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ABSTRACT: A liquid matrix-assisted laser desorption/ionization (liquid MALDI)
method has been developed for high-throughput atmospheric pressure (AP) mass
spectrometry (MS) analysis of the molecular content of crude bioliquids for disease
diagnostics. The presented method is rapid and highly robust, enabling its application
in environments where speed and low-cost high-throughput analyses are required.
Importantly, because of the creation of multiply charged analyte ions, it provides
additional functionalities that conventional solid MALDI MS profiling is lacking, including the use of high-performance mass
analyzers with limited m/z range. The concomitant superior MS/MS performance that is achieved similar to ESI MS/MS adds
greater analytical power and specificity to MALDI MS profiling while retaining the advantages of a fast laser-based analysis
system and off-line large-scale sample preparation. The potential of this MALDI MS profiling method is demonstrated on the
detection of dairy cow mastitis, which is a substantial economic burden on the dairy industry with losses of hundreds of dollars
per diseased cow per year, equating to a total annual loss of billions of dollars, as well as leading to the use of large quantities of
antibiotics, adding to the proliferation of antimicrobial resistance. Only small amounts of aliquots obtained from the daily farm
milking process were prepared for liquid MALDI MS profiling using a simple one-pot/two-step analyte extraction. Automated
analysis was performed using a custom-built AP-MALDI ion source, enabling the simultaneous detection of lipids, peptides, and
proteins. Diagnostic, multiply charged, proteinaceous ions were easily sequenced and identified by MS/MS experiments.
Samples were classified according to mastitis status using multivariate analysis, achieving 98.5% accuracy (100% specificity)
determined by “leave 20% out” cross-validation. The methodology is generally applicable to AP-MALDI MS profiling on most
commercial high-resolution mass spectrometers, with the potential for expansion into hospitals for rapid assessment of human
and other biofluids.

■ INTRODUCTION

Conventional (solid) matrix-assisted laser desorption/ioniza-
tion mass spectrometry (MALDI MS) profiling has been
applied in many areas of disease analysis with varying success.
In general, blood analysis by MALDI MS profiling (and its
various incarnations such as SELDI1) has had limited success
because of many reasons, including the limited analytical
power of the typically used axial time-of-flight (TOF) mass
analyzers with respect to MS/MS analysis and the mass
resolution and accuracy that is ultimately achievable. However,
MALDI MS profiling in clinical microbiology is one of the
success stories of MALDI,2 although the same limitations with
regard to ionization and instrumentation remain.
Recently, liquid atmospheric pressure (AP)-MALDI MS was

introduced as an alternative to conventional solid MALDI with
many of the key advantages of electrospray ionization (ESI)
such as the generation of multiply charged ions and thus the
option to use high-performance (hybrid) mass analyzers such
as QTOFs and Orbitraps that require analyte ions with low m/
z values.3 While conventional MALDI predominately produces
singly charged ions, liquid MALDI produces “ESI-like”

multiply charged ions, resulting in low m/z values. In addition,
multiply charged ions typically lead to superior fragmentation
in collision-induced dissociation (CID)-based MS/MS (cf.
peptide sequencing) and are a requirement for electron-
mediated MS/MS analysis.4,5 Ultraviolet photodissociation
improves the fragmentation of singly charged protein ions, but
the technology has limited availability on commercial
instrumentation, and the requirement of high m/z mass
analyzers remains for singly charged protein ions.4 Advanta-
geously, liquid MALDI also benefits from virtually all of the
advantages of solid MALDI, such as high tolerance toward
sample additives/contaminants, post-analysis sample recovery
and storage, and all of the advantages of a laser-based method,
such as speed and a tightly controllable desorption event, while
adding additional key features such as greater sample
homogeneity, greater ion beam stability, and lower sample
consumption.6

Received: May 21, 2019
Accepted: July 15, 2019
Published: July 26, 2019

Article

http://pubs.acs.org/journal/acsodfCite This: ACS Omega 2019, 4, 12759−12765

© 2019 American Chemical Society 12759 DOI: 10.1021/acsomega.9b01476
ACS Omega 2019, 4, 12759−12765

This is an open access article published under a Creative Commons Attribution (CC-BY)
License, which permits unrestricted use, distribution and reproduction in any medium,
provided the author and source are cited.

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 O

F 
R

E
A

D
IN

G
 o

n 
Ju

ly
 2

9,
 2

01
9 

at
 1

3:
40

:1
6 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

http://pubs.acs.org/journal/acsodf
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acsomega.9b01476
http://dx.doi.org/10.1021/acsomega.9b01476
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html


The combination of all of these additional features and the
well-known strengths of conventional MALDI makes liquid
MALDI a prime candidate for the development of a powerful
MS profiling method that can now add the advances made in
modern ESI MS to the speed, robustness, and easiness of
MALDI MS analysis. Following this rationale, the recently
introduced liquid AP-MALDI MS profiling methodology3 was
adapted for the analysis of crude bioliquids. As a proof-of-
concept application, milk directly obtained from daily farm
milking was analyzed for the accurate detection of mastitis.
Mastitis, an infection of the mammary gland, is one of the

most prevalent diseases in dairy cattle and a significant cause of
economic loss in the dairy industry; yet, early diagnosis is still a
considerable challenge.7−9 The molecular composition of milk
is subject to variation with the animal’s health.10,11 Milk is thus
of interest as a source of information for disease diagnosis that
is collected daily and an alternative to other body fluids such as
blood, saliva, and urine, which are more intrusive or difficult to
collect routinely on a farm.
Current milk analysis methods, such as the California

mastitis test (CMT),12 produce results largely open to
interpretation by the operator and have debatable sensitivity
and specificity, while rigorous bacteriological assessments take
days to perform.13−16 Flow cytometry is routinely used to
measure somatic cell concentration in milk samples, which is
often increased in response to mastitis, but somatic cell count
is determined by numerous factors in addition to immune
response to infection.17

Validated milk molecular biomarkers for diagnosing mastitis
have yet to be described,9 but several candidates have been
proposed.18−23 Once validated molecular biomarkers are
available, targeted assays for their specific detection and
quantitation, such as immunoassays, are typically developed.
Disappointingly, these classical diagnostic tests often reach
their limits with respect to marker specificity and multiplexing,
to name but a few.
An alternative approach is MS profiling using well-defined

classification models from multivariate analysis, exploiting the
richness of the samples’ biomolecular profiles detected by high-
resolution MS. Multivariate analysis has been used to great
effect utilizing MS profiles produced with electrosurgical tools
(e.g., “iKnife”) and laser desorption probes to rapidly
distinguish between healthy and malignant tissue.24,25 How-
ever, these techniques have focused on analyzing small,
abundant molecules such as phospholipids, limiting access to
biomarkers that may exist as proteinaceous molecules.24,25

Results are typically determined by computational modeling,
which reduces the potential of operator-related bias and
produces a recorded, reviewable raw data trail. Similarly, MS
profiling has been introduced to clinical microbiology with
great success, reducing the time to diagnosis by many hours
(and often days) with high identification accuracy.26 The latter
application of MS profiling is achieved using MALDI in its
conventional form and implementation, that is, preparing solid-
state MALDI samples that are analyzed in an axial TOF
instrument under high vacuum. Unfortunately, classical
MALDI MS analysis is limited with respect to sample
homogeneity and thus ion beam stability (cf. hunting for the
so-called “sweet spot”), speed of sample preparation,
introduction, and analysis as well as subsequent identifica-
tion/verification of the main diagnostic contributors in the
recorded MS profile (i.e., poor structurally informative MS/MS
performance).

Here, we present a method for rapidly analyzing and
classifying milk samples by AP-MALDI MS using 100% liquid
MALDI samples and their associated advantages. The potential
of “on-the-fly” MS/MS analysis of multiply charged analyte
ions for greater analytical specificity, as well as the use of
modern bioanalytics developed for clinical applications,
significantly adds to the power of this MS method and is
demonstrated in this study.

■ RESULTS AND DISCUSSION
Raw milk samples were collected from individual cows at the
Centre for Dairy Research at the University of Reading, UK,
and prepared for liquid MALDI MS analysis by a one-pot/two-
step extraction, taking less than 5 min. Samples were taken
from individual udder quarters of 109 cows for a total of 135
samples, with some cows being sampled on multiple dates.
Representative mass spectra of the milk extracts from a cow
from each of the two investigated classes (mastitis and
healthysee the Experimental Section for further details) are
shown in Figure S1. Phospholipids were abundant in the m/z
range of 600−1000. In addition, many multiply charged ions
attributable to peptides were detected in this m/z range and
beyond, with high abundance in the mastitis samples (Figure
S2). Deconvolution of the spectra suggests that multiply
charged ions above m/z 600 are attributable to proteins (e.g.,
β-casein) or larger protein fragments (Table 1, Figure 1).

For sample classification, a multivariate model featuring 10
principal component analysis (PCA) dimensions and 1 linear
discriminant analysis (LDA) dimension was constructed from
a pool of 73 “healthy” and 62 “mastitis” TOF MS profiles
acquired in an automated sequence from randomly spotted
MALDI samples (example chromatogram in Figure S3).
Analysis was performed with the Abstract Model Builder
(AMX [Beta] version 1.0.1563.0) software developed by
Waters. The projection of the first two PCA dimensions is
shown in Figure 2a, with the second dimension offering visual
distinction between the two classes. The loading plot is
displayed in Figure 2b, which shows a multitude of

Table 1. Deconvoluted Highly Charged Liquid AP-MALDI
MS Ions and Their Class Associationa

liquid AP-MALDI MS profile ions
(most intense m/z)

deconvoluted
mass (Da) healthy mastitis

477.284+, 636.373+, 954.552+ 1905 ×
583.345+, 728.674+, 971.563+ 2910 ×
664.876+, 797.455+ 3981 × ×
620.947+, 724.256+, 868.905+,
1085.884+, 1447.823+

4340 ×

644.398+, 736.157+ 5145 ×
1046.825+, 1307.754+ 5226 ×
1224.307+, 1428.326+ 8561 ×
1051.019+, 1182.178+, 1351.027+,
1576.376+

9450 ×

812.7813+, 880.5212+, 960.5511+ 10 551 ×
1183.1310+, 1314.819+, 1478.888+,
1689.947+

11 820 × ×

1413.7413+, 1531.1212+, 1670.3111+ 18 360 × ×
1046.8223+, 1092.9622+, 1145.2621+,
1202.2420+, 1265.6719+

24 020 ×

aCrosses (×) indicate that signals for these ions were detected in MS
profile spectra for the specified class and contributed to the
classification of the samples as such in multivariate analysis.
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Figure 1. Examples of deconvoluted mass spectra (a,c) obtained from spectra showing multiply charged ion species detected from representative
“healthy” and “mastitis” milk samples (b,d). Molecules as large as β-casein were detected as multiply charged ions. Lower mass components with
strong ion signal intensities are also evident in the deconvoluted mastitis spectra, indicating protein degradation. Some diagnostic ions and their
charge states are indicated in the raw mass spectra assigned by deconvoluted mass and CID MS/MS experiments discussed later in this article.
Absolute detector ion counts for 100% signal intensity can be found in the top right corner of the nondeconvoluted mass spectra (b,d).

Figure 2. Classification of milk samples from “healthy” and “mastitis” cows by liquid AP-MALDI MS and multivariate model building. (a) Plot of
the first two PCA dimensions, showing separation of the two classes. (b) Loading plot for dimensions 1 and 2 reveals the most influential ion peaks
for the PCA classification in (a). Ions with underlined labels have charge states greater than 1. (c) Mass loading plot for the LDA model generated
from the PCA model. Peaks of greatest positive/negative intensity are the most influential for classification.
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phospholipid, peptide, and protein ions as being influential on
the second dimension. The LDA mass loading plot (Figure 2c)
shows the influence of ions in the classification model. The
model’s classification performance was assessed by the built-in
“leave 20% out” cross-validation method of AMX. From this
cross-validation, a sensitivity of 90% (56/62 mastitis spectra)
and a specificity of 100% (73/73 healthy spectra) are obtained
with a total classification accuracy of 95.56%, demonstrating
the potential for this method as a routine test. Importantly, no
false positives were reported.
In principle, the detected proteinaceous diagnostic ions are

of interest as milk composition changes can often be attributed
to disease-related action of endogenous (and/or exogenous)
enzymes. While current MALDI MS profiling methods fall
short of providing enhanced capabilities in identifying
diagnostic peptides or proteins because of poor MS/MS
performance, the predominant production of multiply charged
precursor ions in liquid AP-MALDI MS profiles now enables
the employment of “ESI-like” MS/MS sequencing, using high-
performance MS/MS instruments with a small m/z range such
as hybrid Orbitrap and QTOF mass spectrometers. Thus, to
provide molecular structural information, some multiply
charged ions were selected for AP-MALDI CID MS/MS
using the same liquid MALDI sample from which the MS
profile was acquired. This “top-down” approach required no
further sample preparation. Generally, MS/MS spectra were
acquired in less than 5 min (dependent on precursor ion
intensity) and typically provide greater diagnostic information
if acquired from multiply charged ions compared to singly
charged ions.3,27

The presence of the precursor ion at approx. m/z 869
(Figure 3a) contributed strongly to the classification of
samples as “mastitis”, whereas the ion at approx. m/z 729

(Figure 3b) was not strongly influential for either class. The
identity of the ion at m/z 869 can be assigned to the amino
acid sequence R1-V37 of α-s1-casein (Uniprot P02662), an
abundant milk protein. This peptide has been reported by
other studies but has not been attributed to the action of a
known endogenous (or exogenous) enzyme.20,28,29 The
identity of this unknown enzyme could be important for
targeted mastitis detection. The second ion at m/z 729 can be
derived from the proteolysis of α-s1-casein by cathepsin B or D,
producing a peptide composed of amino acids R1-F24.

29

However, because this peptide does not strongly influence the
mastitis classification, the action of cathepsins B and D is less
likely to be related to mastitis infection. Both peptides contain
the sequence of a known antimicrobial peptide (isracidin, α-s1-
casein amino acids 1−23).30
Furthermore, plasmin-related activity is suggested to result

in two β-casein-derived peptides identified in Figure S4, the
smaller of which was detected exclusively in the mastitis
samples and contributed strongly to their classification as such.
Increased enzymatic activity, such as plasmin proteolysis, has
long been implicated as a factor in mastitis diagnosis.31

Using this information, a targeted PCA/LDA model was
built from the same data as the original model over a narrow
m/z range (m/z 720−m/z 740) that includes three peptide
ions at approximately m/z 724, m/z 728, and m/z 736 (see
Table 1). This resulted in an increase in classification accuracy
to 98.52% when assessed by “leave 20% out” cross-validation,
while maintaining a specificity of 100%. Only two mastitis
samples were misclassified. Interestingly, milking record data
showed that these two samples were collected after an initial
mastitis treatment with antibiotics 1 week prior to sampling for
the present study. It is possible that these animals were

Figure 3. Liquid AP-MALDI-CID MS/MS spectra of MS profile ion peaks. (a) MS/MS spectrum of the diagnostically important precursor ion [M
+ 5H]5+ (approx. m/z 869) and (b) MS/MS spectrum of the diagnostically less important [M + 4H]4+ (approx. m/z 729); both spectra are
annotated to indicate y, b, and immonium ions. The proposed sequences are displayed above the spectrum and indicate N-terminal fragments (R1-
V37 and R1-F24, respectively) derived from α-s1-casein (P02662).
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recovering and thus expressed the markers of mastitis more
weakly.

■ CONCLUSIONS

Besides the method’s high classification accuracy, the
generation of “ESI-like” multiply charged precursor ions
facilitates the MS/MS identification and characterization of
diagnostically important profile ions beyond what is currently
possible with MALDI MS profiling methods. Consequently,
the improved MALDI MS/MS capabilities of the presented
method enables the collection of further information about the
underlying disease biology and for the potential development
of well-defined targeted assays. However, there is also great
potential for multiplexing in disease detection using liquid AP-
MALDI MS profiling because of the acquisition of an
intrinsically rich biomolecular profile, thus providing a more
comprehensive health check from a single sample analysis.
Importantly, the method is easily automated and capable of
large-scale analyses as needed for high-throughput testing of
millions of milk samples, which is the current yearly level of
milk testing in the UK’s dairy industry alone (https://www.
nmr.co.uk/). We anticipate that planned automation and ion
source improvements will further decrease analysis time and
that additional diagnostic applications for other crude
bioliquids will be reported in the future. This could include
the assessment of human milk samples for mastitis in hospitals,
where MS is already used in many areas, from screening
newborn babies for disorders to clinical microbiology where
conventional solid MALDI MS has already shown its
diagnostic advantages.

■ EXPERIMENTAL SECTION

Materials. Water, acetonitrile (MeCN), isopropanol (IPA),
and trifluoroacetic acid (all HPLC-grade) were bought from
Fisher Scientific (Loughborough, UK). Sodium iodide solution
was purchased from Waters (Manchester, UK). All other
matrix components, reagents, calibrants, and analytical stand-
ards were acquired from Sigma-Aldrich (Gillingham, UK).
Cow Milk Samples. Raw milk samples were collected from

individual cows from February 2016 to December 2017 at the
Centre for Dairy Research, a facility at the University of
Reading (https://www.reading.ac.uk/apd/research-and-
facilities/cedar.aspx). Samples were taken from one udder
quarter per cow on a given day. Cows were assessed at each
milking (twice daily) by fore-milking each udder teat prior to
attachment of the milking apparatus. If clots were present from
a quarter, the cow was determined to have clinical mastitis and
milk was collected from the affected teat. Mastitis samples were
immediately obtained from the affected udder quarter by hand-
milking and frozen at −80 °C. Milk samples for analysis ranged
in appearance from obvious clinical infections (yellowed,
clotted) to indistinguishable from healthy samples to the
untrained eye. Subsequent confirmation of infection was
obtained by physical symptoms (body temperature and/or
mammary swelling) and analysis of milk for somatic cell count
or culture to identify the infecting microorganism. Bacterial
culture and assessment by MALDI-TOF MS profiling were
performed by Quality Milk Management Services Ltd.
(QMMS, Easton, UK).
Analyte Extraction. Aqueous trichloroacetic acid solution

(250 μL, 5% m/v) was added to raw milk samples (50 μL) and
briefly vortexed. Following room-temperature centrifugation at

13 000 rpm for 2 min, the supernatant was discarded, and the
precipitate was resolubilized in sodium hydroxide (200 μL, 0.5
mM in 1:1 H2O/IPA) with ultrasonic assistance. This simple
extraction removed a significant amount of lactose and related
polysaccharides, which otherwise dominate the mass spectrum.
These are evident in other published work featuring only a
water/methanol dilution.32

Liquid MALDI Sample Preparation. The liquid support
matrix (LSM) consisted of 2,5-DHB solution (25 mg/mL, 3:7
H2O/MeCN) with ethylene glycol added equal to 60% of the
solution volume. This modification to our usual glycerol-based
LSM stemmed from recent work optimizing ion signal through
substitution of glycerol with other diols.33

Per sample, LSM (750 nL) was deposited onto a Waters
stainless steel MALDI target. Analyte solution (750 nL) was
subsequently added to the LSM droplets. Typical droplet
shape was that of a dome and was considered optimal for
robust ion signal. Samples were analyzed immediately after
spotting without any additional drying time.

AP-MALDI MS Data Acquisition. MS analysis was
performed with a Synapt G2-Si HDMS mass spectrometer
(Waters Corporation, Wilmslow, UK) equipped with an in-
house developed AP-MALDI source, featuring a Waters
Research Enabled Software (WREnS)-controlled XY-stage
(Zaber Technologies Inc., Vancouver, Canada). This setup is
capable of generating multiply charged ions and has been
detailed previously.34 In brief, an MNL100 nitrogen laser
(LTB Lasertechnik Berlin, Berlin, Germany) with a wavelength
of 337 nm, a maximum pulse repetition rate of 30 Hz, and a
pulse width of approximately 3 ns was attenuated by a neutral
density filter to 20−30 μJ/pulse for AP-MALDI MS measure-
ments. A stainless-steel ion transfer tube (60 mm length, 1 mm
internal diameter) was added as the first ion extracting element
to the ion block with a gap of approximately 3 mm between the
MALDI target plate and inlet of the ion transfer tube.
Approximately 26 W was delivered by a low-voltage DC power
supply to a wire (approx. 6 Ω resistance) surrounding the
transfer tube, providing heating. In contrast to other
experiments conducted with this source, no counter-flow N2
gas was supplied to aid desolvation as it was observed to
increase alkali metal adduct formation for the highly charged
ions. This resulted in an internal transfer tube temperature of
approx. 100 °C.34 MALDI target voltage was set to 3−4 kV
and the cone voltage to 30−40 V. The instrument was
operated in ion mobility-TOF mode, enabling ion mobility
measurements to be recorded alongside m/z.
With the 337 nm laser firing at 30 Hz, data were acquired for

60 s per sample droplet at a rate of 1 TOF scan per second.
The mass spectrometer was calibrated over the m/z range
100−2000 with a mixture of polyethylene glycol (0.1 mg/mL;
Mw 200, 600, and 2000) or sodium iodide (2 μg/μL in 50%
IPA). Lock mass correction was applied using the peak of PC
(16:0/18:1) (m/z 760.5851), an abundant phosphatidylcho-
line in bovine milk. CID MS/MS experiments were performed
for up to 5 min to achieve a higher signal-to-noise ratio for
product ions, with a collision potential of between 20 and 50 V
as required. The collision gas was argon and fragmentation was
performed in the “transfer” cell (after ion mobility analysis),
allowing product ion selection based on drift time and
improving the MS/MS signal-to-noise ratio.
Open laser beam experiments were only carried out, and

high-voltage interlocks were defeated, after consultation with
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H&S staff at the University of Reading, and in accordance with
the site-specific health and safety regulations.
Data Analysis. For spectral deconvolution, UniDec

(version 1.0.10, University of Oxford, Oxford, UK)35 was
used with the following parameters: m/z range, 600−2000;
subtract curved, 1; Gaussian smoothing, 0; bin, 1.0; charge
range, 1−50; mass range, 100−30 000 Da; sample mass every
20 Da. Other parameters were unchanged from the default.
With Abstract Model Builder [Beta] (AMX, version

1.0.1563.0, prototype software developed by Waters), the
data were automatically divided by the sample, detected by the
change in TIC on a “burn” chromatogram (see Figure S3).
Mass spectral peaks were binned to a window of m/z 1 (Figure
S5). Background correction and normalization were applied.
This meant that many isotopic peaks of highly charged ions
were counted within the same bin. A narrower bin size was not
beneficial to the model and required greater computation
resources. The unsupervised PCA models were constructed
from the first 10 dimensions and the supervised LDA model
with 1 dimension for the m/z range of 600−2000. The
targeted model was built with a narrow m/z range of 720−740.
Model cross-validation was performed using the built-in “leave
20% out” cross-validation with “standard deviation > 5” as the
outlier definition.
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Tsybin, Y. O. Principles of electron capture and transfer dissociation
mass spectrometry applied to peptide and protein structure analysis.
Chem. Soc. Rev. 2013, 42, 5014−5030.
(6) Ryumin, P.; Brown, J.; Morris, M.; Cramer, R. Protein
identification using a nanoUHPLC-AP-MALDI MS/MS workflow
with CID of multiply charged proteolytic peptides. Int. J. Mass
Spectrom. 2017, 416, 20−28.
(7) Ruegg, P. L. A 100-Year Review: Mastitis detection, manage-
ment, and prevention. J. Dairy Sci. 2017, 100, 10381−10397.
(8) Hogeveen, H.; Huijps, K.; Lam, T. Economic aspects of mastitis:
new developments. N. Z. Vet. J. 2011, 59, 16−23.
(9) Verma, A.; Ambatipudi, K. Challenges and opportunities of
bovine milk analysis by mass spectrometry. Clin. Proteomics 2016, 13,
8.
(10) Haug, A.; Høstmark, A. T.; Harstad, O. M. Bovine milk in
human nutrition - a review. Lipids Health Dis. 2007, 6, 25.
(11) Hogarth, C. J.; Fitzpatrick, J. L.; Nolan, A. M.; Young, F. J.; Pitt,
A.; Eckersall, P. D. Differential protein composition of bovine whey: a
comparison of whey from healthy animals and from those with clinical
mastitis. Proteomics 2004, 4, 2094−2100.
(12) Barnum, D. A.; Newbould, F. H. The Use of the California
Mastitis Test for the Detection Of Bovine Mastitis. Can. Vet. J. 1961,
2, 83−90.
(13) Polat, B.; Colak, A.; Cengiz, M.; Yanmaz, L. E.; Oral, H.;
Bastan, A.; Kaya, S.; Hayirli, A. Sensitivity and specificity of infrared
thermography in detection of subclinical mastitis in dairy cows. J.
Dairy Sci. 2010, 93, 3525−3532.
(14) Ferreira, J. C.; Gomes, M. S.; Bonsaglia, E. C. R.; Canisso, I. F.;
Garrett, E. F.; Stewart, J. L.; Zhou, Z.; Lima, F. S. Comparative
analysis of four commercial on-farm culture methods to identify
bacteria associated with clinical mastitis in dairy cattle. PLoS One
2018, 13, No. e0194211.
(15) Viguier, C.; Arora, S.; Gilmartin, N.; Welbeck, K.; O’Kennedy,
R. Mastitis detection: current trends and future perspectives. Trends
Biotechnol. 2009, 27, 486−493.
(16) Sargeant, J. M.; Leslie, K. E.; Shirley, J. E.; Pulkrabek, B. J.; Lim,
G. H. Sensitivity and Specificity of Somatic Cell Count and California
Mastitis Test for Identifying Intramammary Infection in Early
Lactation. J. Dairy Sci. 2001, 84, 2018−2024.

ACS Omega Article

DOI: 10.1021/acsomega.9b01476
ACS Omega 2019, 4, 12759−12765

12764

http://pubs.acs.org/doi/suppl/10.1021/acsomega.9b01476/suppl_file/ao9b01476_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsomega.9b01476/suppl_file/ao9b01476_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsomega.9b01476/suppl_file/ao9b01476_si_001.pdf
http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acsomega.9b01476
http://pubs.acs.org/doi/abs/10.1021/acsomega.9b01476
http://pubs.acs.org/doi/suppl/10.1021/acsomega.9b01476/suppl_file/ao9b01476_si_001.pdf
mailto:r.k.cramer@reading.ac.uk
http://orcid.org/0000-0002-8037-2511
http://dx.doi.org/10.17864/1947.169
http://dx.doi.org/10.1021/acsomega.9b01476


(17) Albenzio, M.; Caroprese, M. Differential leucocyte count for
ewe milk with low and high somatic cell count. J. Dairy Res. 2010, 78,
43−48.
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(31) Pyöral̈a,̈ S. Indicators of inflammation in the diagnosis of
mastitis. Vet. Res. 2003, 34, 565−578.
(32) Guerreiro, T. M.; de Oliveira, D. N.; Melo, C. F. O. R.; de
Oliveira Lima, E.; Ribeiro, M. D. S.; Catharino, R. R. Evaluating the
effects of the adulterants in milk using direct-infusion high-resolution
mass spectrometry. Food Res. Int. 2018, 108, 498−504.

(33) Ryumin, P.; Cramer, R. The composition of liquid atmospheric
pressure matrix-assisted laser desorption/ionization matrices and its
effect on ionization in mass spectrometry. Anal. Chim. Acta 2018,
1013, 43−53.
(34) Ryumin, P.; Brown, J.; Morris, M.; Cramer, R. Investigation and
optimization of parameters affecting the multiply charged ion yield in
AP-MALDI MS. Methods 2016, 104, 11−20.
(35) Marty, M. T.; Baldwin, A. J.; Marklund, E. G.; Hochberg, G. K.
A.; Benesch, J. L. P.; Robinson, C. V. Bayesian Deconvolution of Mass
and Ion Mobility Spectra: From Binary Interactions to Polydisperse
Ensembles. Anal. Chem. 2015, 87, 4370−4376.

ACS Omega Article

DOI: 10.1021/acsomega.9b01476
ACS Omega 2019, 4, 12759−12765

12765

http://dx.doi.org/10.1021/acsomega.9b01476

