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Abstract: Small embedded systems, in our case wearable healthcare devices, have significant
engineering challenges to reduce their power consumption for longer battery life, while at the same
time supporting ever-increasing processing requirements for more intelligent applications. Research
has primarily focused on achieving lower power operation through hardware designs and intelligent
methods of scheduling software tasks, all with the objective of minimizing the overall consumed
electrical power. However, such an approach inevitably creates points in time where software tasks
and peripherals coincide to draw large peaks of electrical current, creating short-term electrical
stress for the battery and power regulators, and adding to electromagnetic interference emissions.
This position paper proposes that the power profile of an embedded device using a real-time operating
system (RTOS) will significantly benefit if the task scheduler is modified to be informed of the electrical
current profile required for each task. This enables the task scheduler to schedule tasks that require
large amounts of current to be spread over time, thus constraining the peak current that the system
will draw. We propose a solution to inform the task scheduler of a tasks’ power profile, and we
discuss our application scenario, which clearly benefited from the proposal.

Keywords: wearable; low-power; embedded; task scheduler; healthcare

1. Introduction

The use of personalized healthcare devices, from wearable fitness trackers to smartphone apps,
has been of growing significance. We are now seeing artificial intelligence (AI)-based intelligent devices
address the daily challenges of those living with chronic diseases, including Alzheimer's, cerebral palsy,
chronic obstructive pulmonary disease (COPD), diabetes, hypertension, multiple sclerosis, obesity and
Parkinson's disease. One of the main challenges has been to embed enough computing power into
a wearable device while keeping the device lightweight. This places demanding constraints on the
battery weight and size, so power management is of utmost importance.

Power efficiency has been a long-running research challenge, and is often addressed though
low-power designs enabling a device to run for a long time between charges. This is particularly
important for devices aimed at addressing the needs of people living with dementia who may not
remember to charge the device.

To enable battery-powered devices to run for a long time between charges, research has focused
on hardware solutions, software solutions, and hybrids of the two. Achieving a low-power solution is
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often seen as a balance between reducing battery current by placing the central processing unit (CPU)
into a low-power idle state (i.e., sleep mode) versus the need for a CPU to consume battery current to
execute task code at full clock speed. While there are numerous smart devices on the market based
on common operating systems, these generic and ubiquitous devices are designed to support many
features, and as such, they have a relatively heavy use of power. On the other hand, research has
indicated that low-power embedded solutions can come from devices that are based on a real-time
operating system (RTOS) that has been targeted to support the resource-constrained embedded device
with their application solely focused on the use case.

An important element of an RTOS is the task scheduler (TS), which is responsible for deciding
when software tasks are to be executed (preemptively), and is typically based on an assigned task
priority [1]. In addition, power management is also an important design enabler for an RTOS. Modern
RTOS systems address this objective by only waking up the CPU when processing is required, and
enter a low-power idle state when all tasks have completed or are waiting. While dynamic voltage
frequency scaling (DVFS) and dynamic power management (DPM) are important and topical research
issues [2–4], our focus in this paper is concerned with small embedded devices that typically can
only be either running or idle, and only use one core voltage. It has been also shown that when the
TS places a system into idle, the battery current is reduced, enabling certain battery chemistries to
recover some charge [5], potentially up to 20%. Therefore, such duty cycling is easily enabled using
RTOS mechanisms.

Li et al. [6] presented a dynamic task scheduling algorithm focusing on energy reduction. The work
considered the dynamic scheduling of algorithms to obtain a global minimization of power in a cloud
computing platform.

Liu et al. [7] considered a delay optimal task scheduling technique on a mobile device to minimize
the power of a local CPU load or to offload a task to a cloud edge server. Computation tasks were
scheduled based on the queueing state of a task buffer, the execution state of the CPU, and the state
of the transmission unit. Their algorithm searched for an optimal solution that minimizes the global
power consumption, but of course, the search itself consumed power.

Ghofrane et al. [8] used a neural network (NN) to obtain a global minimized power schedule,
while Li and Wu [9] presented an ant colony optimized (ACO) search method for their task scheduler.
While both approaches produce global power savings, the application of such schemes are directed
toward higher-end computing systems rather than wearable healthcare devices due to the considerable
power needed to perform the optimizing search.

Nguyen et al. [10] presented interesting work by considering various algorithms for task scheduling
for the Internet of Things (IoT) by considering completion time and operating costs. While the work
itself was not concerned with power scheduling, it is possible that the concepts presented may also be
used for power management.

Ahmad et al. [11] presented a formal method for the evaluation of real-time task scheduling in
mission critical systems. Such research will be useful to medical IoT systems, but they did not consider
power management.

Zagan et al. [12] presented scheduling of tasks via the use of a hardware architecture as opposed
to a software-based RTOS.

Singh et al. [13] considered task scheduling for data centers by considering process time flow in
order to minimize the overall energy consumed by the data center. The work presented an interesting
power model, but the focus of the work was to minimize overall energy, not constrain peak current.

Ahmad et al. [14] noted that as small embedded devices have limited resources (power and
memory), then an RTOS should consider the required tasks to produce minimum CPU power that still
gives correct operation. The work presented a resource-aware approach to minimize tasks based on
device profiles. A power profile for each device is an interesting idea, but again, the focus of the work
was the global minimization of CPU power, not to constrain peak current.
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Chowdhury and Chakrabarti [15] presented interesting work by considering power profiles for
battery-operated systems in order to maximize the residual charge left in the battery. Their system used
dynamic voltage scaling (DVS), which is currently only present on high-end CPUs, and not applicable
in our case with the current technology level. Again, this work was useful to create overall power
savings, but did not constrain peak current demands.

It is clear from the literature that where electrical power is concerned, the previous research
objectives have been to schedule tasks to globally minimize the consumed power, not to constrain
peak power. To the authors’ knowledge, no work has considered task scheduling for the context of
constraining peak electrical current. This position paper proposes that low-power embedded systems,
particularly wearable healthcare devices where battery operation is paramount, can significantly
benefit when the software task scheduler embedded in the operating system is informed of the current
drain for each task, so that higher-current tasks can be separated and executed over time in order to
guarantee a maximum peak current drain. Constraining the peak current aids in the design of the
internal regulator and battery management circuits. It also enables energy harvesting systems and
brownout recovery due to lower peaks of current in the device’s startup condition. In this paper,
we present how the need for such a system was realized through our real-life application scenario, and
then present our general proposal to address the issue.

The paper is organized as follows: Section 2 discusses the development of the concept of the need
for power-aware schedulers to reduce peak power. Section 3 presents our proposed solution, Section 4
presents a discussion, and Section 5 presents our conclusions.

2. Application Scenario

The position statement from this paper is derived from experience in creating the wearable device
used in the SPHERE (https://www.irc-sphere.ac.uk) project. SPHERE was a large interdisciplinary
research project to create technology and algorithms for monitoring people for residential healthcare
with the objective of enabling people to live in their home for longer. The SPHERE architecture
integrates environmental, video, and wearable sensors into a smart hub and backbone network [16]
enabling intelligent processing and data-driven decisions from the fusion of the sensor data and
data mining.

The SPHERE wearable [16] was specifically designed for low-power operation to enable pervasive
monitoring; otherwise, behaviors could be influenced. It was based on a Texas Instruments CC2650
(Dallas, TX, USA) [17] system on chip (SoC) supporting either Bluetooth 4.2 [18] (often called Bluetooth
low energy (BLE) or Bluetooth smart) or 802.15.4 [19]. The SoC contains an ARM Cortex-M0 CPU
dedicated to controlling just the radio interface and an ARM Cortex-M3 CPU for hosting the application
code. The SPHERE wearable also contained a FLASH memory device [20] for local permanent storage,
two low-power accelerometers [21] allowing for gyro-free 3D spatial measurements [22], and an
inertial measurement unit (IMU) [23]. The CC2650 does have an internal DC–DC convertor in the SoC,
allowing the SoC to be powered from 1.8 V–3.8 V. However, a high performance and efficient external
buck convertor [24] was used to step down the voltage from a 100-mA lithium polymer (LiPo) battery
(typically 4.2 V to 3.6 V) to 1.8 V for the SoC core. The ability to wirelessly charge the LiPo battery via
Qi was also included. The wearable was programed using an RTOS [25].

The SPHERE wearable was configured to use the BLE radio in a non-connected mode [26].
The wearable application packaged the sensed movement, battery voltage, and SoC core temperature
measurements into a non-connectable BLE advertisement packet (ADV), which was detected by passive
BLE hubs spread across the residence. In BLE, devices advertise their presence by transmitting on
the advertising channels (37, 38, and 39) in sequence [26]. Room hubs capture the encapsulated data
and forward the data to be fused with the video data. Typically, the wearable lasted for four weeks
on one charge when transmitting one BLE ADV packet per second, while variants of more frequent
transmissions were also obtained. The SPHERE wearable in the above configuration worked well
when deployed.

https://www.irc-sphere.ac.uk
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Then, the SPHERE wearable was required to be used in a different set of experiments on monitoring
people with Parkinson’s disease in their own home continually for three days, with the aim of capturing
movement events called near-falls [27], which are signature movements that occur prior to an actual fall.
This application required the IMU to continually sample movement at 60 Hz and store the data to the
local FLASH for download three days later. An interrupt was generated by the IMU 60 times a second
to request that the CPU read the IMU’s data. As the battery current when writing a single page of data
to the FLASH was 12.4 mA (SoC core current plus FLASH page write current), then the movement
data was not in this case streamed over BLE in order to save power, enabling three-day operation.

The battery current profile when reading data from the IMU and writing the data to a FLASH
page is given in Figure 1 over the whole IMU interrupt service routine (ISR). In Figure 1, point (a)
indicates that before the IMU interrupt, the CPU is in its idle state; therefore, the 1.2-mA wearable
device battery current is dominated by the IMU, which is always on. When the interrupt from the IMU
occurs, the SoC changes from its low-frequency (LF) clock to the high-frequency (HF) clock at point (b).
Once the HF clock is running, the CPU is fully operational to execute code using the HF clock with
the battery current increasing to 5.2 mA. The data in the IMU is read via the SoC SPI bus at point (c),
post-processed at point (d), and then, the data is written to local FLASH memory at point (e), resulting
in a significant peak of battery current (12.4 mA). Then, the SoC returns back to idle while the IMU is
still running at point (f).
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Figure 1. Current profile of the wearable over the inertial measurement unit (IMU) interrupt service
routine (ISR). (a) is the idle current with IMU always on (1.2 mA); point (b) is where the system on
chip (SoC) wakes up to process the ISR (2.8 mA). Then, the SoC enables the high-frequency clock;
point (c) is where the SoC reads the IMU data over the SPI bus, and point (d) is where the IMU data is
post-processed (5.2 mA); point (e) is where the IMU data is stored in the FLASH memory using a page
write process (12.4 mA); and point (f) is where SoC then returns to idle with just the IMU running.

In our near-fall detection application, a connectable BLE mode was used to enable a
smartphone/tablet to control the wearable over BLE via an app enabling the user to start/stop
the logging, and to download the movement data. Therefore, the wearable advertised its presence
using a connectable BLE ADV process once per second, requiring the transmissions of three peaks
from 10.5 mA to 12 mA, as shown in Figure 2, over point (g). A user can connect to the device to start
the logging process, and then disconnect, leaving the device logging to the FLASH memory over three
days while the device periodically advertises its presence for a host to connect to the device.
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Figure 2. Current profile of just the latter part of the IMU ISR followed by a Bluetooth low energy (BLE)
advertisement packet (ADV) process. Point (g) is the three transmissions on each of the three BLE ADV
frequencies. Of note is that the FLASH write process point (e) and the BLE ADV process point (g) are
separated in time, extending the current drain into that of period (f), as depicted in Figure 1.

However, it was found that the device would brownout after 24 h of successful operation. After
investigations, we realized that the ADV transmission process was asynchronous to the operation of
the FLASH page write process. When both the BLE ADV and the FLASH write processes occurred
at the same time, then the current drawn from the Buck convertor contained the SoC core current,
the current to write to the FLASH, and the current required for the BLE ADV transmission, as can be
seen in Figure 3, point (h). By using the external buck to drive the SoC core at its required 1.8 V in
order to minimize power losses, then the consequence was that when a large instantaneous current
is drawn by the wearable, then the Buck convertor took time to respond, and the SoC core voltage
dropped, causing the brownout.
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Figure 3. Current profile of just the latter part of the IMU ISR where the BLE ADV process occurs over
the same time as the first BLE ADV transmission. Point (h) is now the summation of the SoC current,
the FLASH write current, and the BLE ADV transmit current (18.8 mA).
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Application Scenario Solution

The issue of the brownout, in this case, was simply solved by synchronizing the ADV transmission
process with the FLASH write process, such that the ADV transmission occurred spaced in-between
successive FLASH write processes, allowing the buck time to recover. Thus, it removed the large peak
of current by spreading the current drawn from the buck over time.

It was these experiments and solutions that have led to our position in this paper of proposing
task schedulers in embedded systems to be aware of the current (power) requirements for each task,
and for the scheduler to schedule tasks based not only on task priority, but also to separate in time tasks
that have large peak currents, thus constraining the maximum current drawn at any time. In effect,
this process associated a peripheral’s electrical current profile with a given software task. Such an
approach does not itself save any power; rather, it constrains the peak current drawn.

3. Proposed Modifications to RTOS Task Parameters

From the literature, it was clear that while there are many works that have focused on the creation
of task schedulers to schedule tasks with the objective of globally minimizing electrical power, there are
no works that have focused the task scheduler to constrain peak electrical current. The placement of
such a constraint would not only simplify the power delivery circuits of wearable devices, but also
have advantages in EMI reduction.

While Ahmad et al. [14] proposed that an RTOS should consider the required tasks to produce
minimum global CPU power via a resource-aware approach based on device profiles, we propose
that a scheduler can be informed of the required current consumption for each task when the task is
instantiated to enable the task scheduler to then separate higher current tasks over time.

The design and modification of operating system task schedulers is outside of the scope of this
work. Rather, we propose the position that there are significant advantages to be gained in the power
delivery of wearable devices if task schedulers were made aware of the current required for each
task. In order to create such a task scheduler, then the task scheduler would need to be informed of
an expected electrical current profile for each software task. Clearly, a software task itself requires
current for the CPU to perform the task, but may also use a peripheral device (e.g., the case of a FLASH
memory page write) and the associated current to perform that task. In the case where the required
peripheral current may be of relatively short duration to the overall software task, then the task can be
split into multiple concurrent tasks, as was the application scenario presented in Section 2.

In order to create software tasks, each task needs to be instantiated in runtime though the scheduler.
The typical task instantiation code is given in Figure 4. It can be seen in Figure 4 that a structure
taskParams is created to contain the task parameters required, including the task stack TaskStack
(of size TASK_STACK_SIZE) and task priority. Then, the task scheduler can construct the new task in
the scheduler in runtime using the information in taskParams and the address of the task.
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As parameters are used to define the task, then an additional parameter, which was in this paper
called the additional_current, may be added to the structure to pass the expected additional current
(of defined units) that needs to be taken into consideration when the task runs (due to the peripheral
or radio transceiver action), as shown in Figure 5. In this way, tasks can then be scheduled with the
full knowledge of the required current that will be drawn when that task is ran, thus allowing for the
scheduling of tasks to constrain the peak current. The FLASH write task sends a command to the
FLASH device to start its internal process of transferring the page memory into the FLASH memory,
and it is when this transfer process occurs that the FLASH draws a large current. Hence, the FLASH
write task has been deliberately kept to a short duration so that we can approximate the FLASH write
task to have constant current (the FLASH write current) across the whole of the task. A compile-time
directive can be used to indicate the acceptable peak current, or target constrained peak current for
a given system, with the scheduler arranging the tasks to meet the target constrained peak current.
In the case of the scheduler being unable to schedule the tasks given the peak current constraint, then a
runtime error can be generated in the same way as a RTOS running out of memory space to manage
new instantiated tasks.
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to inform the task scheduler of the required additional current (in this case 12 mA) that will be drawn when
that task runs.

In the specific case of Figure 3, where the FLASH write current occurred at the same time as the
BLE ADV transmission, we applied the concept of the scheduler to delay the FLASH write process, and
the results are presented in Figure 6. As can be seen in Figure 6, the FLASH write process, point (e), has
been delayed in time to separate its current from the BLE ADV transmission, point (g), thus successfully
constraining the peak current drawn from the battery.

Electronics 2019, 8, x FOR PEER REVIEW 7 of 10 

 

or radio transceiver action), as shown in Figure 5. In this way, tasks can then be scheduled with the 

full knowledge of the required current that will be drawn when that task is ran, thus allowing for the 

scheduling of tasks to constrain the peak current. The FLASH write task sends a command to the 

FLASH device to start its internal process of transferring the page memory into the FLASH memory, 

and it is when this transfer process occurs that the FLASH draws a large current. Hence, the FLASH 

write task has been deliberately kept to a short duration so that we can approximate the FLASH write 

task to have constant current (the FLASH write current) across the whole of the task. A compile-time 

directive can be used to indicate the acceptable peak current, or target constrained peak current for a 

given system, with the scheduler arranging the tasks to meet the target constrained peak current. In 

the case of the scheduler being unable to schedule the tasks given the peak current constraint, then a 

runtime error can be generated in the same way as a RTOS running out of memory space to manage 

new instantiated tasks. 

 

Figure 5. Modified method to instantiate task taskFxn with the addition of new parameter 

additional_current to inform the task scheduler of the required additional current (in this case 12 mA) 

that will be drawn when that task runs. 

In the specific case of Figure 3, where the FLASH write current occurred at the same time as the 

BLE ADV transmission, we applied the concept of the scheduler to delay the FLASH write process, 

and the results are presented in Figure 6. As can be seen in Figure 6, the FLASH write process, point 

(e), has been delayed in time to separate its current from the BLE ADV transmission, point (g), thus 

successfully constraining the peak current drawn from the battery. 

 

Figure 6. Use of the scheduler concept to delay the FLASH write current to run after the BLE ADV
transmission has occurred. Point (e) has now been delayed 5 ms to after the start of point (g), separating
the large current into two processes constraining the peak current.



Electronics 2019, 8, 789 8 of 10

4. Discussion

Through the application scenario that we have experienced, and the results presented in this paper,
we have formed a position statement to propose that there are significant advantages to be gained
when modifying embedded RTOS task schedulers to further consider the electrical current required to
process each task (including peripherals and radio transceivers) when performing the task scheduling
process. It is not just a case of scheduling to minimize power, but also to constrain peak power. Clearly,
the past work has been very successful regarding deciding when to run tasks in order to minimize the
overall electrical current. Such an approach is very useful to enable battery-powered devices to last
longer. However, tiny healthcare sensors are constrained by not only their overall available current,
but also by their ability to supply large peaks of current due to constrained batteries and voltage
regulators. The ability to spread the current drawn over time, rather than to have a large current peak,
has significant advantages to simplify power systems that drive wearable healthcare devices.

It is not surprising that in many application scenarios, there are peaks of activity over time
(e.g., sampled sensor data) that result in large peaks of current. However, as presented in this paper,
the scheduler can delay tasks to a point in the future to constrain peak current while not actually
consuming any more current.

The implications of a power-aware scheduler with the ability to constrain electrical current are
significant. Not only can such technology be used in smart watches and smart phones, but it can also
be used in the control of tasks in smart cars, where considerably large peaks of current can be present.

5. Conclusions

This paper has considered the use of task scheduling in the context of constraining peak electrical
current in embedded systems, particularly power sensitive wearable healthcare devices. We have
shown that it is possible that such devices can, at a given time, draw peak currents leading to short-term
peak demands on batteries and power circuits, ultimately causing supply voltage drops and brownouts,
and difficulties in energy harvesting systems.

We propose that an RTOS task scheduler should consider not only the task priority to decide when
to schedule tasks, but also the power (current) demands of each task. To avoid large peaks in current,
this research work associated an electrical current profile to a software task. Therefore, the objective of
the scheduler is to separate over time tasks requiring large current drains rather than schedules to
reduce the global power drain. Our task scheduler can delay tasks that have large current profiles so
as to constrain the current drawn from the supply within a given limit.

By constraining the peak power current that a device may draw, this then enables simpler power
supply designs, energy harvesting, and can reduce electromagnetic interference effects from large
pulses of current.
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