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Generalised early warning signal methods

Generalised early warning signals in multivariate and gridded data with an
application to tropical cyclones

J. Prettyman,1, a) T. Kuna,1 and V. Livina2
1)University of Reading, Whiteknights, Reading, RG6 6AX, UK
2)National Physical Laboratory, Hampton road, Teddington, TW11 0LW, UKb)

(Dated: 23 July 2019)

Tipping events in dynamical systems have been studied across many applications, often by measuring changes in
variance or autocorrelation in a one-dimensional time series. In this paper, methods for detecting early warning signals
of tipping events in multi-dimensional systems are reviewed and expanded. An analytical justification of the use of
dimension-reduction by empirical orthogonal functions, in the context of early warning signals, is provided and the
one-dimensional techniques are also extended to spatially separated time series over a 2D field. The challenge of
predicting an approaching tropical cyclone by a tipping-point analysis of the sea-level pressure series is used as the
primary example, and an analytical model of a moving cyclone is also developed in order to test predictions. We show
that the one-dimensional power spectrum indicator may be used following dimension-reduction, or over a 2D field. We
also show the validity of our moving cyclone model with respect to tipping-point indicators.

Many dynamical systems experience sudden shifts in be-
haviour, often referred to as tipping points or critical tran-
sitions. A volume of work is dedicated to detecting and
predicting these critical transitions, often making use of
generic early-warning signal (EWS) indicators based on
auto-correlation1,2 and increasing variance3,4. Similar in-
dicators based on other scaling properties of the time se-
ries, namely detrended fluctuation analysis5,6 and power
spectrum scaling7, have also been used. Other methods
have estimated parameters to fit a model to the data, both
for detecting critical transitions8–10 and for predicting fu-
ture transitions dynamics11,12.

I. INTRODUCTION

Early warning signal techniques generally are applied only
to univariate data, often one-dimensional time series from a
single data source or model output. In an effort to study mul-
tidimensional geophysical variables we here consider cases
where we have more than one time series, either because there
is more than one measured variable, or because a variable is
measured at several locations, or both of these simultaneously.
In the first case it may suffice to attempt an EWS detection
on each time series individually, but one can envision a sce-
nario where it is not possible to detect an EWS in X(t) nor
Y (t) but, considered together in some way, an EWS is vis-
ible. It may therefore be worthwhile to investigate the pos-
sibility of a two (or more) dimensional analogue to existing
one-dimensional techniques. In the case of gridded data it is
common to use Empirical Orthogonal Functions (EOF), also
known as Principal Component Analysis (PCA), to reduce the
dimensionality13,14, this technique has also been more specif-
ically applied to EWS methods1,12,15.
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There has been a large amount of work involving the use of
multiple data sources spread over a geographic area, such as
complex network analysis in climate16–18 which has been ap-
plied to the El Niño. In Refs. 19 and 20 the cross-covariance is
calculated between points on a grid inside a region of interest
(in this case, the El Niño basin) and points outside, in contrast
with the EOF method which considers the covariance of all
available points. Principal interaction and oscillation patterns
(PIPs and POPs) can be considered as extensions of the EOF
method and provide additional techniques for the dimension
reduction of complex systems21.

In Sec. II we review previous one-dimensional EWS re-
search, and then we review and analyse methods which may
be used to calculate an EWS with an input of two variables,
namely the use of EOFs for dimension-reduction (in Sec. III),
and the methods presented in Ref. 22 (in Sec. IV). In Sec. V
we use the example of the approaching tropical cyclone as a
test case for these methods. In Sec. VI we present a method
to visualise early warning signals in a dynamical system over
a 2D field, and apply this method to time series of variables
measured at geographically separated locations in the vicinity
of an approaching tropical cyclone. In Sec. VII we present a
novel stochastic model of a moving cyclone in order to test
the method.

II. EARLY WARNING SIGNALS IN TROPICAL CYCLONE
DATA

A number of techniques are available to detect an early
warning signal (EWS) in a dynamical system given time series
data as input4,6,10. Many such techniques detect changes in an
indicator (variance, autocorrelation or scaling properties) over
time by calculating the value of the indicator in a sliding win-
dow of N points, where N is typically in the order of 10% to
50% of the length of the series.

In Ref. 7 three tipping point indicators are compared: lag-
1 autocorrelation (ACF1), the detrended fluctuation analysis
(DFA) exponent, and a novel indicator (PS) based on the scal-
ing exponent of the power spectrum. The ACF1 indicator
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FIG. 1. The sea-level pressure (SLP) and wind speed (WS) time
series for all fourteen cyclones are shown (top row) with all series
centred so that the point of minimum pressure occurs at zero. The
mean ACF1 indicator is shown for both variables (middle row). The
mean PS indicator is shown for both variables (bottom row). We note
that the ACF1 indicator for the SLP variable does not appear to rise
before time zero, all other indicators rise to some extent.

is obtained by calculating the lag-1 autocorrelation function
(ACR) of a time series in a sliding window, the length of
which may be determined by a sensitivity analysis (see the
supplementary material). The DFA and PS indicators are ob-
tained similarly, but rather than the lag-1 ACR, either the DFA
exponent5 or power spectrum scaling exponent β is calcu-
lated. To obtain β , the slope of the power spectrum S( f ) of the
data is estimated and plotted on logarithmic axes23, we then
have the scaling relationship

S( f )∼ f−β , (1)

where f is the frequency and S is the spectral power. In this
study we have calculated the power spectrum scaling expo-
nent using the standard periodogram, obtained from the abso-
lute value of the fast Fourier transform.

These tipping point indicators are used to investigate early
warning signals in the sea-level pressure time series measured
at a fixed point during the approach of a tropical cyclone.
In this paper we study the same fourteen tropical cyclones,
but extend the scope to a second variable, wind speed. The
weather station data is obtained from the HadISD 2017 raw
data set24–28 with no further filtering, and no detrending, ap-
plied. The stations are chosen close to the coast, within a
radius of 10km of the cyclone’s landfall. We use both the
sea-level pressure and wind speed data for the purpose of in-
vestigating early warning signals in a two-variable system. In
Fig. 1 the time series of both variables are shown (centred on
the time of minimum pressure for each cyclone) along with
the ACF1 and PS indicators calculated in a window of 100
points (100 hours). We note that the ACF1 indicator provides
no early warning signal when applied to the sea-level pressure
series, nor a convincing one when applied to the wind speed
series. The PS indicator does increase prior to time zero in

both cases, the effect is more marked in the sea-level pressure
case. Since the two variables give distinct indicator series, it is
reasonable to study both, since one may provide information
that the other does not. In the following sections we provide
detailed analysis of this system.

III. EMPIRICAL ORTHOGONAL FUNCTIONS

The method of Empirical Orthogonal Functions (EOF)
is widely used in geosciences for the purpose of reducing
dimensionality29,30. This method has been used1 to reduce
the dimensionality of a data set prior to identifying an early
warning signal by calculating the ACF1 indicator in the now
one-dimensional time series.

The EOF method projects a multidimensional system onto
a new basis chosen such that the variance of the new first vari-
able is maximised, and the variance of the second variable is
maximal given the choice of the first basis vector, etc.. Here
we consider only the projection onto the first basis vector,
known as the first loading vector. This maximum-variance,
one-dimensional time series typically captures the interesting
features of the system, such as large changes in one of the
variables. It is not clear, however, that this will capture dy-
namical features important to the calculation of early warning
signals, such as changes over time in variance, autocorrela-
tion or spectral properties. Whilst the EOF method projects
a system onto the component with largest variance, what is
useful in the study of EWS’s is the size of the increment in
variance, autocorrelation, etc., not the size of the variance it-
self. It is not obvious that the component exhibiting the largest
variance increment will be similar to the component with the
largest variance. It is certainly not obvious when considering
other indicators such as autocorrelation.

To test the hypothesis that the first EOF score will capture
properties important to the calculation of early warning sig-
nals, we study the general linear dynamical system [xn] de-
scribed by

xn+1 = Bxn +Sηn (2)

where the ηn are column vectors with each element indepen-
dent and from a standard normal distribution. We control the
system with the condition that B is contracting, i.e. that all
eigenvalues are less than one, in this case the system has zero
mean in the long-term. If we instead say that B is such that,
as n increases, the first eigenvalue λ1 increases, then we have
a system with a bifurcation when λ1 = 1. Clearly, if there is
any early warning signal of this bifurcation, it will be most
apparent in the one-dimensional basis consisting of the first
eigenvector of B, since this is where the change in λ1, which
governs the bifurcation, will be observed. The early warning
signal will not be observed in any basis orthogonal to this one.
We therefore expect that, if EOF is a useful method to reduce
dimensionality prior to detecting an early warning signal, it
will project the series [xn] onto a first loading vector which
does not differ significantly from the first eigenvector of B.

We calculate the first loading vector according to the EOF
method, for the general system given in (2), by first finding
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the covariance matrix given by

C = E
[
(xn−E(xn))(xn−E(xn))

>
]

(3)

where we use the empirical mean to estimate the expected
value in each case. We also consider the long term limit of
the system, that is, we consider xn for N0 ≤ n≤ N rather than
0 ≤ n ≤ N, where N0 is chosen to be sufficiently large that
BN0 is negligible. In order to evaluate the matrix C we must
rewrite (2) as an explicit expression for xn in terms of x0:

xk = Bkx0 +

[
∞

∑
j=0

B jSηk− j−
∞

∑
j=k

B jSηk− j

]

= Bkx0 +

[
∞

∑
j=0

B jSηk− j−
∞

∑
j=0

B j+kSη− j

]

=
∞

∑
j=0

B jSηk− j−Bk

(
∞

∑
j=0

B jSη− j−x0

)
.

(4)

We find that the mean of x is zero and (3) is reduced to

C =
1

N−N0

N

∑
N0

[
xnx>n

]
. (5)

Here, we use the fact that E((ηn− j)(ηn−r)
>) is the identity

matrix where r = s and the zero matrix otherwise. We then
find that

E(C) =
∞

∑
j=0

B jSS>(B>) j. (6)

We now restrict our analysis to the two-dimensional case and
we also only consider the case where B is diagonal, which is
equivalent to requiring that B is diagonalisable. Since we are
interested in the system approaching the bifurcation when the
first eigenvalue of B is equal to one, we make the choice that
b11 ≈ 1 (from below), where bi j and si j are the elements of B
and S. It is then possible to calculate the eigenvectors of E(C)
which we can write in the closed form

E(C) =

 s2
12+s2

11
1−b2

11

s12s22+s11s21
1−b11b22

s12s22+s11s21
1−b11b22

s2
22+s2

21
1−b2

22

 . (7)

Here we have a symmetric matrix[
p q
q r

]
, (8)

whose eigenvectors are(
p− r±

√
(p− r)2 +4q2

2q

)
, (9)

where the positive square root corresponds to the largest
eigenvalue. We substitute the values in the matrix E(C)
(Eq. 7) and expand the square root and reciprocals in leading
order terms of (1− b11) up to the first order, since we have

said b11 ≈ 1 and hence 1− b11 is very small. The principal
eigenvector thus becomes(

s2
12 + s2

11

1−b2
11
− s2

22 + s2
21

1−b2
22

,
s12s22 + s11s21

1−b22

)>
, (10)

which we would expect to be equivalent to (1,0)>, given that
1/(1− b2

11) is very large. If S is diagonal then this is always
the case, otherwise it may be the case that this will be closer to
the direction of (0,1)> (corresponding to b22), but this is only
if s11,s12 are very small and s21,s22 are very large, that is, if
the leading eigenvector of the matrix SS> is close to orthogo-
nal to the leading eigenvector of B. In this case it is clear that
the largest variance will be on the second-component time se-
ries rather than the first-component time series, it is simply a
case of a very large noise obscuring the signal (in this case the
‘signal’ is the impending tipping point as b11 approaches 1).

As a consequence of this working, we find that the eigenval-
ues of E(C) become less distinct as the non-diagonal elements
of S become smaller. That is, when there is less correlation in
the noise terms, it becomes more difficult to determine which
is the principal eigenvalue, and therefore which eigenvector to
use as the first loading vector.

IV. EARLY WARNING SIGNAL OF BIFURCATION IN 2D
TIME SERIES

In Ref. 22, a method is introduced to anticipate bifurca-
tions in dynamical systems with more than one variable. The
method is intentioned as a higher-dimensional analogue of the
one-dimensional ACF1 indicator. Indeed, we note the similar-
ities between the equation used to calculate the lag-1 autocor-
relation coefficient a:

a =
∑t(xt+1xt)− x2

∑t(x2
t )− x2 , (11)

and the equation used in Ref. 22:

A =
∑t(xt+1x>t )−x2

∑t(xtx>t )−x2 . (12)

To illustrate the application of the method, we consider the
following example. The system described by (13) experiences
a Hopf bifurcation at µ = 0 if µ is made to vary with time to
approach zero from below.

ṙ = µr− r3,
θ̇ = 1+ r2.

(13)

The system has stable solution at r = 0 for µ < 0, which be-
comes unstable when µ ≥ 0. We may investigate the nature
of the bifurcation by studying the eigenvalues of the Jacobian
of the system equations. In Cartesian rather than polar coor-
dinates we have

J(x,y) =
(

µ− (x+ y)2−2x2 −1− (x+ y)2−2y2

1+(x− y)2 +2x2 µ− (x− y)2−2y2

)
. (14)
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FIG. 2. The Van der Pol system described in (18). (a) The mean
of 40 separate trials is shown with error bars of one standard devia-
tion. (b,c) The mean of the first Jacobian eigenvalues are also shown
plotted against µ , with error bars of one standard deviation. A Hopf
bifurcation occurs at µ = 0.

At the stable point r = 0 (i.e. (x,y) = (0,0)) this has complex
conjugate eigenvalues λ = µ± i. The system therefore expe-
riences a Hopf bifurcation as µ approaches zero from below,
characterised by the Jacobian eigenvalues moving from the
negative-real to the positive-real half of the complex plane.

In Ref. 22 a method is described to approximate these Ja-
cobian eigenvalues from the time series in x and y. The matrix
A (Eqn. 12) is used to linearise the system as

xt = Axt−1 + c+ εt , (15)

where c is a constant vector and εt is a white noise term, in
which A = I+ J(x?)∆t. The first order approximation

A = I+ J(x?)∆t ≈ exp(J(x?)∆t) (16)

is used to recover the Jacobian eigenvalues λk from the eigen-
values ak = |ak|exp(iϕ) of A, with the relations

R(λk) =
1
∆t

ln |ak| ,

I(λk) =
1
∆t

ϕk .

(17)

The eigenvalues λk are then, themselves, tipping point indica-
tors.

By doing this in a sliding window of appropriate length one
may note the change in the real part of the eigenvalues and
anticipate the bifurcation. Here, we consider another example

of a Hopf bifurcation, allowing us to apply this method in a
novel system, the Van der Pol oscillator

ẍ−µ(x− x2)ẋ+ x = η , (18)

where the stochastic forcing term η is white noise with stan-
dard deviation 0.01. We may also write (18) as a coupled
system of first order ODEs:

ẋ = µ
(
x− 1

3 x3
)
+ y ,

ẏ = −x+η .
(19)

The zero-noise system has a stable equilibrium point (ẋ = ẏ =
0) at (x,y) = (0,0) for µ < 0 which becomes the centre of a
stable limit cycle for µ > 0. The Jacobian of this system is
given in (20). Evaluating the Jacobian matrix J at the stable
point (0,0), we find two complex-conjugate eigenvalues λ =
1
2 (µ ±

√
µ2−4). We therefore expect that the real part of

both of the eigenvalues, equal to µ/2, will approach zero as
µ → 0, i.e. as the system approaches the bifurcation,

J(x,y) =
(

µ(1− x2) 1
−1 0

)
. (20)

We integrate the system in (19) using a time dependent
µ(t) = −0.35 + 0.001t, from t = 0 to t = 400. Using the
method in Ref. 22, we estimate the first eigenvalue of the Ja-
cobian in a sliding window of 100 points. The mean (with
error bars of one standard deviation) of 40 such experiments
is show in Fig. 2. We note that the real part of the eigenvalue
increases as expected and provides an early warning signal of
the impending Hopf bifurcation.

V. COMPARISON OF METHODS APPLIED TO
TROPICAL CYCLONE DATA

We now apply the methods reviewed in the previous sec-
tions to observed geophysical data, namely the sea-level pres-
sure (SLP) and wind speed (WS) data from weather stations
at the landfall locations of fourteen tropical cyclones, as pre-
viously used in Ref. 7. The physical dynamical system of
the atmospheric conditions during the approach of a tropi-
cal cyclone exhibits a tipping point, an abrupt qualitative
change in the dynamical system4,35, as the cyclone passes
by and the SLP dramatically decreases. This tipping has
not been modelled as a bifurcation in a dynamical system
as has species extinction36 and is potentially not a bifurca-
tional or noise-induced tipping point6,37 which are often com-
monly the targets of early warning signals research2,4. How-
ever, the principles of tipping point analysis, such as criti-
cal slowing down, are sufficiently general4,35 that techniques
based on these principles have been applied to a wide variety
of physical systems2,38 without prior knowledge of the tip-
ping present in the system as bifurcational, noise-induced or
merely transitional9,37. The example of the approaching trop-
ical cyclone is used here as a test of tipping point techniques
in a novel physical system, the choice of which is supported
by the observation that the abrupt decrease in SLP (see Fig. 1)
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Indicator
Data ACF1 PS

Sea-level pressure -0.2 0.79
Wind speed 0.91 0.70

EOF 0.45 0.72

TABLE I. Comparison of the gradient of the indicator of the time
series data in a 30-hour window before the tropical cyclone event. We
compare sea-level pressure and wind speed data alone (as presented
in Fig. 1) to the first EOF score of the two series (Fig. 3). In the case
of each indicator (ACF1 and PS), the indicator applied to the first
EOF score has a gradient somewhere between the two considered
alone.

constitutes a tipping point in the general sense35,39, and previ-
ous results7 showing moderate success with the use of the PS
indicator applied to the one-dimensional SLP time series. By
inspection, the tipping appears to be transitional9 rather than
bifurcational because of the smooth approach of the cyclone
which causes a steady decrease in SLP over a (relatively short)
period of a few hours.

For each tropical cyclone, we apply EOF to the two times
series (SLP and WS) in order to reduce the dimension to
one. The time series in both variables are first mean-centred,
as per the EOF method, and also normalised in order to
non-dimensionalise. A preliminary sensitivity analysis was
performed in order to ascertain a general optimal weighting
scheme for the variables in the EOF procedure but, with these
data, it was not possible to determine an optimal scheme. The
two variables are therefore weighted equally, after normali-
sation. We are then able to apply the one-dimensional EWS
techniques, the ACF1 and PS indicators7 (see Fig. 1), and then
take the mean over all cyclones. The result is shown in Fig. 3:
we notice that the rise in the ACF1 indicator (top panel, Fig. 3)
is more noticeable than when using only the SLP (middle-left
panel, Fig. 1), but is not so noticeable as when using only
the wind speed (middle-right panel, Fig. 1). The combina-
tion of the two variables using EOF has given an indicator
series which appears to be somewhere between the two sep-
arate indicator series, although it is not equivalent to simply
taking the mean of the two and does give more weight to the
more visible indicator. The PS indicator series (bottom panel,
Fig. 3) is more similar to the PS indicator series using only
SLP (bottom-left panel, Fig. 1). We quantify the gradient of
the indicator by evaluating the Mann-Kendall coefficient of
the mean indicator series in the 30-hour window before time
zero, using the equation

N−1

∑
i=1

N

∑
j=i+1

sign(X j−Xi) , (21)

where X is the time series of the indicator. The result is sum-
marised in table I.

The method of approximating Jacobian eigenvalues has
previously been applied to dynamical systems where the gov-
erning equations and the type of bifurcation are known22, and
so we know in advance what type of signal we should ex-
pect, such as with our Van der Pol example (Fig. 2). How-
ever, we have noted that the method was intentioned as a

FIG. 3. EWS analysis of the first EOF score of tropical cyclone data
using scaling indicators. The mean ACF1 indicator (top) and PS
indicator (bottom) of the first EOF scores calculated from the wind
speed and sea-level pressure.

two-dimensional analogue to the lag-1 autocorrelation which
is applicable in wide variety of dynamical systems exhibiting
tipping points2,9,37,38 due to the generality of the the critical
slowing down phenomenon4,35. It is reasonable, therefore, to
test this technique on our SLP/WS system in which the ACF1
indicator increases prior to the tropical cyclone event. Fig. 4
shows the result of applying this method to the SLP and WS
variables simultaneously. As with the EOF method, the time
series in both variables are mean-centered and normalised in
the implementation of this method. The real parts of the first
and second Jacobian eigenvalues are shown (top and bottom
panels respectively). We note that the real part of the first
eigenvalue increases prior to the event, similar to the ACF1
and PS indicators in Fig. 3.

VI. ANALYSIS OF MULTIPLE TIME SERIES

Here we make an attempt to use the one-dimensional EWS
indicators7 applied to multiple time series data distributed
over a geographic area. By using more data we expect to im-
prove the performance of the EWS techniques. We also inves-
tigate the spatial variation in the indicator series, potentially
with a view towards detecting a spatial pattern which may pro-
vide a warning of the arrival of the tropical cyclone. We in-
vestigate eight different cyclones which have made landfall on
the Caribbean or Florida coastlines of the United States, these
are given in table II. Hurricane Andrew appears twice (labeled
Andrew 1 and Andrew 2) because it made landfall twice: over
Florida and then, two days later, over Louisiana. We therefore
have a total of nine hurricanes. Again, we use the HadISD
2017 data set24–28 and take data from stations within 200km of
the landfall. Only hurricanes making landfall over the United
States mainland were selected because there is usually a rel-
atively high density of data points supplied by the dataset, in
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FIG. 4. EWS analysis of tropical cyclone data using the method
described in Ref. 22. The real part of the first and second Jaco-
bian eigenvalues (λ1 and λ2). We note that the real part of the first
eigenvalue appears to increase, although not significantly, prior to the
event.

Name Date Region Entry point
Andrew 1 24 August 1992 Florida [25.4N, -79.0E]
Andrew 2 26 August 1992 Louisiana [29.8N, -91.6E]
Katrina 29 August 2005 Louisiana [29.3N, -89.6E]
Wilma 24 October 2005 Florida [25.3N, -82.7E]
Gustav 1 September 2008 Louisiana [29.3N, -90.8E]
Matthew 7 October 2016 Florida [26.7N, -79.0E]
Harvey 25 August 2017 Texas [25.2N, -94.6E]
Irma 10 September 2017 Florida [24.5N, -81.5E]
Nate 8 October 2017 Louisiana [29.3N, -89.2E]

TABLE II. The dates and locations of each of the nine hurricanes
considered. The entry point coordinates column gives the points at
which each hurricane entered the region we are considering in each
case (defined by a minimal rectangle containing all of the weather
stations used). Hurricane Andrew appears twice (labeled Andrew 1
and Andrew 2) because it made landfall twice: over Florida and then,
two days later, over Louisiana.

comparison to Mexico and other Caribbean nations.
For each of the nine hurricanes, we take the SLP variable

data from all available stations in the region supplied by the
HadISD 2017 dataset. We then calculate the PS indicator se-
ries for each pressure series and asses the slope of that indi-
cator series, using the Mann-Kendall coefficient, in a window
of approximately 30 hours before the hurricane enters the re-
gion. If the behaviour here is similar to the behaviour of the
mean of the PS indicator applied to the individual sea level
pressure series (Fig. 1 bottom left) we would expect that an
upward trend in the indicator (i.e. a high value of the Mann-
Kendall coefficient) will be detectable for each location within
30-hours travelling time of the hurricane. We expect that the
slope of the PS indicator series would be high at points where
the hurricane is very close and lower at points further from the
point where the hurricane enters the region.

The slope of the PS indicator is assessed, in each case, us-

ing the Mann-Kendall coefficient given by (21). The window
size used in the calculation of the PS indicator series, and the
length of the window in which the Mann-Kedall coefficient is
evaluated, are determined for each hurricane through a sen-
sitivity analysis (see supplementary material). Here, the in-
crease in the indicator is usually seen in a 30-50 hour window
before the event, which is consistent with our expectations.
We therefore measure the Mann-Kendall coefficient of the in-
dicator series (for the time series at each spatial location, sep-
arately) in a 30-50 hour window before a time Tentry which is
the time at which the cyclone enters the region under study,
that is the time at which the minimum pressure is attained at
the first spatial location on the cyclone’s path. We expect to
see a high coefficient value (i.e. a large increase in the indica-
tor) at locations close to the entry point.

Also, according to the sensitivity analysis, we note that the
PS indicator is most useful when using a window size which
is an odd multiple of six, consistent with the result of the sim-
ilar sensitivity analysis in Ref. 7. This is likely due to tidal
oscillations in the data. We have chosen an indicator window
size of either 90 or 102 points depending on the hurricane.

The value of the Mann-Kendall coefficient of the PS indica-
tor is plotted as a filled contour plot over the geographic area.
In Fig. 5 we present a summary of the results: in each case,
the contour map is rotated so that the forward path of the Hur-
ricane is moving from the bottom to the top of the image. Hur-
ricane tracks, obtained from the NOAA HURDAT2 dataset31,
are shown by the black line. We are generally able to see
a movement of the hurricane from areas with a high value of
the Mann-Kendall coefficient, towards areas with lower value,
as we expect. Whilst this doesn’t provide a useful EWS, it
is clear that the PS indicator is more robust when applied to
many time series in a region than when applied to individual
series, as in Fig. 1.

VII. A SIMPLE MODEL OF THE APPROACHING
CYCLONE

Ref. 32 presents a simple analytic model of the pressure (p)
profile in hurricanes:

p(r) = pc +(pn− pc)exp
(
−A
rB

)
, (22)

where r is the radial distance from the centre of the hurri-
cane, pc and pn are the central and ambient pressures, A and
B are parameters to be determined by fitting to observed data.
Ref. 32 fits the model to three Australian hurricanes: Tracy
(December 1974), Joan (December 1975) and Kerry (Febru-
ary 1979). The values of parameters A and B are obtained
by fitting to sparse observations, particularly observations of
maximum wind speed Vm given by

Vm =

(
B(pn− pc)

ρe

)1/2

, (23)

and occurring at a radius Rw = A1/B.
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FIG. 5. Contour plots of PS indicator gradient for nine Atlantic hur-
ricanes on the Caribbean and Florida coastlines of the USA. left to
right: Andrew (Florida); Andrew (Louisiana); Katrina; Wilma; Gus-
tav; Matthew; Harvey; Irma; Nate. In each case, the slope of the
PS indicator is evaluated using the Mann-Kendall coefficient and the
value of this coefficient is plotted over the geographic area. Each
plot has been rotated so that the hurricane track is moving from the
bottom to the top of the image (shown by the black line, direction in-
dicated by thick black arrow). The locations of the weather stations
are shown by crosses; the grey areas fall outside of the polygon en-
closing the weather stations and are therefore not interpolated onto.

Here we present a similar model modified so that the pres-
sure is modelled at a fixed point in space as a function of time,
rather than a profile modelled at a fixed time as a function of
the distance from the hurricane centre. We are therefore able
to model the effect on sea level pressure (at a weather station,
for example) of an approaching hurricane. We use the values
A = 40 and B = 1 which are obtained by fitting to Hurricane
Katrina (2005) at peak intensity. We consider a fixed point at
distance d(t) from the hurricane centre at time t. In (22) we re-
place r by d(t) to introduce a time dependence. We assume the
hurricane moves in a straight line towards the fixed point with
a speed of v(t)kmh−1, in which case we have d(t) =

∫ t
0 v(s)ds.

For this model, a constant volocity will suffice: 18kmh−1 is
obtained by taking a mean of the tropical cyclones studied in
Ref. 7, we therefore use a velocity chosen uniformly from the
range [16,20] so that not all implementations of the model are
identical. The ambient pressure, pn, is given by

pn(t) = 1016+5η1 +1.6sin
(

2πt
12

+K
)
, (24)

where K is a random offset chosen uniformly in the range
[0,12], the sine wave models the 12-hourly tidal oscillations.
The central pressure is given by pc = 950+ 10η2. Values η1
and η2 are sampled from a standard normal distribution. The
reason for the inclusion of η1, η2 and the random offset K is
that we may wish to run the model multiple times and take the

mean of statistics over those simulations to obtain an ensem-
ble estimate. For this purpose, we would not want all of the
sine wave components to be aligned, nor for all the models to
have exactly the same initial parameters.

There is also a need to model the increasing PS indicator
value shown to exist in the pressure signal. We therefore add
a noise signal to the output in which the power spectrum scal-
ing exponent, α , increases over time. The maximum value
of α is greater for points closer to the cyclone track, and the
time at which the maximum value is reached is the time at
which the closest approach occurs, which we call Tmin. We
have used values such that α for t < Tmin−50 (more than fifty
hours before the minimum approach distance is reached). In
the 50-hour window before the minimum approach distance,
the value of α increase linearly from the background value
of 0.4 to a higher value α0 which takes the value 2 in cases
where the hurricane path passes directly over the grid-point in
question (an approach distance of zero) and decreases linearly
with increasing distance from the cyclone track, to a minimum
value of 0.4 for grid-points more than 200km distant.

The part of the noise signal with increasing α value is made
by concatenating 10 sub-series, each of length 1000 and with
a higher α value than the last (covering the range [0.4,α0]),
then sampling with an interval size chosen to give a series of
the desired length. All of the noise signals in the model are
generated by the coloured noise generation method detailed
in Ref. 33.

This artificial noise is then added to the model simply to
reproduce the increase in PS indicator without introducing
a large increase in the ACF1 indicator. That is, we have
parametrised the stochastic component of the model using the
behaviours of the indicators applied to the data presented in
Fig. 1.

We therefore have the model:

p(d(t)) = pc +(pn(t)− pc)exp
(
−A

d(t)B

)
+ηt , (25)

where d(t) distance to the centre of the hurricane at time t, pc
is the central pressure, pn(t) is the ambient pressure at time t
given by (24), A= 40 and B= 1 are fitted parameters, and ηt is
a noise term with changing power spectrum scaling exponent
as described above. In order to successfully model a tipping
point4,35, the noise term is relatively small compared to the
deterministic effect of the exponential term which governs the
abrupt transitional tipping9 from the high-pressure state to the
low-pressure state. For every point on a spatial grid we are
able to calculate the distance d(t) using simple geometry (we
model the hurricane as moving in a straight line), generate
the noise series η and then calculate the pressure at that point
using (25).

We model sea-level pressure at a single point in space
which is approached by a hurricane passing by at a distance
of 20km, the model uses a time-step of 0.05 hours and 100
implementations are evaluated. We then calculate the ACF1-
and PS indicators in a 100-hour sliding window in order to
compare with the results in Fig. 1 and in Ref. 7. The result
is shown in Fig. 6. We see that the ACF1- and PS indicators
behave similarly to the result from the real sea-level pressure
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FIG. 6. Model data (see (25)) and its EWS indicators. (top) 100
runs of the model with (middle) the mean ACF1 indicator and (bot-
tom) the mean PS indicator, shown with error bars of one standard
deviation.

data, and the pressure series itself also looks reasonable.
The model is then evaluated with a time-step of 0.05 hours

at 100 points in a ten-by-ten grid with 40km spatial separation
between points (giving a square of side 360km). The hurri-
cane is modelled as travelling from ’south’ to ’north’ from
400 hours before reaching the bottom of the grid up to the
point where it reaches the top of grid. The PS indicator of
the pressure signal for each grid-point is calculated in a 100-
hour sliding window (of 20,000 points). We then calculate the
PS indicator slope, evaluated using the Mann-Kendall coeffi-
cient in the exact same way as shown in the previous section
(Fig. 5), in the 30-hour window before the hurricane reaches
the bottom of the grid. Fig. 7 shows the mean over ten such
evaluations for ten separate runs of the model. We see that the
pattern is consistent with our expectations and also with the
general pattern of the analysis of real data in Fig. 5.

VIII. SUMMARY

The one-dimensional EWS techniques we have used
previously7 have been extended to a two-variable system by
first using EOF to reduce the dimension. We have shown
that in a general linear dynamical system it is likely to be true
that the EOF technique, which projects a system onto a vector
which maximises its variance, will also tend to project onto
the vector relevant to the tipping point. Because of this, it
is likely that typical EWS techniques would be useful in sys-

FIG. 7. Showing the mean over ten realisations of the model of the
PS indicator slope calculated using the Mann-Kendall coefficient.
The slope is evaluated for the PS indicator of the pressure signal
at each of 100 grid points with 20km spacing, in a 30-hour window
before the modelled hurricane reaches the bottom of the image. The
forward motion of the hurricane is shown by the black arrow.

tems where EOF dimension-reduction has been used. We have
demonstrated this with data from points close to tropical cy-
clones. The ACF1 indicator applied to the sea-level pressure
time series does not show any EWS, whereas when applied
to the wind speed data an increase can be seen in the mean.
When applied to the EOF of both variables, we are also able
to detect an increase. The result is also true of the PS indicator.
However, EOFs are “not designed to reveal the structure of the
time evolution of the [dynamical] system”21 and Principal os-
cillation patterns (POPs)34 may therefore be better suited to
EWS applications. This is an important future step in multi-
dimensional EWS detection. We have also applied the method
described imn Ref. 22 to the same tropical cyclone data and
found that there is detectable EWS.

We have also applied the one-dimensional PS indicator to
multiple time series distributed spatially. The PS indicator
does consistently rise in the 30-hour window before a hurri-
cane. In addition, a model of an approaching hurricane has
been presented in order to aid the study of the EWS indicator,
and it has been found to agree with the real data, confirming
our understanding of the statistics.

We suggest the methods studied in this paper for the
tipping-point analysis of multivariate time series data. Mul-
tivariate data may be analysed using one-dimensional indica-
tors, the most common of which are the variance and the lag-1
auto-correlation, after reducing the dimension using EOF. It
is also possible to use the eigenvalues of the Jacobian matrix
of the system as an indicator, which can be estimated from
the time series analogously to the one-dimensional indicator
methods22. In systems over a two-dimensional field (such as
geophysical gridded data), one-dimensional EWS indicators
may be evaluated at every point to produce a heat map of the
indicator over the area. This may provide a useful EWS; pro-
vide an insight into the performance of different indicators; or
provide insights into the statistical or dynamical properties of
the system (possibly for the purpose of modelling).

We have applied these methods to tropical cyclones and
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suggest that they can be applied to a variety of tipping-point
phenomena (such as landslides) where high-resolution data is
available.

SUPPLEMENTARY MATERIAL

See supplementary material for detail of the sensitivity
analysis performed prior to the application if the PS indica-
tor upon sea-level pressure data in Sec. VI.
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