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Genetic variation across RNA 
metabolism and cell death gene 
networks is implicated in the 
semantic variant of primary 
progressive aphasia
Luke W. Bonham1,2, Natasha Z. R. steele1, Celeste M. Karch3, Iris Broce  2, Ethan G. Geier1, 
Natalie L. Wen3, Parastoo Momeni4, John Hardy5, Zachary A. Miller  1, Maria Luisa Gorno-
tempini1, Christopher P. Hess2, Patrick Lewis  5,6, Bruce L. Miller1, William W. seeley1, 
Claudia Manzoni5,6, Rahul S. Desikan2, Sergio E. Baranzini  7, Raffaele Ferrari5, 
Jennifer S. Yokoyama1 & International FTD-Genomics Consortium (IFGC)*

The semantic variant of primary progressive aphasia (svPPA) is a clinical syndrome characterized 
by neurodegeneration and progressive loss of semantic knowledge. Unlike many other forms of 
frontotemporal lobar degeneration (FTLD), svPPA has a highly consistent underlying pathology 
composed of TDP-43 (a regulator of RNA and DNA transcription metabolism). Previous genetic 
studies of svPPA are limited by small sample sizes and a paucity of common risk variants. Despite this, 
svppA’s relatively homogenous clinicopathologic phenotype makes it an ideal investigative model to 
examine genetic processes that may drive neurodegenerative disease. In this study, we used GWAS 
metadata, tissue samples from pathologically confirmed frontotemporal lobar degeneration, and in 
silico techniques to identify and characterize protein interaction networks associated with svppA risk. 
We identified 64 svPPA risk genes that interact at the protein level. The protein pathways represented 
in this svPPA gene network are critical regulators of RNA metabolism and cell death, such as SMAD 
proteins and NOTCH1. Many of the genes in this network are involved in TDP-43 metabolism. Contrary 
to the conventional notion that svPPA is a clinical syndrome with few genetic risk factors, our analyses 
show that svppA risk is complex and polygenic in nature. Risk for svppA is likely driven by multiple 
common variants in genes interacting with TDP-43, along with cell death,x` working in combination to 
promote neurodegeneration.

Frontotemporal lobar dementia (FTLD) is a heterogeneous family of progressive neurodegenerative disorders 
characterized by degeneration of the frontal and temporal lobes with corresponding clinical deficits in social 
processes, language, and executive functioning1. One of the most common FTLD syndromes, semantic variant of 
primary progressive aphasia (svPPA; also referred to as semantic dementia (SD)) preferentially affects language 
and semantic processing2,3. svPPA is unique amongst the FTLD spectrum disorders because the vast majority of 
cases have TAR DNA-binding protein 43 (TDP-43) positive inclusions, with a very small fraction showing other 
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protein pathologies2,4. TDP-43 is a protein heavily involved in RNA metabolic processes including transcription, 
splicing, and transport5. Despite its relatively consistent clinical presentation and predictable pathological fea-
tures, little is known about the genetic factors underlying risk for svPPA6.

svPPA poses a unique problem and opportunity amongst the FTLD spectrum disorders2. When contrasted to 
pathologically diverse syndromes within the FTLD spectrum such as behavioral variant frontotemporal dementia 
(bvFTD), the relative clinical and pathological homogeneity of svPPA (typically TDP-43 Type C) could suggest 
a shared genetic risk profile across patients. However, very few, if any, common variants have been shown to 
contribute to the sporadic form of svPPA6,7. This observation is striking when compared to other forms of FTLD 
in which up to 40% of patients have a positive family history and there are many known, common genetic risk 
variants1,7,8. This conundrum suggests, among other possibilities, that svPPA risk is more strongly influenced by 
environmental or developmental factors such as handedness9 and/or that svPPA is by nature highly polygenic. 
Identifying the genetic contributions to disease is critical as it provides insight into the causal biology underlying 
deterministic neurodegenerative pathways.

Recent advances have enabled the analysis of multiple sub-GWAS significant loci by integrating heterogene-
ous risk alleles with experimentally validated outside reference data10. This not only increases statistical power, 
but also overcomes challenges such as locus heterogeneity to determine novel loci underlying disease risk. We 
have previously utilized these methods to successfully identify new risk genes and inform the pathobiology of 
complex diseases like multiple sclerosis11. This approach is particularly powerful because it relies upon previously 
validated experimental data to link disease-associated genes with one another, further corroborating the biolog-
ical relevance of risk loci. In this study, we focused our analyses on svPPA not only because it is pathologically 
homogeneous, but also because previous efforts to identify genetic risk factors associated with svPPA have been 
limited by small sample sizes amongst single risk loci. Utilizing polygenic strategies to identify risk factors for 
svPPA presents a unique opportunity, as knowledge gleaned from these analyses could also inform other forms of 
FTLD resulting from TDP-43 pathology.

Results
This study utilized summary statistics of the phase-1 GWAS data from the International FTD-Genomics 
Consortium (IFGC), comprised of 2,154 clinically diagnosed FTD spectrum cases and 4,308 controls and a total 
of 6,026,384 SNPs. Of the 2,154 cases diagnosed with FTD, 361 were diagnosed with the svPPA subtype (referred 
to as “semantic dementia” in the original study). Cases within the cohort were diagnosed according to the Neary 
criteria for FTLD12. For additional cohort details, please see Ferrari et al.6.

We generated gene-based p-values for 17,466 genes with data available in the svPPA cohort using the tool 
versatile gene-based association study (VEGAS). We next generated protein interaction networks (PINs) for the 
significant genes (VEGAS p < 0.05) using the protein interaction network-based pathway analysis (PINBPA) 
package. The background PIN database used in our analyses contained 8,960 proteins and 27,724 interactions. 
The largest network generated (in terms of both nodes and edges) contained 64 nodes (genes) and had 81 edges 
(protein interactions) (Fig. 1, Supplementary Table S1). We evaluated only the largest and most significant net-
work to avoid false positive findings. Notably, TARDBP (the gene encoding TDP-43) was absent from our net-
work, but many genes implicated in cell death (e.g. SMAD3, SMAD4), nuclear trafficking (e.g. RANGAP1), and 
stress responses (e.g. HNF4A) were present. The svPPA network was within the top 10th percentile for both nodes 
and edges based on permutation testing.

Figure 1. svPPA Network. Network results are shown for protein interaction network based pathway analysis 
(PINBPA) in the semantic variant of primary progressive aphasia compared to controls. The network genes are 
color coded according to their respective p-value (see Methods), with warmer colors indicating p-values closer 
to the minimum value of 1.89E-4 and cooler colors indicating p-values closer to the maximum p-value of 0.05. 
The size of a node corresponds to closeness centrality (a metric that describes a node’s nearness to other network 
nodes). The thickness of edges in the network corresponds to edge betweenness (a metric that describes the 
number of paths going through an edge in the network).

https://doi.org/10.1038/s41598-019-46415-1
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We next explored the gene expression patterns of the svPPA network genes in pathologically confirmed 
cohorts of FTLD cases versus controls. Fifty-eight of 64 svPPA genes in the dataset (GSE13162) had expression 
data available. Fifteen of the svPPA network genes (HNF4A, NR5A1, TAL1, SLC2A4, PSEN1, KRT81, MYBL2, 
UBE2I, EBI3, BATF, ARFRP1, NR6A1, PACS1, PELP1, and TEF) were significantly differentially expressed at an 
FDR-corrected p < 0.05 in cases when compared to controls (Table 1, Supplementary Table S2). For each gene in 
the svPPA network we provide a detailed summary of our results with respect to VEGAS results, the top 3 regions 
expressing each gene in healthy human brain tissue (from the Braineac cohort, http://braineac.org), OMIM bio-
logical process implicated for each gene, and known neurodegenerative disease associations in Supplementary 
Table S3.

To better understand the biological and functional implications of the svPPA gene network, we performed 
two separate ontological analyses. The first analysis utilized two common and publicly available databases of 
gene ontologies (Reactome and Gene Ontology [GO] portals)13,14. For the second analysis, we used a recently 
developed and independent analytical pipeline called weighted protein-protein interaction network analysis 
(W-PPI-NA) pipeline, which was recently developed by our group15,16.

Sixty-four genes were included in the first svPPA ontological pathway analysis (Supplementary Table S1); 
genetic enrichment was seen in pathways involved in RNA metabolism, development, immunity, and cell sig-
naling (Table 2 and Supplementary Data S1). Reactome pathways highlighted in our enrichment analysis 
included broad classifications at the nucleotide level such as nucleotide excision repair, as well as more specific 
processes including SMAD signaling proteins (fold enrichment = 56.11, p = 1.65 × 10−3), NOTCH (fold enrich-
ment = 66.75, p = 9.56 × 10−7), and Activin (fold enrichment = 74.46, p = 1.79 × 10−2) (summarized in Table 2, 
full results in Supplementary Table S4).

Our second svPPA ontological pathway analysis – through the W-PPI-NA pipeline – enabled the independent 
topological characterization of our 64 svPPA network genes. Provided that one svPPA network risk gene – TH1L 
– did not survive after applying the W-PPI-NA method, the (second) network was ultimately generated using 63 
proteins as seeds. We merged the annotations reported in multiple protein-protein interaction (PPI) databases 
within the IMEX consortium17. After filtering and scoring the protein network, the interactome was composed 
of 1,495 nodes and 2,407 edges where all but 4 nodes (FSTL3, MRPL30, NR6A1 and EBI3) were interconnected 
(Fig. 2A and Supplementary Fig. S1). Since one protein in the network, UBC, tags protein targets for degradation, 
it might non-specifically bind any protein in the sub-cellular environment and not necessarily represent a specific 
functional pathway. We thus excluded UBC from the network’s statistics. We identified the inter-interactome 
hubs (IIHs) (n = 7) as the core of the network with the highest interconnectivity (Fig. 2D); these nodes were able 
to bridge over 15% of the entire interactomes (Fig. 2B,C). By comparing the core of the network with randomly 
sampled parts of the network, we verified that the IIHs-driven network was indeed the most densely connected 
(Supplementary Fig. S2). The core of the network was made of 37 nodes (7 IIHs and their interactors) and 93 
edges. These were strongly interconnected (average number of neighbors = 4.7). We next functionally annotated 
the interactomes, focusing on GO-BPs (biological processes) using g:Profiler. The first functional enrichment 
aforementioned in this paragraph was followed by a second iteration of the same procedure but only applied 
on the densely connected core of the network (Fig. 2D). Our results (Supplementary Data S1) indicated a list of 
semantic classes that were a subset of the former. Interestingly the subset terms (percentage of retention >12%, i.e. 
an arbitrary yet robust threshold that takes into account the functions containing the largest number of replicated 
BP terms in our experimental setting (Fig. 3)) pointed to the following functional blocks: i) ‘RNA metabolism’ 

Gene 
Name Raw P-value

FDR Corrected 
P-value SE Beta

HNF4A 2.16E-05 1.25E-03 0.195 −1.53

NR5A 1.84E-04 3.55E-03 0.199 −1.31

TAL1 9.96E-05 2.89E-03 0.287 −1.37

SLC2A4 7.36E-04 0.01 0.237 −1.16

PSEN1 2.12E-03 0.02 0.605 1.04

KRT81 3.63E-03 0.03 0.293 −0.981

MYBL2 3.13E-03 0.03 0.251 −0.999

UBE2I 3.51E-03 0.03 0.284 −0.985

EBI3 4.64E-03 0.03 0.375 −0.952

BATF 6.06E-03 0.03 0.256 −0.920

ARFRP1 6.57E-03 0.03 0.240 −0.910

NR6A1 0.01 0.04 0.218 −0.860

PACS1 0.01 0.04 0.192 −0.855

PELP1 0.01 0.04 0.246 −0.8.71

TEF 0.01 0.05 0.109 −0.835

Table 1. Differential Expression Analyses in FTLD-U Cases. Expression analyses revealed 15 out of 64 genes in 
our svPPA network showed dysregulated expression in pathologically confirmed cases of frontotemporal lobar 
degeneration with ubiquitinated inclusions (FTLD-U) when compared to age-matched controls. P-values for 
the top associated probe for each gene (FDR corrected p < 0.05 to account for multiple testing) are shown. FDR 
– false discovery rate.

https://doi.org/10.1038/s41598-019-46415-1
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and ii) ‘stress’ (Fig. 3) as the common functions characterizing that part of the protein network with strongest 
cohesion among the initial seeds. Of note, key players within these functional blocks were members of the SMAD 
protein family. We were thus able to replicate the results obtained through the Reactome analyses using a com-
pletely independent and different approach, further supporting the biological roles of svPPA network risk genes.

Discussion
Our analyses revealed a polygenic network of 64 svPPA risk genes which interact at the protein level. Many of 
these genes are differentially expressed in pathologically confirmed cases of FTLD with ubiquitin-positive inclu-
sions (the same pathology most commonly seen in svPPA). Finally, we examined the biological pathways seen 
in this network and found significant enrichment in processing and metabolism of RNA as well as cell stress and 
apoptosis. These findings show that svPPA risk variants cluster in biological pathways representing processes 
closely tied to the primary protein pathology (TDP-43) seen in svPPA. Furthermore, our results suggest that 
further study of common genetic variation in svPPA could prove useful in the identification of individuals at risk 
for disease.

Our ontological pathway analysis showed the greatest degree of enrichment in pathways related to transcrip-
tion and RNA metabolism. Converging evidence from multiple studies supports the role of RNA dysmetabolism 
in the pathogenesis of svPPA2,18–20. The most common protein pathology seen in svPPA is TDP-43 Type C2. TDP-
43 is a protein heavily involved in RNA metabolic processes including transcription, splicing, and transport5. 
Thus, our finding of ontology enrichment in pathways related to RNA metabolism may be particularly relevant to 
svPPA which, in contrast to many other FTLD-spectrum disorders, is associated with a relatively low frequency 
of pathological accumulations of tau4. Recent work has shown that the RNA ribonuclear protein hnRNP E2 is 
associated specifically with TDP-43 immunoreactive neurites in svPPA, but not with other pathological FTLD 
subtypes21. Interestingly, 11 of our 64 genes for svPPA have been previously reported to have statistically signif-
icant co-expression profiles associated with hnRNP E2 (AKT1, GTF2B, MAML1, MDH1, RAD23A, RANGAP1, 
SMAD3, STAT6, TFDP1, UBE21, ZNHIT3)21. A number of these genes have been previously implicated in other 
TDP-43 proteinopathies without an svPPA syndrome. For example, in Drosophila RANGAP1 is a suppressor of 
neurotoxicity due to C9ORF72 pathogenic hexanucleotide repeat expansion22. Lastly, many of the genes in our 
svPPA network have been previously shown to be targets of neuronal TDP-43 ribonucleoprotein complexes, 
including AKT1, NOTCH1, and PSEN123.

Other biological pathways enriched in our analysis provided further support for a TDP proteinopathy-mediated 
mechanism of disease. For example, we observed enrichment in SMAD signaling pathways. SMAD pro-
teins regulate the expression of target genes critical for regulating neuronal stability and apoptosis24.  
Previous work in mouse models has shown that TDP-43 aggregates co-localize with phosphorylated Smad 
proteins, which mediate downstream signaling in the transforming growth factor beta (TGF-beta) pathway25. 
TGF-beta acts through the TGF-beta type II receptor that forms a complex with Activin, another pathway highly 
enriched in our Reactome pathway analysis. This pathway plays a role in a number of biological functions includ-
ing neuronal development and homeostasis26,27. Furthermore, activation of TGF-beta and SMAD signaling has 
been shown to reduce mislocalized TDP-43 aggregate formation in human cell culture28. Lastly, Notch signaling 
pathways, including the gene NOTCH1, a key molecule regulating neuronal health and homeostasis, were sig-
nificantly overrepresented in our svPPA risk gene network. Notch dysregulation has been previously reported 

Biological 
Pathway Pathway

# genes in ref, 
candidate 
dataset Candidate Genes Mapped

Fold 
Enriched P-value

RNA Transcription

SMAD transcriptional 
activity 23, 4 SMAD3, SMAD4, NCOR1, SKIL 56.11 1.65 × 10−3

AP-2 (TF-AP2) 
transcription regulation 34, 4 EP300, UBE2I, YYI, MYBL2 37.96 7.67 × 10−3

NOTCH1 transcription 45,4 EP300, NCOR1, NOTCH1, MAML1 28.6 2.29 × 10−2

Nucleotide excision repair 110, 5 EP300, UBE2I, YYI, RAD23A, PIAS3 14.67 4.48 × 10−2

Cell signaling

Pre-NOTCH transcription 
and translation 29, 6 EP300, TDFP1, NOTCH1, JUN, E2F3, 

MAML1 66.75 9.56 × 10−7

Diseases of signal 
transduction 282, 8 EP300, SMAD3, NCOR1, SMAD4, 

NOTCH1, PSMD11, AKT1, MAML1 9.15 4.84 × 10−3

Activin beta signaling 
pathway 13, 3 SMAD3, SMAD4, FSTL3 74.46 1.79 × 10−2

Development/Growth

Developmental biology 11676, 21
EP300, SMAD3, YYI, NCOR1, SLC2A4, 
SMAD4, NOTCH1, MED15, PSMD11, 
JUN, AKT1, NR5A1

4.80 1.11 × 10−2

Table 2. Reactome Pathway Analysis: Genes Implicated in svPPA Protein Network. Pathway analysis results 
are shown. For each broad biological pathway, specific pathways from Reactome databases are shown. In all 
analyses, the p-value presented has been adjusted using the Bonferroni technique. Please see Supplementary 
Table S3 for additional details.

https://doi.org/10.1038/s41598-019-46415-1


5Scientific RepoRts |         (2019) 9:10854  | https://doi.org/10.1038/s41598-019-46415-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

Figure 2. svPPA Interactome Analyses. (A) Results from the weighted protein-protein interaction network 
analysis (W-PPI-NA) pipeline are shown for the 64 genes identified using protein interaction network based 
pathway analysis (PINBPA). Seeds in the results are shown in pink while interactors are shown in blue. (B) 
The inter-interactome degree distribution curve illustrates the quantity of nodes on the x-axis that bridged to 
the quantity of seeds (shown on the y-axis). The inter-interactome hubs (IIHs) are marked by a rectangle. (C) 
The IIHs with their associated number of bridged seeds and percent bridging are shown. *The protein UBC is 
reported but ignored given that it could indicate nonspecific ubiquitin binding to unrelated proteins marked for 
degradation (see15 for further information). (D) The network core (depicted in yellow) around the IIHs.

Figure 3. g:profiler Biological Pathway Analyses. Comparison of the g:Profiler functional enrichment 
performed for the entire weighted protein-protein interaction network analysis (W-PPI-NA) network (blue 
bars) and the core network (red bars). Gene ontology (GO) terms are reported on the y-axis and functional 
blocks are reported on the x-axis. The number on top of the bars indicates the percentage of overlap for each 
single functional block; the numbers in red indicate more than 12% of conservation (significant conservation). 
Each significant functional block is made of the semantic classes reported below the graph.

https://doi.org/10.1038/s41598-019-46415-1
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as a mechanism of neurodegeneration seen in cases with PSEN1 mutations resulting in an FTD-like syndrome, 
though the pathology associated with these mutations is unreported29.

Our study benefits from its use of multiple publicly available, well-validated cohorts. The network analysis 
techniques used in this study rely upon previously validated experimental protein interaction data, which means 
the network interactions shown are ripe targets for cellular and molecular studies. This study is limited by a lack 
of additional GWAS data in which to replicate our genetic findings, but the anticipated release of IFGC phase 
III data will provide a suitable cohort for future confirmation and elaboration of these findings. The protein 
interaction analyses in our study rely heavily upon preexisting data and could therefore bias our findings towards 
the most studied biological pathways and processes. Additional studies focused on alternative ontological cate-
gories such as cellular components and molecular function may prove informative in future studies, but in our 
study the results of these ontological categories were judged as too general to be informative (data not shown). 
Unfortunately, the results of our VEGAS analyses do not facilitate the calculation of each gene’s, or the overall 
network’s, percent contribution to svPPA risk. Further molecular and model-organism studies will be required 
to validate and prove the importance of our svPPA network genes as modifiers of disease risk in svPPA and other 
TDP-43 proteinopathies. We attempted to replicate the protein interaction network results from our VEGAS 
analysis using differential expression data from GSE13162. The network generated using differential expression 
from GSE13162 was not significant after multiple testing correction (data not shown). This study focused on one 
of the FTLD phenotypes. Ongoing work in our group focuses on the other IFGC phenotypes30 as well as the work 
of other groups which will help to elucidate the genetic and biochemical pathways that make svPPA distinct from 
the other FTLD phenotypes and may further highlight which processes are shared across FTLD subtypes.

In summary, this study identified and bioinformatically characterized a network of 64 svPPA risk genes with 
interacting protein products. Many of these genes were differentially expressed in pathologically confirmed FTLD 
cases. Common variation in svPPA risk genes is implicated in RNA metabolism and cell death signaling. These 
findings are an important step towards a genetic understanding of what was previously considered a disease 
largely due to environmental and other risk factors.

Methods
Ethics, consent and permissions. This study was performed in accordance with the guidelines set forth 
by the University of California, San Francisco Human Research Protection Program Institutional Review Board. 
The data collection from the original GWAS used in this analysis was overseen by the relevant institutional review 
boards, and ethics committees approved the research protocol of all individual studies used in the current analy-
sis. Participants of those studies provided written informed consent.

svppA gene network generation. To generate the svPPA network, we first calculated gene-level signifi-
cance values using VEGAS10. This tool uses location information from the UCSC Genome Browser (hg18) assem-
bly to assign individual SNPs to their respective gene. Gene boundaries were defined as 50 kb beyond the 5′ and 
3′ UTRs of each gene to ensure we captured the effects of regulatory regions and SNPs in linkage disequilibrium 
(LD). VEGAS accounts for background LD patterns between markers within a gene using data from individuals 
of northern and western European descent (HapMap2 CEU)31. Monte-Carlo simulations use these LD patterns 
to generate a multivariate normal distribution which is used to calculate an empirical p-value for each gene. For 
additional details on VEGAS, please see Liu et al. and Baranzini et al.10,32.

We derived PINs from the iRefIndex database, a collection of 15 human PIN data sets from different sources33. 
The combined dataset from these PINs contained over 400,000 interactions among approximately 25,000 pro-
teins. To minimize the number of false positives in our PIN, we limited our PIN to interactions described in at 
least two independent publications. The resulting network used as a background network in our analyses con-
tained 8,960 proteins and 27,724 interactions. The PIN was uploaded into Cytoscape34 version 2.8.2 and used 
PINBPA to label each entry with genomic position, gene p-value, association block membership, and gene name 
(node attribute).

We computed significant first-order interactions by filtering the main network so that only the genes (and 
their protein products) with a VEGAS p-value less than 0.05 were retained. Following this, the number of result-
ing nodes and edges along with the size of the largest connected component were computed in Cytoscape (http://
www.cytoscape.org/). We evaluated the network strength using permutations. The p-values from our VEGAS 
analyses were mixed randomly amongst genes and permuted networks to create a null distribution. The results of 
our svPPA network were compared against this null distribution. We evaluated the largest and most significant 
network to avoid false positive findings.

Gene expression in pathologically confirmed FTLD cases. We hypothesized that genes from our net-
work analysis would be dysregulated in pathologically confirmed cases of FTLD as compared to controls. Given 
that svPPA is primarily associated with ubiquitinated inclusions composed of TDP-43, we chose to use a publicly 
available dataset of individuals diagnosed with FTLD with ubiquitinated inclusions and comparable control cases. 
Ten of the participants were pathologically diagnosed with sporadic FTLD and 11 diagnosed as controls (Gene 
Expression Omnibus (GEO) dataset GSE13162)35. In linear regression models we controlled for sex, post mortem 
interval, and age.

svppA biological pathway enrichment analysis. We performed enrichment analyses on our genes 
of interest using the Reactome and GO annotation databases. Reactome (v60, released April 20th, 2017) is a 
curated pathway database that aggregates human pathways and reactions from UniProt, Ensembl, KEGG, GO, 
and PubMed, among others (http://www.reactome.org). We restricted the analysis to comparisons within the 
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Homo sapiens annotations and ran the statistical enrichment tests for biological pathways under the default set-
tings (which corrects for multiple testing using the Bonferroni technique).

To replicate the findings of our primary ontological analysis, we next applied the recently developed 
W-PPI-NA pipeline15 to increase resolution on the candidate proteins isolated by PINBPA. Specifically, we gener-
ated a second independent network using the svPPA genes prioritized by the PINBPA analysis by extracting (12 
May 2017) their protein interactors (PPIs) from the following databases within the IMEX consortium17: APID 
Interactomes, BioGrid, bhf-ucl, InnateDB, InnateDB-All, IntAct, mentha, MINT, InnateDB-IMEx, UniProt, and 
MBInfo by means of the “PSICQUIC” R package (version 1.15.0 by Paul Shannon, http://code.google.com/p/
psicquic/). PPIs were harmonized by converting Protein IDs to UniProt and Entrez IDs thus allowing merg-
ing of all databases. We removed TrEMBL, non-protein interactors (e.g. chemicals), obsolete Entrez, and Entrez 
matching to multiple Swiss-Prot identifiers. All PPIs underwent quality control and filtering leading to removal 
of: i) all the non-human taxid annotations, and ii) all the annotations with multiple or no PubMed identifiers 
or no description of Interaction Detection Method. The interactions were then scored as follows: (i) evaluation 
of the number of different publications reporting the interaction and (ii) evaluation of the number of different 
methods reporting the interaction. All the interactors with a final score ≤2 were discarded to reduce false posi-
tive rate. The final network was visualized using Cytoscape and analyzed through the network analysis plug-in. 
The inter-interactome degree distribution curve was drawn considering all the nodes within the network and 
the number of seeds they connect (number of node edges/number of network seeds = connection degree). We 
defined IIHs as any node connecting more than 15% of the seed’s interactomes.

As part of the W-PPI-NA, we applied functional annotation analysis to the network built using the 
PINBPA-prioritized genes as seeds. We then performed Gene Ontology (GO) biological processes (BPs) enrich-
ment analyses through g:Profiler (g:GOSt,http://biit.cs.ut.ee/gprofiler/)36, which runs Fisher’s one-tailed test 
and uses a set counts and sizes (SCS) based technique for multiple test correction. The statistical domain size 
was only annotated genes; no hierarchical filtering was included. We then grouped enriched GO-BP terms into 
custom-made “semantic classes” (Supplementary Data S2). We removed general, thus negligible, semantic classes 
such as general, metabolism, enzymes, protein modification, and physiology. Semantic classes were further 
grouped by similarity in more general classes called functional blocks.

Data Availability
Requests for GWAS metadata should be directed to the International FTD-Genomics Consortium. The PINBPA 
package is available through Cytoscape (www.cytoscape.org). Reactome data is available at www.reactome.org. 
PANTHER data is available at www.pantherdb.org. The “PSICQUIC” R package (version 1.15.0 by Paul Shannon) 
is available at (http://code.google.com/p/psicquic/). g:Profiler is available at(g:GOSt,http://biit.cs.ut.ee/gprofiler/).
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