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Abstract 

Uncertainty information in natural hazard forecasts is increasingly being explicitly 

communicated. This study was designed to determine whether different ways of 

communicating uncertainty graphically affects decisions and interpretations of forecasts and 

whether expertise was a factor in decisions and interpretations from forecasts explicitly 

showing uncertainty. In a hypothetical decision-making task regarding ice thickness and 

shipping, 138 experts and non-experts received ice-thickness forecasts in four different 

presentations expressing uncertainty: worded probability, spaghetti plot, fan plot, and box 

plot. These forecasts contained no measures of central tendency. There was no consistent 

difference in decision or best-guess forecast (deterministic ice thickness forecast based on the 

forecast representation) between the different forecast representations. However, participants 

interpreted different amounts of uncertainty across the different forecast representations. 

Experts made significantly more economically rational decisions than non-experts, 

interpreted lower best-guess forecasts, and inferred significantly more uncertainty than non-

experts. These results suggest that care be taken in choosing how uncertainty is represented in 

forecasts, especially between expert and non-expert audiences. 

Keywords: Communication, Uncertainty, Decision Making 
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1. Introduction 

Because of the devastating effects natural hazards can have on lives and property, it is natural 

to try to forecast these events to lessen negative impacts. However, natural hazard forecasts 

are uncertain by nature due to imperfect observations and models (Galesic et al., 2016) as 

well as the intrinsic chaos of the natural system. Rather than giving a deterministic (i.e. 

single-value) forecast, some natural hazard forecasts are now given with measures of 

uncertainty. The measures of uncertainty include range forecasts (e.g., high temperature of 

68–74°F) and likelihood of occurrence (30% chance of rain), among others, and are designed 

to communicate the confidence of the forecasts to the users. 

The addition of uncertainty to natural hazards forecasts has been shown to help users interpret 

complex information in a way that is useful to decisions. For example, Nadav-Greenberg and 

Joslyn (2009) provided temperature forecasts and asked participants to decide whether or not 

to protect roads against ice. Participants’ decisions were more economically rational when the 

forecasts included uncertainty information. These participants also actively chose to use 

uncertainty information: when given a deterministic forecast and the choice to use uncertainty 

information, 85% of participants chose to use uncertainty information (Nadav-Greenberg and 

Joslyn, 2009). Other decision-based studies have found that lay people can successfully 

interpret uncertainty information for use in decision-making in situations such as interpreting 

a 5-day temperature forecast (Roulston and Kaplan, 2009), deciding whether to protect fruit 

from frost or releasing water from a reservoir (Morss et al., 2010), or using river flood 

defences (Ramos et al., 2013). 

Although uncertainty information has been shown to help decision-making, there are many 

different ways of expressing uncertainty information, which may lead to different 

interpretation of the information. For example, Henrich et al. (2015) tested interpretation of 

earthquake risk in terms of frequencies and time frames (1600 dead in 500 years, 10% chance 

of 1600 dead in 50 years, 2 deaths per year) and sample frame (1.9 deaths per 100,000, 19 

deaths per million). They found that relating the risk to a time frame and stating a probability 

associated with it (e.g., 10% chance of 1600 dead in 50 years) was found as riskier than other 

ways of framing the risk, even though the risk was the same across presentation modes. 

Additionally, the phrase “there is a 30% chance of rain tomorrow” leads to multiple different 

interpretations, such as 30% of the day it will rain, 30% of the area will experience rain, or on 

30% of days like this one, it rained (Gigerenzer et al., 2005; Abraham et al., 2015). 

However, worded communication is not the only way forecasts are disseminated. Because 

natural hazards vary over time, time series are a straightforward and therefore common way 
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of communicating forecasts. Therefore, communication of uncertainty in graphical form is 

also important. Similar to expressing uncertainty verbally, graphically displaying uncertainty 

can be done in many different ways, also leading to different interpretations. For example, in 

a study testing three map-based tornado probability forecasts (deterministic polygon, five-

probability gradient, and ten-probability spectrum) with university students in the United 

States, the deterministic polygon promoted the highest overall fear and protective action (Ash 

et al., 2014). However, there was an increased response in the highest risk zones for the 

gradient and spectrum forecasts, showing participants were more likely to take protective 

action and were more fearful if they were located in a high-risk area if given these forecasts 

(Ash et al., 2014). When testing between different formats of box plots to predict voter 

turnout, snowfall, and payout from a fund, Correll and Gleicher (2014) found that participants 

could make adequate decisions using the box plots, but that their responses changed if subtle 

graphical changes were made to the box plot, such as adding a point to the graph and asking 

the likelihood of an outcome relative to that point. Similarly, when interpreting temperature 

data between different styles of line graphs (e.g., random lines, line with bands around, line 

with error bars), participants tend to infer normal distributions around points along the line 

graphs, but the distribution of uncertainty inferred around each point changed based on the 

way uncertainty was presented (Tak et al., 2015). 

However, different forecast representations do not always lead to different decisions. Nadav-

Greenberg and Joslyn (2009) found that decisions on de-icing roads given temperature 

forecasts were no different when comparing between visual box plots and worded frequency. 

Similarly, when comparing visualisations communicating wildfire risks, participants’ 

decisions changed very little when they were given plenty of time to consider their decisions 

(Cheong et al., 2016). However, under time pressure, they made more rational decisions by 

using a representation with a colour-filled multi-boundary map and the least rational 

decisions using worded probability and single boundary maps (Cheong et al., 2016). 

There are three aspects of previous research that warrant further exploration. First, most of 

the research listed above compared decisions given different forecast representations for 

forecasts familiar to the user (e.g., temperature, Nadav-Greenberg and Joslyn, 2009). 

However, familiarity with forecasts can introduce personal bias into decisions and inferences 

(e.g., Tversky and Kahneman, 1974). Therefore, further research should be conducted on 

natural hazard decisions unfamiliar to users to reduce bias. Second, there is a discrepancy in 

previous research on whether there are significant differences in interpretation of forecast 

information if it is given in different formats. Third, many studies are conducted on members 
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of the public (e.g., Morss et al., 2010), students (e.g., Savelli and Joslyn, 2013), or expert 

groups (e.g., Cox et al., 2013), but rarely comparing the responses between expert and public 

groups (e.g., Doyle et al., 2014). Other studies used expert and stakeholder groups for a very 

specific hazard (e.g., Thompson et al., 2015; Mulder et al., 2017). In real-time decisions, both 

experts and non-experts may be using the same information. It is therefore important to 

compare how experts and non-experts interpret forecast information from different types of 

graphical forecast representations. 

The purpose of this research is to conduct a decision-based survey on an unfamiliar hazard to 

determine how decisions and interpretations of forecast information differ between different 

forecast representation and between expert and non-expert groups. Specifically, this paper 

seeks to answer the following questions: 

1. How does the presentation of uncertainty in forecast representations explicitly 

showing uncertainty affect participants’ interpretation of, and decisions based on, this 

forecast? 

2. Is there a difference in interpretation of, or decisions based on, forecasts explicitly 

showing uncertainty between experts and non-experts? 

We hypothesize that the interpretations and decisions will change given different forecast 

representations because they may cause the user to focus on different aspects of the forecast 

(e.g., a fan plot may focus the user on extreme values more than a box plot). We also 

hypothesize that experts will perform better in decision tasks and interpret the forecasts 

differently than non-experts because of their experience with this type of information. 

 

2. Methods 

2.1. Survey Instrument 

In the survey, which was implemented both on paper and online, participants were told they 

were the manager of a vegetable company which ships its vegetables across an often-frozen, 

fictional strait. Based on 72-hour ice-thickness forecasts, participants were asked to choose 

which ship to use: a small ship (costing a fictional £1,000) which could crush through ice up 

to 1-meter thick or a large ship (costing a fictional £5,000) which could crush through ice up 

to 5-meters thick. If the ice was too thick for the small ship, there would be an additional 

£8,000 charge due to vegetable spoilage. No real monetary incentives were involved in the 

survey and no results of actual ice thickness were given during participation. 

Ice thickness was chosen for the decision task because these are not standard forecasts and 

were unlikely to have been used by our participants in the past, meaning the participants were 
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not biased by past experience of these forecasts (e.g., Tversky and Kahneman, 1974). 

Participants did not receive any training on how to interpret the forecasts. 

The decision question was classified as correct or incorrect based on economic rationality. 

Based on the costs and losses given to participants, the forecast probability at which it was 

economically rational (according to expected value theory, Bernoulli, 1954) to choose the 

large ship was 56%. Participants were also asked their single-value (or best-guess) forecast 

for ice thickness 72 hours from now, given the forecast. They were given a short line to input 

their open-ended response. Participants were not limited to any degree of precision and some 

responded to 0.001 m. The purpose of this question was to allow participants to interpret a 

central tendency of the forecast to help test their interpretations. Participants also indicated 

the maximum and minimum ice thickness they expected in 72 hours. This question was 

designed to bound participants’ forecasts and show how much uncertainty they were 

interpreting into the forecast. 

In the survey, there were five forecast representations: deterministic line (not analysed here), 

worded probability, spaghetti plots, fan plots, and box plots (Figure 1). The worded 

probability was used as the control condition in the survey. Although there are many more 

ways to communicate uncertainty information, including different wordings (such as 

frequency versus proportions, e.g., Henrich et al., 2015), these representations were chosen 

based on representations commonly used to communicate uncertainty in hazard information 

over time. Each forecast representation was created to represent one of three probabilities of 

ice thickness exceeding 1 meter: 30%, 50%, and 70%. These probabilities were defined by 

the spaghetti plot, where the number of forecasts exceeding 1 meter corresponded to the 

probability (e.g., three of ten forecasts exceeding 1 meter represented a 30% probability of 

exceeding 1 meter). The fan and box plots were derived from the 10th, 25th, 75th, and 90th 

percentiles of the spaghetti plot. Participants would have been able to deduce that the 

probability at which it was economically rational to choose the large ship was >56% from the 

spaghetti plot, but would have to make an educated guess on the other forecast 

representations.  

In this study, participants from an online survey as well as participants from a supporting 

paper survey were used. The paper survey had a within-participant design, with each 

participant receiving 24 forecast representations (3 probabilities x 8 forecast representations: 

deterministic line, worded probability, box with and without a median line, fan with and 

without a median line, and spaghetti with and without a median line). The online survey was 

the same as the paper survey except that it was a between-participant design where 
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participants were randomly assigned to either receive uncertainty forecasts with or without 

median lines. All online survey participants received the worded probability and deterministic 

forecasts, resulting in 15 forecast representations (3 probabilities x 5 forecast representations: 

deterministic line, worded probability, box with or without a median line, fan with or without 

a median line, and spaghetti with or without a median line). The forecast representations at 

different probabilities were presented in random order for both the paper and online surveys 

to reduce ordering bias. Participants were asked to answer all questions for each forecast 

representation separately. Note that participants in both the paper and online surveys were 

able to take as much time as they needed to complete the survey questions. 

This article focuses on the effects of forecast representation, which was within-subject for 

both the paper and online survey samples. To control for anchoring, where the framing of the 

information presented may affect a participant’s answer (Tversky and Kahneman, 1974), only 

forecasts without median lines were used. Responses from the paper survey and online 

sample given forecasts without median lines were combined and used in the present study. 

Although paper survey participants were given forecasts both with and without median lines, 

the combination of the randomisation of the forecast representations and time limit in which 

the participants were asked to complete the survey (around 30 minutes) suggest that effect of 

receiving both forecasts was minimal on their responses. The omission of the online sample 

with median lines and inclusion of the paper survey results in 138 total participants. 

Data were cleaned such that illogical responses (e.g., maximum ice thickness smaller than 

minimum) and outliers were removed. Outliers were defined as best-guess forecasts greater 

than 3 m (the y-axis of the forecast representation only showed up to 3 m), maximum ice 

thickness greater than 6 m (twice the size of the y-axis of the forecast representation), and 

minimum ice thickness greater than 2 m (twice the ice thickness threshold the participants 

were trying to predict). Between 0 and 6 (0–4.8%) survey responses were removed per 

question for illogical responses and 0–6 (0–4.8%) per question for outliers. 

 

2.2. Participants 

Participants were surveyed in spring 2016. Targeted recruitment ensured that multiple user 

groups participated in the survey: the public, stakeholders who make weather and climate-

based decisions in their job, forecasters, and academics. Public participants were recruited in 

person at University of Reading open, public events and as they entered the University of 

Reading library. Online, public participants were recruited through social media. 

Stakeholders and forecasters were targeted through snowball sampling, with the survey link 
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being sent in personalized emails to partners from the Natural Environment Research Council 

(NERC) Probability, Uncertainty & Risk in the Environment (PURE) programme. Academics 

were recruited in person at University of Reading atmospheric science workshops and 

research group meetings. 

Participants were classified as either experts (participants who typically create forecast 

representations, i.e. academics and forecasters, n=79), or non-experts (participants who 

typically use representations, i.e. public and stakeholders, n=59). These classifications were 

based both upon which survey link they used (all participants received the same survey; 

different URLs were used based on targeted user-group) and job description given in 

response to demographic questions in the survey. 

The total 138 participants (49 from the paper survey, 89 from the online survey) comprised 

39 members of the public, 20 stakeholders, 19 forecasters, and 60 academics. These 

participants were aged 18-67, mean 36. There were 52 females, 82 males, and 4 who did not 

report their gender. 

 

 

3. Results 

3.1. Ship decision 

For the following section, the number of economically rational decisions (e.g., choosing the 

large ship when probability of exceeding 1 m was greater than 56%) for each forecast 

representation and experts and non-experts were tallied for a total of three possible 

economically rational decisions. For example, each participant received the worded 

probability representation for a 30%, 50%, and 70% probability forecast, giving three 

opportunities for making an economically rational decision (Figure 2). 

The interacting effect between forecast representation and expertise on the number of 

economically rational decisions was not significant (ANOVA1, all ANOVA results can be 

found in Table 1). There was a significant main effect of expertise on the number of 

economically rational decisions made (ANOVA2). Experts had significantly more 

economically rational decisions than non-experts (experts: mean=1.81, sd=0.74; non-experts: 

mean=1.67, sd=0.65, Figure 2). The main effect of forecast representation on the number of 

economically rational decisions was not significant (ANOVA3). 
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3.2. Best-guess ice thickness 

It should be noted that none of the forecast representations tested here included a measure of 

central tendency to control for anchoring. 

Participants’ best-guess forecasts differed based on forecast representation, probability, and 

expertise. The combined interacting effect between the three independent variables of 

forecast representation, probability, and expertise was significant (ANOVA4). 

There was a significant interacting effect of forecast representation and probability on best-

guess forecasts (ANOVA5). As probability increased, the forecast representation with the 

highest best-guess forecast changed (Figure 3). The forecast representation with the highest 

best-guess forecast was the fan plot at 30% (mean=0.97, sd=0.33), spaghetti plot at 50% 

(mean=1.15, sd=0.34), and the worded probability at 70% (mean=1.48, sd=0.36). This 

supports the finding above that forecast representation did not affect decisions. In other 

words, there was no consistent difference in perceived central tendency across forecast 

representations. 

There were no significant interacting effects between expertise and forecast representation 

(ANOVA6) or expertise and probability (ANOVA7). In other words, the best-guess forecast 

did not change by combinations of expertise and forecast representation or expertise and 

probability of exceeding 1-meter ice thickness. 

The main effects of probability and forecast representation were significant (ANOVA8 and 

ANOVA9, respectively). As probability increased, the best-guess forecast increased with 70% 

probability forecasts (mean=1.39, sd=0.31) significantly greater than 50% and 30% forecasts 

(t-test1 and t-test2, respectively; all t-test results can be found in Table 2). 

The forecast representation with the highest best-guess forecast was the fan plot (mean=1.17, 

sd=0.35), significantly larger than the worded probability, spaghetti, and box plot (t-test3, t-

test4, and t-test5, respectively). The best-guess forecasts for the worded probability, spaghetti, 

and box plots were not significantly different from each other (worded probability vs. 

spaghetti: t-test6; worded probability vs. box: t-test7; spaghetti vs. box: t-test8). 

The main effect of expertise on best-guess forecasts was significant (ANOVA10). Experts 

forecast a significantly smaller best-guess forecast (mean=1.06, sd=0.30) than non-experts 

(mean=1.24, sd=0.42). This suggests that experts and non-experts interpret different central 

values for the forecasts, which would in turn affect their decisions based upon these forecasts. 
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3.3. Interpreting uncertainty in ice thickness 

Participants were asked the maximum and minimum possible ice thickness for each given 

forecast. This information was converted to a range of uncertainty (maximum-minimum) 

among expert and non-experts and for each forecast representation and probability to 

determine whether their perception of the amount of uncertainty varied. 

The combined interacting effect between the three independent variables of forecast 

representation, probability, and expertise was significant (ANOVA11). There was a 

significant interacting effect between forecast representation and probability on the amount of 

uncertainty inferred (ANOVA12). At all probability levels, participants inferred the most 

uncertainty into the spaghetti plots Figure 4, (30%: mean=1.60, sd=0.57; 50%: mean=1.89, 

sd=0.59; 70%: mean=2.23, sd=0.64) followed by the box plots (30%: mean=1.48, sd=0.58; 

50%: mean=1.76, sd=0.65; 70%: mean=2.04, sd=0.68). At 30% and 70%, participants 

inferred more uncertainty into the fan plot (30%: mean=1.38, sd=0.50; 70%: mean=1.91, 

sd=0.55) than the worded probability (30%: mean=1.18, sd=0.86; 70%: mean=1.79, 

sd=1.12). However, at 50%, the amount of inferred uncertainty between the fan plot and 

worded probability was equal (fan: mean=1.68, sd=0.57; box: mean=1.68, sd=1.14). 

The interacting effects between expertise and forecast representation and expertise and 

probability were not significant (ANOVA13 and ANOVA14, respectively). In other words, the 

amount of uncertainty inferred did not vary significantly with different combinations of 

expertise and forecast representation or probability and forecast representation. 

The main effects of forecast representation and probability were significant in predicting the 

amount of uncertainty inferred (ANOVA15 and ANOVA16, respectively). 

The amount of uncertainty inferred into the forecasts increased with increasing probability, 

which corresponded to what was shown in the forecasts. The amount of uncertainty inferred 

for the 70% forecasts (mean=2.00, sd=0.77) was significantly greater than that for the 30% 

and 50% forecasts (t-test9 and t-test10, respectively). 

The amount of uncertainty inferred from the spaghetti plot was the largest when combining 

all probabilities (mean 1.91, sd=0.65, Figure 4). The amount of uncertainty inferred from the 

spaghetti plot was significantly greater than that for the box, fan, and worded probability (t-

test11, t-test12, and t-test13, respectively). The amount of uncertainty inferred for the box plot 

was second highest, controlling for probability and expertise, significantly greater than the 

fan and worded probability representations (t-test14 and t-test15, respectively). 
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There was a significant main effect of expertise on the amount of uncertainty participants 

interpreted from the forecasts (ANOVA17). Experts (mean=1.84, sd=0.75) inferred 

significantly more uncertainty than non-experts (mean=1.57, sd=0.75, Figure 4). 

 

4. Discussion 

Because previous research has shown that uncertainty information improves natural hazard-

related decisions, it is important to understand how different representations of uncertainty in 

forecasts influence decisions and interpretations of that information. The current research 

focused on how different forecast representations showing uncertainty affected participants’ 

interpretations from and decisions based on the forecast and if expertise affected 

interpretations and decisions for an unfamiliar type of forecast. Because the forecast was 

unfamiliar to the participants, the amount of personal bias in the forecasts was reduced. We 

believe these results to be transferrable to natural hazards and forecasts familiar to recipients 

of that information, however this is an area of possible future research. 

The forecast representations were specifically designed to show the amount of uncertainty in 

different ways based on the same information. Even though the way in which uncertainty was 

represented differed, there were no consistent differences between participants’ decisions or 

best-guess forecasts across forecast representations, contrary to our first hypothesis. One 

explanation for this finding could be that participants were given as much time as they 

needed to complete the survey, making these findings similar to those of Cheong et al. 

(2016). These differences were more salient across different probabilities of the forecast 

exceeding the ice thickness threshold of 1-meter. These results suggest that the way in which 

uncertainty is represented does not affect users’ interpretation of central tendency. Past 

research in natural hazard decision making has disagreed on whether changing forecast 

representation changes decisions. The results from this research are similar to previous 

research, which suggests that changing the forecast representation did not change decisions 

(e.g., Nadav-Greenberg and Joslyn, 2009; Cheong et al., 2016). These findings are contrary to 

Savelli and Joslyn (2013), who suggested that visualisations may be detrimental to decisions 

when compared with verbal methods of communication. However, our research only tested 

one form of verbal forecast. Further verbal formats could be tested in future. 

The only dependent variable which changed significantly with forecast representation was the 

amount of uncertainty participants inferred from the forecast. Participants inferred the most 

uncertainty in the spaghetti plot followed by the box plot, then the fan plot. Participants 

inferred the least amount of uncertainty for the worded probability representation at 30% and 
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70%. The amount of uncertainty inferred was equal between the fan plot and worded 

probability at 50%. This result suggests that, similar to previous literature with more familiar 

natural-hazard forecasts (e.g., tornado, temperature, hurricane, Ash et al., 2014; Tak et al., 

2015; Ruginski et al., 2015), interpretations of forecast information can be different when 

given different forecast representations for an unfamiliar hazard. Interpreting uncertainty 

differently depending on differing forecast representations could be problematic in real-life 

decision-making situations; for example, increasing coastal protection as an adaption to sea-

level rise. When uncertainty is not fully understood or considered, these adaptations may be 

more or less than what is necessary, either costing too much money or not providing enough 

protection. A limitation of this study is that only a single threshold was studied whereas in 

many real-life natural hazard scenarios, multiple thresholds exist. An area of future research 

would be to introduce multiple thresholds. 

The reason participants interpreted different amounts of uncertainty based on forecast 

representation is likely due to the design of the plots. The spaghetti plot explicitly showed 

single model outcomes whereas the fan and box plots smoothed that information into 

intervals (Figure 1). Similarly, when testing box plots, Correll and Gleicher (2014) found that 

the public interpreted points within the boxes to be more likely than those within the 

whiskers, a similar smoothing effect. 

An additional difference between the representations was that the spaghetti plot showed 

absolute minimum and maximum values whereas the fan and box plots showed the 10th and 

90th percentiles of values, as indicated in the keys on the plots. It is possible that participants 

did not adequately understand the fan and box plots or read the figure key and subsequently 

reported the same amount of uncertainty as they saw on the plot without adding some form of 

buffer to account for the 0-10 and 90-100 percentiles. Thompson et al. (2015) found that 

putting different information in the key did impact users’ interpretation of volcanic hazard 

maps and graphs, contrary to what was hypothesised herein. Further research is necessary to 

determine how the interpretation of the key affected the interpretation of uncertainty for these 

forecast representations. 

Participants consistently reported less uncertainty for the fan plot than the box plot, even 

though they were showing the same range of percentiles. This suggests that users of the 

information may interpret different amounts of uncertainty than is shown for different 

graphical forecast representations explicitly showing uncertainty. This is similar to findings 

comparing verbal modes of communicating uncertainty: different representations of the same 

uncertainty can be interpreted as more or less risky (e.g., Henrich et al., 2015). 
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Participants also consistently inferred less uncertainty for the worded probability forecast 

representation than other forecast representations. The worded probability was deliberately 

vague in this experiment, used as the control condition. It is unsurprising that the amount of 

uncertainty inferred for the worded probability was different than the other forecast 

representations because the worded probability forecast gave no indication of an actual 

predicted ice thickness. 

The second research question addressed in this paper was the effect of expertise on decisions 

and interpretations from the forecasts. Confirming our hypothesis, expertise significantly 

affected the value of the best-guess forecasts, which subsequently affected the decisions the 

participants made. Experts made more economically rational decisions than non-experts. In 

additions, experts inferred significantly more uncertainty than non-experts. These findings 

suggest that care should be taken in choosing which forecast representations are shown to 

non-expert audiences because they may interpret different amounts of uncertainty than expert 

audiences. These findings are contrary to Doyle et al. (2014), who found no differences in 

interpretations of probabilistic volcanic eruption forecasts between experts and non-experts. 

Differences in interpretations and decision-making between experts and non-experts could be 

due to the amount of experience each group has in using and making decisions with these 

forecast representations. However, previous research has been contradictory in what 

“experience” means. For example, both Roulston and Kaplan (2009) and Tak et al. (2015) 

tested numeracy as a predictor for making economically rational decisions. Tak et al. (2015) 

found numeracy affected decision making whereas Roulston and Kaplan (2009) found 

numeracy did not have an effect. 

In real-world situations, experts and non-experts are likely receiving the same information 

and may interpret that information differently. The results from this paper suggested that 

there was no one forecast representation that encouraged more economically rational decision 

making, even when controlling for expertise. In other words, there was no single forecast 

representation that enhanced an expert or non-expert’s decision. Therefore, we cannot 

recommend a particular forecast representation for expert or non-expert groups. It is possible 

that providing multiple forecast representations would help a user’s understanding of a best-

guess from the forecast. However, it is important to keep in mind that different forecast 

representations affect the amount of uncertainty inferred from the forecast (e.g., more 

uncertainty was inferred from the spaghetti and box plots than the fan plot and worded 

probability), so there is no one-size-fits-all solution. 
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5. Conclusions 

Uncertainty information is increasingly being used in communication of natural-hazard 

related information. This research sought to determine if the way in which uncertainty 

information was presented affected users’ interpretations of and decisions made using that 

information. The results suggest that changing the way uncertainty is shown in forecasts does 

affect the amount of uncertainty inferred from the forecast but does not change the decisions 

or central tendencies inferred from users. Results also suggest that experts and non-experts 

interpreted a different amount of uncertainty, different central tendency, and made different 

decisions based on the forecasts. These results suggest that deciding how uncertainty is 

represented should be based upon the type of audience receiving the information. 
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Captions 

FIGURE 1: The four forecast representations used in this analysis: (a) percent probability, 

(b) spaghetti plot, (c) fan plot, and (d) box plot. All forecasts represent the same information: 

three of ten forecasts show ice greater than 1-meter thick. The same plots were produced for 

50% and 70% chance of ice greater than 1-meter thick (not shown). The dotted line in each 

representation shows 1-meter ice thickness, the threshold based on which participants had to 

make decisions. 

FIGURE 2: Number of economically rational decisions per forecast representation 

(maximum 3). Responses of experts (academics and forecasters) and non-experts 

(stakeholders and public) are separated. Results are shown for the worded probability, 

spaghetti, fan, and box plots. The top and bottom of the whiskers represent the 90th and 10th 

percentiles, respectively. The top and bottom of the box represent the 75th and 25th 

percentiles, respectively. The bar in the box represents the median. The star represents the 

mean. Circles on either side of the whiskers are outliers. 

FIGURE 3: Participants’ best-guess forecast in meters for the (a) 30%, (b) 50%, and (c) 70% 

forecast. Responses of experts (academics and forecasters) and non-experts (stakeholders and 

public) are separated. Results are shown for the worded probability, spaghetti, fan, and box 

plots. The top and bottom of the whiskers represent the 90th and 10th percentiles, 

respectively. The top and bottom of the box represent the 75th and 25th percentiles, 

respectively. The bar in the box represents the median. The star represents the mean. Circles 

on either side of the whiskers are outliers. 

FIGURE 4: Same as in Figure 3, but for range (maximum-minimum) of ice thickness, in 

meters. The horizontal dashed line is the range of ice thickness shown on the graphic 

representations (except worded probability). 

 

TABLE 1: Summary of ANOVA tests. 

TABLE 2: Summary of t-tests, all of which were Bonferroni-corrected t-tests.  
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Fig. 1: The four forecast representations used in this analysis: (a) percent probability, (b) spaghetti plot, (c) 
fan plot, and (d) box plot. All forecasts represent the same information: three of ten forecasts show ice 

greater than 1-meter thick. The same plots were produced for 50% and 70% chance of ice greater than 1- 
meter thick (not shown). The dotted line in each representation shows 1-meter ice thickness, the threshold 

based on which participants had to make decisions. 
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Fig. 2 Number of economically rational decisions per forecast representation (maximum 3). Responses of 
experts (academics and forecasters) and non-experts (stakeholders and public) are separated. Results are 

shown for the worded probability, spaghetti, fan, and box plots. The top and bottom of the whiskers 
represent the 90th and 10th percentiles, respectively. The top and bottom of the box represent the 75th and 

25th percentiles, respectively. The bar in the box represents the median. The star represents the mean. 
Circles on either side of the whiskers are outliers. 
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Fig. 3: Participants’ best-guess forecast in meters for the (a) 30%, (b) 50%, and (c) 70% forecast. 
Responses of experts (academics and forecasters) and non-experts (stakeholders and public) are separated. 

Results are shown for the worded probability, spaghetti, fan, and box plots. The top and bottom of the 
whiskers represent the 90th and 10th percentiles, respectively. The top and bottom of the box represent the 
75th and 25th percentiles, respectively. The bar in the box represents the median. The star represents the 

mean. Circles on either side of the whiskers are outliers. 

A
cc

ep
te

d 
A

rti
cl

e

This article is protected by copyright. All rights reserved.



For Peer Review

 

Figure 4: Same as in Figure 3, but for range (maximum–minimum) of ice thickness, in meters. The 
horizontal dashed line is the range of ice thickness shown on the graphic representations (except worded 

probability). 
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TABLE 1: Summary of ANOVA tests.

 F p ŋ2 df

ANOVA1 0.61 0.612 0.21 3

ANOVA2 5.92 0.025 0.69 1

ANOVA3 0.29 0.835 0.10 3

ANOVA4 4.59 0.003 0.08 3

ANOVA5 7.18 <0.001 0.13 3

ANOVA6 0.14 0.938 <0.01 3

ANOVA7 1.24 0.266 <0.01 1

ANOVA8 67.33 <0.001 0.19 1

ANOVA9 10.44 <0.001 0.40 3

ANOVA10 33.00 <0.001 0.20 1

ANOVA11 4.59 0.003 0.08 3

ANOVA12 7.18 <0.001 0.13 3

ANOVA13 0.14 0.938 <0.01 3

ANOVA14 1.24 0.266 <0.01 1

ANOVA15 10.44 <0.001 0.18 3

ANOVA16 67.33 <0.001 0.40 1

ANOVA17 33.00 <0.001 0.19 1
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TABLE 2: Summary of t-tests, all of which were Bonferroni-corrected t-tests

 t p mean sd df

t-test1 21.66 <0.001 1.11 0.32 489

t-test2 34.52 <0.001 0.91 0.31 483

t-test3 2.41 0.05 1.14 0.44 323

t-test4 4.24 <0.001 1.12 0.39 382

t-test5 4.48 <0.001 1.11 0.28 378

t-test6 0.09 1.00 - - 326

t-test7 0.66 1.00 - - 325

t-test8 0.04 1.00 - - 383

t-test9 24.38 <0.001 1.41 0.65 480

t-test10 10.61 <0.001 1.76 0.75 470

t-test11 6.43 <0.001 1.76 0.67 371

t-test12 13.18 <0.001 1.64 0.59 369

t-test13 5.57 <0.001 1.65 1.08 295

t-test14 5.67 <0.001 - - 377

t-test15 2.73 0.02 - - 304
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