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Abstract 

Executive control impairments in aphasia resulting from frontal lesions are expected, given 

that integrity of frontal regions is critical to executive control task performance. Yet the 

consistency of executive control impairments in aphasia is poorly understood. This is due to 

previous studies using only a brief set of measures or failing to account for the high language 

processing demands of many executive control tasks. This study investigated performance 

across a series of specific and broad executive control task, whilst comparing differences 

between low or high verbal task versions. Ten participants with aphasia secondary to left 

inferior frontal lesions and fifteen age matched controls completed a battery of verbal and 

low verbal executive control tasks tapping into the three core domains of inhibiting, 

switching, and updating of working memory. For both controls and participants with aphasia, 

there was no consistent influence of verbal load on either reaction time or accuracy 

performance. When compared to controls, participants with aphasia demonstrate a general 

slowing of responses across all reaction time tasks, and are less accurate on switching and 

updating tasks. These findings do suggest that language processing is not essential for 

executive control task performance, given that verbal load does not matter. Furthermore, 

tasks which involve holding multiple sources of information in mind, such as during 

switching or updating, are particularly vulnerable in aphasia. 
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Introduction 

Executive control impairments are often overlooked in studies of aphasia, yet are 

considered to be associated with poorer recovery (Brownsett et al., 2013; Frankel, Penn, & 

Ormond‐Brown, 2007; Keil & Kaszniak, 2002; Mayer, Mitchinson, & Murray, 2017; Simic, 

Rochon, Greco, & Martino, 2017). How consistently these impairments occur alongside 

language difficulties in aphasia is also poorly understood (Keil & Kaszniak, 2002). The 

majority of traditional executive control tasks have high verbal processing demands, and task 

performance in aphasia is confounded by the presence of language impairment (Keil & 

Kaszniak, 2002; Miyake, Emerson, & Friedman, 2000). It is therefore critical to understand 

how task language demands impact executive control performance. Additionally, people with 

aphasia demonstrate heterogeneity of the extent and size of their lesions. To say that some 

individuals with aphasia present with executive control impairments and others do not can 

only be informative if we are specific about the language symptoms and the lesion profile. To 

manage these confounds, this study uses specially designed tasks to investigate the nature of 

executive control impairments in individuals with aphasia resulting from inferior frontal 

lesions. 

Executive control is typically regarded as a macroconstruct consisting of three 

primary subdomains: inhibiting, switching, and updating of working memory (see Diamond, 

2013; Miyake, Friedman, et al., 2000). These subdomains (and the neural networks 

underlying them) are collectively recruited in order to guide goal driven behaviour, solve 

complex or novel problems, allow for flexible and adaptive behaviour, and to regulate other 

cognitive processes (Alvarez & Emory, 2006; Banich, 2009; Jurado & Rosselli, 2007; 

Zelazo, Carter, Reznick, & Frye, 1997). The neural networks that underlie executive control 

abilities are highly distributed across frontal, parietal and subcortical structures bilaterally 

(Alvarez & Emory, 2006; Duncan & Owen, 2000; Nee, Wager, & Jonides, 2007; Wager et 
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al., 2005). Consequently, there is both overlap and divergence between the executive control 

and language networks (Woolgar, Duncan, Manes, & Fedorenko, 2018; Ye & Zhou, 2009) 

and it is likely that some executive control abilities play an important role in supporting some 

specific language functions including lexical access, sentence comprehension, and semantic 

cognition (Hussey & Novick, 2012; Ivanova, Dragoy, Kuptsova, Ulicheva, & 

Laurinavichyute, 2015; Jefferies & Lambon Ralph, 2006; Novick, Trueswell, & Thompson‐

Schill, 2010; Pompon, McNeil, Spencer, & Kendall, 2015). As such, the executive control 

network is vulnerable to lesions associated with aphasia (Keil & Kaszniak, 2002) with 

previous neuropsychological studies reporting deficits in executive control abilities in acute 

(El Hachioui et al., 2014; Seniów, Litwin, & Leśniak, 2009) and chronic (Purdy, 2002) 

aphasia.  There is also evidence showing that executive control impairments are associated 

with both poorer outcomes from therapy, limited generalisation beyond therapy, and reduced 

functional communication skills (Fillingham, Sage, & Lambon Ralph, 2005; Fridriksson, 

Nettles, Davis, Morrow, & Montgomery, 2006; Lambon Ralph, Snell, Fillingham, Conroy, & 

Sage, 2010; Miyake, Emerson, et al., 2000; Ramsberger, 2005; Simic et al., 2017; Yeung & 

Law, 2010). However, executive control impairments are not universally identified in 

aphasia, for example, impairments identified at the group level are not consistently 

demonstrated across the case series (Murray, 2017; Seniów et al., 2009). These 

inconsistencies mean that the task of fully understanding how executive control impairments 

occur in aphasia is a complex one. 

It is also problematic that many executive control tasks require spoken output, 

comprehension of complex task instructions, and processing of highly verbal stimuli—

therefore establishing the cause(s) of poor performance for participants with aphasia is 

difficult (Murray & Ramage, 2000). A number of studies avoid this issue entirely by 

excluding participants with aphasia when measuring cognitive performance (Wall, Isaacs, 
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Copland, & Cumming, 2015). Another approach is to limit the influence of any language 

impairments by reducing the verbal load of a task (e.g., Chiou & Kennedy, 2009; Christensen 

& Wright, 2010; El Hachioui et al., 2014; Glosser & Goodglass, 1990; Hamilton & Martin, 

2005; Kuzmina & Weekes, 2017; Murray, 2017; Seniów et al., 2009). There is evidence that 

executive control (and logical reasoning abilities) is spared in some severe cases of aphasia 

when tested with non-verbal tasks (Fedorenko & Varley, 2016; Varley, 2014). This 

dissociation between severe language impairment and preserved executive control abilities 

indicates that despite the overlap between the networks supporting these two abilities, 

language processing is not critical to executive control task performance. If this were the 

case, one would expect the use of highly verbal stimuli (thus placing greater demands on 

language processing) to have little impact on performance. 

A small number of studies have directly compared performance between high and low 

verbal executive tasks in the same group of participants. These studies show that executive 

control task performance is largely insensitive to the influence of verbal load, that is to say, 

performance on higher and lower verbal tasks was equivalent (Kuzmina & Weekes, 2017; 

Mayer & Murray, 2012; Murray, 2017). It might be that once verbal load is controlled, any 

observed impairment of executive control is not specifically influenced by the domain of 

language. This is however, contradicted by a single case study reporting a dissociation 

between impaired verbal inhibition and spared non-verbal inhibition (Hamilton & Martin, 

2005). The reverse pattern has also been reported, with poorer performance reported on a low 

verbal updating of working memory (n-back) task relative to a higher verbal version of the 

same task, a possible consequence of participants with aphasia being unable to rapidly assign 

verbal labels to low verbal stimuli (Christensen & Wright, 2010). The weight of the evidence 

to date suggest that language processing is non-essential for executive control task 
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performance, given that executive control task performance appears to be largely insensitive 

to the presence of verbal stimuli (and thus increased language processing).  

 A limitation of many previous studies is an over reliance on broad executive control 

tasks. Here, the term broad refers to tasks that do not primarily aim to tap into a specific 

subdomain of executive control, but provide an overall index of executive control 

performance. For example, the Wisconsin Card Sort Task (WCST) and Raven’s Coloured 

Progressive Matrices (RPCM) are two commonly used measures in studies of individuals 

with aphasia (Fonseca, Ferreira, & Martins, 2016) and place demands on multiple aspects of 

executive control simultaneously (Miyake, Friedman, et al., 2000; Roca et al., 2009). In 

contrast, Stroop or Flanker tasks tap primarily into inhibiting abilities. For studies that use 

broader measures, it is difficult to identify if a particular subdomain of executive control is 

more vulnerable in frontal aphasia, or if multiple subdomains are affected. Understanding 

how these subdomains can be impaired in aphasia is critical, given that some recent studies 

have demonstrated a relationship between specific subdomains and different aspects of 

language function. For example, there are studies demonstrating that impairments of 

inhibiting are associated with poorer speech production (Hussey & Novick, 2012; Novick et 

al., 2010; Schnur, Schwartz, Brecher, & Hodgson, 2006) and impairments of updating of 

working memory can be associated with poorer comprehension (Salis, 2012; Salis, Hwang, 

Howard, & Lallini, 2017). In order to evaluate such hypotheses, any investigation of 

executive control in aphasia should target the specific components of inhibiting, updating of 

working memory, and switching (Miyake, Friedman, et al., 2000). 

 The aim of this study was to systematically investigate task performance for the three 

subdomains of executive control in frontal lesion aphasia, using both higher and lower verbal 

task versions. In addition, these tasks will be adapted to remove possible influences of 

language impairment (i.e., no need for spoken output on any task). The first research question 
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examined if executive control task performance is accounted for or influenced by either high 

or low verbal stimuli, even where no spoken output is required. Critically, tasks were 

matched as closely as possible except for a difference in stimuli. For verbal tasks, stimuli 

were words, letters, numbers or nameable pictures. For low verbal versions, stimuli were 

symbols, spatial locations, or non-nameable/novel pictures. Equivalent performance in both 

verbal and low verbal would indicate that language processing is not essential to executive 

control task performance. Poorer performance in verbal relative to low verbal task versions 

would indicate that the presence of language impairment is an additional contributor to poor 

executive control task, and that observed deficits of executive control might be restricted to 

the domain of language. Poorer performance in low verbal relative to verbal task versions 

might indicate that participants with aphasia are unable to rapidly assign verbal labels to low 

verbal material—implying that access to intact language processing is essential for executive 

control task performance. The second research question examined if the different subdomains 

of executive control are differentially impaired in frontal lesion aphasia by administering a 

series of both specific (inhibiting, switching, updating; (Miyake, Friedman, et al., 2000) and 

broad executive control tasks. 

Method 

Ethics and Open Science 

 This study received ethical clearance from the School of Psychology and Clinical 

Language Sciences, University of Reading (Ref: 2015-021-LM). All participants provided 

informed consent prior to taking part in the study. Adapted aphasia friendly consent and 

information forms were used for participants with aphasia (PWA). Raw data and R scripts 

used for analyses of the computerised inhibiting, switching, and updating tasks are available 

on the Open Science Framework (https://osf.io/92e56/). 

 

https://osf.io/92e56/
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Participants  

Ten participants with post-stroke aphasia (MAGE = 64.27 years, SD = 8.12) and fifteen 

control participants (MAGE = 63.80 years, SD = 8.04) took part in the study. Participants with 

aphasia and controls were matched for age (t(23) = -0.14, p = .889) and years of education 

(t(23) = 0.80, p = .431). Control participants were recruited from the older-adult research 

panel at the School of Psychology, University of Reading and were within the normal range 

(score of ≥26) on the Montreal Cognitive Assessment. Participants with post-stroke aphasia 

were recruited through an Aphasia research registry at the School of Clinical Language 

Sciences, University of Reading. All PWA were at least two years post onset, and one 

individual was left handed prior to stroke. PWA were screened with the Comprehensive 

Aphasia Test (Swinburn, Porter, & Howard, 2004), which consists of a brief cognitive screen 

and a language assessment (see Table 1 for summary). 

Structural Neuroimaging 

 3T T1w MRI scans were available for nine participants with aphasia. Lesions were 

manually drawn on each slice in native space in MRIcron and used for cost-function masking 

during normalisation. Normalisation was implemented in the SPM clinical toolbox (Rorden, 

Bonilha, Fridriksson, Bender, & Karnath, 2012) and normalisation parameters were applied 

to the native space lesions which were summed to create a lesion overlap map (see Figure 1). 

At the group level, participants with aphasia displayed maximum lesion overlap (9/9 

participants) in the left insula (MNI: -39, -5, 2), and left post-central gyrus (-38, -19, 20). 8/9 

individuals displayed involvement of the left inferior frontal gyrus (-53, 13, 3) and 7/9 

displayed lesion to the left middle frontal gyrus (-38 34 14). 
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Figure 1. Lesion overlap map for nine PWA. Colour bar indicates number of participants 

with lesion at each voxel. Overlap image created using MRIcron (Rorden, Karnath, & 

Bonilha, 2007). MNI z coordinates are shown above each axial slice.
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Table 1 

Demographic Information and Comprehensive Aphasia Test Data for PWA 

 

 

 

 

             Comprehensive Aphasia Test* 

            Cognitive Screen  Comprehension   Spoken Output 

ID  Age Sex Education TPS CCT 
Line 

Bisection 

Semantic 
Memory 
(Max 10) 

 
Auditory 
(Max 66) 

Written 
(Max 62)   

Verbal 
Fluency 

Picture 
Description 

Object 
Naming 
(Max 48) 

Repetition 
(Max 74) 

Reading 
(Max 70) 

P1 63 M 12 12 51 0 10  55 48  9 13 40 52 40 

P2 65 F 15 9 62 0 10  51 48  20 20 33 47 36 

P3 64 M 14 2 59 -1 9  50 60  14 14 35 6 44 

P4 75 F 10 11 52 -1 10  51 44  6 1 24 13 14 

P5 72 M 17 17 60 1 10  61 50  15 17 44 68 59 

P6 49 F 11 2 56 0 7  53      34  17 13 41 63 42 

P7 68 M 13 9 56 0 8  58 54  4 8 26 35 32 

P8 57 M 15 2 50 0 10  63 52  8 7 18 26 28 

P9 55 M 15 2 45 0 8  32 26  3 8 6 38 0 

P10 70 M 16 8 52 0 10  57 52  1 1 19 46 0 

Note. Age = years, Education = years, TPS = time post stroke in years, CCT = Camel and Cactus Test (max 64, Control Mean 58.95, Control SD = 3.07) with cut off Score of 2xSD = 52.81, underlined 
values show participants below cut off. *Scores reported for CAT subtests are raw scores as per criteria set by Swinburn, Porter, & Howard (2004), underlined values show scores below cut-off (see 
Swinburn, porter, & Howard, 2004). 
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General Procedure and Apparatus 

 All participants completed a battery of executive control tasks containing specific 

measures of inhibiting (Stroop and Flanker tasks), switching (Shape-Colour Switch Task, 

Trail Making Task), and updating (N-back tasks, Span tasks), and one broader executive 

control measure (Wisconsin Card Sorting Test: WCST). These were administered in a 

randomised order, however, the version of each (verbal or low verbal) was counterbalanced, 

with half of all participants completing the verbal version first. Tasks were delivered using 

the E-Prime 2.0 software (Psychology Software Tools, Pittsburgh, PA) with the exception of 

the Wisconsin Card Sort Task (WCST) which we administered using the bcst-64.pbl script 

for The Psychology Experiment Building Language (Mueller & Piper, 2014). Responses for 

E-Prime tasks were measured by a Serial Response Box (Psychology Software Tools Inc.), 

with the exception of one (N-Back task) where a computer keyboard response was required. 

For all computer tasks (except the WCST) participants were given a short practice block prior 

to each task. All participants were asked to respond to computerised tasks using their left 

hand, with the exception of the WCST which used a mouse controlled by the examiner (and 

participants pointed to the screen). Each testing session lasted approximately 90 minutes for 

controls and 60 minutes for participants with aphasia. Two testing sessions were undertaken 

with controls and 3-4 sessions were undertaken with participants with aphasia. Data 

collection was completed within a month. 

Stroop Inhibition Tasks 

Both the high and low verbal task versions consisted of three blocks (congruent, 

neutral, and incongruent), with 48 trials per block. Each trial consisted of a 250msecs fixation 

followed by the stimulus. The next trial was initiated after the participant made their 

response, or after 5000msecs (whichever occurred first). In the verbal Stroop, participants 

were presented with a single word in red, blue, or yellow ink (See Figure 2a). Participants 
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were asked to respond to the ink colour using the response box. In the congruent condition, 

the written word was consistent with the ink colour (i.e., “red” presented in red ink). For the 

neutral condition, three length matched non-colour words (e.g., dry, fair, worth) were 

presented in either red, blue, or green ink colour. In the incongruent condition, the word 

content was inconsistent with the ink colour (i.e., “blue” presented in red ink). For the low 

verbal Stroop, participants were presented with a single left or right pointing arrow (e.g., ← 

or →; See Figure 2b) and were asked to decide the arrow direction using the response box 

(left or right buttons). In the congruent condition the arrow direction and position on screen 

were consistent (i.e., right pointing arrow presented on right side of screen). In the neutral 

condition, all arrows appeared centre of screen. In the incongruent condition, the arrow 

direction and arrow position were inconsistent (i.e., left pointing arrow on the right side of 

screen). 

Flanker Inhibition Tasks 

The verbal and low verbal versions of the Flanker tasks consisted of four blocks of 33 

trials. Congruent, neutral and incongruent conditions were mixed within each block (11 per 

condition per block). The trial-to-trial transitions between either congruent or incongruent 

trials were balanced. This is because an increased number of incongruent to incongruent trial-

to-trial transitions can reduce incongruence effects (see Mayr, Awh, & Laurey, 2003). Each 

trial consisted of a 250msecs fixation cross followed by the trial stimuli presented until the 

participant responded or for 5000msecs (whichever occurred first). Trials were interspersed 

with 250msecs blank screen. In the verbal Flanker, participants were presented with five 

letters (e.g., ddddd; See Figure 2c) and asked to identify the central letter using the button 

response. In the congruent version, the outer letters were consistent with the central letter 

(e.g., ddddd). In the neural condition the outer letters were replaced with dashes (e.g., - - d - -

). In the incongruent condition the outer letters were inconsistent (e.g., bbdbb). In the low 



EXECUTIVE CONTROL IN FRONTAL LESION APHASIA  13 
 

 
 

verbal Flanker, Participants were presented with five arrows (e.g., <<<<<; See Figure 2d) and 

asked to judge the direction of the centre arrow. In the congruent condition the surrounding 

arrows were consistent with the central arrow (e.g., <<<<<). In the neural condition the outer 

arrows were replaced with dashes (e.g., - - > - -). In the incongruent condition the outer 

arrows were replaced with dashes (e.g., - - > - -). In the incongruent condition the outer 

arrows were inconsistent with the central arrow (e.g., <<><<). 

 

Figure 2. Examples of stimuli used for (a) verbal Stroop (b) low verbal Stroop, (c) verbal 

Flanker, and (d) low verbal Flanker tasks. 

Shape-Colour Switching Task 

  Participants were presented with two tiles that contained either patterns (for the low 

verbal version; See Figure 3a) or numbers (for the verbal version; See Figure 3b). Patterned 

tiles consisted of one of three possible novel graphical patterns, whereas numbered tiles 

contained a single digit (1, 2, or 3). These patterns and numbers also varied by colour, either 

presented in blue, red, or green. In each task version, participants completed blocked tasks. In 

the first block, participants were presented with tiles and asked to decide if they the colour 

was the same or different (blocked colour task). In the second block, participants viewed the 

same tiles; however, decided if the pattern/number (depending on task version) was the same 

or different (blocked pattern/number task). The third block for each task contained the 

switching task, where participants were asked to either decide on the colour or the 

pattern/number. A cue was presented at the top of the screen for each trial, with a coloured 
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wheel indicating that the colour decision should be performed, or a grey grid indicating that 

the pattern/number decision should be performed.  

Participants responded using two buttons (yes, no) to indicate their decision. For the 

switch block, each decision type (colour, pattern/number) was presented in a random task 

sequence (Monsell, 2003). The initial two blocks (blocked colour and blocked 

pattern/number) each contained 30 trials in total, with the switch task containing 62 trials in 

total. In the switch task, there were 31 stay trials (where the participant carried out the same 

decision as the trial 1-back) and 31 switch trials (where the decision changed from that 1-

back). For all tasks, each trial was initiated by a 100msecs central fixation cross, followed by 

the presentation of the stimuli until the participant made a response. Each trial was then 

followed by a 250msec blank screen before the next trial began.  

 

  

Figure 3. Example trials for (a) low verbal Switching task and (b) verbal switching task. 

Panel demonstrates an example from the mixed condition. For blocked conditions 

participants saw a block of colour decision trials followed by a block of shape decision trials.  
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N-Back Updating of Working Memory Tasks  

N-back tasks consisted of three versions, varying on verbal load: digits (verbal), fruit 

(verbal), and spatial (low verbal), and for each, participants completed both 1-back and 2-

back version (See Figure 4). In the digits (verbal) version, stimuli consisted of a single 

number between one and nine. For the fruit (verbal) version, stimuli were nine coloured 

pictures of high name agreement (>.94) fruit taken from The Bank of Standardised Stimuli 

(BOSS; Brodeur, Dionne-Dostie, Montreuil, & Lepage, 2010). Finally, in the spatial (low-

verbal) version, stimuli consisted of a blue 2D square presented in one of nine possible 

locations on screen (locations consisted of a 3x3 grid).  

During the 1-back task, participants were asked to press a single response button (the 

spacebar key) when the item they see is “the same as what appeared one trial before, or one 

back”. For the 2-back versions, participants were instructed to respond when the item was the 

same as what appeared two trials previous, or two back. For the block stimuli, participants 

were told to monitor the spatial location of the blue square. Each task was divided into four 

blocks. For the 1-back tasks task blocks one, two, and three consisted of 29 trials, of which 

nine were targets. Block four consisted of 30 trials, of which nine were targets (overall 117 

trials, with 36 targets). For the 2-back task blocks one, two, and three consisted of 28 trials, 

of which 9 were targets. Block four consisted of 29 trials, of which 9 were targets (overall 

113 trials, with 36 targets). Therefore, the trial to target ratio for the 1-back and 2-back tasks 

were 31% and 32% respectively. This is in line with previous n-back paradigms and ensured 

the task was neither too long or two difficult for either control or patient populations 

(Christensen & Wright, 2010). Each trial began with the stimuli presented for 500msecs, 

followed by a 1500msecs blank screen meaning participants had 2000msecs in total to make 

a response before the next trial appeared. Stimuli were presented in a pseudorandomised 

order to ensure no more than two hit trials appeared in consecutive trials, and that each type 
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of digit, fruit, or spatial location appeared as a target four times across each version of the 

task. 

 

Figure 4. Example stimuli used for the (a) digits, (b) fruit, and (c) spatial n-back task. For the 

digits and fruit task all stimuli were presented centrally. For the spatial task, a blue square 

was presented in one of nine possible locations (as per a 3 x 3 grid). 

Broader/Traditional Neuropsychological Measures of Executive Control 

 Participants also completed three broader/traditional executive control measures. 

These are briefer measures that are typically used in a clinical setting in order to identify 

executive control impairments.  

Trail Making Test. All participants completed the Trail Making Test, parts A & B 

(Lezak, Howieson, Loring, & Fischer, 2004). This task (in particular Part B) has often been 

regarded as a measure of switching, however, previous research has suggested that this task 

also reflects working memory and cognitive flexibility, thus we classified this as a broader 

executive control task (see Kortte, Horner, & Windham, 2002; Sanchez-Cubillo et al., 2009; 

c.f. Arbuthnott & Frank, 2000). In part A, participants are asked to draw individual lines to 

connect 25 numbers, in ascending order. In part B, participants are asked to draw individual 
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lines between both numbers and letters, alternating between each (e.g., 1-A-2-B-3-C), always 

in ascending order. Participant response time and errors were recorded. 

Span Tasks. Spoken or tapping span tasks are traditionally used as brief measures of 

working memory in a clinical environment. All participants completed both forwards and 

backwards digit span and Corsi blocks span tasks. This included the digit span from the 

Wechsler Memory Scale – Revised (Wechsler, 1981). For the Corsi blocks task, participants 

were asked to tap out sequence on a series of nine wooden blocks placed in the same position 

as per Kessels, Van Zandvoort, Postma, Kappelle, and De Haan (2000). In both task versions, 

the examiner read out or tapped a sequence at a rate of one per second. Participants always 

completed the forwards version of each task before the backwards version, and the task was 

discontinued if participants reproduced two incorrect sequences at any given span. 

Wisconsin Card Sort Task. Participants also completed Wisconsin Card Sort Task 

(WCST) which was administered using the bcst-64.pbl script for PEBL (Mueller & Piper, 

2014). In this task participants were presented with a card, which should be categorised by 

either shape, colour, or number. Participants must use feedback from the task in order to 

establish which ‘rule’ is correct (i.e., participant is told after each trial if they were 

correct/incorrect). After ten successive sorts, the rule changes and participants must adapt and 

figure out the new rule. 

Data Analysis 

All trials less than 250msecs or greater than 2.5 SD of the mean per participant, per 

condition were considered mistrials and were subsequently removed. This resulted in a loss 

of a small amount of data for controls (2.43% of trials) and participants with aphasia (2.79%). 

Removing 2.5 SD per participant, per condition allowed us to capture the individual 

variability present in the data, whilst retaining power to detect differences in mean RT 

(Ratcliff, 1993). To decrease positive skew in raw reaction time data, we used a reciprocal (-
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1/RTSEC) transformation (Kliegl, Masson, & Richter, 2010). Inspection of standardised 

residual plots per task showed an improvement towards normality using this transformation, 

relative to the untransformed data. Reaction time data were fit with maximal linear mixed 

effects (LME) models with crossed-random effects (Baayen, Davidson, & Bates, 2008; Bates, 

Mächler, Bolker, & Walker, 2014). These models examined the effects of group, task type, 

and condition on participant reaction times. These were performed using the lmerTest 

package (Kuznetsova, Brockhoff, & Christensen, 2017) in R version 3.4.0 R version 3.4.0 

(https://www.r-project.org/). Each model was fit with all possible main effects and interaction 

terms (e.g., group x task type x condition) with the maximal random effects structure, in line 

with a confirmatory hypothesis testing approach for LME models (Barr, Levy, Scheepers, & 

Tily, 2013).  

Accuracy data from the n-back tasks were fit using parallel maximal generalised 

linear mixed effects models (GLMM) with binomial link function. Accuracy data for all other 

tasks were analysed using Mann-Whitney U tests to examine group differences, as there were 

insufficient number errors to complete GLMM analyses. Full model summaries for response 

time and accuracy analyses for the Stroop, Flanker, Switching, and N-back tasks are available 

in the supplementary material. Figures for transformed reaction time data are raincloud plots, 

created by adapting code from Allen, Poggiali, Whitaker, Marshall, and Kievit (2018). 

Results 

Correlations between Tasks 

 Correlational analyses between tasks are presented in Appendix A. For the Stroop, 

Flanker, and Switching tasks, an interference score per participant was used as a ratio 

between neutral and incongruent reaction times (RT), whilst taking into account baseline 

neutral performance for potential generalised slowing (i.e., Mean Neutral RT – Mean 

Incongruent RT / Mean Neutral RT). A larger interference score indicates a slower mean RT 
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in the incongruent condition relative to the neutral condition, whereas a value of 0 indicates 

equivalent performance in both neutral and incongruent conditions. For the n-back tasks, 

mean d’Prime values were used (higher value indicates better hit and correct rejection 

performance relative to false alarms and incorrect rejections). For the WCST the number of 

categories sorted and number of conceptual level responses was included in this analysis. The 

Trail Making Task was not included due to the high incidence of missing data. Accuracy 

measures from the computerised tasks were not included due to ceiling performance.  

 Table A1 (see Appendix) provides the complete set of Spearman’s rho correlations 

between computerised executive control tasks and background measures of language (the 

CAT) and semantics (Camel and Cactus test) for participants with Aphasia1. We applied a 

Bonferroni correction for multiple comparisons (cut-off p = 0.003). There was a negative 

correlation between CAT Auditory Comprehension scores and interference on the Flanker 

Verbal task (Rho = -0.827, p = 0.003), indicating better comprehension was associated with 

better ability to inhibit distractor stimuli. CAT Verbal Fluency scores correlated positively 

with 2 Back Spatial span (Rho = 0.915, p<0.001) and WCST number of categories sorted 

(Rho = 0.841, p = 0.002). CAT Picture Description correlated positively with 2 Back Spatial 

span (Rho = 0.844, p = 0.002), with a trend for a positive correlation with 2 Back Fruit span 

(Rho = 0.807, p = 0.005). It also had a trend for a negative correlation with interference on 

the Stroop Low Verbal task (Rho = -0.771, p = 0.009). Finally, CAT Reading scores had a 

positive correlation with 2 Back Spatial span (Rho = 0.853, p = 0.001) and a negative 

correlation with interference on the Stroop Low Verbal task (Rho = -0.839, p = 0.002).   

Stroop Inhibition Tasks 

                                                      
1 Tables A2 (for controls) and A3 (for participants with aphasia) show Spearman’s rho 

correlations for computerised executive control tasks. Spearman’s rho correlations between 

computerised tasks and general executive control tasks (with the exception of Trail Making 

due to insufficient data) for participants with Aphasia are presented in Table A4. 
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 Transformed Stroop reaction times were fit with the following model: -1/RT ~ 

Group*Task Type*Condition + (1 + Task Type*Condition | Subject). The model revealed 

significant main effects for group (aphasia, control), task type (high verbal, low verbal), and 

condition (congruent, neutral, incongruent) on reaction time performance (See Figure 5). 

Participants with aphasia were overall slower than controls on both task versions and across 

all conditions (β = -0.29, SE = 0.09, t = -3.12, p = .016). Both groups were slower on the 

verbal compared to the non-verbal task (β = -0.71, SE = 0.08, t = 8.63, p < .001). The 

condition main effects revealed both significant effects of facilitation (i.e., faster performance 

in congruent vs. neutral (β = -0.17, SE = 0.08, t = -2.13, p = .044) and incongruence (i.e., 

slower responses in incongruent vs. congruent (β = -0.53, SE = 0.09, t = 5.36, p < .001). The 

only significant interaction term was that of task type x condition (incongruence) (β = -0.28, 

SE = 0.11, t = -2.47, p = .021), with both groups showing greater incongruence effects in the 

high verbal task version relative to the low verbal task version. In summary, participants with 

aphasia were generally slower than control participants. The magnitude of the differences 

between task type and condition did not differ between the two groups (i.e., interactions were 

not significant) and PWA did not show greater interference effects or a greater influence of 

verbal vs non-verbal conditions.  

 For accuracy, there were insufficient data to analyse using generalised GLME models. 

Mann-Whitney U tests did not reveal significant differences between groups for accuracy 

rates across all conditions and both task types for the Stroop task once familywise multiple 

comparisons were accounted for, using a critical p-value of .008 (see Table 2 of 

Supplementary Material). Both groups reached close to ceiling accuracy rates with 94% and 

96% for participants with aphasia and controls respectively. 
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Figure 5. Individual transformed data points, box plots, and distribution plots for verbal and 

low verbal Stroop tasks. Horizontal line on box plots represents median transformed response 

time (RT).  

Flanker Inhibition Tasks 

Transformed Flanker reaction times were fit with the following model: -1/RT ~ 

Group*Task Type*Condition + (1 + Task Type*Condition | Subject). The model revealed 

significant main effects for group (aphasia, control), condition (congruent, neutral, 

incongruent), and significant interactions for group x condition (facilitation) and group x 

condition (incongruence), see Figure 6. Participants with aphasia were slower than controls 

on both task versions and across all conditions (β = -0.31, SE = 0.10, t = -3.07, p = .005). The 

condition main effects revealed both slower performance on congruent vs. neutral trials (β = 

0.09, SE = 0.02, t = 3.95, p < .001) and slower responses in incongruent vs. congruent trials 

(β = 0.15, SE = 0.04, t = 4.19, p < .001). There were significant group x condition 
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interactions. Control participants showed a larger incongruence effect (i.e., slower in 

incongruent relative to congruent trials), compared to participants with aphasia (β = -0.17, SE 

= .05, t = 3..54, p = .002). In summary, participants with aphasia show exaggerated reaction 

times overall, but these were not influenced by condition or task type. Control participants 

showed larger interference effects than individuals with aphasia - with greater differences 

between incongruent and neutral trials.  

 For accuracy, there were insufficient data to investigate errors using a generalised 

LME model. Mann-Whitney U tests did not reveal any significant group differences across 

all conditions and both task types, using a corrected p-value of .01 (see Table 2 

Supplementary Material). It was not possible to analyse accuracy rates for the low verbal 

congruent condition due to lack of variance as all control participants scored 100%. In sum, 

individuals with aphasia performed with similar accuracy levels to controls. 
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Figure 6. Individual transformed data points, box plots, and distribution plots for verbal and 

low verbal Flanker tasks. Horizontal line on box plots represents median transformed 

response time (RT).  

Shape-Colour Switch Task 

To examine switch costs (slowing of responses on a switch trial compared to a non-

switch or repeated trial) transformed reaction times were fit with the following model: -1/RT 

~ Group*Task*TrialType + (1 + TaskType*Trial|Subject). The model revealed significant 

main effects of group (aphasia vs. control) and trial type (repetition vs. switch), see Figure 7. 

Participants with aphasia produced slower reaction times overall (β = -0.196, SE = 0.06, t = -

3.23, p = .004). Across both groups, switch trials were slower than repetition/stay trials (β = 

0.05, SE = 0.02, t = -2.36, p = .02). 

 To examine mix costs (i.e. the long term cost of switching seen in RTs for mixed vs 

the blocked conditions) transformed reaction times were fit with the following model:-1/RT ~ 
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Group*Task Type*Condition + (1 + Task Type*Condition|Subject). The model revealed 

significant main effects of group (aphasia, control), task type (high-verbal, low-verbal), and 

condition (blocked, mixed), see Figure 8. Participants with aphasia produced slower reaction 

times across both task types and condition (β = -0.37, SE = 0.08, t = -4.85, p < .001). Overall, 

reaction times were significantly slower in the high verbal compared to low verbal task (β = -

0.16, SE = 0.05, t = -3.40, p < .002). Both groups were significantly slower in the mixed 

condition compared to the blocked condition (β = 0.44, SE = 0.06, t = 6.87, p < .001). The 

only significant interaction term was between task type and condition (β = 0.11, SE = 0.05, t 

= 2.29, p = .031), overall both groups were slower in the blocked low verbal tasks compared 

to the blocked high verbal condition. In summary, participants with aphasia show 

exaggerated response times but these were not influenced by task type, trial type, or 

condition. 

 Accuracy was analysed using Mann-Whitney U tests comparing group performance 

on the mixed condition across both task types. These revealed one significant group 

difference when using a corrected critical p-value of .0125 (see Supplementary Material 

Table 4). Participants with aphasia were significantly less accurate compared to controls on 

the high-verbal mixed condition (U = 28.5, p = .01). Overall, 6% of all responses on this task 

were errors, and overall accuracy rates were 89% and 97% for participants with aphasia and 

controls respectively. 
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Figure 7. Individual transformed data points, box plots, and distribution plots for verbal and 

low verbal switch tasks, showing trial types (stay vs. switch trials) within the mixed blocks, 

thus representing a switch cost. Horizontal line on box plots represents median transformed 

response time (RT). 
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Figure 8. Individual transformed data points, box plots, and distribution plots for verbal and 

low verbal switch tasks, showing condition types (block vs. mixed conditions), thus showing 

a mix cost. Horizontal line on box plots represents median transformed response time (RT). 

N-Back Updating Tasks 

Accuracy data for hit trials were fit with the following model: HitAccuracy ~ 

Group*Task Type*Load + (1 + Task Type*Load|Subject). The model revealed significant 

main effects for group (aphasia, control) and load (1-back, 2-back) on the number of 

correctly identified targets (see Figure 9). Overall, participants with aphasia were less 

accurate at identifying target trials compared to controls (β = 1.32, z = 3.05, p = .003). All 

participants were less accurate on the 2-back task relative to the 1-back task (β = -1.95, z = -

8.52, p < .001). No other main effect or interaction terms had a significant influence on 

accuracy. In summary, both groups demonstrated poorer accuracy on 2-back tasks compared 
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to 1-back, however, participants with aphasia were overall less accurate than controls on all 

task versions. Verbal load (fruit, digits, spatial) had no influence on accuracy performance. 

 

 

Figure 9. Mean D’Prime values for 1-back (upper) and 2-back (lower) tasks across Digits, 

Fruit, and Spatial tasks. Error bars represent 95% confidence intervals. A higher D’Prime 

score represents better accuracy performance on accuracy trials, whilst also rejecting non-

target trials. 
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Trail Making, Span, and WCST Tasks 

 Group analyses were not possible for the trail making test (Parts A & B) as six out of 

ten participants were unable to complete Part B of the test within the specified time limit. For 

digit and corsi span tasks we compared groups on both forwards and backwards versions of 

each task. For both forwards and backwards digits, participants with aphasia produced 

significantly fewer items (Forwards: U = 2.5, p < .001; Backwards: U = 6.5, p < .001). 

Participants with aphasia had a significantly reduced corsi span for forwards (U = 35, p = 

.038) but not backwards (U = 59, p = .514) task versions. 

For the WCST, we examined group differences on the following measures: number of 

trials to complete first category, total number of categories sorted, number of correct 

responses, total errors, number of perseverative errors, number of non-perseverative errors, 

and number of conceptual level responses. The number of conceptual level responses refers 

to the number of intentional correct responses, excluding correct answers that occurred by 

chance. A series of Mann Whitney-U tests revealed no significant group differences on all 

but one measure, with participants with aphasia producing fewer conceptual level responses 

compared to control participants (U = 33, p = .032). However, this group difference is non-

significant once significance values are corrected for multiple comparisons (critical p = .007), 

see Figure 10. 
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Table 2 

Accuracy Data for Trail Making, Corsi Blocks, and Digit Span Tasks 

 

 

 

Figure 10.  Mean scores for the WCST task on measures of number of categories sorted (max 

score 5, left figure) and number of conceptual level responses (max score 64, right figure). 

Case Series Analyses 

 Each participant with aphasia was compared to the mean control performance on the 

Stroop, Flanker, Same-Colour Switching, and n-back tasks using modified t-tests (Crawford, 

Garthwaite, & Howell, 2009). Mean reaction time in each condition was compared to that of 

 Trail Making Testa  Corsi Blocks Spanb  Spoken Digit Spanb 

 Part A Part B  Forwards Backwards  Forwards Backwards 

Controls 28 55  6.1 4.5  6.9 4.7 

(SD) (9.23) (18.6)  (1.02) (0.76)  (0.77) (1.2) 

P1 110 250  4 3  0 0 

P2 25 57  7 5  3 3 

P3 24 87  7 7  3 0 

P4 DNC DNC  3 3  3 0 

P5 86 DNC  4 6  6 3 

P6 61 210  4 4  4 4 

P7 64 DNC  5 2  5 2 

P8 58 DNC  5 5  3 2 

P9 DNC DNC  6 4  3 0 

P10 54 DNC  5 4  2 2 

Note. Controls = Mean value reported, SD = standard deviation, DNC = did not complete in specified time. aNumber of 
seconds taken to complete task. bNumber of items recalled correctly. Controls n = 14. 
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controls, with the exception of the n-back task where conditional d’Prime values were used. 

Tables 3 and 4 present mean raw data with scores highlighted where they differ significantly from 

control data (i.e. p<.05 below the control range). These analyses can address both research 

questions set out in this study. With regards to verbal and low verbal task performance, 

impaired performance on one task version but spared performance in the other (i.e., impaired 

verbal but spared low verbal or vice versa) was the exception rather than the norm. For 

example, P1 (Stroop, Flanker), P2 (Flanker, N-Back), P6 (Switching), P7 (Stroop), P10 

(Stroop, N-Back) demonstrated an association in either direction (See Tables 3 and 4). The 

direction of this dissociation (i.e., impaired verbal with spared non-verbal or spared verbal 

with impaired non-verbal) was equal across the case series, which supports the group level 

findings that overall there is no consistent influence of verbal load. It is important to note that 

some participants presented with particular difficulty with spatial stimuli (i.e., P10 on Stroop 

and N-Back), that is, despite the presence of language impairment and lower verbal task 

demands, this participant still had difficulty with these executive control tasks. 

Secondly, if the subdomains of executive control are impaired we would expect to see 

consistent impairment in executively demanding conditions (e.g., incongruent, mixed, or 2-

back conditions) with spared performance in the control conditions (baseline/low executively 

demanding conditions e.g., neutral/congruent, blocked, or 1-back conditions). For example, 

in the low-verbal Stroop task (Table 3) P9 showed a clear pattern of worse performance in 

the incongruent condition but spared performance in neutral and control conditions. In 

addition P5 performed significantly poorer in mixed conditions of switch tasks but not in 

blocked conditions. However, overall, this pattern of performance was rare as the majority of 

other cases presented with impairment of baseline conditions in addition to executive 

impairment (e.g., P4), baseline condition impairment only (e.g., P1), or spared performance 

entirely (e.g., P3, P8). This is in line with the group level findings indicating that for reaction 
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time, specific impairments of executive control were the exception rather than the norm, 

given participants frequently demonstrated impaired performance on baseline conditions. 
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Table 3 

Case Series Mean Reaction Time (Msecs) Performance per Condition on Stroop, Flanker, and Switching Tasks 

Note. Mean response times that were significantly slower than controls are denoted by bold underlined text. Cut-off was determined using Crawfords modified t-tests (one-tailed), the 
values beyond cut-off demonstrate that a participant was in the lower estimated 5th percentile (p<.005) of control performance. Con = Congruent, Neu = Neutral, Incon = Incongruent. 

 

 

 Stroop  Flanker  Switching 

 Verbal  Low Verbal  Verbal  Low Verbal  Verbal  Low Verbal 

 Con Neu Incon  Con Neu Incon  Con Neu Incon  Con Neu Incon  Block Mix  Block Mix 

P1 1137 1191 1294  567 558 708  793 764 879  625 619 723  947 1899  1156 1508 

P2 633 838 1324  511 551 678  682 624 784  860 860 809  816 1641  823 1508 

P3 882 869 910  401 511 621  604 571 670  571 559 652  897 2149  956 2322 

P4 1042 1229 1468  715 787 1135  1011 937 1192  1289 1177 1748  1168 1068  1854 1497 

P5 1135 1074 1311  671 552 616  944 887 949  944 887 949  987 4507  1279 3955 

P6 1099 882 1271  503 524 719  887 788 889  1056 810 1184  1010 2094  1755 3433 

P7 1314 1255 1672  506 573 721  640 608 659  618 601 732  1015 2232  1015 2021 

P8 944 866 1058  541 564 769  637 620 672  510 488 596  861 2140  1260 2709 

P9 1070 1080 2667  442 582 979  1173 1009 1261  981 918 1250  1464 1994  1568 2587 

P10 770 929 1209  656 762 1139  978 1029 1102  1037 883 1039  1048 4216  967 3366 
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Table 4 

Case Series D’Prime Scores per Condition on N-back Tasks 

 

Discussion 

 The first research question addressed whether executive control task performance was 

influenced by either high or low verbal stimuli in a group of participants with frontal lesions 

and aphasia. Both group level and case-series findings revealed that there were no consistent 

differences between performance on verbal and low verbal task versions for inhibiting, 

switching, and updating. This was the case for both reaction time and accuracy analyses, with 

the exception of accuracy performance for the switching task, revealing a small difference 

(lower accuracy on verbal compared to low verbal task). The second research question 

investigated if the different subdomains of executive control were differentially impaired. 

Given the importance of the frontal lobes for executive control (Alvarez & Emory, 2006) we 

expected to see some impairments for our group of participants with aphasia. Overall 

participants with aphasia demonstrated a generalised slowing in reaction times. For accuracy, 

participants with aphasia made more errors on switching and updating tasks, suggesting that 

 N-Back 

 Digits  Fruit  Spatial 

 1 2  1 2  1 2 

P1 3.85 2.55  3.89 2.19  4.1 1.69 

P2 3.33 1.41  3.01 2.66  3.35 2.45 

P3 4.7 2.44  4.7 2.62  4.45 3.31 

P4 3.01 1.95  2.55 0.32  1.86 1.4 

P5 4.16 2.45  3.56 1.9  4.45 2.12 

P6 2.22 1.33  3.36 1.35  3.13 2.02 

P7 1.95 0.17  2.41 0.33  2.76 0.98 

P8 4.42 1.85  4.16 1.63  4.16 1.44 

P9 2.42 0.83  2.55 1.37  2.31 0.7 

P10 3.59 2.23  3.33 1.34  3.11 0.367 

Note. Bold and underlined text represents participants who fell significantly below control performance.  Cut-off was 
determined using Crawfords modified t-tests (one-tailed), the values beyond cut-off demonstrate that a participant 
was in the lower estimated 5th percentile (p<.005) of control performance. 
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these subdomains may be particularly vulnerable for participants with aphasia and left 

hemisphere frontal lobe lesions. 

When Measuring Executive Control in Aphasia, does verbal load matter? 

The equivalent performance between verbal and low verbal task versions observed in 

the present study is in line with previous research that has used both group and case-series 

analyses (Kuzmina & Weekes, 2017; Murray, 2017). The current study extends these two 

previous studies by including multiple executive control tasks selected based on previous 

established theory (e.g., Miyake, Friedman, et al., 2000) and ensuring where possible task 

versions were comparable (e.g., Kuzmina & Weekes, 2017). Previously, studies have 

suggested that the apparent insensitivity of executive control impairments in aphasia to verbal 

task demands indicates that executive control impairments are domain-general, rather than 

specific to the language domain (Kuzmina & Weekes, 2017).  

The lack of consistent differences between verbal and low verbal task versions in our 

data demonstrate that for individuals with frontal lesions and aphasia, a majority of our 

participants can rely on executive control resources that are independent of whether the 

stimuli presented are of a verbal or low verbal nature. That is, despite our participants 

presenting with language deficits, when faced with a verbal executive control task, some 

participants can rely on their inhibiting, switching, and updating abilities independent of 

language (see Fedorenko & Varley, 2016; Varley, 2014). 

It is important to note that although efforts were made to reduce the verbal load of 

low verbal tasks, it is likely that language processing is an important factor for performance 

on these, for example, left vs. right or same vs. different decisions require elements of 

language. The tasks used in the present study were as well-matched as possible, with verbal 

load manipulated via the stimuli displayed (e.g. letters vs arrows, spatial vs. digits). In 

addition, they did not require verbal output. Whilst it could be argued that this makes the 
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verbal manipulation fairly limited, this is precisely the point. When demands from verbal 

output and complex task instructions are removed, participants with frontal lesions and 

aphasia show few or no differences between task versions. It is possible (and likely) that 

executive tasks requiring spoken output would be more impacted by the presence of aphasia 

(e.g., Hamilton & Martin, 2005) since lexical retrieval difficulties are one of the most 

common symptoms in aphasia (Davis, 2007).  To our knowledge, one study has demonstrated 

inconsistent results when directly comparing verbal and low verbal task stimuli. In 

Christensen and Wright (2010), controls and PWA patterned in the same way, with poorer 

low verbal task performance, suggesting that results were driven by difficulty assigning 

verbal labels to highly non-verbal material. 

Are different domains of executive control more vulnerable in frontal aphasia?  

Executive control abilities play an important role in supporting specific language 

functions, such as the relationship between updating and sentence comprehension, or 

inhibition and lexical retrieval (Hussey & Novick, 2012; Ivanova et al., 2015; Jefferies, 

Patterson, & Ralph, 2008; Novick et al., 2010; Ye & Zhou, 2009). Therefore, it is important 

to measure executive control using specific and targeted tasks, tapping into each of these 

subdomains. On inhibiting and switching tasks, response speed was characterised by a 

generalised slowing but preserved accuracy, irrespective of condition (i.e., neutral, congruent, 

incongruent). Therefore, when reaction times are considered, participants with aphasia do not 

show selective impairments of inhibiting or switching. For the inhibition tasks, this is a 

pattern that has been reported previously, with exaggerated overall response times but with 

no impact of incongruence—a pattern necessary to indicate impaired inhibition (Hamilton & 

Martin, 2005; Kuzmina & Weekes, 2017). These studies, however, did find incongruence 

effects for accuracy. This is potentially a consequence of the increased demands when using 

spoken versions of a Stroop task. One caveat here is that the removal of spoken output might 
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make these tasks easier than usual, particularly where accuracy performance was at ceiling 

(e.g., on inhibition tasks). However, reaction time data do demonstrate consistent interference 

effects for both controls and participants with aphasia. Given the lack of spoken output for 

the tasks in the current study, comparisons with previous studies using different task versions 

should be made with caution.   

The current study’s findings are also in line with (Purdy, 2002) who concluded that in 

aphasia, performance on executive control tasks is characterised by poorer efficiency and 

response speed in the context of high accuracy. This also raises the important issue of 

needing to (where possible) interpret accuracy alongside response time. Along with previous 

research, our data show that on some executive control tasks, participants with aphasia 

demonstrate speed-accuracy trade-offs (i.e., slowing down to remain accurate at tasks). 

Future research could assess this by further examining response time as a function of 

accuracy, as one would expect a higher error rate for trials with faster response times relative 

to those with slower response times. This finding may also indicate that persons with aphasia 

might be explicitly strategic when approaching a task (i.e., slowing down in order to remain 

accurate). 

When considering accuracy, our data provides evidence that switching and updating 

are most vulnerable to frontal lesions in aphasia. For switching, this is in line with previous 

studies (Chiou & Kennedy, 2009; Mecklinger, Yves von Cramon, Springer, & Matthes-von 

Cramon, 1999). When required to switch responses or mental sets, participants with aphasia 

are less accurate. The use of computerised switching tasks is rare in studies of aphasia. 

Instead, the trail making test is used as a brief switching measure, but often yields a high rate 

of missing data when used for PWA (see Wall, Cumming, & Copland, 2017), a finding also 

in line with the present study. We suggest that future research should aim to make use of 

computerised switching tasks to further explore how shifting between multiple-demands and 
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mental sets are impacted in aphasia, and how this might relate to language impairment.  It is 

interesting to note here the potential importance of switching ability for real-world 

communication, where multiple demands have to be met (Fridriksson et al., 2006). 

It is possible that participants with aphasia have difficulty with integrating multiple 

components to successfully complete the switching task. For example, unlike the inhibition 

tasks where each trial can be treated independently (i.e., once a selection is made, the 

participant simply repeats the process on the next trial) the switching task requires keeping in 

mind multiple task instructions. Reduced performance on this task for PWA may be related to 

the deployment of multiple skills, or the concurrent use of multiple skills, rather than a deficit 

in one or more component skills. In the case of switching, participants must keep task 

instructions in mind, process which task they are required to carry out, process task stimuli, 

and select the appropriate response. Anecdotally, many participants commented that the 

switching task was taxing and required greater effort than the other tasks. 

For updating, findings from the current study show that participants with aphasia were 

less accurate at identifying target (or hit) trials in comparison to controls for both 1-back and 

2-back tasks. These results are in line with previous work using visual n-back tasks in PWA 

(Christensen & Wright, 2010) but contradict those that use auditory task version where 

significantly greater impairments in 2-back tasks have been identified (Wright, Downey, 

Gravier, Love, & Shapiro, 2007). This difference may be a consequence of the transitive 

nature of auditory stimuli placing a greater weight on phonological STM and executive 

control processing. Overall, the continuous updating of working memory may be vulnerable 

in frontal lesion aphasia. It is important to note that the n-back task primarily relies on 

updating and rapid removal of contents from working memory when necessary, whereas span 

tasks rely on rehearsal and shifting ability (Ivanova, Kuptsova, & Dronkers, 2017). 
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Finally, we found group differences on the WCST for conceptual level responses, a 

finding consistent with previous research (Baldo et al., 2005; Baldo, Bunge, Wilson, & 

Dronkers, 2010), although this finding did not survive a multiple comparison cut-off. We also 

found that performance on the WCST correlated with spatial span (see Table A4), indicating 

that performance on the WCST may reflect capacity in working memory and updating. Span 

tasks also correlated most often than not with background language measures (see Table A1 

and below), reinforcing the finding that working memory is a critical skill for persons with 

aphasia. 

Correlations between Executive Control measures and background measures of 

language 

We found positive correlations between measures of overt speech production (Picture 

Description, Verbal Fluency, and Reading Aloud) and both working memory span and the 

WCST (which also loads heavily on memory span2). That is, individuals with better working 

memory performance also scored more highly on overt speech production tasks. Previous 

research has highlighted an important association between language comprehension and 

working memory (e.g., Salis et al., 2017). The findings in the current study suggest this 

association could extend to other language functions, particularly where spatial (or low 

verbal) working memory is considered. Seniow et al., (2009) suggest that spatial working 

memory might play an important role in language recovery, given many materials used in 

therapy are visual (i.e., picture stimuli). In addition, spatial working memory could support 

the retrieval of semantic knowledge during a language task, for example, keeping in mind 

visual imagery or the appearance of objects (Baddeley, 2003b). Given the limited sample size 

in the current study, future research should aim to explore these possible associations.  

                                                      
2 Note that WCST number of categories scored had a significant positive correlation with 2-

back spatial span (see Table A4). 
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We also found correlations and trends for correlations between the amount of 

interference on inhibition tasks and performance in Auditory Comprehension, Picture 

Description and Reading Aloud. Here, less interference on the inhibition tasks correlated with 

better language scores. This finding is in line with previous findings that inhibitory skills play 

a role in speech production (Hussey & Novick, 2012; Novick et al., 2010; Schnur, Schwartz, 

Brecher, & Hodgson, 2006) and also possibly in comprehension assessments where 

distracters need to be inhibited. Notably, these correlations came from both low verbal 

(Stroop) and verbal (Flanker) versions of the tasks, indicating that it is domain general 

inhibitory skills that are of importance.  

Finally, despite our attempts to minimise the differences between verbal and low 

verbal task versions (e.g., same instructions and response types across versions) the 

correlations between task versions were, for the most part, non-significant (See Table A3). 

This lack of association indicates that changing task modality leads to the executive control 

network being differently engaged, potentially because participants change task strategy. This 

finding questions the ability to generalise between executive control measures which are 

purported to be measuring the same capacity and suggests that further research is needed to 

understand the variable use of the executive control network within and beyond aphasia. 

Conclusions and Future Directions 

We found that individuals with frontal lesions and aphasia are insensitive to the verbal 

demands on executive control tasks, where no spoken output is required. These findings 

suggest that language processing is not necessarily essential for executive control task 

performance—given that participants with clear language impairment performed equally well 

on both task versions. The observed generalised slowing in reaction times needs to be 

considered alongside accuracy performance, in order to evaluate how resources are deployed 

(i.e., attention and working memory) and how individuals implement different strategies to 



EXECUTIVE CONTROL IN FRONTAL LESION APHASIA  40 
 

 
 

maintain task performance. Finally, our findings suggest that deficits in executive control for 

people with aphasia might be related to dealing with continuous updating and multiple 

demands (i.e., the updating and switching tasks) rather than being a broad impairment across 

all areas of executive control. These findings provide further insight into the cognitive 

performance of individuals with frontal lesions and aphasia, however, future research should 

aim to replicate these findings using larger sample sizes, whilst also comparing possible 

differences between people with aphasia based on lesion profile. 
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Appendix A 

Correlations between Tasks 

For the Stroop, Flanker, and Switching tasks, an interference score per participant was used as a ratio between neutral and incongruent reaction 

times (RT), whilst taking into account baseline neutral performance for potential generalised slowing (i.e., Mean Neutral RT – Mean 

Incongruent RT / Mean Neutral RT). A larger interference score indicates a slower mean RT in the incongruent condition relative to the neutral 

condition, whereas a value of 0 indicates equivalent performance in both neutral and incongruent conditions. For the n-back tasks, mean d’Prime 

values were used (higher value indicates better hit and correct rejection performance relative to false alarms and incorrect rejections). For the 

WCST the number of categories sorted and number of conceptual level responses was included in this analysis. The Trail Making Task was not 

included due to the high incidence of missing data. Accuracy measures from the computerised tasks were not included due to ceiling 

performance.   
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Correction for multiple comparisons: These correlations were completed post-hoc following reviewer comments on the manuscript. For that 

reason, a correction for multiple comparisons is applied. Each background measure is correlated against 16 measures of Executive Function 

(general and computerised), giving a Bonferroni corrected p-value of 0.05/16 = 0.003. Correlations which pass this correction are in shaded and 

in bold. Correlations that approach significance are shaded only. 

 
 

Table A1: Correlation Matrix of performance on computerised executive control tasks and background measures of language 
(Comprehensive Aphasia Test) and semantics (Camel and Cactus) for participants with Aphasia 

 

      
        

   
Stroop             
Verbal 

Stroop 
Low 

Verbal 

Flanker 
Verbal 

Flanker 
Low 

Verbal 

Mix Cost 
Verbal 

Mix Cost 
Low 

Verbal 

Switch 
Cost 

Verbal 

Switch 
Cost 
Low 

Verbal 

1-Back    
Digits 

2-Back   
Digits 

1-Back      
Fruit 

2-Back     
Fruit 

1-Back 
Spatial 

2-Back 
Spatial 

WCST 
Category 

WCST 
Concept
Respons 

Camel and Cactus 
Test 

Spearman's rho  
-0.055 -0.762 -0.037 -0.573 0.201 0.323 -0.689 0.305 0.073 0.11 0.052 0.372 0.398 0.695 0.441 0.53 

  p-value  
0.88 0.01 0.92 0.083 0.577 0.362 0.028 0.392 0.841 0.763 0.887 0.29 0.255 0.026 0.202 0.115 

Auditory 
Comprehension 

Spearman's rho  
-0.152 -0.255 -0.827 -0.146 0.711 0.486 0.207 0.401 0.195 0.164 0.204 -0.158 0.335 -0.134 -0.08 -0.505 

  p-value  
0.675 0.476 0.003 0.688 0.021 0.154 0.567 0.25 0.59 0.65 0.571 0.663 0.343 0.713 0.826 0.137 

Written 
Comprehension 

Spearman's rho  
-0.47 -0.537 -0.457 -0.445 0.707 0.683 0.226 0.72 0.488 0.238 0.361 0.146 0.489 0.159 0.006 -0.226 

  p-value  
0.171 0.11 0.184 0.197 0.022 0.03 0.531 0.019 0.153 0.508 0.306 0.687 0.151 0.662 0.986 0.531 

Verbal Fluency  Spearman's rho  
-0.067 -0.661 0.127 -0.467 -0.03 -0.055 -0.539 -0.139 0.212 0.188 0.407 0.648 0.584 0.915 0.841 0.697 

  p-value  
0.865 0.044 0.733 0.178 0.946 0.892 0.113 0.707 0.56 0.608 0.243 0.049 0.077 < .001 0.002 0.031 

Picture 
Description 

 Spearman's rho  
0.018 -0.771 0.061 -0.71 0.086 0.073 -0.391 -0.141 0.22 0.183 0.313 0.807 0.626 0.844 0.573 0.557 

  p-value  
0.96 0.009 0.867 0.022 0.814 0.84 0.263 0.698 0.541 0.612 0.379 0.005 0.053 0.002 0.084 0.095 

Object Naming  Spearman's rho  
-0.345 -0.685 -0.2 -0.394 0.236 0.115 -0.309 0.042 0.139 0.442 0.365 0.37 0.547 0.709 0.571 0.673 

  p-value  
0.331 0.035 0.584 0.263 0.514 0.759 0.387 0.919 0.707 0.204 0.3 0.296 0.102 0.028 0.085 0.039 

Repetition  Spearman's rho  
0.297 -0.152 -0.394 -0.285 0.188 0.079 -0.079 -0.2 -0.164 0.164 0.024 0.212 0.207 0.152 0.227 0.248 

  p-value  
0.407 0.682 0.263 0.427 0.608 0.838 0.838 0.584 0.657 0.657 0.947 0.56 0.567 0.682 0.528 0.492 

Reading  Spearman's rho  
-0.407 -0.839 -0.201 -0.498 0.328 0.219 -0.286 0.14 0.353 0.413 0.552 0.553 0.756 0.863 0.64 0.584 

  p-value  
0.243 0.002 0.578 0.143 0.354 0.544 0.424 0.7 0.318 0.235 0.098 0.097 0.011 0.001 0.046 0.077 
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Table A2: Correlation Matrix of performance on computerised executive control tasks for Control participants 

 

 

   
      

   

  
      Stroop             

Verbal 
Stroop 

Low 
Verbal 

Flanker 
Verbal 

Flanker 
Low 

Verbal 

Mix Cost 
Verbal 

Mix Cost 
Low 

Verbal 

Switch 
Cost 

Verbal 

Switch 
Cost 
Low 

Verbal 

1-Back    
Digits 

2-Back   
Digits 

1-Back      
Fruit 

2-Back     
Fruit 

1-Back 
Spatial 

2-Back 
Spatial 

Stroop Verbal  Spearman's rho  
— 

             

  p-value  
— 

             

Stroop Low 
Verbal 

 Spearman's rho  
0.033 — 

            

  p-value  
0.916 — 

            

Flanker Verbal  Spearman's rho  
0.059 0.037 — 

           

  p-value  
0.844 0.904 — 

           

Flanker Low 
Verbal 

 Spearman's rho  
0.09 0.051 0.429 — 

          

  p-value  
0.762 0.868 0.128 — 

          

Mix Cost Verbal  Spearman's rho  
0.226 0.108 0.037 -0.319 — 

         

  p-value  
0.436 0.716 0.904 0.267 — 

         

Mix Cost Low 
Verbal 

 Spearman's rho  
-0.081 -0.011 0.073 -0.301 0.578 — 

        

  p-value  
0.785 0.976 0.808 0.295 0.033 — 

        

Switch Cost 
Verbal 

 Spearman's rho  
-0.644 -0.002 0.332 0.266 -0.156 0.358 — 

       

  p-value  
0.015 1 0.246 0.357 0.594 0.209 — 

       

Switch Cost Low 
Verbal 

Spearman's rho  
-0.503 0.147 -0.125 -0.156 -0.125 0.108 0.407 — 

      

  p-value  
0.069 0.616 0.671 0.594 0.671 0.716 0.15 — 

      

1-Back Digits  Spearman's rho  
0.238 0.452 0.069 0.29 -0.085 -0.697 -0.363 -0.325 — 

     

  p-value  
0.412 0.105 0.815 0.315 0.774 0.006 0.202 0.257 — 

     

2-Back Digits  Spearman's rho  
-0.158 0.26 -0.207 0.257 -0.271 -0.433 -0.095 0.013 0.371 — 

    

  p-value  
0.589 0.37 0.478 0.374 0.349 0.122 0.748 0.964 0.191 — 

    

1-Back Fruit  Spearman's rho  
-0.452 0.465 0.159 0.187 -0.101 -0.289 0.377 -0.059 0.443 0.225 — 

   

  p-value  
0.105 0.094 0.588 0.522 0.73 0.317 0.184 0.84 0.113 0.439 — 
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Correction for multiple comparisons: These correlations were completed post-hoc following reviewer comments on the manuscript. For that 

reason, a correction for multiple comparisons is applied. Each measure is correlated against 13 other measures, giving a Bonferroni corrected p-

value of 0.05/13 = 0.004. Correlations which pass this correction are shaded and in bold. Correlations that approach significance are shaded only

Table A2 Continued  Stroop             
Verbal 

Stroop 
Low 

Verbal 

Flanker 
Verbal 

Flanker 
Low 

Verbal 

Mix Cost 
Verbal 

Mix Cost 
Low 

Verbal 

Switch 
Cost 

Verbal 

Switch 
Cost 
Low 

Verbal 

1-Back    
Digits 

2-Back   
Digits 

1-Back      
Fruit 

2-Back     
Fruit 

1-Back 
Spatial 

2-Back 
Spatial 

                  
2-Back Fruit  Spearman's rho  

-0.037 0.449 -0.213 -0.018 -0.429 -0.607 -0.202 0.194 0.472 0.584 0.26 — 
  

  p-value  
0.899 0.107 0.464 0.952 0.126 0.021 0.488 0.507 0.089 0.028 0.369 — 

  

1-Back Spatial  Spearman's rho  
-0.313 0.337 -0.013 0.004 0.002 -0.514 -0.225 -0.049 0.565 0.28 0.606 0.457 — 

 

  p-value  
0.276 0.238 0.964 0.988 0.994 0.06 0.439 0.869 0.035 0.332 0.022 0.1 — 

 

2-Back Spatial  Spearman's rho  
0.086 0.618 0.231 0.317 -0.246 -0.374 0.035 -0.119 0.426 0.174 0.59 0.498 0.511 — 

  p-value  
0.771 0.018 0.427 0.27 0.396 0.188 0.905 0.686 0.129 0.552 0.026 0.07 0.062 — 
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Table A3: Correlation Matrix of performance on computerised executive control tasks for participants with Aphasia 
 

      

 
 

   
      

      
  

Stroop             
Verbal 

Stroop 
Low 

Verbal 

Flanker 
Verbal 

Flanker 
Low 

Verbal 

Mix Cost 
Verbal 

Mix Cost 
Low 

Verbal 

Switch 
Cost 

Verbal 

Switch 
Cost 
Low 

Verbal 

1-Back    
Digits 

2-Back   
Digits 

1-Back      
Fruit 

2-Back     
Fruit 

1-Back 
Spatial 

2-Back 
Spatial 

Stroop Verbal  Spearman's rho  —                           

  p-value  —                           

Stroop Low 
Verbal 

 Spearman's rho  0.394 —                         

  p-value  0.263 —                         

Flanker Verbal  Spearman's rho  0.079 0.2 —                       

  p-value  0.838 0.584 —                       

Flanker Low 
Verbal 

 Spearman's rho  0.2 0.733 0.224 —                     

  p-value  0.584 0.021 0.537 —                     

Mix Cost Verbal  Spearman's rho  -0.333 -0.43 -0.903 -0.503 —                   

  p-value  0.349 0.218 < .001 0.143 —                   

Mix Cost Low 
Verbal 

 Spearman's rho  -0.103 -0.321 -0.794 -0.43 0.903 —                 

  p-value  0.785 0.368 0.01 0.218 < .001 —                 

Switch Cost 
Verbal 

 Spearman's rho  -0.224 0.345 -0.37 0.03 0.358 0.188 —               

  p-value  0.537 0.331 0.296 0.946 0.313 0.608 —               

Switch Cost Low 
Verbal 

Spearman's rho  -0.285 -0.236 -0.636 -0.212 0.782 0.915 0.079 —             

  p-value  0.427 0.514 0.054 0.56 0.012 < .001 0.838 —             

1-Back Digits  Spearman's rho  -0.673 -0.442 -0.248 -0.612 0.576 0.43 0.297 0.418 —           

  p-value  0.039 0.204 0.492 0.066 0.088 0.218 0.407 0.232 —           

2-Back Digits  Spearman's rho  -0.806 -0.358 -0.212 -0.503 0.442 0.2 0.273 0.212 0.77 —         

  p-value  0.008 0.313 0.56 0.143 0.204 0.584 0.448 0.56 0.014 —         
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Table A3 Continued  Stroop             
Verbal 

Stroop 
Low 

Verbal 

Flanker 
Verbal 

Flanker 
Low 

Verbal 

Mix Cost 
Verbal 

Mix Cost 
Low 

Verbal 

Switch 
Cost 

Verbal 

Switch 
Cost 
Low 

Verbal 

1-Back    
Digits 

2-Back   
Digits 

1-Back      
Fruit 

2-Back     
Fruit 

1-Back 
Spatial 

2-Back 
Spatial 

                  
1-Back Fruit  Spearman's rho  -0.608 -0.407 -0.31 -0.456 0.535 0.383 0.377 0.334 0.863 0.675 —       

  p-value  0.062 0.243 0.383 0.185 0.111 0.275 0.283 0.345 0.001 0.032 —       

2-Back Fruit  Spearman's rho  -0.152 -0.612 0.091 -0.83 0.176 0.103 0.006 -0.115 0.612 0.406 0.614 —     

  p-value  0.682 0.066 0.811 0.006 0.632 0.785 1 0.759 0.066 0.247 0.059 —     

1-Back Spatial  Spearman's rho  -0.474 -0.754 -0.432 -0.742 0.669 0.523 0.122 0.377 0.809 0.596 0.872 0.76 —   

  p-value  0.166 0.012 0.213 0.014 0.035 0.121 0.738 0.283 0.005 0.069 0.001 0.011 —   

2-Back Spatial  Spearman's rho  -0.333 -0.794 0.152 -0.588 0.091 0.067 -0.43 0.03 0.467 0.358 0.578 0.758 0.736 — 

  p-value  0.349 0.01 0.682 0.08 0.811 0.865 0.218 0.946 0.178 0.313 0.08 0.016 0.015 — 

 

Correction for multiple comparisons: These correlations were completed post-hoc following reviewer comments on the manuscript. For that 

reason, a correction for multiple comparisons is applied. Each measure is correlated against 13 other measures, giving a Bonferroni corrected p-

value of 0.05/13 = 0.004. Correlations which pass this correction are in bold. Correlations which approach significance are shaded only. 
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Table A4: Correlation matrix of performance on specific and general executive control tasks for participants with Aphasia 

      

WCST 
Categories 

WCST 
Conceptual 
Responses 

Corsi 
Forwards 

Corsi 
Backwards 

Spoken 
Forwards 

Spoken 
Backwards 

Stroop Verbal   Spearman's rho -0.184 -0.2 0.318 -0.148 0.239 0.458 

    p-value 0.611 0.584 0.371 0.683 0.506 0.184 

Stroop Low Verbal Spearman's rho -0.405 -0.273 -0.175 -0.488 -0.42 -0.28 

    p-value 0.246 0.448 0.63 0.153 0.227 0.434 

Flanker Verbal Spearman's rho 0.086 0.394 0.168 -0.179 -0.278 -0.458 

    p-value 0.813 0.263 0.642 0.621 0.437 0.184 

Flanker Low Verbal Spearman's rho -0.35 -0.188 -0.467 -0.617 0.084 -0.21 

    p-value 0.322 0.608 0.173 0.057 0.817 0.561 

Mix Cost Verbal Spearman's rho 0.049 -0.273 0.056 0.445 0.149 0.299 

    p-value 0.893 0.448 0.878 0.198 0.682 0.402 

Mix Cost Low Verbal Spearman's rho 0.061 -0.188 0.28 0.549 0.239 0.394 

    p-value 0.866 0.608 0.432 0.1 0.506 0.26 

Switch Cost Verbal Spearman's rho -0.178 -0.345 0.062 -0.161 -0.614 -0.432 

    p-value 0.623 0.331 0.864 0.658 0.059 0.212 
Switch Cost Low 
Verbal   Spearman's rho 0.031 -0.139 0.143 0.469 0.226 0.242 

    p-value 0.933 0.707 0.693 0.171 0.53 0.501 

1-Back Digits   Spearman's rho 0.368 0.055 0.187 0.716 -0.304 -0.203 

    p-value 0.295 0.892 0.605 0.02 0.393 0.573 

2-Back Digits   Spearman's rho 0.27 0.285 -0.28 0.333 -0.394 -0.242 

    p-value 0.451 0.427 0.432 0.347 0.259 0.501 

1-Back Fruit   Spearman's rho 0.658 0.292 0.075 0.653 -0.227 -0.019 

    p-value 0.038 0.413 0.837 0.041 0.528 0.958 

2-Back Fruit   Spearman's rho 0.606 0.237 0.203 0.756 0.091 0.23 

    p-value 0.063 0.51 0.573 0.011 0.803 0.524 
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Table A4 continued 
WCST 

Categories 

WCST 
Conceptual 
Responses 

Corsi 
Forwards 

Corsi 
Backwards 

Spoken 
Forwards 

Spoken 
Backwards 

         

1-Back Spatial   Spearman's rho 0.606 0.237 0.203 0.756 0.091 0.23 

    p-value 0.063 0.51 0.573 0.011 0.803 0.524 

2-Back Spatial   Spearman's rho 0.804 0.685 0.187 0.648 0.239 0.267 

    p-value 0.005 0.035 0.605 0.043 0.506 0.456 

WCST Categories   Spearman's rho  — 0.755 0.101 0.519 -0.039 0.402 

    p-value  — 0.012 0.781 0.124 0.914 0.249 
WCST Conceptual 
Responses Spearman's rho    — -0.037 0.241 -0.058 0.159 

    p-value    — 0.918 0.503 0.873 0.661 

Corsi Forwards   Spearman's rho      — 0.467 -0.126 -0.059 

    p-value      — 0.174 0.728 0.872 

Corsi Backwards   Spearman's rho        — 0.151 0.243 

    p-value        — 0.676 0.499 

Spoken Forwards   Spearman's rho          — 0.556 

    p-value          — 0.095 

      

Correction for multiple comparisons: These correlations were completed post-hoc following reviewer comments on the manuscript. For that 

reason, a correction for multiple comparisons is applied. Each general measure is correlated against 19 other measures, giving a Bonferroni 

corrected p-value of 0.05/19 = 0.003. Correlations which pass this correction are shaded and in bold. Correlations that approach significance are 

shaded only. 

      

 

 

  

 


