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Caption: A significant new version of the 20th Century Reanalysis data assimilation 
system, 20CRv3, has been developed. The 20CRv3 dataset will provide an ensemble of 
sub-daily global atmospheric conditions spanning over 150 years by assimilating only 
surface pressure observations into a coupled atmosphere-land forecast model.  The new 
20CRv3 system improves upon the previous system in several notable ways, including 
the use of upgraded data assimilation methods, a newer and higher-resolution forecast 
model, and a larger set of available pressure observations.
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(a) 20CRv2c, 16 Sept. 1875
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(b) 20CRv3, 16 Sept 1875
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needed for a wide range of studies, from understanding
8
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large-scale climate trends to diagnosing the impacts of in-
9
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dividual historical extremeweather events. The Twentieth
Century Reanalysis (20CR) Project is an effort to fill this
need. It is supported by the National Oceanic and Atmo-
spheric Administration (NOAA), the Cooperative Institute
for Research in Environmental Sciences (CIRES), and the De-
partment of Energy (DOE), and is facilitated by collaboration
with the international Atmospheric Circulation Reconstruc-
tions over the Earth initiative. 20CR is the first ensemble
of sub-daily global atmospheric conditions spanning over
100 years. This provides a best estimate of theweather at
any given place and time as well as an estimate of its con-
fidence and uncertainty. While extremely useful, version
2c of this dataset (20CRv2c) has several significant issues,
including inaccurate estimates of confidence and a global
sea level pressure bias in themid-19th century. These and
other issues can reduce the effectiveness of studies at many
spatial and temporal scales. Therefore, the 20CR system
underwent a series of developments to generate a signifi-
cant new version of the reanalysis. The version 3 system
(NOAA-CIRES-DOE 20CRv3) uses upgraded data assimila-
tionmethods including an adaptive inflation algorithm; has
a newer, higher-resolution forecast model that specifies dry
air mass; and assimilates a larger set of pressure observa-
tions. These changes have improved the ensemble-based
estimates of confidence, removed spin-up effects in the pre-
cipitation fields, and diminished the sea level pressure bias.
Other improvements includemoreaccurate representations
of storm intensity, smaller errors, and large-scale reductions
in model bias. The 20CRv3 system is comprehensively re-
viewed, focusing on the aspects that have ameliorated is-
sues in 20CRv2c. Despite the many improvements, some
challenges remain, including a systematic bias in tropical pre-
cipitation and time-varying biases in southern high latitude
pressure fields.
K E YWORD S
reanalysis, data assimilation, surface pressure
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1 | INTRODUCTION58

In order to study historical and contemporary weather events including extremes within a broader climate context, long59

time series of accurate, reliable, sub-daily atmospheric variables are essential. Retrospective analyses, or ‘reanalyses’,60

take advantage of the benefits of past observations andmodernweather forecast models by combining the two in a61

process called ‘data assimilation’ (DA; Daley (1993)). The idea of ‘reanalysis’ arguably began in the early 19th century62

with Brandes’ hand-drawn synoptic weathermaps (Monmonier, 1999), and hasmatured significantly in the centuries63

since; see Compo et al. (2006) and Compo et al. (2011) for a detailed history. Historical reanalyses, which span a century64

or longer, act as a bridge betweenweather and climate since they are intended to capture individual weather events65

around the globe as well as larger climatic trends overmany decades within the context of a single, consistent dataset66

(Slivinski, 2018).67

In contrast to historical reanalyses, ‘modern’ reanalyses generally only extend back to the 1950s, andmore often68

only to 1979, when upper-air and satellite data are available for assimilation. These reanalyses include the European69

Centre forMedium-RangeWeather Forecasts (ECMWF) interim Re-Analysis ERA-Interim (Dee et al., 2011), the Na-70

tional Aeronautics and Space Administration (NASA)Modern-Era Retrospective analysis for Research and Applications71

version 2 (MERRA-2) (Gelaro et al., 2017), the 55-year Japanese Re-Analysis JRA-55 (Kobayashi et al., 2015), and the72

reanalysis produced jointly by the USNational Centers for Environmental Prediction (NCEP) and the National Center73

for Atmospheric Research (NCAR), the NCEP-NCAR Reanalysis (Kalnay et al., 1996; Kistler et al., 2001), among others74

(see Fujiwara et al. (2017) for a review of reanalysis systems). At present, long-term studies usingmodern reanalyses75

are restricted to span as few as 40-60 years, preventing in-depth investigation of infrequent extreme weather and76

climate events. Another difficulty is that significant changes to the observing system, such as the introduction of satellite77

data, can yield non-climatic discontinuities in some reanalysis fields, including an apparent shift in tropical divergent78

circulation (Kinter III et al., 2004) and trends in temperature, integrated water vapor, kinetic energy, and precipitation79

(Bengtsson et al., 2004; Bosilovich et al., 2011; Zhang et al., 2012). In order to avoid such artifacts, historical reanalyses80

that span at least a century assimilate only near-surface conventional observations, which have been available for the81

entire time period: specifically, surface pressure andmarine winds.82

The NOAA-CIRES Twentieth Century Reanalysis (20CR) marked the introduction of recent efforts to generate83

historical reanalyses, as it was the first reanalysis to assimilate only surface pressure observations (Compo et al., 2011).84

Since then, the range of studies to use these types of data has grown, and other centennial reanalyses were developed85

that assimilated these data. ECMWF produced ERA-20C (Poli et al., 2016), an atmospheric reanalysis spanning 1900 to86

2010 that assimilated surface pressure as well as marine winds, and CERA-20C (Laloyaux et al., 2018), which utilizes a87

coupled ocean-atmospheremodel and spans 1901 to 2010. In addition, NOAA and CIRES produced an update to the88

20CR version 2 described by Compo et al. (2011) that spanned 1871 to 2012; this update, 20CR version 2c (20CRv2c;89

see Giese et al. (2016) and detailed below), extended back to 1851 and ameliorates several issues with 20CRv2. Finally,90

the latest 20CR version 3 (20CRv3) is currently being produced byNOAA, CIRES, andDOE. It is expected to extend91

back to 1836 and to be released in 2019.92

Historical reanalyses have broad areas of application because they span timescales of weather to climate by93

providing sub-daily estimates of the Earth systemwith global coverage for a century or longer. These datasets have been94

utilized in studies including: climate change (e.g. Compo et al. (2013); Huang et al. (2016)); climate dynamics (e.g. Huang95

et al. (2017)); trends in hurricanes (e.g. Burn and Palmer (2015)), extra-tropical cyclones (e.g. Wang et al. (2013, 2016)),96

and extremes in temperature and precipitation (e.g. Donat et al. (2016)); blocking (e.g. Häkkinen et al. (2011); Rohrer97

et al. (2018)); individual case studies of particular storms (e.g. Moore and Babij (2017)); historic climatology in remote98

regions (e.g. Lorrey and Chappell (2016)); El Niño (e.g. Giese et al. (2010); Deser et al. (2017)); the Madden-Julian99
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Oscillation (e.g. Klotzbach et al. (2016)); convergence zone activity (e.g. Lorrey et al. (2012); Harvey et al. (2019));100

seasonal and climatic responses to volcanic eruptions (e.g. Brohan et al. (2016); Paik andMin (2017)); weather typing101

(e.g. Jones et al. (2013, 2016)); and the emerging field of decadal climate prediction (e.g. Mueller et al. (2014)), among102

many others.103

A key aspect for informed application of reanalyses is properly accounting for their uncertainty (e.g. Parker (2016)).104

Comparing different reanalyses that span similar time periods is oneway to cross-validate the datasets and determine a105

‘meta-confidence’ by agreement or disagreement among the datasets. It is also important that each historical reanalysis106

dataset is as accurate as possible, both in terms of past climate state estimates as well as internal quantification of107

its uncertainty (as measured by ensemble standard deviation or ‘spread’, for instance). This internal quantification of108

uncertainty is used by the data assimilation system during the production of the reanalysis to make the best use of the109

observations and prior background information, but is also important to the end-users of the reanalysis. As an example,110

a historical reanalysis may display a long-term trend in one variable that, according to the quantified uncertainty of111

the dataset, is significant. However, researchers may be unaware that the trend is an artificial one due to a bias in the112

observations, and appears to be significant solely due to errors in the uncertainty estimate. Continuing to work towards113

more reliable historical reanalyses allows studies on all timescales, such as those listed above, to avoid erroneous114

conclusions andmake use of the best data possible.115

In this vein, despite several major improvements from 20CRv2 to 20CRv2c, certain issues remain. While some are116

obvious, such as artificial large-scale trends and a lack of certain major storm systems, others aremore subtle, such as117

suboptimal usage of observations and inaccurate estimates of confidence. These problems can hinder the effectiveness118

of 20CRv2c for climate analysis applications. Investigations intomany of these issues occurred prior or in parallel to119

development of version 3, informing the implementation of particular algorithms that are expected to improve the120

efficacy of the reanalysis. In other cases, version 3will likely benefit from general improvements and upgrades to the121

system, as well as a larger observational database. This work discusses how the significant issues in version 2c are122

addressed, as well as other upgrades to the version 3 system. Preliminary results with the 20CRv3 dataset shown here123

will focus on several test periods between 1851 and 2002, and are intended to be representative of different time124

periods (in terms of quality, confidence, observational network density, biases, etc.) Results from the complete 20CRv3125

dataset and deeper investigations of it on climatic and synoptic scales are left for future works. Unless otherwise noted,126

all maps shown below are plotted at the native resolution of the dataset. Finally, we emphasize that many updates to127

the 20CRv3 systemweremade simultaneously, so a single improvement in this preliminary 20CRv3 data can rarely be128

attributed to a specific change in the system.129

The Twentieth Century Reanalysis system is described in detail in Section 2. Aspects of the system that changed130

from 20CRv2c to 20CRv3 are highlighted, as well as features of the version of the NCEPGlobal Forecast System (GFS)131

coupled atmosphere-landmodel used. Section 3 discusses several large-scale issues in the confidence derived from132

ensemble spread and in the biases of sea level pressure (SLP), precipitation, andwind in 20CRv2c. Preliminary results133

suggest that updates to the forecast model and data assimilation algorithm will improve the confidence estimation134

and reduce most of these biases in 20CRv3. In addition to addressing known issues, other developments in the135

version 3 system are expected to result in further improvements. As shown in Section 4, updates to the localization136

procedure, quality control, and observation errorswill likely improve the use of observations and result inmore accurate137

representations of variability and extremes, such as tropical cyclones. Despite significant improvements across the138

board, several issues remain in the 20CRv3 system. These are discussed in Section 5. Section 6 concludes with a139

discussion and final remarks.140
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2 | SYSTEM OVERVIEW141

In several basic ways, each iteration of the Twentieth Century Reanalysis system remains the same as that proposed142

originally by Compo et al. (2006). First, modern weather forecast models are used to generate the atmospheric143

background fields given prescribed sea surface temperature (SST) and sea ice concentration fields. Second, an ensemble144

method assimilates historical observations to update the background fields, yielding analysis fields. Ensemble methods145

are particularly useful as they allow for estimates of uncertainty and confidence via ensemble spread (e.g., ensemble146

standard deviation) as well as an estimate of the atmospheric state via the ensemblemean. Finally, surface pressure147

values are the only type of observations that are ever assimilated. Sea ice and SST observations are implicitly included in148

the reanalysis in the form of boundary conditions and can guide themodel to represent large-scale climate features, but149

they are not assimilated. While the temporal frequency, spatial density, and quality of the surface pressure observations150

have changed over time as a result of developments in instrumentation and theory (Middleton, 1964), the 20CR system151

assumes that the most important part of the observation error is its so-called ‘error of representativeness’ (Lorenc,152

1986; Janjić and Cohn, 2006). Observation errors are therefore assumed to be constant in time; see Section 4.2 for153

more discussion. Feedback from reanalysis datasets that assimilate these observations can be used to improve this154

estimate in the future (e.g., Poli et al. (2015); Laloyaux et al. (2018)).155

For purposes of comparison, the 20CRv2c system outlined by Giese et al. (2016) is detailed in Appendix A, and156

the 20CRv3 system is detailed here. To address significant issues in the 20CRv2c dataset, and as a result of general157

progress in the fields of modeling and data assimilation, several aspects of the 20CR system were updated before158

producing 20CRv3. Broadly, 20CRv3will benefit from an improved, higher-resolutionmodel; a larger observational159

database; updated data assimilation methods; and a larger ensemble size. The atmospheric model used in 20CRv3160

has been updated to the 2017 version of the NCEPGFSwith a resolution of total spherical wavenumber 254 (about161

0.5 deg. horizontal resolution) and 64 vertical hybrid sigma-pressure levels; differences between the version of the162

GFS operational in fall 2017 and the version used for 20CRv3 are detailed in Appendix A. Additionally, the version 2c163

system allowed the assimilation to update the dry air pressure, resulting in a feedback loopwith biased observations164

that caused significant artificial trends in themid-19th century; see Section 3. In version 3, the dry air pressure was held165

fixed in the forecast and analysis steps.166

The 20CRv2c dataset began in 1851 due to the availability of its prescribed sea ice fields. The addition ofmore 19th167

century observations available to the 20CRv3 assimilation system, as well as early investigations of confidence and168

forecast errors (not shown), suggested that 20CRv3 could span further back in time than 20CRv2c, given appropriate169

boundary conditions. 1804 is the first year that every 6-hour window has at least one observation (globally) to be170

assimilated. Due to computational and storage resource limitations, 1836was the earliest year that 20CRv3 could be171

produced. Experiments for the years 1804-1835 are ongoing.172

The20CRv3dataset is expected to consist of twooverlapping sub-versions: 20CRv3si (1836–2012) and20CRv3mo173

(1981–2015), where the only difference between the two sub-versions is the prescribed SSTs. 20CRv3mo prescribes174

SSTs fromHadISST2.2 (Rayner et al., 2006; Poli et al., 2016; Laloyaux et al., 2018), which consists of an ensemble of175

5-day average SST fields interpolated to daily resolution. This interpolation is cubic, with the coefficients adapted to the176

autocorrelation of the data (Kwon et al., 2004). Of the 10members available, two of the ensemblemembers had quite177

different bias adjustments from the others; thus, 20CRv3moonly uses the remaining 8members as boundary conditions.178

20CRv3si prescribes SSTs from the pentad, linearly interpolated to daily, 8-member Simple OceanData Assimilation179

with sparse input version 3 (SODAsi.3) ensemble that itself used 20CRv2c fields as atmospheric boundary conditions180

and forcing (Giese et al., 2016). The SODAsi.3 SSTs used for 20CRv3si were seasonally adjusted to the 1981–2010181

HadISST2.2 daily climatology. For both versions, each of the 8 distinct SST ensemble members was duplicated 10 times182
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to create a total of 80members. Thus, the first, 9th, 17th, 25th, ..., and 73rdmembers of the 20CRv3 ensemble have the183

same SST forcing, and the second, 10th, 18th, 26th, ..., and 74thmembers have the same SST forcing as each other (but184

different from the first set), and so on. Sea ice concentrations were specified fromHadISST2.3, which is identical to185

HadISST2.2 (Titchner and Rayner, 2014) from 1972 onwards. From 1850 to 1971, HadISST2.3 specifies Arctic sea ice186

extent from the Sea Ice Back To 1850 dataset (SIBT1850;Walsh et al. (2015, updated 2016)). Prior to 1850, sea ice187

extent and concentration are specified as the 1860–1891HadISST2.3 climatology.188

Thanks to international efforts facilitated by the Atmospheric Circulation Reconstructions over the Earth (ACRE)189

initiative (Allan et al., 2011) andmany volunteer efforts, there aremillionsmore observations assimilated in 20CRv3190

than in 20CRv2c. This represents an average of 5%more available observations per assimilation cycle in recent periods191

(after about 1930), and up to 25%more available observations per cycle in earlier years. The new observational dataset,192

the International Surface Pressure Databank (ISPD) version 4.7 (Cram et al., 2015; Compo et al., 2015), blends surface193

and sea level pressure observations from the International Surface Database (ISD, (Lott et al., 2008; Smith et al., 2011))194

with additional station observations, archived and previously undigitized terrestrial data submitted to the ISPD from195

international ACRE partners, pressure reports for tropical cyclones from version V03r10 of the International Best196

Track Archive for Climate Stewardship (IBTrACS, Knapp et al. (2010); Kruk et al. (2010) combined with additional197

Pacific tropical cyclone data (Kubota, 2012), andmarine observations from the International Comprehensive Ocean-198

Atmosphere Data Set (Worley et al., 2005;Woodruff et al., 2011; Freeman et al., 2017) ICOADS3+ version 2. The latter199

is our own improvement to ICOADS3 that includes recently-digitized and better positioned and quality-controlled200

observations fromACRE-recovered expeditions, OldWeather.org, and the AustralianWeather Detective project (see201

(Spencer et al., 2019), https://github.com/oldweather/ICOADS3.plus/releases and Appendices A-B).202

Unlike 20CRv2c, which used a 56-member ensemble Kalman filter with a digital filter applied to the background203

forecast, 20CRv3 assimilates observations with an 80-member ensemble Kalman filter that utilizes a 4-dimensional204

incremental analysis update (Bloom et al., 1996; Lei andWhitaker, 2016) and no digital filtering; see Section 3 and205

AppendixA. Additionally, 20CRv2c interpolated station pressure observations to themodel surface prior to assimilation,206

while 20CRv3 uses themore typical procedure and assimilates them at the observation level, absorbing the vertical207

interpolation of the background forecast into the observation operator (H). As will be discussed in Section 4, 20CRv3208

includes a nonlinear quality control algorithm for the observations, an adaptive localization algorithm, an inflation209

method based on relaxation-to-prior-spread, and an offline bias correction for marine observations prior to 1871210

(see Appendices B-D for more details). 20CRv3 also includes an updated bias correction for station data over land:211

these biases are ‘learned’ over a 60-day time period. That is, they are calculated as the average difference between the212

observation and the first guess over the 60-day window (with aminimum of 31 days’ worth of data in the window) prior213

to the current assimilation step; if significant, these differences are subsequently removed from the observation at the214

step prior to assimilation (see Compo et al. (2011), their Appendix B, for more details). Finally, the baseline observation215

errors used in 20CRv3 are given in Table 1. Column 4 (‘station’) refers to observations of surface pressure, while column216

5 (‘SLP only’) refers to stations that only reported pressure reduced to sea level. Observation errors are increased by217

0.001 hPa per meter difference between the observation elevation and themodel orography. These are the same errors218

used in 20CRv2c, with the exception of tropical cyclone data (see Table A.1).219

3 | ADDRESSING ISSUES IN 20CRV2C220

The 20CRv3 dataset will build on two previous efforts: 20CRv2 and 20CRv2c. The 20CRv2 dataset represented an221

important step forward for weather and climate research because it filled a need for a consistent, long-term, sub-daily222
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gridded atmospheric dataset using instrumental observations. As of the time of writing, the paper describing the223

20CRv2 dataset (Compo et al., 2011) has more than 2000 citations (Google Scholar, accessed 4 Feb 2019). While useful,224

the 20CRv2 dataset has several issues, including amisspecification of polar sea ice that resulted in warm near-surface225

temperature biases (Brönnimann et al., 2012) and inhomogeneities associatedwith variations in observation density226

and its covariance inflation algorithm prior to 1952 (Ferguson and Villarini, 2012).227

The 20CRv2c dataset was an effort to address those issues, use a novel SST specification, and include additional228

observations compared to 20CRv2. However, as more studies delved into different aspects of 20CRv2c, limitations229

of it became apparent. Simultaneously, the many studies using 20CRv2cmotivated further data rescue efforts, and230

the amount of pressure observations available to be assimilated grew significantly, particularly in early years. Figure 1231

illustrates the global annual average number of observations available to be assimilated in a 6-hour window of 20CRv2c232

(solid black) and 20CRv3 (dashed gray). Here, ‘available’ refers to observations that were rescued, digitized, externally233

quality controlled, and blended into the version of the ISPD used in the given reanalysis; it includes observations that234

may be flagged or thinned by the internal 20CR quality control system (see Section 4 and Appendix C for details.)235

A new version of the 20CR system couldmake use of this growing set of observations, as well as general progress in236

modeling and data assimilationmethods, and would provide a significantly improved dataset. Major issues in 20CRv2c,237

including inaccurate representations of uncertainty as well as large-scale biases and artifacts in sea level pressure,238

precipitation, andwind, also informed andmotivated the development of the 20CRv3 system.239

3.1 | Estimation of confidence240

In order tomake conclusions about the significance of trends, signals, and extrema from reanalyses, wemust be able241

to quantitatively measure confidence in the datasets. A defining characteristic of 20CR is its use of an ensemble data242

assimilationmethod, which yields both a single best estimate of the analysis (themean) as well as a quantification of243

the uncertainty around that estimate via the ensemble spread (the standard deviation). More spread implies more244

uncertainty, and less spread implies less uncertainty. In general, the uncertainty in the ensemblemean as an estimate245

will correlate negatively with the density of the available observational network. In addition, the variability of the246

ensemblemean in time, or temporal spread (Equation 1), can be used as an estimate of climatological uncertainty. At247

time tk , the temporal spread of the ensemblemean over a window of length∆T is given by:248

temp. spread (tk ) =


1

Nt ime − 1

tk +∆T /2∑
t=tk −∆T /2

(
xensmean (t ) − xensmean

)2
1/2

, (1)

whereNt ime is the number of time steps in thewindow [tk −∆T /2, tk +∆T /2], xensmean (t ) is the area-averaged ensemble249

mean of the variable of interest (for example, SLP) at time t , and xensmean is the time-average of the ensemble mean250

xensmean (t ) over the timewindow.251

As an example, Figure 2 includes time series of uncertainty in sea level pressure over the zonal band from 65◦S to252

40◦S calculated from 20CRv2c. This region is particularly important for investigations of anthropogenic CO2 uptake,253

and long time series are needed for studies of its decadal variability (as discussed in, eg, Landschützer et al. (2015)).254

The analyzed sea level pressure ensemble spread is plotted (thick dark blue curve) along with the temporal spread255

of the analyzed sea level pressure ensemblemean (thin light blue curve) and the number of observations assimilated256

per 6-hour window (thin red curve, right hand axis) in this region. The temporal spread is calculated as the standard257

deviation of the ensemble mean across a centered timewindow using Eqn. 1 with∆T = 61 days, and all time series have258

a 1-year running average applied. This region has relatively few observations available (comparewith Fig. 1), and the259
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effects ofWorldWar I (1914–1918) andWorldWar II (1939–1945) are particularly striking (see shaded gray regions),260

as is the First GARP (Global Atmospheric Research Program) Global Experiment in 1979 (dashed line). The correlation r261

between the ensemble spread and the log of the number of observations assimilated perwindow is -0.96, demonstrating262

the strong inverse relationship between the ensemble spread and the observational network density.263

However, ensemble spread is only an estimate of uncertainty, and it is not always reliable. For instance, awell-known264

issue with the EnKF is the tendency for ensembles to ‘over-tighten’ towards themean, resulting in an ensemble spread265

that is overconfident and ultimately in filter divergence (that is, when the background ensemble standard deviation266

approaches 0 and the ensemble is unable to use information about observations) (Anderson and Anderson, 1999;267

Whitaker andHamill, 2002). A commonmethod to address this problem is ‘covariance inflation’; generally, this refers268

to artificially increasing the ensemble spread by, for example, applying a multiplicative factor greater than 1 to the269

ensemble covariance. When many observations are assimilated, the ensemble is more prone to collapse, and thus270

requires more inflation. In 20CRv2c, a simplemultiplicative inflation factor (Anderson and Anderson, 1999) was applied271

to the ensemble covariancematrix at each step; this factor was predefined based on year and latitude. Table 2 shows272

the inflation parameters used in 20CRv2c. These time periods were chosen to loosely reflect availability and density273

of observations: for example, there were few National Meteorological Services organized prior to 1870, and thus274

the observational network was relatively sparse. The period 1871–1890 represents a transition period; with such275

developments as the founding of the InternationalMeteorological Committee in 1873, the network of observations276

in the Northern Hemisphere becomes denser. Conversely, the Southern Hemisphere observation network remains277

relatively sparse into the 20th century.278

While this method ensured that larger inflation parameters were applied when the observation network was279

more dense (e.g., in the Northern Hemisphere and inmodern time periods), the abrupt changes in the parameters are280

responsible for artificial signals in the time series of uncertainty. The spike in ensemble spread in 1951 (solid black line281

in Fig. 2) is an artifact of themultiplicative inflation algorithm used in 20CRv2c: this is the year the inflation parameter282

in the Southern Hemisphere increased from 1.02 to 1.07 (Table 2), and there is no corresponding decrease in number of283

observations assimilated. In fact, 1951marks an increase in assimilated SLP observations; this originally motivated284

increasing the inflation parameter in that particular year.285

Another issue demonstrated by Fig. 2 is the under-confidence of the ensemble spread. As discussed earlier, the286

temporal spread can be used as a proxy for a climatological spread. Until the 1980s, the ensemble spread is larger than287

the temporal spread, suggesting that the ensemble was less confident than a climatological estimate. The inverse also288

occurs: the fixed inflation algorithm can result in too little inflation over data-rich regions, leading to overconfidence in289

these areas (not shown).290

The version 3 system uses an improved inflation algorithm referred to as relaxation-to-prior-spread (Whitaker291

andHamill, 2012). Using this algorithm, the inflation adapts to the observation network density. When there are few292

observations, the ensemble spread is hardly changed; when there are dense observations, the ensemble spread is293

‘relaxed’ back to the prior spread, by an amount λi nf . For everymodel grid point (x , y ) and analysis time t , the inflation294

parameter λi nf is given by:295

λi nf (x , y , t ) = pr el ax

(σb (x , y , t ) − σa (x , y , t )
σa (x , y , t )

)
+ 1, (2)

where σb (x , y , t ) is the standard deviation of the background ensemble, σa (x , y , t ) is the standard deviation of the296

analysis ensemble before inflation, and pr el ax is a relaxation parameter that can vary from 0 (no inflation) to 1 (inflate to297

prior spread). The ratio of ensemble spread in Eqn. 2 implicitly depends on the density of the observation network in298

that region: a dense network will result in a smaller analysis ensemble spread, and thus a larger inflation parameter, and299
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vice versa. Initial tests with the 20CRv3 system used pr el ax = 0.9 globally. These tests (not shown) suggested that this300

was too large in the Southern Hemisphere, as the uncertainty was larger than a climatological uncertainty. Thus, the301

final 20CRv3 system uses pr el ax = 0.9 for 20◦S–90◦N and pr el ax = 0.7 for 90◦S–30◦S. In the transition zone 30◦S–20◦S,302

pr el ax varies linearly from 0.7 to 0.9. These values of pr el ax do not change in time. Figure 3 shows representative303

examples of the adaptive inflation parameter λi nf from four different years; a value of 1 is equivalent to no inflation.304

TheGFSmodel in 20CRv3 uses stochastic physics (Appendix A), which also contributes to the ensemble spread.305

This effect is particularly strong in the tropics, which reduces the need for inflation in this region (e.g., Fig. 3d). Outside306

of the tropics, the inflation factor depends on the observation network density: over theUS and Europe, and throughout307

the Northern Hemisphere in recent years, the inflation factor is larger than elsewhere. Note also that the range of308

inflation parameter values used in 20CRv3 is much larger than was prescribed in 20CRv2c (compare Fig. 3 and Table 2).309

Figure 4 illustrates the result of these changes in terms of the ‘confidence’ in fields of sea level pressure from310

versions 2c and 3 of 20CR during selected early 20th century boreal winters. Here, ‘confidence’ is defined as the311

difference of the normalized time-averaged ensemble standard deviation from 1:312

conf = 1 − spr ead ens/spr ead cl im , (3)

where spr ead ens is the time-averaged standard deviation of the ensemble of analyzed SLP from the stated version313

of 20CR, and spr ead cl im is the temporal standard deviation of the 20CRv2c ensemble mean 6-hourly SLP over Jan-314

Feb-Mar from 1981-2010. In other words, spr ead cl im represents an estimate of the inherent weather variability; it is315

assumed to be time-invariant and independent of ensemble spread. Thus, a confidence value of zero (denoted by black316

contours in Fig. 4a-b) denotes ensemble spread identical to the climatological spread; greater confidence implies more317

certainty than climatology, and negative confidence implies less certainty than climatology. Aside from interannual318

variations in weather variability (e.g., Compo et al. (2001)), theminimum confidence value would be zero.319

These maps demonstrate features of the new estimates of confidence in 20CRv3. In particular, there is more320

certainty over the highArctic latitudes in version 3 (red shading in Fig. 4c in this region) than simply using a climatological321

mean as the analysis. There is alsomore spread over the densely-observed regions of North America and Europe (blue322

shading in Fig. 4c in these regions). Results (not shown) using independent observations from U.K. Daily Weather323

Reports comparing expected and actual errors suggest that this is an improvement, as the 20CRv2c analyses are324

overconfident over Europe in the 1900s. Similar overconfidence is found for 20CRv2c first-guess fields (not shown). We325

expect that the results would be similar for independent observations over North America. In contrast, the larger-than-326

climatological uncertainty over the high southern latitudes has been reduced but not eliminated, despite the decrease327

in pr el ax discussed above. There is also a decrease in confidence in 20CRv3 throughout much of the tropics; this may be328

due to the stochastic physics described above. The decrease in confidence throughout themid-latitude oceans suggest329

that further experiments with pr el ax may be necessary in the future. While many of the differences are likely due to the330

new adaptive inflation algorithm, recall that 20CRv3 uses an 80member ensemble, as opposed to the 56members in331

20CRv2c. The larger ensemble, as well as other updates to the 20CRv3 system, may also have contributed to greater332

consistency between the quantified confidence of version 3 and prior expectations.333

3.2 | Global sea level pressure bias334

Another significant issue in 20CRv2c, a sea level pressure bias prior to the 1870s, prevented this dataset from being as335

useful as it could have been for its full span. This bias is evident in globally-averaged time series of sea level pressure336

(Figure 5, blue curve) for most years prior to 1870. Relative to several reanalyses of varying timespans, including337
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ERA-Interim (orange), the historical reanalyses ERA-20C (green) and CERA-20C (gold), and a 56-member ensemble of338

simulations with the same version of the GFS used in 20CRv2c but without assimilation (‘no DA’; red), the global SLP339

from 20CRv2c is asmuch as 2-4 hPa too low during the period of concern. Shading on Fig. 5 represents one standard340

deviation when ensemble estimates are available; note that the 20CRv2c spread in the biased period is still several hPa341

away from the ‘no DA’ mean and standard deviation.342

The cause is revealed to be biased ship observations in the mid-19th century, first reported by ToddMitchell at343

a marine data workshop (Diaz et al., 2002; Ansell et al., 2006; Allan and Ansell, 2006), combined with the 20CRv2c344

system allowing the global dry pressure to be updated during the assimilation cycle. The 20CRv2c system assimilated345

many low-biased ship observations throughout the world oceans. During the assimilation, the global SLP field and the346

global dry air pressure were updated to be lower andmore consistent with these biased observations. This resulted in a347

feedback cycle, as the biased observations continued to be assimilated in themid-19th century and the global SLP and348

dry air pressure fields continued to be lowered. While 20CRv2c included a bias correction to land stations, it did not349

include amarine observation bias correction algorithm. Figure 6a shows amap of the 1851–1853 time-averaged SLP350

anomaly fields from 20CRv2c analyses: note the widespread negative anomalies, particularly over the oceans. Panel (b)351

differs from (a) in that it used an experiment that assimilated about 10% fewer ship observations than 20CRv2c, but352

with an otherwise identical setup. Overall, the anomalies are less negative, demonstrating that assimilatingmore ship353

observations from 1851–1853 negatively biased the globally-averaged analyzed sea level pressure by as much as 4 hPa.354

Note that these ships were not chosen on an a priori basis: this illustrates the strong effect of a small number of biased355

observing platformswithin a cycled data assimilation system.356

Two improvements in 20CRv3will address this issue. First, the global dry pressure can no longer be updated within357

the assimilation: instead, it is specified at 98.3050 kPa (Trenberth and Smith, 2005). This prevents the feedback loop358

with the biased ship observations that allowed the global sea level pressure bias to persist for nearly two decades of359

20CRv2c data. Second, to directly address the observation bias, a correction is applied tomarine observations prior to360

1870. Investigations into the individual observations found that the negative bias is not consistent across different361

voyages in this time period, suggesting that a single bias correction for all marine observations in this time period would362

not be sufficient. Thus, a bias for each individual ship is calculated as themean deviation from the 20CRv2c 1981-2010363

climatology, and subtracted from themarine observations prior to assimilation (see Appendix B for more details).364

Figure 7 illustrates a test of these new procedures. Fig. 7a shows the 20CRv2c SLP annual anomaly for 1854; note365

the consistently negative differences throughout the tropics andmidlatitudes. The effect of constraining dry pressure in366

the version 3 systemwithout bias correcting the observations is shown in Figure 7b. There are still negative anomalies367

in the highly-trafficked regions of the ocean (around CapeHorn, South America; the North Pacific Ocean off the coast of368

the US; and the North Atlantic Ocean). In order to retain the fixed dry pressure, this leads to an increased SLP anomaly369

where there are fewer observations, particularly around the poles. Figure 7c includes both the fixed dry pressure and370

the bias-corrected ship observations. The negative anomalies in high-density marine regions are now almost entirely371

removed, andwhile the positive anomaly over the high southern latitudes remains, it has been diminished. The black372

curves in Fig. 5 represent the annual global SLP from20CRv3 during three test periods, and demonstrate the large-scale373

effects of these changes to the 20CRv3 system.374

As with many bias correction schemes, it is possible that this method is removing real signals from historical375

observations by forcing them towards amodern climatology. For example, the negative SLP anomalies in the southern376

midlatitudes prior to bias correction (Fig. 7b) are assumed to be effects of biased observations from ships, as these377

anomalies are strongest in heavily-trafficked shipping lanes andwhaling areas. However, this pattern could be a real378

climatological shift in wave number 3 of the zonal flow in the Southern Hemisphere (see, for example, van Loon and379

Jenne (1972); Raphael (2004)) and would be erroneously removed by the bias correction scheme (Fig. 7c). Nevertheless,380
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in the absence of more information about these pressure observations or independent reconstructions of themid-19th381

century SLP fields for validation, this procedure provides an improvement over uncorrected marine observations382

leading to spurious SLP trends (e.g., Fig. 5). Deeper investigations into the cause of this observational bias (such as383

changes inmeteorological logs or barometer-correction practices over the period 1850-1860) could allow formore384

realistic bias correction schemes in the future.385

3.3 | Artifacts in precipitation andwind386

While the global SLP trend prior to 1870 in Figure 5 could be attributed in someway to the observations, other artifacts387

can be traced back to the assimilation method. One example stems from the use of a digital filter (Lynch and Huang,388

1992; Huang and Lynch, 1993) in the forecast step of 20CRv2c that was implemented to temporally smooth the physical389

fields after the EnKF update (Appendix A). Without this filtering, imbalances introduced by the EnKF update would390

have resulted in numerical noise during the forecast step, which in turn would have contaminated the forecasts and391

the covariance estimate during the next assimilation step, degrading the accuracy of the analysis. The digital filter was392

active for forecast hours 0-3, andwas turned off for hours 3-6. One effect of the digital filter switching on and off is an393

artificial positive trend in the tendency of precipitation rates from consecutive forecast windows (Figure 8a).394

Instead of a digital filter, the version 3 system uses a 4D incremental analysis update (4DIAU) (Bloom et al., 1996;395

Lei andWhitaker, 2016) tomitigate the imbalances introduced by the EnKF update. Essentially, the updates calculated396

by the EnKF analysis step are applied as amodel forcing at every time step within the forecast, preventing gravity wave397

noise from contaminating its short-term evolution. Unlike the digital filter, the temporal smoothing in the 4DIAU is398

effectively only applied to analysis increments, not to the fields output from themodel, thereby eliminating the spurious399

tendency trends seen during the forecasts of version 2c. Figure 8b demonstrates the improvement over the digital400

filter: the precipitation rate biases have almost entirely disappeared. Note that the spatial average of the tendencies401

(difference between 3-6 hour and 0-3 hour forecasted precipitation rates) from 20CRv2c fields (Fig. 8a) is 0.72mm/day,402

while the average from 20CRv3 (Fig. 8b) is 0.05 mm/day. These figures show the annual average for 2002 but are403

representative of all available years.404

Despite this change, the global annual average precipitation rate in tests with the 20CRv3 system is nearly the405

same as 20CRv2c. Figure 9 shows the 2002 annual average precipitation rates for (a) 20CRv2c, (b) 20CRv3, and (c) the406

gridded, blended satellite/gauge precipitation dataset fromNASA’s Global Precipitation Climatology Project (GPCP;407

Adler et al. (2003)). The 20CRv3 field has a stronger separation in the western tropical rainband than 20CRv2c, leading408

to a double Inter-Tropical Convergence Zone (ITCZ) that is not as apparent in theGPCP dataset. Note that both versions409

of 20CR also overestimate global precipitation rates relative to GPCP; investigations into this issue are ongoing.410

Figures 8a and 9a show another artifact of 20CRv2c, previously identified by Kent et al. (2013): namely, a spectral411

ringing characteristic in the precipitationmean and difference fields. This artifact is evenmore apparent in the 10m412

wind fields (Figure 10a). This effect is the result of an error in the spectral transform of a higher-resolution orography to413

the lower-resolution field used as an input to 20CRv2c (Fig. 10c). Since 20CRv3 uses amodel at a higher resolution than414

20CRv2c, it does not suffer from this issue as dramatically (Fig. 10b & d), and the precipitation andwind fields lack any415

spectral ringing signals.416
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4 | ADDITIONAL IMPROVEMENTS IN 20CRV3417

In addition to the specific developments in the version 3 system that were designed to ameliorate issues in 20CRv2c,418

early tests with the 20CRv3 system suggest that it will benefit from other updates to the system leading to overall419

improvements. In particular, the version 3 system uses adaptive quality control and localization and specifies smaller420

tropical cyclone observation errors. These changes, in conjunction with a newer, higher-resolution forecast model, a421

larger observational database, and the improvements described in Section 3, yield results suggesting that 20CRv3will422

have smaller forecast errors, large-scale reductions in model bias, andmore accurate representations of hurricanes.423

4.1 | Adaptivemethods for assimilating observations424

All versions of 20CR use an ensemble Kalman filter to assimilate observations. It is well-known that localization is425

required to prevent spurious ensemble cross-correlations from developing far away from the assimilated observations426

(Houtekamer andMitchell, 1998, 2001; Hamill et al., 2001; Anderson, 2007). The use of localization in ensemble data427

assimilation systems for weather prediction is crucial, since current-generation systems are being runwith ensemble428

sizesmany orders ofmagnitude smaller than the size of the forecastmodel state vector. Traditional localization schemes429

use a smooth cutoff function, such as the piecewise continuous fifth-order polynomial function described byGaspari and430

Cohn (1999), to taper the covariances to zero at a given distance away froman observation. Typically, this ‘Gaspari-Cohn’431

localization is a function of only the horizontal distance between an observation and a state variable, and is described by432

a single parameter that is related to the distance at which the Gaspari-Cohn function goes to zero. The optimal value for433

the localization length scalemay be a function of many aspects of the data assimilation system, such as the density of434

the observing system and the scale of the phenomena being observed. This makes tuning the localization length scale435

difficult, especially when the observing system is very inhomogeneous, andmany different scales are being observed436

simultaneously. The 20CRv2c system used a localization radius of 4000 km for all times and locations based on early437

tests (Whitaker et al., 2004); a relatively large value was chosen to maximize the use of observations in data-sparse438

regions and tominimize the generation of small-scale noise by the EnKF update. In addition, a five-step quality control439

(QC) process was employed in 20CRv2c; this is the same process used in 20CRv2 and described in Appendix B of Compo440

et al. (2011).441

Since the 20CR system only assimilates surface pressure observations and the network can become quite sparse in442

the 19th century, it is important to extract themost information from each observation. In order tomake better use of443

the observations, 20CRv3 uses an adaptive quality control procedure jointly with an adaptive localization algorithm.444

Observations must pass two initial gross QC steps: if the observation is outside a plausible range or if the observation is445

too far from the first guess, the observation is rejected. The first step will reject an observation that is outside the range446

850 and 1090 hPa. The second step will reject an observation xob if it is too far from the first guess xf g :447

|xob − xf g | > 3.2 ∗
√
σ2
b
+ σ2

ob
, (4)

where σ2
b
is the variance of the first guess ensemble interpolated to the observation time and location and σ2

ob
is the448

observation error variance. Unlike 20CRv2c, version 3 does not utilize a ‘buddy check’ or a thinning algorithm to reject449

observations that degrade the fit of the analysis to nearby observations or that do not decrease the analysis ensemble450

spread. Instead, the adaptive quality control assigns these observations larger errors and smaller localization radii, so451

that their region of influence is essentially zero. Details of the adaptive quality control and localization procedures used452

in 20CRv3 can be found in Appendices C-D.453
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Figure 11 showsmaps of observations within a single assimilation window for four test years: 1854, 1915, 1935,454

and 2000. Note that, as the observation network becomes denser, the localization lengths generally decrease. In 1854455

and 1915, the observation network is relatively sparse, and most observations have localization length scales near456

the maximum allowed of 4000 km. In the year 2000, however, most observations located within densely observed457

areas have localization length scales closer to 1000 km, though there are a few observations within these areas that the458

algorithm selects for longer localization length scales. Observations locatedwithin areas that are sparsely observed459

(such as the SouthernOcean and Antarctica) still have fairly long localization length scales in the year 2000. This new460

procedure allowsmanymore observations to be assimilatedwithin 20CRv3while adaptively allowing observations461

with significant beneficial effects to have larger ranges of impact, and observations that have less beneficial effects to462

have smaller ranges.463

4.2 | Observation statistics464

Observations have a large impact on overall performance of reanalyses: inaccurate observations as well as the incorrect465

prescription of their errors can impact global fields and their trends (recall the global SLP bias in Figure 5). It is crucial,466

then, to investigate the behavior of their statistics in the context of the full system. Here we show that, while 20CRv2c467

performs fairly well under manymeasures, the updated algorithms used in 20CRv3 produce clear improvements in468

several test periods.469

Statistics of the departures of observations from the first-guess field can provide one measure of how well the470

entire system is performing, particularly when compared with statistics of the expected errors. The ‘actual’ error is471

defined as:472

RMSEactual =

1

Nobs

Nobs∑
i=1

(
xob,i − xb,i

)2
1/2

, (5)

where i indexes all Nobs observations that are contributing to the statistic (in space or time), xob,i is the i t h observation,473

and xb,i is the first-guess field interpolated to the i t h observation time and location. The expected error is then defined474

as:475

RMSEexp . =

1

Nobs

Nobs∑
i=1

(
σ2ob,i + σ

2
b,i

)
1/2

, (6)

where i indexes the same Nobs observations as above, σ2ob,i is the i t h observation error variance, and σ2b,i is the variance476

of the first guess ensemble, interpolated to the i t h observation time and location. As shown byDesroziers et al. (2005),477

under the assumptions that the observation and background errors are uncorrelated and unbiased, these errors should478

be equivalent. In aDA system that is performingwell, the actual errors should not be larger than the expected errors. We479

consider time series of regionally- and annually-averaged surface pressure forecast errors for theNorthernHemisphere480

(20◦N to 90◦N), tropics (20◦S to 20◦N), and Southern Hemisphere (90◦S to 20◦S). That is, the statistics in Equations 5-6481

are calculated using all observations in the given region for each year. These are plotted in Figure 12 for 20CRv2c (blue)482

for all years and 20CRv3 (black) for three test periods.483

As expected from EnKF theory and seen with 20CRv2 (Compo et al., 2011), errors decrease in time as observations484

are denser and more accurate. Note that this is not a result of any ‘tuning’. The Southern Hemisphere errors from485

20CRv2cmatch the expected errors particularly well in all decades after 1860. The 20CRv2c errors in the tropics are486
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less consistent, and the actual errors in the NorthernHemisphere are almost always larger than the expected errors,487

by over 1 hPa in earlier decades and by 0.3-0.5 hPa in recent decades. This suggests that, in the 20CRv2c system, the488

errors assigned to observations might be too low, the first guess ensemble spread is too small, the observations or first489

guess fields are biased, or a combination of these.490

The preliminary 20CRv3 errors (black curves in Fig. 12) show improvements in nearly every test period. While the491

actual errors in the 1851 – 1870 test period are still larger than the expected errors, this discrepancy is smaller than492

in 20CRv2c. Recall from Section 3 that, prior to 1871, a bias correctionwasmade tomarine observations in 20CRv3,493

in addition to the station observation bias correction. Although dry air mass conservation is mainly responsible for494

removing the low-pressure bias (Fig. 7), the ship bias correction provides further improvement. For themodern period495

in all regions, the actual error is always less than expected. This suggests that the assigned observation errors may496

be too large for modern years, and future work may investigate the effects of time-varying observation errors as in497

Laloyaux et al. (2018). Nevertheless, the overall effect of the new algorithms in the version 3 system, including ship bias498

correction, is to decrease the RMS errors in several different test periods.499

These improvements in RMS errorsmay be due to the updatedmodel, aswell as to the new algorithms implemented500

in the 20CRv3 system. This is supported by investigations into the station bias corrections: recall that these corrections501

are based on 60-day average differences between observations from each station and the first-guess pressure at that502

location. Ideally, the consistentmismatch between observations and themodel first guess are biases in the observations503

that are removed; however, themismatch could be due tomodel errors, and the algorithmwould actually be adjusting504

the observations away from reality and towards the biasedmodel state. In particular, it is likely that biases with large-505

scale spatial patterns are model errors, though they could result from national issues producing similar biases (Slonosky506

and Graham, 2005) or international changes in observing practices that are adopted by nations at different rates (see507

discussion in Trenberth and Paolino (1980)). Conversely, small-scale biasesmay point to amis-assignment of station508

elevation or position: these are observational biases that should be corrected.509

Figure 13 (left column) shows the annual average station pressure biases from 1960, 1980, and 2000 that were510

removed fromobservations in 20CRv2c. Note the annual values in the region over eastern Europe andmuch of northern511

Asia are consistently negative, suggesting amodel bias (see also van den Besselaar et al. (2011)). Conversely, the version512

3 data does not show the same spatial or temporal consistency of negative values in this region (Fig. 13, right column).513

This suggests that themodel used in version 3may be less biased than in 20CRv2c. Another cause could be due to the514

process of the station bias correction: 20CRv2c calculated biases from the observations interpolated to the model515

surface, but inadvertently applied the correction at the level of the observation; in 20CRv3, the bias correction is516

calculated and applied at the level of the observation.517

Unlike the Eurasian biases, consistent regional biases over the US have hardly changed in 20CRv3; it is unclear518

whether this is a model bias effect or not. Other possible causes of large-scale biases include orography (biases over519

mountain ranges tend to be consistent; see the Himalaya) and nationality (due to country-specific calibration and520

correction methods; c.f. the Canadian ‘50-foot rule’ (Slonosky and Graham, 2005)). Finally, version 3 includes many521

other changes to the assimilationmethod and the observation handling, as well as changes to the forecast model, so522

it is difficult to confidently conclude that the negative bias over northern Asia was amodel error that has been fixed.523

Regardless, the overall mismatch between station observations and first-guess fields has been notably diminished in524

20CRv3. This leads to analyzed SLP fields (Figure 14) and 500 hPa geopotential height fields (Figure 15) that are closer525

to those of ERA-Interim and JRA-55, particularly in northern Eurasia.526
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4.3 | Representation of hurricanes527

Historical reanalyses are especially useful for studying extreme weather events, since these are by definition rare528

but high-impact events. Tropical and extratropical cyclones are of particular interest as they can result in loss of life529

and enormous financial costs. To improve understanding and predictions of these storms, it is necessary to improve530

our understanding of the large-scale drivers of them as well as how storm characteristics are changing as the climate531

changes. If historical reanalyses can accurately capture these storms, they provide a long, consistent sample of such532

extreme events and their associate large-scale environment.533

In order to represent tropical cyclones (TCs), 20CRv2c assimilated TC data from IBTrACS (Knapp et al., 2010) in534

addition to land station andmarine pressure observations. IBTrACS consists of actual pressuremeasurements, pressure535

reports calculated as time-interpolated values from tropical cyclonewarning centers, andwind-derived central pressure536

reports; see Compo et al. (2011); Knapp et al. (2010) for more details. Since these data are often significantly lower537

pressure values than the nearby station observations, they would generally fail the quality control step that compares538

observations to their nearest neighbors (see Appendix B of Compo et al. (2011)); therefore, the 20CR system has539

IBTrACS data bypass these checks and assimilates these deep-low data.540

In version 2c, these data were assigned observation errors that were much higher than for any other type of541

observation to prevent numerical instabilities from arising immediately after assimilation; see Table A.1. Despite digital542

filtering to smooth the evolution of the post-update fields, tests using smaller errors would occasionally still generate543

amplifying gravity waves and numerical instability. While the large error assignment eliminated this problem, the544

resulting 20CRv2c analyses can have central pressure values that aremuch higher than the IBTrACS data, sometimes545

by 40 hPa or more. The version 3 system, with an updated, higher-resolution forecast model and 4DIAU, can use546

these observationsmore effectively. Assimilating TC low-pressure values into the version 3 system does not generate547

instabilities, and so the IBTrACS data can be assigned smaller observation errors (see Table 1). This often yields stronger548

cyclones with central pressure analyses that are closer to the original IBTrACS value.549

As an example, we investigate a strong hurricane that hit Galveston, Texas in August 1915. Figure 16 illustrates550

the analyzed sea level pressure fields (contours) from 4 reanalyses, as well as locations of observations available to551

each system between 16 Aug 1915 2100UTC and 17 Aug 1915 0900UTC (circles); this windowwas chosen so that552

observations assimilated at 0000 UTC would be shown as well as those assimilated at 0600 UTC. For each system,553

observations that were assimilated are shown as solid circles, while observations that were rejected by the system’s554

quality control step are open circles. Blue circles represent station andmarine observations, and red circles represent555

IBTrACS data. 20CRv2c (Fig. 16a) assimilated the IBTrACS report of 940 hPa on 17 Aug 1915 at 0600UTC, producing556

an analyzed value of 986 hPa at the center of the storm. In version 3 (Fig. 16b), the storm is even stronger, and the557

analyzed value at the center of the storm has decreased to 962 hPa, reducing the observation-analysis departure558

calculated from 20CRv2c by half. Since the IBTrACS reports were available and assimilated into 20CRv2c and 20CRv3559

beginning on 1August 1915, this hurricane evolved and strengthened continuously in time in both versions of 20CR (not560

shown.) For comparison, the ERA-20C quality control rejected the IBTrACS observations (Fig. 16c) and analyzed a low561

pressure system that is weaker than that of 20CRv2c and has amisaligned center. The CERA-20C system also rejected562

the IBTrACS observations, but additionally assigned larger errors to the nearby station data than ERA-20C (Laloyaux563

et al., 2018), thereby showing no trace of the storm (Fig. 16d). Laloyaux et al. (2018) conducted experiments with the564

CERA-20C system in which this type of observation was white-listed, and found this yielded better performance than565

CERA-20C for two hurricanes in 1900 and 2005 (their Fig. 5).566
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5 | REMAINING ISSUES567

While the changes from the version 2c system to the version 3 system have resulted in many improvements across568

the board, there are several remaining issues in 20CRv3 as well as new questions that have arisen. For instance, recall569

(Figure 9) the precipitation biases that have strengthened in 20CRv3, particularly the appearance of a double ITCZ and570

the overestimation of global precipitation rates relative to GPCP. The Southern Hemisphere confidence fields (Figure 4)571

also demonstrate that there is some remaining large uncertainty over Antarctica (though these areas are relatively572

small), despite tests that led to adjusting the inflation parameter in the Southern Hemisphere.573

Figure 7 and Figure 14a-b demonstrate another potential issuewith the Southern Hemisphere: a high pressure574

bias over Antarctica. Figure 7 shows that the 1854 annual average sea level pressure over Antarctica in 20CRv3 is575

several hPa higher than the 20CRv2cmodern climatology, and this anomaly is larger in 20CRv3 than it was in 20CRv2c.576

Figure 14 demonstrates that 20CRv3 also displays this high pressure bias in amodern difference calculatedwith respect577

to ERA-Interim. However, the strong difference relative to ERA-Interim ismainly over the Antarctic landmass, which has578

a fairly high topography, so the sea level pressure field is likely not an appropriate variable to consider when diagnosing579

themass or circulation field of this region. Indeed, the SLP difference with JRA-55 (Fig. 14c-d) has the opposite sign in580

this region.581

A third Southern Hemisphere issue, regarding a trend in sub-Antarctic sea level pressure, was first brought to light582

during an investigation of ERA-20C (Poli et al., 2015, 2016) and is demonstrated in Figure 17. This figure shows the583

seasonal time series of sea level pressure area-averaged poleward of 60◦S for 20CRv2c (blue), ERA-20C (green), CERA-584

20C (gold), and ERA-Interim (orange), as well as data from an ensemble of model simulations using the 20CRv2c system585

but that did not assimilate any observations (‘no DA’, red) and preliminary 20CRv3 data for the test periods 1851-1870,586

1910-1930, and 1990-2010 (black). ERA-20C has a high pressure bias south of 60◦S in the early 20th century that is587

particularly strong in austral summer (green curve in Fig. 17a between 1900 and 1930). Comparisons with 20CRv2c588

show that it has a similar bias as ERA-20C in other seasons, but a weaker bias than ERA-20C in Dec-Jan-Feb. There is a589

drop and subsequent increase in SLP from 20CRv2c in all seasons (most notably in Sept-Oct-Nov) from 1890-1910,590

with another significant drop-off between 1940 and 1960. The preliminary 20CRv3 data agrees with the 20CRv2c data591

for themost part, though the early 20th centuryMarch-April-May SLP has been diminished. In all seasons, though, the592

modern 20CRv3 SLP is still about 5 hPa lower than the early 20th century SLP.593

ERA-20C and the 20CR datasets used entirely different models and assimilationmethods but show similar trends,594

which suggests the culprit is in the observations. Poli et al. (2015) and Laloyaux et al. (2018) assert that the problem595

was caused not by a bias in the observations, but by the spatial pattern of observations at this time in the Southern596

Hemisphere. In particular, most of the observations are located in the subtropical high-pressure belt; the positive597

increments from assimilating these observations were communicated to the unobserved, and thus unconstrained,598

region farther south. They argue that this is caused by observation errors that are too small in ERA-20C; thus in599

CERA-20C, larger observation errors were assigned in this time period. This has significantly decreased the trend in SLP600

fromCERA-20C in all seasons (gold curves in Fig. 17), though it remains somewhat in DJF, when the bias in ERA-20C601

wasmost obvious. Hegerl et al. (2018) point out the HadCRUT4 temperature dataset (Morice et al., 2012) also exhibits602

anomalously cold SSTs during the years 1906-1915 in the SouthernOcean (their Fig. 2c), possibly due to instrumental603

biases or uncertainties in the sea ice fields; investigations into this issue and possible connections with the SLP signals in604

Fig. 17 are ongoing.605
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6 | CONCLUSIONS606

With the growing need to understand and predict climate and extremeweather variations on decadal to centennial607

timescales, the use of historical reanalyses continues to expand in areas such as assessments of long-term climate608

change, investigations of extreme events, and detailed histories of weather. It is, therefore, becomingmore important609

that these reanalyses be reliable, both in their state estimates and their quantification of uncertainty. Users must610

recognize when and where historical reanalyses can be confidently utilized, and when caution should be taken (or a611

different dataset chosen). Thiswork seeks to illuminate particular aspects of 20CRv2c that require careful consideration,612

the ways in which these issues informed the development of the 20CRv3 system, and particular aspects of 20CRv3 that613

show preliminary improvements over 20CRv2c.614

The Twentieth Century Reanalysis version 2c improved upon several issues discovered in the previous NOAA-615

CIRES historical reanalysis, 20CRv2, but other problems remained. They provided specific focus areas when developing616

the NOAA-CIRES-DOE 20CRv3 system. Indeed, many of the issues in 20CRv2c discussed here have been ameliorated617

in 20CRv3 due to a combination of factors: a newer NCEPGFS forecast model with higher resolution; improved data618

assimilation algorithms, observation processing, and quality control; and an updated ISPDobservation database. Several619

other issues with 20CRv2c exist that have not been discussed here, including spinup effects in sea ice thickness, snow620

depth, and soil moisture, and biases in the upper-stratospheric temperatures; some of these issues are reduced in621

20CRv3 andwill be discussed in future work.622

Preliminary results with the 20CRv3 dataset are quite promising, though they are already highlighting areas for623

future research, particularly in the ‘Deep South’ of the Southern Hemisphere. The confidence in that region remains624

too low; further work regarding the relaxation-to-prior-spread inflation algorithm in this regionmay be necessary to625

increase the confidence tomore realistic values. A larger set of available observations in this region would also increase626

the confidence (recall Figure 2), motivating greater data rescue efforts here. Gathering high-quality observations in627

these sparsely-observed regions remains a challenge within the data rescue community (Allan et al., 2011; Brönnimann628

et al., 2018), but new data rescue efforts (SouthernWeatherDiscovery.org) are beginning to address this. More data629

are also needed in other sparsely-observed regions, as well as globally in the early 19th century. Other data rescue630

efforts (including ACRE activities,WeatherRescue.org, the Copernicus Climate Change Service South America data631

rescue project, and the UK/China Climate Science for Service Partnership) have the potential to significantly add to the632

observational database in these regions.633

Despite some remaining challenges with 20CRv3, there are early suggestions that this dataset will be useful634

for studies in which 20CRv2c required more cautious analysis: for example, tropical cyclones seem to show much635

stronger signals in 20CRv3 than in 20CRv2c. This suggests that 20CRv3may be used for validating ongoing historical636

tropical cyclone research that extends IBTrACS back in time (Diamond et al., 2012), and for corroborating partial or637

discontinuous storm track information (e.g. when storm systems passed close to islands or ships.) Utilizing an updated638

inflation algorithm also allows for more consistent studies of long-term trends and uncertainty, where 20CRv2c639

exhibited artificial signals due to abrupt parameter changes.640

Since the process of creating historical reanalyses is a continuous cycle of improvement, we are already looking641

ahead to further upgrades to the 20CR system. In particular, NCEP has recently significantly updated their global642

forecast systemwith a finite volume, cubed spheremodel (Harris and Lin, 2013) (preliminary documentation available643

at https://vlab.ncep.noaa.gov/web/fv3gfs/); the changes resulting from this model versus the previous spectral model644

need to be investigated. Recent investigations into coupled data assimilation algorithms, and the first implementation of645

a quasi-strongly coupled data assimilation algorithm in CERA-20C (Laloyaux et al., 2018), suggest that future versions646

of 20CR could benefit from coupled systems. Finally, while all versions of 20CR so far have only assimilated surface647
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pressure, the possibility of assimilating other types of data (such as marine winds, sea ice observations, or precipitation)648

seems to bemore feasible as data assimilation algorithms continue tomature.649
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TABLE 1 Platform-dependent baseline observation errors used in the 20CRv3 system (in hPa). Note that only
surface pressure data are assimilated, including from radiosonde and dropsonde observing platforms. ‘SLP only’ refers
to stations that do not report surface pressure, only sea level pressure.

Type Error (hPa)
radiosonde 1.2
dropsonde 2.0
marine 2.0
station 1.2
station (SLP only) 1.6
tropical cyclones 2.5
SLP, sea level pressure.

TABLE 2 Covariance inflation parameters used in 20CRv2c as a function of latitude and year. A value of 1
corresponds to no inflation. NH=90◦N–30◦N; Tropics = 30◦N–30◦S; SH = 30◦S–90◦S.

years NH Tropics SH
1851 – 1870 1.01 1.01 1.01
1871 – 1890 1.05 1.01 1.01
1891 – 1920 1.09 1.02 1.01
1921 – 1950 1.12 1.03 1.02
1951 – 2014 1.12 1.07 1.07
NH, Northern Hemisphere; SH, Southern
Hemisphere.
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F IGURE 1 Time series of the annual average number of observations available to be assimilated globally per 6-hour
windowwithin 20CRv2c (ISPDv3.2.9, solid black) and 20CRv3 (ISPDv4.7, dashed gray).
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F IGURE 2 Time series of ensemble spread (thick dark blue curve) and temporal spread of the ensemble mean (thin
light blue curve) for sea level pressure from 20CRv2c averaged over the zonal band from 65◦S to 40◦S. Number of
observations assimilated per 6-hour window in this region is shown in red (right hand axis). A 1-year running average
was applied to all curves. Correlation r is calculated between the smoothed ensemble spread and the smoothed
logarithm of the number of assimilated observations. Notable years are emphasized with vertical lines and shading; see
text for details.

Page 34 of 48Quarterly Journal of the Royal Meteorological Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

32 LAURA C. SLIVINSKI ET AL.

(a) 1854 (b) 1915

(d) 2000(c) 1935

F IGURE 3 Maps of the adaptive inflation parameter λi nf (unitless) used in the 20CRv3 system for 0000UTC on 1
Sept in (a) 1854; (b) 1915; (c) 1935; and (d) 2000. A value of 1 corresponds to no inflation. Note the relationship of λi nf
with the observation network density.
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(a) 20CRv2c

(b) 20CRv3

(c) 20CRv3 minus 20CRv2c

F IGURE 4 Maps of normalized confidence of SLP averaged over JFM for 1916-1918 from (a) 20CRv2c and (b)
20CRv3, as well as (c) the difference (20CRv3minus 20CRv2c). In (a)-(b), zero (black contour) represents climatological
uncertainty, blue represents less certainty than climatology, and red represents more certainty. In (c), red represents an
increase in confidence from 20CRv2c to 20CRv3, and blue a decrease.

Page 36 of 48Quarterly Journal of the Royal Meteorological Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

34 LAURA C. SLIVINSKI ET AL.

1860 1880 1900 1920 1940 1960 1980 2000
year

1008

1009

1010

1011

1012

1013

1014

hP
a

Annual global sea level pressure

no DA
20CRv2c
ERA-20C

CERA-20C
ERA-Interim
20CRv3 (prelim.)

F IGURE 5 Time series of annually-averaged global SLP from several reanalyses, as well as a non-assimilating
ensemble of model runs.
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(a)

(b)

-8 -4 0 4 8
hPa

F IGURE 6 Maps of analyzed sea level pressure anomalies (with respect to the analyzed 20CRv2c 1981–2010
climatology) for 1851–1853 of (a) 20CRv2c and (b) an identical experiment with the 20CRv2c system that assimilated
10% fewer ship observations.

Page 38 of 48Quarterly Journal of the Royal Meteorological Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

36 LAURA C. SLIVINSKI ET AL.

(a)

(b)

(c)

-8 -4 0 4 8
hPa

F IGURE 7 Maps of the year 1854 annually-averaged sea level pressure anomaly (with respect to the 1981-2010
climatology) of (a) 20CRv2c (without dry air mass specification), (b) preliminary version 3 tests without ship bias
correction (with dry air mass specification), and (c) preliminary version 3 tests with ship bias correction (with dry air
mass specification).
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average = 0.72 mm day-1

average = 0.05 mm day-1

F IGURE 8 Maps of the year 2002 annually-averaged differences (mm day−1) between 3-6 hour forecasted
precipitation rate and 0-3 hour forecasted precipitation rate in (a) 20CRv2c (which uses the digital filter) and (b)
20CRv3 (which uses the IAU instead of the digital filter). In a perfect system, these differences would be approximately
zero.
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average = 3.09 mm day-1

average = 3.10 mm day-1

average = 2.70 mm day-1

F IGURE 9 Maps of the year 2002 annually-averaged forecasted precipitation rate (mm day−1) in (a) 20CRv2c, (b)
20CRv3, and (c) the GPCP satellite/gauge blended fields.
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F IGURE 10 Maps of the year 2002 annual average of 10-meter meridional wind fields (top row, ms−1) and surface
orography fields (bottom row, m) from 20CRv2c (left) and 20CRv3 (right). The 1000m and 2000m contours have been
plotted in yellow in (c) and (d), with the 1000m contour labeled.
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F IGURE 11 Localization values (km) for all observations assimilated in 20CRv3 at 1200UTC on 1 June for the
years (a) 1854, (b) 1915, (c) 1935, and (d) 2000. Note that comparable plots for 20CRv2c would consist entirely of light
orange circles (localization value of 4000 km).
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(a) Northern Hemisphere

(c) Southern Hemisphere

(b) Tropics

year

20CRv2c actual RMSE
20CRv2c expected RMSE
20CRv3 actual RMSE
20CRv3 expected RMSE

F IGURE 12 Time series of actual (solid) and expected (dashed) annual first-guess RMS errors for observations
assimilated in 20CRv2c (blue) and 20CRv3 (black) averaged over (a) the Northern Hemisphere (20◦N to 90◦N), (b) the
tropics (20◦S to 20◦N), and (c) the Southern Hemisphere (90◦S to 20◦S).



For Peer Review

42 LAURA C. SLIVINSKI ET AL.

F IGURE 13 Annual average station pressure biases (hPa) for 1960 (top row), 1980 (center row), and 2000 (bottom
row), calculated from 20CRv2c (left) and 20CRv3 (right).
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(a) 20CRv2c minus ERA-Interim (b) 20CRv3 minus ERA-Interim

(d) 20CRv3 minus JRA-55(c) 20CRv2c minus JRA-55

hPa

F IGURE 14 Maps of the year 2000 annually-averaged sea level pressure differences (hPa) between (a) 20CRv2c
and ERA-interim, (b) 20CRv3 and ERA-interim, (c) 20CRv2c and JRA-55, and (d) 20CRv3 and JRA-55. Maps are plotted
on approximately a 1.5◦ by 1.25◦ grid.
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(a) 20CRv2c minus ERA-Interim (b) 20CRv3 minus ERA-Interim

(d) 20CRv3 minus JRA-55(c) 20CRv2c minus JRA-55

m

F IGURE 15 Maps of the year 2000 annually-averaged 500 hPa geopotential height differences (m) between (a)
20CRv2c and ERA-interim, (b) 20CRv3 and ERA-interim, (c) 20CRv2c and JRA-55, and (d) 20CRv3 and JRA-55. Maps
are plotted on approximately a 1.5◦ by 1.25◦ grid.
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(a) 20CRv2c (b) 20CRv3

(c) ERA-20C (d) CERA-20C

F IGURE 16 Sea level pressure (orange contours; interval by 5 hPa) andwind fields (vectors; ms−1) for the 1915
Galveston hurricane, 17 Aug 1915 0600UTC, from (a) 20CRv2c, (b) 20CRv3, (c) ERA-20C, and (d) CERA-20C. Locations
of available observations taken between 16 Aug 1915 2100UTC and 17 Aug 1915 0900UTC are shown by circles:
station andmarine observations are blue, IBTrACS data are red, solid circles denote observations that were assimilated,
and open circles denote observations that were rejected.
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F IGURE 17 Time series of seasonal sea level pressure poleward of 60◦S from 20CRv2c (blue), ERA-20C (green),
CERA-20C (gold), ERA-Interim (orange), a non-assimilating model run using the 20CRv2c system (red), and preliminary
20CRv3 datawithout confidence intervals (black). Shading represents one ensemble standard deviationwhen available.
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