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Abstract  

The potential effects of bilingualism on executive control (EC) have been heavily debated. One 

possible source of discrepancy in the evidence may be that bilingualism tends to be treated as 

a monolithic category distinct from monolingualism. We address this possibility by examining 

the effects of different bilingual language experiences on brain activity related to EC 

performance. Participants were scanned (fMRI) while they performed a Flanker task. 

Behavioral data showed robust Flanker effects, not modulated by language experiences across 

participants. However, differences in duration of bilingual experience and extent of active 

language use predicted activation in distinct brain regions indicating differences in neural 

recruitment across conditions. This approach highlights the need to consider specific bilingual 

language experiences in assessing neurocognitive effects. It further underscores the utility and 

complementarity of neuroimaging evidence in this general line of research, contributing to a 

deeper understanding of the variability reported in the literature. 
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1. Introduction 

The effect of bilingualism on domain-general cognition, particularly executive control 

(EC) has been the focus of significant debate in recent years (Antoniou, 2019; Bialystok, 2017; 

Donnelly, Brooks, & Homer, 2015; Lehtonen et al., 2018; Paap, Johnson, & Sawi, 2015; 

Valian, 2015). While several studies have provided evidence that bilingualism has a positive 

effect on various aspects of EC, including suppression of interfering information, cognitive 

cost of task switching, and use of facilitatory information in performing a task (Hernández, 

Costa, Fuentes, Vivas, & Sebastián-Gallés, 2010; Veroude, Norris, Shumskaya, Gullberg, & 

Indefrey, 2010; Zhou & Krott, 2018), others find restricted effects of bilingualism (Costa, 

Hernández, Costa-Faidella, & Sebastián-Gallés, 2009; Hernández, Martin, Barceló, & Costa, 

2013) or none at all (Antón et al., 2014; Kirk, Fiala, Scott-Brown, & Kempe, 2014; Paap & 

Greenberg, 2013). This replication issue has led to recent claims that bilingualism has no 

meaningful effect on EC overall (Klein, 2014; Paap et al., 2015).  

Variability between studies, however, is to be expected when one considers the 

multifarious nature of the bilingual experiences of individuals and even groups of individuals  

(Bak, 2016). Failure to replicate findings is not inherently a critical problem to the extent that 

(some) systematicity can reveal what conditions modulate effects. Bilingualism is a complex 

and dynamic process which encompasses a range of experiences that may drive neurocognitive 

adaptations (Bak, 2016; Bialystok, 2016; Li, Legault, & Litcofsky, 2014; Luk & Bialystok, 

2013), however investigating how neurocognitive effects correlate with individual language 

experiences remains understudied. We confront this challenge in the present paper, seeking to 

identify specific language experiences within bilingualism that contribute to domain-general 

neurocognitive adaptations and assess how and why these adaptations manifest differentially. 

Importantly, the study focuses on specific aspects of bilingual experience that differ across 

individuals; no monolinguals are included. Given the potential for unpacking the basis for 

variability of cognitive adaptations across studies, the present approach can have significant 

impact for the field.  

Given overlap in the networks that serve executive and language control, increased 

demands on the language control system in bilingualism have been argued to underlie the 

reported effects in brain structures and networks associated with domain-general EC 

(Anderson, Chung-Fat-Yim, Bellana, Luk, & Bialystok, 2018; De Baene, Duyck, Brass, & 

Carreiras, 2015; Garbin et al., 2010). Crucially, however, bilingualism-induced neurocognitive 

adaptations are often reported in the absence of commensurate task-performance effects. This 

suggests that monolinguals and bilinguals reach the same performance levels on EC tasks but 

do so by recruiting different underlying networks (Abutalebi et al., 2012; Ansaldo, Ghazi-Saidi, 

& Adrover-Roig, 2015; Bialystok et al., 2005; Costumero, Rodríguez-Pujadas, Fuentes-

Claramonte, & Ávila, 2015). These language group differences in neural recruitment during 

EC tasks typically manifest in one of two ways. The first is a different spatial distribution of 

activations for the two language groups (Ansaldo et al., 2015; Bialystok et al., 2005; Costumero 

et al., 2015; Luk, Anderson, Craik, Grady, & Bialystok, 2010), indicating bilingual language 

control modulates the cognitive resources needed to handle the task demands. The second 

difference is decreased activation for bilinguals in the same regions used by monolinguals  

(Abutalebi et al., 2012), indicating decreased resources required for equivalent task 

performance.  

These observations raise an important issue: most of the controversy in the literature on 

bilingual effects on cognition has arisen from behavioral studies utilizing binary comparisons 
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of monolinguals and bilinguals (Bak, 2016; Surrain & Luk, 2017). However, given the 

significant variation in quantity and quality of relevant experiences at the individual level, a 

binary approach collapses too much. A different approach, one that seeks to understand the 

relative contribution of distinct language experience to outcomes, is worth pursuing. The 

present study does just that by focusing on how bilingualism itself is defined for research 

purposes. Specifically, we endeavor to test the idea that bilingual effects on mind and brain are 

potentially conditioned, if not attenuated, by experiential factors related to the context of 

language exposure and opportunities for meaningful language use (DeLuca, Rothman, 

Bialystok, & Pliatsikas, 2019; Gullifer et al., 2018; Luo et al., 2019; Nichols & Joanisse, 2016). 

General frameworks have been proposed to explain the nature of the neurocognitive 

accommodation to language experiences, dealing with the notion of changing brain network 

adaptations to accomplish the same behavioral task (Hernandez et al., 2019; Hernandez, Li, & 

MacWhinney, 2005; Hernandez & Li, 2007) and how these might manifest across the lifespan 

(Grant, Dennis, & Li, 2014). As a key example of this, the neuroemergentist perspective argues 

for the repurposing of brain regions and networks to most effectively and efficiently handle the 

cognitive demands imposed by bilingual language use (Hernandez, Claussenius-Kalman, 

Ronderos, & Vaughn, 2018). 

Two models have been proposed which further this argument, by making more concrete 

predictions regarding the directionality and nature of these neurological effects. The Adaptive 

Control Hypothesis (ACH) (Abutalebi & Green, 2016; Calabria, Costa, Green, & Abutalebi, 

2018; Green & Abutalebi, 2013) argues that the communicative context (single-language, dual-

language, or dense code-switching) contributes to the recruitment of specific networks to 

handle language control demands imposed in that context. Situations of dense code switching, 

for example, where all languages one speaks are freely used, confer demands on the left inferior 

frontal gyrus (IFG) and cerebellum. A dual-language context in which all languages are 

available but only one is used at a given time imposes more control demands to select the 

correct language, necessitating a larger control network including the bilateral IFG, anterior 

cingulate cortex (ACC), thalamus, basal ganglia, cerebellum, and inferior parietal lobule. A 

single-language context, in which only one language is available, necessitates only selection 

and maintenance of the target language, placing demands on frontal control regions, 

specifically the left IFG. Finally, increased or continued engagement with one or more of these 

language use contexts will necessitate further engagement from the neural circuits required to 

handle them, leading to increased neural and cognitive adaptations.  

A complementary approach is presented in the Bilingual Anterior to Posterior and 

Subcortical Shift (BAPSS) framework (Grundy, Anderson, & Bialystok, 2017). On that view, 

reliance on certain brain regions for control demands is modulated with continued second 

language (L2) exposure. Specifically, this reliance shifts from frontal regions involved in 

cognitive control, such as the regions within the dorsolateral prefrontal cortex (DLPFC) and 

ACC, to subcortical and posterior regions (Grant et al., 2014), such as the basal ganglia and 

occipital lobes, commensurate with increased efficiency and automation of bilingual language 

control.  

The majority of existing evidence for the above models comes from research using 

between-group comparisons (monolingual/bilingual). Nonetheless, a few studies have directly 

examined potential neurocognitive effects of intensity and duration of bilingual language use, 

especially with respect to executive control, which is at the core of models such as the ACH 

and the BAPPS (Gullifer et al., 2018; Nichols & Joanisse, 2016; Yamasaki, Stocco, & Prat, 
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2018). For example, in a recent study Gullifer and colleagues scanned bilingual subjects (fMRI) 

at rest and performed a seed-based analysis focusing on regions described by the ACH (Gullifer 

et al., 2018). The authors utilized a measure of social diversity of language use (or language 

entropy) and reported that greater language entropy was associated with increased connectivity 

between the ACC and the putamen, regions with a prominent role in language control, as well 

as increased proactive control on an AX-Continuous Performance task (AX-CPT). Similarly, 

in a whole-brain resting state analysis, DeLuca et al. (2019) reported that earlier L2 AoA 

correlated with functional connectivity within the visual network, a finding that the authors 

interpreted as indicative of more efficient grapheme-to-phoneme mapping in L2 as a result of 

earlier L2 acquisition. While the results from these studies are encouraging, more research is 

needed regarding the specific effects of language experience on how the brain is recruited to 

handle EC demands.  

 Herein, we used fMRI to examine the impact of specific experience-based factors 

(EBFs) of bilinguals on several aspects of EC and its neural correlates. The participants resided 

in the UK where their L2, English, is the dominant language. Effects of specific language 

experiences on performance (accuracy and RTs) and neural recruitment were assessed in the 

MRI scanner while participants performed a Flanker task  (Luk et al., 2010). This version of 

the flanker task included components aimed at assessing various aspects of EC claimed to be 

affected by bilingualism. These include the gating of non-target information (interference 

suppression) (Bunge, Dudukovic, Thomason, Vaidya, & Gabrieli, 2002), the general cognitive 

load associated with switching between tasks (mixing cost) (Rubin & Meiran, 2005), and the 

use of information that assists in goal directed activity (facilitation) (Hedden & Gabrieli, 2010). 

Although facilitation is not as often studied as interference suppression or mixing cost, previous 

research has reported effects of bilingualism on facilitation both at the behavioral (Coderre, 

van Heuven, & Conklin, 2013) and neural (Luk et al., 2010) levels. The effects of bilingualism 

on facilitation are thought to stem from the recognition and use of contextual cues in 

conversation in order to facilitate more efficient language control. Facilitation is one of the 

cognitive processes defined within the ACH (salient cue detection) (Green & Abutalebi, 2013), 

and is, therefore, highly relevant to our investigation. The results will help us understand the 

effects of different bilingual experiences on the brain and provide arguments for the inclusion 

of EBFs in similar investigations. Because bilingualism is treated as a spectrum of experiences, 

the present approach will lead to an elaboration of theoretical proposals on bilingualism-

induced adaptation with findings that could not emerge from a traditional 

bilingual/monolingual dichotomy. 

 

1.1 The present study  

The purpose was to investigate the role of specific EBFs in modulating neural 

recruitment for various EC demands. Following from a recent study (Deluca et al., 2019), we 

reduced our EBFs to two general domains: duration and extent of bilingual language use. 

Duration of L2 use was assessed with two variables: L2 age of acquisition (AoA), that is the 

absolute length of exposure to two languages, and the length of L2 immersion, that is the length 

of bilingual language use in settings where exposure to, and use of, the L2 is more frequent and 

robust (Linck, Kroll, & Sunderman, 2009). These factors allow for an examination of how 

prolonged bilingual language control demands affect domain-general EC. Extent of L2 use was 

also assessed using two variables. These were weighted factor scores derived from the 

Language and Social Background Questionnaire (LSBQ) (Anderson, Mak, Keyvani Chahi, & 
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Bialystok, 2018) which detail (a) extent of L2 engagement in home settings and (b) extent of 

L2 use in broader social/community settings. These allow for examination of whether 

recruitment patterns for EC are reinforced based on the specific context of L2 use. Although 

both measures potentially reflect a dual language context, L2 home may more specifically 

relate to this context. Lower scores on this scale would reflect engagement primarily with the 

L1 at home (e.g. partner, family), making broader social contexts a (potentially) L2 domain. 

Higher scores in L2 use in social settings, conversely, might indicate a dense code-switching 

context, especially in multilingual communities where language-switching and mixing is 

common, as in the UK. However, it is difficult to isolate a context of dense code-switching in 

the absence of a dual language context, especially in our sample of people who have migrated 

to the UK. Language proficiency was not included in the models, as it may be an outcome 

measure of bilingual experience in itself (for discussion on the suitability of proficiency 

measures as predictors of neural adaptation see DeLuca, Rothman, & Pliatsikas, 2018).  

In addition to assessing the independent neurocognitive effects of duration and extent 

of bilingual language use, we also examined the combined effects of such factors. Given the 

dynamic nature of bilingual language use, adaptations to duration and extent of bilingual 

language occur together. Considering duration-based factors (e.g., L2 AoA) in isolation might 

be inadequate for meaningful cross-study comparisons precisely because they do not 

necessarily reflect the degree to which the second language was used. As such, we sought to 

combine the factors of duration and extent in a separate analysis, to assess the duration of active 

L2 use. We essentially converted the factors of AoA and Immersion into composite EBFs by 

accounting for reported active engagement with their L2 in the respective timeframes.  

Based on previous findings (Abutalebi et al., 2012; Luk et al., 2010) and theoretical 

suggestions, we predicted neural recruitment for each EC aspect tapped by the Flanker task to 

be modulated by different EBFs. Interference suppression and global switching costs would 

relate to activations in fronto-parietal regions in the EC network, such as the ACC, MFG, IFG, 

and IPL (Abutalebi et al., 2012; Ansaldo et al., 2015). For these effects, longer duration of 

bilingual language use would relate to decreased activation in the fronto-parietal control 

network and increased activation in subcortical and posterior regions, including the occipital 

lobes and cerebellum (Filippi et al., 2011; Grundy et al., 2017; Pliatsikas, Johnstone, & Marinis, 

2014), reflecting adaptations towards greater automation and/or efficiency in language control. 

Greater extent of L2 use, however, is expected to relate to increased activation in fronto-parietal 

control regions such as ACC and IPL (Abutalebi & Green, 2016; Green & Abutalebi, 2013), 

reflecting adaptations to increased control demands. Moreover, facilitation effects would 

manifest in regions such as the caudate nucleus, superior frontal gyrus, and occipital lobes (Luk 

et al., 2010). Longer duration of L2 use would result in decreased activations here or increased 

activations in posterior regions for this EC aspect, indicative of less active reliance on 

facilitative information in language contexts (Coderre et al., 2013; Grundy et al., 2017). Greater 

extent of L2 use would result in increased activations in fronto-parietal regions, reflecting 

adaptations towards language control and production demands (Abutalebi & Green, 2016). For 

our composite EBFs we predicted that the effects pertaining to duration of active bilingual 

language use will overlap with the absolute duration EBFs and relate to activation increases in 

posterior regions such as the cerebellum and occipital lobes, indicative of increased efficiency 

and automation in EC (Grundy et al., 2017). Finally, given findings from previous studies 

showing a disengagement between neural recruitment patterns and task performance 
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(Costumero et al., 2015; Luk et al., 2010), we predicted that the modulatory effects of language 

experience on neural outcomes would not have equivalents in behavioral outcomes.  

 

2. Methods 

 

2.1 Participants 

Sixty-five bilingual adults (49 females, mage: 31.7yrs, SD: 7.24, range: 18-52) 

participated in the study. Inclusion criteria for the study included being right-handed, normal 

or corrected-to-normal visual acuity, and having no speech or language disorders, including 

dyslexia. All provided written informed consent and confirmed no contraindication to MRI 

scanning prior to participating in the study. Participants were native speakers of a variety of 

languages and all spoke English as one of their languages (mAoA: 8.5 yrs., SD: 4.9, range 0-

22). The majority was born in other countries and moved to the UK at various ages, apart from 

three who were born in English speaking countries (UK and Ireland) to non-UK parents and 

moved to their parent’s country of origin in childhood and then to the UK later in life. All 

participants were living in the UK at the point of testing, with varying lengths of residence 

(mlength residence: 70.9 months, SD: 73.7, range 0.2-383.8). In terms of educational level, all 

participants reported holding at least a post-secondary degree or diploma apart from three who 

reported holding a high school diploma. Related to employment, all participants but one 

reported being either students in postgraduate education or professionals in a variety of sectors, 

including business, marketing, finance, health care and education. Minimal exclusion criteria 

were applied to recruit the widest possible range of linguistic experiences. 

Approximately half of the participants (n=33) reported knowledge of additional 

languages beyond their native language and English. Of these participants, there was variability 

regarding the amount of current engagement with those languages. To control for potential 

ongoing effects of L3+ (Rothman, González Alonso, & Puig-Mayenco, 2019), engagement 

with these additional languages was included as a nuisance covariate in the analyses. This was 

calculated as a percentage of engagement (on a scale from 0-1) and was based on responses to 

four questions related to reading, writing, speaking, and listening for each additional language 

and then summed across all additional languages for each participant. Across the cohort we 

observed a current level of additional language exposure of 0.13 (SD: 0.26; range: 0-1.5). 

 

2.2 Materials and Procedure 

In addition to the LSBQ (Anderson et al., 2018), participants completed the Oxford 

Quick Placement Test (QPT) (Geranpayeh, 2003) for general English proficiency and Raven’s 

Standard Progressive Matrices task (Ravens) (Raven, 1998) to control for 

intelligence/nonverbal spatial reasoning ability. Participants scored an average of 70.56% on 

the Ravens (SD: 8.38%, range 53.3%-90%) and were found to be high intermediate to high 

proficiency speakers of English via the QPT (avg. 88.4%, SD 10.8%, range: 52%-100%). The 

LSBQ documents language use in the participants’ known languages in several life stages, from 

early childhood to the present day, and in a range of settings, both home/family settings and 

broader social and community settings.  

Scores from the LSBQ were entered into a factor score calculator developed by 

Anderson and colleagues (Anderson, Mak, et al., 2018). The factor score calculator derives 

three individual factor scores and a composite factor score based on responses to questions in 

the LSBQ pertaining to language use in specific settings and time points. The data entered into 
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the calculations are numerated Likert scale scores detailing amount of L2 use, proficiency in 

each language, and frequency of use, respectively. These are standardized and summed into 

one of the three factor scores: 1) L2 use in home settings, 2) L2 use in Social/Community 

settings, 3) L1 proficiency. Additionally, there is a composite score of the three factor scores- 

labeled a “Bilingual Composite Score”. Two of these factor scores were used as variables in 

our analyses to further isolate their respective contributions to neurocognitive adaptations. As 

referenced in previous sections, L2_Social, detailed L2 exposure and use in societal and 

community settings. The other, L2_Home, detailed the extent of L2 use in home settings. For 

both scores (L2_Home and L2_Social), a higher score indicates more L2 use, whereas a lower 

score indicates more engagement with the native languagei. For these scores, a mean value of 

51.5 was observed for L2_Social (SD: 11.36, range: 10.77-74.53), and a mean score of 2.38 

for L2_Home (SD 5.25, range: -8.91-16.7).  

For each of the behavioral and imaging analyses, two models were run to evaluate the 

role of the language factors and capture individual effects of duration- and extent-based 

language use as well as their combined effects on neurocognitive adaptation. Model 1 included 

four variables that assessed independent effects of (absolute) duration and extent of L2 

exposure/use respectively. Duration of L2 use was measured via two variables: 1) L2 AoA and 

2) length of L2 immersion (months). We log transformed the variables of L2 AoA and 

Immersion for two reasons: first, the data were not normally distributed (AoA: w=0.9521, p = 

0.013; Immersion: w=0.81147, p<0.001) and second, we did not expect a linear adaptation over 

time (Kuhl et al., 2016). Extent of L2 use was assessed using the two factor scores derived 

from the LSBQ: L2_Home, and L2_Social. The four EBFs were included in the same model 

to allow us to control for their respective effects and isolate the individual neural effects of 

each type of language experience.  

Model 2 assessed effects of the duration of active engagement with the additional 

language, thus the combined effects of duration and extent of L2 use. This was specified in two 

settings: 1) the total amount of time (of one’s life) spent actively using the L2 (Active Duration) 

and 2) the length of time in immersion spent actively using the L2 (Active Immersion). Active 

Duration was determined by calculating the average percentage of English use in several 

stages, from the point the language was acquired through to the time of testing, as reported in 

the LSBQ. This percentage was multiplied by the total number of years spent using the L2. 

This resulted in a value per participant indicating the number of years spent actively using the 

L2 (English) (mlength: 10.1yrs, SD: 5.1, range: 0.96-30.08). Active Immersion was determined 

by first calculating a percentage reflecting the regular use of English, including four questions 

related to reading, writing, speaking, and listening, respectively. This value was then multiplied 

by the number of months of immersion. This procedure produced values reflecting the amount 

of time actively engaged with English in immersion settings (mlength active immersion: 

58.4mo, SD: 60.85, range: 0.1-287.9). As neither of these predictor variables was normally 

distributed (Active Duration: w=0.907, p<0.001; Active Immersion: w=0.83128, p<0.001), 

both were log-transformed. 

 

2.2.1 Flanker Task 

Participants completed a version of the Flanker task (Eriksen & Eriksen, 1974; Luk et 

al., 2010) in the MRI scanner. The task was presented with E-Prime 2.0 Professional 

(Schneider, Eschman, & Zuccolotto, 2012). Participants were instructed to respond to the 
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direction of a red target arrow, surrounded by white colored symbols (Fig. 1), presented against 

a black background. 

The task included 6 blocks of 72 trials each: three ‘mixed’, one ‘congruent’, one 

‘control’ and one ‘neutral’. The mixed blocks contained an equal number of congruent and 

incongruent trials, in which the flanking arrows pointed in the same or opposite direction as 

the target arrow. A congruent block contained only trials where the flanking arrows were in the 

same direction as the target arrow. In the neutral block, the arrow was surrounded by double-

sided arrows, so the display had the same number of items (five) as the other blocks but 

contained no conflicting or facilitating information. Finally, in the control block a single arrow 

was presented in the middle of the screen. In all blocks, the order of presentation for individual 

trials was randomized. The mixed blocks were presented in an interspersed order with the other 

blocks, such that participants never saw the same block type sequentially. Blocks were 

presented on a Latin-square design to control for any potential effects of the order of block 

presentation. Target arrow direction was randomized across all trials within each block.  

The first trial in each block began with a fixation cross, presented for 1500ms. The 

stimulus was then presented for up to 900ms. This screen was followed by a fixation cross 

which lasted for the remaining amount of time for the maximum trial length and the ITI (Fig 

1). The remaining time for the trial was calculated as the difference between the trial reaction 

time and the maximum allowed time. As the mixed blocks contained two condition types 

(congruent and incongruent), stimuli were presented with a jittered inter-stimulus interval (ISI) 

of 1500 + 500ms (minimum ISI 1000ms, maximum ISI 2000ms). The average trial length was 

2400ms, but this varied from 1900 to 2900ms. As they contained only one condition, the 

neutral, control, and congruent blocks had a consistent ITI of 1500ms.  

Breaks between blocks lasted 9 seconds during which two screens were shown. The 

first, lasting 3 seconds, gave instructions for participants to take a brief break and the second, 

lasting 6 seconds, instructed participants to get ready for the next block.  

 

2.2.2 MRI data acquisition 

 

Figure 1: Presentation order and stimulus/ITI timings for the flanker task. 
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Neuroimaging data were acquired with a 3T Siemens MAGNETOM Prisma_fit MRI 

scanner with a 32-channel Head Matrix coil and Syngo software. Whole-brain functional 

images were acquired during the Flanker task (735 volumes, FOV: 192 x 192, 68 transversal 

slices, 2.0mm slice thickness, voxel size 2.1x2.1x2.0mm, TR= 1500ms, TE= 30ms, flip angle 

66°). A high-resolution anatomical scan using a MPRAGE sequence was carried out for 

purposes of registration (256 sagittal slices, 0.7 mm slice thickness, in-plane resolution 250 x 

250, acquisition matrix of 246 x 256 mm, echo time (TE) = 2.41ms, repetition time (TR) = 

2400ms, inversion time = 1140ms, flip angle = 8°).  

 

2.3 fMRI data analysis 

Due to an incidental finding within their structural scan, one participant was removed 

from the final imaging analysis. Neuroimaging data were processed and analyzed using the 

FEAT pipeline in FSL (Smith et al., 2004). The structural images were pre-processed with the 

fsl_anat software pipeline (Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012). 

Functional data were motion-corrected using MCFLIRT, and slice-time corrected using 

Fourier-space time-series phase shifting. Non-brain tissue was removed using the brain 

extraction tool (BET) (Smith, 2002). Image distortion corrections were applied using field 

map-based echo-planar imaging (EPI) with PRELUDE+FUGUE (Jenkinson, 2003). The 

images were then registered to high resolution structural images using FLIRT (Jenkinson, 

Bannister, Brady, & Smith, 2002; Jenkinson & Smith, 2001). Registration from high resolution 

structural to standard space was then further refined using FNIRT nonlinear registration  

(Andersson, Jenkinson, & Smith, 2007). The images were also spatially smoothed using a 

Gaussian kernel with a Full Width and Half Maximum (FWHM) value of 4mm, and grand-

mean intensity normalization of the entire 4D dataset by a single multiplicative factor was 

applied. Highpass temporal filtering was then applied (Gaussian-weighted least-squares 

straight line fitting, with sigma=50.0s).  

The preprocessed FMRI data were first analyzed by task contrast at the subject level. 

Individual subject data were analyzed using the GLM package within FEAT (Woolrich, Ripley, 

Brady, & Smith, 2001). The task conditions (Congruent-Mixed Block, Incongruent-Mixed 

Block, Congruent, Neutral, and Control) were modelled as separate EVs. Incorrect and/or 

missing responses within the mixed blocks and breaks between blocks were modelled as 

covariates of no interest. Three task contrasts were specified to tap into specific cognitive 

demands. The first of these was the Flanker effect, which was run to assess neural correlates 

of interference suppression (Luk et al., 2010). This was assessed by contrasting incongruent 

against congruent trials and vice versa (incongruent>congruent and incongruent<congruent) 

within the mixed blocks. We also assessed neural correlates for the facilitation effect by 

contrasting the average activation for the congruent block against the average activation for the 

neutral block (congruent>neutral and congruent<neutral) (Luk et al., 2010). Finally, we 

examined global switching cost or mixing cost (Kray & Lindenberger, 2000; Rubin & Meiran, 

2005) which was assessed by contrasting the congruent trials from the Mixed blocks with the 

average activation across the Congruent block (Congruent mixed>Congruent and Congruent 

mixed < Congruent). The resulting activation clusters (Gaussianized t-statistic images) for each 

task contrast were thresholded at Z>2.3 and a significance threshold of p=0.05.  

Cross-subject analyses were carried out with mixed effects models using the FMRIB's 

Local Analysis of Mixed Effects (FLAME) pipeline in FSL (Woolrich, 2008; Woolrich, 

Behrens, Beckmann, Jenkinson, & Smith, 2004). Contrast Parameter Estimates (COPEs) for 
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all the task contrasts (Flanker effect, mixing cost, and facilitation effect) from the subject-level 

analyses were entered into the models. The two cross-subject models specified group mean, 

age, sex, additional language use, and Ravens score as covariates of no interest, and then the 

EBFs as variables of interest. Model 1 (Duration and Extent) included AoA, Immersion, 

L2_Home, and L2_Social, Model 2 (Active Engagement) included Active Duration and Active 

Immersion. The same thresholding and correction were applied for the group level analyses as 

the subject-level analyses: the resulting statistic images were thresholded using a cluster-based 

threshold of Z>2.3 and a corrected cluster significance threshold of p=0.05.  

 

3. Results 

 

3.1 Behavioral 

Accuracy rates were high across all conditions (Table 1), showing that our participants 

had no difficulty with the task. As such, we focused on the reaction time (RT) data. These data 

were submitted to a linear mixed-effect regression analysis using the lme4 package (Bates, 

Mächler, Bolker, & Walker, 2015) in R (R Core Team, 2014). Incorrect/missing trials and trials 

with RTs less than 200ms were excluded from the analysis. This resulted in a removal of 2.2% 

of the trials overall. Comparisons for model fit were assessed via an analysis of variance using 

the anova() function within the L (Kuznetsova, Brockhoff, & Christensen, 2017).  

 

Table 1: Performance on the flanker task (accuracy and reaction time) globally and by condition. 

  Whole 

task 

Congruent 

(Mixed 

block) 

Incongruent 

(Mixed 

block) 

Neutral Congruent Control 

Accuracy (%) Mean 97.84 98.81 95.43 98.00 98.7 99.00 

 SD 1.44 2.07 2.89 2.24 1.64 1.30 

RT (ms) Mean 456 460 538 474 424 384 

 SD 40 43 43 43 48 43 

 

The three task contrasts of interest—i.e., facilitation, mixing cost, and Flanker effect— 

were assessed separately. For the Flanker effect, Congruent (Mixed) condition was set as the 

reference level and was contrasted with Incongruent (Mixed) condition. For mixing cost, the 

Congruent block was set as the reference level and was contrasted against the Congruent-Mixed 

block. Finally, for facilitation effect, Neutral was set as the reference level and contrasted 

against the Congruent block. For all contrasts, a base model was first specified including fixed 

effects of condition and Ravens scores. Random intercepts of age, sex, and L3+ exposure were 

also added to the base model; however, they did not improve model fit and thus were not 

retained. The model failed to converge with addition of random slopes for L3+ exposure and 

thus these were not included. Random slopes for participants were not estimated for the models, 

as we wished to capture individual difference measures in fixed effects. Ravens scores 

significantly predicted RTs across all task contrasts, and thus were retained in the base model. 

The final base model thus contained fixed effects of condition and Ravens scores, and random 

intercepts of subjects.  

For each task contrast, condition was found to significantly contribute to model fit 

(Flanker effect- F(1,63)=1617.67 p<.0001; Mixing cost- F(1,63)=105.28, p<.0001; Facilitation 

effect- F(1,63)=125.88, p<.0001). Model summaries showed that the incongruent condition 

was slower than congruent within the Mixed block (est=78.07, SE=1.941, p<.0001), the 
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congruent (Mixed) block was slower than the Congruent block (est=35.78, SE=3.4872, 

p<.0001), and Congruent block was faster than Neutral block (est=-49.64, SE=4.245, p<.0001). 

This confirmed that the expected task effects were present for all contrasts.  

To assess if the EBFs modulated the above RT differences, two follow-up models were 

run for each task contrast. These models specified interaction terms between the EBFs and 

condition. The same EBFs were used for the RT analyses as for the neuroimaging analyses. 

Model 1 (duration and extent) included EBFs of AoA, Immersion, L2_Home, & L2_Social; 

Model 2 (Active engagement) included Active Duration and Active Immersion). The follow-

up models did not improve model fit over the base model, indicating no modulatory effect of 

language experience on task performance.  

 

3.2 Neuroimaging Results 

Both Models 1 (Duration and Extent) and 2 (Active Engagement) showed modulations 

in brain activation across contrasts, which differed by EBF. Results are presented by model 

and planned task contrast, respectively. All clusters reported herein were corrected for multiple 

comparisons. 

 

3.2.1 Model 1: Duration and Extent 

 

Interference suppression (Flanker effect) 

 All four EBFs were related to distinct activation patterns (Table 2). AoA negatively 

correlated with activations across a range of regions, most in the right hemisphere, including 

the supramarginal/angular gyrus, middle frontal gyrus (MFG), and inferior frontal gyrus (IFG), 

and some in the left hemisphere including the cerebellum (Fig 2). Immersion also negatively 

correlated with activations across several regions including within the cerebellum, right inferior 

parietal lobule (IPL), thalamus, precentral gyrus, bilateral MFG, and thalamus (Table 2; Fig 2). 

L2_Home negatively correlated with activations in the cerebellum, MTG, and SMG. L2_Social 

positively correlated with activations across several regions including the cerebellum, anterior 

and posterior cingulate cortex (ACC/PCC), IPL and MFG (Table 2; Fig 2). 

Table 2: Results for the Flanker effect for Model 1. Coordinates in MNI-space. 

EBF Hemisphere Region Direction Voxels Z score X Y Z 

AoA L Cerebellum- IX - 542 3.86*** -4 -46 -46 

  ITG - 331 3.4** -60 -58 -16 

  Frontal pole - 161 3.3* -24 42 28 

  Hippocampus - 444 4.09*** -34 -34 2 

 R Occipital pole - 493 3.82*** 4 -88 18 

  SFG - 1093 3.87*** 6 40 54 

  SMG - 991 4.13*** 48 -38 8 

  IPL - 553 3.74*** 54 -46 56 

  Postcentral - 245 3.35* 6 -36 78 

  MFG - 232 3.74* 44 28 32 

  IFG - 224 3.77* 58 24 12 

  LOC - 218 3.85* 40 -86 10 

  Precentral - 182 3.37* 62 -2 26 

  Putamen - 165 3.55* 26 2 -10 

  ACC/PCC - 408 4.01*** 0 -16 38 
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Immersion L Cerebellum-crus I - 1578 4.02*** -16 -84 -28 

  IPL - 605 3.77*** -50 -52 34 

  LOC - 255 3.79* -34 -70 44 

  Precentral - 248 3.84* -56 -6 24 

  Opercular Cortex - 237 3.62* -60 -14 12 

  MFG - 328 3.72** -34 8 60 

  MFG - 213 3.66* -24 36 30 

 R Cerebellum- crus II - 336 4.09** 44 -48 -44 

  Thalamus - 160 4.05* 8 -12 16 

  Precuneus - 554 3.98*** 8 -64 -32 

  MFG - 2840 4.9*** 50 16 40 

  IPL - 2651 4.52*** 52 -50 40 

  Precuneus - 1635 4.02*** 12 -66 28 

  Frontal pole - 402 3.64*** 26 56 2 

L2_Home L Cerebellum-VI - 167 3.35* -12 -62 -26 

 R MTG - 299 3.6** 54 -38 0 

  IPL - 236 3.7* 46 -44 58 

L2_Social L Precentral + 1207 3.73*** -56 -26 50 

  PCC + 827 4.14*** -4 -28 38 

  Cerebellum- crus II + 230 3.4* -34 -56 -44 

  Postcentral + 176 3.48* -46 -36 58 

  Frontal pole + 160 3.62* -42 52 2 

 R SMG + 5894 5.08*** 48 -40 8 

  MFG + 1438 4.55*** 46 32 34 

  ACC + 1278 4.26*** 4 26 18 

  IPL + 838 4.17*** 50 -42 50 

  Cerebellum- 

V/Brain stem 

+ 230 3.8* 6 -22 -30 

* p<.05,  **p<.001,  ***p<.0001; all p values corrected    
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Interim Summary- Interference suppression 

AoA negatively correlated with activation in a range of regions implicated in EC. 

Recall, though, that this means that longer duration of L2 use relates to greater activation. 

Length of immersion and extent of L2 use at home both negatively correlated with activations 

in several regions involved in EC processes. Finally, L2_Social positively correlated with 

activation in a network of regions implicated in EC. 

 

Mixing Cost 

AoA negatively correlated with activations in the left lingual gyrus (332 voxels; Z score 

3.3; -12, -52, 2). Immersion negatively correlated with activations in the left postcentral gyrus 

(633 voxels; Z score: 4.71; -52 -28, 60). Finally, L2_Home negatively correlated with 

activations in the precuneus (316 voxels; Z score: 3.67; -12, -70, 36) and left PCC (201 voxels; 

Z score 4.29; -6, -26, 30) (Fig. 3). L2_Social was not found to significantly correlate with any 

activations for mixing cost. 

 
Figure 2: Activations related to the Flanker effect. (above) Negative correlations with AoA 

(violet) and Immersion (blue). (below) Activations negatively correlated with L2_Home (red) 

and positively correlated with L2_Social (green). 
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Interim Summary- Mixing cost 

 For mixing cost, longer duration of L2 use (earlier AoA) related to increased reliance 

on posterior regions. Longer duration in immersion correlated with decreased reliance on 

superior parietal regions. More L2 use at home was related to less activation in posterior 

regions.  

 

Facilitation Effect 

 AoA positively correlated with activations in the right STG and precentral gyrus. 

Immersion positively correlated with activations in the left MTG and SPL (Table 3, Fig 4). 

Neither L2_Home nor L2_Social were found to correlate with activations for this effect. 

Table 3: Results for the facilitation effect for Model 1. 

EBF Hemisphere Region Direction Voxels Z score X Y Z 

AoA R STG + 389 4.09** 64 -4 -4 

  Precentral 

Gyrus 

+ 263 3.69* 22 -10 62 

Immersion L MTG + 237 3.93* -50 -46 8 

  SPL + 216 3.68* -28 -58 70 

* p<.05, **p<.001, ***p<.0001;  all p values corrected; MTG: middle temporal gyrus, STG: 

superior temporal gyrus, SPL: superior parietal lobule 

 

 

 

Figure 3: Activations negatively correlated with AoA (violet), immersion (blue), and 

L2_Home (red) for mixing cost. 
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Interim Summary- Facilitation Effect 

 Only duration-based EBFs correlated with neural activation. Longer duration of L2 use 

(earlier AoA) was related to a decrease in recruitment of right hemisphere regions, whereas 

longer immersion correlated with increased recruitment within left hemisphere 

temporal/parietal regions. 

 

3.2.2 Model 2: Active Engagement 

 

Interference suppression (Flanker effect) 

 Active Duration positively correlated with activations in the left cerebellum (280 

voxels; z score 3.67; -28, -82, -36). Active Immersion negatively correlated with activations in 

the right IPL (814 voxels; z score 3.93, p<.001; 58, -48, 30) and precuneus (354 voxels; z score 

3.37; p<.001; 8, -76, 38) (Fig. 5). 

 

Mixing Cost 

Active Immersion negatively correlated with activations in the left postcentral gyrus (272 

voxels; -42, -22, 58; Z score: 4.01). Active Duration did not significantly correlate with any 

activations for this effect. 

 

Figure 4: Activations positively correlated with immersion (blue) and AoA (violet) for 

the facilitation effect. 

 

Figure 5: Activations positively correlated with Active Duration (yellow), and 

negatively correlated with Active Immersion (light blue) for the flanker effect. 
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Facilitation Effect  

Neither EBF significantly predicted activations for this effect.  

 

Interim Summary- Active Engagement 

Both EBFs related to active engagement displayed activation patterns similar to the 

duration-based counterparts (AoA and Immersion). However, not all of the regions implicated 

with the duration-based EBFs were found to correlate with the Active engagement EBFs. 

 

4. Discussion  

The present study examined neurocognitive effects of experience-based factors (EBFs) 

within bilingualism, across several executive control processes. The results contribute to the 

contemporary debate regarding the extent to which bilingualism may be associated with 

adaptations to EC. Given its specific purpose, this study did not include monolingual controls. 

Nonetheless, the results have implications for the current controversy about whether 

bilingualism affects these processes at all, by specifically pointing to the importance of 

understanding potential neurocognitive adaptations related to different aspects of bilingual 

language use.  

Two findings from the present study are key. First, behavioral performance on the 

Flanker task was not modulated by participants’ language experiences. Second, and in contrast 

to the behavioral results, the same language experiences did affect patterns of neural 

recruitment which also differed by each task contrast. Crucially, these neural effects were 

calibrated to the bilingual language experiences of the participants.  

Although participants showed the expected behavioral task effects for all measured 

contrasts (interference suppression, facilitation, and mixing cost), these were not modulated by 

their language experiences. This pattern supports two interrelated arguments. First, test-retest 

reliability of EC tasks of this type, and use of RT difference scores generally, are known to be 

low (Chan, Shum, Toulopoulou, & Chen, 2008; Draheim, Mashburn, Martin, & Engle, 2019). 

However, data from them are often used to make claims about certain neurocognitive 

differences in absolute terms, including, but not limited to, in the literature on bilingual 

cognition. The pattern of results in the present study provides a crucial example to this 

cautionary tale, precisely because they show that purely behavioral measures can have 

insufficient granularity to capture patterns in neurocognitive processing. Second, if there are 

behavioral constraints related to task granularity, for example in the motor responses involved 

in button pressing, or in the interaction between the motor and the EC systems, they do not 

necessarily apply to underlying neural recruitment. The disengagement of behavioral from 

neuroimaging results seen in the present study supports previous research showing differences 

in brain activity but not in task performance across adults with different language experiences 

(i.e. bilinguals vs. monolinguals) on executive function tasks (Ansaldo et al., 2015; Costumero 

et al., 2015; Luk et al., 2010). The present data strongly suggest a utility in corroborating what 

is found behaviorally with more granular (neuroimaging) modalities in future research, to more 

fully ascertain the nature of neurocognitive adaptations. 

Despite not being reflected in RTs, EBFs modulated neural recruitment patterns across 

each EC aspect. Furthermore, these patterns overlapped with previous work showing 

differences in brain activation between bilinguals and monolinguals in studies using similar 

tasks (Abutalebi et al., 2012; Ansaldo et al., 2015; Luk et al., 2010). That is, even in the absence 
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of a monolingual control group, the previously reported bilingualism-induced adaptations are 

documented within a bilingual group and are modulated by both the extent and duration of 

bilingual language experience. The present results fit the neuroemergentist framework in terms 

of differing regions implicated to accomplish the same task (e.g. Hernandez et al., 2019). 

Furthermore, this pattern of results fits with aspects of the BAPSS and ACH. As predicted 

under the BAPSS framework (Grundy et al., 2017), duration-based EBFs were shown to relate 

to neural recruitment patterns indicative of increased efficiency in handling EC demands. 

Similarly, consistent with aspects of the ACH (Abutalebi & Green, 2016), extent-based EBFs 

predicted neural recruitment patterns suggesting adaptation towards changing language control 

demands. Below we discuss the effects reported for each of the two types of EBFs. 

EBFs related to duration of L2 use predicted distinct recruitment patterns for each 

aspect of EC examined. For interference suppression and mixing cost, length of immersion 

negatively correlated to degree of recruitment of several regions which have been implicated 

in selection and conflict monitoring processes (Abutalebi et al., 2012; Abutalebi & Green, 

2016; Ansaldo et al., 2015), both of which are in line with our predictions (Table 4). These 

results likely reflect increased efficiency of language control, and thus EC, with prolonged 

intensive L2 exposure (Grundy et al., 2017; Linck et al., 2009). Longer overall duration of 

bilingual language use (earlier AoA) was related to increased recruitment of several regions 

involved in interference suppression and conflict monitoring including the IFG, ACC, and IPL 

(Abutalebi et al., 2012; Abutalebi & Green, 2016; Ansaldo et al., 2015). This finding did not 

follow our predictions, as we would have predicted more activation in subcortical and posterior 

regions, and less activation in fronto parietal regions with prolonged L2 exposure. Note, 

though, that as the duration-based factors were log-transformed, this pattern may reflect a 

plateau in the degree of recruitment of these regions for EC demands with prolonged bilingual 

experience. More evidence is required to assess the validity of that interpretation.  

Regarding mixing cost, longer duration of L2 use was related to increased recruitment 

of posterior regions that have previously been implicated in switching demands (Anderson, 

Chung-Fat-Yim, et al., 2018). Longer immersion correlated to decreased activations in parietal 

regions which have previously been implicated in selection processes (Seo, Stocco, & Prat, 

2018). Both patterns of results match our predictions (Table 4) and are in line with aspects of 

the BAPSS framework in which the shift in recruitment patterns would indicate improved 

efficiency in handling global switching demands with prolonged bilingual experience (Grundy 

et al., 2017).  

Regarding the facilitation effect, the decreased right hemisphere activations, related to 

earlier AoA, may indicate decreased engagement with facilitation with prolonged bilingual 

language experience (Coderre et al., 2013). The increased left hemisphere activations for 

immersion may indicate an effect of facilitation in linguistic contexts from intensive L2 use in 

the immersive environment (Coderre et al., 2013; Costa, Caramazza, & Sebastián-Gallés, 

2000). 

EBFs related to extent of L2 use also predicted distinct activation patterns for 

interference suppression and mixing cost. Several of the regions which positively correlated 

with L2 use in social settings for interference suppression (including the ACC, MFG, and IPL) 

have been implicated in language and domain-general control processes (Abutalebi & Green, 

2016; Ansaldo et al., 2015). These correlations with activations in fronto-parietal regions are 

in line with our predictions (Table 4). Interpreted within the ACH, these findings indicate 

adaptation towards increased language control demands of specific communicative contexts, 
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which in turn affect domain-general EC (Abutalebi & Green, 2016). The negative correlations 

found for L2 use in home settings for interference suppression and mixing cost did not match 

our specific predictions of greater activation in frontal regions involved in EC. However, as 

these correlations occurred in predominantly posterior and parietal regions (e.g. PCC, 

cerebellum, and IPL), this may indicate a transition in reliance from posterior regions (possibly 

towards frontal regions), to accommodate changing language control and switching demands 

at home.  

Finally, the duration of active L2 use also predicted activation patterns, indicating 

increased neural efficiency and automation in handling non-linguistic cognitive control 

demands, as interpreted within the BAPSS framework (Grundy et al., 2017). These effects 

patterned with those derived from the absolute duration-based factors, albeit with a lesser 

spatial extent. The pattern of results for both EBFs is in line with our predictions of overlapping 

with duration-based variables, specifically in posterior regions such as the cerebellum (Table 

4). Comparing length of immersion and its composite corollary (Active Immersion), the 

composite version overlapped with immersion, but was restricted to specific regions related to 

selection and control processes (Abutalebi & Green, 2016; Rossi, Newman, Kroll, & Diaz, 

2018). The overlap is not surprising as these factors were highly correlated. The pattern of 

results for the composite EBF likely also indicate decreased cognitive demands for interference 

suppression and mixing cost. Similarly, when comparing AoA and its composite corollary 

(Active Duration), only activations in the cerebellum were found to correlate with interference 

suppression for the composite, also indicating increased automation (Filippi et al., 2011; 

Pliatsikas et al., 2014). A potential explanation for the differences between these EBFs is that 

regions correlated with the composite EBFs are where duration and extent of bilingual language 

use converge with respect to effects on domain-general EC. These results support the argument 

that the neurocognitive effects of absolute duration-based factors are modulated by what 

happens experientially within these timeframes.  

Table 4: Summary of study predictions and findings. 

Task Effect EBFs Prediction Support for Predictions 

Interference 

Suppression 

 

Duration  Decreased activations in 

fronto-parietal regions, & 

increased activations in 

posterior regions  

Supported- decreased activation 

for Immersion, increased 

activation for AoA across several 

regions 

 Extent  Increased activation in fronto-

parietal control regions  

Partial support- increased 

activation for L2 use in social 

settings but decreased activation 

for home settings. 

 Active 

Engagement  

Overlap with Duration EBFs, 

specifically activation 

increases in posterior regions 

Supported- overlapping activation 

with Duration EBFs but with 

lesser spatial extent 

Mixing Cost Duration  Decreased activations in 

fronto-parietal regions or 

increased activations in 

posterior regions  

Supported- increased activation in 

posterior regions (AoA), 

decreased in fronto-parietal 

regions (Immersion) 
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 Extent  Increased activations in 

fronto-parietal regions 

Not supported- decreased 

activation in posterior regions  

 Active 

Engagement  

Overlap with Duration EBFs Supported- overlapping activation 

with Duration, but lesser spatial 

extent 

Facilitation Duration  Increased activations in 

posterior regions, decreased in 

fronto-parietal regions.  

Not supported, immersion- 

increased activations in left 

temporal regions, AoA- decreased 

activations in right temporal 

regions 

 Extent  Increased activation in fronto-

parietal regions 

Not supported- no significant 

effects 

 Active 

Engagement  

Overlap with Duration EBFs Not supported- no significant 

effects 

EBFs: Experience-Based Factors; Duration EBFs: Age of Acquisition (AoA) & months in UK 

(Immersion), Extent EBFs: L2 use at home (L2_Home) & in social/community settings (L2_Social), 

Active Engagement EBFs: Active Duration (years actively using the L2) & Active Immersion (time 

actively using the L2 in immersion settings. Task effects were Interference suppression was defined 

as incongruent (mixed block)-congruent (mixed block), Mixing cost: Congruent (mixed block)- 

Congruent block, Facilitation: congruent block- neutral block 

Overall, our results indicate that increased duration of L2 use (measured by the proxies 

of L2 immersion and AoA) leads to more effective and efficient interference suppression 

processes, changing reliance on facilitation processes, and more efficient language switching. 

Moreover, it appears that increased L2 use in home and social contexts translates to the brain 

adapting to more effectively dealing with increased language control and mixing demands 

(Green & Abutalebi, 2013). These findings show that the continuum of experiences that 

comprise bilingualism leads to distinct, measurable neurocognitive outcomes that calibrate to 

the degree of language experience of the participants. Importantly, the EBFs examined in the 

present study are by no means an exhaustive list. Exploring other factors, such as language 

dominance (Yamasaki et al., 2018) and diversity of language use (Gullifer et al., 2018), and 

their relationships with the present ones, would better delineate the dynamic nature of bilingual 

language use and related neurocognitive adaptations. The present study provides both an 

example of how this can be done and evidence that it needs to be done moving forward. 

It is worth noting that the specificity of adaptations in neural recruitment  to individual 

EBFs reported in the present study is in line with the patterns reported for neuroanatomical 

adaptations with the same EBFs in a previous study (DeLuca et al., 2019). For example, in both 

studies the effects of immersion point towards dealing with language control with increasing 

efficiency as a consequence of longer immersion (i.e. greater opportunity and/or need to engage 

with the additional language). This manifested either as decreased recruitment of networks 

underlying conflict monitoring processes (the present study), or as renormalization of regions 

related to language control, such as the thalamus and the right caudate nucleus (DeLuca et al., 

2019) as an effect of immersion. Similarly, increased exposure to the L2 in social settings 

causes increased language control demands; these manifested as increased reliance on networks 

underlying interference suppression (this study) and expansion of the regions that underlie 

language switching, like the left caudate nucleus (DeLuca et al., 2019). These patterns highlight 
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the need for a more generalized use of EBFs as predictors of functional and structural 

adaptations and the extent to which the two interact. 

The difference in results between the absolute, duration-based EBFs (AoA and 

Immersion) and their composite corollaries also has consequences for comparisons of results 

across studies. If, for example, AoA can encompass any extent of usage—e.g. 10 years of L2 

use in a group of 20 bilinguals could comprise 20 different levels of active engagement—then 

comparing adaptations for equivalent AoA across studies could be inadvertently misleading. It 

is possible, in the context of the replication debate, that studies showing no effects have greater 

variability between the AoA and active use corollary than other studies that show effects. 

Precisely because the present study and similar ones have recently shown that degree and 

quality of the bilingual experience matters, we should consider accounting for the degree of 

experience(s) within a given timeframe. A failure to replicate results between studies would 

then lead to an evaluation of the quantity/quality of the experience(s) of the individuals in the 

two cohorts to determine if such a comparison is justified. Even if absolute measures such as 

L2 AoA or immersion were equivalent in both cases, it may be that the patterns of language 

use during that time were different.  

Bilingualism is a complex and dynamic process, comprising a range of experiences that 

contribute to distinct neurocognitive adaptations. The brain constantly adapts to be maximally 

effective at handling the cognitive load of the communicative environment. Modulations to 

that environment, specifically the language experiences it entails, will thus confer measurable 

and distinct outcomes for the mind and brain. Specific language experiences must be 

considered in more detail in future research examining the neurocognitive effects of 

bilingualism. Bilingualism is not a categorical label (Luk & Bialystok, 2013), and progress in 

understanding its impact on cognitive and brain systems will require investigating the effects 

of the spectrum of related factors that constitute this complex experience. 
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i We used the version of the LSBQ (Version 1) available at the time of testing. Anderson and colleagues used a 

slightly updated version to create their factor score calculator (Version 3+). Thus, one of the questions included 

in the score L2_social (“Language use with Friends”) could not be included the calculation of this factor score. In 

consultation with John Anderson to determine a good approximation, this question was removed from our factor 

score calculation such that the weighting automatically shifted for the remaining 19 of 20 questions.  

                                                           


