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Abstract 

Brazil’s Araucaria tree (Araucaria angustifolia) is an iconic living fossil and a defining element of the 

Atlantic Forest global biodiversity hotspot. But despite more than two millennia as a cultural icon in 

southern Brazil, Araucaria is on the brink of extinction, having lost 97% of its extent to 20th Century 

logging. Although logging is now illegal, 21st Century climate change constitutes a new – but so far 

unevaluated – threat to Araucaria’s future survival. We use a robust ensemble modelling approach, 

using recently developed climate data, high-resolution topography and fine-scale vegetation maps, 

to predict the species’ response to climate change and its implications for conservation on meso- 

and microclimate scales. We show that climate-only models predict the total disappearance of 

Araucaria’s most suitable habitat by 2070, but incorporating topographic effects allows potential 

highland microrefugia to be identified. The legacy of 20th Century destruction is evident – more than 

a third of these likely holdouts have already lost their natural vegetation – and 21st Century climate 

change will leave just 3.5% of remnant forest and 28.4% of highland grasslands suitable for 

Araucaria. Existing protected areas cover only 2.5% of the surviving microrefugia for this culturally 

important species, and none occur in any designated indigenous territory. Our results suggest that 

anthropogenic climate change is likely to commit Araucaria to a second consecutive century of 

significant losses, but targeted interventions could help ensure its survival in the wild.  

 

Keywords 

Araucaria angustifolia; microrefugia; conservation; climate change; species distribution modelling; 

Brazil 

 

1. Introduction 

Araucaria angustifolia (Bertol.) Kuntze (hereafter ‘Araucaria’) is a member of an ancient genus 

that dates back to the Jurassic period (Forest et al., 2018). Its iconic candelabra shape defines 

southern Brazil’s Mixed Ombrophilous Forests (MOF) (Oliveira-Filho, Budke, Jarenkow, Eisenlohr, & 

Neves, 2014), a unique formation of the Atlantic Forest biodiversity hotspot (L. D. S. Duarte, 

Bergamin, Marcilio-Silva, Seger, & Marques, 2014; Myers, Mittermeier, Mittermeier, da Fonseca, & 

Kent, 2000; Oliveira‐Filho & Fontes, 2000). Araucaria has also been a cultural keystone (Cristancho & 

Vining, 2004; Garibaldi & Turner, 2004) for millennia: it “could be considered the ritual object par 

excellence” for the indigenous southern Jê people (Fernandes & Piovezana, 2015), and it is the most 

frequently-used plant species among Santa Catarina state’s rural population (Justen, Müller, & 
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Toresan, 2012). Presently, Araucaria’s chief economic value comes from its seeds (pinhão), which 

were a critical component in the southern Jê’s diets before European arrival (Corteletti, Dickau, 

DeBlasis, & Iriarte, 2015; Loponte, Carbonera, Corriale, & Acosta, 2016) and remain a popular food 

source in Brazil today (Adan, Atchison, Reis, & Peroni, 2016; Souza, Uarte de Matos, Forgiarini, & 

Martinez, 2010; Zechini et al., 2018) – 9,293 tonnes, worth more than US$5.5 million, were 

harvested in 2017 (IBGE, 2018). A National Pinhão Festival has been held in Santa Catarina for 30 

years, and Araucaria is celebrated on Paraná state’s coat of arms. But despite its long-standing 

cultural and economic value, 20th Century deforestation left Araucaria Critically Endangered 

(Thomas, 2013). 

Between 1910 and 1970, immigration from Europe, technological advances and Brazil’s growing 

economy sparked a logging boom which destroyed 97% of Araucaria’s habitat in just three 

generations, bringing the species to the brink of extinction (Carvalho & Nodari, 2010; Nodari, 2016; 

Thomas, 2013). MOF’s remaining fragments now cover only 12.6% of the biogeographic region once 

dominated by the forest (figure 1) (Ribeiro, Metzger, Martensen, Ponzoni, & Hirota, 2009). This 

precarious present situation, combined with its long evolutionary history, makes Araucaria 

angustifolia the third most evolutionarily distinct and globally endangered (EDGE) of the planet’s 

1,090 gymnosperm species (Forest et al., 2018). And despite its legal protections, it is now at risk 

from 21st Century climate change. MOF occupies the Atlantic Forest’s coldest and highest-altitude 

extremes (Neves et al., 2017), requiring high year-round rainfall, temperate summers and cold 

minimum temperatures (average annual temperature 12-20oC, with frequent winter frosts) (Alvares, 

Stape, Sentelhas, De Moraes Gonçalves, & Sparovek, 2013; Hueck, 1953; Oliveira-Filho et al., 2014; 

Sevegnani, Uhlmann, Gasper, Meyer, & Vibrans, 2016) – conditions likely to become rarer in the 

near future (Beck et al., 2018; Chou et al., 2014). Brazil is already experiencing anthropogenic 

warming of up to 1oC per decade, with rainfall regimes in the south disrupted as spring and autumn 

precipitation increases and winter rainfall declines (de Barros Soares, Lee, Loikith, Barkhordarian, & 

Mechoso, 2017). Continued warming and further changes to the quantity and seasonality of 

precipitation are predicted over coming decades (Chou et al., 2014), though their impacts on 

Araucaria’s remaining populations have not yet been tested. Indeed, no species in the genus 

Araucaria and none of the 14 highest ranked EDGE gymnosperm species – many of them with similar 

climatic requirements and recent population histories to A. angustifolia – have had their spatial 

responses to 21st Century climate change examined. 

There is a growing recognition, however, that modelling species’ responses to changes at the 

macroclimatic scale (1-100km) may fail to account for how individual organisms experience local-

level climate (Ackerly et al., 2010; Ashcroft, 2010; Dobrowski, 2011; Hannah et al., 2014; Keppel et 
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al., 2012; Lenoir, Hattab, & Pierre, 2017). Fine-scale (1-100m) topography can modify both the speed 

and magnitude of environmental changes: shallow aquifers and lithologic contrasts can provide 

year-round moisture even when rainfall is reduced (McLaughlin et al., 2017); sheltered slopes have 

reduced rates of evaporation relative to those exposed to wind and direct sunlight (Ashcroft, 

Chisholm, & French, 2008; Ashcroft & Gollan, 2012); and convergent terrain permits the pooling of 

cold, moist air (Ashcroft & Gollan, 2012; Daly, Conklin, & Unsworth, 2010). When the “relict 

climates” (Dobrowski, 2011) in such locations enable a population to persist in a generally less 

suitable landscape they are referred to as microrefugia (Ashcroft, 2010; Hannah et al., 2014; Rull, 

2009). As southern Brazil’s temperatures rise and its rainfall regime continues to change, these relic 

‘cold spots’ may become critical for Araucaria’s continued survival. Whether these areas will act as 

potential ‘stepping stones’ to newly available habitats, or merely ‘holdouts’ into 

which its populations retreat with little hope of recovery, their identification and protection is 

an urgent conservation priority (Hannah et al., 2014; Keppel et al., 2012; Morelli et al., 2016).  

Here we develop species distribution models for Araucaria angustifolia for the first time, using two 

different climatic datasets to project the species’ responses to 21st Century climate change, and 

incorporate ultra-fine scale topographic variables to investigate the role of cold spot microrefugia in 

moderating these. We then use high-resolution maps of remotely-sensed natural vegetation cover 

and the locations of existing protected areas to assess the conservation situation of these most 

resilient habitat patches. 

 

2. Methods 

To assess the role of microrefugia in promoting Araucaria’s resilience to 21st Century climate change, 

we first built ensemble species distribution models using established methodologies with climate 

data from Worldclim (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005) and CHELSA (Karger, Conrad, 

Böhner, Kawohl, Kreft, Soria-Auza, et al., 2017) (~800m resolution). We then generated a further 

ensemble model (‘CHELSA+’) using CHELSA climate data and three topographic variables (relative 

elevation, exposure of surfaces to prevailing wind and to direct insolation) inferred from a 30m-

resolution elevation model. These models estimated Araucaria’s ecological niche at present and in 

2070 under two emissions scenarios – RCP4.5 (relatively optimistic) and RCP8.5 (pessimistic, 

business-as-usual). We considered areas where Araucaria’s predicted probability of occurrence (pocc) 

was ≥75% in all three climate scenarios to be potential microrefugia. Using a map of remnant natural 

vegetation >3ha in area (Fundação SOS Mata Atlântica & Instituto Nacional de Pesquisas Espaciais - 

INPE, 2015), we identified potential microrefugia still within natural Campos (high-altitude 
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grasslands) and forest fragments, as well as the larger vegetation patches these microrefugial 

populations may support. These locations were then cross-referenced with a database of Brazilian 

protected areas (UNEP-WCMC & IUCN, 2018) to assess their conservation status. 

 

2.1. Occurrence, climate and topographic data 

We modelled Araucaria’s potential distribution between 25-30oS and 54-48oW. Presence and true 

absence records for Araucaria were taken from the Santa Catarina forest floristic 

inventory (IFFSC), a state-wide, systematic survey of natural forests using 4,000 m2 sample 

plots spaced 5-10 km apart (Alexander Christian Vibrans, Sevegnani, Lingner, de Gasper, & Sabbagh, 

2010). Overall, 1,670 individual Araucaria trees >10cm diameter at breast height were 

identified in the survey, of which we used one presence record per plot. 

Additional occurrences from Misiones province (Argentina), Paraná and Rio Grande do Sul were 

obtained from the Global Biodiversity Information Facility (GBIF, 10th January 

2018, https://doi.org/10.15468/dl.7b5jat). After cleaning coordinates from GBIF, this combined 

dataset yielded 106 presence records (83 from IFFSC plots, 23 from GBIF). Araucaria trees were not 

recorded in 334 IFFSC plots; these localities were treated as true absences, although Araucaria’s 

absence from these plots may be influenced by dispersal limitations, biotic interactions or 

disturbance history as well as climatic conditions. A random 20% of the locality data was set aside 

for model evaluation, with the remainder used for building and cross-validating the models. A Mann-

Whitney-Wilcoxon text showed no significant differences between these datasets in terms 

of latitude (p=0.48), longitude (p=0.82) or altitude (p=0.17). 

Climate data were downloaded from Worldclim v1.4 (Hijmans et al., 2005) and CHELSA (Karger, 

Conrad, Böhner, Kawohl, Kreft, Soria-Auza, R.W., Zimmermann, et al., 2017; Karger, Conrad, Böhner, 

Kawohl, Kreft, Soria-Auza, et al., 2017) at 30 arc-second resolution. We used climate 

change projections for 2070 (average of 2061-2080, RCP4.5 and 8.5 emissions scenarios) from 

three General Circulation Models (GCMs): CCSM4, CNRM-CM5, and NorESM1-M were chosen 

because they have been shown to perform well in Latin America (Hidalgo & Alfaro, 2015; Lovino, 

Müller, Berbery, & Müller, 2018; Yin, Fu, Shevliakova, & Dickinson, 2013) and were available for 

both Worldclim and CHELSA at the desired resolution. Best practice in SDM 

construction advocates restricting inputs to biologically relevant climate factors rather than using 

the full set of bioclimatic variables (Fourcade, Besnard, & Secondi, 2017). We selected six, based on 

the subset of all variables which yielded the lowest Bayesian Information Criterion (BIC): 

isothermality (bio3), minimum temperature of the coldest month (bio6), mean temperature of the 
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coldest month (bio11), annual precipitation (bio12), precipitation seasonality (bio15) and 

precipitation of the driest quarter (bio17). Multidimensional scaling showed these variables were 

not closely correlated (for correlation statistics, see figure S1), and they appear to be biologically 

relevant as Araucaria and MOF are associated with a constantly moist climate with no dry season, 

and constantly cool conditions with low minimum temperatures (Alvares et al., 2013; Hueck, 1953; 

Neves et al., 2017; Oliveira-Filho et al., 2014).  

Topographic variables (exposure to solar irradiation, exposure to prevailing winds, relative elevation) 

were derived from the 30m-resolution ASTER global digital elevation model, a product of METI and 

NASA, downloaded from https://earthexplorer.usgs.gov. These variables were chosen as MOF at 

high elevations has been observed to prefer sheltered valley slopes and river banks (Hueck, 1953; 

Robinson et al., 2018), and because these areas are likely to represent 

colder and moister microclimates (Ashcroft et al., 2008; Ashcroft & Gollan, 2012; Dobrowski, 2011; 

McLaughlin et al., 2017). The two exposure variables were calculated according to the methods in 

(Ashcroft et al., 2008) using azimuths of 315o (i.e. north-west) for solar irradiation (McCune, 2007; 

McCune & Keon, 2002) and 30o, 60o and 90o, subsequently averaged, for the region’s prevailing 

winds (Camargo do Amarante, Brower, Zack, & Leite de Sá, 2001). A point’s relative elevation has 

been shown to effectively predict the level of cold air pooling it experiences (Ashcroft & Gollan, 

2012); we followed Ashcroft and Gollan (2012) by calculating this as the difference between a pixel’s 

elevation and the minimum elevation within a 500m radius. Although these variables are themselves 

static (i.e. will not change over the time scales studied here), they interact with changeable climate 

variables and so were included as explanatory variables in our CHELSA+ model (following Stanton, 

Pearson, Horning, Ersts, & Reşit Akçakaya, 2012). 

 

2.2. Model construction 

Species distribution models (SDMs) were constructed using the biomod2 package (Thuiller, Georges, 

Engler, & Breiner, 2016) in R v.3.4.2 (R Core Team, 2017). We created ensemble models by averaging 

high-performing model runs from seven (CHELSA+) or eight (Worldclim, CHELSA) algorithms: 

generalised linear models (GLMs), generalised additive models (GAMs), artificial neural networks 

(ANNs), maximum entropy (Maxent (Phillips, Anderson, Dudík, Schapire, & Blair, 2017)), generalised 

boosting models (GBMs), random forests (RFs), classification tree analysis (CTA), and multiple 

adaptive regression splines (MARS). For computational reasons, Maxent was not run for 

CHELSA+. Each algorithm was run ten times, and assessed using the area under the receiver 

operating curve (AUC) and true skill statistic (TSS) metrics (Allouche, Tsoar, & Kadmon, 2006). TSS 
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varies from -1 to +1, with 0 signifying a model no different to random; AUC varies from 0 to 1, with a 

random classifier expected to score 0.5. Projections from model runs with TSS ≥0.65 and AUC 

≥0.9 for both cross-validation and evaluation were averaged to produce ‘hibar’ ensembles; ‘lobar’ 

ensembles averaged model runs with TSS scores ≥0.6 and AUC ≥0.85 (table 1). These ensemble 

models were then projected into scenarios for 2070 (relatively optimistic RCP4.5 and pessimistic, 

business-as-usual RCP8.5) using climate data from each GCM for Worldclim and CHELSA, with an 

average prediction subsequently taken. Due to the computational demands of CHELSA+, only the 

CCSM4 scenarios were run – this GCM was chosen as it makes the most accurate predictions of 

temperature and precipitation in this region (Lovino et al., 2018).   

 

For subsequent analysis we categorised the continuous model output (probability of occurrence, 

pocc) into four equal classes, with divisions at 25%, 50% and 75%. Because we can be most confident 

of Araucaria’s presence in areas with pocc ≥75%, we consider locations which fall within it in all three 

modelled scenarios (present, RCP4.5 and RCP8.5) to be potential microrefugia. We also consider 

areas which have pocc of ≥50% in all three scenarios, but which do not qualify as potential 

microrefugia, to have moderate climatic resilience. 

 

2.3. Vegetation remnants and conservation areas 

To analyse the effects of past habitat loss, we used the 2013-2014 SOS Mata Atlântica atlas of 

remnant natural vegetation (Fundação SOS Mata Atlântica & Instituto Nacional de Pesquisas 

Espaciais - INPE, 2015). This identified areas of natural vegetation larger than three hectares 

using satellite imagery at 1:50,000 scale (approximately 25m resolution) in the Brazilian states 

of Paraná, Santa Catarina and Rio Grande do Sul, which constitute >98% of our study area; small 

parts of São Paulo state and Argentina’s Misiones province are excluded. We used this dataset to 

locate areas of conservation priority, by identifying which microrefugia and moderately resilient 

areas occur within this remnant vegetation, and which have lost their natural vegetation. We also 

identified areas of remnant vegetation contiguous with significant microrefugia. We defined these as 

continuous areas of forest or natural non-forest (almost all of which is Campos in our study region) 

which either contained ≥100 microrefugial cells (0.09 km2) or had microrefugial cells covering ≥5% of 

their area, i.e. vegetation patches which contain relatively large areas of microrefugia, or which are 

small but largely resilient. 
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To assess the present conservation situation of these potential microrefugia, we compared the sites 

of microrefugia and resilient patches identified above with the locations of all Brazilian protected 

areas and designated Terras Indigenas within our study area (figure 1), downloaded from the World 

Database on Protected Areas (UNEP-WCMC & IUCN, 2018). 

 

3. Results 

Between 3.9 and 4.5 times as many model runs, from a wider range of algorithms, met our quality 

thresholds when using CHELSA compared to Worldclim (table 1). Since the ‘hibar’ Worlclim 

ensemble model contained only two model runs from a single algorithm, we chose to analyse the 

‘lobar’ Worldclim ensemble; ‘hibar’ ensembles were used for CHELSA and CHELSA+. 

Araucaria’s predicted present distribution in all three models (figure 2) is similar to MOF’s potential 

distribution (figure 1) with high-altitude grassland areas also predicted to be suitable, aligning with 

palaeoecological evidence that the forests have been expanding over Campos through the last 4,000 

years (Behling, Pillar, Orlóci, & Bauermann, 2004; Jeske-Pieruschka, Pillar, de Oliveira, & Behling, 

2013; Scherer & Lorscheitter, 2014; Silva & Anand, 2011). The future projections based on Worldclim 

and CHELSA data differ markedly, however (figure 2, table S1). Although both predict a total loss of 

the most climatically suitable habitat by 2070 (99.9%-100.0% losses of habitat with pocc ≥75% under 

CHELSA, 100.0% under Worldclim), Worldclim also predicts significant losses in all but the least 

suitable (pocc 0-25%) habitat, which rises to make up 87.2%-91.0% of the study area. The few areas of 

moderate suitability (pocc 50-75%) are found in the southeast and centre of the highland plateau, 

with some further marginal areas (pocc 25-50%) in the far northeast of our study area. CHELSA, by 

contrast, predicts 98.5%-100.0% losses in the least suitable habitat, with marginal and intermediate 

habitat rising to make up 99.5%-100.0% of the study area. Much of this increase is in presently 

unsuitable areas in the south-western part of the highlands, the southern edge of the study area 

where the plateau falls away, and the coastal strip east of the plateau’s escarpment; Araucaria’s 

present core areas become less suitable.  

CHELSA climate-only models predict 99.9%-100.0% loss of presently highly suitable habitat (pocc 

≥75%) in the future, but the incorporation of fine-scale topographic variables leads CHELSA+ to 

predict some persistence across the high elevation areas in the central and southeastern areas of 

the plateau, much of it along river valleys (table S1, figure 2). And although CHELSA+ still projects 

85.3%-93.2% losses of this habitat class (table S1), it does identify 4,948 km2 of potential 

microrefugia, as well as 24% more moderately resilient habitat (defined as pocc ≥50% in all scenarios) 
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than predicted by CHELSA alone (table 2). However, the impact of 20th Century land use change can 

be seen, with 37.4% of potential microrefugia having lost their natural vegetation cover, rising to 

82.4% of all moderately resilient habitat (table 2, figure 3). These losses are particularly acute in 

forest remnants, which make up only 6.7% (333 km2) of all Araucaria’s potential microrefugia. This 

represents a climate-caused reduction of 96.5% from the 9,577 km2 of forest where Araucaria is 

presently ≥75% likely to occur. 

 

The majority of the most resilient habitat is predicted to occur in Campos. These naturally non-

forested areas make up more than half of all potential microrefugia and 89.3% of those which have 

retained their natural vegetation, although CHELSA+ predicts that 71.6% of the presently most 

suitable Campos will be lost in future. The analysis of patches containing significant microrefugial 

areas shows that 679 patches of Campos, totalling 7,089 km2 and covering on average 10.4 km2 

each, have ≥5% of their area covered by potential microrefugia or contain ≥100 microrefugial cells. 

By contrast, the 4,801 km2 of forest patches which meet these criteria are found in 1,967 separate 

forest fragments, averaging only 2.4 km2 per patch – a number which falls to 1.4 km2 when excluding 

an outlier patch covering 41% of the total area (despite containing only 6.7 km2 of microrefugia).  

 

The great majority of microrefugia, and the habitat patches they reside within, are located outside 

existing conservation infrastructure (Figure 4). Of all Araucaria’s microrefugia which still have natural 

vegetation cover, only 2.5% are in any protected area, with a higher proportion of microrefugia in 

remnant forest represented (5.6%, 18.6 km2) than those in Campos (2.2%, 59.5 km2). Two national 

parks (Aparados da Serra and São Joaquim) contain 83.3% of all the protected Campos microrefugia 

and the two largest areas of highly resilient forest (6.7 km2 and 4.0 km2, respectively). Nine other 

protected areas average 0.9 km2 of forest microrefugia each, and four of these hold the remaining 

9.9 km2 of protected Campos microrefugia. And although natural vegetation patches holding 

significant microrefugial components are found in fifteen protected areas (with six more, far from 

microrefugial cells, in the east of the outlier forest fragment discussed above), half (50.8%) of the 

total protected area is concentrated in São Joaquim National Park, which holds 162.4 km2 of forest 

patches containing microrefugia and 148.3 km2 of similar patches in Campos.  
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4. Discussion 

Our results clearly show the disruptive effect that 21st Century climate change will have on 

Araucaria’s already precarious position in southern Brazil, with both Worldclim and CHELSA climate-

only models showing that, by 2070 and under both emissions scenarios, there will be nowhere in the 

region where Araucaria’s probability of occurrence is ≥75%. The differences between the projections 

of the Worldclim and CHELSA models are primarily due to differences between the datasets’ 

predictions of future climates (figure S3). Worldclim forecasts several degrees of warming at the 

coldest times of year, making the environment generally less favourable for Araucaria, whereas 

CHELSA’s predictions paint a more complicated picture in which higher isothermality with colder 

minima than at present favour Araucaria, offset by increasingly seasonal precipitation and drier 

driest seasons (figure S4). The greater increases in isothermality and dry quarter precipitation in 

CHELSA’s RCP8.5 scenario, and its lower values for coldest temperatures and precipitation 

seasonality, explain Araucaria’s slightly more favourable response under this more pessimistic 

emissions scenario. Worldclim’s projections are based on interpolated weather station records 

(Hijmans et al., 2005), whereas CHELSA’s are based on an orographically-informed statistical 

downscaling of the ERA-Interim climate reanalysis (Karger, Conrad, Böhner, Kawohl, Kreft, Soria-

Auza, et al., 2017). Worldclim is known to perform relatively poorly, particularly when predicting 

precipitation, in data-sparse and topographically complex environments, where CHELSA’s 

predictions are more accurate (Deblauwe et al., 2016; Hijmans et al., 2005; Karger, Conrad, Böhner, 

Kawohl, Kreft, Soria-Auza, et al., 2017; Soria-Auza et al., 2010). 

Exactly how Araucaria responds to the predicted climatic changes will depend largely on how it is 

affected by suboptimal conditions, which are predicted to prevail by the models built on the more 

accurate CHELSA data. The resilience of Araucaria populations will depend on how these conditions 

affect recruitment (Araucaria trees are most vulnerable as seedlings (Giovani F Paludo, Lauterjung, 

Dos Reis, & Mantovani, 2016; Giovani Festa Paludo, Mantovani, & Reis, 2011), when their preferred 

climatic conditions may differ from those around the adults used to build our models) and adult 

mortality (presently, portions of populations can survive for centuries even when suffering 

regeneration failure (Giovani F Paludo et al., 2016)). If Araucaria is relatively resilient to these 

changes its range could theoretically expand, although the intense fragmentation of the seasonally 

deciduous forests in the west of our study area (figure 1) severely limits dispersal in that direction, 

and Araucaria may be prevented from moving eastward by competitive exclusion from incumbent 

taxa in the dense coastal lowland forests (L. S. Duarte, Dillenburg, & Rosa, 2002).  

Given the uncertainties around Araucaria’s responses to suboptimal conditions, the conservation of 
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microrefugia – where Araucaria has and will retain a high probability of occurring – is essential. That 

more than a third of potential microrefugial area has already suffered habitat loss highlights the 

importance of safeguarding remaining natural vegetation from further damage. It also suggests that 

promoting Araucaria’s conservation outside areas of natural vegetation could be a complementary 

goal. This could take the form of reforestation in resilient areas (though whether other key MOF 

species would have similar preferred areas in the future is uncertain), or the good stewardship of 

semi-natural landscapes in these areas. Some such areas, traditionally managed for cattle or non-

timber forest products, can conserve Araucaria’s genetic diversity as effectively as protected areas 

while also providing economic incentives to retain the trees (Medina-Macedo et al., 2016; Reis et al., 

2018; Zechini et al., 2018), so their inclusion in conservation planning is likely to improve Araucaria’s 

climate resilience. However, the legal restrictions on felling mature Araucaria trees (and on land use 

changes in areas containing them) have led some land owners to actively prevent Araucaria’s natural 

regeneration by removing its seedlings from their properties (Adan et al., 2016; Mello & Peroni, 

2015; Alexander C Vibrans et al., 2011); addressing this issue is critical in order for private lands to 

contribute effectively to the species’ long-term conservation. 

Our results show that most of Araucaria’s microrefugia still found in natural vegetation are in 

Campos (highland areas classed as ‘naturally non-forested’ in the SOS Mata Atlântica data). These 

areas are not only predicted to be more climatically stable than forest areas but are also more intact, 

with microrefugia spread out over fewer, larger patches. Part of the fragmentation of resilient forest 

is due to 20th Century habitat loss, but it is also reflective of the natural vegetation mosaic at the 

high elevations where potential microrefugia are found. Here, where MOF and Campos meet, trees 

are restricted to small patches and gallery forests embedded within the more extensive grassland 

matrix; many of the areas classified as natural non-forest in our study also contain additional 

woodland islands too small to be classified as forest in the SOS Mata Atlântica vegetation map (i.e. 

<3ha; Fundação SOS Mata Atlântica & Instituto Nacional de Pesquisas Espaciais - INPE, 2015). The 

conservation of Araucaria in this context raises potential conflicts of priorities. Campos have 

significant biodiversity and conservation importance in their own right (Iganci, Heiden, Miotto, & 

Pennington, 2011; Overbeck et al., 2007), so human intervention to accelerate the slow natural 

expansion of MOF patches over the surrounding grasslands (Müller, Overbeck, Blanco, de Oliveira, & 

Pillar, 2012; Silva & Anand, 2011), as the southern Jê are hypothesised to have done around 1,000 

years ago (Bitencourt & Krauspenhar, 2006; Robinson et al., 2018), may not be desirable. Ecotones 

between the grassland matrix and embedded MOF areas are maintained by anthropogenic fire and 

cattle grazing, to which forest species like Araucaria are more susceptible (Jeske-Pieruschka, Fidelis, 

Bergamin, Vélez, & Behling, 2010; Müller et al., 2012; Oliveira & Pillar, 2005), so a delicate 
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management balance is needed to conserve the Campos habitat itself, the MOF islands and gallery 

forests within it, and the dynamics between these ecosystems.  

However, Campos are among Brazil’s most underprotected ecosystems (Overbeck et al., 2007), and 

an accordingly small proportion (2.5%) of all Araucaria’s microrefugia are in any protected area. 

None occur within existing Terras Indigenas, something that may have significant cultural impacts on 

the groups to whom Araucaria has long been important (cf. Bond, Anderson, Henare, & Wehi, 2019). 

In response to this challenge, it is essential that existing protected areas are effectively managed and 

safeguarded, that Araucaria is promoted and conserved on private land outside protected areas, and 

that new protections are considered for areas likely to play a major role in securing Araucaria’s 

resilience to 21st Century climate change.  

Brazil’s Araucaria is far from the only tree species threatened by historic deforestation and future 

climate change, and applying the multifaceted approach used in this study could improve the realism 

and effectiveness of distribution models used to guide their conservation. By employing 

sophisticated CHELSA data alongside Worldclim, we increase our confidence in the predictions of 

Araucaria’s responses – a step which can be applied to other topographically complex regions with 

sparse climate data where the interpolated climate surfaces of Worldclim may be less appropriate 

(Deblauwe et al., 2016; Hijmans et al., 2005; Karger, Conrad, Böhner, Kawohl, Kreft, Soria-Auza, et 

al., 2017; Soria-Auza et al., 2010). Similarly, the inclusion of topographic variables in our species 

distribution models (cf. Stanton et al., 2012) allows potential microrefugia to be identified at high 

resolution without prior microclimatic research having taken place (cf. Ashcroft & Gollan, 2012; 

Slavich, Warton, Ashcroft, Gollan, & Ramp, 2014). Our use of remotely-sensed vegetation maps to 

analyse the interacting impacts of climate change and habitat loss on Araucaria is a further step 

which can be applied in the study of other species threatened by these two key drivers of global 

biodiversity decline. 

Fine-scale species distribution models are known to predict patchier distributions and improved 

persistence compared to those conducted at coarser resolutions (Meineri & Hylander, 2017; Storlie, 

Phillips, Vanderwal, & Williams, 2013), an effect also found in this study. The concept of microrefugia 

is one with origins in palaeoecology (Bemmels, Knowles, & Dick, 2019; Dobrowski, 2011; Petit, Hu, & 

Dick, 2008; Rull, 2009) but which is increasingly recognised as highly relevant for conservation 

ecology (Ashcroft, 2010; Hannah et al., 2014; McLaughlin & Zavaleta, 2012; Suggitt et al., 2018). Our 

finding that some areas among the grasslands on southern Brazil’s highlands are likely to shelter 

microrefugia for Araucaria echoes the species’ past ecology: previous relatively rapid expansions of 

forest on the plateau are thought to have been facilitated by the expansion and persistence of 
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gallery forests through the late Pleistocene and Holocene (Behling et al., 2004; Costa et al., 2017). 

Whether the patches of microrefugial vegetation we have identified in this study will similarly persist 

and act as sources of future forest expansion is far from certain, however, as our findings show that 

significant portions of this resilient habitat have either already been lost or currently lie outside 

formal protected areas. And, with the next century’s climate likely to be highly novel compared to 

the present and recent past (Fischer et al., 2018; Fitzpatrick et al., 2018), an improved understanding 

of Araucaria’s spatial dynamics throughout the Quaternary may be essential for truly long-term 

conservation planning. 

Araucaria’s long evolutionary history, its past and present cultural and economic significance, and its 

Critically Endangered status combine to make such planning an urgent task. Deforestation between 

1870 and 1970 left less than 3% of Araucaria's former forest habitat standing by the late 20th Century 

(Thomas, 2013). Here we have shown that climate change is likely to repeat these losses within this 

century: of the 9,577 km2 of forest fragments in our study region where Araucaria currently has 

≥75% probability of occurring, only 3.5% will remain similarly suitable by 2070. However, by 

highlighting the areas whose climatic and topographic conditions give Araucaria the best chance of 

persisting, we hope to encourage the critical conservation measures needed for this iconic tree to 

see another century on the highlands. 
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Tables 

  Model runs meeting hibar/lobar standard  

Total  GLM  GAM  Maxent  ANN  GBM  RF  CTA  MARS  

WC  hibar            2      2  

lobar  1        2  5      8  

CH  hibar  5          3    1  9  

lobar  8  3    2  2  8    8  31  

CH+  hibar  5    x    8  7    4  24  

lobar  10  2  x  5  10  10    10  47  

 

Table 1: model runs meeting ‘hibar’ and ‘lobar’ criteria for inclusion in ensembles (see figure S2 for evaluation 

scores of all model runs). 
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 Area (km2) Worldclim CHELSA CHELSA+ 

Microrefugia (pocc ≥75% at 

present and in both future 

scenarios) 

Total area 0 0 4948.2 

In remnant forest 0 0 332.5 

In naturally non-forested area 0 0 2763.7 

Moderately resilient (pocc ≥50% 

at present and in both future 

scenarios) 

Total area 575.7 92212.8 114416.4 

In remnant forest 250.1 13561.9 11438.3 

In naturally non-forested area 166.1 7344.5 8704.1 

Table 2: area of microrefugia and moderately resilient habitat predicted by each ensemble model. 

 

Figure captions 

Figure 1: Map showing the study region’s current potential vegetation (IBGE, 2004) and remnants >3ha within 

the Atlantic Forest domain of Paraná, Santa Catarina and Rio Grande do Sul states (Fundação SOS Mata 

Atlântica & Instituto Nacional de Pesquisas Espaciais - INPE, 2015). Pink outlines show Brazilian protected areas 

(IUCN category Ia-VI), and blue outlines show designated Terras Indigenas. 

 

Figure 2: Ensemble predictions of habitat suitability for Araucaria using Worldclim (top), CHELSA (centre) and 

CHELSA+ (bottom) at present (left) and in 2070 under the RCP4.5 (centre) and RCP8.5 (right) scenarios. 

 

Figure 3: Map showing the loss of Araucaria’s climatically resilient areas (from CHELSA+ ensemble model) to 

habitat change. Darker/redder areas are more climatically resilient, from light grey/yellow (pocc 50%-75% in all 

three scenarios) to black/red (potential microrefugia, pocc ≥75% in all scenarios). Areas in greyscale have lost 

their natural vegetation cover; those in yellow, orange and red have retained it. 

 

Figure 4: Map showing microrefugial cells in remnant vegetation (forest in dark green, Campos in orange), 

patches of remnant vegetation containing ≥100 microrefugial cells or which have ≥5% of their area covered by 

microrefugia (forest in pale green, Campos in buff), protected areas and designated Terras Indigenas. 
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