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A Functional Time Series Analysis of Forward Curves
Derived from Commodity Futures

Abstract

We study forward curves formed from commodity futures prices listed on the Standard and

Poor’s-Goldman Sachs Commodities Index (S&P GSCI) using recently developed tools in func-

tional time series analysis. Functional tests for stationarity and serial correlation suggest that

log-differenced forward curves may be generally considered as stationary and conditionally het-

eroscedastic sequences of functions. Several functional methods for forecasting forward curves

that more accurately reflect the time to expiry of contracts are developed, and we found that

these typically outperformed their multivariate counterparts, with the best among them using

the method of predictive factors introduced by Kargin & Onatski (2008).

Keywords: Forward curves, S&P GSCI, Commodity Futures, Functional Data Analysis,

Functional Autoregressive Models, Functional Principal Component Analysis
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1. Introduction

Commodity futures are one of the most widely traded types of financial assets. One reason

for this is that they provide risk diversification for portfolio management, since the returns on

commodity futures are negatively correlated with the return on stocks and bonds (Gorton &

Rouwenhorst, 2006; Bhardwaj et al., 2015). The forward curve, also referred to as the futures

term structure, is formed by the futures/forward prices for a particular commodity over all

available maturities at a certain point in time. Empirically, commodity futures behave quite

differently when compared to other conventional financial assets, such as stocks and bonds.

Their stylized properties include normal backwardation (Litzenberger & Rabinowitz, 1995), mean

reversion (Bessembinder et al., 1995; Kocagil et al., 2001), strong heteroscedasticity (Duffie

et al., 1999), positive correlation between price volatility and the degree of backwardation (Ng

& Pirrong, 1994; Litzenberger & Rabinowitz, 1995), the “Samuelson effect” (Samuelson, 1965),

and pronounced seasonality (Sørensen, 2002). Each of these terms generally describe the shape

and evolution of forward curves over time. See also (Routledge et al., 2000) for a summary of

these findings.

Forward curves derived from commodity futures are important for both academic researchers

and financial practitioners. From the academic perspective, the information contained in the

forward curves (such as shape, slope, roll-yield) are essential input factors in pricing models of

commodities (Schwartz & Smith, 2000; Pilipovic, 2007; Chong et al., 2017) and predictive factors

for futures returns (Gorton et al., 2013). They can also be related to volatility of spot and futures

prices (Haugom & Ullrich, 2012; Kogan et al., 2009). For practitioners forward curves are one

of the key factors in investment decisions on commodities. A number of commodity trading

strategies are built, fully or partially, on the forward curves (Mou, 2010; Fuertes et al., 2015;

Gomes, 2015). Mou (2010) designed trading strategies to take advantage of the resulting impact

on forward curves from the rolling activity conducted by commodity index funds on the Standard

and Poor’s-Goldman Sachs Commodity Index (S&P GSCI).

Without a doubt these methods could be improved with useful forecasts of full forward curves,

although, to the best of our knowledge, little attention has been paid to this issue in the literature.

The problem of forecasting forward curves is similar to that of forecasting the term structure

of interest rates, which enjoys a comparably abundant and expanding literature (see Duffee

et al., 2012; Diebold & Rudebusch, 2013, for a review). Among those methods, one of the most

popular was developed by Diebold & Li (2006), who proposed a dynamic Nelson-Siegel model
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(DNS) to forecast the yield curve as a three-dimensional parameter vector evolving dynamically.

The three time-varying parameters in their model correspond to level, slope, and curvature.

Many extensions of the DNS model have been proposed. Xiang & Zhu (2013) developed a DNS

term structure model subject to regime shifts, and Byrne et al. (2017) extended the DNS model

to allow the model dimension and the parameters to change over time. Their version of DNS

considers a large set of macro-financial factors to characterize the nonlinear dynamics of yield

factors.

The available literature on forecasting futures prices focuses primarily on the active contract1

or front-month contract price (e.g. Moskowitz et al., 2012). Chantziara & Skiadopoulos (2008)

employed principal component analysis (PCA) to investigate whether the daily evolution of

the forward curves of petroleum futures (NYMEX crude oil, heating oil, gaosline, and IPE

crude oil futures) can be forecasted, and found that the retained principal components have

small forecasting power measured both within a training sample and out-of-sample. Baruńık

& Malinska (2016) proposed to forecast the forward curves of oil futures by coupling dynamic

neural networks with the Nelson–Siegel model. Their forecasting strategy outperformed other

benchmark models (vector autoregressive and random walk models) for crude oil futures prices.

Grønborg & Lunde (2016) applied DNS model for the forward curves of oil futures contracts

and obtained forecasts of prices of these contracts. Evaluated by the criteria of model confidence

sets (Hansen et al., 2011), their models produce better forecasting results than conventional

benchmarks (autoregressive and VAR). Power et al. (2017) used wavelet thresholding to de-

noise futures price data before estimating a state-space model. For their sample of CBOT corn

futures, de-noising the data by wavelet thresholding improved forecasting results in most cases.

These forecasting methods build upon a large literature devoted to factor models for commodity

futures (see Gibson & Schwartz, 1990; Litterman & Scheinkman, 1991; Schwartz & Smith, 2000;

Tolmasky & Hindanov, 2002).

An important distinction in each of the above models is that they intrinsically treat the futures

prices and forward curves as multivariate objects. This is natural to do since, for example, the

futures prices of a commodity with contracts expiring each month in a twelve month period

can be considered as a twelve dimensional vector. Doing so does, however, come with some

information loss, since the components of such a vector will correspond to only approximate

1The active contract for a particular commodity is normally considered to be the contract with highest trading

volume among all available maturities.
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information on the time to expiry of the available contracts.

A less explored framework which offers new insight into this data is to consider them as

sparse observations from an underlying continuous futures price curve. To illustrate, for a given

commodity on day i with J available contracts, futures price information can be represented by

Pi(ti,j), where the ti,j , j ∈ {1, 2, ..., J}, represent the time to expiration of the available contracts.

Importantly, these times change each day and roll from one month to the next. This can easily be

accounted for by interpolating the available contract prices in order to produce an estimate for the

full forward curve, P
(C)
i (t), and the series of these forward curves can be analyzed by functional

time series analysis. The scope of methodology for analyzing such functional time series has

increased tremendously since the seminal work of Bosq (2000) on the topic, see Hörmann &

Kokoszka (2012) for a more recent review.

In this paper, we consider the analysis and predication of forward curves as functional data

objects. In defining the forward curves as functional data, an important distinction is how one

defines the time to expiry of a given contract. Defining this time in months gives rise to essentially

equivalent methods as the available multivariate techniques referenced above, while using a higher

resolution, like days or weeks, leads to quite different methods. It is shown below using recently

developed tools in functional time series analysis that the log-differenced forward curves over

several different temporal resolutions are reasonably stationary. We further show that for many

commodities these curves can be thought of as weak functional white noises exhibiting conditional

heteroscedasticity, suggesting that the forward curves evolve approximately as martingales. In

several cases though the forward curves appear predictable in that they exhibit substantial

autocorrelation. Given this, several models for forecasting forward curves are proposed and

studied in a comprehensive data analysis. This analysis suggests that 1) measuring time to

expiry of contracts in terms of days provides a significant improvement in terms of forecasting

accuracy, and 2) the functional forecasting methods tend to outperform multivariate techniques,

and in several cases are able to beat näıve forecasts in out-of-sample evaluations.

The rest of the paper is organized as follows. In Section 2, we discuss how we obtained

and used the raw futures contract data in order to construct functional data objects at various

temporal resolutions. Section 3 presents a functional time series analysis of the log-differenced

forward curves, in particular presenting the results of stationarity and white noise tests to measure

their suitability to be modelled with using stationary functional time series models. Methods

for forecasting forward curves are put forward and compared in an extensive data analysis of

commodity futures listed on the S&P GSCI in Section 4. Some concluding remarks and a
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summary of this work is given in Section 5, and some technical details about the stationarity

and white noise tests as well as further results from the data analysis are presented in Appendix

A.

Briefly we define some of the notation that we use below. We use E(·) to denote mathematical

expectation. We let L2[0, 1]d denote the space of real valued square integrable functions defined

on unit hypercube [0, 1]d of dimension d with norm ‖·‖ induced by the inner product 〈x, y〉 =∫ 1

0
· · ·
∫ 1

0
x(t1, ..., td)y(t1, ..., td)dt1 . . . dtd for x, y ∈ L2[0, 1]d, the dimension of the domain being

clear based on the input function. Henceforth we write
∫

instead of
∫ 1

0
. We use

D−→ to denote

convergence in distribution.

2. Forward curves as functional data objects

In this section, we detail how we obtained the data that we consider below, and how it was

transformed into functional data objects.

2.1. Basic Information on Data

The widely tracked S&P GSCI is recognized as a leading measure of general price movements

of commodity futures, and it is designed to be investable by including the most liquid commodity

futures. There are 24 commodity futures in the current basket of S&P GSCI2, and we considered

each of them in our analysis. Table 1 gives information on these commodities, including the

available contract months for each commodity. The expiry of included futures contracts is limited

to a maximum of 1 year, as trading activity and liquidity decline sharply with increasing time

to maturity (Dürr & Voegeli, 2009). We did not include spot prices in our analysis because

the observable prices of some of the commodities considered do not exist, and further empirical

studies have shown there are discrepancies between the real spot price and futures prices (Irwin

et al., 2009).

The raw data that we consider are generic futures time series for these commodities, which

we downloaded from a Bloomberg terminal3, and consists of daily records (in most cases) from

January 3rd, 2000 to August 31st, 20174. Continuous generic futures time series are constructed

2http://us.spindices.com/index-family/commodities/sp-gsci
3The raw data was downloaded using the Bloomberg-R API of the R Package “Rblpapi” (Armstrong et al.,

2017).
4The detailed data information is reported in Table 11 in Appendix C.

http://us.spindices.com/index-family/commodities/sp-gsci
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Table 1: Commodity Futures Information

Symbol Name Exchange

Contract Month

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

FC Feeder Cattle CME X X X X X X X X

LC Live Cattle CME X X X X X X

LH Lean Hogs CME X X X X X X X

C Corn CBOT X X X X X

S Soybean CBOT X X X X X X X

W Wheat CBOT X X X X X

CC Cocoa ICE X X X X X

KC Coffee ICE X X X X X

KW Kansas Wheat KBOT X X X X X

CT Cotton ICE X X X X X

SB Sugar ICE X X X X

LA Aluminum LME X X X X X X X X X X X X

LL Lead LME X X X X X X X X X X X X

LP Copper LME X X X X X X X X X X X X

GC Gold COMEX X X X X X X

LN Nickel LME X X X X X X X X X X X X

SI Silver COMEX X X X X X X

LX Zinc LME X X X X X X X X X X X X

CL Light Crude Oil NYMEX X X X X X X X X X X X X

CO Brent Crude Oil ICE X X X X X X X X X X X X

HO Heating Oil NYMEX X X X X X X X X X X X X

PG Gasoline ICE X X X X X X X X X X X X

NG Natural Gas NYMEX X X X X X X X X X X X X

XB RBOB Gasoline NYMEX X X X X X X X X X X X X
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from actual futures prices in order of their relative expiration. For example, for a given com-

modity on day i, the price of the next (first) expiring contract can be denoted as Pi(ti,1), where

ti,1 is the amount of time until the next contract expires. Similarly one may obtain prices of

contracts expiring in ti,j time units, Pi(ti,2), ...., Pi(ti,J), when J contract months are available.

For many commodities with contracts available in each month, J = 12. The curves constructed

from these price data, which we denote P
(C)
i (t), are commonly referred to as the forward curves,

and are often displayed after linear interpolation of the available contracts assuming the time

increments ti,j are measured in months until expiry.

The time points at which price information is available are regularly changing (Schwartz,

1997; Grønborg & Lunde, 2016; Jin, 2017). This is caused by two sources. Firstly, the maturity

of all contracts in the full contract chain decreases daily. The second source is due to rolling.

At the date the front month contract expires, there is a jump to the expiry date of the next

contract. Due to the nature of the irregular sampling time points in forward curves, traditional

multivariate analysis techniques that treat the available contract prices as a multivariate vector

with a balanced design are somewhat ill posed, since the coordinates correspond to contracts

expiring at variable dates in the future. In addition, the time to expiry of futures contracts

could be measured at several different temporal resolutions. Classically, this time is measured in

months, although it is more accurate to measure the time to expiration in weeks or days. Table

2 describes the contract chain for the Corn futures and their maturity in the three resolutions of

months, weeks and days to expiry during July 10th 2017 and July 19th 2017. The front contract

rolled from the contract expiring in July (C N7 ) to the contract expiring in September (C U7 )

on July 17th, due to the expiration of C N7. Figure 1 shows the corresponding segments of the

forward curves, which are obtained by linear interpolation from Pi(ti,j) j = 1, ...., 5 with ti,j

measured at a daily resolution. Below we consider daily, weekly, and monthly resolutions for the

times to expiry ti,j .

Given the raw prices Pi(ti,j), j = 1, ...., J , and a choice of the time resolution for a commodity,

one can complete this data to full forward curves P
(C)
i (t) using a number of methods. It is

most typical in functional data analysis to perform this step using interpolation or smoothing

techniques. One key difference in the interpretation of using interpolation versus smoothing to

produce curves in this setting is the following: interpolation techniques effectively assume that the

available contract prices are observed without error, while smoothing methods might be deemed

more appropriate when the observed prices are thought to be contaminated by error, in which case

a roughness penalty might be employed to derive fitted curves that ideally smooth through the
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Table 2: Actual available contracts for Corn futures from 10 days in 2017, as well as the maturities of each

contract in three resolutions.

Actual Contracts Ticker

Generic 1 Generic 2 Generic 3 Generic 4 Generic 5

2017-07-10 C N7 C U7 C Z7 C H8 C K8

2017-07-11 C N7 C U7 C Z7 C H8 C K8

2017-07-12 C N7 C U7 C Z7 C H8 C K8

2017-07-13 C N7 C U7 C Z7 C H8 C K8

2017-07-14 C N7 C U7 C Z7 C H8 C K8

2017-07-17 C U7 C Z7 C H8 C K8 C N8

2017-07-18 C U7 C Z7 C H8 C K8 C N8

2017-07-19 C U7 C Z7 C H8 C K8 C N8

Resolution: Daily

2017-07-10 4 66 157 247 308

2017-07-11 3 65 156 246 307

2017-07-12 2 64 155 245 306

2017-07-13 1 63 154 244 305

2017-07-14 0 62 153 243 304

2017-07-17 59 150 240 301 361

2017-07-18 58 149 239 300 360

2017-07-19 57 148 238 299 359

Resolution: Weekly

2017-07-10 0 9 22 35 44

2017-07-11 0 9 22 35 43

2017-07-12 0 9 22 35 43

2017-07-13 0 9 22 34 43

2017-07-14 0 8 21 34 43

2017-07-17 8 21 34 43 51

2017-07-18 8 21 34 42 51

2017-07-19 8 21 34 42 51

Resolution: Monthly

2017-07-10 0 2 5 8 10

2017-07-11 0 2 5 8 10

2017-07-12 0 2 5 8 10

2017-07-13 0 2 5 8 10

2017-07-14 0 2 5 8 10

2017-07-17 2 5 8 10 12

2017-07-18 2 5 8 10 12

2017-07-19 2 5 8 10 12

Note: The contract ticker denotes the specific commodity futures contract with the expiry month and

year: 1st letter – C (Corn); 2nd letter – H (March), K (May), N (July), U (September) & Z (Decem-

ber); and last number – 7 (2017) & 8(2018). For example, C N7 is the corn contract expired in July

2017. The termination of trading of Corn futures on CBOT is the business day prior to the 15th calen-

dar day of the contract month. The last trade day of C N7 is on 14th July 2017. We define the time to

expiration in three resolutions as follows. Daily resolution: the number of days between the last trade

day and the current date. Weekly resolution: the number of weeks between the last trade day and the

current date. If it comes to the same week of the last trade day, the time to expiration in weeks is set

to be zero. Monthly resolution: the number of months between the last trade day and the current date.

If it comes to the same month of the last trade day, the time to expiration in months is set to be zero.



9

Figure 1: 252 forward curves of corn futures contracts in 2016 derived from available price information and linear

interpolation.

errors. Furthermore, in such applications the choice of the smoothing or interpolation technique

used should also reflect the primary goal of the analysis. For instance, it has been previously

observed (see e.g. Grith et al., 2018) that under-smoothed representations of the sampled curves

can be more effective when the goal is to estimate a principal component basis, although such

representations may sacrifice accuracy in estimating each individual curve.

Although assuming the observed prices are errorless seems reasonable here, we have explored a

number of methods following both paradigms to produce forward curves, including linear and B-

spline interpolation and smoothing to different orders as in Kargin & Onatski (2008) to estimate

forward curves. Ultimately we decided to produce the forward curves that we study using

cubic Hermite polynomial interpolation (Fritsch & Carlson, 1980), which guarantees continuity

of the first derivative. We found Hermite interpolation to be superior to B-spline interpolation

and smoothing in this setting, both quantitatively in terms of forecasting error measures as

presented in Section 4, and since smoothing splines visibly over-fit the forward curves for many

commodities.

In what follows all forward curves that we consider are constructed in this way. Furthermore

we assume that t in P
(C)
i (t) is normalized to the unit interval, so that we may think of each

forward curve as a function defined on [0, 1]. This is demonstrated in Figure 2 with comparing

the forward curves obtained by cubic Hermite interpolation in three resolutions.
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Figure 2: Comparison in three resolutions of P
(C)
i (t) of corn futures contracts on December 2nd 2011. The curves

are constructed by using cubic Hermite interpolation.

3. Functional time series analysis of forward curves

Our basic goal going forward is to evaluate the properties of the functional time series P
(C)
i (t)

defined from the commodity futures listed in the S&P GSCI, and measure to what extent they

are predictable using methods to forecast functional time series. As is clear in the upper panel

of Figure 3, the curves P
(C)
i (t) are highly non-stationary, exhibiting strong seasonality and level

shifts, and this encourages one to consider transformations of P
(C)
i (t) that can be studied as

stationary functional time series.

Definition 3.1. Given a sequence of forward curves P
(C)
i (t), 1 ≤ i ≤ N the log-differenced

forward curves are defined by X1(t) = 0, and

Xi(t) = 100
[
log(P

(C)
i (t))− log(P

(C)
i−1 (t))

]
, 2 ≤ i ≤ N. (1)

A plot of the log-differenced forward curves derived from Corn futures is given in the lower

panel of Figure 3. In order to evaluate the stationarity of the log-differenced forward curves for
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Figure 3: Upper Panel: 3D Plot of forward curves, P
(C)
i (t), derived from corn futures contracts in 2016 using

cubic Hermite interpolation. Lower Panel: 3D Plot of the log-differenced forward curves, Xi(t), derived from

corn futures contracts in 2016 using cubic Hermite interpolation. There are 252 curves for both panels in 2016.

each commodity listed in Table 1, we applied the KPSS test for functional time series developed

in Horváth et al. (2014) to the entire sample Xi(t), 1 ≤ i ≤ N , which we now briefly describe.

The functional analogue of the standard CUSUM process

ZN (x, t) =
1√
N

bNxc∑
i=1

Xi(t)− x
N∑
i=1

Xi(t)


compares the sum of the first bNxc observations to the x fraction of the total sum.

The functional KPSS statistic is defined as

fKPSSN =

∫∫
Z2
N (x, t)dtdx.

Under mild weak dependence and moment conditions on the log-differenced series Xi(t), the

statistic fKPSSN satisfies that
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fKPSSN
D−→ ΞKPSS , N →∞,

where ΞKPSS is a random variable whose distribution can be consistently estimated from the

original curves Xi(t); see Horváth et al. (2014). The specific settings we used to perform this

estimation are detailed in Appendix A. Under several general departures from stationarity for

the sequence Xi(t), including change points in the mean function and unit-root type alternatives,

fKPSSN diverges in probability to positive infinity. A p-value for the null hypothesis of station-

arity can then be obtained as P (ΞKPSS > fKPSSN ). The p-values of these tests applied to

the log-differenced forward curves at each temporal resolution are given in Table 3. The results

suggest that it is reasonable to assume the log-differenced curves are stationary, which provides

some justification for forecasting the time series Xi(t) using stationary functional time series

models. We consider such models and forecasts below in Section 4.

Assuming the series Xi(t) is strictly stationary, we may define the autocovariance kernel of

Xi(t) at lag h by ch(t, s) = cov(X0(t), Xh(s)). ch defines the lag h autocovariance operator by

Ch(f)(t) =
∫
ch(t, s)f(s)ds = E [〈X0, x〉Xh(t)], which is instrumental in estimating the functional

autoregressive models that we consider below for the purpose of forecasting. If ch(t, s) = 0 for

all h larger than zero, then methods for forecasting Xi(t) based on minimizing the mean squared

forecast error will reduce to estimating Xi(t) with its mean. It is hence worthwhile to test the

hypothesis

H0,K : ch(t, s) = 0, for h = 1, ...,K.

Tests of H0,K are typically referred to as portmanteau tests going back to the seminal work for

scalar time series of Box & Pierce (1970). Recently a number of approaches have been proposed

to test H0,K with functional data; see Gabrys & Kokoszka (2007), Horváth et al. (2013), and

Zhang (2016). In general these tests are built under stronger assumptions than H0,K alone, such

as

H0,iid : Xi(t) are independent and identically distributed,

or

H0,ch : Xi(t) = σi(t)εi(t) where εi(t) is a mean zero, independent

and identically distributed sequences of errors, and σ2
i (t) = g(εi, εi−1, ...).
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A test of H0,ch is meant to account for sequences that satisfy H0,K as approximate martin-

gale difference sequences exhibiting conditional heteroscedasticity, as with functional versions of

generalised autoregressive conditionally heteroscedastic sequences. Such functional time series

models have recently been proposed in Hörmann et al. (2013) and Aue et al. (2017). Evidently

H0,K holds under both H0,iid, and H0,ch, but these stronger assumptions allow for the con-

struction of asymptotically validated tests. Here we apply the tests of H0,iid, and H0,ch recently

proposed by Kokoszka et al. (2017). In order to describe these tests, the autocovariance kernel

ch is estimated by

ĉh(t, s) =
1

N

N−h∑
j=1

{Xj(t)− X̄(t)}{Xj+h(s)− X̄(s)}, X̄(t) =
1

N

N∑
j=1

Xj(t),

and through these estimates we define a test statistic for H0,K by

VN,K = N

K∑
h=1

‖ĉh‖2.

Under H0,iid and some additional moment conditions, it follows that

VN,K
D−→ ΘK,iid, N →∞,

where the distribution of ΘK,iid can be consistently estimated from the sample. Similarly under

H0,ch and some further moment and weak dependence conditions, it follows that

VN,K
D−→ ΘK,ch, N →∞,

and again the distribution of ΘK,ch can be consistently estimated. Approximate p-values for

H0,iid and H0,ch are then given by p = P (ΘK,iid > VN,K) and p = P (ΘK,ch > VN,K), respec-

tively. These results and the necessary conditions under which they hold are detailed in Kokoszka

et al. (2017), and the specific implementations of these tests that we use here are described fur-

ther in Appendix A. The results of these tests applied to the log-differenced forward curves for

each commodity with K = 10 are given in Table 3, which indicate that these curves display

stronger autocovariance that is consistent with the sequence being independent and identically

distributed. Most commodities reject H0,iid but cannot reject H0,ch, suggesting that in general

the log-differenced forward curves evolve as a dependent but uncorrelated sequence of functions.

However, there remains a relatively large subset of commodities (FC, LC, LH, CL, CO, HO, and

NG) that reject both H0,iid and H0,ch, indicating strong autocovariance.



14

Table 3: Results of the functional KPSS test and portmanteau tests in terms of p-values when applied to the

log-differenced forward curves for each commodity with temporal resolutions of days, weeks, and months.

Resolution: Days Weeks Months

Symbol/Test: fKPSS H0,iid H0,ch fKPSS H0,iid H0,ch fKPSS H0,iid H0,ch

FC 68.3% 0.0% 0.0% 67.5% 0.0% 0.0% 99.3% 0.0% 0.0%

LC 77.9% 0.0% 0.0% 77.5% 0.0% 0.1% 100.0% 0.0% 0.4%

LH 100.0% 0.0% 0.0% 100.0% 0.0% 0.0% 100.0% 0.0% 0.0%

C 59.1% 0.0% 82.8% 62.9% 0.0% 86.0% 97.5% 0.0% 84.4%

S 62.4% 0.0% 76.5% 59.8% 0.0% 75.2% 99.4% 0.0% 72.6%

W 34.8% 0.0% 99.0% 33.6% 0.0% 99.5% 87.4% 0.0% 96.7%

CC 19.2% 0.0% 49.4% 20.5% 0.0% 57.7% 69.0% 0.0% 64.1%

KC 52.5% 0.0% 14.2% 55.7% 0.0% 11.8% 95.4% 0.0% 23.5%

KW 31.4% 0.0% 88.2% 32.8% 0.0% 92.9% 87.8% 0.0% 86.3%

CT 93.0% 0.0% 10.3% 93.6% 0.0% 9.9% 100.0% 0.0% 17.8%

SB 64.3% 0.0% 17.8% 64.6% 0.0% 18.7% 98.3% 0.0% 22.7%

LA 82.4% 0.0% 53.5% 80.3% 0.0% 56.4% 99.8% 0.0% 57.1%

LL 49.7% 0.0% 28.3% 45.8% 0.0% 38.0% 91.2% 0.0% 34.9%

LP 49.5% 0.0% 17.6% 49.8% 0.0% 21.5% 92.0% 0.0% 18.6%

GC 12.6% 0.0% 90.8% 12.1% 0.0% 88.7% 58.9% 0.0% 90.7%

LN 41.4% 0.0% 89.9% 38.5% 0.0% 87.6% 88.1% 0.0% 90.6%

SI 34.8% 0.0% 93.0% 33.2% 0.0% 90.5% 84.1% 0.0% 92.0%

LX 66.4% 0.0% 35.7% 66.4% 0.0% 34.1% 97.9% 0.0% 28.3%

CL 23.6% 0.0% 1.5% 21.9% 0.0% 3.9% 70.1% 0.0% 4.8%

CO 18.3% 0.0% 0.3% 19.6% 0.0% 0.4% 70.2% 0.0% 0.5%

HO 22.2% 0.0% 0.8% 21.7% 0.0% 1.5% 74.4% 0.0% 1.2%

PG 90.5% 0.0% 44.2% 90.8% 0.0% 42.4% 100.0% 59.5% 55.9%

NG 25.5% 0.0% 2.7% 24.4% 0.0% 1.4% 89.0% 0.1% 2.7%

XB 77.5% 0.0% 37.9% 78.5% 0.0% 34.6% 99.9% 26.4% 52.1%

Note: the parameter K = 10 in the portmanteau tests. Red bold values indicate that they are less than

5%.
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4. A comparison of forecasting methods for forward curves

The fact that quite a large number of commodities have log-differenced forward curves ex-

hibiting strong serial correlation suggests that they might be predictable using linear forecasting

techniques for curves. In this section we develop several approaches for forecasting the full for-

ward curves, and provide a comparative study of each method for one step (one-day) ahead

forecasting. The basic theory of linear functional time series forecasting was put forward in Bosq

(2000), with the most widely employed method being functional autoregression. The functional

autoregressive model of order K takes the form

FAR(K): Xn(t) = Ψ1(Xn−1)(t) + · · ·+ ΨK(Xn−K)(t) + εn(t), (2)

where Ψi 1 ≤ i ≤ K is a kernel integral operator with kernel ψi(t, s), i.e. Ψi(f)(t) =
∫
ψi(t, s)f(s)ds.

Given the evident seasonal patterns in forward curves (Routledge et al., 2000; Sørensen, 2002;

Borovkova & Geman, 2006), it is also reasonable to consider functional autoregressive models

including lags of the series Xi(t) corresponding to the clear seasonal variations in the price, for

instance one week, month, quarter, etc.. We define the functional seasonal autoregressive model

as

FSAR: Xn(t) = Ψ`,1(Xn−`1)(t) + · · ·+ Ψ`,k(Xn−`k)(t) + εn(t), (3)

where the Ψ`,i 1 ≤ i ≤ k are kernel integral operators with kernels ψ`,i(t, s), and `1, ..., `k are

specified lags.

These models can be estimated in a number of ways, and we consider two distinct methods.

First we present an FPCA based estimator of Ψ1 in the FAR(1) model, and similar estimators

can be defined for the FAR(K) and FSAR models, which we develop in Appendix A. Following

the principle of least squares, a natural estimator of Ψ1 would be given by Ψ̂1 = Ĉ1Ĉ
−1
0 , where

the functional covariance C0 and C1 are the lag zero and one autocovariance operators of the

sequence Xi(t). The empirical covariance and empirical lag-1 autocovariance operator can be

estimated by

Ĉ0(x)(t) =
1

N

N∑
j=1

〈Xj − X̄1, x〉
[
Xj(t)− X̄(t)

]
,

Ĉ1(x)(t) =
1

N

N−1∑
k=1

〈Xk − X̄1, x〉
[
Xk+1(t)− X̄(t)

]
, (4)

which are each kernel integral operators with kernel ĉ0(t, s) and ĉ1(t, s), respectively. As discussed

in Horváth & Kokoszka (2012), the inverse of the covariance operator C0 is not bounded, which
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can be handled by projecting C0 onto the subspace generated by the p leading functional principal

components. In the literature of functional data analysis, the choice of p has been considered

extensively, but no theoretical results regarding an “optimal” choice for forecasting purposes have

been established. Usually, p is chosen with the objective that the largest p principal components

explain a specified, high percentage of the “variance” of the observations (see e.g., Ramsay &

Silverman, 2002), such as 90%, 95% or 99%. When the main goal is forecasting, cross–validation

may be used to select p in order to avoid overfitting (e.g., Kargin & Onatski, 2008). Denote the

empirical principal components (PCs) of the functional observations Xi(t) as, ν̂j , j = 1, 2, 3..., p.

The inverse operator C−1
0 using the first p PCs is defined as

Γ̂p(x)(t) =

p∑
j=1

λ̂−1
j 〈x, ν̂j〉 ν̂j(t),

from which we obtain the estimator for Ψ1,p

Ψ̂1,p(x) = Ĉ1Γ̂p(x)

= Ĉ1

 p∑
j=1

λ̂−1
j 〈x, ν̂j〉 ν̂j


=

1

N − 1

N−1∑
k=1

〈
Xk,

p∑
j=1

λ̂−1
j 〈x, ν̂j〉 ν̂j

〉
Xk+1

=
1

N − 1

N−1∑
k=1

p∑
j=1

λ̂−1
j 〈x, ν̂j〉 〈Xk, ν̂j〉Xk+1.

If a smoothing procedure is applied to Xk+1(t) ≈
∑p
i=1 〈Xk+1, ν̂i〉 ν̂i(t), the estimator further

becomes

Ψ̂1,p(x) =
1

N − 1

N−1∑
k=1

p∑
j=1

p∑
i=1

λ̂−1
j 〈x, ν̂j〉 〈Xk, ν̂j〉 〈Xk+1, ν̂i〉 ν̂i. (5)

The estimated kernel for the operator in equation 5 is

ψ̂1,p(t, s) =
1

N − 1

N−1∑
k=1

p∑
j=1

p∑
i=1

λ̂−1
j 〈Xk, ν̂j〉 〈Xk+1, ν̂i〉 ν̂j(s)ν̂i(t)

Using the estimated kernel, we can make 1-step predictions as

X̂n+1(t) =

∫
ψ̂1,p(t, s)Xn(s)ds

=

p∑
j=1

(
p∑
i=1

ψ̂1,p 〈Xn, ν̂i〉

)
ν̂j(t) (6)
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An alternative approach to estimating the FAR(1) model is to use the method of predictive

factors, as proposed in Kargin & Onatski (2008). Effectively, this method aims to perform the

dimension reduction step in estimating Ψ1 in such a way that it minimizes the one step prediction

error. It can be described as follows. The method aims to find an operator A that minimizes the

prediction error

min
A∈Rp

{
E‖Xn+1 −A(Xn)‖2

}
(7)

where Rp is the set of all rank p operators mapping L2[0, 1] into a subspace of dimension p. It

was shown in Kargin & Onatski (2008) that this minimization can be approximately achieved

using an operator of the form

Ψ1,p(y) ≈
p∑
i=1

〈y, bi〉C1(bi), bi = C
−1/2
0 (xi),

where the processes {〈y, bi〉 , i = 1, ..., p)} are termed the predictive factors, and the functions

{C1(bi), i = 1, ..., p)} are termed the corresponding predictive loadings, which are the most rel-

evant “directions” for one step ahead mean squared norm prediction. Again since C
−1/2
0 is not

bounded, Kargin & Onatski (2008) proposed the following regularized estimator. With

Φ̂α,1 = Ĉ
−1/2
0,α ĈT1 Ĉ1Ĉ

−1/2
0,α , Ĉ0,α = Ĉ0 + αI,

the operator Ψ1,p is estimated by

Ψ̂α,1,p(x)(t) =

p∑
i=1

〈
x, b̂α,i

〉
Ĉ1(b̂α,i)(t), b̂α,i = Ĉ

−1/2
0,α (x̂α,i)

where α ∈ R+ is a regularisation parameter, I is the identity operator, and x̂α,1, ..., x̂α,k are the

eigenfunctions of Φ̂α,1. Then the 1-step prediction is determined by

X̂n+1(t) = Ψ̂α,1,p(Xn)(t). (8)

We follow Kargin & Onatski (2008) to select the number of predictive factors and the regular-

isation parameter by cross validation. We also implemented the technique of predictive factors

with additional lags added, and found that these models tended to perform similarly to the single

lag model, but at a much higher computational cost due to applying cross validation to select

optimized values for multiple predictive factor regularization parameters.

It is worthwhile at this point to describe the primary similarities and differences between the

FPCA and predictive factors estimation procedures. Although the motivation for the predictive
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factors approach derives from finding a low rank linear operator to minimize the one step pre-

diction error in (7), and hence might appear more suitable for the forecasting problem at hand,

since the FAR(1) framework is considered in both cases they each ultimately aim to estimate the

same operator C1C
−1
0 . Fundamentally then the differences derive from how the operator C−1

0

is estimated. In the FPCA case it is essentially assumed that the observed data are contained

in the linear span of a finite collection of principal components in order that C−1
0 is bounded.

The predictive factors approach implements a Tychonoff regularization that is tuned with cross

validation to estimate C−1
0 . As such, one may understand the difference in performance of these

methods in terms of the relative performance in prediction problems of principal component

analysis versus regularisation techniques. It has been argued empirically that regularisation

techniques tend to perform better in such cases, see Hall & Horowitz (2007) for a discussion in

the setting of functional data, and we see below that the predictive factors technique of Kargin

& Onatski (2008) tends in general to outperform the FPCA based methods.

4.1. Application to forecasting forward curves

We now provide the results of a comparative study of the above forecasting methods applied

to forecasting forward curves. Since the functional forecasting models are based on the log-

differenced forward curves, we used a given period of data to fit each of the proposed functional

forecasting models and then to forecast the log-differenced forward curve X̂n+1(t) by (6) or (8),

which from (1) leads to the forecasted curve at trading day n+ 1 as P̂
(C)
n+1(t) = exp{[X̂n+1(t) +

100 log(P
(C)
n (t))]/100}. The specific models5 that we considered for the log-differenced forward

curves are:

• FAR(1): Functional autoregressive process of order one

• FAR(2): Functional autoregressive process with lags [1, 2].

• FAR(4): Functional autoregressive process with lags [1, 2, 3, 4].

• FSAR: Functional seasonal autoregressive with lags [1, 5, 21, 63].

• FAR(1)-PF: Functional autoregressive process of order one estimated using predictive

factors.

5FAR(K) has lags at 1, 2, ...K, while FSAR has selected lags at `1, ..., `k due to seasonality.
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We also compared these to forecasts P̂i of the multivariate vector Pi = (Pi(ti,1), ..., Pi(t1,J))>

using the method of Diebold & Li (2006), as well as näıve forecasts for the purpose of comparison.

The benchmarks we compared to then were:

• DL: The method of Diebold & Li (2006), which is based on the dynamic Nelson–Siegel

model with three factors of level, slope and curvature. We used the MATLAB implemen-

tation given in the Financial Instruments Toolbox of The MathWorks, Inc. (2019) applied

to Pi.

• näıve: Use current forward curve to predict the forward curve in the next day, P̂
(C)
n+1(t) =

P
(C)
n (t).

In order to measure the forecast error, we considered the following four measures:

Functional Error: Errf =

(
1

N

N∑
i=1

∫ ti,J

ti,1

(
P̂

(C)
i (t)− P (C)

i (t)
)2

dt

)1/2

Relative Functional Error: RErrf =

 1

N

N∑
i=1

∫ ti,J
ti,1

(
P̂

(C)
i (t)− P (C)

i (t)
)2

dt

‖P (C)
i (t)‖2


1/2

Multivariate Error: Errm =

 1

N

N∑
i=1

J∑
j=1

(
P̂i(ti,j)− Pi(ti,j)

)2

1/2

Relative Multivariate Error: RErrm =

 1

N

N∑
i=1

J∑
j=1

(
P̂i(ti,j)− Pi(ti,j)

)2

Pi(ti,j)2


1/2

where Pi(ti,j) denotes the raw prices that ti,j are the time points at which price information is

available, and P̂i(ti,j) is identified by extracting the values at the certain time points ti,j from

the forecasted functional curve P̂
(C)
i (t).

Before examining the performance of the above methods, an important consideration in each

of the proposed forecasting procedures is the selection of various hyperparameters, including the

number of the principal components in FAR and FSAR, the number of the predictive factors and

the value of the regularization parameter α in PF, and the parameter λ in the method of Diebold

& Li (2006). To find the optimized values of hyperparameters, we performed times series cross val-

idation (TSCV); see for example Hart (1994) for a description. Specifically we split the whole data

set Dn(t) =
{
Pn(t), P

(C)
n (t), Xn(t)

}
, n = 1, ..., N into three segments of equal length6, which

6The specific start date and end date of three segments for all commodity futures are reported in Table 11.
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we refer to as training data
{
D1(t), ..., DbN/3c(t)

}
, validation data

{
DbN/3c+1(t), ..., Db2N/3c(t)

}
,

and test data
{
Db2N/3c+1(t), ..., DN (t)

}
. We use an expanding window starting with the training

data to predict the data one step ahead in the validation set. The hyperparameters are selected

to minimize the total error in predicting each curve in the validation set7. Selected number of

the principal components and the predictive factors are typically ranging between 1 and 5. After

obtaining the optimized hyperparameters, we are able to examine the forecasting performance

in the test period. Similar to the TSCV procedure, we conducted subsequent forecasts using an

expanding window scheme8, i.e. the model was re-estimated with all data up to date n in order

to produce the forecast for the next observation at date n + 1. The forecast of nine randomly

selected Corn forward curves in the test period are displayed in Figure 4.
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Figure 4: Forecasts from different models using daily resolution corn futures forward curves from nine randomly

selected dates.

7The error measure for a one–step–ahead predictor with a given set of hyperparameters is calculated in the

following way: 1) fit the model to the data {D1(t), · · · , Dn(t)} and make a one–step–ahead prediction for the

forward curve; 2) repeat Step 1 for n = bN/3c + 1, ..., b2N/3c, where bN/3c + 1 and b2N/3c are the start date

and the end date in the validation period, respectively; 3) compute the error measure over the validation period.
8To be specific, the forecasting for the test period is conducted by the following procedure: i) using the

optimized value of hyperparameters, fit the model to the data {D1(t), ..., Dn(t)} and make a one–step–ahead

prediction for the forward curve; ii) repeat Step i for n = b2N/3c + 1, ..., N , where b2N/3c + 1 and N are the

start date and the end date in the test period, respectively; iii) Compute the error measure over the test period.
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We evaluated each of these measures taken both over the validation period as well as over the

test data to measure their predictive power. First, we considered how the choice of the temporal

resolution of the forward curves affected forecasts. Table 4 shows the average relative forecasting

error over all commodities for each model considered for the daily, weekly, and monthly resolution

curves. From this it is clear that considering the daily resolution substantially improves forecast-

ing for the functional methods. By the measure of relative multivariate error on the average of

all commodities, the functional forecasting methods outperform the multivariate method of DL

in all three resolutions.

The prediction errors for each model and across commodities in both validation and test pe-

riods are given in Tables 5 and 6 when the forward curves are constructed at the daily resolution;

similar tables at the weekly and monthly resolution are given in Appendix B. Across all com-

modities the functional methods tended to significantly outperform the multivariate forecasting

approach of Diebold & Li (2006). When comparing error rates in the validation period, PF

produces the best forecasting performance for most commodities according to the multivariate

error. Näıve method also have smallest functional error measure for several commodities. FAR

methods can occasionally outperform the PF and the näıve methods. In terms of prediction

error in the testing period, in many cases the näıve forecast was superior to the other forecasting

methods considered, which agrees with the results of the portmanteau tests in Table 3. According

to our test results, most of those forward curves evolve as dependent but uncorrelated sequences

of functions. However, for some commodities (FC, LH, CL, and NG) the method of predictive

factors was able to beat the näıve forecast in the test period regardless of which error measure

is used. Some of these commodities interestingly coincides with those commodities whose log-

differenced forward curves were measured to be predictable by the portmanteau tests. In these

cases the multivariate approach of Diebold & Li (2006) was still worse than the näıve forecast in

the relative forecasting performance.

The relative superiority of the PF method compared to the principal component based meth-

ods were to some extent expected. In the multivariate setting, regularized estimators are known

to have good out-of-sample forecasting performance relative to least square estimators (e.g.

Bernardini & Cubadda, 2015). Also, as is investigated and discussed in Bai & Ng (2019), such

regularized principal component estimators are more robust when compared to standard PCA

to large model errors, which may be thought to arise in this application from “spikes” in the

curves caused by expiring contracts and the rollover effect. The performance of the multivariate

procedure of Diebold & Li (2006) we believe can be explained by its reliance on the three factors
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Table 4: Average relative forecasting error across commodities for daily, weekly, and monthly resolution forward

curves.

Error Measure

Validation Period Test Period

Model\Resolution day week month day week month

Relative Functional

Error

FAR(1) 1.9039% 1.9079% 1.9410% 1.4484% 1.4540% 1.4916%

FAR(2) 1.9044% 1.9085% 1.9415% 1.4486% 1.4543% 1.4921%

FAR(4) 1.9066% 1.9106% 1.9433% 1.4495% 1.4552% 1.4929%

FSAR 1.9057% 1.9097% 1.9426% 1.4502% 1.4557% 1.4929%

PF 1.9007% 1.9049% 1.9384% 1.4436% 1.4493% 1.4877%

Näıve 1.9005% 1.9045% 1.9376% 1.4433% 1.4489% 1.4871%

Relative Multivariate

Error

FAR(1) 5.4790% 5.4939% 5.5973% 4.1778% 4.1944% 4.3203%

FAR(2) 5.4805% 5.4959% 5.5985% 4.1783% 4.1950% 4.3216%

FAR(4) 5.4868% 5.5018% 5.6041% 4.1800% 4.1970% 4.3235%

FSAR 5.4841% 5.4989% 5.6020% 4.1837% 4.1998% 4.3245%

PF 5.4699% 5.4852% 5.5893% 4.1622% 4.1790% 4.3078%

Näıve 5.4685% 5.4836% 5.5870% 4.1618% 4.1784% 4.3067%

DL 7.2428% 5.6860%

Note: red bold values indicate that they are smallest in the three resolutions. The multivariate method of DL has the same

performance for the three resolutions.

of level, slope, and curvature. Although the three factors could explain well for the term struc-

ture of government bond yields, it appears to not be sufficient for the more complicated shape

of forward curves derived from commodity futures. By comparison, the principal components

and predictive factors appear to provide more flexibility in describing the variety of underlying

shapes of the forward curve over time.

5. Conclusion

We provide a thorough analysis using new tools in functional time series analysis of forward

curves derived from a number of commodity futures listed in the S&P GSCI. We considered how

one can interpolate the raw contract information to form full forward curves using cubic Hermite

polynomials, and studied how constructing the curves using different temporal units to measure

the time to expiry of the contract affects subsequent analysis of the curves. Regardless of the

resolution used to measure the time to expiry, forward curves themselves are apparently non-

stationary, however the log-differenced forward curves do appear to be stationary as measured by

a functional analog of the KPSS test. Portmanteau tests indicate that for most commodities the

amount of autocovariance observed in the sequence of curves is more than one would expect for

a strong white noise sequence of curves, but is in accordance with what might be observed from
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Table 5: Forecasting performance evaluated using functional and multivariate error measures Errf and Errm for

commodity futures forward curves at a daily resolution.

Validation Period

Symbol

Functional Error Multivariate Error

FAR(1) FAR(2) FAR(4) FSAR PF Näıve FAR(1) FAR(2) FAR(4) FSAR PF DL Näıve

FC 0.795 0.794 0.794 0.795 0.788 0.793 2.324 2.324 2.322 2.325 2.307 2.612 2.321

LC 0.730 0.730 0.731 0.731 0.730 0.730 1.887 1.888 1.890 1.890 1.886 3.339 1.886

LH 0.819 0.819 0.819 0.818 0.816 0.819 2.305 2.304 2.305 2.303 2.302 5.362 2.305

C 9.231 9.226 9.232 9.243 9.214 9.217 22.000 21.993 22.007 22.033 21.958 25.480 21.968

S 17.228 17.218 17.242 17.265 17.223 17.219 47.640 47.613 47.679 47.733 47.622 53.755 47.612

W 15.161 15.139 15.147 15.155 15.131 15.130 36.009 35.958 35.985 36.002 35.932 42.133 35.937

CC 44.948 44.970 44.998 45.049 44.961 44.945 106.597 106.671 106.749 106.862 106.640 106.966 106.600

KC 2.754 2.759 2.761 2.757 2.758 2.758 6.513 6.526 6.531 6.521 6.523 6.605 6.523

KW 14.682 14.679 14.680 14.653 14.596 14.620 34.814 34.813 34.819 34.745 34.623 40.150 34.681

CT 1.611 1.611 1.608 1.612 1.609 1.610 3.844 3.844 3.836 3.846 3.838 4.616 3.841

SB 0.386 0.387 0.388 0.387 0.384 0.386 0.877 0.879 0.882 0.878 0.872 4.680 0.876

LA 38.228 38.234 38.246 38.253 38.162 38.186 129.797 129.822 129.865 129.882 129.568 139.121 129.650

LL 56.855 56.831 56.803 56.888 56.694 56.694 193.098 193.008 192.900 193.222 192.539 196.365 192.561

LP 144.231 144.468 144.723 145.264 143.749 143.807 490.338 491.202 492.051 493.945 488.790 567.637 488.991

GC 13.229 13.233 13.239 13.228 13.217 13.231 33.811 33.822 33.838 33.811 33.780 34.854 33.817

LN 638.153 638.264 638.527 638.395 638.796 638.275 2164.044 2164.318 2164.992 2164.800 2166.208 2196.155 2164.741

SI 0.515 0.516 0.516 0.515 0.515 0.515 1.202 1.202 1.202 1.202 1.201 1.253 1.200

LX 61.073 61.072 61.198 61.146 61.132 61.089 206.371 206.357 206.773 206.623 206.571 211.740 206.451

CL 1.681 1.681 1.684 1.682 1.679 1.678 5.948 5.949 5.959 5.951 5.943 6.183 5.939

CO 1.646 1.646 1.648 1.650 1.642 1.642 5.824 5.824 5.833 5.838 5.811 6.083 5.811

HO 4.407 4.410 4.409 4.402 4.401 4.398 15.616 15.626 15.624 15.599 15.597 16.627 15.588

PG 3.638 3.641 3.650 3.651 3.640 3.641 13.142 13.150 13.184 13.189 13.149 21.254 13.154

NG 0.160 0.160 0.161 0.160 0.160 0.160 0.573 0.572 0.573 0.573 0.571 1.281 0.570

XB 3.725 3.729 3.732 3.725 3.730 3.729 12.776 12.791 12.799 12.781 12.797 18.342 12.792

Test Period

Symbol

Functional Error Multivariate Error

FAR(1) FAR(2) FAR(4) FSAR PF Näıve FAR(1) FAR(2) FAR(4) FSAR PF DL Näıve

FC 1.462 1.464 1.461 1.464 1.442 1.447 4.251 4.256 4.250 4.260 4.199 4.753 4.211

LC 1.034 1.035 1.034 1.033 1.032 1.031 2.674 2.678 2.672 2.671 2.666 4.609 2.667

LH 0.839 0.839 0.839 0.839 0.836 0.839 2.390 2.391 2.390 2.389 2.382 6.536 2.390

C 6.852 6.853 6.857 6.884 6.842 6.836 16.323 16.323 16.335 16.393 16.295 22.825 16.287

S 13.395 13.433 13.393 13.444 13.393 13.382 37.189 37.307 37.176 37.321 37.173 51.402 37.145

W 8.931 8.931 8.926 8.954 8.939 8.929 21.140 21.139 21.127 21.195 21.158 22.098 21.136

CC 34.495 34.494 34.592 34.495 34.493 34.467 82.197 82.196 82.437 82.208 82.195 82.303 82.135

KC 3.047 3.053 3.059 3.046 3.042 3.040 7.171 7.186 7.200 7.170 7.159 7.165 7.156

KW 9.064 9.053 9.063 9.089 9.049 9.046 21.395 21.365 21.390 21.455 21.355 22.620 21.347

CT 0.845 0.846 0.852 0.845 0.841 0.843 2.058 2.061 2.075 2.060 2.051 2.326 2.055

SB 0.230 0.231 0.231 0.230 0.230 0.230 0.512 0.513 0.514 0.512 0.512 1.943 0.511

LA 20.185 20.178 20.192 20.197 20.074 20.094 68.408 68.384 68.431 68.447 68.024 69.021 68.092

LL 27.782 27.775 27.773 27.770 27.738 27.709 94.226 94.206 94.201 94.186 94.081 93.950 93.980

LP 77.589 77.556 77.649 77.902 77.032 77.181 262.524 262.411 262.723 263.585 260.607 262.281 261.145

GC 14.012 14.010 14.007 14.012 14.014 13.987 35.696 35.688 35.683 35.702 35.700 38.432 35.630

LN 235.981 235.640 235.695 235.903 235.874 235.748 795.593 794.486 794.681 795.327 795.249 799.975 794.826

SI 0.399 0.399 0.400 0.399 0.399 0.398 0.939 0.939 0.941 0.939 0.939 0.986 0.938

LX 28.891 28.884 28.920 28.967 28.876 28.879 97.940 97.915 98.044 98.202 97.891 98.190 97.903

CL 1.121 1.121 1.122 1.123 1.112 1.113 3.976 3.977 3.978 3.982 3.946 3.990 3.948

CO 1.120 1.121 1.121 1.126 1.113 1.113 3.970 3.971 3.974 3.989 3.945 3.989 3.943

HO 2.988 2.985 2.984 2.995 2.970 2.967 10.582 10.573 10.569 10.610 10.522 10.832 10.509

PG 2.876 2.878 2.881 2.892 2.859 2.864 10.209 10.216 10.225 10.265 10.148 22.135 10.166

NG 0.062 0.062 0.062 0.062 0.061 0.061 0.222 0.222 0.222 0.222 0.221 0.373 0.221

XB 2.924 2.923 2.923 2.937 2.909 2.907 9.958 9.951 9.950 10.004 9.904 19.216 9.899

Note: red bold values indicate that they are smallest in different forecasting methods.
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Table 6: Relative forecasting performance evaluated using functional and multivariate error measures RErrf and

RErrm for commodity futures forward curves at a daily resolution.

Validation Period

Symbol

Functional Error Multivariate Error

FAR(1) FAR(2) FAR(4) FSAR PF Näıve FAR(1) FAR(2) FAR(4) FSAR PF DL Näıve

FC 0.796% 0.796% 0.796% 0.798% 0.791% 0.795% 2.130% 2.129% 2.129% 2.133% 2.116% 2.394% 2.126%

LC 0.780% 0.780% 0.781% 0.781% 0.780% 0.780% 1.950% 1.949% 1.952% 1.953% 1.948% 3.514% 1.948%

LH 1.164% 1.163% 1.163% 1.163% 1.160% 1.163% 3.191% 3.190% 3.190% 3.190% 3.188% 7.503% 3.191%

C 2.030% 2.029% 2.030% 2.033% 2.026% 2.025% 4.586% 4.584% 4.588% 4.594% 4.576% 5.093% 4.575%

S 1.659% 1.658% 1.661% 1.662% 1.659% 1.658% 4.400% 4.397% 4.405% 4.408% 4.399% 4.899% 4.398%

W 2.203% 2.202% 2.203% 2.209% 2.201% 2.200% 5.000% 4.997% 5.000% 5.013% 4.994% 5.787% 4.992%

CC 1.839% 1.840% 1.841% 1.841% 1.839% 1.838% 4.138% 4.139% 4.141% 4.142% 4.137% 4.145% 4.135%

KC 1.756% 1.761% 1.762% 1.757% 1.757% 1.757% 3.953% 3.963% 3.966% 3.954% 3.954% 3.986% 3.953%

KW 2.050% 2.049% 2.050% 2.050% 2.046% 2.044% 4.622% 4.619% 4.621% 4.621% 4.614% 5.375% 4.608%

CT 1.809% 1.812% 1.813% 1.811% 1.808% 1.807% 4.082% 4.088% 4.089% 4.086% 4.079% 4.639% 4.078%

SB 2.228% 2.235% 2.241% 2.234% 2.220% 2.226% 4.561% 4.575% 4.587% 4.574% 4.543% 20.847% 4.556%

LA 1.666% 1.667% 1.667% 1.666% 1.664% 1.664% 5.549% 5.551% 5.552% 5.548% 5.540% 5.871% 5.540%

LL 2.786% 2.785% 2.784% 2.786% 2.778% 2.778% 9.250% 9.245% 9.242% 9.251% 9.223% 9.360% 9.222%

LP 2.294% 2.297% 2.302% 2.308% 2.284% 2.286% 7.612% 7.623% 7.640% 7.659% 7.581% 8.458% 7.587%

GC 1.398% 1.398% 1.398% 1.397% 1.397% 1.397% 3.422% 3.420% 3.422% 3.418% 3.418% 3.552% 3.420%

LN 2.846% 2.845% 2.844% 2.848% 2.847% 2.845% 9.415% 9.412% 9.406% 9.421% 9.418% 9.490% 9.410%

SI 2.590% 2.589% 2.589% 2.592% 2.587% 2.585% 5.788% 5.786% 5.788% 5.792% 5.781% 6.198% 5.778%

LX 2.579% 2.578% 2.584% 2.580% 2.580% 2.578% 8.538% 8.536% 8.556% 8.543% 8.542% 8.660% 8.535%

CL 2.141% 2.143% 2.149% 2.141% 2.138% 2.136% 7.500% 7.507% 7.533% 7.501% 7.492% 7.741% 7.485%

CO 2.037% 2.038% 2.044% 2.040% 2.030% 2.029% 7.128% 7.132% 7.155% 7.138% 7.104% 7.377% 7.101%

HO 1.955% 1.956% 1.958% 1.952% 1.948% 1.946% 6.826% 6.831% 6.836% 6.816% 6.802% 7.267% 6.796%

PG 1.399% 1.400% 1.404% 1.404% 1.397% 1.398% 4.860% 4.862% 4.875% 4.877% 4.854% 7.807% 4.857%

NG 2.187% 2.186% 2.190% 2.188% 2.182% 2.178% 7.975% 7.972% 7.982% 7.972% 7.951% 16.751% 7.936%

XB 1.500% 1.501% 1.501% 1.498% 1.500% 1.499% 5.021% 5.024% 5.027% 5.016% 5.022% 7.111% 5.019%

Test Period

Symbol

Functional Error Multivariate Error

FAR(1) FAR(2) FAR(4) FSAR PF Näıve FAR(1) FAR(2) FAR(4) FSAR PF DL Näıve

FC 1.001% 1.002% 1.001% 1.003% 0.989% 0.990% 2.656% 2.659% 2.654% 2.660% 2.625% 2.951% 2.627%

LC 0.850% 0.852% 0.850% 0.850% 0.849% 0.848% 2.104% 2.107% 2.102% 2.101% 2.097% 3.597% 2.097%

LH 1.108% 1.109% 1.108% 1.108% 1.105% 1.108% 3.024% 3.025% 3.025% 3.022% 3.017% 8.063% 3.024%

C 1.421% 1.422% 1.422% 1.425% 1.420% 1.418% 3.201% 3.201% 3.203% 3.209% 3.198% 4.077% 3.194%

S 1.180% 1.182% 1.180% 1.183% 1.179% 1.178% 3.138% 3.144% 3.138% 3.147% 3.136% 4.149% 3.133%

W 1.512% 1.512% 1.511% 1.516% 1.513% 1.511% 3.435% 3.435% 3.434% 3.444% 3.437% 3.531% 3.433%

CC 1.457% 1.457% 1.461% 1.457% 1.456% 1.455% 3.291% 3.291% 3.301% 3.292% 3.290% 3.291% 3.287%

KC 1.934% 1.938% 1.940% 1.933% 1.931% 1.931% 4.353% 4.363% 4.368% 4.353% 4.348% 4.351% 4.346%

KW 1.469% 1.468% 1.469% 1.473% 1.467% 1.466% 3.322% 3.320% 3.322% 3.331% 3.318% 3.470% 3.316%

CT 1.181% 1.182% 1.189% 1.181% 1.176% 1.178% 2.712% 2.717% 2.732% 2.715% 2.703% 3.004% 2.708%

SB 1.403% 1.403% 1.406% 1.403% 1.404% 1.400% 2.907% 2.908% 2.914% 2.907% 2.907% 11.470% 2.900%

LA 1.085% 1.084% 1.085% 1.085% 1.079% 1.080% 3.609% 3.608% 3.610% 3.612% 3.589% 3.644% 3.593%

LL 1.381% 1.381% 1.381% 1.381% 1.379% 1.378% 4.585% 4.584% 4.583% 4.583% 4.578% 4.574% 4.572%

LP 1.226% 1.225% 1.226% 1.229% 1.217% 1.219% 4.065% 4.064% 4.068% 4.077% 4.035% 4.058% 4.041%

GC 1.058% 1.058% 1.057% 1.058% 1.058% 1.055% 2.586% 2.586% 2.586% 2.587% 2.587% 2.771% 2.581%

LN 1.748% 1.746% 1.747% 1.748% 1.747% 1.746% 5.787% 5.782% 5.785% 5.787% 5.786% 5.856% 5.782%

SI 1.794% 1.793% 1.796% 1.792% 1.793% 1.790% 4.006% 4.004% 4.010% 4.001% 4.004% 4.243% 3.998%

LX 1.367% 1.367% 1.368% 1.370% 1.366% 1.366% 4.541% 4.540% 4.545% 4.550% 4.537% 4.542% 4.537%

CL 1.821% 1.821% 1.821% 1.823% 1.804% 1.805% 6.367% 6.370% 6.368% 6.375% 6.309% 6.362% 6.313%

CO 1.719% 1.719% 1.721% 1.726% 1.706% 1.707% 6.009% 6.010% 6.017% 6.036% 5.967% 6.024% 5.968%

HO 1.563% 1.562% 1.561% 1.565% 1.553% 1.551% 5.445% 5.444% 5.441% 5.456% 5.411% 5.546% 5.407%

PG 1.842% 1.842% 1.844% 1.849% 1.831% 1.835% 6.447% 6.448% 6.454% 6.471% 6.410% 13.812% 6.422%

NG 1.838% 1.837% 1.836% 1.836% 1.828% 1.828% 6.599% 6.600% 6.594% 6.592% 6.563% 11.514% 6.564%

XB 1.806% 1.804% 1.803% 1.813% 1.795% 1.795% 6.078% 6.070% 6.065% 6.102% 6.041% 11.566% 6.039%

Note: red bold values indicate that they are smallest in different forecasting methods.
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sequence of curves forming a weak white noise and exhibiting conditional heteroscedasticity.

We applied several functional time series forecasting methods to the log-differenced forward

curves, as well as the multivariate method of Diebold & Li (2006), and found that in general the

functional methods were superior to their multivariate counterparts, and in some cases even beat

the näıve forecast in test period comparisons. Among the functional forecasting methods, the

FAR(1) model estimated using predictive factors Kargin & Onatski (2008) performed slightly

better than the alternatives and benchmarks considered.
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Appendix A Additional technical information

A.1 Implementation of functional KPSS and portmanteau tests

As discussed in Section 3, the functional KPSS statistic defined as

fKPSSN =

∫∫
Z2
N (x, t)dtdx

satisfies under mild weak dependence and moment conditions on the log-differenced series Xi(t)

that

fKPSSN
D−→ ΞKPSS , N →∞,

where ΞKPSS is a random variable that can be expressed in terms of the eigenvalues of the

long-run covariance operator

CLR(x)(t) =

∫
cLR(t, s)x(s)ds,

with

cLR(t, s) =

∞∑
`=−∞

cov(X0(t), X`(s)),

see Horváth et al. (2014) for details. In order to estimate these eigenvalues and subsequently the

limiting distribution, we used a kernel lag-window estimator of cLR defined by

ĉLR(t, s) =

∞∑
`=−∞

K(`/h)ĉ`(t, s),

with a flat-top kernel

K(x) =


1, if 0 ≤ t < 1

1.1− |t|, if 0.1 ≤ t < 1.1

0, if |t| ≥ 1.1

and bandwidth h = N1/2.

Regarding the portmanteau tests, under the conditions of Theorem 2 in Kokoszka et al.

(2017), we have under H0,iid and H0,ch, respectively, that

VN,K
D−→ ΘK,iid, N →∞,
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and

VN,K
D−→ ΘK,ch, N →∞.

Both ΘK,iid and ΘK,ch can be approximated using a Welch style approximation of the form

ΘK,iid
D
≈ βiidχ2

νiid
,

and

ΘK,ch
D
≈ βchχ2

νch
,

where the constants β and ν are estimated in order that the scaled chi-square approximations

share approximately the same first two moments with the limiting distribution. Estimating βch

and νch is discussed in detail in Section 2 of Kokoszka et al. (2017), and amounts to taking

β̂ch =
σ̂2
K,ch

2µ̂K,ch
and ν̂ch =

2µ̂2
K,ch

σ̂2
K,ch

, (9)

where µ̂K,ch and σ̂2
K,ch are estimators of the mean and variance of ΘK,ch. It follows by examining

equation (15) in Kokoszka et al. (2017) that under H0,iid as opposed to H0,ch,

EΘK,iid = K

(∫
cov(X0(t), X0(t))dt

)2

, Var(ΘK,iid) = 2K

(∫∫
cov(X0(t), X0(s))dtds

)2

,

which can be similarly estimated, yielding estimates of βiid and νiid.

A.2 Estimation of FSAR models

We estimate these models using functional principal component analysis and the least squares

principle: Let v̂1, ..., v̂p be the first p functional principal components. Let `1, ...., `k denote the

pre-specified lags. We assume that the kernels ψ`,i can be approximated by

ψ`,i(t, s) ≈
p∑

j,r=1

Φ`,i[j, r]v̂j(t)v̂r(s), Φi ∈ Rp×p,

and further that

Xn(t) ≈
p∑
j=1

〈Xn, v̂j〉v̂j(t), Xn = (〈Xn, v̂1, 〉, . . . , 〈Xn, v̂d〉)> ∈ Rp.

Let

Φ =


Φ`,1

...

Φ`,k

 ∈ Rkp×p,
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Rewriting the FSAR equations using these approximations, we have that with

XL,p =
(

X>i−`1 , ...,X
>
i−`k , i = `k + 1, ..., N

)>
∈ RN−`k×kp,

XR,p =


X>`k+1

...

X>N

 ∈ RN−`k×p,

the least squares estimator for Φ is

Φ̂ = (X>L,pXL,p)
−1XL,pXR,p =:


Φ̂`,1

...

Φ̂`,k

 ∈ Rkp×p.

This yields estimates of the kernel functions ψ`,i(t, s) given by

ψ̂`,i(t, s) ≈
p∑

j,r=1

Φ̂`,i[j, r]v̂j(t)v̂r(s), Φi ∈ Rp×p.
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Appendix B Results for forecasting at different temporal resolutions

Table 7: Forecasting performance evaluated using functional and multivariate error measures for commodity

futures forward curves at a weekly resolution.

Validation Period

Symbol

Functional Error Multivariate Error

FAR(1) FAR(2) FAR(4) FSAR PF Näıve FAR(1) FAR(2) FAR(4) FSAR PF DL Näıve

FC 0.799 0.798 0.798 0.799 0.793 0.798 2.334 2.332 2.332 2.333 2.318 2.612 2.331

LC 0.737 0.738 0.739 0.739 0.738 0.738 1.898 1.899 1.902 1.901 1.898 3.339 1.899

LH 0.848 0.848 0.848 0.848 0.847 0.848 2.383 2.383 2.383 2.382 2.379 5.362 2.383

C 9.262 9.259 9.265 9.270 9.246 9.249 22.007 22.006 22.018 22.027 21.966 25.480 21.975

S 17.300 17.290 17.315 17.332 17.296 17.293 47.715 47.687 47.761 47.807 47.702 53.755 47.692

W 15.228 15.206 15.215 15.227 15.199 15.198 36.040 35.991 36.016 36.043 35.966 42.133 35.971

CC 45.136 45.150 45.183 45.237 45.140 45.124 106.656 106.697 106.780 106.902 106.665 106.966 106.625

KC 2.770 2.779 2.778 2.773 2.774 2.774 6.521 6.543 6.541 6.531 6.532 6.605 6.532

KW 14.744 14.737 14.737 14.720 14.657 14.678 34.833 34.821 34.826 34.766 34.636 40.150 34.690

CT 1.620 1.620 1.616 1.620 1.617 1.618 3.869 3.868 3.856 3.870 3.862 4.616 3.865

SB 0.388 0.389 0.390 0.389 0.386 0.388 0.879 0.881 0.884 0.880 0.874 4.680 0.878

LA 38.395 38.401 38.413 38.422 38.334 38.356 129.781 129.810 129.853 129.873 129.573 139.121 129.649

LL 57.115 57.097 57.066 57.151 56.952 56.953 193.067 193.008 192.896 193.194 192.510 196.365 192.528

LP 144.956 145.194 145.447 145.974 144.442 144.504 490.402 491.227 492.069 493.917 488.726 567.637 488.933

GC 13.288 13.292 13.298 13.287 13.276 13.290 33.812 33.824 33.839 33.811 33.781 34.854 33.818

LN 641.845 641.863 642.030 642.143 642.524 642.004 2165.755 2165.722 2166.075 2166.677 2168.029 2196.155 2166.579

SI 0.517 0.518 0.518 0.517 0.517 0.517 1.202 1.202 1.202 1.202 1.201 1.253 1.200

LX 61.349 61.348 61.478 61.432 61.411 61.367 206.402 206.390 206.821 206.686 206.608 211.740 206.489

CL 1.687 1.687 1.690 1.688 1.685 1.684 5.952 5.953 5.963 5.955 5.947 6.183 5.943

CO 1.651 1.651 1.654 1.655 1.648 1.648 5.824 5.824 5.835 5.840 5.814 6.083 5.814

HO 4.421 4.425 4.424 4.418 4.415 4.413 15.621 15.636 15.632 15.610 15.605 16.627 15.595

PG 3.674 3.675 3.685 3.685 3.674 3.676 13.221 13.226 13.259 13.265 13.225 21.254 13.231

NG 0.163 0.163 0.163 0.163 0.162 0.162 0.580 0.580 0.580 0.580 0.578 1.281 0.577

XB 3.765 3.768 3.770 3.766 3.769 3.768 12.853 12.862 12.870 12.858 12.869 18.342 12.864

Test Period

Symbol

Functional Error Multivariate Error

FAR(1) FAR(2) FAR(4) FSAR PF Näıve FAR(1) FAR(2) FAR(4) FSAR PF DL Näıve

FC 1.472 1.474 1.472 1.475 1.452 1.458 4.272 4.275 4.271 4.281 4.218 4.753 4.232

LC 1.047 1.047 1.047 1.047 1.045 1.045 2.694 2.691 2.691 2.690 2.686 4.609 2.686

LH 0.880 0.881 0.881 0.880 0.880 0.880 2.490 2.491 2.491 2.489 2.488 6.536 2.491

C 6.917 6.917 6.922 6.938 6.909 6.902 16.394 16.392 16.403 16.442 16.375 22.825 16.363

S 13.501 13.528 13.500 13.540 13.500 13.489 37.575 37.668 37.566 37.679 37.567 51.402 37.538

W 8.973 8.973 8.968 8.993 8.981 8.971 21.176 21.175 21.163 21.225 21.194 22.098 21.171

CC 34.637 34.639 34.741 34.640 34.637 34.612 82.231 82.233 82.484 82.246 82.233 82.303 82.173

KC 3.054 3.065 3.069 3.054 3.050 3.049 7.164 7.190 7.199 7.165 7.155 7.165 7.152

KW 9.102 9.095 9.106 9.127 9.091 9.088 21.422 21.403 21.430 21.487 21.395 22.620 21.386

CT 0.849 0.849 0.857 0.849 0.845 0.847 2.060 2.062 2.079 2.060 2.051 2.326 2.055

SB 0.231 0.232 0.232 0.231 0.231 0.231 0.513 0.513 0.514 0.513 0.512 1.943 0.511

LA 20.331 20.323 20.336 20.342 20.217 20.242 68.541 68.511 68.557 68.577 68.152 69.021 68.232

LL 27.927 27.933 27.936 27.915 27.887 27.854 94.232 94.250 94.260 94.194 94.103 93.950 93.989

LP 78.075 78.058 78.076 78.329 77.456 77.609 262.753 262.693 262.755 263.615 260.648 262.281 261.197

GC 14.075 14.073 14.071 14.082 14.077 14.050 35.696 35.689 35.683 35.721 35.701 38.432 35.630

LN 237.134 236.785 236.839 237.048 237.029 236.901 795.470 794.348 794.536 795.176 795.131 799.975 794.709

SI 0.401 0.401 0.401 0.400 0.401 0.400 0.939 0.939 0.941 0.939 0.939 0.986 0.938

LX 29.041 29.034 29.071 29.117 29.026 29.029 97.937 97.913 98.041 98.197 97.888 98.190 97.900

CL 1.126 1.126 1.127 1.128 1.117 1.118 3.982 3.983 3.984 3.989 3.952 3.990 3.954

CO 1.125 1.126 1.126 1.131 1.118 1.118 3.974 3.976 3.978 3.994 3.949 3.989 3.948

HO 2.997 2.995 2.994 3.002 2.980 2.977 10.589 10.583 10.578 10.609 10.531 10.832 10.518

PG 2.919 2.922 2.925 2.936 2.903 2.908 10.304 10.317 10.325 10.365 10.247 22.135 10.265

NG 0.062 0.062 0.062 0.062 0.062 0.062 0.223 0.223 0.223 0.223 0.222 0.373 0.222

XB 2.968 2.965 2.965 2.976 2.951 2.949 10.050 10.040 10.040 10.077 9.992 19.216 9.987

Note: red bold values indicate that they are smallest in different forecasting methods.
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Table 8: Relative forecasting performance evaluated using functional and multivariate error measures for com-

modity futures forward curves at a weekly resolution.

Validation Period

Symbol

Functional Error Multivariate Error

FAR(1) FAR(2) FAR(4) FSAR PF Näıve FAR(1) FAR(2) FAR(4) FSAR PF DL Näıve

FC 0.799% 0.798% 0.799% 0.800% 0.794% 0.798% 2.137% 2.135% 2.136% 2.138% 2.125% 2.394% 2.134%

LC 0.786% 0.786% 0.788% 0.787% 0.786% 0.786% 1.961% 1.962% 1.965% 1.964% 1.961% 3.514% 1.961%

LH 1.201% 1.201% 1.201% 1.201% 1.198% 1.201% 3.302% 3.301% 3.301% 3.302% 3.297% 7.503% 3.301%

C 2.031% 2.030% 2.031% 2.033% 2.027% 2.027% 4.590% 4.589% 4.592% 4.596% 4.581% 5.093% 4.580%

S 1.660% 1.659% 1.662% 1.663% 1.660% 1.660% 4.407% 4.405% 4.413% 4.413% 4.407% 4.899% 4.406%

W 2.205% 2.204% 2.205% 2.210% 2.203% 2.202% 5.007% 5.004% 5.008% 5.019% 5.001% 5.787% 4.999%

CC 1.839% 1.840% 1.841% 1.841% 1.839% 1.838% 4.139% 4.142% 4.144% 4.144% 4.140% 4.145% 4.137%

KC 1.759% 1.765% 1.765% 1.759% 1.760% 1.759% 3.961% 3.974% 3.975% 3.962% 3.962% 3.986% 3.961%

KW 2.051% 2.050% 2.051% 2.051% 2.048% 2.045% 4.625% 4.622% 4.625% 4.624% 4.617% 5.375% 4.611%

CT 1.812% 1.814% 1.815% 1.813% 1.810% 1.809% 4.101% 4.106% 4.106% 4.104% 4.097% 4.639% 4.096%

SB 2.230% 2.236% 2.242% 2.236% 2.222% 2.227% 4.570% 4.583% 4.594% 4.584% 4.554% 20.847% 4.564%

LA 1.666% 1.667% 1.667% 1.666% 1.664% 1.664% 5.551% 5.552% 5.554% 5.550% 5.543% 5.871% 5.542%

LL 2.786% 2.784% 2.784% 2.786% 2.778% 2.777% 9.250% 9.246% 9.245% 9.253% 9.223% 9.360% 9.223%

LP 2.294% 2.298% 2.302% 2.307% 2.284% 2.285% 7.616% 7.628% 7.641% 7.658% 7.580% 8.458% 7.586%

GC 1.398% 1.398% 1.399% 1.396% 1.397% 1.398% 3.422% 3.421% 3.423% 3.417% 3.419% 3.552% 3.420%

LN 2.848% 2.847% 2.845% 2.850% 2.849% 2.846% 9.421% 9.417% 9.411% 9.428% 9.424% 9.490% 9.416%

SI 2.589% 2.589% 2.589% 2.592% 2.587% 2.585% 5.786% 5.787% 5.788% 5.794% 5.782% 6.198% 5.779%

LX 2.578% 2.578% 2.584% 2.580% 2.580% 2.578% 8.539% 8.537% 8.557% 8.545% 8.544% 8.660% 8.537%

CL 2.140% 2.142% 2.149% 2.141% 2.138% 2.136% 7.507% 7.514% 7.540% 7.508% 7.499% 7.741% 7.493%

CO 2.037% 2.038% 2.045% 2.041% 2.031% 2.030% 7.135% 7.139% 7.165% 7.148% 7.115% 7.377% 7.112%

HO 1.955% 1.957% 1.959% 1.952% 1.948% 1.947% 6.829% 6.838% 6.843% 6.820% 6.808% 7.267% 6.802%

PG 1.410% 1.410% 1.414% 1.414% 1.408% 1.408% 4.888% 4.889% 4.903% 4.904% 4.881% 7.807% 4.884%

NG 2.206% 2.205% 2.207% 2.205% 2.200% 2.195% 8.060% 8.064% 8.065% 8.055% 8.035% 16.751% 8.019%

XB 1.509% 1.510% 1.510% 1.508% 1.509% 1.508% 5.048% 5.048% 5.051% 5.042% 5.047% 7.111% 5.044%

Test Period

Symbol

Functional Error Multivariate Error

FAR(1) FAR(2) FAR(4) FSAR PF Näıve FAR(1) FAR(2) FAR(4) FSAR PF DL Näıve

FC 1.007% 1.007% 1.006% 1.008% 0.994% 0.996% 2.669% 2.671% 2.667% 2.674% 2.636% 2.951% 2.640%

LC 0.859% 0.859% 0.859% 0.859% 0.858% 0.857% 2.118% 2.116% 2.116% 2.116% 2.113% 3.597% 2.112%

LH 1.157% 1.157% 1.157% 1.156% 1.156% 1.156% 3.149% 3.150% 3.149% 3.145% 3.147% 8.063% 3.148%

C 1.428% 1.428% 1.428% 1.430% 1.427% 1.425% 3.212% 3.212% 3.214% 3.218% 3.210% 4.077% 3.206%

S 1.184% 1.186% 1.185% 1.187% 1.184% 1.183% 3.164% 3.169% 3.165% 3.171% 3.162% 4.149% 3.159%

W 1.515% 1.515% 1.514% 1.518% 1.516% 1.514% 3.443% 3.443% 3.441% 3.450% 3.445% 3.531% 3.441%

CC 1.457% 1.456% 1.461% 1.457% 1.456% 1.455% 3.292% 3.292% 3.303% 3.293% 3.292% 3.291% 3.288%

KC 1.931% 1.937% 1.939% 1.931% 1.929% 1.928% 4.350% 4.365% 4.369% 4.351% 4.346% 4.351% 4.344%

KW 1.471% 1.471% 1.472% 1.475% 1.470% 1.469% 3.329% 3.328% 3.331% 3.338% 3.326% 3.470% 3.325%

CT 1.181% 1.182% 1.191% 1.181% 1.177% 1.178% 2.715% 2.717% 2.736% 2.715% 2.704% 3.004% 2.708%

SB 1.404% 1.405% 1.407% 1.404% 1.404% 1.401% 2.909% 2.910% 2.915% 2.910% 2.909% 11.470% 2.903%

LA 1.086% 1.086% 1.087% 1.087% 1.080% 1.082% 3.615% 3.613% 3.616% 3.618% 3.595% 3.644% 3.600%

LL 1.381% 1.381% 1.381% 1.380% 1.379% 1.377% 4.585% 4.585% 4.585% 4.583% 4.579% 4.574% 4.573%

LP 1.226% 1.226% 1.226% 1.229% 1.217% 1.219% 4.067% 4.067% 4.068% 4.078% 4.035% 4.058% 4.042%

GC 1.058% 1.058% 1.057% 1.059% 1.058% 1.055% 2.586% 2.586% 2.586% 2.589% 2.587% 2.771% 2.581%

LN 1.748% 1.746% 1.747% 1.747% 1.747% 1.746% 5.786% 5.780% 5.784% 5.786% 5.784% 5.856% 5.781%

SI 1.793% 1.793% 1.795% 1.791% 1.793% 1.790% 4.004% 4.004% 4.009% 4.000% 4.004% 4.243% 3.998%

LX 1.367% 1.367% 1.368% 1.370% 1.366% 1.366% 4.540% 4.540% 4.544% 4.550% 4.537% 4.542% 4.537%

CL 1.823% 1.823% 1.823% 1.825% 1.806% 1.807% 6.380% 6.383% 6.381% 6.388% 6.322% 6.362% 6.326%

CO 1.720% 1.721% 1.722% 1.727% 1.708% 1.708% 6.018% 6.020% 6.026% 6.044% 5.975% 6.024% 5.977%

HO 1.563% 1.563% 1.562% 1.566% 1.553% 1.552% 5.451% 5.449% 5.447% 5.461% 5.417% 5.546% 5.412%

PG 1.862% 1.863% 1.865% 1.870% 1.852% 1.855% 6.505% 6.510% 6.516% 6.532% 6.471% 13.812% 6.483%

NG 1.850% 1.850% 1.849% 1.850% 1.841% 1.841% 6.647% 6.651% 6.644% 6.648% 6.611% 11.514% 6.611%

XB 1.826% 1.823% 1.822% 1.829% 1.814% 1.813% 6.131% 6.119% 6.115% 6.137% 6.089% 11.566% 6.087%

Note: red bold values indicate that they are smallest in different forecasting methods.
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Table 9: Forecasting performance evaluated using functional and multivariate error measures for commodity

futures forward curves at a monthly resolution.

Validation Period

Symbol

Functional Error Multivariate Error

FAR(1) FAR(2) FAR(4) FSAR PF Näıve FAR(1) FAR(2) FAR(4) FSAR PF DL Näıve

FC 0.811 0.811 0.811 0.813 0.806 0.810 2.362 2.361 2.360 2.365 2.347 2.612 2.359

LC 0.788 0.788 0.789 0.789 0.788 0.788 1.999 1.999 2.001 2.001 1.999 3.339 1.999

LH 1.003 1.002 1.003 0.998 1.002 1.002 2.883 2.882 2.884 2.868 2.882 5.362 2.883

C 9.279 9.273 9.278 9.300 9.266 9.269 22.156 22.145 22.158 22.212 22.124 25.480 22.129

S 17.253 17.216 17.261 17.284 17.244 17.240 47.804 47.731 47.839 47.895 47.783 53.755 47.770

W 15.291 15.266 15.277 15.261 15.259 15.257 36.401 36.359 36.392 36.344 36.318 42.133 36.320

CC 45.103 45.116 45.136 45.191 45.108 45.090 107.016 107.056 107.113 107.236 107.028 106.966 106.987

KC 2.785 2.792 2.791 2.790 2.789 2.789 6.543 6.560 6.560 6.557 6.554 6.605 6.553

KW 14.752 14.748 14.750 14.729 14.674 14.692 35.068 35.067 35.072 35.000 34.894 40.150 34.938

CT 1.671 1.673 1.664 1.671 1.670 1.669 4.021 4.024 4.001 4.021 4.017 4.616 4.016

SB 0.401 0.402 0.403 0.402 0.400 0.400 0.900 0.902 0.905 0.902 0.897 4.680 0.898

LA 38.359 38.368 38.380 38.376 38.292 38.313 130.015 130.056 130.102 130.074 129.796 139.121 129.867

LL 56.938 56.896 56.873 56.982 56.780 56.776 193.100 192.943 192.842 193.254 192.554 196.365 192.563

LP 144.562 144.844 145.132 145.682 143.990 144.115 490.981 491.997 492.974 494.892 489.251 567.637 489.671

GC 13.483 13.487 13.494 13.482 13.470 13.484 33.833 33.845 33.863 33.831 33.800 34.854 33.837

LN 642.054 641.989 642.176 642.469 642.829 642.288 2167.377 2167.036 2167.389 2168.658 2169.989 2196.155 2168.522

SI 0.525 0.525 0.525 0.525 0.524 0.524 1.202 1.202 1.203 1.202 1.201 1.253 1.201

LX 61.565 61.568 61.677 61.652 61.634 61.587 206.857 206.856 207.214 207.162 207.099 211.740 206.982

CL 1.698 1.698 1.700 1.698 1.696 1.695 5.965 5.966 5.974 5.965 5.959 6.183 5.956

CO 1.647 1.647 1.648 1.650 1.644 1.644 5.828 5.828 5.833 5.839 5.817 6.083 5.816

HO 4.518 4.520 4.519 4.517 4.511 4.508 15.716 15.723 15.718 15.711 15.691 16.627 15.682

PG 3.841 3.843 3.854 3.854 3.840 3.843 13.824 13.826 13.865 13.868 13.817 21.254 13.828

NG 0.182 0.182 0.182 0.182 0.181 0.181 0.640 0.640 0.640 0.641 0.640 1.281 0.638

XB 3.999 4.000 4.005 3.999 4.003 4.002 13.535 13.538 13.550 13.532 13.548 18.342 13.542

Test Period

Symbol

Functional Error Multivariate Error

FAR(1) FAR(2) FAR(4) FSAR PF Näıve FAR(1) FAR(2) FAR(4) FSAR PF DL Näıve

FC 1.489 1.490 1.489 1.491 1.468 1.474 4.317 4.320 4.318 4.325 4.262 4.753 4.275

LC 1.108 1.108 1.109 1.109 1.107 1.106 2.831 2.833 2.833 2.833 2.829 4.609 2.828

LH 1.113 1.113 1.112 1.105 1.113 1.113 3.183 3.184 3.181 3.160 3.183 6.536 3.183

C 7.172 7.172 7.176 7.188 7.159 7.154 17.251 17.252 17.264 17.283 17.212 22.825 17.200

S 14.101 14.149 14.109 14.144 14.104 14.091 40.285 40.462 40.303 40.349 40.285 51.402 40.245

W 8.970 8.969 8.965 8.995 8.977 8.967 21.281 21.280 21.271 21.341 21.297 22.098 21.275

CC 34.477 34.478 34.561 34.478 34.477 34.452 82.256 82.259 82.466 82.269 82.258 82.303 82.197

KC 3.072 3.082 3.084 3.071 3.067 3.066 7.197 7.220 7.226 7.195 7.187 7.165 7.184

KW 9.083 9.076 9.086 9.101 9.072 9.070 21.492 21.475 21.498 21.534 21.464 22.620 21.458

CT 0.848 0.849 0.855 0.849 0.847 0.847 2.078 2.079 2.095 2.079 2.075 2.326 2.074

SB 0.235 0.236 0.236 0.235 0.235 0.235 0.515 0.515 0.516 0.515 0.515 1.943 0.513

LA 20.335 20.328 20.340 20.350 20.223 20.247 68.829 68.805 68.846 68.881 68.440 69.021 68.521

LL 27.799 27.801 27.802 27.791 27.787 27.732 94.218 94.228 94.232 94.196 94.180 93.950 93.990

LP 77.716 77.712 77.805 78.066 77.114 77.323 262.505 262.492 262.793 263.692 260.398 262.281 261.171

GC 14.264 14.262 14.260 14.265 14.267 14.240 35.713 35.706 35.702 35.720 35.720 38.432 35.649

LN 236.250 235.929 235.993 236.187 236.189 236.065 795.819 794.784 795.006 795.583 795.618 799.975 795.193

SI 0.406 0.406 0.407 0.406 0.406 0.406 0.940 0.940 0.941 0.939 0.940 0.986 0.938

LX 28.941 28.933 28.967 29.012 28.923 28.926 98.055 98.027 98.151 98.300 97.997 98.190 98.009

CL 1.130 1.130 1.131 1.132 1.123 1.123 3.988 3.989 3.990 3.994 3.964 3.990 3.963

CO 1.122 1.122 1.123 1.127 1.116 1.115 3.965 3.967 3.969 3.985 3.946 3.989 3.943

HO 3.055 3.056 3.055 3.059 3.041 3.037 10.673 10.675 10.671 10.687 10.627 10.832 10.611

PG 3.282 3.283 3.285 3.296 3.260 3.273 11.513 11.516 11.525 11.561 11.439 22.135 11.480

NG 0.066 0.066 0.066 0.066 0.066 0.066 0.233 0.233 0.234 0.234 0.233 0.373 0.233

XB 3.333 3.333 3.333 3.341 3.322 3.320 11.221 11.221 11.221 11.248 11.185 19.216 11.180

Note: red bold values indicate that they are smallest in different forecasting methods.
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Table 10: Relative forecasting performance evaluated using functional and multivariate error measures for com-

modity futures forward curves at a monthly resolution.

Validation Period

Symbol

Functional Error Multivariate Error

FAR(1) FAR(2) FAR(4) FSAR PF Näıve FAR(1) FAR(2) FAR(4) FSAR PF DL Näıve

FC 0.811% 0.811% 0.811% 0.813% 0.807% 0.810% 2.164% 2.164% 2.163% 2.169% 2.152% 2.394% 2.161%

LC 0.826% 0.826% 0.827% 0.827% 0.826% 0.826% 2.070% 2.070% 2.073% 2.072% 2.070% 3.514% 2.070%

LH 1.426% 1.426% 1.427% 1.420% 1.426% 1.426% 3.992% 3.991% 3.994% 3.975% 3.993% 7.503% 3.993%

C 2.051% 2.049% 2.051% 2.055% 2.047% 2.047% 4.629% 4.626% 4.630% 4.640% 4.620% 5.093% 4.619%

S 1.667% 1.664% 1.669% 1.670% 1.667% 1.666% 4.423% 4.415% 4.427% 4.431% 4.422% 4.899% 4.420%

W 2.233% 2.232% 2.234% 2.234% 2.230% 2.229% 5.065% 5.064% 5.067% 5.070% 5.059% 5.787% 5.056%

CC 1.848% 1.849% 1.849% 1.849% 1.848% 1.846% 4.157% 4.159% 4.160% 4.161% 4.157% 4.145% 4.154%

KC 1.768% 1.773% 1.773% 1.768% 1.768% 1.768% 3.982% 3.994% 3.993% 3.982% 3.982% 3.986% 3.981%

KW 2.069% 2.068% 2.069% 2.069% 2.066% 2.063% 4.664% 4.661% 4.664% 4.664% 4.655% 5.375% 4.649%

CT 1.860% 1.864% 1.862% 1.861% 1.859% 1.859% 4.197% 4.204% 4.197% 4.198% 4.194% 4.639% 4.193%

SB 2.249% 2.256% 2.261% 2.255% 2.246% 2.246% 4.631% 4.645% 4.656% 4.643% 4.624% 20.847% 4.624%

LA 1.672% 1.672% 1.673% 1.671% 1.669% 1.669% 5.565% 5.567% 5.568% 5.561% 5.556% 5.871% 5.555%

LL 2.786% 2.784% 2.784% 2.787% 2.778% 2.778% 9.246% 9.241% 9.238% 9.252% 9.222% 9.360% 9.219%

LP 2.296% 2.300% 2.306% 2.311% 2.286% 2.288% 7.621% 7.633% 7.652% 7.670% 7.586% 8.458% 7.594%

GC 1.400% 1.400% 1.401% 1.399% 1.399% 1.399% 3.426% 3.425% 3.427% 3.422% 3.423% 3.552% 3.424%

LN 2.860% 2.859% 2.857% 2.862% 2.861% 2.858% 9.436% 9.432% 9.426% 9.445% 9.439% 9.490% 9.431%

SI 2.590% 2.589% 2.590% 2.592% 2.587% 2.586% 5.790% 5.788% 5.790% 5.795% 5.784% 6.198% 5.781%

LX 2.589% 2.588% 2.594% 2.591% 2.591% 2.588% 8.555% 8.552% 8.571% 8.560% 8.559% 8.660% 8.552%

CL 2.142% 2.144% 2.150% 2.141% 2.139% 2.137% 7.518% 7.524% 7.547% 7.514% 7.508% 7.741% 7.501%

CO 2.035% 2.036% 2.041% 2.037% 2.029% 2.028% 7.118% 7.121% 7.142% 7.124% 7.098% 7.377% 7.093%

HO 1.958% 1.960% 1.961% 1.957% 1.951% 1.949% 6.865% 6.870% 6.875% 6.861% 6.839% 7.267% 6.832%

PG 1.470% 1.471% 1.475% 1.475% 1.468% 1.469% 5.112% 5.112% 5.127% 5.128% 5.103% 7.807% 5.108%

NG 2.405% 2.403% 2.404% 2.406% 2.401% 2.396% 8.814% 8.809% 8.813% 8.818% 8.800% 16.751% 8.783%

XB 1.573% 1.573% 1.574% 1.571% 1.573% 1.572% 5.296% 5.297% 5.301% 5.291% 5.297% 7.111% 5.294%

Test Period

Symbol

Functional Error Multivariate Error

FAR(1) FAR(2) FAR(4) FSAR PF Näıve FAR(1) FAR(2) FAR(4) FSAR PF DL Näıve

FC 1.016% 1.017% 1.016% 1.018% 1.003% 1.005% 2.701% 2.703% 2.700% 2.706% 2.668% 2.951% 2.672%

LC 0.894% 0.894% 0.894% 0.894% 0.893% 0.892% 2.229% 2.231% 2.231% 2.231% 2.227% 3.597% 2.226%

LH 1.443% 1.443% 1.443% 1.432% 1.443% 1.443% 3.971% 3.971% 3.969% 3.936% 3.971% 8.063% 3.970%

C 1.476% 1.476% 1.477% 1.478% 1.474% 1.473% 3.346% 3.346% 3.348% 3.351% 3.341% 4.077% 3.337%

S 1.235% 1.239% 1.237% 1.239% 1.235% 1.234% 3.359% 3.371% 3.362% 3.366% 3.358% 4.149% 3.354%

W 1.528% 1.528% 1.528% 1.532% 1.529% 1.527% 3.469% 3.469% 3.468% 3.477% 3.471% 3.531% 3.466%

CC 1.458% 1.458% 1.462% 1.458% 1.458% 1.456% 3.292% 3.292% 3.301% 3.292% 3.291% 3.291% 3.288%

KC 1.940% 1.946% 1.946% 1.940% 1.938% 1.937% 4.369% 4.384% 4.384% 4.371% 4.365% 4.351% 4.363%

KW 1.481% 1.481% 1.482% 1.484% 1.480% 1.479% 3.350% 3.348% 3.351% 3.356% 3.346% 3.470% 3.345%

CT 1.197% 1.198% 1.206% 1.198% 1.196% 1.195% 2.736% 2.738% 2.756% 2.738% 2.733% 3.004% 2.732%

SB 1.401% 1.401% 1.403% 1.401% 1.401% 1.397% 2.917% 2.918% 2.922% 2.918% 2.918% 11.470% 2.910%

LA 1.090% 1.090% 1.090% 1.091% 1.084% 1.086% 3.628% 3.627% 3.629% 3.631% 3.608% 3.644% 3.613%

LL 1.381% 1.382% 1.382% 1.381% 1.381% 1.378% 4.584% 4.585% 4.585% 4.583% 4.583% 4.574% 4.573%

LP 1.226% 1.226% 1.227% 1.230% 1.216% 1.219% 4.065% 4.066% 4.069% 4.079% 4.032% 4.058% 4.042%

GC 1.058% 1.058% 1.058% 1.058% 1.058% 1.056% 2.587% 2.588% 2.587% 2.588% 2.588% 2.771% 2.582%

LN 1.748% 1.747% 1.748% 1.748% 1.748% 1.747% 5.788% 5.783% 5.787% 5.788% 5.787% 5.856% 5.784%

SI 1.794% 1.794% 1.796% 1.792% 1.794% 1.791% 4.008% 4.006% 4.012% 4.002% 4.006% 4.243% 4.000%

LX 1.369% 1.368% 1.370% 1.371% 1.368% 1.367% 4.546% 4.546% 4.550% 4.556% 4.543% 4.542% 4.542%

CL 1.819% 1.819% 1.819% 1.821% 1.805% 1.805% 6.374% 6.377% 6.376% 6.383% 6.326% 6.362% 6.326%

CO 1.707% 1.707% 1.709% 1.714% 1.698% 1.697% 5.996% 5.996% 6.003% 6.022% 5.965% 6.024% 5.964%

HO 1.561% 1.561% 1.561% 1.563% 1.553% 1.551% 5.479% 5.480% 5.477% 5.486% 5.450% 5.546% 5.444%

PG 2.044% 2.044% 2.046% 2.050% 2.032% 2.039% 7.165% 7.167% 7.173% 7.188% 7.126% 13.812% 7.148%

NG 1.930% 1.930% 1.930% 1.930% 1.925% 1.924% 6.965% 6.966% 6.968% 6.968% 6.946% 11.514% 6.945%

XB 2.001% 2.001% 1.999% 2.004% 1.993% 1.993% 6.762% 6.762% 6.756% 6.771% 6.737% 11.566% 6.735%

Note: red bold values indicate that they are smallest in different forecasting methods.
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Appendix C Sample Information

Table 11: Data Information

Symbol

Training Period Validation Period Test Period Total No.

Start End Start End Start End of Obs.

FC 2000-01-04 2005-12-14 2005-12-15 2011-10-31 2011-11-01 2017-08-31 4406

LC 2000-01-04 2005-11-28 2005-11-29 2011-10-13 2011-10-14 2017-08-31 4444

LH 2000-01-04 2005-11-30 2005-12-01 2011-10-14 2011-10-17 2017-08-31 4441

C 2000-01-04 2005-11-23 2005-11-25 2011-10-12 2011-10-13 2017-08-31 4447

S 2000-01-04 2005-11-25 2005-11-28 2011-10-13 2011-10-14 2017-08-31 4446

W 2000-01-04 2005-11-23 2005-11-25 2011-10-12 2011-10-13 2017-08-31 4447

CC 2000-01-04 2005-12-05 2005-12-06 2011-10-26 2011-10-27 2017-08-31 4416

KC 2000-01-04 2005-12-06 2005-12-07 2011-10-25 2011-10-26 2017-08-31 4418

KW 2000-01-04 2005-12-21 2005-12-22 2011-10-26 2011-10-27 2017-08-31 4418

CT 2000-01-04 2005-11-21 2005-11-22 2011-10-18 2011-10-19 2017-08-31 4433

SB 2000-01-04 2005-12-05 2005-12-06 2011-10-24 2011-10-25 2017-08-31 4422

LA 2000-01-05 2006-01-17 2006-01-18 2011-11-08 2011-11-09 2017-08-31 4402

LL 2000-01-05 2006-11-30 2006-12-01 2012-04-18 2012-04-19 2017-08-31 4071

LP 2000-01-05 2006-03-07 2006-03-08 2011-12-01 2011-12-02 2017-08-31 4351

GC 2000-01-05 2005-12-02 2005-12-05 2011-10-19 2011-10-20 2017-08-31 4427

LN 2000-01-05 2006-03-13 2006-03-14 2011-12-08 2011-12-09 2017-08-31 4337

SI 2000-01-05 2005-12-06 2005-12-07 2011-10-20 2011-10-21 2017-08-31 4429

LX 2000-01-05 2006-02-27 2006-02-28 2011-12-02 2011-12-05 2017-08-31 4348

CL 2000-01-05 2005-12-02 2005-12-05 2011-10-19 2011-10-20 2017-08-31 4422

CO 2000-01-05 2005-12-22 2005-12-23 2011-11-02 2011-11-03 2017-08-31 4508

HO 2000-01-05 2005-12-06 2005-12-07 2011-10-19 2011-10-20 2017-08-31 4432

PG 2006-04-24 2010-10-06 2010-10-07 2014-03-19 2014-03-20 2017-08-31 2668

NG 2000-01-05 2005-12-05 2005-12-06 2011-10-20 2011-10-21 2017-08-31 4421

XB 2005-11-01 2009-10-13 2009-10-14 2013-09-20 2013-09-23 2017-08-31 2980

Note: The sample period is generally from January 2000 to August 2017. The whole sample is divided into three segments

of equal length, namely training period, validation period, and test period. The difference in total number of observations

is due to the two issues: 1) the trading of commodity futures operate in different holiday calendars and schedules; 2) we

have removed the daily records with missing values. The data availability of PG and XB in Bloomberg starts from April

2006 and November 2005, respectively.
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Horváth, L., Hušková, M., & Rice, G. (2013). Test of independence for functional data. Journal

of Multivariate Analysis, 117 , 100–119.
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