
A heterogeneous online learning
ensemble for non-stationary environments
Article

Accepted Version

Idrees, M. M., Minku, L. L., Stahl, F. ORCID:
https://orcid.org/0000-0002-4860-0203 and Badii, A. (2020) A
heterogeneous online learning ensemble for non-stationary
environments. Knowledge-Based Systems, 188. 104983. ISSN
0950-7051 doi: 10.1016/j.knosys.2019.104983 Available at
https://centaur.reading.ac.uk/85781/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .

To link to this article DOI: http://dx.doi.org/10.1016/j.knosys.2019.104983

Publisher: Elsevier

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

www.reading.ac.uk/centaur

CentAUR

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

Central Archive at the University of Reading
Reading’s research outputs online

* Corresponding author.
 E-mail addresses: mobin_ksa@yahoo.com (M. Idrees),
L.L.Minku@cs.bham.ac.uk (L. Minku),
F.T.Stahl@reading.ac.uk (S. Frederic),
atta.badii@reading.ac.uk (A. Badii).

A Heterogeneous Online Learning Ensemble for Non-Stationary Environments

Mobin M. Idrees a, Leandro L. Minku b, Frederic Stahl a, Atta Badii a

a Department of Computer Science, University of Reading, Whiteknights, Reading, RG6 6AY, United Kingdom

 of Birmingham, Edgbaston, B15 2TT, Birmingham Science, Universitytment of Computer Depar b

Abstract

Learning in non-stationary environments is a challenging task which requires the updating of predictive models
to deal with changes in the underlying probability distribution of the problem, i.e., dealing with concept drift. Most
work in this area is concerned with updating the learning system so that it can quickly recover from concept drift,
while little work has been dedicated to investigating what type of predictive model is most suitable at any given
time. This paper aims to investigate the benefits of online model selection for predictive modelling in non-
stationary environments. A novel heterogeneous ensemble approach is proposed to intelligently switch between
different types of base models in an ensemble to increase the predictive performance of online learning in non-
stationary environments. This approach is Heterogeneous Dynamic Weighted Majority (HDWM). It makes use of
“seed” learners of different types to maintain ensemble diversity, overcoming problems of existing dynamic
ensembles that may undergo loss of diversity due to the exclusion of base learners. The algorithm has been
evaluated on artificial and real-world data streams against existing well-known approaches such as a heterogeneous
Weighted Majority Algorithm (WMA) and a homogeneous Dynamic Weighted Majority (DWM). The results show
that HDWM performed significantly better than WMA in non-stationary environments. Also, when recurring
concept drifts were present, the predictive performance of HDWM showed an improvement over DWM.

Keywords: Heterogeneous Ensemble Classifier, Majority Algorithm, Concept Drift, Data Stream Mining

1 Introduction

Many real-world applications of machine learning
operate in data streaming environments where
additional data becomes available over time. Examples
are Cyber Security [1][2][3][4], Sentiment Analysis
[5][6], Human Activity Recognition [7][8] and Fraud
Detection Systems [9]. The underlying probability
distribution of such domains typically exhibits changes
over time, i.e., these domains usually involve concept
drift [10][11]. For example, in credit card approval
[52][53] the likelihood of defaulting on payment may
change due to an economic crisis.

The large number of data streaming applications
makes the area of learning in non-stationary
environments (i.e., environments where concept drift

would occur) increasingly important. Several
approaches to handling concept drift can be found in
the literature [10][11][12]. Most studies in this area are
concerned with how to quickly detect and/or adapt to
concept drift. In particular, “Active” approaches use
methods to explicitly detect concept drifts. If a drift is
detected, new predictive models are typically created
to learn the new concept thus helping the system to
recover from the concept drift [13][14][30]. Passive
approaches do not use concept drift detection methods.
Instead, they usually maintain an ensemble of
predictive models called “base models” and use
weights in order to emphasise the models believed to
best represent the current concept [19][20][28][29].
These approaches also typically create new base

models and enable the deletion of old base models to
help in dealing with concept drifts.

Even though it is well known that various types of
predictive models (e.g., Naïve Bayes, Hoeffding Trees,
Multilayer Perceptron, etc.) can provide a very
different predictive performance depending on the
problem being tackled [15][16], little work has been
dedicated to the investigation of what type of
predictive model is most adequate over time in non-
stationary environments. This could be a particularly
important issue with regard to online learning [11],
i.e., when each example is learnt separately upon
arrival and then discarded.

For instance, when delivering online learning, it is
difficult to know which type of machine learning
algorithm would be best to use as a base model for an
ensemble learning algorithm beforehand, due to the
initially small amount of data available for evaluating
base models. However, as more data is received, it is
desirable that online ensemble learning algorithms
automatically identify which types of base learners
work best for the application domain. In addition, if
the best type of base learner changes due to concept
drift, online ensemble learning algorithms should also
be able to automatically identify which types of
models are best suited to the situation encountered
after concept drift.

A good combination of different types of models
can also sometimes lead to a better predictive
performance than the use of a single type of model
[17][18]. Therefore, it would be desirable for online
learning algorithms applied to non-stationary
environments not only to detect which is the best type
of model maintaining the highest classification
accuracies, but also to use a combination of different
types of model if that is found to be beneficial.

Therefore, this paper proposes an online
heterogeneous ensemble learning algorithm for non-
stationary environments known as the Heterogeneous
Dynamic Weighted Majority (HDWM). It aims to turn
one of the most popular passive ensemble approaches,
namely Dynamic Weighted Majority (DWM) [20],
into a heterogeneous ensemble. HDWM automatically
chooses or emphasises the best types of base models to
be used over time in non-stationary environments. This
enables it to keep different types of base models and
use them to improve predictive performance to
manage concept drift.

The HDWM algorithm was evaluated on
artificially induced drift streams and real-world data
streams. Its predictive performance was compared
against existing well-known approaches such as the
Weighted Majority Algorithm (WMA) and Dynamic
Weighted Majority (DWM). The HDWM results
show that it performs significantly better than WMA
when there is concept drift in the data streams. Its
heterogeneity and classifier switching mechanism
make it independent of manually choosing the base
classifier according to conditions. The results showed
that despite the heterogeneity of WMA, no significant
differences were found between DWM (Hoeffding
Tree) and DWM (Naïve Bayes) with WMA. It is
extremely difficult to choose the right type of base
learner in the ensemble. HDWM overcomes this by
intelligently switching its base learners and showed
stability in a non-stationary environment.

This paper is further organised as follows. Section
2 presents related work. Section 3 describes the
proposed approach. Section 4 outlines the
experimental setup and provides an empirical
evaluation of the developed algorithm. Section 5
analyses the results and Section 6 sets out concluding
remarks.

2 Related Work
There is a rich literature on learning in non-

stationary environments [10][11][12]. In addition to
categorising existing algorithms into active and
passive, it is also possible to categorise existing work
into online and chunk-based approaches [11]. Online
approaches process each new training instance
separately and then discard it. Chunk-based
approaches wait for a whole new batch of data to
arrive, and then use this new batch for training before
discarding it. We concentrate on online rather than
chunk-based learning algorithms, because they are the
main beneficiaries of an investigation of new
heterogeneous ensemble approaches, as explained in
the introduction.

A new Decision Tree (DT) ensemble was
proposed [63] to increase the diversity of the ensemble
by using different training sample numbers for
different base DT classifiers. Another approach for
multi-class and imbalanced data was presented [64] in
which the binary classifiers are first created and then
integrated in the ensemble by using majority voting to
make predictions.

In terms of diversity the ensembles are broadly
classified into homogeneous and heterogeneous, taking
into consideration the drift handling approaches, the
ensembles are categorised into active and passive
approaches. Fig. 1 illustrated the categorisation of
algorithms for the remainder of this Section. Please
note algorithms mentioned in this figure are referred to
in the following sub-sections. As shown in the Figure,
HDWM is heterogeneous and sharing the features of
both active and passive learning.

Fig. 1: Active and Passive approaches of
Ensembles

2.1 Heterogeneous Ensembles
Most existing heterogeneous ensemble techniques

rely on meta-learning [21][22]; this helps in deciding
which learning techniques work well on what data.
Nguyen et al. [23] proposed a general framework to
integrate feature selection and heterogeneous ensemble
learning for data stream classification. Cheng et al.
[24] built a heterogeneous ensemble using three
different tree-based ensembles (Random Forest,
Rotation Forest, and Extremely Randomised Trees). It
was shown that running heterogeneous/different, or
homogeneous/similar data stream classification
techniques over vertically partitioned data (data
partitioned according to the feature space) resulted in
comparable performance to batch and centralised
learning techniques [51].

The Weighted Majority Algorithm (WMA) [19]
uses fixed numbers of base learners C=(C1 ,C2 ...CL)

with an initial weight ‘wi’ equal to ‘1’. The weight is
updated on each wrong prediction using (wi← βwi),
where (0 ≤ β < 1) and the final prediction is made
based on the weighted majority vote among the base
learners Ci. The diversity of base learners has a

significant effect in improving the performance on
different streams. WMA base learners are
heterogeneous, potentially helping to produce more
diverse ensembles. However, it lacks the option to
dynamically add new base learners. The algorithm has
no explicit method to detect and handle concept drift
thus being less effective in non-stationary
environments.

The Modal Mixture Model (M3) [25] is a
heterogeneous chunk-based ensemble for non-
stationary environments. New classifier members are
added to the ensemble at each data chunk and the
weights are computed based on past performances. A
weighting mechanism is used to deal with non-
stationary environments. The algorithm continuously
updates the models regardless of whether real drift
occurs or not.

The Heterogeneous Ensemble with Feature drifT
for Data Streams (HEFT-Stream) [23] is an online
classifier that incorporates feature selection by
applying the Fast Correlation Based Filter (FCBF) [26]
algorithm that dynamically updates the relevant feature
subsets for data streams. This is beneficial because
non-stationary environments may present feature drift
[23][41]. In high-dimensional datasets, not all features
are significant for training a classifier and the
relevance of a feature may grow or shrink over time.
Given a set of p different classifier types,
M={M1,M2,…Mp}, the ensemble is initialised with k
classifiers of each model in M. It determines the most
discriminative feature subset on a chunk using a
sliding window. If the subset is different from the
previous one, there is a feature drift. The approach
then looks for the most accurate classifier having the
smallest aggregated error and builds a new classifier.
Finally, it removes the classifier with the least
accuracy from the ensemble and adds the best
classifier to the ensemble. However, after the
initialisation stage, the algorithm never utilises the M
models to create new classifiers. Therefore, there are
chances that the ensemble may become homogeneous
again in the future.

BLAST (short for best last) [42] introduced an
Online Performance Estimation framework to weight
the votes of (heterogeneous) ensemble members.
Based on zero/one loss function, i.e. returns '1' on
correct predictions and '0' otherwise, the weights are
increased accordingly. Based on the performances on
w (window size) it nominates one of its members to be

an active classifier and sets its weight to '1' and the
weights of the remaining classifiers to '0'. The weights
are updated on a predefined interval. The HEFT [23]
and Online Accuracy Updated Ensemble (OAUE) [28]
apply a similar approach in which worst performing
models are replaced with new learners, unlike the
BLAST that temporarily reduces the weights of a
poorly performing member. However, it utilises a
static ensemble size similar to WMA [19].

2.2 Active and Passive Homogeneous
Approaches to Deal with Concept Drift

This section presents related work on passive and
active online learning approaches for non-stationary
environments which are not based on heterogeneous
ensembles. Chunk-based approaches, could potentially
use off-line procedures such as cross-validation to
choose the best type of base learner for each new
chunk of data, even though this has not been
investigated so far. Therefore, this section will not
cover chunk-based approaches. Sections 2.2.1 and
2.2.2 explain active and passive online ensemble
approaches for non-stationary environments,
respectively.

2.2.1 Active Approaches
Active approaches for dealing with non-stationary

environments are typically based on single learners.
They use concept drift detection methods to determine
whether a concept drift has occurred. When concept
drift detection occurs, methods for dealing with
concept drift are triggered. A common strategy is to
reset the single learner to learn the new concept from
scratch [14][58]. Some drift detection methods used in
active approaches are explained in Section 2.3.

A few ensemble-based active approaches are also
available in the literature. Adaptive Classifiers-
Ensemble (ACE) [30] is an active online ensemble that
consists of one online learner, a set of offline
classifiers trained on old data, and a method that uses
the offline classifiers to detect concept drift. Ensemble
predictions are based on a weighted majority vote
across all classifiers. The classifier weights are based
on their accuracy on the most recent training
examples. ACE claims to be able to handle sudden,
gradual and recurring concepts better than other
systems. However, its integral drift mechanism
restricts the algorithm to integrate with other drift
detection methods.

Bifet et. al. [14] presented an algorithm that
combines restricted Hoeffding trees using stacking and
an ADWIN [31] change detector. They applied
ensemble trees using a weighing mechanism based on
combining the log-odds of their probability estimates
using sigmoid perceptron. The learning rate of the
perceptron is determined by using a change detector
that is also responsible for resetting the weaker base
learners. The algorithm uses the learning rate α =
2/(2+m+n) for ‘m’ attributes and ‘n’ instances in the
data stream. However, choosing the learning rate is
problematic on identically distributed data and results
in slow adaptation of the perceptron. One option is to
reset the learning rate when drift is detected which
improves the learning curve (rate of accuracy over
time) while keeping the learning rate relatively large.

Todi [43] is based on two online classifiers for
learning and detecting concept drift; ‘H0’ and ‘H1’.
Drift detections are performed based on a statistical
test of equal proportions to compare ‘H0’s
performance on recent and old training examples.
When a concept drift is detected, ‘H0’ is reset. ‘H1’ is
never reinitialised upon drift detection but can be
replaced by ‘H0’ when a concept drift is confirmed.
Keeping the two classifiers can help to deal with false
positive drift detections, as ‘H1’ can be selected for
prediction in the case that the reset ‘H0’ classifier is
inaccurate after the drift detection. The Todi
predictions are the predictions given by the classifier
with the best accuracy with the most recent training
examples.

Diversity for Dealing with Drifts (DDD) [13] is
an online active ensemble learning approach that
creates different ensembles with different levels of
diversity to achieve robustness for different types of
concept drift. A drift detection method is used to
activate very high diversity ensembles which are not
helpful during stable concepts, but that can help to deal
with slow drifts, or drifts that do not cause too many
changes with respect to the current concept.

Even though these approaches are based on single
learners rather than heterogeneous ensembles, their use
of drift detection methods can inspire the proposal of
novel heterogeneous ensemble approaches. In
particular, our proposed heterogeneous approach
makes use of a drift detection method, being classified
as an active approach.

2.2.2 Passive Approaches
Most passive learning approaches (those that do

not rely on drift detection methods) deal with concept
drift by maintaining an ensemble of base models and
use weights to emphasise the models believed to best
represent the current concept [11].

Addictive Base learner Ensembles (AddExp) [27]
adds a new base model (a.k.a. base learner) for every
wrong classification given by the ensemble. The
weight assigned to the new base model is equal to the
total weight of the ensemble multiplied by the
parameter γ ϵ (0,1). The weight of each base model is
updated by being multiplied by a pre-defined
parameter (β, 0 ≤ β < 1), when it gives a wrong
prediction. A pruning method eliminates the oldest
base models for reducing the ensemble size.
Alternatively, the base models whose weight is below
a certain threshold can be deleted. The prediction
given by the ensemble is the weighted majority vote of
the predictions given by the base models.

The Online Accuracy Updated Ensemble (OAUE)
[28] combines chunk-based and online ensemble
methods. The weights of the base learners are
calculated by estimating the prediction error on the last
d examples. The window size is utilised to create a
new base learner for a set of ‘d’ examples and
periodically removes the weaker base learners from
the ensemble. The output is predicted by aggregating
the predictions of base learners using a weighted
voting rule. However, the algorithm is highly
dependent on the window size. It is likely therefore
that a small window size may lose the sudden concept
drift, while a larger window may result in false
concept detection.

The Dynamic Weighted Majority (DWM) [20] is
one of the most popular ensemble approaches to deal
with concept drift. Each base learner is associated with
a weight. Weights start with value one and are
multiplied by a pre-defined parameter β, 0 ≤ β < 1,
when their associated learner gives a wrong prediction
in a time step multiple of period ρ. This weighting
mechanism of DWM is inspired by the WMA. The
predictions are based on the weighted majority vote
derived from the base learners. DWM enables removal
and addition of base learners at every ρ time step. A
new base learner is added whenever the ensemble
prediction is wrong in a time step multiple of ρ.
Removal of learners is controlled by a pre-defined
weight threshold parameter θ. A base learner is

removed if its corresponding weight is lower than θ in
a time step multiple of ρ. In this way, new learners are
created to learn new concepts and poorly performing
learners, which possibly had learnt old concepts, are
removed. The algorithm normalises the weights by
uniformly scaling them such that the highest weight
will be equal to one. This is done to prevent newly
added base learners from dominating the decision-
making of existing ones. However, despite using the
WMA weighting mechanism, DWM does not exploit
one of the key aspects of WMA - the use of different
types of base models.

Existing passive ensembles can be seen as
performing dynamic model selection approaches when
they assign different weights to their base learners and
when they decide to remove base learners from the
ensemble. However, these approaches have not
exploited the use of different types of base learners,
i.e., they have not exploited the potential benefit of
heterogeneous ensembles. Even though the weighting
mechanism of DWM was inspired by WMA which is a
heterogeneous ensemble, all its base learners in DWM
are homogeneous, e.g., either all of them are Naïve
Bayes or all of them are Hoeffding Trees.

2.3 Drift Detection Methods

Several drift detection methods have been
proposed. An example of a drift detection method
based on statistical process control is the Drift
Detection Method (DDM). It tracks the minimum error
pmin of an online learning model over time and its
corresponding standard deviation smin by updating
these variables whenever a new training example is
received. A warning that a concept drift may be
occurring is triggered if (pi + si ≥ pmin+ 2 × smin),
where ‘pi’ is the current error rate and ‘si’ is the current
standard deviation [32]. When this happens, new
training examples are used not only to update the base
model, but also stored in a buffer for future use. A
concept drift is detected if (pi + si ≥ pmin + 3 × smin).
The base model is then deleted and a new one is
created to replace it using all the examples stored in
the buffer.

The Early Drift Detection Method (EDDM) [33]
is similar to DDM but takes into consideration the
distance between two error classifications instead of
the error rate. The average distance between two errors
is represented as ‘p'i’ and its corresponding standard
deviation is ‘s'i’. The warning level is reached if (pi + 2

× s'i) / (p'max + 2 × s'max) < ∝ and the drift level is
reached if (p'i + 2 × s'i) / (p'max + 2× s'max)< β, where
∝ and β are pre-defined constants.

The Statistical Test of Equal Proportion to Detect
concept drift (STEPD) [43] monitors the two
predictive accuracies of a single online classifier, i.e.
accuracy among the most recent examples and overall
accuracy from the beginning of the learning. It detects
significant decreases in these predictive accuracies by
using a statistical test of equal proportions. If the
accuracies are statistically similar, then it is assumed
that there is no concept drift. If the accuracies are
significantly different, then a concept drift is detected.
STEPD uses significance levels for drifts and
warnings. Like DDM and EDDM, it stores examples
in a short-term memory during the warning period and
re-builds the classifier on drift detection based on the
stored examples.

Giacomo et al. [46] analysed two different
approaches for building histograms in the context of
change detection. When building histograms,
nonparametric monitoring procedures were applied
which implemented likelihood [47][48] and distance-
based approaches [49][50]. Their results show that the

combination of uniform density histograms and a
distance-based method achieved the best results in
change-detection performance.

As will be shown in Section 3, the HDWM
algorithm can make use of any drift detection method
in its framework.

3 The Proposed HDWM Algorithm

An overview of the proposed approach HDWM is
shown in Fig. 2. HDWM maintains a dynamic list of
learners. In Stage 1, the seed learners Ɛ1 to Ɛa are
initialised. In Stage 2, the learners in the dynamic
learners are prequentially tested on each instance in the
data stream. In Stage 3, the same instance is used for
training the dynamic list. In Stage 4, on globally
wrong prediction, a best performing learner is cloned
from the seed learners and added to the dynamic list.
The max size of dynamic list is controlled using
parameter Bmax. The learners of the ensemble (Ɛm)
make their predictions use their corresponding weights
wm.

Fig. 2: Overview of HDWM

The global predictions on instances xi for class

label y’i from a set of classes ‘C’ is based on the
prediction made by ‘m’ base learners in dynamic list, Ɛ

j (xi) ∈ C. The ground truth for each example consists
of pairs (xi,yi), and the aim was to combine the
weighted predictions of each learner using their

corresponding weight wj using Weighted Majority
voting as shown in Eq. (1).

(1)

Each learner in Ɛ is associated to a weight

{w1,w2,…,wm}. The method to update the weights is
similar as defined in DWM [20], i.e. by being
multiplied by a factor β (0 ≤ β < 1) upon
misclassifications at time-steps multiple of Period ‘ρ’,
where ρ >= 1 is a pre-defined parameter.

HDWM implements both an active and passive
approach for handling concept drifts, so that it is able
to efficiently deal with different types of drift (gradual
and abrupt). To implement a passive approach HDWM
removes weaker learners and their associated weights
from the dynamic list once their weights fall below the
value predefined in parameter θ. After every ‘ρ’ time-
steps, it performs the following tasks
1) When the global prediction of ensemble is wrong,
a new learner is cloned from the “best” seed. The best
seed is the seed corresponding to the base learner in Ɛ
with the best weight.
2) Once the ensemble size exceeds a user pre-
defined threshold Bmax, the base learner which has the
lowest weight is removed among Ɛj, a+1 ≤ j ≤ m,.
These two approaches restrict the ensemble size to
reduce the computational costs while enabling the
ensemble to remain heterogeneous.

To implement an active approach, HDWM uses
parameter δ to select a concept drift detection method
e.g., DDM [32] or EDDM [33] and link it to each base
learner in the ensemble. The predictions taken from
the base learners are injected into their corresponding
drift detection methods to detect concept drifts and
warnings. To handle concept drifts HDWM has two
options 1) Reset the learning of the seeds and their
corresponding weights and re-train them. 2) Delete the
weakest learners and create new learners of the same
type as the best performing learner by cloning its seed.

The HDWM is outlined in Algorithm 1. Initially,
the seed learners ‘Ɛ1 to Ɛa are initialised based on their
base learning algorithm (line 2). Each learner in the
dynamic list is assigned an equal weight 1.0 (line 3).
Each base learner Ɛj in the dynamic list is asked for
predictions on ‘xi’ instances (Line 8), where ‘i’ is the
time-step and x is the vector representing attributes in
the data-stream. Similar to the DWM rule [20] the
weights of the learners are decreased upon incorrect
predictions (Line 10-11). Over time when the
ensemble grows, the base learners whose weights fall
below θ are deleted while keeping intact the seeds in Ɛ
for future use (Line 13-15), and set the flag d = 1
which indicates that the base learner has been deleted.
By ensuring that at least one base learner of each type
is maintained in Ɛ, it is certain that a given type of base
learner can repopulate the ensemble whenever it
becomes beneficial, even if this follows a period of
time when this type of base learner was not beneficial.

If no learner is deleted (line 17), the base learner’s
prediction is used to compute the weighted sum for
each class (line 18). The maximum and minimum
weights are stored in appropriate variables (line 19).
The class with the most weight is then set as the global
prediction (line 24). Weights are normalised using the
DWM rule [20] (Line 26) and the parameter ρ is used
to control the period for adding or removing the new
dynamic learners.

An active drift detection method such as DDM [32]
or EDDM [33] is invoked (line 22) and in the case of
drift detection by any of the base learners, the Active
Handle Drift (Algorithm 1.1) is invoked. The
integration method for Active Drift Detection is
explained in Section 3.1. On global wrong predictions
(Line 27) the Passive Drift Handler (Algorithm 1.2) is
invoked on (line 28). To control the ensemble size
(line 30-32) parameter Bmax is a user defined value to
remove weaker learners from the dynamic learners list.

Algorithm 1: HDWM ({x,y}
1
n , β, θ, ρ)

Input: {x,y}
1
n : Stream of examples and class label

 {LearningAlgorithm}
1
a : Set of Heterogeneous Seed Base Learning Algorithms

 β: factor to decrease weights, 0 ≤ β < 1

 θ: threshold to delete base learner

 ρ: period between base learner removal, creation and weight update

{Ɛ,w,δ}
1
m : Set of Seeds, Dynamic learners and Drift Detection Method

d {0,1}: base learner delete flag

Bmax: Max size of ensemble

c ∈ ℕ*: Number of classes, c ≥2

∧ , λ ∈ {1,…,c}: global and local predictions

σ ∈ ℝc : sum of weighted prediction for each class

1 for seed = 1 to a // Loop over seeds

2 Ɛseed ← Initialised_Seeds (LearningAlgorithmseed) // Clone seeds to Dynamic List

3 wseed ← 1.0

4 end for

5 for i = 1 to n // Loop over examples

6 for j = 1 to m // Loop over ensemble of learners

7 d ← 0 // Learner’s delete flag

8 λ = Classify (Ɛj, xi) // Classify using both Seeds and dynamic learners in Ɛ

9 if (i mod ρ = 0) then

10 if (λ≠ yi) then

11 wj ← β wj // Update weight using DWM [20] rule

12 end if

13 if (wj < θ and 𝑗 > a) then // j>a prevents deletion of seeds from Ɛ

14 {Ɛj, wj } ← remove ({Ɛj, wj }, θ) // Delete learners whose Weights < θ

15 d ← 1; // Set deleted flag to True

16 end if

17 if (d ≠ 1) then // If no learners are deleted

18 σλ ← σλ + wj

19 wmin ← min(w), wmax ← max(w)

20 end if

21 end if

22 Call Active Drift Handler (λ , Ɛ, xi) (Algorithm 1.1)

23 end for

24 ∧ ← argmaxj σj

25 if (i mod ρ = 0) then

26 w ← normalize-weights (); // Using DWM [20] rule

27 if (∧ ≠ yi) then // Global prediction is wrong

28 Call Passive Drift Handler (Algorithm 1.2)

29 end if

30 if size(Ɛ) = Bmax then

31 { Ɛ,w} ← remove({Ɛ,w}, wmin)

32 end if

33 for i = 1 to m

34 Train (Ɛi, xj)

35 end for

36 end if

37 end for

3.1 Drift Detection and Handling

Algorithm 1.1 outlines Active drift handling in
HDWM. The seeds are reset upon the occurrence of
drifts. The weight of the seeds are set to 0.5 instead of
1.0 (Lines 3-6) to prevent the domination of seeds
over the new base learners. Finally, the seed learners
are trained when the warning state is detected.

Algorithm 1.1 HDWM ActiveDrift Handling (λ, Ɛ, δ, w, xj)

Input: Ɛ: Set of Seeds and Dynamic learners
 λ: local predictions from base learners

 w: ensemble weights
 δ: Drift detection Method

1: δlocal ← DriftDetectionMethod(λ)

2: if (δlocal drift = true) // drift is detected

3: for seed = 1 to a

4: Ɛseed ← reset

5: wseed ← 0.5

6 end for

7 end if

8: if (δ_local warning = true) // warning is detected

9: for j = 1 to a // Loop over seed learners

10: Train (Ɛi, xj)

11 end for

12: end if

Algorithm 1.2 implements the Passive drift

handling mechanism in HDWM. In the case of
globally wrong predictions the index position and the
type of best seed learner is determined (line 1), a new
classifier of a similar type is created (line 2) and
added to the list dynamic learners from the seed
learner (line 3). New learners are given weights 0.5
(line 5) to prevent new learners dominating over the
existing ones.

Algorithm 1.2 PassiveHandleDrift (Ɛ, w)

Input: Ɛ: Set of Seeds and Dynamic learners

 w: ensemble weights

 wmax : maximum weight

 m: size of the dynamic learners

 {LearningAlgorithm}
1
a : Set of Seed Base Learners

1: Seed ← bestLearner { Ɛ, wmax }

2: Nseed ← Initialised_Seeds {LearningAlgorithmseed}

3: Ɛ ← Ɛ U Nseed // append classifier to dynamic list

4: m ← m+1

5: wm ← 0.5

3.2 Maintaining the Heterogeneity

WMA [19] maintains heterogeneous ensembles, but
is unable to deal with concept drifts due to its inability
to create new learners and delete old learners. DWM
[20] can deal with concept drift through the addition
of new learners and deletion of inaccurate learners.
However, it does not benefit from multiple types of
base learners. Even if DWM was initialised with
multiple types of base learners, because it deletes
inaccurate base learners, it could become
homogeneous over time and once it became
homogeneous, it would not have any strategy to re-
introduce other types of base learners if they become
beneficial once again.
HDWM overcomes these problems presented by
WMA and DWM. It enables the ensemble to deal
with concept drift through the addition and removal of
base learners, at the same time as it ensures that the
ensemble can benefit from heterogeneity. It achieves
that by ensuring that seed learners of any type can
repopulate the ensemble whenever they become
beneficial.

4 Experimental Setup

This Section investigates the HDWM algorithms
and compares their accuracy and drift handling
capabilities with WMA (due to its heterogeneity) and
DWM (due to its ability to dynamically include and
exclude base learners from the ensemble). Friedman
tests with their corresponding post hoc tests are
performed to support the comparison of several
algorithms on multiple data streams.

Different variations of HDWM were compared to
evaluate its sensitivity to parameters (e.g. drift and
warning threshold, ensemble size) and variations of
the algorithm that deactivate some of its
characteristics (e.g. drift detection, warning detection,
weighted vote). The second set of experiments
concern the evaluation of computational resources
usage (CPU time and RAM-Hours). Finally,
experiments were presented comparing HDWM and
other state of-the-art ensemble classifiers. Since
accuracy can be misleading on data sets with class
imbalance or temporal dependencies, Kappa M and
Kappa Temporal were also used. Kappa M has
advantages over Kappa statistic as it has a zero value
for a majority class classifier [59]. Kappa Temporal is

applied since it replaces the majority class classier
with the NoChange classifier [60]. This enables better
estimations for data sets with temporal dependencies.

The evaluation metrics used are Prequential (P)
Testing and Periodic Holdout (H). In Prequential
Testing, each instance is used to test the model before
it is used for training, and the accuracy is updated
incrementally. The prequential accuracy is calculated
based on the Massive Online Analysis (MOA)
Windows Classification Performance Evaluator
(WCPE) [34] with a window size of 1000. The
Holdout method uses predefined partitions of train
and test instances. However, it requires labelled test
datasets which are difficult to obtain readily for real
world applications. This method is applied in
STAGGER (Drift) as pre-defined partitions of
training and testing instances were used; the details
are explained in section 4.1.

4.1 Data Streams

The artificial data streams used in the experiments are
generated through the MOA workbench [34]. The
details of the streams are given below, and the MOA
commands to generate these streams are available in
Appendix A. The characteristics and configuration of
these data streams are summarised in Table 1.

 RandomTrees (Recurring) [34] generates a stream
based on a randomly generated tree. The stream
contains two sudden drifts. The first concept drift
occurs at time step 25k and causes the first concept,
which is described by 5 numerical attributes, to be
replaced by 5 nominal attributes. At location 75k, the
occurrence of a sudden drift re-introduces the first
concept, which then lasts for 100k instances.

 Hyperplane (Gradual Drift) [34] is a flat d-
dimensional space represented by i∑d

 wi xi = 0, such
that {xi… xd} are randomly generated instances and
‘w’ is the weight attribute. The instances are positive
if i∑d

 wi xi ≥ w0, where w0 is the total weight. Gradual
drift is introduced by slightly rotating the hyperplane
by modifying wi to 0.001 for each instance, and 5%
noise is added in the stream.

 Random Radial Basis Function (Gradual Drift)
[34] consists of a fixed number of randomly
positioned centroids with a single standard deviation,
class label and weight. New instances are generated
by randomly choosing a centre. Gradual Drift is

generated by choosing two centroids and gradually
moving the centre at the speed level of 0.001 for each
instance, and adding 5% noise in the stream.

 SEA (Sudden and Gradual Drift) [45] contains
three attributes, function xi ∈ R and the value of xi is
between 1.0 and 10.0. The target concept is
determined using the equation y = [x0 + x1 + x2 ≤ θ],
such that θ ∈ {7,8,9,9.5}. Two drifts are generated by
changing the function x1 to x2. Gradual Drift appears
at 25 for (width = 10k) and Sudden Drift at 75k for
total 100k instances. For SEA (Sudden) two drifts are
generated at the same location by using (width =1).

 STAGGER (Sudden Drift) [44] consists of three
attributes, i.e. colour ∈ {Red, Green, Blue}, size ∈
{Small, Medium, Large} and shape ∈ {Circle,
Rectangle, Square}. The three concepts are [size =
Small ∧ colour = Red], [colour = Green ∨ shape =
Circle] and [size; Medium ∨ Large]. The stream
consists of 120 training instances, each concept is 40
instances long and sudden drifts appear at location 40
and 80. Each instance is evaluated on 100 test
instances using Periodic Holdout (H).

 LED (Sudden Drift) [55] generates a stream
defined by a 7-segment LED display and the task is to
predict the digit (0-9). Such a stream was generated
by emulating a sudden drift by combining two
distributions. The first distribution was generated with
the LEDGenerator and the second distribution was
generated at location 50k using LEDGeneratorDrift
and one attribute comprised a concept drift.

 WaveForm (Sudden Drift) [55] is a 3-class
problem defined by 40 numerical attributes and shares
its origin with the LED. The problem is to predict one
of the three waveform types. The first distribution was
generated with a WaveFormGenerator and the second
distribution was generated at location 50k using
WaveFormGeneratorDrift and setting 20 attributes
with drift.

 Sensor dataset [54] deployed in the Intel Berkeley
Research Lab, the sensor ID is used to label the class.
The dataset consists of 220k instances; the input
attributes include time-stamped topology information,
along with humidity, temperature, light and voltage.
The true drift locations are not known but gradual
drifts exist as the light during working hours is
generally stronger than at night, and the temperature
readings of specific sensors may rise if there are
meetings in the room [35].

 The Spam email dataset [36] contain input
attributes that represent a gradual concept drift by the
SpamAssassin collection. The dataset consists of
9,324 instances, 500 attributes and two target classes
i.e. spam and legitimate. The attributes represent the
presence of a given word in the email.

 The Electricity dataset [37] contains data
consisting of 45,312 instances for a period of two
years collected from the Australian New South Wales
Electricity Market. Input attributes include day of the
week, the NSW electricity demand, the Victoria
electricity demand and the scheduled electricity
transfer between states. The binary prediction task is
to identify the change (up or down) of the price
relative to a moving average. The concept drift
appears due to changes in consumption habits due to
unexpected events and seasonality.

 The Forest Cover type [57] dataset consists of the
observation (30 x 30 meter cell) determined from the
US Forest Service (USFS) Region 2 Resource
Information System (RIS) data. The task is to predict
the type of forest cover from cartographic variables
such as Elevation, Slope, soil type etc.

Table 1: Characteristics of the Data Streams and
Parameters Used in the Experiments

Stream

In

st
an

ce
s

F

ea
tu

re
s

C
la

ss
es

D

ri
ft

s

Pe
ri

od

Fr
eq

.

E
va

lu
at

io
n

SEA (S)
STAGGER (S)

 2500 K
12 K

3
3

2
2

2
2

50
1

1K
1

P
H

RTree R
LED (S)
Wave (S)
Hyperplane (G)
SEA (G and S)
RRBF(G)

100K

10
7

40
10
3
2

2
10
3
2
2
5

2
1
1
3
2
2

50
1K

P

Electricity
Spam
Sensor
Forest Cover

 45,312
9,324
100K
100K

8
500

5
54

2
2

58
7

N/A 50

100
500
1K
1K

P

[P] = Prequential Evaluation, [H] Periodic Holdout Evaluation,
[R]= Recurrent Drift, [S] = Sudden Drift, [G]=Gradual Drift,
Freq. and period are defined in Table 2.

4.2 Test Configuration
All the experiments are evaluated in terms of time

and predictive performance. Processing time is
measured in seconds and is based on the CPU time
used for training and testing. All the experiments were
performed on machines with Core i7 @ 3.4 GHz, 4

GB of RAM and experiments are presented in terms
of CPU time. All experiments were executed within
the MOA (Massive Online Analysis) framework.
The cross-validation techniques for measuring model
performance are not suitable as the data streams
originate from non-stationary environments.
Therefore, the prequential method [62] was used,
which is a commonly accepted estimation procedure
in non-stationary environments. In this method each
example is first used to test the model before it is used
for training. The advantage of this method is that all
the instances are used in training and testing, and
therefore no specific holdout set is needed.

To determine the statistical significant differences
between algorithms, non-parametric tests were carried
out using Demsey’s methodology [40]. For the
statistical test the Friedman test was applied with α=
0.05 and the null hypothesis, “no statistical difference
between the algorithms”. If the null hypothesis was
rejected, the Nemenyi post hoc test was used to
identify which pairs of algorithms differ from each
other.

The base learners used in DWM are NB (Naïve
Bayes) and HT (Hoeffding Tree). HDWM and WMA
are using four base learners, i.e. HT-MC (Majority
Class at leaves), HT-NB (Naïve Bayes at leaves), HT-
NBAdaptive and NB. The values β = 0.05 and θ =
0.01 are used as per the default values used in DWM
[32]. Table 2 gives a description of the parameters
used in the experiments.

Table 2: Parameters used in the experiments

Code Description

β Penalise learner's weight on wrong prediction

θ Threshold of weights to remove base leaners

Period The interval to create or remove base learners or
to manipulate their weights

Freq. The number of training examples between
samples of learning performance

For the large data streams (size > 100K) and real-
world datasets, the period is ‘50’. For small datasets,
the period is ‘1’. 'Freq' is the MOA sample frequency
parameter corresponding to the number of training
examples between samples of learning performance.
Freq=1k is used for instances more than 100k and for
smaller streams a lower value is applied.

To investigate the heterogeneity and its influence
on active and passive drift handling approaches, a
variant of HDWM, HDWM-P was developed which is
heterogeneous although not utilising the Active Drift

handling option. This variant is used in the
experiments in Section 5.3. The details of variants
used in the experiments are described in Table 3.

Table 3: Variants used in the Experiments

Algorithms Description of Algorithm

HDWM
HDWM uses Naïve Bayes and Hoeffding Tree;
its Heterogeneous ensemble uses both Active and
Passive Drift Handling.

HDWM – P

HDWM uses Naïve Bayes and Hoeffding Tree;
its Heterogeneous ensemble uses only Passive
Drift Handling, as used in Heterogeneity
Analysis.

5 Evaluation of HDWM

This section investigates the proposed algorithm
and compares its model switching capabilities,
predictive accuracy and drift handling capabilities
against the existing ensemble-based approaches
WMA and DWM. We also investigated the effect of
heterogeneity on the predictive performance and
ensemble size in the presence of gradual, recurrent
and sudden drifts on artificial data streams and real-
world datasets.

5.1 Predictive Performance
The predictive capabilities of our new approach

were tested on artificial data-streams and real-world
datasets, corresponding ranks are determined such
that higher averages are representing lower ranks.
Significance tests and post hoc comparisons on ranks
are performed to determine significance level and
critical differences. The predictive accuracies of
HDWM, DWM and WMA are shown in Table 4.

Table 4: Predictive Accuracies (%) of DWM-NB, DWM-HT
WMA and HDWM

Streams HDWM DWM-NB DWM-HT WMA
SEA (S) 88.12 (1) 87.98 (2) 87.71 (3) 85.79 (4)
STAGGER (S) 82.8 (1) 81.82 (2) 81.26 (3) 55.08 (4)
RTree R 85.27 (1) 74.05 (4) 75.32 (3) 79.78 (2)
LED (S) 73.37 (3) 73.41 (1.5) 73.41 (1.5) 65.01 (4)
Wave (S) 82.16 (1) 80.31 (4) 80.34 (3) 80.65 (2)
Hyperplane (G) 88.12 (2) 88.08 (3) 88.19 (1) 80.54 (4)
SEA (G and S) 87.64 (1) 87.58 (2) 87.21 (3) 85.71 (4)
RRBF(G) 92.59 (3) 92.65 (2) 93.09 (1) 77.93 (4)
Electricity 89.4 (1) 79.73 (4) 84.06 (2) 80.92 (3)
Spam 90.54 (1) 87.83 (4) 88.39 (2) 88.04 (3)
Sensor 92.04 (1) 90.79 (3) 90.96 (2) 72.86 (4)
Forest Cover 91.03 (1) 82.92 (2) 79.33 (4) 80.65 (3)

Avg. Ranks 1.42 2.79 2.38 3.42

In both drift and real-world streams the χ2r statistic is
15.25 (df =3, N = 12) and the p-value 0.0016 shows
significant differences at the level of significance of
0.05. The method to calculate chi-squared and p-value
is described by Demsar [40]. The Nemenyi test [39]
was applied for pairwise comparison. The critical
difference [40] is 1.35. It is evident from the bar chart
(green bars) in Fig. 3 that HDWM performed
significantly better than DWM-NB i.e. (2.79 – 1.42 =
1.38 > 1.35) and WMA (3.42 – 1.42 = 2.0 > 1.35).

Fig. 3 Bar chart for pairwise comparisons between HDWM,

DWM and WMA. Green bar indicates significantly different, and
blue bars represent no significant difference

Tables 5 and 6 provide the Kappa measures for the
experiments. The Kappa evaluation measure is widely
used in data stream mining, it can handle both multi-
class and imbalanced class problems. The larger the
Kappa value, the more generalised the classifier,
negative Kappa values indicate low predictive
accuracy. Kappa values for Spam and Forest Cover
datasets were negative in HDWM, DWM and WMA
due to the large numbers of attributes in these
datasets.

Table 5: Kappa Temporal DWM-NB, DWM-HT WMA and
HDWM

Streams HDWM DWM-NB DWM-HT WMA
SEA (S) 73.81 (1) 73.47 (2) 72.87 (3) 68.84 (4)
STAGGER (S) 49.2 (1) 40.14 (2) 39.44 (3) -19.43 (4)
RTree R 68.69 (1) 47.73 (4) 50.34 (3) 59.35 (2)
LED (S) 70.54 (1) 70.47 (2) 70.46 (3) 61.14 (4)
Wave (S) 73.36 (1) 70.41 (4) 70.46 (3) 70.94 (2)
Hyperplane (G) 75.05 (3) 76.14 (2) 76.37 (1) 61.07 (4)
SEA (G and S) 71.68 (3) 73.03 (1) 72.22 (2) 66.69 (4)
RRBF(G) 91.14 (2) 91.13 (3) 91.66 (1) 73.39 (4)
Electricity 16.91 (1) -44.88 (4) -14.83 (2) -36.85 (3)
Sensor 92.5 (1) 90.78 (3) 90.95 (2) 72.84 (4)

Forest Cover -153.1 (1) -361.2 (3) -163.1 (2) -388.9 (4)

Avg. Ranks 1.45 2.73 2.27 3.55

Table 6: Kappa M for DWM-NB, DWM-HT WMA and HDWM

Streams HDWM DWM-NB DWM-HT WMA
SEA (S) 66.65 (1) 66.17 (2) 65.39 (3) 60.4 (4)
STAGGER (S) 13.09 (1) 0.59 (3) 0.72 (2) -76.4 (4)
RTree R 66.0 (1) 43.27 (4) 46.2 (3) 55.98 (2)
LED (S) 69.99 (1) 69.92 (2) 69.91 (3) 60.39 (4)
Wave (S) 72.62 (1) 69.6 (4) 69.65 (3) 70.13 (2)
Hyperplane 74.46 (3) 75.58 (2) 75.81 (1) 60.1 (4)
SEA (G and S) 64.01 (3) 65.74 (1) 64.7 (2) 58.55 (4)
RRBF(G) 90.88 (2) 90.87 (3) 91.41 (1) 72.58 (4)
Electricity 71.84 (1) 50.91 (4) 61.26 (2) 53.36 (3)
Sensor 92.15 (1) 90.36 (3) 90.54 (2) 71.6 (4)
Forest Cover 64.45 (1) 38.85 (3) 61.99 (2) 37.55 (4)

Avg. Ranks 1.45 2.82 2.18 3.55
The statistical tests applied on Kappa Temporal on
drift and real-world streams, with the χ2r statistic of
15.76 (df =3, N = 11) and the p-value of 0.0012
showed significant differences at the level of
significance of 0.05. Statistical tests for Kappa M on
both drift and real-world streams, the χ2r statistic is
15.10 (df =3, N = 11) and the p-value 0.0017 also
shows significant differences at the level of
significance of 0.05. The Nemenyi test [39] was
applied for Kappa Temporal and Kappa M for
pairwise comparison. The critical difference [40] is
1.41. HDWM performed significantly better than
WMA.

Even though WMA is heterogeneous, it performed
worst in most of the drift streams and real-world
datasets, the reason is a lack of drift handling
capabilities. Apart from this, there was no significant
difference between DWM-NB and DWM-HT, DWM-
HT and WMA and DWM-NB and WMA. This makes
it extremely difficult to choose an optimal base
classifier in DWM. We can conclude that HDWM is
independent of deciding on which type of base
classifier should be used.

5.2 Resources comparison
To analyse the benefits in terms of resources usage

we compare HDWM, DWM and WMA. We recorded
an evaluation time of HDWM in CPU seconds by
setting max size of ensemble (Bmax) to 25, 50,100 for
all the data sets. It is expected that HDWM requires
more processing time compared with WMA and
DWM due to the seed learners that always reside in
the ensemble. As shown in Fig. 4, the total CPU time
is increasing by setting a larger value of Bmax,
however, the average predictive accuracies are not
significantly affected.

Fig. 4 CPU time (Seconds) and Predictive Accuracies of HDWM,
DWM and WMA.

5.3 Analysis of Heterogeneity

The objective of this analysis is to investigate how
the heterogeneity of an ensemble affects its predictive
performance and whether the higher accuracy
achieved in HDWM is due to its heterogeneity or due
to its active drift handling capabilities. The results of
these experiments are shown in Table 7.

Table 7: Heterogeneity Test, Predictive Accuracies (%)

Streams HDWM -P DWM (NB) DWM (HT)
SEA (S) 87.73 (2) 87.98 (1) 87.71 (3)
STAGGER (S) 82.31 (1) 81.82 (2) 81.26 (3)
RTree R 75.51 (1) 74.05 (3) 75.32 (2)
LED (S) 73.44 (1) 73.42 (2) 73.41 (3)
Wave (S) 80.35 (1) 80.31 (3) 80.34 (2)
Hyperplane (G) 88.21 (1) 88.08 (3) 88.19 (2)
SEA (G and S) 87.26 (2) 87.58 (1) 87.21 (3)
RRBF(G) 93.04 (2) 92.65 (3) 93.09 (1)
Electricity 84.09 (1) 79.73 (3) 84.06 (2)
Spam 88.72 (1) 87.83 (3) 88.39 (2)
Sensor 90.98 (1) 90.79 (3) 90.96 (2)
Forest Cover 86.92 (1) 82.92 (2) 79.33 (3)
Avg. Ranks 1.25 2.42 2.33

For this experiment the DWM performance was
compared with the Naïve Base and Hoeffding Tree as
base learners in its ensemble and compared it with
HDWM-P (a variant of HDWM without active drift
handling) which is reliant on a passive approach
similar to the DWM. The Friedman statistics [38] in a
heterogeneity test, the χ2r statistic is 10.16 (df=2, N =
12) and the p-value 0.0062 indicates significant
differences at the level of significance of 0.05. Post-
hoc test using the Nemenyi test [39] was applied for
pairwise comparison. The critical difference is 0.902.
Box-plot in Fig. 5 shows that HDWM-P performed
significantly better than DWM-NB i.e. (2.42 – 1.25 =
1.08 > 0.902) and DWM-HT (2.33 – 1.25 = 1.17 >
0.902). Given that the main difference between

HDWM-P and DWM is the heterogeneity, these
results indicate that heterogeneity plays a key role in
improving the HDWM accuracy over DWM. In
particular, the model switching mechanism
maintained the accuracy, making it independent of
manually selecting base learners.

Fig. 5 Pairwise bar chart for Heterogeneity Test (Green bar)

significantly different, (blue bars) No significant differences

5.4 Further Analysis on Artificial Drift
Streams

In this section an in-depth analysis of the results
achieved in the previous experiment are presented

using the artificial drifts data streams. The predictive
performances are analysed and the capabilities of each
algorithm are graphically presented to investigate how
these algorithms react to different type of drifts. The
ensemble size was also analysed. The Ensemble Size
in a dynamic base classifier is an important factor for
balancing performance because a larger ensemble
requires more processing time but may improve
predictive accuracy.

5.4.1 Accuracy over Time

Fig. 6(a) represents RandomTree recurring concept
drifts. HDWM (85.27%) and WMA (79.78%) handled
the drift on a recurring concept at 75,000 instances.
DWM-NB (74.05%) and DWM-HT (75.32) were
unable to cope after the first sudden drift at 25,000.
The base learners in DWM forgot the previous learnt
concepts due to inclusion and removal of their base
learners; unlike the WMA whose base learners are
never deleted.

Fig. 6(a): Predictive Accuracies RandomTree (left) and RRBF (right) on Artificial Data Streams. Solid and dashed vertical black lines

indicate the centre point of the drifts, and start/end of the drifts, respectively. The time steps between the start and end of the drift (inclusive)

compose the drift window.

Fig. 6(b): Predictive Accuracies SEA Abrupt (left) and SEA Mixed (right) on Artificial Data Streams. Solid and dashed vertical black lines

indicate the centre point of the drifts, and start/end of the drifts, respectively. The time steps between the start and end of the drift (inclusive)

compose the drift window.

In HDWM the seeds are never deleted and retain the
previously learnt concepts, this helps HDWM in
appropriately dealing with recurring concept drifts.
In RRBF Fig. 6(a), which represents gradual drifts,
HDWM (92.59%) and DWM are able to deal with
concept drifts appropriately due to periodically
including new base learners while WMA does not;
this being due to its static ensemble size. HDWM not
only maintained the predictive accuracy of DWM but
slightly improved it.

SEA Fig 6(b), represents abrupt drifts at 25,000
instances and 75,000 instances. HDWM and DWM
handled these drifts appropriately, however, WMA
failed to adapt to the new concept. SEA (Mixed) Fig.
6(b), represents gradual and sudden drifts. Gradual
drift is centred around instance 25,000 with a
window of 10,000 instances and is represented using
a dotted line while the sudden drift occurs at 75,000
instances. DWM and HDWM both handled these
drifts appropriately, but WMA reacted late on mixed
concept drifts.

5.4.2 Ensemble Size
Due to the seed learners that always remain in the

dynamic list, HDWM maintained a larger ensemble
size (Average 27.6). HDWM in RTree (R) and Wave

(S) utilised smallest ensemble (13.19 and 18.02) in
achieving higher predictive accuracies (85.27% and
82.16%) compared with DWM and WMA. Table 8
represents average ensemble sizes and corresponding
ranks achieved in HDWM and DWM; the lower
averages representing higher ranks. The plots for the
ensemble size in artificial data streams are shown in
Fig 7(a) and (b).

Table 8: Average Ensemble Size in Artificial Data Streams

Streams HDWM DWM-NB DWM-HT
SEA (S) 61.39 (3) 35.72 (2) 25.38 (1)
STAGGER (S) 12.18 (3) 7.73 (2) 7.07 (1)
RTree R 13.19 (1) 28.37 (3) 16.69 (2)
LED (S) 33.94 (1) 37.1 (2.5) 37.1 (2.5)
Wave (S) 18.02 (1) 37.83 (3) 29.09 (2)
Hyperplane (G) 22.91 (3) 14.28 (2) 13.52 (1)
SEA (G and S) 43.56 (3) 37.89 (2) 25.6 (1)
RBF(G) 16.26 (1) 8.76 (2) 10.48 (1)

Average 27.6 25.9 20.6
Avg. Ranks 2.25 2.18 1.56

Fig. 7(a): Average Ensemble Size RandomTree (left) and RRBF (right) in Artificial Data Streams

Fig. 7(b): Average Ensemble Size SEA Abrupt (left) and SEA Mixed (right) in Artificial Data Streams

5.5 Further Analysis on Real-World
Datasets

Artificial data streams are typically designed for
controlled environments. Several challenges emerge
when dealing with real-world classification problems.
The primary issues are the identification and location
of the concept drifts. Accordingly, the HDWM was
also evaluated on real-world data streams; namely:
Electricity [37], Sensor [54], Forest Cover type [57]
and Spam email dataset [36]. As there are only 4
datasets and thus 4 observations, no significance test
was performed. However, the obtained results show
improvements.

5.5.1 Accuracy over Time

As shown in Fig. 8, HDWM achieved the highest
predictive accuracies on Spam email (90.54%),
Electricity (89.4%), Forest Cover type (91.03%) and
Sensor (92.04%). Overall the HDWM average ranking
in real-world datasets is (1.0), DWM-HT (2.5) and
DWM-HT and WMA (3.25).

Fig. 8(a): (Left) Average Predictive Accuracies Electric dataset, (Right) Spam Email

Fig. 8(b): (Left) Average Predictive Accuracies Sensor, (Right) Forest Cover

5.5.2 Ensemble Size

The ensemble sizes in DWM and HDWM are
dynamic, i.e. growing and shrinking based on the
predictive performance and the drift detections.
HDWM achieved higher accuracy on the Sensor
dataset (90.73%) using the lowest ensemble size
(Average 8.04). Table 9 shows the average ensemble
size and ranks in real world datasets with the lower
averages representing higher ranks.

The plots in Fig. 9(a) and (b) show average ensemble
sizes for real-world datasets. In general HDWM uses
a slightly larger ensemble size (11.29) as compared
with DWM (10.74), The reason for the larger
ensemble in HDWM is that its base learners begin

with 4 seed learners unlike DWM which uses a single
base learner that evolves over time.

Table 9: Average Ensemble Size (%) and ranks of DWM-NB,
DWM-HT WMA and HDWM, Real-world datasets

Streams HDWM DWM-NB DWM-HT
Electricity 12.26 (3) 11.33 (1) 11.88 (2)
Spam 11.45 (3) 7.79 (1) 8.12 (2)
Sensor 8.04 (1) 8.58 (2) 9.06 (3)
Forest Cover 13.41 (2) 15.26 (3) 10.04 (1)

Average 11.29 10.74 9.78
Avg. Ranks 2.25 1.75 2.00

Fig. 9(a): Average Ensemble size in Electric (left) and Spam Email (right)

Fig. 9(b): Average Ensemble size in Sensor (left) and Cover Type (right)

5.6 Parameters Analysis

In terms of how to set the parameters in real world
problems, the difficulty is that the best values may
change over time. Potentially, one could run multiple
versions of the approach with different parameter
settings [61]. The parameters ‘β’, ‘θ’ and ‘Period’
were analysed and their effect on prediction
accuracy, ensemble size and drift detections. The
values for β ' and ' θ ' are randomly chosen between 0
and 1. While the period was also analysed on random
values 1, 25 and 50; the period = 1 representing
inclusion of all the instances in the data stream and
then gradually increased by skipping 25 instances.
The results on the ‘effect of ‘Period’ on Predictive
Accuracy and Drift Detection’ is shown in Table 10.
As evident from the table, the average prediction
accuracy is gradually increasing while the number of
drift detections is decreasing by applying a larger
value of ‘period’.

Table 10: Effect of ‘Period’ on Predictive Accuracies % & Drift
Detection, β = 0.5 and θ = 0.01 (Fixed)

Streams

Period =1 Period =25 Period =50

Acc%

D
rifts

Acc%

D
rifts

Acc%

D
rifts

SEA (S) 84.0 (3) 0 87.9 (2) 2 88.1 (1) 2
STAGGER (S) 85.2 (1) 0 61.3 (2) 0 60.8 (3) 0
RTree R 76.5 (3) 6 82.5 (2) 1 84.4 (1) 1
LED (S) 54.8 (3) 4 72.2 (2) 1 73.4 (1) 1
Wave (S) 78.2 (3) 5 82.1 (2) 0 82.2 (1) 0
Hyperplane 77.5 (3) 4 85.5 (2) 0 87.5 (1) 0
SEA (G and S) 82.9 (3) 0 87.7 (1) 1 87.1 (2) 4
RRBF(G) 90.8 (3) 8 93.0 (1) 4 92.6 (2) 8
Electricity 89.4 (1) 8 89.3 (2) 2 88.4 (3) 2
Spam 93.9 (1) 2 89.9 (2) 0 89.7 (3) 0
Sensor 83.2 (3) 26 93.6 (1) 1 92.5 (2) 3
Forest Cover 90.7 (1) 10 90.4 (2) 0 89.7 (3) 0
Avg. (Ranks) 82.3(2.2) 6.08 84.6(1.7) 1.0 84.7(2.0) 1.75

The effect of ‘β’ on Predictive Accuracy and
Ensemble Size is analysed by keeping a static value

of ‘Period = 50’. This value was chosen for
subsequent experiments, as it achieved the highest
accuracies in the experiments outlined in Table 10.
In Table 11, the average ensemble size and accuracy
is increasing by choosing a larger value of ‘β’.

Table 11: Effect of ‘β’ on Predictive Accuracies % & Ensemble
Size, Period = 50 and θ = 0.01 (Fixed)

Streams

β = 0.1 β = 0.5 β = 0.75

Acc%

Ensem
ble

 Size

Acc%

Ensem
ble

 Size

Acc%

Ensem
ble

 Size

SEA (S) 87.6 (3) 13.5 88.1 (1) 23.6 87.9 (2) 23.7
STAGGER (S) 60.8 (1) 4.0 60.8 (2) 4.0 60.7 (3) 4.0
RTree R 75.2 (3) 8.5 84.4 (2) 13.7 88.8 (1) 20.5
LED (S) 72.5 (3) 9.4 73.4 (1) 23.8 73.4 (2) 24.5
Wave (S) 80.3 (3) 13.3 82.2 (2) 17.4 83.5 (1) 24.5
Hyperplane 88.2 (1) 9.4 87.5 (3) 19.8 87.6 (2) 24.4
SEA (G and S) 87.4 (2) 12.3 87.1 (3) 17.2 88.3 (1) 23.2
RRBF(G) 92.6 (2) 8.6 92.6 (1) 14.8 92.5 (3) 20.3
Electricity 85.8 (3) 7.07 88.4 (2) 10.7 89.7 (1) 15.8
Spam 89.2 (3) 6.36 89.7 (2) 8.6 90.1 (1) 9.5
Sensor 93.0 (1) 6.74 92.5 (2) 10.3 91.7 (3) 13.8
Forest 85.7 (3) 7.17 89.7 (2) 11.5 91.3 (1) 16.5

Avg. (Ranks) 83.2(2.2) 8.8 84.7(2.0) 14.6 85.5(1.7) 18.3

Table 12: Effect of ‘θ’ on Predictive Accuracies % & Ensemble
Size, Period = 50, β = 0.5 (Fixed)

Streams

θ = 0.01 θ = 0.05 θ = 0.1

Acc%

CPU
 tim

e

Acc%

CPU
 tim

e

Acc%

CPU
 tim

e

SEA (S) 88.1 (2) 102.5 88.1 (1) 103.6 88.0 (3) 95.1
STAGGER (S) 60.8 (2) 0.04 60.8 (2) 1.0 60.8 (2) 1.0
RTree R 84.4 (1) 238.5 81.0 (2) 195.9 79.9 (3) 155.0
LED (S) 73.4 (1) 664.5 73.3 (2) 690.0 73.3 (3) 589.3
Wave (S) 82.2 (1) 1195.6 81.9 (2) 766.1 81.5 (3) 730.1
Hyperplane 87.5 (3) 508.6 87.8 (2) 429.3 88.2 (1) 343.1
SEA (G and S) 87.1 (3) 127.1 87.7 (1) 106.4 87.6 (2) 99.7
RRBF(G) 92.6 (2) 203.4 92.6 (1) 127.2 92.5 (3) 121.5
Electricity 88.4 (1) 148.4 88.3 (2) 153.5 87.9 (3) 127.6
Spam 89.7 (3) 148.9 90.0 (1) 155.6 89.9 (2) 128.1
Sensor 92.5 (2) 106.5 92.5 (3) 965.2 92.9 (1) 788.1
Forest 89.7 (1) 668.2 89.3 (2) 607.0 88.4 (3) 492.6

Avg. (Ranks) 84.7(1.8) 442.5 84.4(1.8) 358.4 85.5(2.3) 305.9

In another experiment, parameter ‘θ’ was analysed
on predictive accuracies and CPU-time. Beta = 0.5
was fixed due to the moderate average ensemble size
in the experiment outlined in Table 11. The results in
Table 12 show that the CPU-time slightly decreased
by increasing the value of θ. By increasing ‘θ’ the
average ranks increased from 1.8 to 2.3. The lower
ranks show a higher predictive performance.

6 Conclusion

The development of Heterogeneous Dynamic
Weighted Majority (HDWM) algorithms revealed the
ability to reduce human dependency on re-defining
the best type of predictive models for a particular
problem. The algorithm exhibited responsive
adaptation; dealing appropriately with changing
environments in a shorter period to increase the
reliability and predictive accuracy of the model. It
was also found that heterogeneity was a key enabler
for the improved accuracy achieved by HDWM.

HDWM improved the predictive accuracies in the
presence of different types of drifts, such as Gradual,
Sudden and Recurring. It had been a key challenge in
data stream mining, as some algorithms heavily rely
on forgetting mechanisms while others retain
previous learning. The HDWM seeding mechanism
and dynamic inclusion of new base learners
benefiting the use of both forgetting and retaining the
models. In some of the data streams it performed in a
similar way to DWM-HT and DWM-NB and the
WMA, however the HDWM achieved these
accuracies using a compact ensemble size and CPU
time. The overall accuracy plots are representing the
independence of choosing the right type of models in
a given time and conditions.
As future work, we would like to investigate the
HDWM performance on more diverse problems and
in the presence of large number of attributes. We will
also investigate to reduce its dependency on human
pre-defined parameters.

References

[1] L. Watkins, et al "Using semi-supervised machine learning to address the Big Data problem in DNS networks," 2017 IEEE 7th
Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, 2017, pp. 1-6. DOI:
10.1109/CCWC.2017.7868376

[2] G. E. Melo-Acosta, F. Duitama-Muñoz, J. D. Arias-Londoño, "Fraud detection in big data using supervised and semi-supervised
learning techniques," 2017 IEEE Colombian Conference on Communications and Computing (COLCOM), Cartagena,
Colombia, 2017, pp. 1-6. DOI: 10.1109/ColComCon.2017.8088206

[3] A. D. Gabriel, D. T.Gavrilut, B. I. Alexandru, and P. A. Stefan, "Detecting Malicious URLs: A Semi-Supervised Machine
Learning System Approach," 2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing (SYNASC), Timisoara, 2016, pp. 233-239. DOI: 10.1109/SYNASC.2016.045

[4] D. Gavrilut, R. Benchea, C. Vatamanu, "Optimized zero false positives perceptron training for malware detection". In 14th
International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2012, Timisoara,
Romania, September 26-29, 2012, pages 247–253, 2012. DOI: 10.1109/SYNASC.2012.34

[5] E. Cambra., A. Hussain, Sentic Computing: "A Common-Sense-Based Framework for Concept-Level Sentiment Analysis",
Springer, Cham, Switzerland, 2015. ISBN: 978-3-319-23654-4

[6] V. Iosifidis, E. Ntoutsi, "Large Scale Sentiment Learning with Limited Labels", In Proceedings of KDD ’17, Halifax, NS,
Canada, August 13-17, 2017. DOI: 10.1145/3097983.3098159

[7] S. Chernbumroong, A. S. Atkins, H. Yu, "Activity classification using a single wrist-worn accelerometer," 2011 5th
International Conference on Software, Knowledge Information, Industrial Management and Applications (SKIMA)
Proceedings, Benevento, 2011, pp. 1-6. DOI: 10.1109/SKIMA.2011.6089975

[8] B. Krawczyk., "Active and adaptive ensemble learning for online activity recognition from data streams", knowledge-Based
Systems Volume 138, 15 December 2017, Pages 69-78. DOI: 10.1016/j.knosys.2017.09.032

[9] A. D. Pozzolo, G. Boracchi, et. al., "Credit card fraud detection and concept-drift adaptation with delayed supervised
information," 2015 International Joint Conference on Neural Networks (IJCNN), Killarney, 2015, pp. 1-8. DOI:
10.1109/IJCNN.2015.7280527

[10] G. Ditzler , M. Roveri, C. Alippi, R. Polikar, “Learning in Nonstationary Environments A Survey”, IEEE Computational
Intelligence Magazine, vol. 10, no. 4, pp. 12-25, Nov. 2015. DOI: 10.1109/MCI.2015.2471196

[11] B. Krawczyk, L. L. Minku, J. Gama , et. al., "Ensemble Learning for Data Stream Analysis: a survey", Information Fusion, v.
37, p. 132-156, January 2017. DOI: 10.1016/j.inffus.2017.02.004

[12] J. Gama, I. Zliobaite, A. Bifet, M. Pechenizkiy, and A. Bouchachia, 2013. “A Survey on Concept Drift Adaptation”. ACM
Comput. Surv. 1, 1, Article 1 (January 2013), 35 pages. DOI: 10.1145/2523813

[13] L. L. Minku, X. Yao, “DDD: A New Ensemble Approach for Dealing with Concept Drift”, in IEEE Transactions on Knowledge
and Data Engineering, vol. 24, no. 4, pp. 619-633, April 2012. DOI: 10.1109/TKDE.2011.58

[14] A. Bifet, E. Frank, G. Holmes, and B. Pfahringer, “Accurate ensembles for data streams: Combining restricted Hoeffding trees
using stacking,” in Proc. 2nd Asian Conf. Mach. Learn., vol. 13. 2010, pp. 1–16. DOI:10.1145/2089094.2089106

[15] R. Kohavi, “A study of cross-validation and bootstrap for accuracy estimation and model selection”, IJCAI'95 Proceedings of
the 14th international joint conference on Artificial intelligence – vol. 2 pp. 1137-1143, Aug 1995. ISBN:1-55860-363-8

[16] D. H. Wolpert, (1992), “Stacked generalization”, Neural Networks 5, 241-259. DOI 10.1016/S0893-6080(05)80023-1

[17] S. Dzeroski and B. Zenko, “Stacking with multi-response model trees”, In Proceedings of the 3d International Workshop in
Multiple Classifier Systems. Springer, 2002. ISBN:3-540-43818-1

[18] C. J. Merz, (1999). “Using correspondence analysis to combine classifiers”. Machine Learning, 36:1/2, 33–58. DOI:
10.1023/A:1007559205422

[19] N. Littlestone and K. Warmuth, (1994). “The Weighted Majority Algorithm”. Information and Computation, 108:212–261. DOI
10.1006/inco.1994.1009

[20] J. Z. Kolter. and M. A. Maloof, (2007), “Dynamic weighted majority: An ensemble method for drifting concepts”. The Journal
of Machine Learning Research, 8:2755-2790. DOI: 10.1109/ICDM.2003.1250911

[21] J. N. Rijn, H. M. Gomes, B. Pfahringer. and J. Vanschoren, “Algorithm Selection on Data Streams” in Discovery Science, ser.
Lecture Notes in Computer Science. Springer, 2014, vol. 8777, pp. 325–336. DOI: 10.1007/978-3-319-11812-3_28

[22] A L. Debiaso, A. C. Ponce, C. Soares, B. Feresde, “MetaStream: A meta-learning-based method for periodic algorithm selection
in time-changing data,” Neurocomputing, vol. 127, pp. 52–64, 2014. DOI: 10.1016/j.neucom.2013.05.048

[23] H. Nguyen, Y. Woon, N. Wee-Keong, L. Wan, “Heterogeneous Ensemble for Feature Drifts in Data Streams”, in Advances in
Knowledge Discovery and Data Mining. Springer, 2012, pp. 1–12. DOI: 10.1007/978-3-642-30220-6_1

[24] W. X. Cheng, R. Katuwal, P. N. Suganthan, Q. Xueheng, "A heterogeneous ensemble of trees", 2017 IEEE Symposium Series
on Computational Intelligence (SSCI), Honolulu, HI, 2017, pp. 1-6. DOI: 10.1109/SSCI.2017.8285445.

[25] B.S. Parker, L Khan and A. Bifet., "Incremental Ensemble Classifier Addressing Non-Stationary Fast Data Streams." Data
Mining Workshop (ICDMW), 2014 IEEE International Conference on. IEEE, 2014. DOI: 10.1109/ICDMW.2014.116

[26] Y. Lei and L. Huan, “Feature selection for high-dimensional data: A fast correlation-based filter solution". In the 20th ICML,
pages 856–863, 2003. ISBN:1-57735-189-4

[27] J. Z. Kolter, M. A. Maloof, “Using additive base learner ensembles to cope with concept drift", in: Proceedings of the Twenty
Second ACM International Conference on Machine Learning (ICML’05), 2005, pp. 449–456. DOI: 10.1145/1102351.1102408

[28] D. Brzezinski, J. Stefanowski, “Combining block-based and online methods in learning ensembles from concept drifting data
streams". Information Sciences, Vol 265, pp. 50-67, 2014. DOI: 10.1016/j.ins.2013.12.011

[29] G. Xiao-Feng, et al. "An improving online accuracy updated ensemble method in learning from evolving data streams." Wavelet
Active Media Technology and Information Processing (ICCWAMTIP), 2014 11th International Computer Conference on.
IEEE, 2014. DOI: 10.1109/ICCWAMTIP.2014.7073443

[30] K. Nishida, K. Yamauchi, “Adaptive classifiers-ensemble system for tracking concept drift", in: Proceedings of the Sixth
International Conference on Machine Learning and Cybernetics (ICMLC’07), 2007a, pp. 3607–3612. Honk Kong. DOI:
10.1109/ICMLC.2007.4370772

[31] A. Bifet and R. Gavald`a, “Learning from time-changing data with adaptive windowing". In SDM, 2007. DOI:
10.1137/1.9781611972771.42

[32] J. Gama, P. Medas, G. Castillo and P. Rodrigues, (2004). “Learning with Drift Detection,” in Proc. of the 17th Brazilian
Symposium on Artificial Intelligence (SBIA’04), pp. 286-295. DOI: 10.1007/978-3-540-28645-5_29

[33] M. Baena-Garcıa, J. D. Campo-Avila, R. Fidalgo, and A. Bifet, (2006). “Early Drift Detection Method,” in Proc. of the 4th
ECML PKDD International Workshop on Knowledge Discovery from Data Streams, pp. 77-86.

[34] A. Bifet and R. Kirkby, Tutorial 1. Introduction to MOA Massive Online Analysis http://sourceforge.net/projects/moa-
datastream/files/documentation/Tutorial1.pdf (Accessed 10 Apr 17)

[35] Z. Xingquan, (2010). Stream Data Mining repository. Accessed on Jan 2012; Available from:
http://www.cse.fau.edu/~xqzhu/stream.html [Accessed Feb 2017]

[36] The Apache SpamAssasin Project - http://spamassassin.apache.org/ [Accessed May 2018]

[37] M. Harries. “Splice-2 comparative evaluation: Electricity pricing". Technical report, The University of South Wales, 1999.

[38] M. Friedman, (December 1937). "The use of ranks to avoid the assumption of normality implicit in the analysis of variance".
Journal of the American Statistical Association. American Statistical Association. 32 (200): 675–701. DOI: 10.2307/2279372

[39] P. Nemenyi, (1963) “Distribution-free Multiple Comparisons". PhD thesis, Princeton University.

[40] J. Demsar, (2006). “Statistical comparisons of classifiers over multiple data sets". J. Mach. Learn. Res., ISSN 1532-4435

[41] J.P. Barddal, H. M. Gomes, F. Enembreck and B. Pfahringer, 2015c. “A survey on feature drift adaptation". In: Proceedings of
2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 1053–1060. DOI:
10.1016/j.jss.2016.07.005

[42] J. N. Rijn, H. M. Gomes, B. Pfahringer. and J. Vanschoren, “Having a Blast: Meta-Learning and Heterogeneous Ensembles for
Data Streams". In 2015 IEEE International Conference on Data Mining, pages 1003-1008. IEEE, 2015. DOI:
10.1109/ICDM.2015.55

[43] K. Nishida, (2008). “Learning and Detecting Concept Drift", PhD thesis, Hokkaido University, Japan.

[44] J. C. Schlimmer, and R. H. Granger Jr., (1986). “Incremental learning from noisy data", 1: 317–354. DOI: 10.1007/BF00116895

[45] W. N. Street and Y. Kim. "A streaming ensemble algorithm (SEA) for large-scale classification", KDD '01: Proceedings of the
seventh ACM SIGKDD international conference on Knowledge discovery and data mining n377-382 2001. DOI:
10.1145/502512.502568

[46] G. Boracchi, C. Cervellera, D. Macciò., "Uniform histograms for change detection in multivariate data," 2017 International
Joint Conference on Neural Networks (IJCNN), Anchorage, AK, 2017, pp. 1732-1739. DOI: 10.1109/IJCNN.2017.7966060

[47] X. Song, M. Wu, C. Jermaine, and S. Ranka, “Statistical change detection for multi-dimensional data,” in Proceedings of
International Conference on Knowledge Discovery and Data Mining (KDD), 2007. DOI: 10.1145/1281192.1281264

[48] C. R. Blyth, “On the inference and decision models of statistics,” Ann. Math. Statist., vol. 41, no. 3, pp. 1034–1058, 1970.

[49] E. L. Lehmann and J. P. Romano, “Testing Statistical Hypotheses". New York, NY: Springer Science+Business Media, Inc.
Springer e-books,2005. ISBN: 978-0-387-98864-1

[50] G. Ditzler and R. Polikar, “Hellinger distance-based drift detection for non-stationary environments,” in Computational
Intelligence in Dynamic and Uncertain Environments (CIDUE), 2011 IEEE Symposium on, April 2011, pp. 41–48. DOI:
10.1109/CIDUE.2011.5948491

[51] F. Stahl, M. M. Gaber, P. Aldridge, D. et. al., 2012. “Homogeneous and Heterogeneous Distributed Classification for Pocket
Data Mining". In: Hameurlain, A., Küng, J. and Wagner, R., eds. Transactions on Large-Scale Data- and Knowledge-Centered
Systems V (7100). Springer Berlin Heidelberg, pp. 183-205. DOI: 10.1007/978-3-642-28148-8_8

[52] S. Ghosh, D. L. Reilly, “Credit card fraud detection with a neuralnetwork", in: Proceedings of the Twenty-Seventh Hawaii
International Conference on System Sciences., Vol. 3, IEEE, 1994, pp. 621-630. DOI: 10.1109/HICSS.1994.323314

[53] D. Sanchez, M. A. Vila, L. Cerda, J. Serrano, “Association rules applied to credit card fraud detection", Expert Systems with
Applications 36 (2) (2009) 3630-3640. DOI: 10.1016/j.eswa.2008.02.001

[54] Intel Lab Data http://db.csail.mit.edu/labdata/labdata.html [Accessed May 2018]

[55] A. Asuncion & D. Newman, (2007). “UCI machine learning repository". http://www.ics.uci.edu/~mlearn/MLRepository.html.

[56] D. Brzezinski and J. Stephanowski, “Reacting to different types of concept drift: The accuracy updated ensemble algorithm,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 1, pp. 81–94, Jan. 2014. DOI: 10.1109/TNNLS.2013.2251352

[57] Massive Online Analysis, datasets https://moa.cms.waikato.ac.nz/datasets/ [Assessed Jan 2019]

[58] H. M. Gomes., A. Bifet, J. Read., J. P. Barddal., et. al. “Adaptive random forests for evolving data stream classification". In
Machine Learning, DOI: 10.1007/s10994-017-5642-8, Springer, 2017. DOI: 10.1007/s10994-017-5642-8

[59] A. Bifet., G. F. Morales., J. Read. G. Homes., and B. Pfahringer, “Efficient online evaluation of big data stream classifiers". In
Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 59–68.
ACM, 2015. DOI: 10.1145/2783258.2783372

[60] I. Žliobaitė, A. Bifet, J. Read, B. Pfahringer, and G. Homes, “Evaluation methods and decision theory for classification of
streaming data with temporal dependence". Machine Learning, 98(3):455–482, 2015. DOI: 10.1007/s10994-014-5441-4

[61] L. L. Minku, A novel online supervised hyperparameter tuning procedure applied to cross-company software effort estimation
Empir Software Eng (2019). DOI: 10.1007/s10664-019-09686-w

[62] J. Gama, R. Sebastião, & P.P. Rodrigues, (2009). “Issues in evaluation of stream learning algorithms". In Proceedings of the
15th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 329–338). ACM. DOI:
10.1145/1557019.1557060

[63] J. Sun., J. Lang, H. Fujita, L. Hui, “Imbalanced enterprise credit evaluation with DTE-SBD: decision tree ensemble based on
SMOTE and bagging with differentiated sampling rates", Inf. Sci. 425 (2018) 76–91. DOI: 10.1016/j.ins.2017.10.017

[64] C. Zhang., B. Jingjun, X. Shixin, et. al,“Multi-Imbalance: An open-source software for multi-class imbalance learning",
Knowl.-Based Syst. 174 (2019) 137–143. DOI: 10.1016/j.knosys.2019.03.001

Appendix A

SEA (Sudden Drift)
EvaluatePrequential -s (ConceptDriftStream -s (generators.SEAGenerator -f 4) -d (ConceptDriftStream -s
(generators.SEAGenerator -f 3) -d (generators.SEAGenerator -f 2) -p 50000 -w 1) -p 25000 -w 1) -i 100000 -f
1000

SEA (Gradual and Sudden Drift)
EvaluatePrequential -s (ConceptDriftStream -s (generators.SEAGenerator -f 2) -d (ConceptDriftStream -s
(generators.SEAGenerator -f 3) -d (generators.SEAGenerator -f 4) -p 50000 -w 1) -p 25000 -w 10000) -i 100000
-f 1000

HyperPlane (Gradual Drift)
EvaluatePrequential -s (generators.HyperplaneGenerator -k 10 -t 0.01) -i 100000 -f 1000

RandomTrees (Recurring Drift)
EvaluatePrequential -s (RecurrentConceptDriftStream -x 10000 -s (generators.RandomTreeGenerator -o 0) -d
(generators.RandomTreeGenerator -u 0) -p 25000 -w 1) -i 100000 -f 1000

RandomRBF (Gradual Drift)
EvaluatePrequential -s (clustering.RandomRBFGeneratorEvents -n) -i 100000 -f 1000

LED (Sudden Drift)
EvaluatePrequential -s (ConceptDriftStream -s generators.LEDGenerator -d (generators.LEDGeneratorDrift -d 7)
-p 50000) -i 100000 -f 1000

WaveFormDrift (Sudden Drift)
EvaluatePrequential -s (ConceptDriftStream -s generators.WaveformGenerator -d
(generators.WaveformGeneratorDrift -d 20) -p 50000 -w 1) -i 100000 -f 1000

