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Abstract 25 

In this study the proteomic profiles of cocoa beans from four genotypes with different 26 

flavour profiles were analysed by bottom-up label-free UHPLC-MS/MS. From a total of 430 27 

identified proteins, 61 proteins were found significantly differentially expressed among the 28 

four cocoa genotypes analysed with a fold change of ≥2. PCA analysis allowed clear 29 

separation of the genotypes based on their proteomic profiles. Genotype-specific 30 

abundances were recorded for proteases involved in the degradation of storage proteins 31 

and release of flavour precursors. Different genotype-specific levels of other enzymes, 32 

which generate volatiles compounds that could potentially lead to flavour-inducing 33 

compounds, were also detected. Overall, this study shows that UHPLC-MS/MS data can 34 

differentiate cocoa bean varieties. 35 

1. Introduction 36 

Chocolate as commonly sold and consumed is made from the beans of the cocoa tree 37 

Theobroma cacao (family Sterculiacae). This tree is native to the Amazon and Orinoco 38 

valley and requires hot and humid weather conditions to grow. Traditionally, Theobroma 39 

cacao has been divided into three main genetic groups that are of commercial interest, 40 

Forastero, Criollo and Trinitario, the latter being a hybrid of the first two genetic groups. 41 

Most of the cocoa beans produced in the world comes from Forastero varieties, which are 42 

considered “bulk in trade” (Lima, Almeida, Nout, & Zwietering, 2011). Two other cultivars 43 

have also been described: Amelonado, which is considered a subvariety of Forastero and 44 

mainly cultivated in West Africa, and Nacional, a cultivar native to Ecuador. However, this 45 

general classification is broad as hybridisation has occurred over time, which has given 46 

rise to differentiation within the same genetic groups, especially Forastero. 47 

A study carried out by Motamayor et al (Motamayor, Lachenaud, da Silva e Mota, Loor, 48 

Kuhn, Brown, et al., 2008) has resulted in the identification of ten genetically distinct 49 

clusters. Based on these results the Forastero group has been differentiated into eight 50 

subvarieties: Amelonado, Contamana, Curaray, Guiana, Iquitos, Maranon, Nanay, and 51 

Purus. This new classification has not affected the Criollo and Nacional varieties, as they 52 

have maintained their original terms. The term Trinitario is commonly used to describe 53 

hybrids of Forastero and Criollo. 54 

Cocoa beans from Trinitario and Criollo generate the “fine cocoa flavour” and make up 55 

only 5% of cocoa’s total worldwide production (Lima, Almeida, Nout, & Zwietering, 2011). 56 

Ivory Coast is the main cocoa-producing country in the world with a total worldwide 57 

production share of 42%, followed by Ghana and Nigeria whose shares are 19% and 7%, 58 

respectively ("Quarterly Bulletin of Cocoa Statistic," 2017). 59 
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In general, shortly after harvest cocoa beans undergo natural fermentation which results 60 

in the release of free peptides and amino acids from storage proteins (Voigt, Biehl, 61 

Heinrichs, Kamaruddin, Marsoner, & Hugi, 1994). These compounds are important flavour 62 

precursors which contribute to the generation of cocoa aroma during roasting, and that is 63 

why poorly fermented beans have a low amount of flavour precursors and do not generate 64 

the typical cocoa aroma upon roasting. The autolysis of storage proteins extracted from 65 

unfermented cocoa beans generate flavour precursors which produce the typical cocoa 66 

aroma when roasted in the presence of the cocoa butter and reducing sugars (Voigt, Biehl, 67 

Heinrichs, Kamaruddin, Marsoner, & Hugi, 1994). The LC-ESI MS/MS analysis of these 68 

autolysis products revealed the presence of mainly hydrophilic peptides whose sequence 69 

could be linked to cocoa globulins (Voigt, Janek, Textoris-Taube, Niewienda, & 70 

Wostemeyer, 2016). The proteome of Theobroma cacao beans has recently been 71 

characterised using ultrahigh performance liquid chromatography (UHPLC) coupled to 72 

electrospray ionisation (ESI) tandem mass spectrometry (MS/MS) (Scollo, Neville, Oruna-73 

Concha, Trotin, & Cramer, 2018). The highest proportion of the identified proteins could 74 

be linked to ‘metabolism and energy’ and ‘proteins and synthesis’ functions (Scollo, 75 

Neville, Oruna-Concha, Trotin, & Cramer, 2018). The most abundant proteins were 76 

albumin and vicilins (Scollo, Neville, Oruna-Concha, Trotin, & Cramer, 2018). 77 

The proteomic profile of cocoa beans during development was previously evaluated by LC-78 

ESI MS/MS using a ‘bottom-up shotgun’ approach (Wang, Nagele, Doerfler, Fragner, 79 

Chaturvedi, Nukarinen, et al., 2016). Cell division, ATP synthesis, RNA processing, amino 80 

acid synthesis and activation, protein synthesis, sucrose transportation and degradation-81 

associated proteins were upregulated in young beans compared to mature beans (Wang, 82 

et al., 2016). Proteins involved in defence and stress were present at a higher level in 83 

mature beans (Wang, et al., 2016). 84 

The proteomic profiles of non-fermented cocoa beans from various origins and varieties 85 

have been characterised by 2D gel electrophoresis and subsequent analysis by MALDI-TOF 86 

MS/MS from a total of 49 2D gel spots (Kumari, Grimbs, D'Souza, Verma, Corno, Kuhnert, 87 

et al., 2018). The authors reported differences in terms of numbers and intensities of 88 

proteins between samples from different origins, and samples from the same varieties 89 

grown in different countries (Kumari, et al., 2018). According to the authors a vicilin 90 

subunit was specific to samples of CCN51 hybrids and the German Forastero variety CD03 91 

(Kumari, et al., 2018). Two protein gel spots which revealed a degraded 17-kDa albumin 92 

subunit and an internal 15-kDa vicilin subunit showed significant differences among the 93 

samples analysed when selecting the geographical origin and protein intensities as 94 

variables in a MANOVA analysis (Kumari, et al., 2018). The authors stated that these 95 
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proteins could be used as markers to assess the geographical origin and variety (Kumari, 96 

et al., 2018). 97 

Although there are cocoa varieties with different flavour characteristics, it is not fully 98 

understood whether there is a link between the proteomic profile and flavour development. 99 

In this work a UHPLC-MS/MS bottom-up label-free approach was employed to characterise 100 

qualitative and quantitative differences in the proteomic profiles of cocoa beans from four 101 

genotypes, which show differences in both genetic background and flavour characteristics. 102 

2. Materials and methods 103 

2.1. Chemicals 104 

Petroleum ether 40-60 was obtained from Fisher Scientific, Loughborough, UK. All other 105 

chemicals were obtained from Sigma-Aldrich, Gillingham, UK, except where stated 106 

otherwise. 107 

2.2. Plant materials 108 

Cocoa beans were from four different genotypes of Theobroma cacao, namely ICS 1, ICS 109 

39, SCA 6 and IMC 67 harvested at the Cocoa Research Centre of the University of West 110 

Indies, St. Augustine, Trinidad, see Supplementary Table 1. Cocoa pods were harvested 111 

from 6 different trees for each genotype. A total of six pods were harvested from each 112 

tree. Each pod of the same cocoa genotype was considered a biological replicate within 113 

the specified cocoa genotype. 114 

Pods were stored refrigerated for no longer than 3 days after being harvested. The beans 115 

were removed from the pods and the pulp manually removed with the aid of a scalpel. 116 

Depulped beans were stored at -20° C and subsequently freeze-dried for 24 hours. 117 

Following the freeze-drying step, the beans were stored at -20° C prior to shipping. The 118 

freeze-dried beans were air-freighted without temperature control to the University of 119 

Reading, UK. The shipment took less than 96 hours. Upon arrival, the beans were stored 120 

at -20° C prior to analysis. To obtain a representative sample for each cocoa genotype, 121 

approximately 2 g of beans from each biological replicate within the same genotype were 122 

combined, and the remainder of the beans were stored in their original container. 123 

2.3. Fat and polyphenols removal 124 

The freeze-dried beans were snap-frozen using liquid nitrogen and subsequently ground 125 

using a mortar and pestle. Fat from aliquots of approximately 160 mg were extracted with 126 

3.5 ml of petroleum ether (boiling point 40-60º C) for 20 minutes in a vertical shaker. The 127 

suspensions were subsequently centrifuged at 3100 g for 5 minutes and the supernatants 128 

were discarded. The extraction was repeated twice and the precipitates were dried under 129 

a stream of nitrogen. 130 
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In order to prevent the formation of polyphenol-protein complexes during extraction 131 

(Voigt, Biehl, & Wazir, 1993), polyphenols were removed following a slight modification of 132 

a published method (Voigt, Wrann, Heinrichs, & Biehl, 1994). In brief, polyphenols were 133 

extracted from the defatted samples with 3.5 ml of a solution made up of cold (~4° C) 134 

aqueous acetone (80%; v/v), containing 5 mM sodium ascorbate. The suspensions were 135 

vortexed for 1 minute and centrifuged at 3100 g for 10 minutes at 4º C. The supernatant 136 

was discarded and the extraction repeated twice. Residual water was removed by 137 

extraction with 3.5 ml of cold acetone. The sample was then dried under a stream of 138 

nitrogen, resulting in acetone-dried powder (ACDP). 139 

2.4. Protein extractions and Bradford assay 140 

Proteins from the ACDP were extracted with 3.5 ml of a solution consisting of aqeous 7 M 141 

urea, 2 M thiourea and 20 mM dithiothreitol. The suspensions were placed on a vortexer 142 

for 1 minute and subsequently extracted for 1 hour at room temperature in a vertical 143 

shaker at 700 rpm. The suspension was subsequently centrifuged at 3100 g for 10 minutes 144 

at 20° C. The supernatant was removed and stored at -80° C prior to analysis. The protein 145 

concentration in each sample was assessed with the Bradford assay [4]. Bovine serum 146 

albumin (BSA) was used as reference standard for quantitation purposes. 147 

2.5. Trypsin digestion 148 

Aliquots of proteins extracts (35-47 µl) containing approximately 160 µg of proteins based 149 

on the Bradford assay were transferred into 0.5-ml microcentrifuge tubes and spiked with 150 

30 µl of an aqueous 10 mg/l BSA solution. A volume of 20 µl of an aqueous 200-mM 151 

dithiothreitol (DTT) solution was then added to each tube, and the final concentration of 152 

DTT was adjusted to 10 mM by adding 290 µl of 77 mM ammonium bicarbonate. The 153 

solutions were incubated for 30 minutes at 37° C. A volume of 43 µl of an aqueous 200-154 

mM iodoacetamide (IAA) solution was then added to each sample solution in order to 155 

obtain a final IAA concentration of 20 mM. By adding small aliquots of a 2-M urea solution 156 

the samples were adjusted to a final urea concentration of 0.6-0.7 M. To each sample 157 

tube, a volume of 20 µl of a 0.15-µg/µl trypsin (Promega, Southampton, UK) solution was 158 

added to obtain a 1:50 trypsin-to-protein ratio, and the solutions were incubated for 159 

approximately 16 hours at 37° C. After incubation the digestion was stopped by lowering 160 

the pH to below 3 with the addition of 20 µl of a 5% (v/v) solution of aqueous trifluoroacetic 161 

acid (TFA) to each sample tube. 162 

2.6. Desalting of tryptic digests 163 

The tryptic digest solutions were desalted with SOLAμ HRP 96 well plate 2 mg sorbent 164 

mass SPE cartridges (Thermo Scientific, Waltham, MA USA). The cartridges were initially 165 

conditioned with 0.2 ml of methanol and subsequently equilibrated with 0.2 ml of 0.2% 166 
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(v/v) TFA in 50 mM ammonium bicarbonate. After loading the sample solutions, the 167 

cartridges were washed with 0.2 ml of 0.2% TFA in water:methanol 97:3 (v/v), and then 168 

eluted with 3x 25 µl of 0.2% TFA in acetonitrile:water 50:50 (v/v) solution. The SPE 169 

eluates were diluted with 0.225 ml of 0.1% TFA in water and stored at -80° C prior to 170 

UHPLC-MS/MS analysis. 171 

2.7. UHPLC-MS/MS analysis of tryptic digests 172 

The desalted tryptic digests were analysed on a UHPLC-ESI MS/MS system consisting of 173 

an Orbitrap Q Exactive (Thermo Scientific) mass spectrometer coupled to a Dionex 174 

Ultimate 3000 (Thermo Scientific) UHPLC system. The injection volume was 15 µl. The 175 

UHPLC system was kept at 50° C and the column configuration included an Acquity Peptide 176 

CSH C18 150 mm × 0.1 mm ID, 1.7 µm particle size analytical column (Waters, Elstree, 177 

UK). The chromatographic separation of the digests was carried out under a linear gradient 178 

elution using 0.1 % (v/v) formic acid in water as mobile phase A and 0.1 % (v/v) formic 179 

acid in acetonitrile as mobile phase B with a flow rate of 0.1 ml/min. The gradient 180 

conditions were as follows: 2% B at 0-5 minutes, 30% B at 80 minutes, 60% B at 90 181 

minutes, 90% B at 100-110 minutes, 2% B at 115-125 minutes. MS analysis was carried 182 

out in positive ion mode using the Orbitrap mass analyser, setting its resolution at 70,000 183 

and its AGC (acquisition gain control) target at 1,000,000 with a maximum injection time 184 

of 200 ms. The MS scan covered a range between m/z 200 and 2400. For MS/MS analysis 185 

a data dependent experiment selecting the 10 most abundant precursor ions was 186 

performed, using the quadrupole mass analyser as the initial filter, and setting the isolation 187 

window width to m/z 2.0. For this experiment, the resolution of the Orbitrap was set to 188 

17,500 with an AGC target of 20,000. The injection time for MS/MS acquisition was set to 189 

300 ms. Fragmentation was performed by collision-induced dissociation (CID) with a 190 

normalised collision energy of 28%. Dynamic exclusion was enabled, setting the filter to 191 

15 seconds. The threshold for triggering a data-dependent scan was set to ‘100,000’ and 192 

only ions with a charge state between 2 and 5 were selected. 193 

2.8. Data analysis 194 

All MS/MS spectra were processed using Mascot Distiller software (Matrix Science Ltd, 195 

London, UK; Version 2.5.1.0) in order to convert the raw UHPLC-MS/MS data into peak 196 

lists suitable for database searching using the Mascot search routine. For the evaluation 197 

of the effect of harvest time and tree, Mascot Server Version 2.4.1 was used, while the 198 

analysis of the different cocoa genotypes was carried out employing the Mascot Server 199 

Version 2.6 (Matrix Science Ltd). Mascot searches were carried out against the Cacao 200 

Matina 1-6 Genome v1.1 Theobroma cacao database 201 

(http://www.cacaogenomedb.org/Tcacao_genome_v1.1#tripal_analysis-downloads-box; 202 

http://www.cacaogenomedb.org/Tcacao_genome_v1.1#tripal_analysis-downloads-box
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downloaded on 31st May 2015; 59,577 sequences; 23,720,084 residues), and a custom-203 

made contaminants database (70 sequences; 31,845 residues). Searches were performed 204 

using the following parameters: peptide mass tolerance, 10 ppm; MS/MS tolerance, 0.3 205 

Da; peptide charge, +2, +3, +4; missed cleavages, 2; fixed modification, 206 

carbamidomethyl (C); variable modification, oxidation (M) and acetyl (N); enzyme, 207 

trypsin. The false discovery rate (FDR) for all searches was adjusted to 1%, which resulted 208 

in various significance thresholds for the different searches. However, the p-value was 209 

<0.05 for all searches. The amino acid sequence of BSA was added to the Theobroma 210 

cacao database. Functional annotation was carried out by matching the proteins’ accession 211 

codes from the Cacao Matina 1-6 Genome v1.1 Theobroma cacao to the GoMapMan 212 

database (http://protein.gomapman.org). For each entry the highest hierarchical 213 

classification was used in this study. Label-free quantitation was carried out using replicate 214 

protocol with Mascot Distiller software. Normalisation of the proteins’ intensities was 215 

carried out against BSA. Protein quantitation was performed by employing the median of 216 

the ion signal intensity ratios from all peptide for each protein, for which a minimum of 217 

two peptides were detected. For statistical analyses, JMP Pro 13.0 and XLSTAT 2108.5 218 

software were used. 219 

3. Results  220 

A total of four different genotypes (ICS 1, ICS 39, IMC 67 and SCA 6) were evaluated in 221 

this project. These cocoa genotypes were carefully selected in order to include varieties 222 

with differences in both genetic background and flavour profiles. The list of the selected 223 

cocoa genotypes with their genetic backgrounds and flavour profiles is shown in 224 

Supplementary Table 1. 225 

In order to minimise variability of the protein expression due to external factors, the 226 

investigated cocoa varieties were grown in the ICGT (International Cocoa Genebank 227 

Trinidad) field in Trinidad under controlled conditions in terms of water intake, fertilisation, 228 

and soil structure. However, to evaluate the effect of a different location on the proteomic 229 

profile of cocoa beans, trees from the genotype IMC 67 were also grown in a different field 230 

called “Campus” located within 5 Km off the ICGT field. 231 

3.1. Effect of harvest time and different trees 232 

To evaluate the effect of different trees on the proteomic profile of cocoa beans, four pods 233 

of the cocoa genotype IMC 67 were harvested on the same day, one from each of four 234 

different trees grown in the ICGT field. Three preparative replicates were prepared for 235 

each of these four biological replicates, and each preparative replicate was analysed by a 236 

single UHPLC-MS/MS run. UHPLC-MS/MS reproducibility was previously checked and 237 

constantly monitored by quality control samples of the same standard cocoa bean protein 238 

http://protein.gomapman.org/
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extract analysed alongside the preparative replicates. For each quantified protein, the 239 

mean of the intensities in the three preparative replicates for each biological replicate 240 

(preparative sample mean) was calculated, and subsequently the average of the 241 

preparative sample means of the four biological replicates was calculated (overall mean). 242 

For each biological replicate the fold increase/decrease from the overall mean expressed 243 

as the ratio between the sample mean and the overall mean was calculated. 244 

A total of 511 proteins were detected in the four biological replicates and only six proteins 245 

(Thecc1EG042578t1: S-adenosyl-L-methionine-dependent methyltransferases; 246 

Thecc1EG025391t1: beta-amylase 6; Thecc1EG000326t1: salicylate O-247 

methyltransferase; Thecc1EG026589t1: eukaryotic aspartyl protease; 248 

Thecc1EG027146t1: HSP20-like chaperones; Thecc1EG041163t1: glycosyl hydrolase 249 

family protein) showed a fold increase/decrease from the overall mean of >2 in at least 250 

one biological replicate, while none showed any increase/decrease from the overall mean 251 

of >2.7. Of these six proteins only beta-amylase 6 showed this increase/decrease for two 252 

biological replicates, while the other five proteins showed this differential abundance for 253 

exactly one biological replicate, covering the entire set of the biological replicates. 254 

The harvest time in this study covered a period of six months. Therefore, to evaluate the 255 

effect of harvest time on the proteomic profile of cocoa beans, four pods from the same 256 

tree (genotype IMC 67; grown in the ICGT field) but harvested at different times (20th Dec 257 

2016, 21st Feb 2017, 23rd March 2017, 17th May 2017) were analysed. As before three 258 

preparative replicates were prepared for each of the four biological replicates, and each 259 

preparative replicate was analysed by a single UHPLC-MS/MS run. 260 

A total of 502 proteins were detected in the four biological replicates analysed. Among 261 

these proteins, only nine entries showed a fold increase/decrease from the overall mean 262 

of >2 in at least one biological replicate (see Supplementary Table 2). In this case, two 263 

proteins (Thecc1EG042149t1: serine carboxypeptidase-like 48; Thecc1EG047098t1: 264 

uncharacterised) fluctuated far more than any protein in the tree comparison experiment 265 

with a fold increase/decrease of >3 and up to 11. The number of proteins with a fold 266 

increase/decrease from the overall mean of >2 in each biological replicate was between 267 

three and five. 268 

3.2. Investigation of proteome changes dependent on the genotype and field 269 

Cocoa pods were harvested from six different trees for each genotype grown in the ICGT 270 

field and for the six IMC 67 trees that were grown in the Campus field. A total of six pods 271 

were collected from each tree. Pooled samples containing an equal amount of all of the 272 

biological replicates from the same cocoa variety (Campus and ICGT grown IMC 67 pods 273 

were pooled separately) were prepared as described in the Materials and Methods section. 274 
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To evaluate the proteome changes, which are dependent on the genotype, a UHPLC-275 

MS/MS label-free proteomic analysis was carried out on each of the cocoa genotypes. A 276 

total of four preparative replicates were prepared for each genotype sample, and each 277 

preparative replicate was analysed by UHPLC-MS/MS. A reference sample was prepared 278 

by combining equal aliquots of all 20 preparative replicates. The Distiller software 279 

calculated the ratios of the intensities of the proteins in each preparative replicate against 280 

the same proteins in the reference sample. Only proteins which were identified and 281 

quantified in at least three preparative replicates of a cocoa genotype were selected for 282 

comparative label-free quantitative proteomic analysis. With this requirement a total of 283 

430 proteins were identified and quantified (see Supplementary Table 3). The mean of the 284 

ratios for the preparative replicates of the same cocoa genotype was calculated for each 285 

quantified protein. The fold differences between the cocoa genotypes are reported as the 286 

ratio of the highest mean versus the lowest mean for each quantified protein. 287 

Almost all of the 430 proteins were detected in all genotypes apart from a 60S acidic 288 

ribosomal protein (accession number Thecc1EG005040t1) that was not detected in the 289 

genotype SCA 6. However, the abundance of this protein was not significantly different in 290 

the other genotypes. From all other identified and quantified proteins, a total of 61 proteins 291 

showed a significant fold difference of >2 (p-value <0.05) within at least one pairwise 292 

comparison among the four cocoa genotypes. Among these proteins, those with a sum of 293 

the four sample-to-reference ion signal ratios that is outside the range of 75-125% from 294 

the theoretical value of 4 were further evaluated to assess their peptide ion signal 295 

intensities. In this case a total of four proteins showed a signal too weak for reliable 296 

quantitation, and therefore these proteins were not further investigate. A list of the 297 

differentially expressed proteins, which showed an acceptable ion signal intensity, 298 

including their biological process and function, is provided in Table 1. A graphical 299 

representation of the proteins’ classification based on their biological processes and 300 

functions is provided in Figure 1. Biological processes, for which only one protein was 301 

identified and quantified, are labelled as “Others” in Figure 1.           302 
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Table 1. List of differentially abundant proteins with a fold difference of >2, obtained from the four cocoa genotypes analysed by label-free 303 

LC-MS/MS. 304 

ID Accession Description Biological process Function ICS 1 
ICS 
39 

IMC 
67 

SCA 6 Fold diff. 

1 Thecc1EG029400t1  N-terminal nucleophile aminohydrolases  Protein degradation ME 4.80 4.02 0.70 0.69 6.95 

2 Thecc1EG029392t1  Glutathione S-transferase family protein  Gluthatione S-transferase ME 0.47 0.48 2.46 0.85 5.28 

3 Thecc1EG025391t1  Beta-amylase 6  Carbohydrate metabolism ME 0.49 1.30 1.14 2.39 4.90 

4 Thecc1EG017184t1  Sulfite oxidase  S-assimilation ME 0.96 4.08 2.12 1.06 4.26 

5 Thecc1EG038258t1  Molybdenum cofactor sulfurase Co-factor and vitamin metabolism ME 0.78 1.46 0.92 0.35 4.12 

6 Thecc1EG030320t1  Ethylene-forming enzyme  Hormone metabolism ME 0.44 1.79 0.50 1.10 4.03 

7 Thecc1EG021639t1  PEBP  Unspecified biological process UN 1.72 2.22 1.22 0.66 3.36 

8 Thecc1EG020604t1  Primary amine oxidase   Oxidase ME 1.89 0.78 1.27 2.54 3.25 

9 Thecc1EG047098t1  Uncharacterized protein  Unspecified biological process UN 0.93 0.89 0.61 1.94 3.18 

10 Thecc1EG036433t1  HSP20-like chaperones protein  Stress DFS 1.19 0.38 1.11 1.00 3.15 

11 Thecc1EG026543t1  Lipoxygenase 1  Hormone metabolism ME 0.47 0.45 1.23 1.37 3.01 

12 Thecc1EG026589t1  Eukaryotic aspartyl protease Protein degradation ME 1.69 1.67 0.58 1.10 2.91 

13 Thecc1EG042578t1 
 S-adenosyl-L-methionine-dependent 
methyltransferases protein  

Hormone metabolism ME 0.66 1.53 0.54 1.53 2.85 

14 Thecc1EG019372t1 
 Bifunctional inhibitor/lipid-transfer 
protein/seed storage 2S albumin protein   

Protease inhibitor/seed protein/lipid 
transfer 

SP 1.91 1.43 2.33 0.84 2.78 

15 Thecc1EG027146t1  HSP20-like chaperones protein  Stress DFS 1.46 0.53 0.98 0.72 2.77 

16 Thecc1EG026193t1  Threonine aldolase 1  Amino acid metabolism ME 1.53 0.85 0.58 0.91 2.66 

17 Thecc1EG037345t1  17.6 kDa class II heat shock protein  Stress DFS 1.35 0.51 1.13 0.60 2.65 

18 Thecc1EG012673t1  21 kDa seed protein* Stress DFS 0.83 1.56 0.59 1.16 2.65 

19 Thecc1EG025860t2  Uncharacterized protein Unspecified biological process UN 1.41 0.88 2.00 0.76 2.64 

20 Thecc1EG012662t1  21 kDa seed protein* Stress DFS 0.79 1.56 0.59 1.16 2.63 

21 Thecc1EG038931t1  Xyloglucan endotransglycosylase 6  Cell wall degradation ME 0.58 0.79 0.59 1.48 2.57 

22 Thecc1EG006471t1  Flavin-dependent monooxygenase 1  Oxidase ME 1.14 0.62 1.57 0.81 2.55 

23 Thecc1EG030938t1  Cc-nbs-lrr resistance protein  Unspecified biological process UN 0.51 1.28 1.22 0.53 2.53 

24 Thecc1EG036938t1  Aldolase-type TIM barrel   Nucleotide metabolism ME 1.95 0.88 0.92 0.79 2.47 

25 Thecc1EG006154t1  Glycinamide ribonucleotide synthetase Nucleotide metabolism ME 1.06 0.68 0.43 0.84 2.45 

26 Thecc1EG041496t1  Stress responsive A/B Barrel Domain  Unspecified biological process UN 1.27 1.75 0.76 0.72 2.44 

27 Thecc1EG030354t1  Fumarylacetoacetase  Amino acid metabolism ME 1.06 0.88 0.75 1.80 2.40 

28 Thecc1EG019909t2  Carrot EP3-3 chitinase   Stress DFS 0.77 0.52 0.76 1.25 2.39 

29 Thecc1EG040975t1  Alpha/beta-Hydrolases  protein Gluco.-gala.-mannosidase ME 0.64 0.81 0.98 1.52 2.37 

30 Thecc1EG020603t2  Primary amine oxidase  Oxidase ME 0.91 0.52 1.02 1.22 2.36 

31 Thecc1EG016747t1  Acyl-CoA-binding protein 6  Lipid metabolism ME 0.94 0.80 0.49 1.13 2.33 

32 Thecc1EG022426t1  Thioredoxin protein  Redox ME 1.31 0.99 0.56 1.25 2.33 



11 

 

33 Thecc1EG008318t1  Aldolase-type TIM barrel   
Oligopeptide transport system 
permease protein 

ME 1.26 1.27 0.57 1.32 2.30 

34 Thecc1EG022506t1 
 Monodehydroascorbate reductase seedling 
isozyme  

Redox ME 
1.25 1.03 1.44 0.63 2.28 

35 Thecc1EG047057t1  Cystathionine beta-synthase  Unspecified biological process UN 2.21 1.29 1.78 0.97 2.27 

36 Thecc1EG029923t1  Larreatricin hydroxylase  Unspecified biological process UN 1.36 2.26 1.21 1.02 2.21 

37 Thecc1EG000245t1  Serine carboxypeptidase S28   Protein degradation ME 1.47 3.01 1.37 1.51 2.20 

38 Thecc1EG021820t1  Tau class glutathione transferase GSTU45  Gluthatione S-transferase ME 1.75 0.96 1.08 0.79 2.20 

39 Thecc1EG025715t1  Uncharacterized protein  Unspecified biological process UN 0.87 1.03 0.47 0.92 2.20 

40 Thecc1EG043707t1  Anti-oxidant 1  Metal handling ME 1.05 1.19 0.80 1.76 2.19 

41 Thecc1EG016386t1  6-Phosphogluconate dehydrogenase   
Oligopeptide transport system 
permease protein 

ME 1.36 0.90 0.62 1.08 2.18 

42 Thecc1EG014591t1  Malate synthase glyoxysomal  Gluconeogenesis ME 2.08 0.96 1.05 1.37 2.17 

43 Thecc1EG042584t1 
 S-adenosyl-L-methionine-dependent 
methyltransferases protein  

Hormone metabolism ME 0.90 1.34 0.63 1.36 2.16 

44 Thecc1EG034339t1  Dehydrin 2   Stress DFS 1.37 0.91 0.72 0.63 2.16 

45 Thecc1EG035433t1  Alcohol dehydrogenase 1+  Fermentation ME 1.14 0.90 0.63 1.37 2.16 

46 Thecc1EG010364t2  Carbonic anhydrase 2 CA2  TCA/organic transformation ME 1.20 0.98 0.79 0.56 2.13 

47 Thecc1EG006694t2  Triosephosphate isomerase  Photosynthesis ME 1.40 1.35 0.71 1.51 2.11 

48 Thecc1EG006498t1  Basic chitinase  Stress DFS 0.58 0.92 1.15 1.22 2.10 

49 Thecc1EG026326t2  Pathogenesis-related protein P2  Stress DFS 1.33 1.49 0.71 0.87 2.10 

50 Thecc1EG029913t1  Alpha/beta-Hydrolases protein Gluco.-gala.-mannosidase ME 1.55 1.16 0.75 0.81 2.07 

51 Thecc1EG036604t1  Secretory laccase   Secondary metabolism ME 0.75 1.55 1.10 0.83 2.05 

52 Thecc1EG015253t1 
 RNA binding Plectin/S10 domain-containing 
protein  

Protein synthesis PSP 1.02 1.35 0.72 1.48 2.05 

53 Thecc1EG005533t1  Transketolase  Photosynthesis ME 1.36 1.14 0.81 1.65 2.05 

54 Thecc1EG000770t1  Acetamidase/Formamidase   Photosynthesis ME 2.12 1.52 1.04 1.49 2.03 

55 Thecc1EG014683t1  Hydroxysteroid dehydrogenase 1  Dehydrogenase ME 1.30 0.73 1.08 0.65 2.01 

56 Thecc1EG001447t1  Alcohol dehydrogenase 1+ Fermentation ME 1.32 1.11 0.70 1.41 2.01 

57 Thecc1EG001141t1  Lipase/lipooxygenase PLAT/LH2   Unspecified biological process UN 1.61 1.11 1.02 0.81 2.00 

DFS, defence and stress; ME, metabolism and energy; PSP, protein synthesis and processing; SP, storage proteins; UN, unclassified. In 305 

the genotype columns the average abundance ratio values relative to the reference sample of the preparative replicates are reported.*These 306 

proteins entries have a 99.5% homology and can therefore be considered to be proteoforms of the same gene. +These protein entries have 307 

a 87% homology. These protein entries have a 35% homology.  308 
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 309 

 310 

Figure 1. Classification of the differentially abundant proteins listed in Table 1 based on 311 

their biological process (upper pie chart) and their function (lower pie chart). ‘Others’ in 312 

the upper pie chart refers to all biological process, for which only one protein was found. 313 

The function group labels are as follows: DFS, defence and stress; ME, metabolism and 314 

energy; PSP, protein synthesis and processing; SP, storage proteins; UN, unclassified. 315 

 316 

 317 

 318 

 319 

 320 
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For each genotype, the number of proteins listed in Table 1 whose intensity was highest 321 

and lowest compared to the other genotypes are graphically represented in a histogram 322 

in Figure 2. 323 

 324 

Figure 2. Number of differentially expressed proteins (fold difference of >2) detected at 325 

the higher (UP) and lower (DOWN) level for each genotype (see text for further details). 326 

 327 

A pairwise comparison between the genotypes for each protein listed in Table 1 was also 328 

carried out, using the non-parametric Whitney Mann test to assess the significance of the 329 

differential expression (p <0.05). The result of this comparison can be found in 330 

Supplementary Table 4. 331 

To evaluate whether the proteomic data would allow a graphical differentiation of the four 332 

cocoa genotypes analysed, PCA analysis loading the ratios of the differentially expressed 333 

proteins listed in Table 1 as variables and the genotypes as observations was performed. 334 

In this case the data from all analytical replicates were used. The PCA score plot of the 335 

first two components clearly separates the four cocoa genotypes (see Figure 3). Each point 336 

in this graph represents a preparative replicate, and the replicates from the same genotype 337 

are displayed with the same colour. In order to assess which proteins were positively 338 

correlated to each genotype, a PCA loading plot of the differentially expressed proteins 339 

listed in Table 1 is also shown in Figure 3 (lower plot). Using this plot, variables should be 340 

positively correlated to observations which are located in similar regions of the score plot. 341 

For instance, the proteins with the ID 2, 19 and 22 are closest to the region in the score 342 

plot where the genotype IMC 67 is located and are greatly more abundant in the same 343 

genotype. 344 
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 368 

 369 

 370 

Figure 3. PCA score plot (upper plot) of the 57 differentially abundant proteins listed in 371 

Table 1. Preparative replicates of the same genotype are displayed with the same colour. 372 

The lower plot shows the PCA loading plot. Each variable is labelled with the corresponding 373 

ID number as listed in Table 1. The blue and yellow oval in the loading plot indicate clusters 374 

related to IMC 67 and SCA 6, respectively. 375 

 376 

 377 
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Comparing the proteomic profiles of the cocoa genotype IMC 67 grown in two different 378 

fields allowed the identification and quantitation of 430 proteins in the two biological 379 

replicates. Among these proteins, only four proteins were significantly different with a fold 380 

change of >2 between the two samples, while a ribosomal protein and a secretory laccase 381 

were detected only in the IMC 67 genotype grown in the ICGT field (see Supplementary 382 

Table 5). The latter two proteins were detected at low levels while the others had a fold 383 

change of <3.4. 384 

Data supporting the results of this work are available in the PRIDE (Proteomics 385 

Identifications Database) partner repository at the European Bioinformatics Institute, 386 

PXD011984 (http://www.ebi.ac.uk/pride/). 387 

4. Discussion 388 

In the experiments carried out to assess the tree-to-tree, harvest time and field-to-field 389 

effects, the same genotype was used and only a few proteins, i.e. less than ten in each 390 

case, were detected with a fold increase/decrease of >2. Amongst these only three showed 391 

a fold increase/decrease of >3 and two were solely detected in one biological replicate but 392 

at a low level. Thus, given the total number of identified and quantified proteins, these 393 

results indicate that the variability in the detected proteome is very low between the 394 

biological replicates analysed to assess these effects. 395 

In contrast, the analysis of the proteomic difference with respect to genotype revealed a 396 

high variability with more than 60 proteins showing a significant fold change of >2 for at 397 

least one pairwise genotype comparison. The overall highest fold difference in this 398 

comparison was found for an aminohydrolase (see Table 1). This protein was detected at 399 

significantly higher levels in both ICS genotypes, while it was found at much lower 400 

abundance in the genotypes IMC 67 and SCA 6. A blast search of the amino acid sequence 401 

of this protein returned a 100% match to a 20S proteasome alpha subunit which is part 402 

of the N-terminal nucleophile hydrolase superfamily. This class of proteins are involved in 403 

the hydrolysis of the amide bonds in either proteins or small molecules (Marchler-Bauer, 404 

Bo, Han, He, Lanczycki, Lu, et al., 2017). The active site is the N-terminal amino group 405 

which accepts a proton during the hydrolysis activating as a result either the nucleophilic 406 

hydroxyl in a Ser or Thr residue or the nucleophilic thiol in a Cys residue (Marchler-Bauer, 407 

et al., 2017). 408 

The next highest fold change was recorded for a glutathione S-transferase (GST) family 409 

protein which was found at a much higher level in the genotype IMC 67 compared to all 410 

other genotypes. GST family proteins catalyse the conjugation of a variety of substrates 411 

to the reduced form of glutathione and therefore are involved in detoxification processes 412 

(Armstrong, 1997). 413 

http://www.ebi.ac.uk/pride/
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A 60S acidic ribosomal protein was not detected in any of the preparative replicates of the 414 

genotype SCA 6, while it was found in all other genotypes without any significant 415 

abundance differences. This class of proteins regulates the translation of mRNA in protein 416 

synthesis (Remacha, JimenezDiaz, Santos, Briones, Zambrano, Gabriel, et al., 1995). 417 

With respect to the 57 proteins in Table 1, the highest number of less abundant proteins 418 

was found in the genotype IMC 67, and only 5 proteins were detected in this genotype at 419 

a higher level compared to the other genotypes (see Figure 2). The highest relative 420 

number of more abundant proteins compared to less abundant proteins (19 vs 9) was 421 

found for the genotype ICS 1. 422 

The PCA score plot of the differentially expressed proteins for the four genotypes analysed 423 

shows that the individual genotypes are located in different quadrants of the plot and can 424 

be clearly separated from each other (see Figure 3). Both ICS 1 and ICS 39 belong to the 425 

same genetic group Trinitario, which originates from hybridizations between Criollo and 426 

Forastero. Therefore, the positive correlation of these genotypes in the PCA score plot 427 

could result from their closer genetic background compared to the other genotypes. IMC 428 

67 and SCA 6 are genotypes from the genetically distant varieties Forastero and 429 

Contamana, respectively, of which both have a different genetic background from 430 

Trinitario (Motamayor, et al., 2008). Therefore, the separation pattern observed on the 431 

PCA score plot reflects the differences in genetic background among the four genotypes 432 

evaluated. Based on these findings, the PCA score plot of the differentially expressed 433 

proteins could be used as a tool to differentiate cocoa genotypes. 434 

Loading the differentially expressed proteins as variables on a PCA loading plot allows a 435 

graphical visualisation of the proteins positively correlated to each genotype. The majority 436 

of the proteins more abundant in IMC 67 and SCA 6 form respective clusters in the bottom 437 

left and bottom right corner of the PCA loading plot (see Figure 3, lower plot), reflecting 438 

the separation of these genotypes observable in the PCA score plot. The genotypes ICS 1 439 

and ICS 39 show a high degree of correlation in the PCA score plot. Therefore, the proteins 440 

found at a higher level in each of these genotypes cannot be separated in the PCA loading 441 

plot and form a single large cluster located at the top centre of the PCA loading plot. The 442 

location of this cluster is consistent with the position of these genotypes in the PCA score 443 

plot. 444 

The highest number of differentially expressed proteins can be associated to metabolism 445 

and energy. This function class generally encompasses the majority of the proteins 446 

expressed in cocoa beans as shown in a previous study (Scollo, Neville, Oruna-Concha, 447 

Trotin, & Cramer, 2018), and includes two primary amine oxidases (ID 30 and ID 8 in 448 

Table 1) and two alcohol dehydrogenases identifications (ID 45 and ID 56 in Table 1), of 449 

which the latter are highly homologous (87% homology). Primary amine oxidases catalyse 450 
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the oxidation of alkylamines to aldehydes with the release of ammonia and hydrogen 451 

peroxide (Conklin, Prough, & Bhatanagar, 2007), while alcohol dehydrogenases catalyse 452 

the oxidation of primary and secondary alcohols to the corresponding aldehydes and 453 

ketones (Svensson, Hoog, Schneider, & Sandalova, 2000). It has been reported that both 454 

aldehydes and ketones are formed during roasting of fermented cocoa beans as a result 455 

of the Maillard reaction and Strecker degradation, and both classes of compounds 456 

contribute to the cocoa flavour (Aprotosoaie, Luca, & Miron, 2016). These reactions are 457 

endothermic as they require high temperatures to be activated and are not catalysed by 458 

enzymes. In theory, aldehydes and ketones could also be produced from oxidation of 459 

amines and alcohols during fermentation catalysed by amine oxidases and alcohol 460 

dehydrogenases. However, it is not known whether these enzymes are activated during 461 

this process, and whether there is a relation between their concentration and the 462 

generation of cocoa flavour. The primary amine oxidase (ID 30) was significantly more 463 

abundant in the genotype SCA 6 compared to ICS 39, while the other primary amine 464 

oxidase was significantly higher in the genotype SCA 6 versus ICS 39, and in the genotype 465 

ICS 1 versus ICS 39. Both alcohol dehydrogenase identifications IDs 45 and 56 were 466 

significantly more expressed in the genotype SCA 6 compared to IMC 67, reflecting their 467 

high homology and indicating that two proteoforms of the same gene were detected. 468 

A total of 9 proteins involved in stress response were differentially expressed. Four of 469 

these proteins (ID 10, 15, and 17 in Table 1) were heat shock proteins by name which are 470 

linked to the response of the plant to stress conditions (Al-Whaibi, 2011). There are no 471 

significant differences in the abundances of these proteins in ICS 1 versus IMC 67 and SCA 472 

6 versus IMC 67 but they were significantly more abundant in ICS 1 compared to ICS 39. 473 

Both these genotypes belong to the Trinitario variety which is originally from Trinidad and 474 

includes all hybridisation combinations of the Criollo and Forastero varieties. Criollo 475 

varieties are more susceptible to disease and adverse environmental factors. The genotype 476 

ICS 39 has a stronger Criollo ancestry compared to ICS 1, which could explain why heat 477 

shock proteins are more abundant in ICS 1 compared to ICS 39.  478 

A eukaryotic aspartyl protease (ID 12 in Table 1) was significantly more abundant in the 479 

genotypes ICS 1 and ICS 39 compared to IMC 67 (fold difference of 2.9). Eukaryotic 480 

aspartyl protease is a cocoa endogenous protease which has an optimum pH of around 481 

3.8 and is active during early stage of fermentation, cleaving internal peptides bonds with 482 

the release of mainly hydrophobic peptides (Voigt, Biehl, Heinrichs, Kamaruddin, 483 

Marsoner, & Hugi, 1994). The abundance of this protease was not consistent in the 484 

biological replicates of IMC 67 harvested from different trees on the same day. Therefore, 485 

the low amount found in the pooled sample may be due to natural variations amongst 486 

biological tree replicates. 487 
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A serine carboxypeptidase (ID 37 in Table 1) was detected at a significant higher level in 488 

ICS 39 compared to the other genotypes. Carboxypeptidase is an exopeptidase which 489 

cleaves off C-terminal amino acids from mainly hydrophobic oligopeptides formed by the 490 

action of aspartyl protease during fermentation with the preferential release of 491 

hydrophobic amino acids and hydrophilic peptides (Bytof, Biehl, Heinrichs, & Voigt, 1995). 492 

These compounds are important flavour precursors which react with sugars during roasting 493 

to form volatiles compounds which contribute to the cocoa aroma. A higher amount of 494 

aspartyl protease and carboxypeptidase could result in an increase in the generation of 495 

flavour precursors during fermentation, which could lead to changes in the flavour profiles 496 

of roasted cocoa beans. 497 

A beta-amylase was detected at a significantly higher level in the genotype SCA 6 498 

compared to ICS 1 and IMC 67 (ID 3 in Table 1). Beta-amylases are part of the glycoside 499 

hydrolase family, which are a group of enzymes catalysing the cleavage of the glycosidic 500 

bond in polysaccharides with release of maltose units (Rejzek, Stevenson, Southard, 501 

Stanley, Denyer, Smith, et al., 2011). This disaccharide can react with nitro compounds 502 

such as amino acids and peptides during roasting through the Maillard reaction which 503 

results in the generation of volatile compounds (Kramholler, Pischetsrieder, & Severin, 504 

1993). Therefore, the release of maltose can be affected by the levels of beta-amylase 505 

present in cocoa beans, which in turn could have an effect on the flavour profile of roasted 506 

cocoa beans. However, the abundance of this specific beta-amylase was not consistent in 507 

the biological replicates of IMC 67 harvested from different trees on the same day. 508 

Therefore, the low amount found in the pooled sample may be due to natural variations 509 

amongst biological tree replicates. 510 

Two 21-kDa seed albumin identifications were obtained at a significant higher level in the 511 

genotype ICS 39 compared to IMC 67 (ID 18 and 20 in Table 1). These albumins are 512 

storage proteins with endopeptidase inhibitor activity, which contain 219 amino acids 513 

residues, and can be considered to originate from the same gene as they are 99.5% 514 

homologous. The main 21-kDa seed albumin in cocoa beans is a protein with 221 residues 515 

which shares a homology of 80% with the albumins ID 19 and 21 listed in Table 1. The 516 

221-residues albumin was not differentially expressed in the cocoa genotypes analysed 517 

(see Supplementary Table 3). LC-MS/MS identification of free peptides released from this 518 

protein during fermentation have been reported by several authors (Caligiani, Marseglia, 519 

Prandi, Palla, & Sforza, 2016; D'Souza, Grimbs, Grimbs, Behrends, & Corno, 2018; 520 

Marseglia, Sforza, Faccini, Bencivenni, Palla, & Caligiani, 2014). However, so far there is 521 

no evidence that the 219-residues albumins are also degraded during this process. As a 522 

result, the shorter chain albumins may not play a role in the generation of cocoa flavour. 523 
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A 2S albumin was significantly more abundant in the genotypes ICS 1 and IMC 67 524 

compared to SCA 6 (see ID 14 in Table 1). This albumin is a seed storage protein with 525 

protease inhibitor activity which is also involved in the transfer of phospholipids and fatty 526 

acids through the cell membrane (Kader, 1996). Degradation of this protein during 527 

fermentation has not been reported in the literature. 528 

In addition to cocoa endogenous enzymes, the amount of pulp in the cocoa pod and the 529 

surrounding microflora can also play a role in the generation of cocoa flavour. 530 

5. Conclusions 531 

This work has shown that UHPLC-MS/MS can be employed to characterise qualitative and 532 

quantitative differences in the proteomic profiles of cocoa beans from various genotypes. 533 

The PCA analysis has allowed separation of the cocoa genotypes from different varieties 534 

and has shown a correlation between close genotypes and their genetic background. Using 535 

this approach, it was possible to graphically visualise proteins positively correlated with 536 

each genotype, and assess which proteins contribute most to the separation of the 537 

genotypes in the PCA plot. This methodology could be employed as a platform to build 538 

larger datasets of proteins which could allow traceability of cocoa beans from different 539 

varieties. Proteases which degrade storage proteins during fermentation with the release 540 

of flavour precursors have been found differentially expressed in some of the genotypes 541 

analysed. Changes in the amount of these proteases could be related to variation in the 542 

flavour profiles of cocoa varieties. Different genotype-specific levels of other enzymes that 543 

could potentially lead to flavour-inducing compounds have also been detected. Thus, 544 

further experiments could be performed to assess whether the different amounts of   these 545 

enzymes, present during fermentation, affect the final flavour profiles obtained  546 

 547 

Acknowledgements 548 

The authors are grateful to the University of West Indies Cocoa Research Centre for 549 

providing the cocoa bean samples. This work has been financially supported by Mondelēz 550 

International. 551 



20 

 

References 

Al-Whaibi, M. H. (2011). Plant heat-shock proteins: A mini review. Journal of King Saud 

University Science, 23(2), 139-150. 

Aprotosoaie, A. C., Luca, S. V., & Miron, A. (2016). Flavor Chemistry of Cocoa and Cocoa 

Products-An Overview. Comprehensive Reviews in Food Science and Food Safety, 

15(1), 73-91. 

Armstrong, R. N. (1997). Structure, catalytic mechanism, and evolution of the glutathione 

transferases. Chemical Research in Toxicology, 10(1), 2-18. 

Bytof, G., Biehl, B., Heinrichs, H., & Voigt, J. (1995). SPECIFICITY AND STABILITY OF THE 

CARBOXYPEPTIDASE ACTIVITY IN RIPE, UNGERMINATED SEEDS OF THEOBROMA-

CACAO L. Food Chemistry, 54(1), 15-21. 

Caligiani, A., Marseglia, A., Prandi, B., Palla, G., & Sforza, S. (2016). Influence of 

fermentation level and geographical origin on cocoa bean oligopeptide pattern. Food 

Chemistry, 211, 431-439. 

Conklin, D., Prough, R., & Bhatanagar, A. (2007). Aldehyde metabolism in the 

cardiovascular system. Molecular Biosystems, 3(2), 136-150. 

D'Souza, R. N., Grimbs, A., Grimbs, S., Behrends, B., & Corno, M. (2018). Degradation of 

cocoa proteins into oligopeptides during spontaneous fermentation of cocoa beans. 

Food Research International, 109, 516-516. 

Kader, J.-C. (1996). Lipid-transfer proteins in plants. Annual Review of Plant Physiology 

and Plant Molecular Biology, 47, 627-654. 

Kramholler, B., Pischetsrieder, M., & Severin, T. (1993). MAILLARD REACTIONS OF 

LACTOSE AND MALTOSE. Journal of Agricultural and Food Chemistry, 41(3), 347-351. 

Kumari, N., Grimbs, A., D'Souza, R. N., Verma, S. K., Corno, M., Kuhnert, N., & Ullrich, 

M. S. (2018). Origin and varietal based proteomic and peptidomic fingerprinting of 

Theobroma cacao in non-fermented and fermented cocoa beans. Food research 

international (Ottawa, Ont.), 111, 137-147. 

Lima, L. J. R., Almeida, M. H., Nout, M. J. R., & Zwietering, M. H. (2011). Theobroma 

cacao L., "The Food of the Gods": quality determinants of commercial cocoa beans, 

with particular reference to the impact of fermentation. Critical Reviews in Food 

Science and Nutrition, 51(8), 731-761. 

Marchler-Bauer, A., Bo, Y., Han, L. Y., He, J. E., Lanczycki, C. J., Lu, S. N., Chitsaz, F., 

Derbyshire, M. K., Geer, R. C., Gonzales, N. R., Gwadz, M., Hurwitz, D. I., Lu, F., 

Marchler, G. H., Song, J. S., Thanki, N., Wang, Z. X., Yamashita, R. A., Zhang, D. C., 

Zheng, C. J., Geer, L. Y., & Bryant, S. H. (2017). CDD/SPARCLE: functional 

classification of proteins via subfamily domain architectures. Nucleic Acids Research, 

45(D1), D200-D203. 



21 

 

Marseglia, A., Sforza, S., Faccini, A., Bencivenni, M., Palla, G., & Caligiani, A. (2014). 

Extraction, identification and semi-quantification of oligopeptides in cocoa beans. Food 

Research International, 63, 382-389. 

Motamayor, J. C., Lachenaud, P., da Silva e Mota, J. W., Loor, R., Kuhn, D. N., Brown, J. 

S., & Schnell, R. J. (2008). Geographic and Genetic Population Differentiation of the 

Amazonian Chocolate Tree (Theobroma cacao L). Plos One, 3(10). 

Quarterly Bulletin of Cocoa Statistic. (2017). International Cocoa Organization, XLIII(1). 

Rejzek, M., Stevenson, C. E., Southard, A. M., Stanley, D., Denyer, K., Smith, A. M., 

Naldrett, M. J., Lawson, D. M., & Field, R. A. (2011). Chemical genetics and cereal 

starch metabolism: structural basis of the non-covalent and covalent inhibition of 

barley beta-amylase. Molecular Biosystems, 7(3), 718-730. 

Remacha, M., JimenezDiaz, A., Santos, C., Briones, E., Zambrano, R., Gabriel, M. A. R., 

Guarinos, E., & Ballesta, J. P. G. (1995). Proteins P1, P2, and P0, components of the 

eukaryotic ribosome stalk. New structural and functional aspects. Biochemistry and 

Cell Biology, 73(11-12), 959-968. 

Scollo, E., Neville, D., Oruna-Concha, M. J., Trotin, M., & Cramer, R. (2018). 

Characterization of the Proteome of Theobroma cacao Beans by Nano-UHPLC-ESI 

MS/MS. Proteomics, 18(3-4). 

Svensson, S., Hoog, J. O., Schneider, G., & Sandalova, T. (2000). Crystal structures of 

mouse class II alcohol dehydrogenase reveal determinants of substrate specificity and 

catalytic efficiency. Journal of Molecular Biology, 302(2), 441-453. 

Voigt, J., Biehl, B., Heinrichs, H., Kamaruddin, S., Marsoner, G. G., & Hugi, A. (1994). In-

vitro formation of cocoa-specific aroma precursors: aroma-related peptides generated 

from cocoa-seed proteins by co-operation of an aspartic endoprotease and a 

carboxypeptidase. Food Chemistry, 49(2), 173-180. 

Voigt, J., Biehl, B., & Wazir, S. K. S. (1993). The major seed proteins of Theobroma cacao 

L. Food Chemistry, 47(2), 145-151. 

Voigt, J., Janek, K., Textoris-Taube, K., Niewienda, A., & Wostemeyer, J. (2016). Partial 

purification and characterisation of the peptide precursors of the cocoa-specific aroma 

components. Food Chemistry, 192, 706-713. 

Voigt, J., Wrann, D., Heinrichs, H., & Biehl, B. (1994). The proteolytic formation of 

essential cocoa-specific aroma precursors depends on the particular chemical 

structures of the vicilin-class globulin of the cocoa seeds lacking in the globular storage 

proteins of coconuts, hazelnuts and sunflower seeds. Food Chemistry, 51(2), 197-205. 

Wang, L., Nagele, T., Doerfler, H., Fragner, L., Chaturvedi, P., Nukarinen, E., Bellaire, A., 

Huber, W., Weiszmann, J., Engelmeier, D., Ramsak, Z., Gruden, K., & Weckwerth, W. 

(2016). System level analysis of cacao seed ripening reveals a sequential interplay of 

primary and secondary metabolism leading to polyphenol accumulation and 

preparation of stress resistance. Plant Journal, 87(3), 318-332. 

 


