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Abstract

Extreme geophysical events are of crucial relevance to our daily life: they threaten human
lives and cause property damage. To assess the risk and reduce losses, we need to model
and probabilistically predict these events. Parametrizations are computational tools used in
Earth system models, which are aimed at reproducing the impact of unresolved scales on
resolved scales. The performance of parametrizations has usually been examined on typical
events rather than on extreme events. In this paper we consider a modified version of the
two-level Lorenz’96 model and investigate how two parametrizations of the fast degrees of
freedom perform in terms of the representation of extreme events. One parametrization is
constructed following Wilks (2005) and is constructed through an empirical fitting procedure;
the other parametrization is constructed through the statistical mechanical approach proposed
by Wouters and Lucarini (2012, 2013). The two strategies show different advantages and
disadvantages. We discover that the agreement between parametrized models and true model
is in general worse when looking at extremes rather than at the bulk of the statistics. The
results suggest that stochastic parametrizations should be accurately and specifically tested
against their performance on extreme events, as usual optimization procedures might neglect
them.

1 Introduction

Weather and climate models are mathematical representations of the physical processes in the
Earth system. These physical processes operate on different temporal and spatial scales. For in-
stance, atmospheric convection acts from minutes to hours on a spatial scale of kilometers, while
ocean circulation acts from years to multiple thousands of years on a spatial scale of thousands
of kilometers. Since weather and climate models have certain temporal and spatial resolutions,
the processes that happen on shorter timescales or smaller spatial scales cannot be resolved by
the model. However, the processes on different scales interact with each other, and the unresolved
processes will influence the resolved processes. Parametrizations are computational tools aimed
at reproducing the impact of the unresolved scales on the scales that can be directly resolved.
Different parametrization schemes strike different balance between computational efficiency and
various aspects of accuracy. While traditionally parametrizations are formulated as empirical de-
terministic formulas, in recent years the scientific community has advocated the need for using
more general parametrization methods comprising also of stochastic components; see Palmer and
Williams (2008), Franzke et al. (2015) and Berner et al. (2017) for a summary of recent develop-
ments in this field. The idea of using a stochastic climate model has been proposed by Hasselmann
(1976). The goal of this paper is to address, in a simple yet informative case, the problem of how
well parametrizations perform, but, instead of looking at the bulk of the statistics, as usually done,
we look at extreme value statistics.

The understanding, modeling and probabilistic prediction of extremes are of key interest to the
financial market, the insurance sector, and also to civil defence services concerning natural catas-
trophes, e.g. hurricanes, storms, floods, etc. A mature statistical framework, known as extreme
value theory (EVT), is widely applied to analyze extremes. The theory was developed in the course
of the 20th century by Fisher and Tippett (1928), Gnedenko (1943), Balkema and de Haan (1974),
and Pickands (1975); an excellent summary of the main results can be found in, e.g. Embrechts,



Kliippelberg, and Mikosch (1997), and Coles (2001). Two approaches are often used to analyze
extremes: the block maxima (BM) and the peak over threshold (POT) approaches. Extremes are
defined in different ways by these two approaches: the first one takes the maximal values in blocks
or batches of sample data as extremes, while the second one selects the exceedances above a given
high threshold. Under rather general conditions the block maxima are distributed according to the
Generalized Extreme Value (GEV) distribution, and the threshold exceedances follow the General-
ized Pareto (GP) distribution. That is in the limit of large block sizes and thresholds, respectively,
upon some suitable normalisation. Holland et al. (2012) applied the BM method to the extremes
of a number of chaotic deterministic dynamical systems and found that for sufficiently smooth so-
called physical observables, a parameter of the limiting GEV distribution, the shape parameter, is
determined by the dimensions of the stable and unstable manifolds of the chaotic attractor. Later
Lucarini et al. (2014) applied the POT method and suggested by a heuristic argument that the
formula of Holland et al. (2012) should apply generically. These two papers together with other
earlier publications |Collet| (2001)); [Freitas et al.| (2010) establish a connection between extreme
value statistics and the geometrical properties of the attractor. A comprehensive summary of the
main results of extreme events of observables of deterministic systems with examples and applica-
tions can be found in Lucarini et al. (2016). This link has been reexamined by Galfi, Bodai, and
Lucarini (2017), in which the authors presented the convergence of shape parameter estimates to
the theoretical value in a two-level quasi-geostrophic atmospheric model, or the lack of it, as this
convergence could be observed only in the model with a strong forcing. Furthermore, Bodai (2017)
argued that the convergence of the shape parameter can be observed typically for high-dimensional
systems, and in low-dimensional systems, such as the Lorenz’84 and one-level Lorenz’96 models
that he studied, the shape parameter estimates can increase nonmonotonically with the block size,
or fluctuate owing to the fractality of the natural measure, in which latter case no extreme value
law exists in a strict sense.

We use a conceptual model of the atmosphere, the two-level Lorenz’96 model (L96) [Lorenz
(1995)) and two parametrized versions of this model, which are constructed by resolving the large-
scale variables and parametrizing the influence of the unresolved small-scale processes on the
evolution of the resolved variables in the two-level 1.96. We consider two stochastic parametriza-
tion schemes for the unresolved processes: an empirical parametrization and another one based
on response theory. The first one was proposed by Wilks (2005), using multivariate regression
and a simple first-order autoregressive model. This parametrization has been widely applied to
the two-level L96 and showed very good performance in reproducing the large-scale variables of
the full dynamic model |Arnold et al.| (2013); (Christensen et al.| (2015)); Harlim| (2017)). The sec-
ond parametrization scheme was recently introduced by Vissio and Lucarini (2018), using the
methodology proposed by Wouters and Lucarini (2012, 2013, 2016). This is a scale-adaptive
parametrization, such that one can derive a universal expression for the parametrization that ex-
plicitly represents a scale parameter to do with the coupling strength between the resolved and
unresolved processes. The two parametrizations show comparable skills in reproducing the proba-
bility density, the spatial correlation, and the temporal autocorrelation of the large-scale variables
of the full model [Vissio and Lucarini (2018)), with the Wilks approach providing marginally better
results at the expense of the fact of being ad-hoc and not adaptive. In this paper, we evaluate how
well the two parametrization schemes perform in terms of reproducing the extreme value statistics
of the full model. The Wilks parametrizations is constructed in such a way that typical events
are represented as well as possible but there is no a-priori control on how well extreme events are
represented. The Wouters-Lucarini parametrization allows, in principle to control the error in the
expectation value of any observable, including those relevant for defining the properties of the tails
of the distributions. Conversely, the latter approach suffers from being a perturbative one, with the
risk of lack of convergence. In an earlier study, Franzke (2012) showed that a reduced order model
constructed by systematic stochastic mode reduction strategy has similar extreme value statistics
as the full dynamical model for a wide range of time-scale separations. As a contribution to the
main goal of this paper, like |Franzke (2012); |Galfi et al. (2017); [Bodai (2017), we also examine
the convergence/approximation of the shape parameter estimates of the said different models to
the theoretical value of the two-level L.96. Note that the shape parameter of a stochastic model is
most probably not the same as that of a deterministic model.

In the following section, we will introduce the two-level L96 and the two parametrization
schemes. In Sec. |3l we present the two approaches from EVT and the mathematical expression
for the shape parameter in dynamical systems. In Sec. [d] we apply the two approaches of EVT



to the parametrized and full models and compare the estimates of the GEV and GP parameters
obtained for the different models. In Sec. 5] we provide an empirical comparison of the extremes
in the different models. In Sec. [6] we compare the mean return periods of the extremes of the
same magnitude in the different models. In Sec. [7} we repeat the analysis for a different coupling
strength in the two-level L96. We close the paper with a summary and conclusions in Sec. [§]

2 The two-level Lorenz’96 Model

The two-level LI6 was introduced by Lorenz (1995), the governing equations of which describe
the dynamics of a lattice with periodic boundary conditions and represent, in a very conceptual
way, the main processes occurring in the atmosphere: advection, forcing, and dissipation. In order
to apply the Wouters-Lucarini (W-L) parametrization to the two-level L96, Vissio and Lucarini
(2018) made two changes to the original model: 1) introduced a forcing term in the equations
for the small-scale variables, and 2) restricted the periodic boundary conditions of the small-scale
variables within the corresponding large-scale sectors. The first change was aimed at fulfilling a
basic requirement for the W-L parametrization: the presence of chaos in the uncoupled dynamics,
so that the autocorrelation of the variables decays fast. This requires, in physical terms, an external
forcing providing energy to the small-scale variables. The second change was implemented in order
for the small-scale variables to represent subgrid-scale phenomena of the sectors they belong to.
Additionally, the latter made the implementation of the W-L parametrization easier. The modified
governing equations of the two-level LI6 are given as:

ka——X (X — Xps1) - X +F—@XJ:Y' (1)
T k—1(A k-2 k+1 k x b = Jiko
dy; Cpo he
Tgk = —cb¥jr1k(Virzp = Yj-1,0) = ¥ + 3 Fy + - X, @)

where the variables X}, and variables Y ; are defined for K =1,..., K and j =1, ..., J. We consider
the variables X}, to be large-scale variables, while the variables Y; to be small-scale variables.
The boundary conditions are defined as:

X_1=Xk_1,
Xo = Xk,
Xr+1 = Xy,

Yivie =Yk,
Yitor =You,
Yor =Yk

The parameters F, and F), represent forcing terms in the equations for the variables X and Yj z,
respectively. The parameter h is a coupling coefficient, and the parameters ¢ and b can be thought
of as time-scale ratio and spatial-scale ratio, respectively. These three parameters determine the
coupling strength of the system: € = he/b. As we keep b and ¢ equal, we have e = h. The variables
X} can represent some atmospheric quantity in K sectors of a latitude cycle, while the variables
Y, 1 can represent some other atmospheric quantity in smaller JK sectors. There are J smaller
sectors in each larger sector. In our computations we set the parameter values of the model as
follows: K =10, J =10, F, =10.0, F, = 6.0, h = 1.0, b = 10.0, and ¢ = 10.0.

In many practical applications, small-scale processes are too expensive to resolve and their im-
pacts on the evolution of large-scale processes are parametrized by deterministic terms, or stochastic
terms, or both of them. In the two-level L96 we can parametrize the effects of the evolution of the
Y; 1 variables on the evolution of the X}, variables, then the evolution equations of X}, variables
are given as

dX
di = X1 (Xp2 — Xpy1) — Xp + Fo + U, (3)

where U denotes the parametrization of the effects of the unresolved processes, which has to
represent the model error when only the large-scale variables X} are resolved in place of the full
dynamics. We call Eq. the parametrized model, contrasting with the full model given by Egs.
and . We now introduce two parametrization schemes.



2.1 Wilks parametrization:
multivariate regression and autoregressive process

The first parametrization scheme was proposed by Wilks (2005), which used a polynomial equation
and a correlated noise term to represent the unresolved processes:

U(t) = Pe(Xk(1)) + ex(t), (4)
where the polynomial equation is a function of the X}, variables:
Pro(X3(t) = a0 + a1 Xy (t) + a2 X7 (t) + asXj (t) + as Xp (1), (5)
and the noise term is a simple first-order autoregressive model:
i = derio1+0e(1—07) 2z, (6)

where ey ; = e(t;), t; =dt xi,i=1,...,1, dt =0.005 [MTU], where MTU is the abbreviation of
‘model time unit’, and zj; are unit variance Gaussian random variables, independent wrt. both
k and i. The autoregressive parameter ¢ is equal to the autocorrelation of the time series eg(¢;)
with a time lag of dt, and o, denotes the standard deviation of the time series. We first estimate
the polynomial coefficients by regressing Py (X (¢;)) against

he &
=5 2 Yik(t)
j=1

The estimated coefficients are ag = —1.81, a; = —0.1467, as = 0.001357, a3 = —0.001446, and
aq = 0.0001313. Next we fit the residual of the polynomial fitting

J
hc
_?Z Pk(Xk( ) a03a1)a21a37a4)

with the first-order autoregressive model (Eq. @ In our computation, we get ¢ = 0.9997 and
o. = 0.8965; we refer to [Neumaier and Schneider| (2001) for the estimation of parameters of
autoregressive models. The Wilks parametrization is an empirical parametrization which is con-
structed based on the fact that in the two-level 196 the unresolved tendency is strongly and
nonlinearly dependent on the value of the resolved variable (Wilks| |2005). The implementation
of the two modifications to the original model do not change this characteristic, therefore, the
Wilks parametrization is still valid. A weakness of the empirical parametrizations is that their
parameters need to be recalculated if the configuration of the full model is changed.

2.2 Wouters—Lucarini parametrization:
averaging, correlations and memory

The application of the second parametrization scheme to the two-level L96 was first demonstrated
by Vissio and Lucarini (2018). The W-L parametrization is based on Ruelle’s response theory
(Ruellel [1997) |2009), and it was proposed by Wouters and Lucarini (2012). Later Wouters and
Lucarini (2013) showed that the parametrization scheme can also be obtained through the Mori-
Zwanzig approach [Mori et al.| (1974)); Zwanzig (1960} [1961). Note that this point of view, as well
as the more sophisticated results by Chekroun, Liu, and Wang (2015), provide the mathematical
foundations of the theory of stochastic parametrizations. In the W-L parametrization, the coupling
of the variables to be parametrized is considered as a small perturbation to the variables of interest.
The coupling is decomposed into three terms: an averaging term, a correlation term, and a memory
term. Therefore, the formula of the W-L parametrization is given as:

U=D+S+ M, (7)

In the above the averaging term D is a constant, accounting for the "averaged influence" of the
Y; 1. variables on the long-term statistics of the X}, variables, and it is calculated by

D= _ETIEEJ/ Zlffj,k(ﬂdﬂ (8)



where k = 1,..., K. Due to symmetry, this term has the same value for all X} variables. The time
series of Yj ; are obtained by integrating the equations given as:

dy; 8 - - §
d:k = Y1 x(Yjpo e — Yjo1,6) — Y + Fy, (9)
where the Y; ;, denote the rescaled small-scale variables:
Vi = bk, (10)
and time is rescaled as
T =ct. (11)

The correlation term Sy, is a stochastic term which accounts for the fluctuations of the influence of
the Y; . variables on the long-term statistics of the X} variables. It is constructed as an additive
noise which reproduces the temporal correlation of the fluctuations. The autocovariance of the
fluctuations is given as:

T—o0

T
Ri(7) = lim %/0 i (11)pE (11 + 7)dT1, (12)

where

J o~
pe(ry=-3 ) p (13)
j=1
Following Vissio and Lucarini (2018), we generate the stochastic term Sy using a simple autore-
gressive model. The M}, is a non-Markovian term, accounting for the memory effects, which is
important for the parametrization of the small-scale processes of the two-level L96; see the com-
parison of the first- and second-order parametrizations in Vissio and Lucarini (2018), where the
first one contains only the averaging term, while the second one contains also the correlation term
and the memory term. M) describes the influence of the past values on the present values of the
Xy, variables through the coupling of the Y; variables, and an explicit expression for M) was
provided by Vissio and Lucarini (2018):

1 o
M, = —5/ Xyt — ) H(m)dr1, (14)
0
where
H(m) =5 hm / 7-1er>dw. (15)
=1 ayjk( )

The W-L parametrization is a scale-adaptive parametrlza‘mon7 in the two-level L96, it can be
analytically adapted to the changes in the values of h, b, and ¢ by simply rescaling the three terms
D, S and My. However, at the expense of being flexible, it may be somewhat less accurate than
the empirical parametrization. A limitation of the W-L parametrization is that it is only valid for
weakly coupled systems.

2.3 Local and Global Observables

In physics an observable is a variable that can be measured. We consider a local observable and
two global observables of the full and parametrized models; we define the local observable as
Ay = X, for k =1,..., K (the X variables have the same statistics due the the symmetry of the
model), and the global observables as A = Zszl X2 and A, = Zszl X, representing the total
energy and the total momentum of the X}, variables, respectively. Fig. [I] compares the probability
density functions (PDF) of the local observable between the full and parametrized models, and
Fig. [2| compares the PDFs of the global observables between the full and parametrized models.
The sample data of the local and global observables are produced by integrating the models for
3.2 x 10° time steps with adaptive stepsizes. We record the three observables at each time step
and since the 10 different X}, variables are statistically equivalent, we get 3.2 x 10% samples for
the local observable. The two parametrized models can capture the statistics of the considered
observables of the full model relatively well, but they produce more precise statistics for the local
observable than the global observables. Moreover, compared to the W-L parametrized model, the
Wilks parametrized model better reproduces the statistics of the local observables of the full model.
However, it must be noted that what we look at here is the bulk of the statistics, and these figures
do not allow us to compare the extreme value statistics.
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Figure 1: Probability density functions of the observable A, from the full and parametrized models.
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Figure 2: Probability density functions of the observables Ag (left) and A, (right) from the full
and parametrized models.

3 Extreme Value Analysis

3.1 Two Approaches

Two straightforward approaches exist for extreme value analysis: the BM approach and the POT
approach; we refer the reader to Embrechts, Kliippelberg, and Mikosch (1997), Coles (2001), and
Lucarini et al. (2016) for more details. According to the BM approach the data is divided into
sufficiently large blocks of equal length and the maximal value of each block is retained. Then the
GEV distribution is fitted to these maxima. The cumulative distribution function (CDF) of the
GEV distribution is given as:

P(X < 1) = F(a; . 0,6) exp{l [Hs (‘”U“ﬂw}, (16)

which holds for 14+&(x—p)/o > 0, where —oco < p < oo is referred to as location parameter, o > 0
is called scale parameter and —oo < ¢ < oo denotes the so-called shape parameter. When & = 0,

we take the limit of as £ — 0, which is

F(x;u,a)—exp{exp [ <IU”>” (17)




The location and scale parameters are scaling constants used to normalize the random variable
X of the maximal values of blocks. The shape parameter characterises the tail behavior: when
& = 0, the tail decays exponentially; when £ > 0, a heavy tail occurs, which decays following a
power law; and when £ < 0, the tail is bounded, i.e., there is an upper limit of the domain of the
distribution. The POT approach selects data whose magnitude is above a high threshold. The
threshold exceedances are fitted by the GP distribution, which is defined by the CDF:

PN
P(X <) =F(i;6,6) =1— (1 + ’5&) : (18)

where X > 0 denotes the exceedances above a threshold u, e.g. X = X), — u. The scale parameter
6>1,and 1 —|—§x /& > 0. The shape parameter f again characterises the tail behaviour like it does
in the GEV distributions. As with the GEV distribution, for § = 0, the CDF is given as:

F(i;6) =1 — exp (Z) . (19)

It should be noted that the shape parameter is the same for corresponding limit GEV and GP
distributions, i.e., £ = é Lucarini et al.| (2016). A simple functional relation connects the two
distributions; the natural logarithm of Eq. plus one equals Eq. . Under general conditions,
while the two approaches define extremes differently, they are fundamentally equivalent.

3.2 The Theoretical Value of Shape Parameter

For general classes of smooth physical observables, Holland et al. (2012) and Lucarini et al. (2014)
provided an explicit expression for the shape parameter:

1

_ = 2
gtheo 5a ( 0)
where J J
§=d,+ % (21)

for continuous-time flows. In the above, d, is equal to the number of positive Lyapunov exponents,
dy, is equal to the number of zero exponents, which is at least one for Axiom A systems (Lucarini
et al.l [2014)), and ds equals the number of stable directions and is given by

ds =dgy — dy — dy. (22)
In the above, the Kaplan-Yorke dimension is defined as [Kaplan and Yorke (1979)

Z?:l Ai

, 23
o] (23)

dgy =n+
where \; denote the Lyapunov exponents of the system, arranged in a descending order, and n is
the number when E:’L:l A; is larger than zero while Z?Ill A; is smaller than zero.

Eqgs. give an estimator for the shape parameter via the estimators of the dimensions, or
via the estimators of the Lyapunov exponents, instead of estimating it by fitting a GEV or a GP
distribution. Clearly, the value of &, is always negative; this can be seen from the formulae, where
we always have § > 0. A negative shape parameter indicates that the distribution of extremes
has an upper bound. This is not surprising as smooth physical observables are considered and
the dynamical attractor is compact |Lucarini et al.| (2014). Finite-size positive estimates are of
course possible. We should think that whenever positive shape parameters are and have been
encountered, a deterministic dynamical system is still an appropriate mathematical representation
of the physical process. When we consider a high-dimensional chaotic system, we have a large
Kaplan-Yorker dimension of the attractor and so the value of &, is close to zero. It means that
the occurrence of very large extreme events becomes more likely.
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Figure 3: Comparison of the estimates of the GEV shape parameter for the observable A, (left),
Apg (middle), and A, (right) over a range of block sizes. The horizontal line shows the theoretical
value of the shape parameter for the full model.

3.3 Return Period

The mean or expected return period is the reciprocal of the probability of an extreme value of a
given magnitude. The magnitude of the extreme value in this context is commonly referred to as
the return level. The fitted GEV and GP distributions provide estimates of mean return periods for
different return levels via inverting those distributions. As an extrapolation, one can choose higher
return levels than ever observed, however, the corresponding mean return time estimates are in
general biased. We can calculate the empirical return periods for the data up to reasonable return
levels, which can be compared — in order to facilitate a goodness-of-fit check — to the said estimates
by fitting a GEV distribution and inverting it. Using the block maxima data, the empirical mean
return period for return level m is calculated as:

rai(m) = (’”‘(m)) (24)

ny

where n,, is the number of block maxima which have a value greater than or equal to m, and ny, is
the number of blocks, or the size of data. We construct mean return time vs return level plots to
compare the full and parametrized models yet another way. We create these diagrams using the
package "extRemes 2.0" |Gilleland and Katz (2016 of the software environment R.

4 Comparison of GEV and GP Parameters

We apply the BM and POT methods to the local and global observables of the full and parametrized
models. We consider a range of block sizes B, exponentially increasing from the smallest block
size considered By = 1000 MTU, and a range of exceedance ratios F, exponentially decreasing
from the highest ratio considered Ey = 0.1%, for the BM method and POT method, respectively.
In order to compare fairly the GP and GEV parameters estimated from the samples of the same
size, we match choices of B with choices of E = 1/B. The number of the block maxima given
by the block size By, equaling the number of the threshold exceedances given by the exceedance
ratio Ep, is 4 x 105 for the local observable (4 x 10° for each X} variable) and 4 x 10° for the
global observables. We take advantage of the package "extRemes 2.0" |Gilleland and Katz| (2016)
of the software environment R to estimate the GEV and GP parameters; we use the method of
L-moments [Hosking| (1990)) for estimation. For the local observable, we plot the averaged estimates
of the parameters over ten X, variables, and present the estimator variance as the sample standard
deviation for the ten estimates given by error bars. For the global observables on the other hand,
we show the 95% confidence intervals of each estimate, where the confidence interval is calculated
by a parametric bootstrap method |Gilleland and Katz| (2016)).

4.1 The GEV Parameters

Fig. 3] compares the estimates of the GEV shape parameter for the three observables of the full
and parametrized models over a range of block sizes. The horizontal line represents the theoretical
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Figure 4: Comparison of the estimates of the GEV scale parameter for the observable A, (left),
Ag (middle), and A, (right) over a range of block sizes.
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Figure 5: Comparison of the estimates of the location parameter for the observable A, (left), Ag
(middle), and A, (right) over a range of block sizes.
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Figure 6: Comparison of the estimates of the GP shape parameter for the observable A, (left),
Ap (middle), and A, (right) over a range of exceedance ratios. The horizontal line shows the
theoretical value of the shape parameter for the full model.



S o | o
o full model =7 o full model Ld o full model
© o Wilks o Wilks o Wilks
s7.. o W-L &40 w-L @] ° W-L
2N : &
o = | ‘\ o 2 . \ o w | S
% S e = i < - I~
2 i\ . 3w ST N . it e il {\{%
S s “\(\; b \x\;‘}gi<
AN "'51—'—1,:;,%: o
o~ ~. N\, i ER
3 R - |
< S, (,{/i/{ \%/ o
o N
< o~
—r T T — T
0 1 2 3 4 5 6 7 8 9 10 11 0123 456 78910 12 0 1 2 3 4 5 6 7 8 9 10
log-,(E/Eo) log-»(E/Eq) log-»(E/Eq)

Figure 7: Comparison of the estimates of the GP scale parameter for the observable A, (left), Ag
(middle), and A, (right) over a range of exceedance ratios.

value of the shape parameter for the full model, which is not applicable to the parametrized models,
because they obey a stochastic and not deterministic dynamics. The shape parameter determines
the tail behaviour of the distribution: a larger value indicates a slower decay of the tail; and, on
the contrary, a smaller value indicates a faster decay of the tail.

We first focus on the behaviour of estimates of the shape parameter for the full model. We
observe nonmonotonic changes of the estimates with an increase of block size. The estimates for
the observable A, decrease with the block size increasing from By to By x 23, then it turns to
increase and is seen to cross the theoretical value at log,(B/By) = 7, and after that the theoretical
value is always within the increasingly large confidence intervals of the estimates. The estimates
for the observable Ap cross the theoretical value at log,(B/By) = 4 and then seems to come back
at log,(B/By) = 11, however, the confidence interval is very big by then. The estimate for the
observable A, increases at the first three data points, and then the estimates are always within
the confidence intervals of any latter estimates. The estimates for the observable A, seem to reach
a value smaller than the theoretical value, however, it should be noted that the last three data
points show an upward trend, toward the theoretical value. As the block size increases, we observe
to some extent an approximation of the estimates of the shape parameter to the theoretical value
instead of a steady convergence. The estimates for the three observables show different erratic
behaviours with the increase of the block size, and so none of these behaviours is asymptotic.

We now focus on comparing the estimates of the shape parameter given by the parametrized
models to that given by the full model. When we look at the observable A, and Ag, the estimates
given by the parametrized models are apparently different from that given by the full model over
most of the block sizes examined. An interesting result is that when we look at the observable A,
the W-L parametrized model gives very similar estimates compared to the full model. We note,
however, that this good correspondence could be just a coincidence; the results may change if we
use another system or a different parameter setting. Moreover, this good correspondence should
not last as the stochastic model surely has a different asymptotic shape parameter from that of
the deterministic model.

Fig. [4] compares the estimates of the GEV scale parameter for the three observables of the full
and parametrized models over a range of block sizes. The estimates for the observable A, and A,
given by all the three models monotonically decrease as the block size increases, while the estimate
for the observable Ap nonmonotonically changes. The parametrized models generally give larger
estimates than the full model for all the three observables over all the block sizes considered. We
observe that the W-L parametrized model gives more accurate estimates for the local observable
over all considered block sizes than the Wilks parametrized model. Similarly to the estimates of
the shape parameter for the observable A,, this result could also be just a coincidence.

Fig. [p| compares the estimates of the location parameter for the three observables from the full
and parametrized models over a range of block sizes. The location parameter, only appearing in
GEV fittings, determines where the center of the distribution is located, and a larger value means
that the distribution is shifted to the right, so that we have extremes of higher magnitudes. We
observe that both of the parametrized models give larger estimates for all the three observables
than the full model. Additionally, the W-L parametrized model gives more accurate estimates for
the observable A, and A than the Wilks parametrized model.
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Figure 8: Comparison of the histograms of the block maxima of the observable A, (left panels),
Apg (middle panels), and A, (right panels) between the full and W-L parametrized models (upper
panels), and between the full and Wilks parametrized models (lower panels). The block size is By.

4.2 The GP Parameters

Fig. [6] compares the estimates of the GP shape parameter for the three observables of the full
and parametrized models over a range of exceedance ratios. Fig. [7] compares the estimates of the
GP scale parameter for the three observables of the full and parametrized models over a range of
exceedance ratios. The behaviours of the estimates of the GP parameters are similar to those of
the GEV parameters. We shall not comment on these further. The BM and POT approaches give
consistent results of extreme value statistics as they are fundamentally equivalent.

5 Empirical Comparison of Extremes

5.1 Histograms of Block Maxima

Fig.[§|compares the histograms of the block maxima of the three observables between the parametrized
and full models. The total area of each histogram is normalized to one, and so the vertical axes of
the histograms show relative probability density. The histograms give a rough estimate of the PDF
of the block maxima. Since we have a large number of data points and small bin sizes, the graphs
look very smooth. The patterns of the histograms are unimodal and approximately symmetric;
they are slightly right skewed like indeed a GEV distribution. The disagreements between the
histograms of the parametrized models and the full model have two main features: 1) the block
maxima from the parametrized models are more widely distributed; and 2) the histograms of the
parametrized models are right-shifted. These empirical results have been already indicated by the
estimates of the scale and location parameter in Sec. Fig. [0 shows the same figures as Fig.
but with the block maxima selected by a larger block size. As the block size increases, the block
maxima have larger magnitudes and the overlapping area between the histograms of the param-
eterized and full models becomes smaller. If we look at the observable Ag, we can see that the
probability density of the block maxima given by the Wilks parametrized model is totally different
from that given by the full model. In summary, the histograms of the W-L parametrized model
appear to be in somewhat better agreement with the histograms of the full model than that of the
Wilks parametrized model. Moreover, the local observable of the full and parametrized models
show better agreement than the global observables.
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Figure 9: Comparison of the histograms of the block maxima of the observable A, (left panels),
Apg (middle panels), and A, (right panels) between the full and W-L parametrized models (upper
panels), and between the full and Wilks parametrized models (lower panels). The block size is
BO X 27.

5.2 Number of Threshold Exceedances

When applying the POT method, a main issue is to compare the number of the threshold ex-
ceedances produced by the full and parametrized models for a given threshold. Fig. shows the
fractional difference of the number of the threshold exceedances given by the parametrized models
compared to that given by the full model. We calculate the fractional difference using the formula
given as:
Npar () — npun(v)
7 g ()

; (25)

where n g, (u) denotes the number of exceedances above a threshold u from the full model, and
Npar(u) denotes that from the parametrized models. We consider two sets of thresholds for the
three observables of the three models. The first set of thresholds is chosen as the 99.9th percentile
of each observable of the full model, and the second set of thresholds is more stringent, which
is the 99.99th percentile of each observable of the full model. As shown in Fig. [I0] both of the
parametrized models give more threshold exceedances than the full model, with the exception
of the observable Ag of the W-L parametrized model in the upper panel. Moreover, the global
observables demonstrate larger differences than the local observable with the same exception.
When considering the observable A, and Ag, the W-L parametrized model has a substantially
better performance than the Wilks’ one. Note that if we look at the observable Ag of the Wilks
parametrized model in the lower panel, we can see a huge discrepancy; the number of threshold
exceedances given by the Wilks parametrized model is more than 11 times greater than that given
by the full model. Instead, the performance of the two parametrizations is comparable when
looking at the observable A,. We also observe that the fractional difference becomes larger when
a higher threshold is given.

5.3 Quantile-Quantile Plots

We further compare the empirical quantiles of the three observables from the parametrized models
to those from the full model. We compare 1001 quantiles, starting with the smallest element
of the sample, up to the largest element, and 999 equidistant quantiles in between these two

12
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Figure 11: The empirical quantiles of the observable A, (left), Ap (middle), and A, (right) from
the parametrized models against that from the full model.

elements. Fig. [I1] shows the empirical quantiles of the three observables from the parametrized
models against those from the full model. In the left panel, except for several very high-level and
low-level quantiles, the other moderate quantiles from the parametrized models agree well with
those from the full model, indicating that the parametrized model can reproduce well the bulk
statistics of the observable A, of the full model. In the middle panel, the points are slightly farther
away from the diagonal, indicating that the quantiles of the observable Ag from the parametrized
models are somewhat in disagreement with those from the full model. In the right panel, we observe
that the quantiles of the observable A, from the Wilks parametrized model agree well with those
from the full model, whereas the low quantiles from the W-L parametrized model show an obvious
disagreement. In summary, the parametrized models give better quantiles of the local observable
than the global observables.

The data between the last two quantiles are the largest one thousandth of the sample data.
These data are the extreme values we want to investigate. Fig. [[2] shows a zooming onto the
extreme quantiles that are higher than the 99.9th percentile. We consider 101 extreme quantiles,
including the 99.9th percentile, the largest element of the sample, and 99 equidistant quantiles
between them. As shown in the left panel, the extreme quantiles of the observable A, from the
W-L parametrized model are slightly larger than those from the full model, and, in comparison,
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Figure 12: The empirical extreme quantiles of the observable A, (left), Ag (middle), and A, (right)
from the parametrized models against that from the full model.

the extreme quantiles from the Wilks parametrized model have a larger disagreement. In the
middle panel, the extreme quantiles of the observable Agp from the Wilks parametrized model
totally miss that from the full model and the approximation of the extreme quantiles from the
W-L parametrized model to those from the full model breaks down after the 99.95th percentile.
In the right panel, we observe that the extreme quantiles of the observable A, from both of the
parametrized models are far away from those from the full model.

6 Return Periods of Extremes

Fig. presents the mean return periods against the return levels of the extremes for the three
observables of the three models. The extremes are selected by the BM approach using a block size
of By x 219, Tt can be seen that the GEV mean return time estimates using the chosen block size
fit the empirical data quite well, except for very high return levels of the observable A,, at which
the empirical estimates are out of the confidence interval of the GEV estimates.

Comparing the parametrized models to the full model, we find that for all the three observables
the parametrized models always produce higher-level extremes in the same return periods. In other
terms the return period of the extremes with the same magnitude is shorter in the parametrized
models than in the full model. Moreover, in comparison with the Wilks parametrized model, the W-
L parametrized model gives better estimates of return levels, which are closer to the estimates given
by the full model. One exception is observed in momentum observable; the Wilks parametrized
model gives slightly better estimates of return levels than the W-L parametrized model.

7 Sensitivity to coupling strength

In previous numerical experiments, we applied the Wilks and W-L parametrizations to the two-
level L96 with the standard value of the coupling strength h = 1.0. We now test and compare the
performances of the two parametrizations as we consider both a factor of 2 weaker and a stronger
coupling strengths, i.e., h = 0.5 and 2, respectably.

We need to recompute the parameter values for the Wilks parametrization through fitting
the residual time series as we vary the coupling strength, but this is not the case for the W-L
parametrization, the three terms of which can be simply rescaled as follows (see Eq. (13) of Vissio
and Lucarini (2018)): D = (h/h)D, S = (h/h)S and M = (h/h)?>M, where the symbols with tilde
represent the case when we have a new value of i, and the symbols without tilde represent the
case when we have the standard value of the coupling strength. The parameter values of the Wilks
parametrization for the weaker and stronger coupling strength are presented in Table[I] Note that
the Wilks parametrization lacks stability in the case of h = 2.0 if we include the stochastic term
in the parametrization, therefore, we use a deterministic parametrization, which does not contain
the first-order autoregressive model.

Fig. [[4] shows the PDF of the three observables from the full and parametrized models in the
case of h = 0.5. We observe a better agreement for all the three observables between the full
and parametrized models in comparison with the case of h = 1.0. Because of the way that the
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Figure 13: Return levels against return periods for the block maxima of the observable A, (upper
panels), Ag (middle panels), and A, (lower panels) from the full and parametrized models. The
black dots signify the empirical return levels, the solid black lines show the predicted return levels
computed based on the fitted GEV distributions, and the dashed grey lines present the 95%
confidence intervals of the estimates.
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Figure 14: Probability density functions of the observable A, (left), Ag (middle), and A, (right)
from the full and parametrized models in a weak coupling case (h = 0.5).

Table 1: Parameter values of the Wilks parametrization for different values of the coupling strength
h.

h ag ai as as ay o) Oc
0.5 —-0.95 —-0.0349 —0.0008 —0.0002 0.00002 0.967 0.3548
2.0 =354 —-0.3292 —-0.0548 —0.0593 0.0132 0.0 0.0

W-L parametrization is constructed, the error in the W-L parametrized model with respect to
the full model is a function of the coupling strength, which is O(e?), as mentioned before, and
this applies to all observables in the system |[Lucarini et al.| (2014); [Vissio and Lucarini| (2018).
Therefore, it is unsurprising that the W-L parametrized model demonstrates a better performance
in the case of a weaker coupling strength. The Wilks parametrization is constructed based on the
correlation between the X}, variables and the coupling term, which is the sum of the Y ; variables.
As the coupling strength becomes weaker, this correlation also becomes smaller, however, in the
meanwhile, the difference between the uncoupled dynamics and the coupled dynamics reduces,
therefore, although the quality of the parametrization scheme is not automatically constrained to
improve, we still observe smaller difference between the parametrized model and the full model.

Fig. shows the PDF of the observable A, from the full and parametrized models in the
case of h = 2.0. In this case, the statistics of the observable A, in the full model are greatly
changed; the PDF changes from unimodal to multimodal. The Wilks parametrization is able to
capture the multimodality of the PDF, since the correlation between the Xj and the Yj ;. variables
still exist. However, we believe that this multimodality prevents us to see a cubic scaling for the
difference between the full and W-L parametrized models. The qualitative difference shown in
the PDFs suggests that we are outside of a radius of convergence with respect to the coupling
strength A = 2.0, which means that the scale adaptivity is only valid for a range of the coupling
strength. This is unsurprising, because the W-L parametrization can only be applied to weakly
coupled systems. The PDFs for the two global observables, Ag and A,, have not been shown,
because both parametrizations perform very poorly.

We now look at the extreme value statistics given by the two parametrized models in the case
of h = 0.5. Fig.[16|compares the estimates of the GP shape parameter for the three observables be-
tween the full and parametrized models. In the case of a weaker coupling, the parametrized models
display extreme value statistics that matches more closely that of the full model in comparison
with the case of the original coupling strength. Furthermore, we compare the number of threshold
exceedances for the parametrized models to those for the full model. The thresholds are chosen
as the 99.9th and 99.99th percentile of the data produced by the full model. Fig. shows the
fractional difference calculated by Eq. in a weak coupling case. The W-L parametrized model
gives a closer number of the extremes of the observable A, and Ag to the full model than the Wilks
parametrized model, and the Wilks parametrized model gives a closer number of the extremes of
the observable A,. These are features unchanged with respect to the standard parameter setting.
Otherwise, both the parametrized models give less extremes of the observable A, than the full
model.
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8 Summary and Conclusions

This paper addresses the problem of how well stochastic parametrizations perform, in a simple
yet informative case; we conduct numerical experiments in a conceptual atmospheric model, the
two-level L96 |Lorenz (1995)). Instead of investigating the bulk of the statistics, as what has been
usually done, here we focus on examining extreme value statistics. The problem has been explored
using EVT, which provides us with a mature statistical framework to define and analyze extremes.
Under this framework, probability distributions obey a limit law and so some universality, as
opposed to the bulk statistical properties. We considered two kinds of parametrization schemes for
the two-level L96: the widely applied Wilks parametrization scheme Wilks (2005)) and a recently
proposed scale-adaptive parameterzation scheme Vissio and Lucarini| (2018]). The latter one is
constructed by the methodology proposed by Wouters and Lucarini (2012, 2013, 2016) and hence
denoted as W-L parametrization. The parametrized models constructed by these two schemes can
reasonably reproduce the bulk, but not the extreme value statistics of the large-scale variables of
the full model. The differences are mainly found in the following aspects:

e The extreme values from the parametrized models have different shape parameters, scale
parameters and location parameters than those from the full model;

e The extreme values selected by the BM approach have a larger variance in the parametrized
models than in the full model;

e The parametrized models give different numbers of extreme events than the full model when
we apply the same threshold to them, and in most cases, the parametrized models produce
more extreme events.

From a practical point of view, these differences will affect the mean return times of extreme events;
the extreme events from the parametrized models have typically shorter return times than those
from the full model. Our results suggest that stochastic parametrizations should be accurately
tested against their performance on extremes, because a good performance on typical events cannot
ensure a good performance on untypical events.

The parametrization schemes we use are constructed in two fundamentally different ways, and so
they have different advantages and disadvantages. As discussed in Sec.[2] the Wilks parametrization
is an empirical one, which is constructed based on the observed fact that in the two-level L96 the
small-scale tendency strongly and nonlinearly depends on the value of the large-scale variables
Wilks| (2005). The W-L parametrization is constructed through a statistical mechanical approach,
where the small-to-large-scales coupling is treated as perturbations of strength e added to the
uncoupled large-scale dynamics. It is based on a series expansion of the invariant measure of the
uncoupled system with respect to the small coupling parameter €. Including first- and second
order terms in the W-L parametrization implies that the difference between the expectation value
of all observables of the large-scale variables in the full model and in the parametrized model scales
as O(e3). In fact, this scaling applies to tail probabilities of our interest too, because they are
observables (Lucarini et al., [2014, [2016)).

As shown by Vissio and Lucarini (2018), the Wilks parametrization is more accurate than
the W-L parametrization in representing the bulk of the statistics of the full model. This is not
surprising because the Wilks parametrization is constructed through an empirical fitting procedure
that aims at providing an optimal representation of the typical events of the system, Note that this
does not ensure a good representation of rare events. Indeed, our new results show that there are
many cases where the W-L parametrized model reproduces the extreme value statistics better than
the Wilks parametrized model. Figs. 9, 10, 11 are especially clear in this regard. However, we must
emphasize that the performance of any parametrization scheme should depend on the observable of
interest via a prefactor for the scaling O(e?) of errors. We are yet to develop an understanding why
the W-L scheme outperforms Wilks with respect to the local observable A, of the site variables
and the global energy Ag observable but not the global momentum A, observable.

An important advantage of W-L that sets it apart from Wilks is that if an observable of interest
is not reconstructed accurately enough for a purpose, then one can opt — within the perturbative
framework — to work out higher-order correction terms. Within a radius of convergence of the
series expansion with respect to €, the performance can be improved arbitrarily in principle. The
other major advantage of the W-L parametrization is the scale adaptivity; when the coupling
strength € is changed, we can adapt the obtained parametrization schemes by a suitable rescaling
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procedure. In contrast, we need to recompute the parameter values of the Wilks parametrization
every time when the coupling strength is changed. But if the coupling strength is too strong,
the W-L parametrization fails; it is outside of the the radius of convergence, while the Wilks
parametrization might still work (although even that was found to be not the case for h = 2, only
the deterministic parametrization). This shows advantages and disadvantages of the two strategies.
In this paper, we also examined the convergence (or approximation, with a finite residual error
possibly) of finite size estimates of the GEV and GP shape parameters to the theoretical value
of the deterministic model, which is computed by the partial dimensions of the attractor of the
system. In the two-level L96, the estimates of the shape parameter non-monotonically approach
the theoretical value as the block size or threshold increases. The estimates show erratic behaviours
rather than an asymptotic behaviour in the observed ranges of the block maxima and thresholds.
The approximation of the estimates to the theoretical value takes place very slowly, and they have
different rates for different observables. Different rates of convergence of the estimates of the shape
parameter for different observables had also been reported in Galfi, Bédai, and Lucarini (2017).
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