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Abstract
Stuttering is a disorder in which the smooth flow of speech is interrupted. People who stutter show

structural and functional abnormalities in the speech and motor system. It is unclear whether func-

tional differences reflect general traits of the disorder or are specifically related to the dysfluent

speech state. We used a hierarchical approach to separate state and trait effects within stuttering.

We collected sparse-sampled functional MRI during two overt speech tasks (sentence reading and

picture description) in 17 people who stutter and 16 fluent controls. Separate analyses identified indi-

cators of: (1) general traits of people who stutter; (2) frequency of dysfluent speech states in

subgroups of people who stutter; and (3) the differences between fluent and dysfluent states in peo-

ple who stutter. We found that reduced activation of left auditory cortex, inferior frontal cortex

bilaterally, and medial cerebellum were general traits that distinguished fluent speech in people who

stutter from that of controls. The stuttering subgroup with higher frequency of dysfluent states during

scanning (n 5 9) had reduced activation in the right subcortical grey matter, left temporo-occipital

cortex, the cingulate cortex, and medial parieto-occipital cortex relative to the subgroup who were

more fluent (n5 8). Finally, during dysfluent states relative to fluent ones, therewas greater activation

of inferior frontal and premotor cortex extending into the frontal operculum, bilaterally. The above

differences were seen across both tasks. Subcortical state effects differed according to the task.

Overall, our data emphasise the independence of trait and state effects in stuttering.

K E YWORD S

basal ganglia, cerebellum, developmental stuttering, movement disorder, speech disorder

1 | INTRODUCTION

Persistent developmental stuttering is a disorder marked by disruptions

to the smooth flow of speech that emerges in early childhood. By

adulthood, roughly 1 in 100 individuals continue to stutter (Felsenfeld,

2002). All of these individuals have periods of fluent speech as well as

the periods of dysfluent speech that define their disorder. State effects

distinguish specific states of dysfluent from fluent speech. Specific

states of dysfluent speech typically include core characteristics of stut-

tering, for example, repetitions, prolongations, and blocking of sounds,

which most frequently occur at the beginnings of words. The distinc-

tion between states is obvious to most listeners, and many people who

stutter can predict specific situations and sounds that are likely to

result in dysfluent states. Still, the field of stuttering research has yet to

isolate the neural correlates of state effects in stuttering. Research

investigating trait effects in stuttering, that is, what distinguishes peo-

ple who stutter from people who are fluent, is abundant, but some

major areas of disagreement still exist. Distinguishing between brain

activity that reflects traits of stuttering, that is, “commonalities among

people who stutter”; and states of stuttering, that is, “disruptions that

are associated with the act of stuttering” is critical in unravelling the

underpinnings of this developmental disorder of speech fluency and

resolving discrepancies in the literature.

1.1 | Speech-motor system traits in stuttering

Disorganisation of white matter is a structural trait of developmental

stuttering. Microstructural disruption was first thought to be localized
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to a critical speech-motor pathway underlying the left central opercular

cortex (Sommer, Koch, Paulus, Weiller, & B€uchel, 2002). These disrup-

tions to left hemisphere white matter microstructure underlying key

motor areas have also been documented during middle childhood in

children who continue to stutter, as well as in those who had recovered

(Chang, Erickson, Ambrose, Hasegawa-Johnson, & Ludlow, 2008). Fur-

ther studies reported that the disorganisation extended into ventral

premotor cortex, bilaterally, and corresponded to abnormalities in func-

tional activation of nearby grey matter in adolescents and young adults

who stutter (Watkins, Smith, Davis, & Howell, 2008). In adults who

stutter, the right hemisphere disruptions underlying ventral premotor

tracts correspond to hyperactivity during imagined speech tasks in

fMRI and correlate with stuttering severity (Neef et al., 2017).

Previous work suggests differences follow a more diffuse pattern

of white matter disorganisation, with many disruptions occurring bilat-

erally (Connally, Ward, Howell, & Watkins, 2014). White matter was

disorganized in each of the four cerebral lobes, in the cerebral and cer-

ebellar peduncles, and within the posterior body of the corpus cal-

losum. Notably, descending motor pathways (corticobulbar tracts)

showed greater abnormality in the left hemisphere compared to the

right within people who stutter, whereas fluent controls showed no dif-

ferences between hemispheres in these pathways. Overall, abnormal-

ities have been documented in numerous white matter pathways in the

brains of individuals who stutter, and differences are especially pro-

nounced in the left hemisphere speech-motor pathways (Neef, Anwan-

der, & Friederici, 2015). It remains to be determined whether these

tracts are affected early or even before the onset of the disorder in

early childhood. Given that children who stutter show predominately

left-hemisphere disorganization (Chang et al., 2008), it is likely that

some, if not all, of the microstructural differences observed in adults

who stutter relate to experience-dependent mechanisms that surface

throughout the duration of the disorder.

Functional neuroimaging studies of stuttering also show diffuse

disruption in speech-motor networks. A seminal meta-analysis summar-

ized findings as three “neural signatures of stuttering”: overactivity in

the right inferior frontal cortex and anterior insula; underactivity in the

auditory cortex; and overactivity in the cerebellar vermis (Brown, Ing-

ham, Ingham, Laird, & Fox, 2005). These traits emerged in spite of vari-

ability of neuroimaging method, tasks used, and fluency state. Two

more recent meta-analyses replicated in part the originally-reported

neural signatures and further attempted to dissociate state from trait

effects (Belyk, Kraft, & Brown, 2017; Budde, Barron, & Fox, 2014).

One meta-analysis reported stuttering trait effects in terms of overac-

tivity of right ventral premotor/motor cortex and Rolandic operculum,

and underactivity of left ventral premotor/motor cortex and found that

the right ventral motor cortex overactivity (at the level of the face rep-

resentation) was specific to the stuttering state (Belyk et al., 2017). The

other meta-analysis (Budde et al., 2014) reclassified reduced auditory

cortex activity to be both trait (on the left) and state (bilaterally but pre-

dominantly on the right) effects and cerebellar overactivity as a state

effect; overactivity of the right inferior frontal areas including the ante-

rior insula were classified as definite trait and possible state effects. In

addition, this meta-analysis found that overactivity of the

supplementary motor complex (SMA and preSMA) was a general trait

that distinguishes individuals who stutter from fluent controls as well

as a state effect, as it was seen during dysfluency (Budde et al., 2014).

1.2 | Attempts to distinguish state effects in stuttering

Direct comparisons of dysfluent to fluent speech states within individu-

als are rare. Of the four reports to do so (den Ouden, Montgomery, &

Adams, 2014; Jiang, Lu, Peng, Zhu, & Howell, 2012; Sowman, Crain,

Harrison, & Johnson, 2012; Wymbs, Ingham, Ingham, Paolini, & Graf-

ton, 2013) both fluent and dysfluent speech states recruited the same

fundamental network, which is consistent with findings in studies of

trait effects indicating similarities in activation are also far greater than

differences (Fox et al., 1996; Ingham, Grafton, Bothe, & Ingham, 2012).

Specific findings can loosely be grouped according to those showing

reduced recruitment of language-dominant inferior frontal cortex dur-

ing dysfluent speech (den Ouden et al., 2014; Sowman et al., 2012),

those studies showing increased recruitment of the speech-motor net-

work during dysfluent speech (Sowman et al., 2012; Wymbs et al.,

2013), and a single study reporting both these patterns of alterations

and suggesting they underlie different specific speech symptoms in

stuttering (Jiang et al., 2012). Within participants, both the basal ganglia

and cerebellum are associated with lower magnitude of signal change

during “more typical” relative to “less typical” stuttering symptoms

(Jiang et al., 2012). In other words, the “less typical” symptoms of stut-

tering (incomplete phrases, revisions, interjections, and phrase repeti-

tions) resulted in subcortical overactivity relative to “more typical”

symptoms (part-word repetitions, prolongations, broken words) (Jiang

et al., 2012). The distinction between specific symptoms within dysflu-

ent speech states suggests potential for dual-roles of the subcortical

motor structures in stuttering neuropathology. Further, the variability

in the specific location of state effects cannot be overstated, as only a

single region overlapped across all individuals in one study: the left

lobule IV of the cerebellum was overactive for dysfluent relative to flu-

ent speech in four adults males who stutter in whom different speech

states were directly contrasted (Wymbs et al., 2013).

To a certain extent, relationships between neural activation and

stuttering severity or treatment gains can supplement the dearth of

direct examinations of dysfluent speech. Application of such efforts is

often limited due to choice of measurement. For example, in some

studies, “stuttering severity” was actually a measure of frequency of

dysfluent states (e.g., Giraud et al., 2008), whereas in other studies a

standardized instrument was used that calculated a composite score

using stuttering frequency, duration of stuttered events, and subjective

severity of concomitant behaviors (Stuttering Severity Instrument, SSI

[Riley, 1994], e.g., Sakai, Masuda, Shimotomai, & Mori, 2009). One

common factor in reports of the neural correlates of stuttering severity

is a proclivity to more frequent dysfluency (Belyk et al., 2017), which

may involve different circuits to those underlying the presence or

absence of dysfluent speech, per se. Still, abnormal activity in subcorti-

cal structures is frequently implicated in relation to stuttering severity:

cerebellar activity normalizes following treatment (De Nil, Kroll, &

Houle, 2001; Lu, Arai, Tsai, & Ziemann, 2012), as does basal ganglia
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activity (Toyomura, Fujii, & Kuriki, 2015). Speech-related activation in

the basal ganglia was positively correlated with stuttering frequency

using both PET (Ingham et al., 2012) and fMRI (Giraud et al., 2008).

Generally, many studies implicate some portion of the basal ganglia or

cerebellum or both in stuttering states, but the precise roles of these

structures are little understood.

1.3 | The aims of the current study

Here, we used a whole-brain approach to explore speech-related activ-

ity during two speech production tasks—sentence reading and picture

description—as reflecting either general traits of stuttering or specific

states of stuttered speech. We defined trait and state effects in stutter-

ing as follows (Figure 1):

� General Traits: Activity during fluent-speech production in people

who stutter (PWS) that differed from that in controls (CON).

� State-based subgroups: We divided our sample of PWS, who all

share the stuttering trait, into two subgroups using a data-driven

threshold for fluency during scanning: one subgroup contained indi-

viduals who were mostly fluent (FLU) during scanning and the other

contained participants who were more dysfluent (DYS).

� State effects: Within individuals in the DYS subgroup, we compared

fluent to dysfluent utterances to explore potential indicators of the

stuttering state.

2 | MATERIALS AND METHODS

2.1 | Participants

Seventeen adults with persistent developmental stuttering (PWS: 13

males, 4 females; aged 19–54 years; 3 left-handers) and 17 age and

sex-matched fluent controls (CON: 13 males, 4 females; aged 19–

53 years; 3 left-handers) were scanned using functional MRI. All partici-

pants were native English speakers. No controls had a history or diag-

nosis of learning or speech disorders. All participants gave informed

consent to their participation in the research in a protocol approved by

University of Reading’s ethics committee. We removed one male con-

trol participant from this analysis because of noncompliance with

instructions (see “Speech tasks” below for details). Therefore, a total of

16 CON and 17 PWS were retained for analysis.

Groups (CON and PWS) were well-matched on age, education,

handedness and gender (Table 1). This work is part of a larger study on

fluency disorders, therefore data from the CON group reported here

was also used as in a previously published report of fMRI activity in a

different speech disorder known as cluttering (Ward, Connally, Pliatsi-

kas, Bretherton-Furness, & Watkins, 2015). That previous report did

FIGURE 1 Isolating trait and state effects in stuttering. (a) We
conceptualised general traits as those things shared by people who
stutter (PWS) that are different when compared to fluent controls
(CON). In this way, activity during fluent speech, which occurs in
both PWS and CON, can be used to isolate a general trait of
stuttering. (b) In our study, about half of the PWS group
overlapped with CON in the average number of dysfluent
utterances per scan; the other half did not overlap with CON at all
in terms of frequency of dysfluent utterances. Therefore, we used
a data–driven threshold to create two subgroups of PWS: mostly
fluent (FLU) and somewhat dysfluent (DYS). These subgroups were
compared directly to isolate effects related to a general “proclivity”
to dysfluency in the scanning environment. (c) Within the DYS
subgroup, we were able to isolate specific state effects through
comparing dysfluent to fluent speech epochs directly

TABLE 1 Summary of group and subgroup demographics

PWS Subgroups

CON PWS FLU DYS

Total n [females] 16[4] 17[4] 8[3] 9[1]

Left handed [females] 2[0] 3[1] 2[1] 1[0]

Age in years Mean (SD) 33.1 (11.4) 31.4 (11.0) 31.75 (14.4) 31.11 (7.8)

Range 19–53 19–54 22–45 19–54

Education in years Mean (SD) 17.8 (1.9) 16.35 (1.8) 16.25 (0.7) 16.44 (1.9)

Stuttering severity Median 23 19 30

Range 10–46 10–43 10–46
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not include these PWS data nor focus on fluent speech within the

CON group as we have in the current study.

Stuttering ranged in severity from very mild to very severe, as

assessed using the Stuttering Severity Instrument (SSI–III, [Riley, 1994]

median 23, interquartile range 16.5–32.5, range 10–46). Most of the

participants in the PWS group had received treatment previously, which

varied in terms of type, ages at which received, and the interval relative

to the time of study involvement. Importantly, none were receiving

treatment at the time of the study, nor had they been involved in a

treatment program for at least one year prior to participation.

We separated our PWS group into two state-based subgroups

(FLU and DYS), which differed in the frequency of dysfluent speech

during scanning (Figure 2). The threshold for subgrouping meant that

participants in the DYS group needed to have at least ten dysfluent

utterances in each scan run. The distribution of frequencies of dysflu-

ent utterances of the FLU subgroup overlapped entirely with that of

the CON group. The DYS and FLU subgroups were not overlapping in

terms of numbers of dysfluent utterances (Figure 2). However, the sub-

groups were overlapping in terms of the range of their stuttering sever-

ity scores, and did not significantly differ in stuttering severity (SSI–III

total score), age, or years of education (Table 1).

2.2 | Data acquisition

Functional MRI data were obtained at the University of Reading’s Centre

for Integrative Neuroscience and Neurodynamics using a 3T Siemens

Trio scanner with a 12-channel head coil. Whole head T2*-weighted

echo planar images (TE 5 30 ms) were acquired every 9 s with a silent

delay of 7 s (i.e., sparse sampling) and comprised 2-s acquisition of 32 4-

mm axial slices (in plane resolution 3 3 3 mm). A “1” appeared in the

middle of the screen during the 2-s acquisition period. During the 7-s

silent delay between measurements, participants saw a stimulus via scan-

ner compatible goggles that was a picture with a descriptive sentence

below it, or a picture with no text, or a “1” in the middle of the screen.

Participants were instructed to read the sentences aloud (Sentence

Reading task) or to overtly describe the pictures (Picture Description

task) and were explicitly told to stop speaking when the crosshair

appeared so that there would be no speech related movement of the

head during data collection. Prior to the scan, the task was explained to

participants, who were allowed to practise outside the scanner. Partici-

pants were explicitly instructed to refrain from using fluency enhance-

ment techniques in the scanner and to speak as naturally as possible.

For each of the tasks and the baseline, 40 volumes of data were

acquired for a total of 120 volumes (18 min); the order of tasks was

fixed and pseudorandom. Two runs were acquired in each participant,

yielding a total of 80 volumes of each task (Sentence Reading, Picture

Description) and baseline.

2.3 | Speech tasks

We use two tasks to elicit overt speech: (1) sentence reading and (2)

picture description. These tasks were described previously in a report

of fMRI activity in cluttering, a disorder which shares some symptoms

and is often comorbid with stuttering (Ward et al., 2015). Speech was

recorded using an MRI-compatible microphone. A native British-

speaker (S.F.) was blinded to participant group and asked to rate

recorded utterances as either dysfluent or fluent. The rater was given

instructions to mark utterances as either fluent (0) or dysfluent (1: “if

speech is dysfluent at all”). These instructions were followed by guide-

lines summarising the symptoms of two fluency disorders: stuttering

(American Psychiatric Association, 2013) and cluttering (Louis &

Schulte, 2011). A sentence was considered dysfluent if it contained at

least one interruption to speech flow. Such dysfluencies included core

stuttering characteristics (repetition, prolongation or tense pauses/

blocks) as well as other speech dysfluencies, such as repeated multisyl-

labic words or phrases, revisions, fragments, or interjections (e.g., “um”).

It is worth noting that the latter occur in the speech of normally fluent

speakers as well as in the speech of people who stutter, but do not

contribute towards calculations of stuttered syllables in the SSI.

The blinded ratings were compared to ratings from another native

British-speaker (R.B.) who was provided with the same rubric but was

not blind to participant group. Item by item agreement was calculated

between the two raters. The resulting agreement was high (0.93) across

all items (160 utterances) and all participants in this study (n 5 34), as

well as an additional sample with a fluency disorder known as cluttering

(n 5 17).

We were able to directly confirm participant compliance with task

instructions via the recordings we took in the scanner. During this pro-

cess we noticed three types of speech errors: (1) describing the picture

FIGURE 2 Stuttering subgroups differed in terms of the
frequency of dysfluent utterances during scan runs. This plot
reflects how we determined subgroups of people who stutter using
a data-driven threshold of 10 dysfluent utterances per scan run.
The mostly fluent (FLU) subgroup overlapped entirely with the flu-
ent control group (CON) in their frequencies of dysfluent speech in
the scanner. The somewhat dysfluent stuttering subgroup (DYS)

did not overlap with either CON or FLU in terms of the number of
dysfluent utterances across scan runs [Color figure can be viewed
at wileyonlinelibrary.com]
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instead of reading a sentence; (2) continuing to speak after reading the

sentence; and (3) speaking during baseline trials. When participants

made the first type of error we re-coded the trial as a “picture descrip-

tion” trial rather than a sentence reading trial. This was the case for

eight trials across all participants (one for each of 1 CON and 2 PWS,

and five trials in one other PWS). For the other types of errors, when

possible we removed trials using a confound variable for each trial, as is

done for motion outliers in FSL. This process was used to remove 1

sentence reading trial in a CON who added speech, 3 baseline trials in

one PWS, and 10 baseline trials in another PWS. For two CON partici-

pants, the errors were too frequent to be addressed in this fashion.

Therefore, one control participant was removed from the study for

continuing to speak after finishing reading on 69/80 “sentence reading”

trials. One entire session from another control participant was removed

from the study for making the same error on 38/40 sentence reading

trials in the first session. The second scan session was retained for this

participant.

2.4 | Image analysis

2.4.1 | Preprocessing

The functional images were analysed using the FMRIB Software Library

(FSL 5.0.6; http://www.fmrib.ox.ac.uk/fsl, [Jenkinson, Beckmann, Beh-

rens, Woolrich, & Smith, 2012]). Standard motion correction, and indi-

vidual volumes that were motion outliers were included as separate

regressors at the first level for each participant. Excessive motion,

defined as larger than the widest voxel dimension, (i.e., >4 mm) was

observed towards the end of a single scan run in one PWS and one

CON, and these volumes were removed from the time series (i.e., the

runs were truncated by 29 volumes (PWS) and 20 volumes (CON)

within a single 120 volume run).

The remaining data were analysed in the same way for all partici-

pants. Each dataset was unwarped using a fieldmap and PRELUDE and

FUGUE software running in FSL (Jenkinson et al., 2012) and spatially

smoothed with an 8-mm full-width-at-half-maximum smoothing kernel.

A temporal high-pass filter with a cut-off of 150 s was used to remove

low-frequency fluctuations in the signal. Two further regressors were

used in the first-level analysis to remove residual image artefacts due

to physiological changes. These regressors were the mean time-

courses extracted from preprocessed data from 4-mm radius spheres in

areas where task-related activity was not expected; one was placed

within cerebrospinal fluid of the anterior lateral ventricle (standard

space coordinates 2, 10, 8) and the other within white matter in the

dorsal posterior frontal lobe (–26, 222, 28) (Leech, Braga, & Sharp,

2012). Images were registered using boundary-based registration

(Greve & Fischl, 2009) to the individual participant’s T1-weighted struc-

tural image (1 mm3 voxels; TR 5 2,020 ms, TE 5 2.9 ms, flip

angle 5 908), which in turn was registered using FNIRT (FMRIB’s non-

linear registration tool) to the MNI-152 template.

2.4.2 | Modelling of trait and state effects

General traits: We defined stuttering traits as abnormal activity

observed during fluent speech in PWS relative to that observed in

CON (Figure 1). For individual participants, for each scan run, statistical

maps were generated to show patterns of activation during each task

relative to baseline. Each task was modelled using a separate regressor.

To examine these trait-based effects, for all participants (including

CON), we added a behavioural regressor at the first-level coding for

dysfluent utterances. This regressor removed the residual effect of dys-

fluent utterances for each scanner run, thereby allowing us to restrict

our analyses to fluent speech.

At the first level, we modelled five contrasts of interest for each

participant: the average for each task relative to baseline, the contrast

of each task to the other (in both directions), and the average of all

speech (both tasks) relative to baseline, for use in higher level models

testing a group factor. In a second-level analysis, to combine data from

the two runs, we averaged statistical maps from the first level for each

participant using a fixed-effects analysis.

At the highest level, a 2 (task) 3 2 (group) ANOVA model was

implemented using FMRIB’s Local Analysis of Mixed Effects stage 1

(Woolrich, Behrens, Beckmann, Jenkinson, & Smith, 2004). We probed

for the main effect of task (sentence reading and picture description)

and the interaction between task and group (PWS and CON) in a single

model. Main effects of group were probed using unpaired t tests on

the average signal of “all speech” relative to baseline across both tasks.

State-based subgroups: In a second analysis, we divided our PWS

sample into subgroups of individuals who were mostly fluent (FLU,

n 5 8) or dysfluent (DYS, n 5 9) based on a cut-off of at least 10 dys-

fluent utterances per scan run. The cut-off was based on the number

of utterances that were dysfluent in both scans (Figure 2). The mostly

fluent subgroup (FLU) completely overlapped with the CON group in

terms of the frequency of dysfluent speech in the scanner. The other

subgroup, DYS, did not overlap with either FLU or CON. In other

words, we set a cut-off independent of speaking task, yet still indicative

of general proclivity to stuttering throughout the scan session. For this

analysis, we included both fluent and dysfluent speech states, and

therefore did not use an additional regressor for dysfluent utterances.

Otherwise all aspects of analyses were identical to the general trait

pipeline described above, though at the highest level we compared

FLU and DYS subgroups rather than PWS and CON (Figure 1).

State effects: Within the DYS subgroup, we explored activity related

to the two types of speech states: fluent and dysfluent (Figure 1). We

set a minimum of 10 fluent or 10 dysfluent utterances per run for inclu-

sion in this analysis. Therefore, one DYS participant who had only a sin-

gle completely fluent utterance across both runs, was excluded from this

analysis. For another DYS participant, we excluded one run, which con-

tained only a single dysfluent “sentence reading” trial but 15 dysfluent

“picture description” trials, resulting in an imbalance in ANOVA cells. We

refer to this analysis as comparing dysfluent and fluent states, which are

approximated by comparison of dysfluent to fluent utterances.

In this analysis, we were primarily interested in (1) isolating state

effects; and (2) detecting interactions between state and task. We

coded four variables at the first level so that we could examine activity

related to fluent and dysfluent states within the Picture Description

and Sentence Reading tasks, respectively. At the second level, as

described above, we averaged the two scanner runs for each

CONNALLY ET AL. | 5CONNALLY ET AL. 3113



participant, with the exception of one participant for whom data were

only available from one run (see above).

Finally, at the highest level, we implemented, a 2 (task) 3 2 (state)

within ANOVA model using FMRIB’s Local Analysis of Mixed Effects

stage 1 (Woolrich et al., 2004). We probed for the main effect of task

(Sentence Reading and Picture Description), the main effect of state

(fluent and dysfluent) and the interaction between them in a single

model. Significant effects were explored using t tests that averaged

effects across the group.

Motion effects: The dysfluent state can be accompanied by physical

concomitants (jerks, tics, and other orofacial movements). This could

result in greater movement during scans acquired after trials containing

dysfluency and consequently affect the signal in those images. To

address this concern, we directly tested the hypothesis that movement

was greater during dysfluent trials than fluent trials. We computed an

average of the absolute values for each of the six standard motion cor-

rection parameters for fluent and dysfluent items within each scan run

for individuals whose data were used in the state analysis. We then

used a 2 3 6 repeated measures ANOVA to probe for excess

movement-related noise in dysfluent relative to fluent states. The

motion parameters did not differ significantly between states, nor did

they interact with state.

We then examined whether there was a difference in the propor-

tion of motion outliers detected during each speech state. We first cal-

culated the proportion of the total number of motion outliers to the

total number of items for each speech state for each participant in the

state analysis. We then used a paired t test to compare states within

participants. The proportion of items detected as motion outliers did

not differ significantly between states. We were able, therefore, to

reject the hypothesis that images acquired after trials containing dysflu-

ent speech required greater motion correction than did images

acquired after trials containing fluent speech.

Thresholding. The highest level of each analysis (for group, sub-

group or state, respectively) was examined first using a cluster forming

threshold of Z > 2.3 and a cluster significance threshold of p < .05,

corrected for multiple comparisons. When the modelled main effects

or interactions did not reveal any significant differences at this cor-

rected threshold, we used an exploratory, uncorrected threshold of

p < .01 (Z > 2.3), with an additional constraint that the cluster size was

at least 30 voxels, located primarily in grey matter.

3 | RESULTS

3.1 | Behavioural results

Table 2 summarises the data for dysfluent utterances during scanning in

each group and subgroup. We conducted Kruskal-Wallis tests to com-

pare frequency of dysfluent utterances during scanning between our

groups (PWS and CON) and subgroups (FLU and DYS). PWS had signifi-

cantly more dysfluent utterances than CON in the sentence reading

task (p 5 .003), but this difference did not reach significance in the pic-

ture description task (p 5 .058). As expected (because subgroups were

selected according to frequency of dysfluency across scans), the DYS

subgroup was significantly less fluent than the FLU subgroup in both

tasks (sentence reading [p 5 .029] and picture description [p 5 .014]).

The FLU subgroup did not differ from CON in either task. Further, there

were no significant differences between tasks in terms of the frequency

of dysfluent utterances in sentence reading relative to picture descrip-

tion within any group nor in the PWS subgroups (Table 2).

3.2 | Neuroimaging results: General traits

The trait analysis compared activity in the PWS and CON groups dur-

ing fluent utterances spoken either during picture description or the

sentence reading tasks. The analysis revealed significant task differen-

ces (cluster forming threshold Z > 2.3, family wise error corrected to

p < .05) across both groups. Group differences across task and interac-

tions between trait and task were not significant at the corrected

threshold, so we present exploratory trait effects observed in grey mat-

ter voxels at a more lenient threshold (p < .01 and extent k � 30

voxels).

3.2.1 | Task effects

The difference between the picture description and sentence reading

tasks across both groups was not of primary interest in this study other

than in the case where it differed between groups (i.e., task by group

interaction). Therefore, we present the results of the task analysis

briefly here and in further detail in supplementary material. In both

tasks, there was activation across the expected network of areas bilat-

erally, namely posterior superior temporal cortex, sensorimotor cortex,

SMA and preSMA, and the left posterior inferior frontal gyrus (IFG). In

addition, there was extensive medial and lateral occipital cortex activity

(see Figure 3). As expected there was significantly more activity

throughout this network for the picture description task relative to sen-

tence reading (for details see supplementary material).

TABLE 2 Dysfluency during scanning. Mean and standard devia-
tions for number of dysfluent sentences during the tasks for PWS,
CON, and the 2 subgroups of PWS: FLU and DYS

Participants Task Mean (SD) Min Max

CON (n 5 16)

Sentence reading 1.59 (1.9) 0 6

Picture description 3.18 (3.6) 0 12

PWS (n 5 17)

Sentence reading 20.18 (23.7) 0 80

Picture description 20.24 (23.9) 1 79

FLU (n 5 8)

Sentence reading 4.25 (4.7) 0 14

Picture description 2.50 (1.2) 1 5

DYS (n 5 9)

Sentence reading 34.3 (25.0) 4 80

Picture description 36.0 (23.5) 9 79

Minimum and maximum counts are summed across both scan runs.
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FIGURE 3 Fluent speech-related activity: People who stutter (PWS), and fluent controls (CON) activated the same network during picture
description (top two rows) and sentence reading (bottom two rows). Coloured statistical maps were thresholded (Z > 2.3, p < .05) and
superimposed on the lateral and medial surfaces of the left and right hemisphere using FreeSurfer [Color figure can be viewed at wileyonli-
nelibrary.com]

FIGURE 4 Trait effects during fluent speech. Averaged brain activity across both speech tasks is shown for the PWS and CON groups
(boxed images, top; see legend to Figure 3 for details). Areas with reduced activity in PWS relative CON are shown in blue overlaid on
sections through the MNI-152 average brain (bottom; exploratory threshold of p < .01, k > 30 voxels, uncorrected; coordinates in MNI
space). These differences were observed in the auditory cortex and lateral cerebellum of the left hemisphere, in inferior frontal gyrus bilater-
ally, and in the vermis of the cerebellum. *The left lateral cerebellum also showed an interaction effect with task. There were no areas
where activity for PWS>CON at the exploratory threshold [Color figure can be viewed at wileyonlinelibrary.com]
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3.2.2 | Trait effects

During fluent speech production, there was reduced activity in PWS

relative to CON at the exploratory threshold in several regions; there

were no regions that showed greater activity in PWS relative to

CON at this threshold (Figure 4; Table 3). Areas showing reduced

activity in PWS relative to CON included the posterior parts of the

IFG bilaterally, the right postcentral gyrus, the right parietal opercu-

lum, the left superior temporal cortex, the medial occipital cortex, and

several portions of the cerebellum both medially and laterally. These

areas were all activated above baseline in either the CON or the

PWS group or both (see Table 3). There were differences in other

regions but these were not activated above baseline in either group

and thus represent differences in the degree to which they were

deactivated in the two groups. These regions included dorsal and

medial portions of the right frontal cortex, the cingulate gyrus and

the angular gyrus bilaterally.

TABLE 3 Trait effects

Brain region
Number of
voxels Z statistic X Y Z PWS CON

Regions that were positively activated in CON or PWS or both

Right inferior frontal cortex 781

Right pars triangularis 3.93 60 30 10 2 1
Right pars opercularis* 3.86 54 20 28 2 1

Right paracingulate gyrus 36 2.87 8 22 46 0 1

Left inferior frontal gyrus, pars opercularis* 118 2.91 244 18 24 1 1

Right middle frontal gyrus 44 2.65 36 0 54 0 1

Left superior temporal cortex 283

Left auditory cortex (Heschl’s gyrus) 3.13 254 210 4 1 1
Left superior temporal gyrus 3.11 256 26 26 1 1

Right postcentral gyrus 51 3.12 70 212 26 2 1

Right inferior parietal cortex 287

Right insular cortex 2.67 32 222 18 0 1
Right parietal opercular cortex 3.1 50 228 20 2 1

Left lateral cerebellum 565

Left lobule VIIIa 3.19 228 248 246 2 1
Left crus II 3.36 236 254 244 2 1

Medial cerebellum 172

Vermis V 2.83 2 256 224 1 1
Left medial lobule VI 2.63 26 266 218 1 1

Right cerebellum, lobule VIIIb 64 2.62 10 262 244 0 1

Left medial occipital cortex (pericalcarine) 58 2.98 220 270 10 0 1

Regions that were not active above baseline in either CON or PWS

Right frontal cortex 569

Right superior frontal sulcus 2.98 20 52 28 2 2

Right medial frontal cortex 3.42 14 48 14 2 2

Medial frontal cortex 193

Left subcallosal cingulate cortex* 2.51 26 40 2 2 2

Right subcallosal cingulate cortex* 2.7 2 30 28 2 2

Right mid-cingulate gyrus 37 2.61 8 210 38 2 0

Right angular gyrus* 276 3.44 42 256 30 2 2

Left angular gyrus * 156 3.46 246 256 38 2 2

Right precuneous cortex 138 2.68 10 256 30 2 2

Regions where activation during fluent speech was reduced in people who stutter (PWS) relative to fluent controls (CON) at the exploratory threshold
of p < .01 uncorrected with greater than 30 voxels extent; there were no regions where activity was greater in PWS relative to CON at this threshold.
Location of the highest peak in a cluster is given: voxelwise, p < .01, uncorrected with 30 voxel extent. For all effects, selected subpeaks within the
large clusters are also described. The number of voxels in a cluster is listed along with the peak height and coordinates of the peak location in MNI-
152 standard space. *indicates clusters located symmetrically across hemispheres. The right-most columns indicate the direction of group averages
across both speaking tasks relative to the baseline for the peak voxel reported (“-”5negative; “1”5positive, “0”521< Z<1).

8 | CONNALLY ET AL.3116 CONNALLY ET AL.



3.2.3 | Interaction effects

During fluent speech production, a portion of the left lateral cerebel-

lum showed an interaction between trait and task effects, at the

exploratory threshold (Figure 4, Y 5 248; Table 4). This area also

showed increased activation for CON relative to PWS across tasks

(see above). Examination of the activity levels in this area showed

that while CON activated this region during both tasks, for PWS

there was no activity during picture description and reduced activity

relative to baseline during sentence reading (i.e., negative signal

change).

3.3 | Neuroimaging results: State-based subgroups

The PWS group was divided into two subgroups that were the most

fluent (FLU, n 5 8), and the most dysfluent during scanning (DYS,

n 5 9). This analysis allowed us to isolate activations related to pro-

clivity to dysfluent states within a group of people who share the

trait of stuttering. Both fluent and dysfluent sentences were retained

for this analysis. The analysis revealed significant task differences

common to both groups and significant subgroup differences com-

mon to both tasks (i.e., no significant interaction between task and

subgroup; cluster forming threshold Z > 2.3, family wise error cor-

rected to p < .05).

3.3.1 | Task effects

Overall, across both tasks, both subgroups activated the expected net-

work of areas involved in overt speech production, namely bilateral

posterior superior temporal cortex, sensorimotor cortex at about the

level of the face representation, SMA and preSMA, and left posterior

IFG. As observed in our trait analysis, the task factor was significant,

with increased activation for picture description relative to sentence

reading throughout the shared network (for details see supplementary

material).

TABLE 4 Interaction between task and trait during fluent speech:
Regions where the effects of trait (differences between groups of
people who stutter and fluent controls during fluent utterances)
were different between the two tasks

Brain region
Number
of voxels Z statistic X Y Z

Left lateral cerebellum 408

Left lobule VIIb 2.65 234 246 246
Left lobule VI 3.29 232 250 232
Left crus II 2.99 232 260 242
Left crus I 3.44 244 266 238

See the legend of Table 3 for further details.

FIGURE 5 Within-trait effects related to stuttering subgroups. Averaged brain activity across both speech tasks is shown for the DYS and
FLU subgroups (boxed images, top; see legend to Figure 3 for details). Areas with reduced activity in DYS relative to FLU subgroups across
tasks are shown in green overlaid on sections through the MNI-152 average brain (bottom; Z > 2.3, p < .05, corrected; coordinates in MNI
space). These differences were observed in subcortical grey matter, cingulate cortex, left inferior temporo-occipital cortex, superior temporal
cortex bilaterally, and medial parieto-occipital cortex. There were no areas where activity was greater in the DYS relative to the FLU sub-
group [Color figure can be viewed at wileyonlinelibrary.com]
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3.3.2 | Subgroup effects

The DYS subgroup showed reduced activity relative to the FLU sub-

group in the subcortical grey matter including right caudate nucleus,

putamen, and pallidum, in the cingulate cortex, the left inferior temporo-

occipital cortex, the superior temporal cortex bilaterally, and the medial

parieto-occipital cortex (Figure 5, Table 5). There were no regions show-

ing greater activation in the DYS subgroup relative to the FLU one.

3.4 | Neuroimaging results: State effects

We compared brain activity during dysfluent and fluent speech states

within eight of the nine DYS individuals (one person was excluded

because of a lack of fluent utterances during scanning; see Figure 2).

The analysis revealed significant task differences across both fluent

and dysfluent states and significant state differences across both tasks

(Z > 2.3, p < .05 corrected). In addition, some state effects differed

according to the task (i.e., there was a significant interaction).

3.4.1 | Task effects

During both fluent and dysfluent states, the expected network of areas

involved in overt speech production were activated for both tasks (as

above). As for the previous analyses between subjects, there was sig-

nificantly more activation during the picture description task relative to

sentence reading (for details see supplementary materials).

3.4.2 | State effects

As expected, both fluent and dysfluent speech states recruited the

same network of regions averaged across tasks (Figure 6). There was

significantly more activity during the dysfluent state relative to the

fluent state in the IFG and premotor cortex extending into the

operculum and anterior insula almost symmetrically in both hemi-

spheres (Figure 6, Table 6). Across all these regions, both dysfluent

and fluent states showed increased activation relative to baseline

but activity during the dysfluent state was greater. There were no

areas for which dysfluent states showed reduced activity relative to

fluent states.

3.4.3 | Interaction effects

As noted above, the activation during the two states differed signifi-

cantly according to task. The areas showing this significant interac-

tion were located subcortically in dorsal striatum bilaterally (left

caudate nucleus and right putamen), the midbrain, at the level of the

substantia nigra, extended anteriorly into posterior thalamus and

external pallidum, bilaterally (Figure 6, Table 7). Examination of the

mean activity in these areas indicated reduced activity during fluent

picture description and dysfluent sentence reading relative to the

baseline and the opposite state (i.e. negative signal change across

these areas).

4 | DISCUSSION

In the current study, we used a hierarchical approach to directly isolate

fMRI activity related not only to general traits of stuttering but also to

dysfluent states of speech within people who stutter. We also distin-

guished specific state effects within individuals who stutter from acti-

vation related to the frequency of dysfluent speech produced in the

TABLE 5 Within-trait subgroup effects during scanning in PWS

Brain region Number of voxels Z statistic X Y Z DYS FLU

Right subcortical grey matter 1,413

Right caudate nucleus 3.24 12 4 8 0 1
Right putamen/pallidum 3.76 20 0 212 2 1
Right putamen/pallidum 2.93 22 22 22 1 1
Right planum polare* 2.88 44 24 216 2 0
Right superior temporal sulcus 3.51 52 210 216 2 1

Posterior medial-frontal cortex 1,947

Right mid-cingulate gyrus* 3.67 6 24 44 2 2

Left mid-cingulate gyrus* 3.66 24 24 44 2 1
Right cingulate sulcus 3.91 8 28 46 2 2

Left temporo-occipital cortex 1,041

Left planum polare* 3.31 246 26 210 2 1
Left inferior temporal gyrus 3.81 254 240 224 2 1
Left lateral cerebellum, lobule VI 2.81 238 250 230 0 1
Left inferior temporal cortex, fusiform 3.61 246 254 218 1 1
Left lateral occipital cortex 3.61 244 272 212 1 1

Posterior medial cortex 1,638

Right retrosplenial cortex 3.44 8 246 22 2 2

Left precuneus 3.23 22 266 22 1 1
Right medial occipital cortex 3.84 2 286 30 2 2

Right occipital pole 4.48 10 296 28 1 1

Regions where there was significantly reduced activity for the DYS relative to FLU subgroups averaged across speaking tasks (Z > 2.3, p < .05 cor-
rected). There were no regions where there was significantly more activity in the DYS relative to the FLU subgroup. The right-most columns indicate
the direction of subgroup averages across both speaking tasks relative to the baseline for the peak voxel reported (“2”5 negative; “1”5positive,
“0”521 < Z < 1). See the legend to Table 3 for further details.
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scanner by different subgroups of people who stutter. Furthermore,

we examined whether any of these factors differed according to the

task performed in the scanner. The results indicated differences in

brain activity in stuttering that can be related to four factors: general

traits, frequency of dysfluent states, specific speech states, and task

demands. Below we elaborate on each of these factors before discus-

sing the task findings from the study and some methodological

considerations.

4.1 | General trait effects of stuttering

Our trait analysis failed to reveal differences in brain activity across

tasks in people who stutter relative to fluent controls at a statistical

threshold corrected for multiple comparisons. We reported results

instead at an exploratory threshold that did not require such a large

extent of voxels to be activated to pass the corrected significance

threshold. At this more lenient threshold, people who stutter showed

reduced activity relative to controls in the posterior parts of the inferior

FIGURE 6 State effects. Averaged brain activity during each speech state (dysfluent and fluent) is shown for the picture description and
sentence reading tasks separately (boxed images, top, see legend to Figure 3 for details). Areas showing greater activity during dysfluent
relative to fluent states within individuals across tasks are shown in red (middle; see legend to Figure 5 for details). Individuals had greater
activity during dysfluent relative to fluent speech in the lateral inferior frontal and premotor cortex extending into the opercular cortex and

anterior insula bilaterally. Subcortical areas showing a significant interaction between state and task are shown in blue (bottom; see legend
to Figure 5 for details) [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 6 State effects in the DYS subgroup

Brain region Number of voxels Z statistic X Y Z

Right premotor and prefrontal cortex 2,148

Right frontal operculum* 3.82 36 18 12
Right central operculum* 3.42 44 18 6
Right inferior frontal gyrus,pars opercularis 3.67 48 8 8
Right precentral gyrus* 3.54 58 0 28

Left premotor and prefrontal cortex 1,633

Left frontal operculum* 3.38 236 16 14
Left anterior insula 3.57 230 14 8
Left central operculum* 3.54 246 6 4
Left precentral gyrus* 3.73 258 0 20

Regions where there were significant differences between fluent and dysfluent utterances within individuals across both tasks. See the legend to Table
3 for further details.
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frontal gyrus bilaterally, the right postcentral gyrus, the right parietal

operculum, the left superior temporal cortex, the medial occipital cor-

tex, and several portions of the cerebellum both medially and laterally.

These trait effects were predominantly due to greater activity during

task relative to baseline in the control group compared with the stut-

tering group (see Table 3). Several of these regions also showed

reduced activity in people who stutter in previous reports: inferior fron-

tal cortex (Neef et al., 2016; Watkins et al., 2008); left superior tempo-

ral (auditory) cortex (e.g., Brown et al., 2005; Giraud et al., 2008;

Watkins et al., 2008;Toyomura et al., 2015;Budde et al., 2014); and

medial cerebellum (Chang, Kenney, Loucks, & Ludlow, 2009; Ingham

et al., 2012). However, our findings are notably inconsistent with the

broader claim that overactivity of the right inferior frontal cortex and

cerebellar vermis are “neural signatures” of stuttering (Brown et al.,

2005; Belyk et al., 2017; Budde et al., 2014).

It is possible that we did not see areas of overactivity in people

who stutter in our study because the analysis was restricted to only flu-

ent utterances. The overactivity of the right inferior frontal cortex, in

particular, has recently been described to reflect overactive inhibition

of speech responses (Neef et al,. 2016) that would occur most often

during the dysfluent state. Consistent with this interpretation is the

overactivity of the right inferior frontal cortex seen in the state analysis

for the dysfluent relative to the fluent state (see Figure 6).

The left inferior frontal cortex was underactive in our study, con-

sistent with findings from one meta-analysis identifying underactivity

in left ventral premotor cortex as a stuttering trait (Belyk et al., 2017).

According to an influential model of speech production, the left inferior

frontal cortex is thought to be important for feedback monitoring and

the release of speech plans for feedforward models (Guenther &

Ghosh, 2003). Relatedly, the specific location of trait effects in the cer-

ebellar vermis reported here was close to somato-motor representa-

tions for the articulators that are theorized to contain copies of cortical

maps (Buckner, Krienen, Castellanos, Diaz, & Yeo, 2011). These maps

too are thought to be utilized in both feedback monitoring and feedfor-

ward models for speech production (Guenther & Ghosh, 2003).

Another node in this speech network was also found to be underactive

in people who stutter, namely the left primary auditory cortex. The

auditory cortex receives external feedback and is thought to contain

target and error maps used to update internal speech plans (Guenther

& Ghosh, 2003; Tourville & Guenther, 2011). To summarize, our analy-

sis of fluent speech in people who stutter has revealed a pattern of

reduced activity relative to controls in a network of brain regions

thought to be critical for feedback-based speech monitoring. One ten-

tative interpretation of this pattern is that it reflects a compensatory

gating mechanism reducing signal throughout the feedback control sys-

tem, which in turn could counter an over-reliance on feedback that is

theorized to cause stuttering (Max, Guenther, Gracco, Ghosh, &

Wallace, 2004).

We also observed trait differences in the left lateral cerebellum in

subregions functionally connected to prefrontal cortex (e.g., left crus I)

(O’Reilly, Beckmann, Tomassini, Ramnani, & Johansen-Berg, 2010).

People who stutter showed negative signal change in the lateral cere-

bellum, while fluent controls showed positive activation relative to

baseline. Furthermore, trait-related activation in this region interacted

with task: fluent controls recruited this region to a greater extent for

picture description than for sentence reading, whereas people who

stutter did not. Similar effects were observed in this region during PET

imaging of longer speech utterances in people who stutter (Ingham

et al., 2012) and altered functional connectivity between the lateral

cerebellum and premotor cortex was also reported in stuttering (Lu

et al., 2010). Abnormal activity in the lateral cerebellum could reflect

maladaptive prediction processing related to speech and language plan-

ning (Sokolov, Miall, & Ivry, 2017). We speculate that during fluent

speech in people who stutter, abnormal activity in this region reflects a

successful compensatory mechanism involving disengagement. The

degree to which regions must disengage may be moderated by task

demands, which would explain the interaction between task and trait

in this study. A “disengagement” that resulted in compensation would

also be consistent with reports of increased baseline activation of the

cerebellum in people who stutter (Ingham et al., 2012). Future work is

needed to investigate the role of cerebellar activation at rest as it

relates specifically to trait and state effects in stuttering in order to bet-

ter clarify the nature of effects observed in our study.

4.2 | Effects related to the frequency of dysfluent

utterances

The findings from our study replicated several previously reported

associations between the frequency of the dysfluent speech and activ-

ity in the basal ganglia (Braun et al., 1997; Giraud et al., 2008; Ingham

et al., 2012, 2004; Kell et al., 2009; Toyomura, Fujii, & Kuriki, 2011),

cingulate cortex (Budde et al., 2014; Ingham et al., 2012), inferior

temporo-occipital cortex (Fox et al., 2000; Giraud et al., 2008; Ingham

et al., 2004), and superior temporal cortex (planum polare), occurring

bilaterally (Kell et al., 2009). All of these regions showed reduced

activation in participants who showed higher frequency of dysfluency

during our study.

In the contrast of subgroups of people who stutter, we observed

significant increases in striatal activity for the subgroup of more fluent

individuals. Previous research has concluded that increases in activity

in this part of the basal ganglia reflect treatment success (Ingham,

TABLE 7 Interaction between task and state in DYS subgroup:
Regions where the effects of state (differences between fluent and
dysfluent utterances) were different between the two tasks within
individuals

Brain region
Number
of voxels Z statistic X Y Z

Subcortical grey matter 1,738

Left nucleus accumbens 2.85 210 14 24
Left caudate nucleus 2.77 212 10 6
Left pallidum* 3.26 210 24 24
Right putamen 2.84 26 26 4
Right pallidum* 2.74 14 28 22
Left dorsal midbrain 3.28 24 216 212
Left thalamus* 2.58 26 222 22
Right thalamus* 2.83 8 222 0

See the legend to Table 3 for further details.

12 | CONNALLY ET AL.3120 CONNALLY ET AL.



Wang, Ingham, Bothe, & Grafton, 2013). This categorization is based

on the observation that activity typically increases from pre- to post-

intervention (Giraud et al., 2008; Neumann et al., 2003; Toyomura

et al., 2015), and also during fluency enhancement tasks (Toyomura

et al., 2011). Based on these observations, it is possible that our stut-

tering subgroups differed because of some undetected long-term effect

of treatment, or that one group successfully used the fluency enhanc-

ing properties of the scanner (masking noise and rhythm) more than

the other. The possibility remains, however, that these are spontane-

ously occurring different subgroups within the stuttering population.

Identification of subgroups within the stuttering population that differ

not just in frequency but also type of speech dysfluency is an important

next step.

An alternative explanation of the observed greater activity in the

striatum in the fluent subgroup is that the activation is the result of the

fluent speech, not the cause. The logic can be simply stated as follows:

fluent speech is more rewarding than dysfluent speech for people who

stutter. The “expectation of success” for movements results in rewards

(e.g., boost of dopamine), and this function is processed in the striatum

(O’Reilly, Jbabdi, Rushworth, & Behrens, 2013). The models necessary

for planning dynamic action, such as the coordination required for

speech execution, utilize the putamen (O’Reilly et al., 2013). Expecta-

tion of reward would be specific to fluent speech activation and

increase levels relative to activity for dysfluent speech.

One of most common findings during both PET and fMRI imaging

of sequential speech in stuttering is overactivity of medial premotor cor-

tex (preSMA/SMA; Braun et al., 1997; Fox et al., 2000, 1996, Ingham

et al., 2012, 2000; Kell et al., 2009; Preibisch et al., 2003; Sakai et al.,

2009). Activation of medial premotor cortex is also related to stuttering

frequency and is theorized to reflect task effects in stuttering (Ingham

et al., 2012). The only nearby region showing activation differences in

our study was found inferior to the SMA complex, in the cingulate gyrus,

occurring bilaterally, which showed greater activity in the mostly fluent

subgroup. These differences appeared to be due to large, negative signal

change in the dysfluent subgroup, whereas the fluent subgroup showed

positive signal change relative to baseline in the left cingulate gyrus. The

basal ganglia are functionally connected to the medial frontal cortex in a

circuit thought to be involved in the preparation and execution of move-

ments (Cunnington, Windischberger, Deecke, & Moser, 2002). The sub-

group effect observed could reflect inefficient coordination of that

network via connections through the cingulate cortex.

Our study also adds to reports of significant relationships between

temporo-occipital cortex activation and the frequency of dysfluency in

stuttering (Brown et al., 2005; Fox et al., 2000; Giraud et al., 2008;

Ingham et al., 2004). We observed greater activity in visual association

areas in the more fluent subgroup in the left inferior temporo-occipital

cortex and medial parieto-occipital cortex. The relationship between

left hemisphere fusiform cortex activity and stuttering severity has

been observed during resting state fMRI (Sitek et al., 2016) as well as

in speech tasks as part of a treatment study, in which the effect did not

attenuate with therapy (Giraud et al., 2008).

The greater activity of these ventral areas in the fluent subgroup

was located in regions specialized for processing word and object

recognition and show interactive effects with other language processes

(e.g., phonology and semantics; see Price 2012). Differences in activity

levels in these regions during our tasks, which required picture descrip-

tion and reading, could reflect greater influences in the fluent subgroup

of visual imagery or top–down processes from higher-order language

areas. Why this effect would be more obvious in the more fluent sub-

group and not in the dysfluent one requires further investigation.

Finally, we replicated previous associations of significant relation-

ships between activity in planum polare and the frequency of dysfluent

speech in stuttering (Kell et al., 2009). In our study, in both hemi-

spheres the average signal change for the more dysfluent subgroup

was negative relative to baseline, and larger than the positive changes

relative to baseline observed in the fluent subgroup. The interpretation

of such “deactivations” relative to “activations” is not straightforward.

However, our findings could reflect a successful recruitment of the pla-

num polare for integration of feedback into speech motor programs,

which is somewhat compensatory for altered premotor activity

observed during dysfluent states directly (see below).

4.3 | Specific state effects within stuttering individuals

Identification of state effects, specifically those associated with dysflu-

ency in people who stutter is of major importance. There is surprisingly

little data on this state (see Section 1), with many reports relying

instead on correlations with stuttering severity that might be better

described as “proclivity to stutter” and more akin to our frequency

analysis described above. The reason for the paucity of data on the

dysfluent state is due to the fact that it occurs relatively infrequently in

most individuals, particularly when in the scanning environment, which

also can be fluency enhancing. Obtaining a maximum of 160 utterances

during scanning in our study allowed us to compare a sufficient number

of fluent and dysfluent utterances (at least 10 of each in each run) in a

subgroup of 8 individuals. Within these individuals, we directly com-

pared activation during dysfluent speech states to that underlying flu-

ent speech states.

Activity was greater in the lateral inferior frontal and premotor cor-

tex, frontal operculum and anterior insula bilaterally during dysfluent

relative to fluent speech. Importantly, we further confirmed that these

effects were not related to head motion in the scanner, which did not

differ between these speech states. Our findings are largely consistent

with previous reports of overactivity in inferior frontal and premotor

cortex in stuttering (Braun et al., 1997; Ingham et al., 2012), including

in the central opercular cortex (Fox et al., 1996, 2000; Giraud et al.,

2008; Kell et al., 2009; Neumann et al., 2005, 2003; Preibisch et al.,

2003; Sakai et al., 2009; Toyomura et al., 2015). In particular, we

observed overactivity in the right inferior frontal cortex extending into

the opercular cortex and anterior insula, which has been previously

described as a “neural signature” of people who stutter (Belyk et al.,

2017; Brown et al., 2005; Budde et al., 2014). It is worth noting, how-

ever, that the majority of the previous reports did not isolate the dys-

fluent state and report this overactivity as a trait effect (difference

between people who stutter and controls).
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Generally, the increased recruitment of right inferior frontal cortex

was interpreted as compensatory in stuttering based on higher post-

treatment activation in the region in people who stutter (MNI coordi-

nates: 48,14,4; Neumann et al., 2005, 2003; Preibisch et al., 2003).

Furthermore, the compensatory nature of the right hemisphere overac-

tivity was often theorised to reflect a response to a structural deficit in

the left hemisphere, as previously described in diffusion imaging stud-

ies of people who stutter. However, we have found that these struc-

tural differences are often bilaterally distributed (Connally et al., 2014;

Watkins et al., 2008), as were the state effects in the current study.

Even though we observed increased activation in the same right poste-

rior inferior frontal region very near those previously reported to be

sensitive to therapy (MNI coordinates: 44, 18, 6), the increased activa-

tion was also seen on the left during dysfluency. Furthermore, we did

not observe these increases in the group of people who stutter when

compared with fluent controls during fluent speech. This makes it diffi-

cult for us to conclude that the activity in this right hemisphere region

reflects a compensatory process.

As noted above in the discussion of general traits, none of these

regions overactive during the dysfluent state were overactive during

the fluent speech of people who stutter relative to the controls, and

no regions showed overactivity during fluent states relative to dys-

fluent states within individuals. The idea that the right hemisphere

overactivity seen here during the dysfluent state and reported previ-

ously in other group analyses relates to an inhibitory or stopping

process seems to be the best explanation of this consistently

reported result (see Neef et al., 2016). This “stopping” response is

right lateralised even for inhibition of speech (Xue, Aron, & Poldrack,

2008). The left hemisphere overactivity of the same regions in the

dysfluent state requires a different explanation, therefore. This could

be compensatory or reflect the greater speech effort that comes

with the dysfluent state. Whatever the explanation, the symmetrical

pattern of overactivity during the dysfluent state of brain areas

involved in speech motor planning and execution and their right

hemisphere homologues is striking.

One notable unilateral state effect was observed in the right parie-

tal operculum. This was also the only region that indicated both state

and trait effects in our study. Activation was reduced in this region for

fluent speech states relative to dysfluent speech states, and in fluent

speech in people who stutter relative to fluent controls, across tasks.

Further, the stuttering group showed reduced activation of this region

relative to baseline during fluent speech, while the fluent controls

showed a positive signal change. The parietal operculum is thought to

house the secondary somatosensory cortex, with representations for

the face in addition to other body maps (Eickhoff, Schleicher, Zilles, &

Amunts, 2006). One might speculate that increased activation of this

region during the dysfluent state reflects inefficient sensory feedback

processing (Tourville, Reilly, & Guenther, 2008). Such a scenario would

be consistent with a general need to reduce feedback-based processing

in order to be fluent, which fits the general pattern observed in our

trait analysis.

The state analysis revealed an interaction with task. That is, sub-

cortical areas activated differently during dysfluency relative to fluency

depending on the task being performed. We previously discussed the

task-dependent trait effect in the cerebellum. Here, task-dependent

state effects were observed extending from the dorsal striatum to the

midbrain and were due to negative activity (relative to baseline) for flu-

ent states during picture description and dysfluent states during sen-

tence reading. Such relative differences in effectively “deactivations”

are difficult to interpret. Nevertheless, they point to a potentially com-

plex role for the basal ganglia in stuttering that is task dependent. Fur-

ther investigation could aid interpretation of previously inconsistent

findings of basal ganglia activity in stuttering research. For example,

previous reports indicated increased basal ganglia activity was associ-

ated with increased stuttering severity (Giraud et al., 2008; Ingham

et al., 2012), whereas increased activity in the same regions was associ-

ated with enhancement of fluency in other reports (Toyomura et al.,

2011), and the putamen and midbrain in particular were hyperactive

during fluent sentence reading across several tasks (Watkins et al.,

2008). It is notable also that none of the meta-analyses has described

basal ganglia abnormalities.

According to theory (Alm, 2004), one potential outcome of abnor-

mal basal ganglia function, or a dopaminergic imbalance therein, is a

delay in motor signals in the putamen-SMA motor execution loop that

in computational models results in simulated stuttering (Civier, Bullock,

Max, & Guenther, 2013). In our participants, the disengagement

needed for fluent speech (in the case of picture description, for exam-

ple) could reflect efforts to force movement into the next portion of a

speech sequence involving disrupted loops with inferior frontal regions

(Guenther & Ghosh, 2003). We observed the predicted net increase in

activity in inferior frontal regions during dysfluent states, and a net

decrease during fluent speech in stutterers relative to fluent controls in

nearby cortex, which would be consistent with a “disengage for flu-

ency” scenario. On the other hand, during sentence reading, the

decreased subcortical activity for dysfluent speech could reflect the

theorised delay in the putamen-SMA loop itself which results in insuffi-

cient “go” signals to initiate movements (Civier et al., 2013). Because

the putamen can play both inhibitory and excitatory roles through con-

nections (via the pallidum and thalamus) with the SMA and substantia

nigra for the planning of volitional movements, distinguishing between

these possibilities with imaging studies is not possible. Notably, a por-

tion of the right hemisphere pallidum showing the state by task interac-

tion was also associated with differences in the frequency of dysfluent

utterances between stuttering subgroups.

4.4 | The separation of trait, state, and frequency

effects

In the current study, we demonstrated that abnormal activation in

regions reflecting general traits of stuttering could be separated from

those reflecting differences between dysfluent and fluent speech states

(Figure 7). Activity related to the differences between speech states

was also found in regions separate to those showing activity related to

stuttering frequency (i.e., that differed between subgroups of people

who stutter). The general dissociation of state, trait, and frequency

effects in stuttering was consistent across tasks. Interestingly, when
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speaking fluently, activity in people who stutter was generally reduced

relative to that in controls. But, people who stutter who are more flu-

ent during scanning, showed a general pattern of overactivation rela-

tive to those who were dysfluent. In this case, the overactivation could

be considered causal to achieving fluency in the scanner in this rela-

tively fluent subgroup or, conversely, failure to activate these regions

in the dysfluent subgroup is the cause of their more frequent dysflu-

ency. In the state analysis, a different pattern emerged in a separate set

of brain regions. That is, brain areas were generally overactive in the

dysfluent state compared with the fluent state within people who stut-

ter. Here, the interpretation might be different to that above, and dif-

ferent for different brain regions. The overactivity could be considered

to cause the speech dysfluency, be the consequence of it (either as a

correlate of greater inhibition or error responses) or reflect an attempt

to overcome it. It would be possible to test some of these hypotheses

using interference techniques such as brain stimulation.

Overall, the distinctions in the brain areas involved in state and

trait analyses described here are somewhat consistent with the conclu-

sions of two meta-analyses attempting the same dissociation (Belyk

et al., 2017; Budde et al., 2014). There are notable differences also. For

example, only one brain region showed abnormal activation that indi-

cated both trait and state effects, namely the right parietal operculum,

which was underactive in people who stutter in the trait analysis and

overactive during dysfluency in the state analyses. Subcortically, activ-

ity in the right putamen/pallidum was associated with frequency of

dysfluent speech states, and also with the interaction between state

and task. Furthermore, we observed that abnormal activation of sub-

cortical structures in stuttering differed according to task. These inter-

actions with task were observed: (1) in the left lateral cerebellum

reflecting trait effects and (2) in the basal ganglia, thalamus, and mid-

brain reflecting state effects. The spatial separation of these different

effects may aid interpretation of the results of other analyses in which

it has not been possible to separate them.

4.5 | Task effects

In this study, we used two tasks: picture description and sentence read-

ing. The amount of dysfluency occurring during these different tasks

was highly variable among stuttering individuals but did not consis-

tently differ on average across the group. The picture description task

involves generating speech content (i.e., cognitively and linguistically

selecting the semantic content, morphology, and syntactic frame for a

sentence). In contrast, sentence reading does not involve these proc-

esses and instead requires the reader to produce prescribed speech

content, which means that words cannot be avoided or substituted.

Such strategies are commonly employed by people who stutter to

avoid “difficult” words on which they predict dysfluency. Both tasks

require retrieval and production of the phonology and articulatory

processes for speaking either the provided or the self-generated sen-

tence that are arguably matched.

The imaging data for these tasks shows very similar networks of

activity in lateral and medial cortical areas involving left inferior frontal

cortex, the ventral premotor and sensorimotor cortex, the SMA com-

plex on the medial surface, the superior temporal cortex and occipital

cortex, bilaterally (see Figure 3). The additional cognitive and linguistic

effort required by the picture description task relative to the sentence

reading one led to the expected greater activation of the brain network

of areas involved in these tasks. In particular, as evident in Figure 3,

picture description activates the left inferior frontal cortex to a greater

extent than does sentence reading, presumably reflecting the additional

requirements for lexical search and retrieval and generation of the syn-

tactic frame in the former. Similar selection processes presumably drive

the greater activity on the medial surface in the SMA for picture

description. The contrast of these tasks was not the main focus of the

study but the effects described are consistent with findings from the

large literature using similar tasks (see review by Price, 2012; Brown

et al., 2005). The details of these differences for each of the analyses is

provided in supplementary material. The brain areas showing an

FIGURE 7 Summary of general trait, specific state, and frequency effects. Areas with reduced activity in PWS relative to CON during
fluent speech are shown in blue (trait effects). Areas with reduced activity in the DYS relative to the FLU subgroup of stutterers are shown
in green (frequency effects). Areas with increased activity during dysfluency relative to fluency within individuals in the DYS subgroup are
shown in red (state effects). The regions showing these effects are mostly spatially distinct. Coloured statistical maps are overlaid on
sections through the MNI-152 average brain (Z > 2.3, p < .05, corrected, coordinates in MNI space) [Color figure can be viewed at wileyon-
linelibrary.com]
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interaction of tasks with trait or state effects have been discussed pre-

viously (see above).

4.6 | Methodological considerations

In this study, we implemented some data acquisition approaches aimed

at clarifying state and trait effects in stuttering imaging research. Overt

speech production during the two tasks was recorded for off-line anal-

ysis. This allowed us to assess compliance of all participants with task

performance as well as evaluating dysfluency during scanning. To our

surprise, some participants (controls and people who stutter) were not

compliant with task instructions and introduced unexpected behavior.

In some cases, whole datasets were eliminated from analyses. In other,

less severe cases, stimuli could be reallocated to the correct task or

individual epochs removed from analysis. This approach ensured

greater accuracy in our analyses.

In addition, the in-scanner recordings allowed us to determine

which utterances contained speech dysfluency and which were fluent.

Trial-by-trial precision enabled an accurate trait analysis of fluent

speech in the whole group and a state analysis in the subgroup of peo-

ple who were dysfluent during scanning. Nevertheless, this analysis

was limited in that we only examined activation following a speech

event, and it could be the case that an error signal detected before tri-

als gives us a causal indicator of dysfluent states. Use of real-time fMRI

during the dysfluent state may be informative in terms of determining

whether brain activity is compensatory, reflecting error detection, or

part of an inhibitory response. Furthermore, we did not distinguish

between typical or atypical dysfluencies within our state analysis (Jiang

et al., 2012), nor did we look at activity related only to a specific sort of

typical dysfluency (e.g., blocks, Sowman et al., 2012). This is in part due

to difficulty in knowing whether a normal speech dysfluency, such as

repetition of whole phrases or multi-syllabic words or interjections

such as “um” and “er” are part of stuttering behavior. These dysfluen-

cies occur commonly in the speech of people who stutter but do not

“count” in standard measures of stuttering frequency (e.g., SSI). The

other reason we could not distinguish among types of dysfluency in

this study was simply one of practicality, as there were insufficient

numbers of epochs containing only stuttering dysfluencies without nor-

mal dysfluencies such as interjections, and vice versa. Again a real-time

fMRI or continuous imaging approach could aid such analyses. Finally,

although we used a binary approach to this analysis it is likely that a

parametric approach that looked at the amount or type of dysfluency

could prove useful in future studies.

As noted previously, it is quite likely that the dysfluent state is

more commonly accompanied by head movements that could in turn

introduce noise into the brain images. Our study dealt with this poten-

tial confound by using a sparse-sampling design in which only the peak

of the haemodynamic response is measured during the image acquisi-

tion. This peak occurs some 4–6 seconds after an event. The timing of

our image acquisition was intended to capture responses to the speech

event that had occurred in the previous silent period between acquisi-

tions. It is unlikely that the head would be moving during the image

acquisition, therefore, and participants were explicitly instructed to

stop speaking when the fixation cross appeared. Even so, to evaluate

the potential for head movements to occur more frequently during the

dysfluent state, we compared the degree to which each image acquisi-

tion needed to be corrected for motion in those images that followed

fluent and dysfluent utterances and the number of motion outliers that

were detected in each state. There were no significant differences

between the two states in either of these measures, allowing us to con-

clude that motion artefacts related to speech dysfluency have not con-

taminated our data.

Finally, by implementing two different tasks, we were able to explore

whether the patterns of abnormal brain activity seen in trait and state

analyses vary depending on the task. We found limited, but some evi-

dence for this effect. It would be interesting to explore this further with a

greater range of speaking tasks, including natural and induced speech flu-

ency, as well as spontaneous and imitated speech dysfluencies.

CONCLUSION

We conclude that indicators of traits, states, and relative frequency

of dysfluency in stuttering are potentially spatially-separable factors.

Furthermore, we showed that task demands can influence these

effects. In particular, task demands might explain the complex role

played by subcortical control structures in stuttering and speech

production more broadly. Overall, our findings support efforts to dis-

tinguish state and trait effects directly within a study sample, and

provide evidence of subgroups of people who stutter who differ in

frequency of dysfluent speech in the scanner. The results point to

the need for the use of different tasks that elicit longer speech

utterances so that future work can expand on the neural correlates

of different dysfluent states.

ACKNOWLEDGMENTS

The authors thank Anderson Winkler and Matthew Webster for

assistance with computer coding and insightful discussion of the

generalised linear model. The research was supported by the NIHR

Oxford Health Biomedical Research Centre.

CONFLICTS

MJ receives royalty payments from the commercial licensing of FSL

software (though academic and non-commercial use, such as that for

this manuscript, is free). No other authors have conflicts to report.

ORCID

Emily L Connally http://orcid.org/0000-0003-1619-7699

Christos Pliatsikas http://orcid.org/0000-0001-7093-1773

Kate E Watkins http://orcid.org/0000-0002-2621-482X

REFERENCES

Alm, P. A. (2004). Stuttering and the basal ganglia circuits: A critical

review of possible relations. Journal of Communication Disorders, 37

(4), 325–369. https://doi.org/10.1016/j.jcomdis.2004.03.001

16 | CONNALLY ET AL.3124 CONNALLY ET AL.



American Psychiatric Association, (2013). DSM-V. American Journal of Psy-

chiatry, https://doi.org/10.1176/appi.books.9780890425596.744053

Belyk, M., Kraft, S. J., & Brown, S. (2017). CORRIGENDUM Stuttering as

a trait or state – An ALE meta-analysis of neuroimaging studies. Euro-

pean Journal of Neuroscience, 45, 622–624. https://doi.org/10.1111/

ejn.12765

Braun, A. R., Varga, M., Stager, S., Schulz, G., Selbie, S., Maisog, J. M., . . .

Ludlow, C. L. (1997). Altered patterns of cerebral activity during

speech and language production in developmental stuttering. An H2

(15)O positron emission tomography study. Brain, 120(5), 761–784.

(Pt 5, https://doi.org/10.1093/brain/120.5.761

Brown, S., Ingham, R. J., Ingham, J. C., Laird, A. R., & Fox, P. T. (2005).

Stuttered and fluent speech production: An ALE meta-analysis of

functional neuroimaging studies. Human Brain Mapping, 25(1), 105–
117. https://doi.org/10.1002/hbm.20140

Buckner, R. L., Krienen, F. M., Castellanos, A., Diaz, J. C., & Yeo, B. T. T.

(2011). The organization of the human cerebellum estimated by

intrinsic functional connectivity. Journal of Neurophysiology, 106(5),

2322–2345. https://doi.org/10.1152/jn.00339.2011

Budde, K. S., Barron, D. S., & Fox, P. T. (2014). Stuttering, induced flu-

ency, and natural fluency: A hierarchical series of activation likelihood

estimation meta-analyses. Brain Language, 139, 99–107. https://doi.
org/10.1016/j.bandl.2014.10.002

Chang, S.-E., Erickson, K. I., Ambrose, N. G., Hasegawa-Johnson, M. A., &

Ludlow, C. L. (2008). Brain anatomy differences in childhood stutter-

ing. Neuroimage, 39(3), 1333–1344. https://doi.org/10.1016/j.neuro-

image.2007.09.067

Chang, S.-E., Kenney, M. K., Loucks, T. M. J. J., & Ludlow, C. L. (2009).

Brain activation abnormalities during speech and non-speech in stut-

tering speakers. Neuroimage, 46(1), 201–212. https://doi.org/10.

1016/j.neuroimage.2009.01.066

Civier, O., Bullock, D., Max, L., & Guenther, F. H. (2013). Computational

modeling of stuttering caused by impairments in a basal ganglia

thalamo-cortical circuit involved in syllable selection and initiation.

Brain Language, 126(3), 263–278. https://doi.org/10.1016/j.bandl.

2013.05.016

Connally, E. L., Ward, D., Howell, P., & Watkins, K. E. (2014). Disrupted

white matter in language and motor tracts in developmental stutter-

ing. Brain Language, 131, 25–35. https://doi.org/10.1016/j.bandl.

2013.05.013

Cunnington, R., Windischberger, C., Deecke, L., & Moser, E. (2002). The

preparation and execution of self-initiated and externally-triggered

movement: A study of event-related fMRI. NeuroImage, 15(2), 373–
385. https://doi.org/10.1006/nimg.2001.0976

De Nil, L. F., Kroll, R. M., & Houle, S. (2001). Functional neuroimaging of cer-

ebellar activation during single word reading and verb generation in stut-

tering and nonstuttering adults. Neuroscience Letters, 302(2–3), 77–80.

den Ouden, D.-B., Montgomery, A., & Adams, C. (2014). Simulating the

neural correlates of stuttering. Neurocase, 20(4), 434–445. https://

doi.org/10.1080/13554794.2013.791863

Eickhoff, S. B., Schleicher, A., Zilles, K., & Amunts, K. (2006). The human

parietal operculum. I. Cytoarchitectonic mapping of subdivisions. Cer-

ebral Cortex, 16(2), 254–267.

Felsenfeld, S. (2002). Finding susceptibility genes for developmental dis-

orders of speech: The long and winding road. Journal of Communica-

tion Disorders, 35(4), 329–345.

Fox, P. T., Ingham, R. J., Ingham, J. C., Hirsch, T. B., Downs, J. H., Martin,

C., . . . Lancaster, J. L. (1996). A PET study of the neural systems of

stuttering. Nature, 382(6587), 158–161. https://doi.org/10.1038/

382158a0

Fox, P. T., Ingham, R. J., Ingham, J. C., Zamarripa, F., Xiong, J. H., & Lan-

caster, J. L. (2000). Brain correlates of stuttering and syllable produc-

tion: A PET performance-correlation analysis. Brain A Journal of

Neurology, 123(Pt 1), 1985–2004.

Giraud, A.-L., Neumann, K., Bachoud-Levi, A.-C., von Gudenberg, A. W.,

Euler, H. A., Lanfermann, H., & Preibisch, C. (2008). Severity of dys-

fluency correlates with basal ganglia activity in persistent develop-

mental stuttering. Brain Language, 104(2), 190–199. https://doi.org/
10.1016/j.bandl.2007.04.005

Greve, D. N., & Fischl, B. (2009). Accurate and robust brain image align-

ment using boundary-based registration. Neuroimage, 48(1), 63–72.

Guenther, F. H., & Ghosh, S. S. (2003). A model of cortical and cerebellar

function in speech, in: Proceedings of the XVth International Con-

gress of Phonetic Sciences. Citeseer, 169–173.

Ingham, R. J., Fox, P. T., Costello Ingham, J., & Zamarripa, F. (2000). Is

overt stuttered speech a prerequisite for the neural activations asso-

ciated with chronic developmental stuttering? Brain Language, 75(2),

163–194. https://doi.org/10.1006/brln.2000.2351

Ingham, R. J., Fox, P. T., Ingham, J. C., Xiong, J., Zamarripa, F., Hardies, L.

J., & Lancaster, J. L. (2004). Brain correlates of stuttering and syllable

production: Gender comparison and replication. Journal of Speech

Language and Hearing Research, 47(2), 321–341. https://doi.org/10.

1044/1092-4388(2004/026)

Ingham, R. J., Grafton, S. T., Bothe, A. K., & Ingham, J. C. (2012). Brain

activity in adults who stutter: Similarities across speaking tasks and

correlations with stuttering frequency and speaking rate. Brain Lan-

guage, 122(1), 11–24. https://doi.org/10.1016/j.bandl.2012.04.002

Ingham, R. J., Wang, Y., Ingham, J. C., Bothe, A. K., & Grafton, S. T.

(2013). Regional brain activity change predicts responsiveness to

treatment for stuttering in adults. Brain Language, 127(3), 510–519.
https://doi.org/10.1016/j.bandl.2013.10.007

Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W., &

Smith, S. M. (2012). FSL. Neuroimage, 62(2), 782–790. https://doi.

org/10.1016/j.neuroimage.2011.09.015

Jiang, J., Lu, C., Peng, D., Zhu, C., & Howell, P. (2012). Classification of

types of stuttering symptoms based on brain activity. PLoS One, 7(6),

e39747. https://doi.org/10.1371/journal.pone.0039747

Kell, C. A., Neumann, K., von Kriegstein, K., Posenenske, C., von Guden-

berg, A. W., Euler, H., & Giraud, A. -L. L. (2009). How the brain

repairs stuttering. Brain, 132(10), 2747–2760. https://doi.org/

awp185 [pii] 10.1093/brain/awp185

Leech, R., Braga, R., & Sharp, D. J. (2012). Echoes of the brain within the

posterior cingulate cortex. The Journal of Neuroscience: The Official

Journal of the Society for Neuroscience, 32(1), 215–222. https://doi.
org/10.1523/JNEUROSCI.3689-11.2012

Louis, K. O. S., & Schulte, K. (2011). 14 Defining cluttering: The lowest

common denominator. Cluttering A Handb. Res. Interv. Educ. 233.

Lu, C., Chen, C., Ning, N., Ding, G., Guo, T., Peng, D., . . . Lin, C. (2010).

The neural substrates for atypical planning and execution of word

production in stuttering. Experimental Neurology, 221(1), 146–156.
https://doi.org/10.1016/j.expneurol.2009.10.016

Lu, M.-K., Arai, N., Tsai, C.-H., & Ziemann, U. (2012). Movement related

cortical potentials of cued versus self-initiated movements: Double

dissociated modulation by dorsal premotor cortex versus supplemen-

tary motor area rTMS. Human Brain Mapping, 33(4), 824–839.
https://doi.org/10.1002/hbm.21248

Max, L., Guenther, F. H., Gracco, V. L., Ghosh, S., S., & Wallace, M. E.

(2004). Unstable or insufficiently activated internal models and

feedback-biased motor control as sources of dysfluency: A theoreti-

cal M. Contemporary Issues in Communication Science and Disorders,

31, 105–122.

CONNALLY ET AL. | 17CONNALLY ET AL. 3125



Neef, N. E., Anwander, A., B€utfering, C., Schmidt-Samoa, C., Friederici, A.

D., Paulus, W., & Sommer, M. (2017). Structural connectivity of right

frontal hyperactive areas scales with stuttering severity. Brain,

https://doi.org/10.1093/brain/awx316

Neef, N. E., Anwander, A., & Friederici, A. D. (2015). The neurobiological

grounding of persistent stuttering: From structure to function. Cur-

rent Neurology and Neuroscience Reports, 15(9), 579. https://doi.org/

10.1007/s11910-015-0579-4

Neef, N. E., B€utfering, C., Auer, T., Metzger, F. L., Euler, H. A., Frahm, J.,

. . . Sommer, M. (2016). Altered morphology of the nucleus accum-

bens in persistent developmental stuttering. Journal of Fluency Disor-

ders, https://doi.org/10.1016/j.jfludis.2017.04.002

Neumann, K., Euler, H. A., von Gudenberg, A. W., Giraud, A.-L. L., Lanfer-

mann, H., Gall, V., & Preibisch, C. (2003). The nature and treatment

of stuttering as revealed by fMRI A within- and between-group com-

parison. Journal of Fluency Disorders, 28(4), 381–410.

Neumann, K., Preibisch, C., Euler, H. A., Gudenberg, A. W. V., Lanfer-

mann, H., Gall, V., . . . Giraud, A.-L. L. (2005). Cortical plasticity associ-

ated with stuttering therapy. Journal of Fluency Disorders, 30(1), 23–
39. https://doi.org/10.1016/j.jfludis.2004.12.002

O’Reilly, J. X., Beckmann, C. F., Tomassini, V., Ramnani, N., & Johansen-

Berg, H. (2010). Distinct and overlapping functional zones in the cer-

ebellum defined by resting state functional connectivity. Cerebral Cor-

tex, 20, 953–965.

O’Reilly, J. X., Jbabdi, S., Rushworth, M. F. S., & Behrens, T. E. J. (2013).

Brain systems for probabilistic and dynamic prediction: Computa-

tional specificity and integration. PLoS Biology, 11, e1001662.

https://doi.org/10.1371/journal.pbio.1001662

Preibisch, C., Neumann, K., Raab, P., Euler, H. A., von Gudenberg, A. W.,

Lanfermann, H., & Giraud, A. -L. (2003). Evidence for compensation

for stuttering by the right frontal operculum. Neuroimage, 20(2),

1356–1364. https://doi.org/10.1016/S1053-8119(03)00376-8

Price, C. J. (2012). A review and synthesis of the first 20 years of PET

and fMRI studies of heard speech, spoken language and reading.

NeuroImage, 62(2), 816–847. https://doi.org/10.1016/j.neuroimage.

2012.04.062

Riley, G. D. (1994). SSI-3 Stuttering Severity Instrument for Children and

Adults, 3rd ed. Austin, TX: Pro-Ed.

Sakai, N., Masuda, S., Shimotomai, T., & Mori, K. (2009). Brain activation

in adults who stutter under delayed auditory feedback: An fMRI

study. International Journal of Speech and Language Pathology, 11(1),

2–11. https://doi.org/10.1080/17549500802588161

Sitek, K. R., Cai, S., Beal, D. S., Perkell, J. S., Guenther, F. H., & Ghosh, S.

S. (2016). Decreased cerebellar-orbitofrontal connectivity correlates

with stuttering severity: Whole-brain functional and structural con-

nectivity associations with persistent developmental stuttering. Fron-

tiers in Human Neuroscience, 10, 190. https://doi.org/10.3389/fnhum.

2016.00190

Sokolov, A. A., Miall, R. C., & Ivry, R. B. (2017). The cerebellum: Adaptive

prediction for movement and cognition. Trends in Cognitive Sciences,

21(5), 313–332. https://doi.org/10.1016/j.tics.2017.02.005

Sommer, M., Koch, M. A., Paulus, W., Weiller, C., & B€uchel, C. (2002).

Disconnection of speech-relevant brain areas in persistent develop-

mental stuttering. Lancet, 360(9330), 380–383. https://doi.org/10.

1016/S0140-6736(02)09610-1

Sowman, P. F., Crain, S., Harrison, E., & Johnson, B. W. (2012). Reduced

activation of left orbitofrontal cortex precedes blocked vocalization:

A magnetoencephalographic study. Journal of Fluency Disorders,

https://doi.org/10.1016/j.jfludis.2012.05.001

Tourville, J. A., & Guenther, F. H. (2011). The DIVA model: A neural

theory of speech acquisition and production. Language and Cognitive

Process, 26(7), 952–981.

Tourville, J. A., Reilly, K. J., & Guenther, F. H. (2008). Neural mechanisms

underlying auditory feedback control of speech. Neuroimage, 39(3),

1429–1443. https://doi.org/10.1016/j.neuroimage.2007.09.054

Toyomura, A., Fujii, T., & Kuriki, S. (2015). Effect of an 8-week practice

of externally triggered speech on basal ganglia activity of stuttering

and fluent speakers. Neuroimage, 109, 458–468. https://doi.org/10.
1016/j.neuroimage.2015.01.024

Toyomura, A., Fujii, T., & Kuriki, S. (2011). Effect of external auditory pac-

ing on the neural activity of stuttering speakers. Neuroimage, 57(4),

1507–1516. https://doi.org/10.1016/j.neuroimage.2011.05.039

Ward, D., Connally, E. L., Pliatsikas, C., Bretherton-Furness, J., & Watkins,

K. E. (2015). The neurological underpinnings of cluttering: Some ini-

tial findings. Journal of Fluency Disorders, 43, 1. https://doi.org/10.

1016/j.jfludis.2014.12.003

Watkins, K. E., Smith, S. M., Davis, S., & Howell, P. (2008). Structural and

functional abnormalities of the motor system in developmental stut-

tering. Brain, 131(1), 50–59. https://doi.org/10.1093/brain/awm241

Woolrich, M. W., Behrens, T. E., Beckmann, C. F., Jenkinson, M., &

Smith, S. M. (2004). Multilevel linear modelling for FMRI group analy-

sis using Bayesian inference. Neuroimage, 21(4), 1732–1747.

Wymbs, N. F., Ingham, R. J., Ingham, J. C., Paolini, K. E., & Grafton, S. T.

(2013). Individual differences in neural regions functionally related to

real and imagined stuttering. Brain Language, 124(2), 153–164.
https://doi.org/10.1016/j.bandl.2012.11.013

Xue, G., Aron, A. R., & Poldrack, R. A. (2008). Common neural substrates

for inhibition of spoken and manual responses. Cerebral Cortex, 18(8),

1923–1932. https://doi.org/10.1093/cercor/bhm220

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the sup-

porting information tab for this article.

How to cite this article: Connally EL, Ward D, Pliatsikas C, et al.

Separation of trait and state in stuttering. Hum Brain Mapp.

2018;00:1–19. https://doi.org/10.1002/hbm.24063

18 | CONNALLY ET AL.3126 CONNALLY ET AL.

How to cite this article: Connally EL, Ward D, Pliatsikas C, et al. 
Separation of trait and state in stuttering. Hum Brain Mapp. 
2018;39:3109–3126. https://doi.org/10.1002/hbm.24063

https://doi.org/10.1002/hbm.24063



