva during seed 

development and maturation reduced subsequent seed longevity improvement in air-dry 

storage. This hypothesis was accepted by seed produced from water limitation and considerably 

accepted by imposition of HT around anthesis and soon after; there was some evidence of 

damage in the period of 3-6 until 18-21 DAA.  

6.2.3 Ending irrigation early and/or brief high temperature in cv. Gleva during seed 

development and maturation reduced maximum seed longevity. This hypothesis was partially 

accepted; only ending irrigation early during early and towards the end of seed filling) reduced 
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maximum longevity, with treatment from 7 DAA worse than that from 14 DAA and with no 

effect towards the end of seed filling and during maturation drying (14 and 28 DAA); maximum 

value of longevity was lowest when HT was imposed at anthesis and histodifferentiation (-3-

0, 0-3 DAA) compared to control.  

6.2.4 Combining ending irrigation early with brief high temperature in cv. Gleva and cv. 

Aeron 1 during seed development and maturation reduced seed quality compared with each 

single stress. This hypothesis was accepted for simultaneous water limitation at 14 DAA 

combined with brief HT at 14-17 DAA. The damage was more severe in the japonica cv. Gleva 

than in indica  cv. Aeron 1.  

Generally, the topics 6.2.1 - 6.2.3 were answered in all experimental chapters: Chapters 2, 4, 5 

in relation to drought, and Chapters 3 and 5 in relation to high temperature (Chapter 2-5), as 

well as hypothesis 6.2.3 (except Chapter 5). Paragraph 6.2.4 was covered in Chapter 5. 

 

6.3 Effect of water limitation on seed quality development  

In this study, when ending irrigation during early grain filling (7 DAA) or well before the end 

of the seed filling phase (14 DAA) rice plants were found to senescence earlier and with a 

shorter duration of seed filling, with the 7 DAA treatment senescence much earlier than 14 

DAA. Ending irrigation during late seed filling or maturation phase had much less effect. This 

is shown by the seed desiccation and final seed dry weight results for water stress during seed 

development (Figs. 2.1 & 4.1).  

Senescence developed earlier in the grain filling phase when irrigation ended at the end 

of histodifferentiation phase (7 DAA) followed by irrigation ended well before end of seed 

filling phase (14 DAA). These results are consistent with reports that drought during the grain-

filling process induces early senescence and shortens the grain-filling period (Plaut et al., 

2004). In the present study, the grain filling period for the control was 40 days, with maximum 

seed dry weight gained 28.0 mg, meanwhile irrigation ending early for 7 or 14 DAA ended 

filling at 11 or 22 days with 12.4 mg and 16.0 mg, respectively. There was evidence that seed 

was far less filled after subjected to water limitation during grain filling process. From this 

data, grain filling rate was greater (1.13 mg d-1) at irrigation ending early at 7 DAA compared 

to the control with only 0.73 mg d-1. This was logical to assume that when drought occurred 

there was more movement of assimilates from straw to grain which agrees with Saini et al. 

(2000) who reported that drought during seed filling in rice may increase remobilization of 

assimilates from straw to grains. Early senescence is due to accelerated loss of leaf chlorophyll 
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and rapid development as a result from accelerating remobilization  of soluble sugars in the 

stem, with both of these having a higher priority than sugar remobilization efficiency as part 

of the strategy of plants to mitigate stress (Saeedipour and Moradi, 2011).  

Dry matter accumulation and ability to germinate were not affected by ending irrigation 

close to or after seed filling ended (Fig. 4.1b, c). During the period between 14 DAA and 28 

DAA, seed reached maximum dry weight. This can be indicated by maximum germination 

capacity almost at 100% by the time drought begin to impose (Fig.4.1b). This finding of the 

current study is consistent with those of Samarah and Alqudah (2011) in barley, Vieira et al. 

(1991) in soya bean and Nichols et al. (1978) in peas, who conclude that late-drought stress 

during seed filling in a greenhouse (potted plants) had no effect on standard germination but 

reduced the germination after the accelerated ageing test. In contrast, these results are 

disagreement with Smiciklas et al. (1989) for soya bean and Fougereux et al. (1997) for peas 

who reported that water stress during seed filling period induced a reduction in seed quality 

assessed by germination and conductivity results.  

However, what is surprising is that the seed dry weight in the control continued to 

increase throughout the seed development study period (Fig. 2.1a) with seed moisture content 

about 30%, which is relatively high for mature seed. Continuous irrigation until the end of 

harvest (40 DAA) might be the reason of long duration of seed filling. Continue irrigation until 

harvest is not a normal practice in field conditions: in flooded rice puddle cultivation 

commonly, water supply will stop about 7-10 days before harvest (Bouman et al., 2007). 

In both water limitation studies (Experiment 1 and 3), subsequent seed longevity 

improvement was advanced by ending irrigation early throughout seed development and 

maturation phase (Fig. 2.4 & 4.3). Seed longevity improvement was detected earlier if 

subjected to water limitation during early (7 DAA) and well before end seed filling phase (14 

DAA) (Fig.2.4) compared with the control (irrigation throughout). The earlier improvement 

occurred was matched with the earlier seed desiccation (Fig.2.1a), which consistent to the 

conclusion Sinniah et al. (1998) with rapid-cycle brasicca. However, this did not happen when 

irrigation ended during the late seed filling phase (14 DAA) or maturation drying (28 DAA) 

(Fig. 4.3).  

In Table 2.1, maximum potential seed longevity was reduced by early water limitation 

during early and well before end of seed filling (7 and 14 DAA). Control was greatest (23.6 d, 

Ki = 3.5) followed by ended water at 14 DAA (18.4 d, Ki=2.6), and the least was at 7 DAA 

(9.5d, Ki=1.1). This finding may due to the shorter duration of improvement in seed quality 
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and the later decline in longevity occurring sooner because seeds desiccate and reached lower 

moisture contents than in the control (refer Fig. 2.1 for moisture content). In contrast, maximum 

potential longevity showed water ended during late and maturation drying had no significant 

effect (14 and 28 DAA) (Table 4.1). Hence the present study indicates that seed produced by 

water limitation before mass maturity may have poorer subsequent seed longevity. 

From the present study, all drought treatments (Exp. 1 and Exp. 3) showed that 

maximum longevity was achieved some time after mass maturity. For example ending 

irrigation early at 14 or 28 DAA, respectively achieved maximum potential longevity (28.7 d 

or 27.6 d) at 16 days (34 DAA) after mass maturity (18 DAA). This finding was consistent 

with Ellis et al. (1993) reported that maximum potential longevity in rice was not achieved 

until 12-19 d after mass maturity. Also, current results support the conclusions of Ellis and 

Pieta-Filho (1992) and Yadav and Ellis (2016) in wheat which longevity increased 

progressively reaching maximum values well after mass maturity. However, those findings 

contradicted the general hypothesis by Harrington (1972) who concluded that seed longevity 

did not improve after mass maturity.  

In relation to seed longevity and seed moisture content during development, the results 

in this study show that longevity in water limited conditions was reduced between 35 and 42 

DAA when seed moisture content was about 15%. Meanwhile longevity with irrigation 

throughout (control) improved during this period at a moisture content of 26.1% (Fig.4.3). The 

finding of the current study are consistent with those of  Whitehouse et al. (2015) who found 

that rice seed longevity no longer benefitted from heated-air drying treatments when seed 

moisture content at harvest was below than 16%.  

6.4 Effect of brief HT on seed quality 

High temperature during histodifferentiation (-3-0 DAA) and anthesis (3-0 DAA) was more 

detrimental to seed quality than later HT treatment of (21-24 to 24-27 DAA) in cv. Gleva. This 

can be seen in figure 3.1-3.4. This finding is in agreement with Martinez-Eixarch and Ellis 

(2015) who revealed that rice seed quality development most sensitive to high temperature 

before the end of seed-filling phase and possibly as early as the histodifferentiation phase soon 

after pollination. Typically, in rice growing regions, days at 33℃ and above are considered 

critical for rice production (Prasad et al., 2006; Jagadish et al., 2007, 2008). There is also much 

evidence in other aspects of reproductive biology of greater sensitivity to high temperature at 

specific developmental stages. In particular, pollination, and so seed set, are particularly 



 

106 
 

sensitive to brief exposure to high temperature, e.g. in rice (Yang et al., 2001; Jagadish et al., 

2010b; Coast et al., 2015; Martinez-Eixarch and Ellis, 2015). 

 High temperature imposed in early histodifferentiation (-3-0 DAA) provided the 

highest seed moisture content (37.2%) at harvest compared to other HT periods (Fig. 3.1). This 

high value for seed moisture content might happen because seed was not yet achieved mass 

maturity by the time of harvest (42 DAA). Perhaps seed development was disrupted in some 

panicles due to HT imposed during early cell division stage (-3-0 DAA). Dunand and Saichuk 

(2014) reported that most rice seed will achieved physiological maturity (mass maturity) while 

moisture content was between 25-30%. Other reports support this: my results, HT during 

anthesis caused spikelet fertility (Baker, 2004; Jagadish et al., 2007); and increase in 

temperature can increase the duration of grain filling (Wheeler et al., 1996; Zahedi & Jenner, 

2003). Extended durations of seed filling perhaps prolong the time course for seed to complete 

their development. 

 Seed dry weight and ability to germinate were similar with the control (Fig.3.1b,c) if 

HT was imposed from 3-6 DAA onwards (Fig. 3.1b). In rice, HT at 14 DAF did not affect grain 

development of cv. Hinohikari (Tanaka et al., 2009) or 1000 grain weight (Tanamachi et al., 

2016). The seed dry weight was not affected maybe because by the time HT was imposed 

during this period, seed had already completed seed filling. This finding further supports the 

conclusion of Ellis (2011) that increasing temperature from 28/20°C to 34/26°C from two-

thirds through the seed-filling phase has no effect on seed dry weight.  This was also shown by 

Zakaria et al. (2001) where some indica rice were resistant to elevated temperature during the 

maturation phase. Hence the quality of seed at mass maturity (Ellis et al., 1993) is less affected 

by HT. In contrast, the limited assimilate supply to the grain was suggested to be the main 

factor limiting grain weight under HT stress in rice during early grain filling (Kobata and 

Uemuki, 2004) 

 As expected, the control provided the longest survival period, with the HT (21-24 DAA, 

24-27 DAA) almost good as control (Fig.3.4), also in Table 5.1 (except Aeron 1 in cab 2). In 

addition, the current study showed some evidence of damage to subsequent longevity from the 

third HT treatment (3-6 DAA) until 18-21 DAA, although this was somewhat variable. This 

was strongly consistent with Ellis (2011) who concluded that high temperature treatment 

during late seed filling had no effect on potential seed longevity in rice (Ellis, 2011) and, 
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Martinez-Eixarch and Ellis (2015) where seed exposed to HT during anthesis was more 

vulnerable.  

The observation where damage occurred at 29% and 37% seed moisture content in 

planta contradict with the conclusion of Whitehouse et al. (2015) who reported that longevity 

improved in planta and ex planta in room regime until moisture content declined to 16%. 

Cromarty et al. (1982) reported that if seed moisture ex planta is relatively high, seed may be 

easily damaged by high temperature.  

In addition, in experiment 2 (Chapter 3), I used electrical conductivity of seed steep 

water to test on seed viability. However, the result showed that there was no different in this 

value as brief HT treatment was imposed during seed development and maturation. As no effect 

was detected, this test was not used for the later experiments 3 and 4. Perhaps it is not suitable 

to use in monocotyledonous seed such as rice, but maybe successful for dicotyledonous crops. 

6.5 Effect of combining both stresses (drought and high temperature) 

The results in Figure 5.2 were consistent with my second experiment (Chapter 3) where HT 

during late seed filling (14-17 DAA) was less damaging to seed quality (Fig. 3.1). Even HT at 

this period tolerate to seed quality, however, by combining with water limitation stress, the 

effect was pronounced. Combining water limitation and HT was more damaging than each 

single stress, and cv. Aeron 1 was less sensitive than cv. Gleva (Figures 5.1 and 5.2).  

It was expected that combining the two stresses would be more damaging and that 

japonica rice cv. Gleva would be more vulnerable. The present study confirmed the earlier 

findings of Chang (1991) and Ellis et al. (1993) on varietal differences in seed longevity of 

rice: potential longevity of japonica rice was much more susceptible to high temperature 

compare to indica and javanica rice (Ellis et al., 1993). Ellis and Hong (1994) studies also 

showed that even in the cooler regime, the maximum potential longevity of the seeds of 

japonica cultivars was less than that of the indica cultivars. Also, investigations in the field 

confirmed that japonica seeds produce longer-lived seeds in cooler than warmer regimes (Rao 

and Jackson, 1996; 1997). This result may be explained by adaptation of Aeron 1 to both 

stresses compared to cv. Gleva, due to their different origins and genotypes. Aeron 1 and Gleva 

were bred and cultivated in Malaysia and Spain, respectively. The average air temperature in 

Malaysia is between 26-28°C (Radin Firdaus et al., 2012) which is above the average of 22°C 

in Catalonia (Duran et al., 2017). Also, Aeron 1 is a hybrid rice developed to be cultivated 

under aerobic conditions where low soil moisture content is common (Zainudin et al., 2014). 
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6.6 Comparison of previous predictions of σ with current estimates 

 

Figure 6.1 Previously-reported negative logarithmic relation between the standard deviation of the 

frequency distribution of seed deaths in time (σ, days) and seed storage moisture content for rice (Oryza 

sativa) compared with current estimates for all 80 rice seed lots produced in 2015-2017 and stored 

hermetically at 40℃ with the moisture contents shown. The continuous and broken curves are derived 

from the seed viability equation (Ellis and Roberts, 1980) and the estimates of the viability constants 

KE , Cw, CH and CQ for rice provided by Ellis and Hong (2007), where the broken curve is derived from 

constants constrained to a common temperature term for all 12 crops they investigated and the 

continuous curve only for rice. The symbols are the observations for σ, estimated by probit analysis, 

reported in the current studies (Chapters 2-5). Open symbols are for rice cv Gleva (○ (April ‘15), □ 

(August ‘15),  (2016),  (2017) and solid symbol for cv. Aeron 1 (•). 

 

The constants KE , Cw, CH and CQ of the seed viability are described as species constant, with 

the value of σ for any one storage environment the same for different seed lots within that 

species (Ellis and Roberts, 1980; 1981). Ellis and Hong (2007) derived the seed viability 

constants for twelve crops including rice at different temperatures and moisture content in 

hermetic storage. The values of constants they published provide predictions of σ for rice in 

various storage environments. Figure 6.1 compares the predictions of the above authors of σ 

for rice with my current estimates provided by probit analysis of the survival curves for all 

experiments with 80 separate rice seed lots. As mentioned by Ellis and Roberts (1980), seed 

longevity varies exponentially with storage environment from minutes to possible hundreds of 

years in storage. The independent predictions of σ for rice overestimated every one of the 80 

estimates in the present studies (Fig. 6.1). The greatest observation for σ in my research was 

close to the prediction, but the majority of current observations were very much lower than 
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values predicted by Ellis and Hong (2007). The majority of seed lots stored at 40℃ with 15% 

moisture content provided estimates of 4-7 days compared with predictions of around 13 days 

(Fig.6.1).  

Between the two cultivars, the japonica rice cv. Gleva was less distant from the 

predictions than was the case with indica rice cv. Aeron 1 (Fig. 6.1). Also, japonica cv. Gleva 

had greater longevity () than indica cv. Aeron 1 in similar storage environments (Fig. 6.1). 

This is suprising. It contradicts Chang (1991) and Tejakhod and Ellis (2017), who both reported 

that indica rice cultivars showed greater longevity in a given storage environment than japonica 

cultivars. Similarly, it contradicts Ellis et al. (1993) who reported estimates of σ in one 

environment were ranked indica > javanica > japonica rice cultivars. Given the consistent 

reports in the literature that seed longevity is less in japonica and indica cultivars of rice, it is 

difficult to explain why the opposite was found in my research. The only obvious difference is 

that cultivar Aeron 1 was bred for aerobic production environments, whereas most if not all of 

the research referred to above was with indica cultivars bred for common paddy rice 

production. Aeron 1 was identified and selected from aerobic rice breeding lines under 

International Network for Genetic Evaluation of Rice (INGER) programme from IRRI, where 

the designation of Aeron 1 was a cross from IR76569-259-1-2-1 which includes the Aerob 

gene (IRRI, 2007).  This variety underwent the preliminary selection in local aerobic 

environments in Malaysia and was identified as having the best plant vigour characterestics 

and good phenotype acceptability in aerobic conditions (Zainudin et al., 2014). 

 One of the greatest causes of error in comparisons like Figure 6.1 is small difference in 

seed moisture content during storage, since estimates of moisture content are subject to error 

and a small difference in seed moisture content has a comparatively large effect on seed storage 

life. Moreover, the narrow moisture range might contribute to the error, thus, to make a 

complete comparison perhaps it would have been better to use a wider range of moisture 

content contents for example by using much lower or higher seed moisture levels. The number 

of observations in Figure 6.1 is large and the differences consistent, and so that possible 

explanation is most unlikely to explain either the shorter longevity of the indica cultivar, all 

the shorter longevity of all seed lots compared to earlier predictions. 

The intra-specific differences in the relation between σ and seed storage moisture 

content here showed that the japonica cultivar had greater values than the indica cultivar. 

However, in terms of p50 (the product of Ki and  ) my current finding was the opposite (Table 
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5.1): japonica cv. Gleva had shorter p50 values than indica cv. Aeron 1. Thus, the conclusions 

of Chang (1991), Ellis et al. (1993) and Tejakhod and Ellis (2017) were consistent with studies 

in terms of p50 (Chapter 5) but not for .  

6.7 Progress towards fulfilling the original objectives 

The high-level objectives of this research study (see section 1.6) were to: 

1. determine the effect of ending irrigation early and/or brief elevated temperature during 

seed development and maturation on seed quality of japonica cv. Gleva; 

2. identify the most sensitive stages of seed quality development to ending irrigation early 

and/or brief elevated temperature in japonica cv. Gleva; 

3. investigate the effect of combining ending irrigation early and/or brief elevated 

temperature during seed development and maturation on seed quality in two contrasting 

rices-japonica cv. Gleva from Spain and indica cv. Aeron 1 from Malaysia. 

The above objectives were largely met. Earlier research with japonica cv. Gleva had 

indicated that the ability of seed harvested at maturity to subsequently germinate was damaged 

by exposure of the plants for 7 days to 34-38℃ at 1-7 or 1-14 DAA (Martinez-Eixarch and 

Ellis, 2015). My study showed that a shorter (3 days) period at high temperature imposed 

around anthesis reduced subsequent ability to germinate (of seed harvested at harvest maturity) 

slightly (fresh seed only) but considerably reduced the longevity of seed in air-dry storage. 

Moreover, I identified a previously unrecognized phenomenon whereby both the ability of 

mature seeds to germinate and their air-dry seed storage longevity was damaged considerably 

by drought of the parent plants imposed from 7- 14 DAA onwards. Exposure to high 

temperature was more damaging to rice seed quality when it occurred around anthesis with 

little or no damage the more developed the seed when exposed to high temperature; and the 

earlier that drought and high temperature stress occurred in seed development the more 

damaging they were to subsequent seed quality, and more so combined than each stress singly, 

and in all these cases damage was more severe in the japonica sv. Gleva than in indica  cv. 

Aeron 1. 

 However, my objectives were not completely met. While it is clear from my research 

that high temperature is more damaging shortly after anthesis and drought most damaging in 

early seed development, the precision of timing of greatest sensitivity has not been identified 

as precisely as it might, neither is clear if temperature or drought immediately before anthesis 

damage subsequent seed quality, and finally it is not known when the sensitivity to these 
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stresses ends. Moreover, in my studies the drought stress was terminal and not relieved by 

subsequent irrigation and hence, the effects of brief drought stress on seed subsequent longevity 

remains unknown. 

6.8 Limitations of study and recommendations 

Controlled and field environments differ, as does their respective applications in 

experimentation. Controlled environments are not normally used to replicate field 

environments precisely. Controlled environment facilities are expensive to operate and so, 

where they can be used, field studies are usually considerably cheaper. The differences between 

controlled and field environments include: 

(a) solar radiation in full sun at midsummer is considerably greater than that which an be 

provided within growth cabs (with glasshouses intermediate); 

(b) controlled environments (typically) provide a ‘rectangular’ diurnal temperature profile 

(e.g.12 h a day at temperature A; 12h a day at temperature B) whereas in the field the diurnal 

temperature pattern tends to be sinusoidal; 

(c) plant water status is more easily controlled (through irrigation and also relative humidity 

control but less so in glasshouse than a growth cab for the latter) in a controlled environment; 

(d) it is easier to grow plants as a genuine crop in the field than in a controlled environment 

(although plant population density in the field can often be replicated in controlled 

environments); 

(e) plants in controlled environments are typically grown in pots in an artificial (often sterilized) 

growing medium, compared to soil in the field; 

(f) and weeds, pests and diseases in field and controlled environments often differ. 

 

My studies were better suited to experiments in controlled rather than field 

environments but were subject to certain limitations.  

• Controlled environment investigations do enable particular hypotheses to be tested in 

well-defined consistent (e.g. from sowing to maturity) conditions. Moreover, they 

enable the study of a particular crop in a region well beyond its normal cultivation area, 

as was as the case here for rice, and at any time of the year (for growth cabs but not 

glass houses here). They also enable investigations to be repeated in the same 

conditions and so avoiding confounding of different observations (new and old) with 

other variables that are not constant in ambient conditions (although the unexplained 
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differences between cabs in my final experiment at the CEL shows that this may 

sometimes affect controlled environments also). 

• Drought is unlikely where rice is cultivated in paddy fields because the crops excess 

water until the paddy is drained. Generally, in Malaysia for example, farmers growing 

rice in paddy fields can produce 2 to 3 crops per year, but this depends upon cultivar 

choices. Sakke et al. (2016) reported that in Malaysia in 1989 the longest cumulative 

period of drought events (of varying severity) was about 250 days. Often, drought lasts 

for 2-3 weeks which greatly affect those farmers, especially from east Malaysia (e.g 

Borneo) that grow rice in rainfed systems (non-puddled soils, and so dependent on 

rainfall) (Herman et al., 2015). Furthermore, lowland rice producers in peninsular 

Malaysia during the early 1980s were also badly affected by drought (Chan, 2004). 

Hence, the drought treatments I imposed during seed development in my studies are 

not only relevant to the production of rice in aerobic and rainfed systems but also in 

current extreme seasons to paddy field systems in Malaysia (and beyond). The effect of 

climate change on future rainfall patterns is uncertain, but increased variability is likely 

(IPCC, 2014), and so the effect of my drought treatments and the conclusions drawn 

are relevant to decisions on future rice production systems in many regions. 

•  Extreme temperatures in Malaysia can reach 41℃ (Suparta and Yatim, 2017) and in 

Spain they can soar well above 40℃ (Duran et al., 2017). Indeed at the time of writing 

(August 2018), the media reports that the current maximum day temperatures in Spain 

and Portugal have been close to the record European value of 48℃ for several days 

(although as rice is not cropped year round in Spain, cf. Malaysia etc, at this time of 

year the crop is well past anthesis). Hence, the brief high temperature treatment I 

applied of 3-days periods at 40/30℃ (11 h photoperiod per day) in experiment 2 and 4 

(to study elevated temperature effect on subsequent seed quality) is not unrealistic in 

terms of current and future field environments for rice seed production.  

• It can be argued that the rectangular diurnal temperature profile may be more stressful 

than the ambient profile, but in ambient conditions high temperature periods are often 

prolonged and, in those circumstances, higher minimum temperatures are also common. 

Since my objective was to test hypotheses concerning the temporal sensitivity of seed 

quality development to high temperature, these small differences in temperature profile 

between laboratory and field are acceptable. In future climates, IPCC (2014) reported 

that global mean temperature will rise by 0.4 to 1.6℃ by 2046-2065 and 2.6-4.8℃  by 
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2081-2100. Nonetheless, to determine the precise impact of periods of high temperature 

on seed quality development (at the stage where this is known from my research to be 

most severe) in a given location would require an investigation at that location. 

Temperatures could be raised temporarily, at the appropriate developmental stage, in 

the field in selected plots (to provide a contrast with a control) using the approach of 

Ferris et al. (1998).  

• In experiment 4, my initial plan was to make this one whole experiment in order to 

investigate and compare the effect of the stresses between contrasting rice cultivars 

(Gleva and Aeron 1) with two cabs. However, it was not possible to do this. First of all, 

the growth habit of the two cultivars differed with Aeron 1 being much taller. Given 

the need to replicate as closely as possible crop seed production of each cultivar in the 

investigation, the two cultivars were therefore kept in separate halves of each cab, 

providing two different canopies, and so their location was not randomized. It was also 

expected that anthesis dates for the two cultivars would differ and hence treatment dates 

would differ as was indeed the case (Appendices 5.8 and 5.9). Hence the decision was 

made at the outset to carry out two separate but closely similar identical investigations 

one for each cultivar. 

• During the investigation it became apparent that the rice plants were developing 

differently between cabs (Appendices 5.8 and 5.9). Given that seed lot quality is 

sensitive to environment and that a seed lot by definition comprises seeds produced, 

dried and stored under identical conditions, I decided to treat the overall investigation 

as four separate experiments (each experiment comprising a single cultivar in a single 

cab) for the purposes of statistical analyses and of reporting. This then enabled the 

effects detected, or not, to be compared qualitatively amongst the four very similar 

investigations’ conclusions. A simple half-way house approach to the statistical 

analyses would have been possible, where within each cultivar the cabs were designated 

as blocks within ANOVA. Another idea would have been to combine all the results and 

analyses as a split-plot design within ANOVA in which cabs were blocks and cultivars 

the sub-plots. 

• During my studies, I learnt that small difference in seed moisture content affect seed 

storage longevity considerably and also that adjusting the moisture content of many 

different seed lots of rice to near identical values and then determining those values 

accurately is most challenging. It was also a challenge with large numbers of 
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simultaneous germination test to provide optimum conditions to promote full 

germination of the viable seeds. Nonetheless, comparison of seed survival curves 

amongst blocks in Appendices 4.14 A-G in my third experiment showed good 

agreement. A single vigour test would be less work than determining a seed survival 

curve, however. Determining longevity was very useful in confirming that the results 

were not confounded with dormancy. In order to avoid confounding seed dormancy 

with viability, un-germinated seed were pricked at 21 days and retained in the incubator 

for up to 40 days. At the end, all the un-germinated seeds were darkened or mouldy, 

confirming they were not viable. 

• My studies were also limited to only two cultivars: contrasting genotypes of aerobic 

indica rice are certainly worthy of similar investigations in order to determine the scope 

to select cultivars able to continue to produce high quality seeds in future warmer and 

possibly drier climates. Rice is one of the major crops of Malaysia, and such studies are 

needed now to improve the quality of rice seeds: Izham et al. (2003) reported that, 

Malaysia requires about 60,000 tonnes of rice seed per annum, but only produces 

53,000 tonnes leaving a deficit of 7,000 tonnes (currently met by imports). Finally, I 

did not investigate the effect of drought and high temperature stress on rice’s food value, 

particularly cooking quality. 

 

From the above considerations, I recommend that future studies approach the research 

as outlined below. 

• in future research between experimental environments and realistic local conditions, 

wherever that might be and whether current or future predicted conditions, the real 

historic data and the forecasted conditions need to be obtained from the relevant 

meteorological/climatology authority or agency, prior to conducting studies in those 

environments in controlled environment facilities. The use of daily temperature, 

relative humidity, light intensity and duration (including a sinusoidal diurnal 

temperature pattern and, although very expensive, in very high light intensity cabs) 

would be possible to give a more accurate estimate of the effect of a particular 

elevated temperature - event if that were the objective of the investigators. This 

information would enable future studies to be better defined. For example, 7 days 

of elevated temperature for only 5-6 hours per day above the simulated weather at 
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a given location would inform local rice producer of the real impact of one climate 

change phenomenon.  

• Also, I would suggest that, it would be better if conducted in a photoperiod-controlled 

glass house rather than in growth cabs if indica rice is to studied as many of these 

cultivars are typically taller than japonica rices. In my study with indica rice Aeron 1, 

maximum plant height resulted in the grain on the tops of panicles nearly touching the 

fluorescent lights casing in the growth cab. This might cause grain to dry more quickly. 

This might have happened in my experiment four, where the final seed moisture 

contents for all treatments (include control) were relatively low (Fig. 5.1 & 2). The 

fluorescent lights casing in these growth cabs are cooled by ventilation and so the late 

drop in relative humidity because irrigation ended is a more likely explanation, but 

close proximity to lights might be a problem in less well-designed growth cabs.   

• Serial destructive sampling of plants to harvest seeds at different stages of seed 

development provides more insight as to the possible mechanisms underlying the 

effects detected than only one final harvest at maturity. The latter approach was used in 

Experiment 2 and 4, because the numbers of treatments were too many to allow serial 

harvests. Serial harvesting throughout seed development was used in Experiments 1 

and 3. This approach provided considerable insight into the effects of plant drought at 

different seed developmental stages on the contrasting trends of seed quality 

development an understanding which would not have been possible with a single 

harvest in the same date in all treatments. 

• My research has shown that both drought and high temperature stress affect seed quality 

and that the timing of the stress affects the extent of any damage. Whilst my studies 

have shown that these stresses during anthesis and histodifferentiation, and early seed 

filling thereafter are especially damaging to seed quality development, future studies 

might investigate the possibility of damage in the period immediately preceding 

anthesis (when pollen and egg cells are formed and develop). 

• Seed longevity development studies in rice in response to mother plant environmental 

stress should be continued because, based on a search on Web of Science, this type of 

study has seldom been reported. 
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My general recommendations are as follows. 

• farmers should avoid water deficit in their rice crops from anthesis through early and 

perhaps late seed filling, whereas drought during maturation drying may be helpful, in 

order to maximize seed quality. This has obvious relevance to rice production in 

Malaysia using aerobic systems and other regions that use this cropping system. 

Perhaps, the system of rice intensification (SRI) – a system that was developed in 

Madagascar that involves a labour-intensive operation by selecting young seedlings and 

singly spacing in low water condition (Stoop et al., 2002 & Uphoof et al., 2006) can be 

adopted by farmers with some modification to suit adaptation under aerobic condition. 

This may reduce water usage in order to mitigate water scarcity resulted from global 

warming. 

• In the face of the warming climate trend, cv. Aeron 1 might be able to become a parent 

for plant breeding programmes in other rice cultivating countries. The tolerance and 

escape traits identified in this study for that cultivar may assist plant breeders targeting 

resilience in warmer climates.  

• In reality, Malaysian farmers generally obtain rice seed from government agencies such 

as MARDI. Hence, most rice farmers do not produce their own seed. Therefore, my 

study is most relevant to specialist seed producers which supply seed to these agencies. 

Hopefully, MARDI etc will find this smaller group of farmers easier to communicate 

with to provide advice. Hybrid rice seed producers should be particularly interested in 

the above recommendations. Hybrid seed is valuable and so low quality is not tolerated. 

 

6.9 Conclusions  

The main conclusions of my research can be summarised as follows:  

i. ending irrigation early or brief elevated temperature did affect seed quality of japonica 

rice cv. Gleva and indica rice v. Aeron 1.  

ii. Ending irrigation early well before seed filling ended accelerated seed desiccation, 

shortened seed filling duration and reduced maximum seed quality, whereas later 

treatments (during late seed filling and maturation drying) had little effect on 

subsequent seed quality.  

iii. Water limitation treatments affected the development of subsequent seed longevity, 

where seed longevity declined in planta late in development and maximum longevity 

was poorer.  
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iv. Brief exposure to extreme high temperature at anthesis and during the 

histodifferentiation phase damaged subsequent rice seed longevity.  

v. The negative effects on final seed dry weight were not associated with any effects on 

seed viability, with no evidence of any direct effect of 3-d exposure to elevated 

temperature during the seed-filling phase (period from 3-6 until 18-21 DAA). 

vi.  The viability of seeds was only reduced by high temperature treatments applied during 

the -3-0 or 0-3 DAA period, which coincides with anthesis and histodifferentiation. 

vii. Effects on seed quality from combining drought and high temperature stress were more 

pronounced in cv. Gleva, whilst cv. Aeron 1 was considerably more resilient to these 

environmental stresses.  

In general, the above conclusions show that my study’s initial objectives were accomplished. 
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Appendices 

 

Chapter 2 

 

Appendix 2.1 Flowering frequency (number of panicles anthesis emergence per day) of 

japonica rice cv. Gleva after sowing 

 

 
 

 

Appendix 2.2. Analysis of variance of seed moisture content (%) for different irrigation 

treatments at different harvests (DAA). 

 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Treatment 2 2526.482 1263.241 630.4 <.001 

DAA 7 7818.205 1116.886 557.36 <.001 

Treatment.DAA 14 1428.258 102.018 50.91 <.001 

Residual 24 48.093 2.004     

Total 47 11821.04       

 

Appendix 2.3: Analysis of variance of seed moisture content (%) between irrigation 

treatments at different harvests (DAA). 

 

Appendix 2.3.1 11 DAA 

 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Irrigation treatment 2 295.315 147.657 41.29 0.007 

Residual 3 10.727 3.576     

Total 5 306.042       
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Appendix 2.3.2 16 DAA 

 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Irrigation treatment 2 843.591 421.796 129.45 0.001 

Residual 3 9.775 3.258   

Total 5 853.366       
 

Appendix 2.3.3 22 DAA 

 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Irrigation treatment 2 1095.289 547.644 166.19 <.001 

Residual 3 9.886 3.295   

Total 5 1105.175       
 

 

Appendix 2.3.4 26 DAA 

 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Irrigation treatment 2 623.3354 311.6677 978 <.001 

Residual 3 0.956 0.3187   

Total 5 624.2914       
 

   

    

Appendix 2.3.5 32 DAA 
   

Source of variation d.f. s.s. m.s. v.r. F pr. 

Irrigation treatment 2 

617.24

6 

308.62

3 105.67 0.002 

Residual 3 8.762 2.921     

Total 5 

626.00

8    

 

Appendix 2.3.6 36 DAA 

 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Irrigation treatment 2 269.239 134.62 244.89 <.001 

Residual 3 1.6491 0.5497     

Total 5 270.889    

 

Appendix 2.3.7 40 DAA 

 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Irrigation treatment 2 210.724 105.362 1085.16 <.001 

Residual 3 0.29128 0.09709     

Total 5 211.015       
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Appendix 2.4: Comparison by Tukey’s test at 95% confidence intervals of seed moisture 

content (%) between irrigation treatment within each of eight harvest (DAA). Different letters 

within a harvest indicate significant differences amongst irrigation treatments. 
 

Treatment Harvest (DAA) 

7 11 16 22 26 32 36 40 

Control (T1) 

 

53.4 51.7b 47.4b 47.6b 37.4b 37.5b 28.5b 27.4b 

Water ended at 

7 DAA (T2) 

53.4 39.6a 21.9a 16.7a 15.3a 14.8a 14.3a 14.6a 

Water ended at 

14 DAA (T3) 

53.4 56.2b 46.6b 21.9a 16.2a 17.3a 14.3a 15.1a 

 

Appendix 2.5. Analysis of variance of seed dry weight (mg) for different irrigation treatments 

at different harvests (DAA). 

 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Irrigation treatment 2 38.2321 19.1161 621.03 <.001 

DAA 7 33.0528 4.72182 153.4 <.001 

Treat.DAA 14 26.2905 1.87789 61.01 <.001 

Residual 216 6.64872 0.03078     

Total 239 104.224       

 

Appendix 2.6: Analysis of variance of seed dry weight (mg) between irrigation treatments at 

different harvests (DAA). 

 

Appendix 2.6.1 11 DAA 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Irrigation treatment 2 0.85267 0.42633 39.7 <.001 

Residual 27 0.28996 0.01074     

Total 29 1.14263     

 

Appendix 2.6.2 16 DAA 

 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Irrigation 

treatment 2 1.83495 0.91748 36.81 <.001 

Residual 27 0.67289 0.02492     

Total 29 2.50784       

 

Appendix 2.6.3 22 DAA 

 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Irrigation treatment 2 3.44596 1.72298 40.29 <.001 

Residual 27 1.15467 0.04277     

Total 29 4.60062       
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Appendix 2.6.4 26 DAA 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Irrigation treatment 2 8.12067 4.06033 69.47 <.001 

Residual 27 1.57818 0.05845     

Total 29 9.69885       

 

Appendix 2.6.5 32 DAA 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Irrigation treatment 2 18.4709 9.23546 437.79 <.001 

Residual 27 0.56959 0.0211     

Total 29 19.0405       
 

Appendix 2.6.6 36 DAA 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Irrigation treatment 2 18.4709 9.23546 437.79 <.001 

Residual 27 0.56959 0.0211     

Total 29 19.0405       

 

Appendix 2.6.7 40 DAA 
 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Irrigation treatment 2 19.6309 9.81545 403.68 <.001 

Residual 27 0.65651 0.02432     

Total 29 20.2874       
 

Appendix 2.7: Comparison by Tukey’s test at 95% confidence intervals of seed dry weight 

(mg) between irrigation treatment within each of eight harvest (DAA). Different letters 

within a harvest indicate significant differences amongst irrigation treatments. 
 

Treatment Harvest (DAA) 

7 11 16 22 26 32 36 40 

Control (T1) 

 

5.43 10.50b 15.16b 17.68b 19.88c 22.26c 27.49c 28.36c 

Water ended at 

7 DAA (T2) 

5.43 12.37c 9.53a 9.79a 7.39a 6.76a 8.43a  8.83a 

Water ended at 

14 DAA (T3) 

5.43 8.25a 14.29b 15.97b 15.85b 16.08b 15.83b 15.68b 
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Appendix 2.8. Analysis of variance of fresh seed germination (rad) for different irrigation 

treatments at different harvests (DAA) using angular transformed data. 

 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Irrigation treatment 2 1.3422 0.6711 801.53 <.001 

DAA 7 2.10811 0.30116 359.69 <.001 

Treatment.DAA 14 1.43437 0.10245 122.37 <.001 

Residual 24 0.02009 0.00084     

Total 47 4.90477       

 

 

Appendix 2.9: Analysis of variance of dried seed germination (rad) for different irrigation 

treatments at different harvests (DAA) using angular transformed data. 

 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Irrigation treatment 2 0.3928 0.1964 8.23 0.002 

DAA 7 4.37582 0.62512 26.2 <.001 

Treatment.DAA 14 1.8222 0.13016 5.45 <.001 

Residual 24 0.57265 0.02386     

Total 47 7.16348    

 

 

In Appendices 2.10. Different models are compared amongst seed survival curves fitted by 

probit analysis 

Test 1= Best fit model; test 2= Common slope model; test 3= Common line model: Not 

significant shown as (ns), P>0.05; significant (s, P<0.05). 

 

In Appendix 2.10.1- 7, comparison of treatments within a harvest date 

 

Appendix 2.10.1: Comparison of survival curves for seeds harvested at 11 DAA 

 

TEST 1 vs 2       

F-test    Res dev Res d.f. Res Mean dev 

Common slope   41.71 13 3.208 

Best model   40.83 11 3.712 

Change    0.88 2 0.44  

F(2,13) = 0.11853        

Slopes different / not different P= 0.889  ns  

 

TEST 1 vs 3       

F-test    Res dev Res d.f. Res Mean dev 

Common line   44.74 15 2.983 

Best model   40.83 11 3.712 

Change    3.91 4 0.9775  

F(4,11) = 0.263335        

Slope + Ki different / not different P= 0.895  ns  
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Appendix 2.10.2: Comparison of survival curves for seeds harvested at 16 DAA 

 

TEST 1 vs 2       

F-test    Res dev Res d.f. Res Mean dev 

Common slope   63.87 15 4.258 

Best model   58.88 13 4.53 

Change    4.99 2 2.495  

F(2,15) = 0.55077        

Slopes different / not different P= 0.59  ns  

 

 

TEST 1 vs 3       

F-test    Res dev Res d.f. Res Mean dev 

Common line   138.4 17 8.143 

Best model   58.88 13 4.53 

Change    79.52 4 19.88  

F(4,13) = 4.388520        

Slope + Ki different /different P= 0.018  s  

 

Appendix 2.10.3: Comparison of survival curves for seeds harvested at 22 DAA 

 

 

TEST 1 vs 2  

F-test    Res dev Res d.f. Res Mean dev 

Common slope   82.43 18 4.58 

Best model   53.64 16 3.353 

Change    28.79 2 14.395  

F(2,18) = 4.2931        

Slopes different / not different P= 0.03  s  

 

TEST 1 vs 3       

F-test    Res dev Res d.f. Res Mean dev 

Common line   248 20 12.4 

Best model   53.64 16 3.353 

Change    194.36 4 48.59  

F(4,16) = 14.491        

Slope + Ki different /different P= 0.000  s  

      

Appendix 2.10.4: Comparison of survival curves for seeds harvested at 26 DAA 

 

TEST 1 vs 2  

F-test    Res dev Res d.f. Res Mean dev 

Common slope   154.9 20 7.746 

Best model   124 18 6.886 

Change    30.9 2 15.45  

F(2,20) = 2.243        

Slopes different / not different P= 0.13  ns  
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TEST 1 vs 3       

F-test    Res dev Res d.f. Res Mean dev 

Common line   485.4 22 22.07 

Best model   124 18 6.886 

Change    361.4 4 90.35  

F(4,18) = 13.120        

Slope + Ki different /different P= 0.000  s  

 

Appendix 2.10.5: Comparison of survival curves for seeds harvested at 32 DAA 

TEST 1 vs 2  

F-test    Res dev Res d.f. Res Mean dev 

Common slope   104.2 18 5.791 

Best model   87.95 16 5.497 

Change    16.25 2 8.125  

F(2,18) = 1.4780        

Slopes different / not different P= 0.13  ns  

 

TEST 1 vs 3       

F-test    Res dev Res d.f. Res Mean dev 

Common line   667.8 20 33.39 

Best model   87.95 16 5.497 

Change    579.85 4 144.96  

F(4,16) = 26.371        

Slopes + Ki different / not different  P= 0.00      s 

 

 

Appendix 2.10.6: Comparison of survival curves for seeds harvested at 36 DAA 

 

F-test    Res dev Res d.f. Res Mean dev 

Common slope   45.07 19 2.372 

Best model   30.85 17 1.815 

Change    14.22 2 7.11  

F(4,17) = 3.917        

Slopes different / not different P= 0.038  ns  

 

TEST 1 vs 3       

F-test    Res dev Res d.f. Res Mean dev 

Common line   1001 21 47.66 

Best model   30.85 17 1.815 

Change        

F(4,18) = 133.629        

Slope + Ki different /different P= 0.000  s  
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Appendix 2.10.7: Comparison of survival curves for seeds harvested at 40 DAA 

 

F-test    Res dev Res d.f. Res Mean dev 

Common slope   56.62 19 2.98 

Best model   48.2 17 2.835 

Change    8.42 2 4.21  

F(2,19) = 1.485        

Slopes different / not different P= 0.2516  ns  

 

 

TEST 1 vs 3       

F-test    Res dev Res d.f. Res Mean dev 

Common line   1117 21 53.21 

Best model   48.2 17 2.835 

Change    1068.8 4 267.2  

F(4,1) = 94.250        

Slope + Ki different /different P= 0.000  s  

 

 

CHAPTER 3 

Appendix 3.0. Analysis of variance of seed moisture content (%) for high treatments (HT) at 

different timing of seed development. 

 
Source of variation d.f. s.s. m.s. v.r. F pr. 

HT treatment 10 542.44 54.24 2.59 0.019 

Residual 33 690.93 20.94     

Total        43 1233.37 

 

Appendix 3.1. Analysis of variance of seed dry weight (mg) for HT treatments at different 

timing of seed development. 

 

Source of variation d.f. s.s. m.s. v.r. F pr. 

HT treatment 10 365.89 36.59 3.51 0.003 

Residual 33 344.31 10.43     

Total        43        710.2       
 

 

 

Appendix 3.2. Analysis of variance of electrical conductivity (µS cm-1 g-1)  of seed steep 

water for HT treatments at different timing of seed development. 

 

Source of variation d.f. s.s. m.s. v.r. F pr. 

HT treatment 10 1272.9 127.3 0.54 0.849 

Residual 33 7783.3 235.9     

Total        43 9056.2 
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Appendix 3.3. Analysis of variance of fresh Gleva seed (ability to germinate normally (%)) 

for HT treatments at different timing of seed development using angular data. 

 
Source of variation d.f. s.s. m.s. v.r. F pr. 

HT treatment 10 3078.3 307.8 2.53 0.022 

Residual 33 4011.4 121.6     

Total 43 7089.7            
 

Appendix 3.4. Analysis of variance of dry Gleva seed (ability to germinate normally (%)) for 

HT treatments at different timing of seed development using angular data. 

Source of variation d.f. s.s. m.s. v.r. F pr. 

HT treatment 10 0.16065 0.01607 1.56 0.162 

Residual 33 0.33969 0.01029     

Total 43 0.50034      
 

 

Appendix 3.5: Comparison by Tukey’s  multiple range test at 95% confidence intervals of 

seed moisture content at harvest (%) for HT treatments at different timing of seed 

development. 

 

HT treatment Seed moisture content (%) 

T1(Control) 25.8a 

T2 (-3-0 DAA) 37.2b 

T3 (0-3 DAA) 30.0ab 

T4 (3-6 DAA) 26.2ab 

T5 (6-9 DAA) 26.4ab 

T6 (9-12 DAA) 29.2ab 

T7 (12-15 DAA) 26.7ab 

T8 (15-18 DAA) 24.7a 

T9 (18-21 DAA) 25.7a 

T10 (21-24 DAA) 28.0ab 

T11 (24-27 DAA) 23.7a 

 

Appendix 3.6: Comparison by Tukey’s multiple range test at 95% confidence intervals of 

final seed dry weight (mg) for heat treatments at different timing of seed development. 

 

HT treatment Seed dry weight (mg) 

T1(Control) 31.41b 

T2 (-3-0 DAA) 20.20a 

T3 (0-3 DAA) 27.39ab 

T4 (3-6 DAA) 29.86b 

T5 (6-9 DAA) 29.86b 

T6 (9-12 DAA) 29.15b 

T7 (12-15 DAA) 29.29b 

T8 (15-18 DAA) 30.46b 

T9 (18-21 DAA) 29.64b 

T10 (21-24 DAA) 29.33b 

T11 (24-27 DAA) 30.33b 
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Appendix 3.7: Comparison by Tukey’s multiple range test at 95% confidence intervals of 

electrical conductivity of seed steep water (µS cm-1 g-1) for heat treatments at different timing 

of seed development. 

 

HT treatment E.C seed steep water (µS cm-1 g-1) 

T1(Control) 130.47b 

T2 (-3-0 DAA)  49.43a 

T3 (0-3 DAA)  54.44a 

T4 (3-6 DAA)  65.46ab 

T5 (6-9 DAA)  63.59ab 

T6 (9-12 DAA)  71.83ab 

T7 (12-15 DAA)  60.86ab 

T8 (15-18 DAA)  68.56ab 

T9 (18-21 DAA)  71.00ab 

T10 (21-24 DAA)  44.22a 

T11 (24-27 DAA)  75.71ab 

 

Appendix 3.8: Comparison by Tukey’s at 95% confidence intervals of fresh & dry Gleva 

seed (ability to germinate normally (%)) for heat treatments at different timing of seed 

development using angular data. 

 

HT treatment Fresh germination Dry germination 

T1(Control) 1.401b 1.444a 

T2 (-3-0 DAA) 0.859a 1.362a 

T3 (0-3 DAA) 1.277ab 1.277a 

T4 (3-6 DAA) 1.409b 1.407a 

T5 (6-9 DAA) 1.411b 1.457a 

T6 (9-12 DAA) 1.482b 1.452a 

T7 (12-15 DAA) 1.434b 1.457a 

T8 (15-18 DAA) 1.436b 1.411a 

T9 (18-21 DAA) 1.475b 1.460a 

T10 (21-24 DAA) 1.414b 1.444a 

T11 (24-27 DAA) 1.396b 1.510a 
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In Appendices 3.9. Different models are compared below to describe the seed survival curves 

fitted by probit analysis for the 11 seed lots 

Test 1= Best fit model; test 2= Common slope model; test 3= Common line model: Not 

significant shown as (ns, P >0.05); significant (s, P <0.05). 

 

Comparison of survival curves for Gleva seeds harvested at 42 DAA. 

TEST 1 vs 2      

F-test     Res dev Res d.f. Res Mean dev 

Common slope  761.1 77 9.884  

Best model  646.1 67 9.643  

Change   115 10 11.5  

F(10,67)=1.1925       

       

Slopes different / not different P=0.311862 NS  

       

TEST 1 vs 3      

F-test     Res dev Res d.f. Res Mean dev 

Common line  1879 87 21.6  

Best model  646.1 67 9.643  

Change   1232.9 20 61.645  

       

F(20,67)=6.3927       

Slope + Ki different / not different P=< .00001 S  

    



 

 
 

1
5
0
 

Appendix 3.10. Estimate parameters of seed viability equation fitted by probit analysis of model 2 (common slope model) 

 

 

Treatment Storage 

moisture 

content (%) 

Ki Slope(1/σ) p50 (days) 

estimate s.e estimate s.e estimate s.e. lower 95% 

upper 

95% 

T1  

(Control) 

14.8 3.23 0.083 0.126 0.002 25.5 0.47 24.6 26.42 

T2 

(3DBA) 

14.6 1.34 0.083 0.126 0.002 10.6 0.63 9.4 11.88 

T3 

(0-3DAA) 

14.9 1.49 0.069 0.126 0.002 11.8 0.49 10.8 12.73 

T4 

(3-6DAA) 

15.0 2.78 0.073 0.126 0.002 22.0 0.45 21.1 22.87 

T5 

(6-9DAA) 

14.5 2.67 0.074 0.126 0.002 21.1 0.46 20.2 21.98 

T6 

(9-12DAA) 

14.8 1.67 0.067 0.126 0.002 13.2 0.49 12.2 14.15 

T7 

(12-15DAA) 

14.5 3.14 0.087 0.126 0.002 24.9 0.53 23.8 25.88 

T8 

(15-18DAA) 

14.7 2.48 0.085 0.126 0.002 19.6 0.60 18.5 20.8 

T9 

(18-21DAA) 

15.1 1.69 0.070 0.126 0.002 13.4 0.50 12.4 14.35 

T10 

(21-24DAA) 

15.2 3.05 0.082 0.126 0.002 24.1 0.48 23.2 25.01 

T11 

(24-27DAA) 

15.5 3.14 0.089 0.126 0.002 24.9 0.51 23.9 25.85 
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Appendix 3.11. Flowering frequency (number of panicles anthesis emergence per day) of 

japonica rice cv. Gleva after sowing 

 

CHAPTER 4 

Appendix 4.0. Analysis of variance of seed moisture content (%) for different irrigation 

treatments at different harvests (DAA). 
 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Blocks 3 10.1 3.37 0.09 0.967 

Irrigation treatment 2 1140.57 570.285 459.22 <.001 

DAA 6 1946.312 324.385 261.21 <.001 

Treat.DAA 12 770.775 64.231 51.72 <.001 

Residual 63 78.238 1.242     

Total 83 3935.894       

       

Appendix 4.1: Analysis of variance of seed moisture content (%) between irrigation 

treatments at different harvests (DAA). 

 

Appendix 4.1.1 13 DAA 

 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Irrigation treatment 2 4.497 2.248 0.62 0.558 

Residual 9 32.51 3.612   

Total 11 37.007       
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Appendix 4.1.2 18 DAA 

 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Irrigation treatment 2 30.861 15.431 9.44 0.006 

Residual 9 14.708 1.634   

Total 11 45.57       
 
       

Appendix 4.1.3 27 DAA 

 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Irrigation treatment 2 560.833 280.416 267.36 <.001 

Residual 9 9.439 1.049     

Total 11 570.272       

 

Appendix 4.1.4 34 DAA 

 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Irrigation treatment 2 213.128 106.564 65.39 <.001 

Residual 9 14.666 1.63   

Total 11 227.794       
 

 

Appendix 4.1.5 42 DAA 

 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Irrigation treatment 2 342.602 171.301 663.55 <.001 

Residual 9 2.3234 0.2582     

Total 11 344.9254    

 

Appendix 4.1.6 49 DAA 

 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Irrigation treatment 2 342.602 171.301 663.55 <.001 

Residual 9 2.3234 0.2582     

Total 11 344.9254    

 

Appendix 4.1.7 55 DAA 

 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Irrigation treatment 2 367.792 183.896 1206.79 <.001 

Residual 9 1.3715 0.1524     

Total 11 369.163       
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Appendix 4.2: Comparison by Tukey’s test at 95% confidence intervals of seed moisture 

content (%) between irrigation treatment within each of seven harvests (DAA). 

Different letters within a harvest indicate significant differences amongst 

irrigation treatments. 

 
 

Treatment Harvest (DAA) 

13 18 27 34 42 49 55 

Control (T1) 

Water ended at 14 DAA (T2) 

Water ended at 28 DAA (T3) 

27.4a 

28.9a 

28.9a 

30.1b 

26.3a 

29.2b 

27.9b 

13.4a 

27.9b 

23.2b 

13.5a 

15.3a 

26.1b 

14.7a 

14.9a 

26.1b 

13.5a 

14.9a 

25.3b 

14.7a 

13.6a 

 

Appendix 4.3: Analysis of variance of moisture content (%) between irrigation treatment 

Regardless of harvest date. 

 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Irrigation treatment 2 1140.57 570.285 459.22 <.001 

Residual 63 78.238 1.242     

Total 83 3935.894       

 

Appendix 4.4: Comparison by Tukey’s at 95% confidence intervals of moisture content (%) 

between irrigation treatment regardless of harvest date. 

 
Treatment Mean Moisture content 

Control (T1) 

Water ended at 14 DAA (T2) 

Water ended at 28 DAA (T3) 

26.4c 

17.6a 

20.3b 

Appendix 4.5: Analysis of variance of seed dry weight (mg) for different irrigation treatments 

at different harvests (DAA). 
 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Blocks 3  0.8325  0.2775  0.32  0.810 

Irrigation treatment 2  1.6913  0.8456  1.55  0.220 

DAA 6  16.0761  2.6794  4.92 <.001 

treatment.DAA 12  17.9993  1.4999  2.75  0.005 

Residual 63  34.3187  0.5447     

Total         83       70.0853  
 

Appendix 4.6: Analysis of variance of seed dry weight (mg) between irrigation treatment 

at different harvest date (DAA). 
 

Appendix 4.6.1 Harvesting period at 13 DAA 

 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Irrigation treatment 2  13.588  6.794  4.42  0.046 

Residual 9  13.834  1.537     

Total 11  27.422       
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Appendix 4.6.2 Harvest date at 18 DAA 

 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Irrigation treatment 2  2.6603  1.3302  1.56  0.262 

Residual 9  7.6659  0.8518     

Total          11         10.3263      

        

Appendix 4.6.3 Harvest date at 27 DAA 

 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Irrigation treatment 2  0.6400  0.3200  0.67  0.534 

Residual 9  4.2728  0.4748     

Total 11  4.9129       

  

Appendix 4.6.4 Harvest date at 34 DAA 

 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Irrigation treatment 2  1.0409  0.5205  1.38  0.299 

Residual 9  3.3836  0.3760     

Total 11  4.4245       

  

Appendix 4.6.5 Harvest date at 42 DAA 

 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Irrigation treatment 2  0.1344  0.0672  0.23  0.801 

Residual 9  2.6565  0.2952     

Total 11  2.7910       

  

Appendix 4.6.6 Harvest date at 49 DAA 

 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Irrigation treatment 2  0.3424  0.1712  0.66  0.541 

Residual 9  2.3422  0.2602     

Total 11  2.6847       

 

Appendix 4.6.7 Harvest date at 55 DAA 

 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Irrigation treatment 2  1.23107  0.61553  10.26  0.005 

Residual 9  0.53990  0.05999     

Total 11  1.77097       
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Appendix 4.7: Analysis of variance of seed dry weight (mg) within irrigation treatment 

 

Appendix 4.7.1 Control 

 

Source of variation d.f. s.s. m.s. v.r. F pr. 

DAA 6  2.6728  0.4455  1.58  0.201 

Residual 21  5.9053  0.2812     

Total        27   8.5781 

  

Appendix 4.7.2 water ended at 14 DAA 

 

Source of variation d.f. s.s. m.s. v.r. F pr. 

DAA 6  28.4757  4.7460  4.77  0.003 

Residual 21  20.8940  0.9950     

Total 27  49.3698       

  

Appendix 4.7.3 water ended at 28 DAA 

 

Source of variation d.f. s.s. m.s. v.r. F pr. 

DAA 6  2.9269  0.4878  1.36  0.275 

Residual 21  7.5194  0.3581     

Total 27  10.4462       

 

Appendix 4.8: Comparison by Tukey’s test at 95% confidence intervals of seed dry weight 

(mg) between irrigation treatment within each of seven harvests (DAA). 

Different letters within a harvest indicate significant differences amongst 

irrigation treatments 
 

Treatment Harvest (DAA) 

13 18 27 34 42 49 55 

Control (T1) 

Water ended at 14 DAA (T2) 

Water ended at 28 DAA (T3) 

27.6b 

25.0a 

26.8ab 

27.7a 

28.7a 

27.6a 

27.2a 

27.3a 

26.8a 

 

28.0a 

27.4a 

27.3a 

27.2a 

27.5a 

27.4a 

27.1a 

27.2a 

27.5a 

27.6b 

26.9a 

27.6b 

 
 

Appendix 4.9: Analysis of variance of dried seed germination (rad) for different irrigation 

treatments at different harvests (DAA) using angular transformed data. 
 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Blocks 3  0.01482  0.05 0.1  0.986 

Irrigation treatment 2 0.058 0.029 3.27 0.045 

DAA 6 2.784 0.464 51.9 <.001 

Treatment.DAA 12 240.667  20.056  2.02  0.037 

Residual 63 0.563 0.009     

Total         83          3.724 
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Appendix 4.10: Analysis of variance of dried seed germination (%) between irrigation 

treatment at different harvest date (DAA) using angular transformed data. 

 
 

Appendix 4.10.1 Harvesting at 27 DAA 

 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Irrigation treatment 2 0.086565 0.043282 4.92 0.036 

Residual 9 0.079151 0.008795     

Total 11 0.165716       

 Appendix 4.10.2 Harvesting at 34 DAA 

 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Irrigation treatment 2 0.092605 0.046303 6.56 0.017 

Residual 9 0.06349 0.007054     

Total 11 0.156095       

 

Appendix 4.10.2 Harvesting at 42 DAA 

 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Irrigation treatment 2 0.078082 0.039041 5.37 0.029 

Residual 9 0.065425 0.007269     

Total 11 0.143507       

 

Appendix 4.11: Comparison by Tukey’s test at 95% confidence intervals dried seed 

germination (rad) between irrigation treatment within each of seven harvest 

(DAA). Different letters within a harvest indicate significant differences 

amongst irrigation treatments 
 

Treatment Harvest (DAA) 

13 18 27 34 42 49 55 

Control (T1) 

Water ended at 14 DAA (T2) 

Water ended at 28 DAA (T3) 

1.0a 

0.9a 

1.0a 

1.2a 

  1.2a 

1.1a 

1.2a 

1.4b 

 1.3ab 

 

1.3a 

1.5b 

  1.3ab 

1.5b 

1.4a 

1.5b 

1.5a 

1.6a 

1.6a 

1.5a 

1.5a 

1.6a 
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In Appendices 4.12A and B, different models are compared amongst seed survival curves fitted 

by probit analysis 

Test 1= Best fit model; test 2= Common slope model; test 3= Common line model: Not 

significant shown as (ns), P>0.05; significant (s, P<0.05). 

In Appendix 4.12A.1- 7, comparison of treatments within a harvest date 

Appendix 4.12A.1: Comparison of survival curves for seeds harvested at 13 DAA 

TEST 1 vs 2 

       

F-test    Res dev Res d.f. Res Mean dev 

Common slope   44.77 20 2.238 

Best model   42.89 18 2.383 

Change    1.88 2 0.94  

F(2,18) = 0.394461        

Slopes different / not different P=0.67977  ns  

 

TEST 1 vs 3       

F-test    Res dev Res d.f. Res Mean dev 

Common line   45.61 22 2.073 

Best model   42.89 18 2.383 

Change    2.72 4 0.68  

F(4,18) = 0.285355        

Slope + Ki different / not different P=0.88366  ns  

 

Appendix 4.12A.2: Comparison of survival curves for seeds harvested at 18 DAA 

TEST 1 vs 2       

F-test    Res dev Res d.f. Res Mean dev 

Common slope   114.4 20 5.719 

Best model   94.6 18 5.256 

Change    19.8 2 9.9  

F(2,18) =1.88356        

Slopes different / not different P=0.18083  ns  

        

        

TEST 1 vs 3       

F-test    Res dev Res d.f. Res Mean dev 

Common line   115.2 22 5.237  

Best model   94.6 18 5.256  

Change    20.6 4 5.15  

F(4,18) = 0.979833        

Slope + Ki different / not different  P=0.44314  ns  
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Appendix 4.12A.3: Comparison of survival curves for seeds harvested at 27 DAA 

TEST 1 vs 2       

F-test    Res dev Res d.f. Res Mean dev 

Common slope   63.25 20 3.162  

Best model   46.15 18 2.564  

Change    17.1 2 8.55  

F(2,18) = 3.334633        

Slopes different / not different  P=0.05862 0.05862 n.s  

 

TEST 1 vs 3       

F-test    Res dev Res d.f. Res Mean dev 

Common line   70.54 22 3.206  

Best model   46.15 18 2.564  

Change    24.39 4 6.0975  

F(4,18) = 2.37812        

Slope + Ki different / not different  P=0.09031  n.s  

 

Appendix 4.12A.4: Comparison of survival curves for seeds harvested at 34 DAA 

TEST 1 vs 2       

F-test    Res dev Res d.f. Res Mean dev 

Common slope   236.7 20  11.84  

Best model   233.4 18    12.96  

Change      3.3 2    1.65  

F(2,18) = 0.127315        

Slopes different / not different P=0.8813      n.s  

 

 

TEST 1 vs 3       

F-test    Res dev Res d.f. Res Mean dev 

Common line   237.6 22    10.8  

Best model   233.4    18    12.96  

Change    4.2  4    1.05  

F(4,18) = 0.081019        

Slope + Ki different / not different  P= 0.98719  ns  

 

Appendix 4.12A.5: Comparison of survival curves for seeds harvested at 42 DAA 

TEST 1 vs 2       

F-test    Res dev Res d.f. Res Mean dev 

Common slope   126.8 20 6.341  

Best model   48.76 18 2.709  

Change    78.04 2          39.02  

F(2,18) =14.40384        
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Slopes different / not different  P=0.0002  s  

        

        

TEST 1 vs 3       

F-test    Res dev Res d.f. Res Mean dev 

Common line   534.6 22 24.3  

Best model   48.76 18 2.709  

Change    485.84 4       121.46  

F(4,18) = 44.83573        

Slope + Ki different / not different  P=0.00001  s  

 

Appendix 4.12A.6: Comparison of survival curves for seeds harvested at 49 DAA 

TEST 1 vs 2       

F-test    Res dev Res d.f. Res Mean dev 

Common slope   105 20 5.249  

Best model   57.3 18 3.183  

Change    47.7 2 23.85  

F(2,18) = 7.492931        

Slopes different / not different  P=0.00429  s  

   

TEST 1 vs 3       

F-test    Res dev Res d.f. Res Mean dev 

Common line   314.7 22 14.3  

Best model   57.3 18 3.183  

Change    257.4 4 64.35  

F(4,18) =20.21678        

Slope + Ki different / not different  P=0.00001  s  

 

Appendix 4.12A.7: Comparison of survival curves for seeds harvested at 55 DAA 

F-test    Res dev Res d.f. Res Mean dev 

Common slope   182.5 14 13.04  

Best model    81.13 12 6.761  

Change    101.37 2 50.685  

F(2,12) =7.49667        

Slopes different / not different   P=0 .007719  s  

        

        

TEST 1 vs 3       

F-test    Res dev Res d.f. Res Mean dev 

Common line   228.8 16 14.3  

Best model   81.13 12 6.761  

Change    147.67 4 36.9175  

F(4,12) = 5.46036        
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Slope + Ki different / not different   P=0.00969  s  

 

In Appendix 4.12B.1-3, comparison of harvest dates within each irrigation treatment 

Appendix 4.12B.1 Comparison of survival curves for irrigation throughout 

TEST 1 vs 2 

F-test     Res dev Res d.f. Res Mean dev 

Common slope    376.3 48 7.839  

Best model    230.7 42 5.493  

Change     145.6 6 24.26667  

F(6,42) = 4.4177       

Slopes different / not different  P=0.00151  s  

   

   

TEST 1 vs 3         

F-test     Res dev Res d.f. Res Mean dev 

Common line    714.7 54 13.23  

Best model    230.7 42 5.493  

Change     484 12 40.33333  

         

F(12,42) =7.34267         

Slope + Ki different / not different   P< .00001  s  

         

 

Appendix 4.12B.2: Comparison of survival curves for irrigation ended 14 DAA  

TEST 1 vs 2 

F-test     Res dev Res d.f. Res Mean dev 

Common slope    255.2 48 5.316  

Best model    206 42 4.905  

Change     49.2 6     8.2  

         

F(6,42) = 1.671764          

Slopes different / not different  P=0.15187   n.s  

         

         

TEST 1 vs 3         

F-test     Res dev Res d.f. Res Mean dev 

Common line    1193    54 22.09  

Best model    206    42 4.905  

Change     987    12          82.25  

F(6,42) =16.7686         

Slope + Ki different / not different  P< .00001  s 
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Appendix 4.12B.3: Comparison of survival curves for irrigation ended 28 DAA 

TEST 1 vs 2 

F-test     Res dev Res d.f. 

 

Res Mean dev 

Common slope    252.6 48 5.263  

Best model    169.3 42 4.031  

Change     83.3 6 13.88333  

         

F(6,42) = 3.444141         

Slopes different / not different  P=0.00741  s  

         

     

TEST 1 vs 3         

F-test     Res dev Res d.f. Res Mean dev 

Common line    744.5 54 13.79  

Best model    169.3 42 4.031  

Change     575.2 12 47.93333  

F(12,42) = 11.89118         

Slope + Ki different / not different  P< .00001  s 

       

 

 

Appendix 4.13: Comparison by Tukey’s test at 95% confidence intervals of longevity (p50, days) 

between irrigation treatments within each of seven harvests (DAA). Different letters within a 

harvest indicate significant differences amongst irrigation treatments. 

 

Irrigation treatment Harvest (DAA) 

13 18 27 34 42 49 55 

Control (T1) 

ended 14 DAA (T2) 

ended 28 DAA (T3) 

9.1a 

9.7a 

9.2a 

16.0a 

16.4a 

15.5a 

17.5a 

15.6a 

15.7a 

20.4a 

20.1a 

20.3a 

21.9c 

5.1a 

12.0b 

16.9c 

8.6a 

8.2a 

15.7a 

19.7b 

17.7c 
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Period of storage (days) 

 
Appendix 4.14. Loss in viability (estimated by change in ability to germinate normally) of seeds of rice cv. Gleva harvested serially from 13-55 DAA 

during seed development in photoperiod glass-house (31.1/18.1℃;12h/12h, 12h/12hd-1 photoperiod) with different irrigation treatments of four 

blocks. Seeds were stored hermetically at 40℃ with the moisture content shown (m.c.); estimated seed longevity (p50) is also shown. 

 

 

 

 

Appendix 4.14A. Comparison of survival curves for seed harvest at 13 DAA 
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Appendix 4.14B. Comparison of survival curves for seed harvest at 18 DAA 

Period of storage (days) 
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Appendix 4.14C. Comparison of survival curves for seed harvest at 28 DAA 

Period of storage (days) 
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Appendix 4.14D. Comparison of survival curves for seed harvest at 34 DAA 

Period of storage (days) 
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Appendix 4.14E. Comparison of survival curves for seed harvest at 42 DAA 

Period of storage (days) 
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Appendix 4.14F. Comparison of survival curves for seed harvest at 49 DAA 

Period of storage (days) 
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Appendix 4.14G. Comparison of survival curves for seed harvest at 55 DAA 

Period of storage (days) 
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Appendix 4.15. Weather data of minimum (      ) and maximum temperature (       )(℃) in glass-house and relative humidity (…..) (%) outside the glass-house 

during June -September 2016. Block 1 and 2 (A); block 3 and 4 (B). 
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CHAPTER 5 

Appendix 5.0 A. Analysis of variance of seed moisture content (%) of Aeron 1 (Cab 1) for 

different treatments at harvest maturity (42 DAA). 

 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Treatment 5 1.2668 0.25336 84.31 <.001 

Residual 6 0.01803 0.00301     

Total 11 1.28483       
 

Appendix 5.0 B. Analysis of variance of seed dry weight (mg) of Aeron 1 (Cab 1) for different 

treatments at harvest maturity (42 DAA). 
 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Treatment 5 0.25731 0.05146 28.41 <.001 

Residual 6 0.01087 0.00181     

Total 11 0.26818       
 

Appendix 5.0 C. Analysis of variance of ability of seed to germinate normally (%) of Aeron 1 

(Cab 1) for different treatments at harvest maturity (42 DAA) by (angular transformed data). 

 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Treatment 5 0.38665 0.07733 4.98 0.038 

Residual 6 0.09322 0.01554     

Total 11 0.47986       

 

Appendix 5.1 A. Analysis of variance of seed moisture content (%) of Aeron 1 (Cab 2) for 

different treatments at harvest maturity (42 DAA). 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Treatment 5 0.8815 0.1763 13.01 0.004 

Residual 6 0.08128 0.01355     

Total 11 0.96278       
 

Appendix 5.1 B. Analysis of variance of seed dry weight (mg) of Aeron 1 (Cab 2) for different  

treatments at harvest maturity (42 DAA). 

 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Treatment 5 0.4722806 0.09446 203.78 <.001 

Residual 6 0.0027812 0.00046     

Total 11 0.4750618       
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Appendix 5.1 C. Analysis of variance of ability of seed to germinate normally (%) of Aeron 1 

(Cab 2) for different treatments at harvest maturity (42 DAA) (angular transformed data). 

 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Treatment 5 0.62481 0.12496 6.76 0.019 

Residual 6 0.11091 0.01849     

Total 11 0.73572       

 

Appendix 5.2 A. Analysis of variance of seed moisture content (%) of Gleva (Cab 1) for 

different treatments at harvest maturity (42 DAA). 

 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Treatment 5 17.9743 3.594854 2819.24 <.001 

Residual 6 0.00765 0.001275     

Total 11 17.9819       

 

Appendix 5.2 B. Analysis of variance of seed dry weight (mg) of Gleva (Cab 1) for different 

treatments at harvest maturity (42 DAA). 

 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Treatment 5 1.64025 0.32805 91.14 <.001 

Residual 6 0.0216 0.0036     

Total 11 1.66185       

 

Appendix 5.2 C. Analysis of variance of ability of seed to germinate normally (%) of Gleva 

(Cab 1) for different treatments at harvest maturity (42 DAA) (angular transformed data). 

 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Treatment 5 1.99697 0.39939 31.02 <.001 

Residual 6 0.07725 0.01287     

Total 11 2.07421       

 

Appendix 5.3 A. Analysis of variance of seed moisture content (%) of Gleva (Cab 2) for 

different treatments at harvest maturity (42 DAA). 

 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Treatment 5 3.53082 0.70616 36.36 <.001 

Residual 6 0.11652 0.01942     

Total 11 3.64734       

 

Appendix 5.3 B. Analysis of variance of seed dry weight (mg) of Gleva (Cab 2) for different 

treatments at harvest maturity (42 DAA). 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Treatment 5 1.46075 0.292151 137.13 <.001 

Residual 6 0.01278 0.00213     

Total 11 1.47354       
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Appendix 5.3 C. Analysis of variance of ability of seed to germinate normally (%) of Gleva 

(Cab 2) for different treatments at harvest maturity (42 DAA) (angular transformed data). 

 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Treatment 5 1.99697 0.39939 31.02 <.001 

Residual 6 0.07725 0.01287     

Total 11 2.0742       

 

 

In Appendices 5.4-5.7, different models are compared to describe the seed survival curves 

fitted by probit analysis 

Test 1= Best fit model; test 2= Common slope model; test 3= Common line model: Not 

significant shown as (ns, P >0.05); significant (s, P <0.05). 

 

Appendix 5.4: Comparison of survival curves for Aeron 1 seeds (Cab 1) harvested at 42 DAA. 

 

 

 

 

 

 

 

TEST 1 vs 2      

F-test     Res dev Res d.f. Res Mean dev 

Common slope  390.8 47 8.314 

Best model  332.3 42 7.912 

Change   58.5 5 11.7  

F(5,42) = 1.47877      

Slopes different / not different? P=0.21717 
 

ns 
 

  

TEST 1 vs 3      

F-test     Res dev Res d.f. Res Mean dev 

Common line  446.7 52 8.591 

Best model  332.3 42 7.912 

Change   114.4 10 11.44  

       

F(10,42) = 1.4459       

Slope + Ki different / not different P=0.194326 
 

ns 
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Appendix 5.5: Comparison of survival curves for Aeron 1 seeds (Cab 2) harvested at 42 DAA. 

 

TEST 1 vs 2      

F-test     Res dev Res d.f. Res Mean dev 

Common slope  495.1 47 10.53 

Best model  366.5 42 8.727 

   128.6 5 25.72  

       

F(5,42)= 2.9472       

 

Slopes different / not different? P=0.022782 
 

s 
 

  

TEST 1 vs 3      

F-test     Res dev Res d.f. Res Mean dev 

Common line  1281 52 24.63 

Best model  366.5 42 8.727 

Change   914.5 10 91.45  

  

F(10,42)= 10.479    

Slope + Ki different / not different P<0 .00001 
 

s 
 

  

 

Appendix 5.6: Comparison of survival curves for T1 (Control) of Gleva seeds (Cab 1) 

harvested at 42 DAA. 

TEST 1 vs 2      

F-test     Res dev Res d.f. Res Mean dev 

Common slope  118.7 47 2.525 

Best model  60.88 42 1.449 

Change   57.82 5 11.564  

    

F(5,42)= 7.9807       

Slopes different / not different? P=0.022782 
 

s 
 

  

TEST 1 vs 3      

F-test     Res dev Res d.f. Res Mean dev 

Common line  809.8 52 15.57 

Best model  60.88 42 1.449 

Change   748.92 10 74.892  

F(10,42) = 51.6853       

Slope + Ki different / not different P<0 .00001  s  
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Appendix 5.7: Comparison of survival curves for T1 (Control) of Gleva seeds (Cab 2) 

harvested at 42 DAA. 

TEST 1 vs 2      

F-test     Res dev Res d.f. Res Mean dev 

Common slope  222.6 47 4.735 

Best model  147.5 42 3.513 

Change   75.1 5 15.02  

       

F(5,42)= 4.2756       

     

Slopes different / not different? P=0.003116 
 

s 
 

  

TEST 1 vs 3      

F-test     Res dev Res d.f. Res Mean dev 

Common line  577.1 52 11.1 

Best model  147.5 42 3.513 

Change   429.6 10 42.96  

     

F(10,42)=12.2289   

Slope + Ki different / not different P<0 .00001 
 

s 
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Appendix 5.8.  Flowering frequency (number of panicles beginning to anthese each day) of 

indica rice cv. Aeron 1 after sowing; Cab 1 (…) and Cab 2 (─). 

 

Appendix 5.9 Flowering frequency (number of panicles beginning to anthese each day) of 

japonica rice cv. Gleva after sowing; Cab 1 (…) and Cab 2 (─). 
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Appendix 5.10. Relative humidity of cab 1 (…) and cab 2 (─) at 28/20 ℃. In cv. Aeron 1, the 

period 0-42 DAA was 90-132 DAS in both cabs. In cv. Gleva, the period 0-42 DAA was 114-

156 DAS in cab 1, and 122 to 164 DAS in cab 2. 
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