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29 Highlights:

30  Distal records show eruptions are more frequent and widespread 

31  At least 8 Changbaishan eruptions produced widespread ash over the 

32 last 86 kyrs

33  Explosive eruption of Changbaishan at ca. 42.5 ka dispersed ash >1000 

34 km
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35  4 Ulleungdo eruptions are now precisely dated using the Lake Suigetsu 

36 chronology

37  U-Ym tephra is identified in Suigetsu and dated to 40,332 – 39,816 

38 IntCal13 yrs BP

39

40 Abstract

41

42 The eruptive histories of Ulleungdo (South Korea) and Changbaishan (North 

43 Korea/China border) volcanoes are not well constrained since their proximal 

44 stratigraphies are poorly exposed or largely inaccessible. However, determining 

45 the past behaviour of these volcanoes is critical since future eruptions are likely 

46 to disperse ash over some of the world’s largest metropolitan regions. Alkaline 

47 tephra deposits erupted from both centres are routinely identified in marine 

48 cores extracted from the Sea of Japan, as well as high-resolution lacustrine 

49 records east of the volcanoes. Here, we review the distal ash occurrences 

50 derived from Ulleungdo and Changbaishan and provide new data from the Lake 

51 Suigetsu (central Honshu, Japan) sediment core, in order to provide a more 

52 complete and constrained eruption framework. The intensely-dated Lake 

53 Suigetsu archive provides one of the most comprehensive distal eruption 

54 records for both centres, despite being located ca. 500 km E of Ulleungdo and 

55 ca. 1000 km SSE of Changbaishan. The Suigetsu record is utilised to precisely 

56 date and geochemically fingerprint (using major, minor and trace element glass 

57 compositions) ash fall events that reached central Honshu. Here, we identify a 

58 new non-visible (cryptotephra) layer in the Suigetsu sediments, which reveals a 

59 previously unreported explosive event from Changbaishan at 42,750 – 42,323 

60 IntCal13 yrs BP (95.4 % confidence interval). This event is chronologically and 
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61 geochemically distinct from the B-J (Baegdusan-Japan Basin) tephra reported 

62 in the Sea of Japan (ca. 50 ka). Furthermore, we also confirm that the 

63 widespread U-Ym tephra erupted from Ulleungdo reached central Japan, and is 

64 herein dated to 40,332 – 39,816 IntCal13 yrs BP (95.4 % confidence interval). 

65 This terrestrial 14C-derived age of the U-Ym can be used to constrain the 

66 chronology of marine records containing the same marker layer. This reviewed 

67 and integrated tephrostratigraphic framework highlights the pivotal role that 

68 distal sedimentary records can play in evaluating the eruptive histories and 

69 hazard potential of Ulleungdo and Changbaishan. 

70

71 Keywords: Ulleungdo, Changbaishan; Glass geochemistry; Eruption history; 

72 Sedimentary archives; Lake Suigetsu 

73

74 1. Introduction

75

76 Intraplate volcanoes Ulleungdo (South Korea) and Changbaishan (North 

77 Korea/China border) are responsible for two of the largest Holocene eruptions 

78 (≥ Volcanic Explosivity Index (VEI) 6; Newhall and Self, 1982) in East Asia, 

79 blanketing large parts of Japan and the surrounding seas in ash (Figure 1; 

80 Machida and Arai, 2003). Fine ash from the AD 946 ‘Millennium Eruption’ (ME) 

81 (Hakozaki et al., 2017; Oppenheimer et al., 2017) of Changbaishan has also 

82 been identified ca. 9000 km from its source in northern Greenland (Sun et al., 

83 2014a), which demonstrates the enormous potential of the volcano to cause 

84 major disruption to airspace across the East Asian and Pacific region. Yet, the 

85 complete eruptive histories of Ulleungdo and Changbaishan are not well 
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86 constrained since proximal eruption deposits are poorly exposed and are 

87 largely inaccessible.

88
89 Figure 1. (a) Location of Ulleungdo (South Korea; blue triangle) and Changbaishan 
90 (North Korea/China; orange triangle) and other sources of Japanese tephras outlined 
91 in the text (black triangles). Distal sites mentioned in the text are marked by white 
92 circles; 1 = Marine cores; Lim et al. (2013); 2 = Marine cores; Arai et al. (1981); Chun 
93 et al. (2007); 3 = Marine cores; Chun et al. (2007); 4 = Lake Biwa; Nagahashi et al. 
94 (2004); 5 = Marine cores; Ikehera et al. (2004); 6 = Yuanchi Lake; Sun et al. (2018); 7 
95 = Marine cores; Ikehara (2003); 8 = Lake Hane; Sawada et al. (1997); 9 = Marine 
96 cores; Derkachev et al. (in press); 10 = Hakusan volcano; Higashino et al. (2005); 11 = 
97 Lake Kushu; Chen et al. (2016, 2019). A white star notates the location of Lake 
98 Suigetsu, and ocean basins are marked in grey (JB= Japan Basin; YR= Yamato Rise; 
99 OR= Oki Ridge; UB = Ulleungdo Basin). Dispersal boundaries of the B-Tm (AD 946; 

100 Oppenheimer et al., 2017), U-Oki (ca. 10 ka) and U-Ym (ca. 40 ka) are marked by 
101 dashed lines (B-Tm and U-Oki as defined by Machida and Arai, 2003). (b) Location of 
102 Lake Suigetsu, which is the largest of the five Mikata lakes, adjacent to Wakasa Bay. 
103 The positions of coring campaigns SG06 and SG14 are marked on Lake Suigetsu 
104 (modified after Nakagawa et al., 2005). 
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105 It is likely that proximal evidence of older eruptions, especially those of low- to 

106 mid-intensity, have been destroyed, or are now completely buried, following 

107 more recent large magnitude Holocene events. At Changbaishan clear 

108 depositional breaks and soil horizons are not well documented within proximal 

109 eruption successions (e.g., Chen et al., 2016; Sun et al., 2017), making it 

110 unclear how many eruption deposits are preserved. 

111

112 Distal sedimentary records (e.g., marine and lacustrine sequences) have 

113 proved very important archives of past explosive eruptions, and can be used to 

114 help constrain the frequency and dispersal of tephra-forming events (e.g., Wulf 

115 et al., 2004; Albert et al., 2013; 2018; Smith et al., 2013; Tomlinson et al., 2014; 

116 Ponomareva et al., 2018). Ulleungdo and Changbaishan are the only sources 

117 known to have dispersed alkaline tephra across Japan (Machida and Arai, 

118 2003; Kimura et al., 2015; Albert et al., 2019), and their distal deposits can be 

119 easily discriminated from other intraplate sources in the back-arc (e.g., Doki and 

120 Jeju volcanoes; Brenna et al., 2014). Tephra layers preserved in marine cores 

121 extracted from the Sea of Japan (Oki ridge, Yamato and Japan basins; Figure 

122 1), indicate that both Ulleungdo and Changbaishan have been very active 

123 during the Late Quaternary, however the number and precise timing of these 

124 events remains uncertain. This is partly since successive eruption deposits are 

125 difficult to geochemically distinguish, and because marine cores in some 

126 localities are susceptible to reworking processes (e.g., turbidites; Albert et al., 

127 2012; Cassidy et al., 2014), and often cannot be precisely dated (i.e., due to 

128 variations in the marine radiocarbon reservoir; Ikehara et al., 2013). 

129
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130 In order to provide new insight into the eruptive histories of Ulleungdo and 

131 Changbaishan, this study provides a detailed review of the distal occurrences of 

132 alkaline ash deposited in sedimentary records (marine and lacustrine cores) 

133 spanning the last 86 kyrs (i.e., post-dating the widespread Aso-4 tephra that is 

134 dated to 86.4 ± 1.1 ka using the 40Ar/39Ar method; Albert et al., 2019). We also 

135 provide new tephra data from the intensely-dated Lake Suigetsu archive 

136 (central Honshu, Japan), a record that has significant potential to develop a 

137 comprehensive eruption history for both centres (despite being located 500 km 

138 E of Ulleungdo and 1000 km SSE of Changbaishan). Using the lake sediments, 

139 we identify and geochemically characterise two new ash layers erupted from 

140 Ulleungdo and Changbaishan, allowing these eruptive events to be precisely 

141 dated for the first time. New trace element data are also generated for the 

142 previously identified marker layers preserved as cryptotephra in the Holocene 

143 sediments (McLean et al., 2018), offering new possibilities to discriminate 

144 between successive eruption deposits. This reviewed and integrated distal 

145 eruption framework for Ulleungdo and Changbaishan permits critical new insight 

146 into the hazard potential of these active centres.

147

148 2. Regional setting and proximal volcanic deposits

149

150 2.1. Ulleungdo Island, South Korea

151

152 Ulleungdo Island (12 km x 10 km) is the sub-aerial portion of a Quaternary 

153 stratovolcano located in the mid-western part of the Sea of Japan (37°30′N, 

154 130°52′E), 130 km east of the Korean Peninsula (Figure 1; Kim, 1985). 
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155 Ulleungdo is the youngest volcano in the back-arc basin, and is known to have 

156 erupted intermittently from the Pliocene until the mid-Holocene (Kim et al., 

157 1999; Okuno et al., 2011; Im et al., 2012). Nari caldera is located at the centre 

158 of the island (2.8 km in diameter) and is the source of the most recent phase of 

159 activity (< 19 ka; Kim et al., 2014), erupting rocks that range from alkali basalt to 

160 trachyandesite in composition (Kim, 1985; Brenna et al., 2014; Chen et al., 

161 2018). 

162

163 The most recent activity of Ulleungdo is exposed at several outcrops near or 

164 within Nari caldera. Machida et al. (1984) defined seven pyroclastic units at 

165 extra-caldera outcrops in the north (named in ascending order: U-7 to U-1), 

166 which are comprised of trachytic or phonolitic ash and pumice that were 

167 emplaced as fall deposits and/or by pyroclastic flows (Figure 2). The Holocene 

168 stratigraphy (U-4 to U-2) was further subdivided by Okuno et al. (2011) and 

169 Shiihara et al. (2011) at exposures in the southeast, where the units have also 

170 been geochemically analysed and radiocarbon dated (Figure 2). Two 

171 widespread Japanese tephra marker layers erupted from volcanoes of southern 

172 Kyushu Island are found within the soils that formed between these pumice 

173 falls, and are named the Aira-Tanzawa (AT; ca. 30.0 ka) and Kikai-Akahoya (K-

174 Ah; ca. 7.3 ka) ash. The U-7 to U-5 eruption units are stratigraphically identified 

175 below the AT tephra, and the K-Ah ash is positioned between the U-3 and U-2 

176 eruptions (Shiihara et al., 2011). Radiocarbon dates obtained from buried soils 

177 (ca. 2 cm thick) between units, and charred tree material preserved in the 

178 Holocene deposits suggest that the U-3 eruption occurred ca. 8.3 or 9 ka BP, 

179 respectively, and the U-2 eruption at ca. 5.6 ka BP. 
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180
181
182 Figure 2. Sedimentological and stratigraphic characteristics of the intra- and extra-
183 caldera outcrops on Ulleungdo Island (Machida et al., 1984; Okuno et al., 2010; 
184 Shiihara et al., 2011; Kim et al., 2014). The radiocarbon ages (s = soil; c = charcoal) 
185 reported by Okuno et al. (2010) have been recalibrated using IntCal13 (IntCal13 yrs 
186 BP). Two Japanese tephra layers erupted from volcanoes in Kyushu are identified 
187 within the soils of the extra-caldera sequences, which include the AT (30 ka) and K-Ah 
188 (7.3 ka) ash.
189

190 Major element glass compositions for Holocene eruptions U-4 to U-2 are known 

191 to be geochemically similar (Machida et al., 1984; Martin Jones, 2012; Shiihara 

192 et al., 2011). Slight geochemical differences between some subunits are 

193 reported by Shiihara et al. (2011), who show that U-4a and U-3c contain glass 

194 with lower Al2O3 and higher CaO and FeOT. Furthermore, subunits U-3a and U-
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195 2a are characterised by slightly lower CaO, TiO2 and FeOT contents compared 

196 to the other units.

197

198 Intra-caldera outcrops at Nari are ca. 70 m thick, and are composed of un-

199 welded pyroclastic and epiclastic deposits spanning the last 19 kyrs (Figure 2; 

200 Im et al., 2012; Kim et al., 2014). This sequence is named the Nari Tephra 

201 Formation, and consists of five key eruptive units (in ascending order, N-5 to N-

202 1), some of which exhibit signs of weathering and soil formation (Figure 2). 

203 Several radiocarbon ages have been obtained from this formation by Im et al. 

204 (2012), which have been used to correlate the intra- and extra-caldera 

205 Holocene deposits (U-4 to U-2, and N-4 to N-2) as shown in Figure 2. Kim et al. 

206 (2014) have proposed a detailed succession of eruption styles for the last 19 

207 ka, and suggest that only a few of the events generated sustained eruption 

208 columns or pyroclastic density current (PDC) deposits large enough to overtop 

209 the caldera wall, and therefore extra-caldera sequences may underestimate the 

210 eruption frequency. 

211

212 2.2. Changbaishan, North Korea/China border 
213

214 Changbaishan (also referred to as Baitoushan, Paektusan, or Hakutozan) is an 

215 intraplate stratovolcano situated on the border of North Korea and China 

216 (41°00’N, 128°03’E; Figure 1), located on a Neogene trachybasalt lava shield 

217 (the Gaema Plateau). Activity at Changbaishan began in the Middle 

218 Pleistocene, and has been divided into three main episodes: early shield 

219 building, middle cone construction, and a late explosive stage (Wei et al., 2007; 

220 2013). The most recent of which (< 20 ka) culminated with the caldera-forming 
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221 Millennium Eruption (ME; VEI 7) which ejected ca. 100 km3 of tephra (Dense 

222 Rock Equivalent ca. 25 km3), blanketing the northernmost regions of Japan in 

223 ash (Horn and Schmincke, 2000; Zou et al., 2010; Wei et al., 2013; Sun et al., 

224 2014b; McLean et al., 2016) and injecting 45 Tg of sulphur into the atmosphere 

225 (Iacovino et al., 2016). This eruption produced a ca. 4.5 km wide caldera, which 

226 today contains Lake Tianchi (meaning “Heavenly Lake”; Machida et al., 1990). 

227 The age of the ME has been precisely dated to AD 946, by combining 

228 dendrochronology with the presence of a closely related (AD 994) ‘Miyake 

229 event’ (pronounced radiocarbon peak) preserved in charred tree deposits 

230 (Hakozaki et al., 2017; Oppenheimer et al., 2017). The hazard potential of 

231 Changbaishan is considerable and is particularly concerning given that there 

232 has been recent seismic unrest at the crater (Stone, 2010; Xu et al., 2012; Wei 

233 et al., 2013). 

234

235 The most comprehensively studied proximal outcrop at Changbaishan is at 

236 Twianwenfeng peak, which is on the northern Chinese flank of the summit (e.g., 

237 Chen et al., 2016; Pan et al., 2017; Sun et al., 2017; 2018). There are many 

238 inconsistent interpretations of these Late Quaternary eruption deposits, even 

239 amongst those assigned to the ME (see Pan et al., 2017). Sun et al. (2017) 

240 identify and geochemically characterise five sequential deposits (oldest to 

241 youngest, named NS-1 to NS-5) at Twianwenfeng peak, and suggest that the 

242 three uppermost units (NS-3 to NS-5) are associated with the ME, due to the 

243 geochemical (major element glass chemistry) overlap with distal ash deposits, 

244 and that no depositional break is evident between units NS-4 and NS-5. This is 

245 in contrast to other studies that suggest that the youngest unit (NS-5) may 
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246 correlate to post-ME events, which are suggested by historical records in AD 

247 1668 or AD 1702 (Cui et al., 1995; Liu et al., 1998). 

248

249 The ME had two explosive phases, with the initial main phase (ca. 95% by 

250 volume) associated with a ca. 25 km-high Plinian column, producing a 

251 widespread rhyolitic pumice fall unit (Machida et al., 1990; Horn and 

252 Schmincke, 2000), which equates to NS-3 of Sun et al. (2017). This fall unit is 

253 overlain by partially-welded PDC deposits attributed to the partial collapse of the 

254 Plinian column. Trachytic magma was erupted in a late phase of the eruption 

255 (i.e., NS-4 and NS-5), forming moderately welded PDC units that overlie the 

256 rhyolitic fall and PDC deposits (Horn and Schmincke, 2000). Chen et al. (2016) 

257 report trace element compositions for the ME at Twianwenfeng peak (therein 

258 named units C-3 to C-1), and show that the rhyolitic fall deposits (C-3 to C-2) 

259 had higher contents of incompatible trace elements (e.g., Th, Ta, Nd, Y) and 

260 lower contents of compatible elements (e.g., Ba, Sr) relative to the upper 

261 trachyte unit (C-1). 

262

263 Sun et al. (2017) identify two pre-ME pyroclastic fall deposits at Twianwenfeng 

264 peak, NS-1 (grey fall unit) and NS-2 (yellow fall unit), which are compositionally 

265 distinct from the ME deposits. These units are estimated to have been erupted 

266 between 4 – 5 ka based on 40Ar/39Ar, uranium series disequilibrium, 14C and 

267 optically stimulated luminescence (OSL) methods (Liu et al., 1998; Wan and 

268 Zheng, 2000; Wang et al., 2001; Yang et al., 2014). 

269
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270 A large “lava flow” landform, named the Qixiangzhan Comendite that is 5 km 

271 long and 400-800 m wide, is observed on the northern summit of Changbaishan 

272 (Yang et al., 2014; Sun et al., 2017). This is widely considered as another pre-

273 ME event, although 40Ar/39Ar ages generated from this deposit span several 

274 thousand years (e.g., Singer et al., 2014; Yang et al., 2014) and its stratigraphic 

275 relationship to the units preserved at Twianwenfeng peak is unclear (Sun et al., 

276 2017). Major element glass compositions of the Qixiangzhan comendite overlap 

277 with those of the rhyolitic phase of the ME (Sun et al., 2018). 

278

279 2.3. Distal marine and lacustrine tephra records 

280

281 The Sea of Japan (East Sea) is a semi-enclosed marginal sea located between 

282 the Japanese islands and the Asian continent, and is the product of the rear-arc 

283 extension (Figure 1). Due to the prevailing westerly winds, tephra erupted from 

284 Ulleungdo and Changbaishan is typically dispersed to the east and deposited in 

285 the surrounding marine basins (Arai et al., 1981; Chun et al., 1997, 2007; 

286 Ikehara, 2003; Machida and Arai, 2003; Ikehara et al., 2004; Lim et al., 2013, 

287 2014; Derkachev et al., in press). Furthermore, several Japanese tephra layers 

288 erupted from volcanoes on Kyushu Island have been dispersed to, and 

289 deposited in the Sea of Japan, including the K-Ah (Kikai), AT (Aira), SAN1 

290 (Kuju) and Aso-4 eruption deposits (Machida and Arai, 2003; Albert et al., 

291 2019). The marine sediments across the Sea of Japan are characterised by 

292 alternations of light and dark coloured sediments, which have been attributed to 

293 millennial-scale palaeoenvironmental changes associated with changes in the 

294 East Asian summer monsoon (Tada, 1999; Ikehara, 2003). These organic rich 
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295 dark-layers are commonly used to date tephra layers that are preserved in the 

296 marine sediments (Tada et al., 1999). It has proved very difficult to correlate 

297 between the proximal eruption successions exposed at Ulleungdo and 

298 Changbaishan with those in distal records (Shiihara et al., 2011; Kim et al., 

299 2014; Chen et al., 2016; Pan et al., 2017). Typically, only the largest Holocene 

300 eruptions that reached the Japanese islands have been correlated to specific 

301 eruption units within proximal stratigraphies of these two volcanoes. 

302

303 The most widespread tephra layer from Changbaishan is associated with the 

304 AD 946 ME, and is distally named the Baegdusan-Tomakomai (B-Tm tephra). 

305 The B-Tm tephra was named and characterised using glass refractive indices 

306 and major element compositions (Machida and Arai, 1983; McLean et al., 2016) 

307 at a distal type-locality in Tomakomai Port, Hokkaido (northern Japan), where it 

308 was identified above the Tarumai-c (ca. 50 BC) and below the Tarumai-b (AD 

309 1667) tephra layers from the nearby Tarumae volcano (Machida and Arai, 

310 1983). The B-Tm tephra has since been identified in numerous marine, 

311 lacustrine and archaeological sequences across northern Japan, northeast 

312 China and coastal regions of Russia (see Sun et al., 2014b; McLean et al., 

313 2016) and B-Tm glass shards have been identified in the Greenland ice cores 

314 (Sun et al., 2014a). 

315

316 The most widespread tephra erupted from Ulleungdo is the Ulleung-Oki (U-Oki), 

317 which is correlated to the proximal U-4 deposits on the island (Machida et al., 

318 1984; Okuno et al., 2010; Shiihara et al., 2011; Smith et al., 2011; Kim et al., 

319 2014). The U-Oki tephra has been identified in several marine cores in the Sea 
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320 of Japan, and in archives on the islands of Japan, including Lake Biwa, Lake 

321 Suigetsu and Lake Hane (Chun et al., 1997; Domitsu et al., 2002; Nagahashi et 

322 al., 2004; Smith et al., 2011; Figure 1). As outlined further below, several of 

323 these archives contain a younger phonolitic/trachytic ash that post-dates the U-

324 Oki tephra, and are thought to be distal correlatives of the U-3 eruption of 

325 Ulleungdo. 

326

327 One of the most comprehensive records of East Asian volcanism is the Lake 

328 Suigetsu sedimentary archive, which is located ca. 500 km E of Ulleungdo and 

329 ca. 1000 km SSE of Changbaishan (35°35’0’’N, 135°53’0’’E, 0 m above present 

330 sea level; Figure 1). The sequence spans approximately 150 ka (Nakagawa et 

331 al., 2012), and contains a detailed record of visible and non-visible 

332 (cryptotephra) layers derived from Ulleungdo and Changbaishan eruptions, as 

333 well as over thirty visible tephra layers erupted from sources that span the 

334 length of Japan (Smith et al., 2013; McLean et al., 2016, 2018; Albert et al., 

335 2018, 2019). Despite the difficulties of identifying non-visible layers in a 

336 productive arc setting, cryptotephra layers are precisely preserved and 

337 identified in Lake Suigetsu, partially due to its unique hydrological setting. 

338 Suigetsu is a tectonic lake, adequately situated away from the large calderas in 

339 Hokkaido and Kyushu, and so is not inundated with locally sourced volcanic 

340 glass which would preclude the identification of cryptotephra layers deposited 

341 during large distally occurring eruptions. Furthermore, no rivers flow directly into 

342 Lake Suigetsu (Figure 1b) with the water level controlled by input into the other 

343 connected lakes. The fine-grain sedimentation in the lake is often interrupted by 

344 deposits of coarse volcanic ash that fall through the water column. 
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345

346 Since the Lake Suigetsu sediments have been extensively radiocarbon (14C) 

347 dated, and seasonal laminae (varves) are preserved between ca. 10 and 50 ka 

348 (Staff et al., 2011; Bronk Ramsey et al., 2012; Marshall et al., 2012; Schlolaut et 

349 al., 2012), eruptions within the radiocarbon timeframe can be precisely dated if 

350 their associated tephra layers are identified. The Lake Suigetsu 

351 tephrostratigraphic record is therefore utilised in this study to precisely date ash 

352 fall events of Ulleungdo and Changbaishan that reached central Honshu, and 

353 integrate their tephrostratigraphies. 

354

355 3. Tephra identification and analytical methods

356

357 3.1. New tephra identification in Lake Suigetsu 

358

359 The high-resolution and intensely dated sediments of Lake Suigetsu (SG06 and 

360 SG14 cores) have been re-investigated for the presence of thin (i.e., sub 

361 millimetre in thickness) and cryptotephra layers, in order to supplement the 

362 visible tephrostratigraphy as introduced above, and published by Smith et al., 

363 (2011, 2013) and Albert et al. (2018, 2019). Cryptotephra extraction procedures 

364 (modified from Turney, 1998; Blockley et al., 2005) were undertaken through 

365 the 12 m of Holocene sediments (≤ 10 ka; McLean et al., 2016, 2018) and more 

366 recently the 14 m of annually laminated (varved) sediments dating to between 

367 ca. 50 and 30 ka, These sections were chosen for analysis as they were 

368 expected to contain low-background levels of volcanic glass, which would not 

369 obscure primary cryptotephra peaks (see McLean et al., 2018). On average, 
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370 through these investigated sediments cryptotephra layers are four times more 

371 frequently preserved than visible ash layers. Identified tephra layers in the 

372 Suigetsu sediments are named, and are referred to using their SG06 

373 (correlation model 06 June ‘17) or SG14 (correlation model 30 May ’16) core 

374 composite depth(s) in cm.

375

376 The Suigetsu Bayesian age model (Staff et al., 2011; Bronk Ramsey et al., 

377 2012) was used to determine the age for ash layers preserved in the sediments. 

378 The composite Suigetsu sedimentary sequence was modelled on to the 

379 IntCal13 timescale (Reimer et al., 2013) implementing three successive cross-

380 referenced Poisson-process (‘P_Sequence’) depositional models using OxCal 

381 (ver. 4.3; Bronk Ramsey, 2008, 2017). These include 775 AMS 14C dates 

382 obtained from terrestrial plant macrofossils from the upper 38 m (SG06-

383 Composite Depth (CD) of the SG93 and SG06 cores (Kitagawa and van der 

384 Plicht, 1998a; 1998b, 2000; Staff et al., 2011, 2013a, 2013b; Bronk Ramsey et 

385 al., 2012) and varve counting between 12.88 and 31.67m SG06 CD (Marshall et 

386 al., 2012; Schlolaut et al., 2012). Outside of the varve-counted depth interval, 

387 SG06 event-free depth(s) (EFD, ver. 29th Jan '11) were used within the age 

388 model, which excludes instantaneous deposits > 5 mm in thickness, (e.g., 

389 floods, and tephra deposits; Staff et al., 2011; Schlolaut et al., 2012).

390

391 3.2. Major and trace element analysis of the glass shards

392

393 Major and minor element compositions of individual glass shards extracted from 

394 the Suigetsu visible and cryptotephra layers were measured using a JEOL-8600 
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395 wavelength-dispersive electron microprobe (WDS-EMP) at the Research 

396 Laboratory for Archaeology and History of Art (RLAHA), University of Oxford. All 

397 glass analyses used an accelerating voltage of 15 kV, beam current of 6 nA and 

398 10 µm-diameter beam. Peak counting times were 12 s for Na, 50 s for Cl, 60 s 

399 for P, and for 30 s for all other elements. The electron microprobe was 

400 calibrated using a suite of mineral standards, and the PAP absorption correction 

401 method was applied for quantification. The accuracy and precision of these data 

402 were assessed using analyses of the MPI-DING reference glasses from the 

403 Max Plank Institute (Jochum et al., 2006), which were run as secondary 

404 standards. Analyses of these secondary standards lie within the standard 

405 deviation of the preferred values and are presented in the Supplementary 

406 Material. All these data were filtered to remove non-glass analyses, and those 

407 with low analytical totals <93%. The raw values were normalised (to 100 %) for 

408 comparative purposes and to account for variable glass hydration, and are 

409 presented as such in all tables and figures. 

410

411 Trace element compositions of the glass shards >25 µm (i.e. large enough for 

412 analysis) were measured by laser ablation inductively-coupled plasma mass 

413 spectrometry (LA-ICP-MS) at the Department of Solid Earth Geochemistry, 

414 Japan Agency for Marine-Earth Science and Technology (JAMSTEC). The 

415 analytical equipment used include the deep-ultraviolet (200 nm) femtosecond 

416 laser ablation system (DUV-FsLA) of OK-Fs2000K (OK Laboratory, Tokyo, 

417 Japan) connected to the modified high-sensitivity sector field ICP-MS of 

418 Element XR (Thermo Scientific, Bremen, Germany). All analyses used a 25 µm 

419 crater diameter and depth, and conditions followed those reported by Kimura 
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420 and Chang (2012). Ten major elements including P2O5 and 33 trace elements 

421 were analysed for each sample, and were also run alongside several MPI-DING 

422 reference glasses (Jochum et al., 2006), and the BHVO-2G standard provided 

423 by the United States Geological Survey. Accuracies of the BHVO-2G glass 

424 analyses are typically < 3 % for most elements, < 5 % for Sc, Ga, Sm, Eu, Gd, 

425 U and < 10 % for Ni, Cu, Lu. Full trace element datasets and secondary 

426 standard analyses are provided in the Supplementary Material.  

427

428 4. Results 

429

430 4.1. Suigetsu tephrostratigraphy

431

432 To date, thirty-three visible tephra layers (Smith et al., 2011, 2013; Albert et al., 

433 2018; 2019; McLean et al., 2016, 2018) and thirty-four cryptotephra layers 

434 (between 50 to 30 ka, and > 10 ka; McLean et al., 2018) have been identified 

435 and geochemically fingerprinted in the Lake Suigetsu sediments. The 

436 distinctively high alkali content of glass shards (Na2O + K2O = > 9 wt. %; Figure 

437 3) of eight of these tephra layers indicates that they are not from the Japanese 

438 arc volcanoes (Machida and Arai, 2003; Kimura et al., 2015; Albert et al., 2019), 

439 and are correlated by McLean et al. (2016, 2018; n = 6) and herein (n = 2) to 

440 eruptions from Ulleungdo and Changbaishan. 
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441

442 Figure 3. The composite Lake Suigetsu tephrostratigraphy and the positioning of 
443 Ulleungdo (blue lines), Changbaishan (orange) and other key Japanese (black/grey) 
444 tephra layers preserved through the sequence (Smith et al., 2013; McLean et al., 2016, 
445 2018; Albert et al., 2018; 2019). The glass shard total alkali content (Na2O + K2O) of 
446 these layers is also plotted against eruption age, with Ulleungdo and Changbaishan 
447 tephras containing  > 9 wt. %. 
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448 4.1.1. New Ulleungdo and Changbaishan deposits 

449

450 As part of detailed cryptotephra investigations through the Suigetsu sediments 

451 dated between ca. 50 to 30 ka, two new alkaline ash layers named SG14-3380 

452 and SG14-3216 have been identified. These are positioned between the 

453 Sambe-Ikeda (46.4 ka; Albert et al., 2019) and AT (30.0 ka; Smith et al, 2013; 

454 Albert et al., 2019) tephras (Figure 3; Table 1). SG14-3380 is a highly 

455 concentrated cryptotephra horizon erupted from Changbaishan, and contains 

456 over 18,000 shards per gram of dried sediment (Figure 4a.). This eruption is 

457 dated to between 42,750 – 42,323 IntCal13 yrs BP (95.4 % confidence interval) 

458 using the Suigetsu age model. SG14-3216 is a thin visible (ca. 1 mm) white ash 

459 layer (Figure 4b) that is ca. 1.6 m above SG14-3380, and represents an 

460 Ulleungdo eruption between 40,332 – 39,816 IntCal13yrs BP (95.4 % 

461 confidence interval). 

462

463 4.1.2. Previous identifications of Ulleungdo and Changbaishan deposits

464

465 As previously reported by McLean et al. (2018), the Lake Suigetsu Holocene 

466 tephrostratigraphy contains three eruptions from Ulleungdo: SG06-1288, SG14-

467 1091 and SG14-0803 that are dated to 10,230 – 10,171 IntCal13 yrs BP, 8,455 

468 – 8,367 IntCal13 yrs BP and 5,681 – 5,619 IntCal13 yrs BP (95.4 % confidence 

469 interval), respectively (Table 1; Figure 3; Smith et al., 2011; McLean et al., 

470 2018). A younger ash layer that also has glass compositions that are similar to 

471 eruptions from Ulleungdo (SG14-0433) is dated to 2,737 – 2,620 IntCal13 yrs 

472 BP (Table 1; Figure 3).
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473

474 Table 1. Summary of the Ulleungdo and Changbaishan derived tephra layers identified 
475 in the Lake Suigetsu (SG06 & SG14) sequence (in bold and shaded grey), along with 
476 their stratigraphic positioning relative to key Japanese marker layers. Tephra 
477 correlations for SG06 tephra layers are discussed by Smith et al. (2013), McLean et al. 
478 (2016) and Albert et al. (2018, 2019) and SG14 tephra layers are correlated in McLean 
479 et al. (2018, this study).
480

481

SGLabel Tephracode Tephraname Sourcevolcano Sourcelocation
14Cdate(AD/ IntCal13

yrsBP)
SG14-0221 Ma-b Mashu-b Mashu Kurile arc, Japan AD 960 - 9921

SG06-0226 B-Tm Baegdusan-Tomakomai Changbaishan NorthKorea/ China AD9462

SG14-0239 Iz-Kt Izu-Kozushima-Tenjosan Kozushima Izu arc, Japan AD 8383

SG14-0433 U-1 Ulleung-1 Ulleungdo SouthKorea 2,737-2,6201

SG14-0490 KGP Kawagodaira Pumice Kawagodaira Izu arc, Japan 3,227 - 3,1291

SG14-0803 U-2 Ulleung-2 Ulleungdo SouthKorea 5,681-5,6191

SG14-0840 To-Cu Towada-Chuseri Towada Northern Honshu, Japan 5,986 - 5,8991

SG06-0967 K-Ah Kikai-Akohoya Kikai SouthernKyushu,Japan 7,307-7,1961

SG14-1058 B-Sg-08 Baegdusan-Suigetsu-08 Changbaishan NorthKorea/ China 8,166-8,0991

SG14-1091 U-3 Ulleung-3 Ulleungdo SouthKorea 8,455-8,3671

SG14-1185 1185 - - - 9,372-9,3011

SG06-1288 U-Oki/ U-4 Ulleung-4/ Ulleung-Oki Ulleungdo SouthKorea 10,230-10,1711

SG06-1965 Md-fl Sambe-Midorigaoka fl Sambe SWJapan 19,631 - 19,4714

SG06-2650 AT Aira-Tanzawa Aira SouthernKyushu,Japan 30,174 - 30,078 4

SG14-3216 U-Ym Ulleung-Yamato Ulleungdo SouthKorea 40,332-39,8165

SG14-3380 B-Sg-42 Baegdusan-Suigetsu-42 Changbaishan NorthKorea/ China 42,750-42,3235

SG06-3668 SI Sambe-Ikeda Sambe SWJapan 46,566 - 46,162 4

SG06-3912 ACP4 Aso-Central Pumice 4 Aso CentralKyushu,Japan 50,311 - 49,637 4

SG06-4963 Aso-4 Aso-4 Aso CentralKyushu,Japan 86.4 ± 1.1 40Ar/39Ar4

1) McLean et al. (2018); 2) Oppenhemier et al. (2017); Hakozaki et al., 2017; 3) Tsukui et al. (2006); 4) Smith et al. (2013); Albert
et al. (2019); 5) This study

482

483 Figure 4. (a) Glass shard concentrations (shards per gram of dry sediment) preserved 
484 in SG14 core E-35 and the positioning of cryptotephra SG14-3380. Concentration of 
485 low-resolution (5 cm) samples are shown in grey and high-resolution samples (1 cm) 
486 are overlain in blue. Shard counts for the other Holocene cryptotephra layers are 
487 published by McLean et al. (2018). (b) Photograph of visible tephra layer SG14-3216 in 
488 Lake Suigetsu Core G-09.
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489 Two Holocene Changbaishan eruptions are preserved in the sediments: SG14-

490 1058 at 8,166 – 8,099 IntCal13 yrs BP (McLean et al., 2018); and SG06-0226, 

491 which has been correlated to the AD 946 B-Tm tephra from the ME (McLean et 

492 al., 2016; Hakozaki et al., 2017; Oppenheimer et al., 2017). Several other 

493 widespread markers have been identified in the Holocene sediments, which are 

494 able to stratigraphically separate eruption events from Ulleungdo and 

495 Changbaishan (Figure 3; Table 1). SG14-1185 stratigraphically separates the 

496 SG06-1288 and SG14-1091 Ulleungdo layers, and the K-Ah (7.3 ka; Kikai 

497 volcano) and To-Cu (5.9 ka; Towada) tephra layers separate SG14-1091 and 

498 SG14-0830 (McLean et al., 2018; Table 1; Figure 3).

499

500 4.2. Major and trace element volcanic glass geochemistry

501

502 4.2.1. Ulleungdo glass geochemistry

503

504 The newly analysed glass of SG14-3216 geochemically overlaps with the other 

505 previously identified Ulleungdo derived tephra layers preserved in the Suigetsu 

506 tephrostratigraphy (e.g., SG06-1288, SG14-1091 and SG14-0803). Collectively 

507 they straddle the phonolitic/trachytic boundary on the basis of the Total Alkalis 

508 versus Silica (TAS) classification (Le Bas et al., 1986) and contain 60 – 63 wt. 

509 % SiO2, ca. 7 wt. % K2O and 19 – 20 wt. % Al2O3 (Table 2; Figure 5). These 

510 glasses are characterised by < 2.5 wt. % CaO and contain between 2.5 and 3.5 

511 wt. % FeOT. 

512
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513 When normalised to the primitive mantle (Sun and McDonough, 1989), we find 

514 the newly obtained trace element compositions of SG14-3216 and SG14-1091 

515 show enrichments in the Light Rare Earth Elements (LREE) relative to the 

516 Heavy Rare Earth Elements (HREE) (La/Yb = 30 – 35 ppm) and significant 

517 depletions in Ba, Sr and Eu that reflect K-feldspar fractionation (Figure 6). The 

518 paucity of a depletion in Nb and Ta content within these volcanic glasses, when 

519 normalised to the primitive mantle, is inconsistent with subduction related 

520 volcanism (Figure 6).

521

522 The four tephra layers with Ulleungdo compositions are difficult to distinguish 

523 using their major element glass compositions, but we find that the younger 

524 glasses of SG14-0803 are more elevated in CaO (by ca. 0.5 wt. %), compared 

525 to the early Holocene and SG14-3216 glass (Figure 5c). In addition, the alkaline 

526 glasses of SG14-3216 (59.5 – 62.5 wt. % SiO2 and total alkalis [Na2O + K2O] of 

527 11.6 – 14.9 wt. %) can be discriminated from SG14-1091 by larger feldspar-

528 related depletions in Sr, Ba and Eu, that are normalised to primitive mantle 

529 compositions (Figure 6). The alkaline glass shards of SG14-0433 (Na2O + K2O 

530 = 10.4 – 11.0) are also likely to derive from Ulleungdo, but contain ca. 2.5 wt. % 

531 lower K2O, and ca. 2 wt. % higher CaO compared to the older eruption events 

532 outlined here (Figure 5a; 5c).  
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533 Table 2. Average major, minor and trace element glass compositions of the Ulleungdo 
534 and Changbaishan tephra layers in the Lake Suigetsu sediment core. 

535

wt.(%) Mean ±1σ Mean ±1σ Mean ±1σ Mean ±1σ Mean ±1σ
SiO2 61.76 0.16 60.54 0.63 60.52 0.24 60.85 0.42 60.75 0.67
TiO2 0.79 0.05 0.62 0.07 0.51 0.08 0.50 0.07 0.39 0.07
Al2O3 16.66 0.05 19.48 0.30 19.87 0.22 19.55 0.17 19.85 0.28
FeOT 5.65 0.17 3.16 0.42 2.77 0.24 3.16 0.19 3.12 0.16
MnO 0.23 0.05 0.14 0.10 0.15 0.03 0.14 0.05 0.18 0.05
MgO 1.09 0.06 0.48 0.12 0.23 0.03 0.30 0.06 0.17 0.07
CaO 6.07 0.18 6.60 0.60 6.95 0.40 1.61 0.17 1.34 0.12
Na2O 2.57 0.08 1.99 0.33 1.48 0.14 6.51 0.79 7.28 0.96
K2O 4.59 0.10 6.61 0.21 7.03 0.19 7.07 0.28 6.50 0.33
P2O5 0.36 0.04 0.17 0.05 0.05 0.04 0.10 0.03 0.05 0.03
Cl 0.23 0.03 0.21 0.04 0.40 0.08 0.24 0.03 0.37 0.10
Analytical total 96.85 96.84 97.81 99.72 97.03
n 8 19 24 12 37

wt.(%) Mean ±1σ Mean ±1σ Mean ±1σ
SiO2 74.89 0.21 75.01 0.18 66.26 0.70
TiO2 0.22 0.04 0.20 0.03 0.60 0.09
Al2O3 10.27 0.10 10.28 0.11 14.97 0.28
FeOT 4.05 0.14 3.89 0.10 5.12 0.14
MnO 0.08 0.05 0.07 0.03 0.15 0.04
MgO 0.02 0.03 0.01 0.01 0.25 0.06
CaO 0.22 0.02 5.30 0.16 1.24 0.17
Na2O 5.36 0.15 0.20 0.02 5.67 0.66
K2O 4.38 0.09 4.50 0.06 5.49 0.09
P2O5 - - 0.01 0.01 0.09 0.03
Cl 0.50 0.03 0.52 0.02 0.16 0.02
Analytical total 96.19 95.54 95.90
n 29 24 14

ppm Mean ±1σ Mean ±1σ Mean ±1σ Mean ±1σ Mean ±1σ
Rb 396.4 9.8 383.9 23.9 188.7 10.1 195.4 19.1 143.5 8.9
Sr 2.2 0.6 4.4 0.9 59.5 36.2 14.3 10.2 25.0 24.4
Y 143.3 3.9 149.8 11.4 23.5 2.0 26.0 2.9 51.1 3.9
Zr 2415.2 80.0 2302.5 189.8 626.0 50.9 709.6 104.3 741.4 45.8
Nb 286.1 8.9 261.1 21.1 169.8 11.5 175.2 21.2 97.0 5.5
Ba 6.4 0.9 6.6 2.5 99.1 83.5 16.3 13.3 77.3 57.3
La 138.9 4.5 125.2 14.6 86.4 4.3 98.2 9.0 76.4 4.7
Ce 286.9 13.5 243.2 12.3 144.8 6.9 161.7 15.7 154.3 9.6
Pr 31.9 1.2 28.3 1.8 12.8 0.9 14.5 1.2 17.1 1.1
Nd 115.8 4.8 102.3 6.9 39.3 3.5 43.9 4.7 65.6 6.4
Sm 27.6 1.2 26.1 4.5 5.6 1.0 6.4 0.7 12.9 1.9
Eu 0.3 0.1 0.3 0.3 1.5 0.3 0.6 0.2 0.6 0.2
Gd 26.7 1.5 28.0 3.3 5.0 1.4 5.4 1.9 10.7 1.4
Dy 25.3 1.8 25.5 2.2 3.8 0.6 4.4 0.6 9.3 0.9
Er 14.0 0.6 14.0 1.6 2.5 0.5 2.8 0.6 5.1 0.7
Yb 11.4 0.5 11.2 2.0 2.6 0.4 3.1 0.7 4.3 0.6
Hf 55.6 2.3 55.6 5.4 12.0 1.1 13.4 2.1 16.9 1.2
Ta 17.0 1.1 16.4 1.9 9.8 0.7 9.7 1.1 5.6 0.5
Th 49.9 3.1 49.6 5.0 23.5 1.9 25.2 3.2 14.1 1.1
U 10.8 0.7 9.7 0.9 4.8 0.5 5.3 0.9 2.8 0.3
Y/Th 2.9 0.2 3.0 0.1 1.0 1.1 1.0 0.1 3.6 0.2
Zr/Th 48.5 2.5 46.5 2.0 26.6 27.5 28.1 2.3 52.6 3.3
La/Yb 12.1 0.4 11.3 1.4 34.4 6.5 32.7 4.9 18.0 2.4
n 8 5 13 8 10

SG14-0433 SG14-0803 SG14-1091 SG06-1288 SG14-3216

(FeOT = all Fe reported as FeO). Raw dataset and secondary standards are included in the Supplementary Material.

SG14-3380

SG14-3216 SG14-3380SG06-0226 SG14-1058 SG14-1091

SG06-0226 SG14-1058
McLean et al. 2016 this studyMcLean et al. 2018

this study this study this study this study this study

McLean et al. 2018 McLean et al. 2018 McLean et al. 2018 Smith et al. 2011 this study
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537
538 Figure 5. Glass shard major (5a – d) and trace (5e – f) element compositions of 
539 Ulleungdo (South Korea; shown in blue), Changbaishan (North Korea/China; shown in 
540 orange), and key Japanese tephra layers that are preserved in the Lake Suigetsu 
541 sediments (shown in grey and black) (Smith et al., 2013; McLean et al., 2016, 2018; 
542 Albert et al., 2018, 2019). (d) Total alkali versus silica plot (TAS) with whole-rock 
543 classification based on Le Bas et al., 1986). 
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544

545 Figure 6. Primitive mantle normalised trace element compositions of glasses of: (a) 
546 Ulleungdo tephra layers (SG14-1091 and SG14-3216) in the Lake Suigetsu sequence; 
547 (b) Changbaishan tephra layers (SG06-0225, SG14-1058 and SG14-3380) in 
548 comparison to proximal ME rhyolitic (C2 – C3) and trachytic (C1) proximal deposits 
549 (Chen et al., 2016). Primitive mantle values follow Sun and McDonough (1989). 
550

551 4.2.2. Changbaishan glass geochemistry

552

553 The three Changbaishan derived tephra layers (e.g., SG14-3380, SG14-1058 

554 and SG06-0226) contain both rhyolitic and trachytic glass compositions (Na2O + 

555 K2O = > 9.5 wt. %; Le Bas et al., 1986), with SiO2 ranging from 65.5 to 75.5 wt. 

556 % (Table 2; Figure 5d). They contain < 1.6 wt. % CaO, and between 3.7 and 5.4 

557 wt. % FeOT (Figure 5c). New trace element analyses indicate that when 
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558 normalised to primitive mantle compositions, all glasses are enriched in LREE 

559 relative to HREE, with La/Yb ratios higher in those of SG14-3880, relative to 

560 SG14-1058 and SG06-0226 (Table 2) and show pronounced negative feldspar-

561 related anomalies in Ba, Sr and Eu (Figure 6).

562

563 The newly analysed glasses of SG14-3380 are exclusively trachytic (65.4 – 

564 67.9 wt. % SiO2, 14.4 – 15.5 wt. % Al2O3, and Na2O + K2O = 8.7 – 11.7 wt. %) 

565 and are compositionally similar to the single trachytic analysis from SG06-0226. 

566 Trace element compositions for SG14-3380 are homogenous with 14.1 ± 1.1 

567 ppm Th, 144 ± 9.0 ppm Rb, and 51 ± 4 ppm Y (Table 2). Unfortunately, no trace 

568 elements could be obtained for the trachytic end-member of SG06-0226 for 

569 further comparison with SG14-3380. 

570

571 As discussed by McLean et al. (2018), the rhyolitic SG06-0226 glass 

572 compositions overlap with SG14-1058 for all major elements (Table 2; Figure 

573 5). Both tephras contain glass compositions that are geochemically 

574 homogenous, with ca. 75 wt. % SiO2, 10.3 wt. % Al2O3 and ca. 4.4 wt. % K2O, 

575 and are characterised by very low CaO concentrations (< 0.3 wt. %). The newly 

576 generated trace element compositions of SG14-0226 and SG06-1058 show 

577 significant overlap, and are more enriched in incompatible elements (e.g., Th, 

578 Ta and Y), whilst depleted in compatible elements (e.g., Sr, Ba, and Eu) relative 

579 to the trachytic glass of SG14-3380 (Table 2; Figure 6b). SG06-0226 and 

580 SG14-1058 have similar mantle normalised profiles and levels of incompatible 

581 trace element enrichment (Figure 6). Glasses of both tephra layers have greater 

582 feldspar-related depletions in Ba, Sr and Eu relative to SG14-3380. The SG06-

583 0226 glasses show a significant depletion in Nb, which is not observed in 
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584 SG14-1058 and SG14-3380, which given the intraplate setting of the volcano 

585 may relate to late stage, high-level fractionation processes.

586

587

588 5. Review of Ulleungdo and Changbaishan eruption framework 

589

590 Here, the distal ash deposits erupted from Ulleungdo and Changbaishan are 

591 outlined and reviewed using the relative stratigraphy, geochemical glass 

592 compositions and eruption chronology. Published occurrences are centred on 

593 the Lake Suigetsu tephrostratigraphy to provide an integrated framework that is 

594 constrained by numerous widespread ash layers erupted from Japanese 

595 volcanoes (Figure 7). There are no pre-50 ka visible ash layers in Lake 

596 Suigetsu with Ulleungdo or Changbaishan compositions, but we should 

597 highlight that cryptotephra extraction techniques have not yet been carried out 

598 on these older sediments. It is possible that there are other pre-50 ka Ulleungdo 

599 or Changbaishan layers preserved cryptically in Lake Suigetsu. 
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600 Figure 7. Summary tephrostratigraphy of proximal and distal archives that contain ash 
601 erupted from Ulleungdo (blue boxes) and Changbaishan (orange boxes) (see Figure 1 
602 for archive location). Widespread Japanese tephra layers, which provide valuable 
603 chronostratigraphic markers, are also shown in grey boxes. Alkali-rich ashes erupted 
604 from Ulleungdo and Changbaishan are routinely identified in marine cores extracted 
605 from the Sea of Japan (East Sea) and high resolution lake archives in Japan. 1 = Chun 
606 et al. (1997); 2 = Lim et al. (2013); 3 = Chun et al. (2007); 4 = Arai et al. (1981); 5 = 
607 Nakajima et al. (1996); 6 = Ikehara et al. (2004); 7 = Derkachev et al. (in press); 8 = 
608 Ikehara (2003); 9 = Sawada et al. (1997); 10 = Higashino et al. (2005); 11 = Nagahashi 
609 et al. (2004); 12 = Smith et al. (2011; 2013), Albert et al. (2018; 2019), McLean et al. 
610 (2016; 2018; this study). Due to the paucity of glass data from pre-Holocene eruptions 
611 of Ulleungdo and Changbaishan, these units cannot be correlated to distal ash 
612 deposits elsewhere.
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613 5.1. Ulleungdo eruption history

614

615 Ulleungdo has erupted explosively at least five times over the last 86 kyrs (since 

616 the eruption of the Aso-4 tephra) with associated widespread ash fall events 

617 recognised by the ca. 60 – 61 ka U-Sado tephra (Lim et al., 2013); the ca. 40.1 

618 ka U-Ym tephra (this study); the ca. 10 ka U-Oki/U-4 tephra (Smith et al., 2011; 

619 2013); ca. 8.4 ka U-3 tephra (McLean et al., 2018); and the ca. 5.7 ka U-2 

620 tephra (McLean et al., 2018). The known distal deposits of these events and 

621 possible proximal correlations are illustrated in Figure 7 and discussed further 

622 below. 

623

624 5.1.1. Post 86 ka (Aso-4) Ulleungdo eruptions 

625

626 Distal ash layers erupted from Ulleungdo were identified stratigraphically below 

627 the AT tephra (30 ka) in marine sediments obtained from the Oki ridge (Arai et 

628 al., 1981) and Yamato Basin (Ikehara et al., 2004). These pre-AT Ulleungdo 

629 tephra layers were originally considered to be from a single eruption, but the 

630 age was controversial. However, Chun et al. (2007) clarified the issue by 

631 identifying two separate alkaline ash deposits in marine core MD01-2407 

632 (Figure 1), which they named SKPI and SKPII, and were dated to 40 – 41 ka 

633 and 60 – 61 ka, respectively, based on correlations with the regional-scale 

634 thinly-laminated marine stratigraphy (Tada, 1999; Chun et al., 2007). 

635
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636

637 Figure 8. Glass shard major and trace element compositions of Ulleungdo (SG14-
638 0803; SG14-1091; SG06-1288; SG14-3216) and Changbaishan (SG06-0226; SG14-
639 1058; SG14-3380) tephra layers preserved in the Lake Suigetsu archive, compared to 
640 other proximal (Chen et al., 2016; Sun et al., 2017, 2018) and distal occurrences 
641 (Ikehara et al., 2004; Lim et al., 2013; Derkachev et al. (in press). Error bars represent 
642 2 x standard deviations of repeat analysis of the StHs6/80-G MPI-DING reference 
643 glass analyses, error bars for (d) are smaller than the data symbols.
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645 Lim et al. (2013) also identified two equivalent cryptotephra layers in several 

646 other marine cores northeast of Ulleungdo (e.g., GH86-2-N, GH89-2-25, GH89-

647 2-26 and GH89-2-28), which were stratigraphically positioned between the 

648 rhyolitic Aso-4 and AT tephra. These distal tephra layers were therein named 

649 the Ulleung-Yamato (U-Ym) and Ulleung-Sado-Oki (U-Sado), and are 

650 considered to be equivalent to SKP-I and SKP-II, respectively (Figure 7). 

651

652 The Lake Suigetsu sediments verify that an ash fall event from Ulleungdo 

653 occurred at 40,332 – 39,816 IntCal13 yrs BP (95.4 % confidence interval). This 

654 1 mm thick ash layer (SG14-3216; Figure 4) contains volcanic glass that 

655 compositionally overlaps the other Ulleungdo-derived tephra deposits preserved 

656 in the Suigetsu sequence (e.g. SG06-1288, SG14-1091), and other distal and 

657 proximal occurrences of the U-Oki tephra (Figure 5; Figure 8; Furuta et al., 

658 1986; Nagahashi et al., 2004; Chun et al., 2007; Park et al., 2003, 2007). 

659

660 Although grain-specific glass compositional datasets for the U-Ym tephra 

661 preserved in the Sea of Japan have not been published for comparison, the 

662 broad geochemical and chronological data and the stratigraphic position is 

663 consistent with SG14-3216, meaning this ash must also correlate to the same 

664 eruption of Ulleungdo. The Suigetsu-derived deposit age of 40,332 – 39,816 

665 IntCal13 yrs BP (95.4 % confidence interval) provides the most precise eruption 

666 age, and this date can now be imported into other site-specific age models that 

667 contain this marker.

668
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669 No other distal ash occurrences have been reported that are chronologically or 

670 geochemically consistent with the ca. 19 ka eruption (proximal unit N-5; Kim et 

671 al., 2014), suggesting that this eruption of Ulleungdo was probably not 

672 widespread.

673

674 5.1.2. Holocene Ulleungdo eruptions 

675

676 As previously outlined, the largest known Plinian eruption from Ulleungdo 

677 generated the U-Oki tephra layer that is dated to 10,230 – 10,171 IntCal13 yrs 

678 BP (95.4 % confidence interval; Smith et al., 2011, 2013). The U-Oki ash is 

679 found in several high-resolution sedimentary records in Japan, including Lake 

680 Biwa (BT-4; Nagahashi et al., 2004) and Lake Suigetsu (SG06-1288; Smith et 

681 al., 2011) (Figure 7). This U-Oki tephra is the only distal tephra that has been 

682 correlated to proximal deposits on Ulleungdo, and equates to the proximal U-4 

683 unit of Shiihara et al. (2011). 

684

685 Lake Suigetsu tephra layers SG14-1091 (ca. 8.4 ka) and SG14-0803 (ca. 5.7 

686 ka) overlay the U-Oki tephra and are considered distal equivalents of proximal 

687 deposits U-3 and U-2, respectively, due to their close agreement to the proximal 

688 radiocarbon dates of soils between fall units (Okuno et al., 2010). Furthermore, 

689 the K-Ah tephra is stratigraphically positioned between the U-3 (SG14-1091) 

690 and U-2 (SG14-0803) deposits (Shiihara et al., 2011). Distal equivalents of the 

691 U-3 eruption have been reported in the Sea of Japan (TRG1 sediment core; 

692 Domitsu et al., 2002), Lake Biwa (Nagahashi et al., 2004), and close to 

693 Hakusan volcano in central Honshu (Higashino et al., 2005). In comparison, 
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694 SG14-0803 is the only known distal equivalent of the U-2 tephra, indicating that 

695 it was either a lower magnitude event or the eruption plume was dispersed in a 

696 different direction. 

697

698 The proximal deposits of the youngest U-1 eruption of Ulleungdo suggest it was 

699 a small strombolian-type eruption with a lava dome extrusion (Kim et al., 2014). 

700 Whole rock trace element data reported for this youngest event have a distinct 

701 tephriphonolite composition (Brenna et al., 2014). Similarly, distal SG14-0433 

702 glass compositions are distinct from those of other Ulleungdo derived tephras in 

703 Suigetsu. Unfortunately, the lack of proximal glass chemistry for the U-1 unit 

704 means that this correlation cannot be confirmed but it is likely that the SG14-

705 0433 layer at 2,737 – 2,620 IntCal13 yrs BP (95.4 % confidence interval) 

706 correlates to the U-1 eruption.  

707

708 5.2. Changbaishan eruption history

709

710 The newly identified Changbaishan-derived tephra layer outlined here, in 

711 addition to the previously recognised layers, indicate that at least eight 

712 explosive eruptions have produced widespread ash dispersals over the last 86 

713 kyrs. These include the: ca. 85.8 ka B-Ym tephra (Lim et al., 2013); ca. 67.6 ka 

714 B-Sado tephra (Lim et al., 2013); ca. 50.5 ka B-J tephra (Ikehara et al., 2014; 

715 Lim et al., 2013); ca. 42.5 ka B-Sg-42 tephra (this study), ca. 38 ka B-Un1 

716 tephra (Derkachev et al., in press), ca. 25 ka B-V tephra (Machida and Arai, 

717 2003); ca. 8.1 ka B-Sg-08 tephra (McLean et al., 2018); and AD 946 B-Tm 

718 tephra associated with the ME (McLean et al., 2016; Hakozaki et al., 2017; 
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719 Oppenheimer et al., 2017). All the known distal ash deposits associated with 

720 eruptions at Changbaishan and possible correlations to proximal units on the 

721 volcano are summarised in Figure 7 and are discussed below. 

722

723 5.2.1. Post 86 ka (Aso-4) Changbaishan eruptions 

724

725 To date, at least four individual tephra layers originating from Changbaishan 

726 have been recognised in marine cores stratigraphically positioned between the 

727 Aso-4 and AT tephra layers (Figure 7). The two oldest, Baegdusan-Yamato 

728 Basin (B-Ym; ca. 85.8 ka) and Baegdusan-Sado-Oki (B-Sado; ca. 67.6 ka) 

729 tephras, have been identified as cryptotephra horizons in both the GH89-2-26 

730 and GH89-2-28 marine cores (Figure 7; Lim et al., 2013). Lim et al. (2013) 

731 report that the B-Ym and B-Sado glass shards are trachytic in composition 

732 (Figure 8). More recently, Derkachev et al. (in press) also identify visible 

733 deposits in several marine cores across the Yamato and Pervenets Rise (e.g., 

734 cores Lv53-25, Lv53-20, Lv53-27, and Lv53-29) that they correlate to the B-

735 Sado tephra. The constructed age models for these marine cores suggest an 

736 eruption age ca. 71 ka (Derkachev et al., in press). 

737

738 The Baegdusan-Japan (B-J) tephra is found between Ulleungdo U-Ym and U-

739 Sado tephra layers (Figure 7), and estimated to have been erupted at ca. 50 ka 

740 based on correlations with the regional-scale  thinly laminated layer 

741 stratigraphy (Ikehara et al., 2004; Lim et al., 2013; Derkachev et al., in press). 

742 Ikehara et al. (2004) and Lim et al. (2013) report a homogenous rhyolitic 

743 composition for the B-J tephra, with ca. 71.2 wt. % SiO2, ca. 12.0 wt. % Al2O3, 
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744 and total alkalis of 11.1 wt. % (Figure 8). It contrasts with the exclusively 

745 trachytic glass compositions of the older ca. 67.6 ka B-Sado tephra (Lim et al., 

746 2013). 

747

748 Derkachev et al. (in press) report a 5 mm thick volcanic ash layer in a sequence 

749 (Lv53-23 at 211 cm) from the Yamato Rise, about 270 km SE of Changbaishan, 

750 in the Sea of Japan. This deposit is therein named the Baegdusan-Unknown (B-

751 Un1) tephra and represents another explosive event dated to around 38.3 ka. 

752 The glass chemistry of this layer is somewhat distinct, containing ca. 73.9 wt. 

753 %, ca. 13.5 wt. % Al2O3, and total alkalis of 8.2 wt. %

754

755 The Lake Suigetsu sediments also provide evidence of another explosive 

756 eruption of Changbaishan chronologically occurring between the B-J and B-Un1 

757 event. A cryptotephra layer (SG14-3380) is found ca. 1.6 m below the U-Ym 

758 tephra (SG14-3216) and this depth corresponds to a date of 42,750 – 42,323 

759 IntCal13 yrs BP (95.4 % confidence interval). The glass compositions of SG14-

760 3380 are exclusively trachytic and geochemically overlap with proximal units 

761 assigned to the late phase of the ME (e.g., NS-4 and NS-5 proximal deposits; 

762 Sun et al., 2017) (Figure 8) and other distal occurrences of the trachytic end 

763 member of the B-Tm ash (e.g., Okuno et al., 2011; Hughes et al., 2013; Sun et 

764 al., 2015; Chen et al., 2016). SG14-3380 does not geochemically overlap with 

765 the reported composition of the ca. 38 ka B-Un1 tephra reported in the Yamato 

766 Rise (Derkachev et al., in press), or the ca. 50.5 ka B-J tephra (Ikehara et al., 

767 2004; Lim et al., 2013) clearly indicating that they represent separate eruptions 

768 of Changbaishan. Here, we name the Suigetsu distal ash of this Changbaishan 
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769 eruption (ca. 42 ka) as the Baegdusan-Suigetsu-42 (B-Sg-42) tephra, following 

770 the convention of naming proximally undefined distal deposits using the type-

771 locality.

772

773 A post-AT distal tephra named the Baegdusan-Vladivostok (B-V) ash was found 

774 in the Primorye regions of Russia, and in the north-eastern part of the Japan 

775 Sea (Figure 1; Machida and Arai, 2003; Ikehara, 2003; Derkachev et al., in 

776 press). The eruption age is estimated to ca. 29 ka (Derkachev et al., in press). 

777

778 5.2.2. Holocene Changbaishan eruptions 

779

780 An eruption from Changbaishan was identified in Lake Suigetsu (SG14-1058) at 

781 8,166 – 8,099 IntCal13 yrs BP (95.4 % confidence interval; McLean et al., 2018) 

782 and was the first known discovery of a large early Holocene eruption from this 

783 volcano. A visible patchy grey peralkaline tephra has since been identified in 

784 Lake Yuanchi, located ca. 30 km east of Changbaishan in China, which is dated 

785 to a similar age as the Suigetsu layer, 8,831 – 8,100 IntCal13 yrs BP (95.4 % 

786 confidence interval; Sun et al., 2018). The major element glass compositions of 

787 this Yuanchi tephra broadly overlap with those of SG14-1058 (Figure 8c), 

788 although some offsets, which are close to instrumental/analytical uncertainty, 

789 are observed. Sun et al. (2018) also suggest the Suigetsu SG14-1058 and 

790 Yuanchi tephra are distal deposits from the eruption that produced the 

791 Qixiangzhan comendite lava flow, but it is not known if there was an explosive 

792 phase associated with this eruption, and the stratigraphic relationship between 

793 the Qixiangzhan comendite and the explosive pre-ME fall deposits is not 
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794 known. Furthermore, the chronological uncertainty on 40Ar/39Ar ages for the 

795 Qixiangzhan comendite mean that it could be a separate eruption (e.g., Singer 

796 et al., 2014; Yang et al., 2014). When normalised to mantle concentrations, we 

797 find that SG14-1058 only shows a minor depletion in Nb, unlike SG06-0226 (B-

798 Tm ash) and C-3 unit (Chen et al., 2016), which could help identify the proximal 

799 deposit. We suggest that the distal ash erupted from Changbaishan at ca. 8.1 

800 ka (e.g., SG14-1508) is named Baegdusan-Suigetsu-08 (B-Sg-08). 

801

802 No distal ash deposits have been identified that geochemically or 

803 chronologically overlap with the pre-ME proximal deposits of NS-4 and NS-5 

804 that are dated to ca. 4 – 5 ka (Sun et al., 2017). Similarly, even in the high-

805 resolution archives in northern Japan (e.g., Lake Kushu; Chen et al., 2019) 

806 there are no clear isochrons representing post-ME ash eruptions of 

807 Changbaishan.  

808

809 6. Conclusions 

810

811 Distal records can provide useful information on past eruption activity from 

812 volcanoes whose deposits are inaccessible for various reasons, e.g., burial or 

813 deposition into dynamic ocean environments. The new occurrences reported 

814 here and considered with other known distal alkali-rich ash units found in 

815 marine and lacustrine cores (spanning the last 86 kyrs) in the East Asian/Pacific 

816 region provide an improved eruption framework for intraplate volcanoes, 

817 Ulleungdo and Changbaishan. This framework shows that there are numerous 
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818 explosive eruptions responsible for distal ash fall events that are only cryptically 

819 recorded in the geological record. 

820

821 Ulleungdo has erupted explosively at least five times over the last 86 kyrs (since 

822 the deposition of the Aso-4 tephra) and these are: the 60 – 61 ka U-Sado 

823 tephra (Lim et al., 2013); the ca. 40.1 ka U-Ym tephra (this study); the ca. 10 ka 

824 U-Oki/U-4 tephra (Smith et al., 2011; 2013); ca. 8.4 ka tephra (U-3; McLean et 

825 al., 2018); and the ca. 5.7 ka U-2 tephra (McLean et al., 2018). Furthermore, it 

826 is likely that a younger eruption from Ulleungdo occurred ca. 2.7 ka, but 

827 chemical analyses of proximal deposits are required to confirm the correlation. 

828 This age would be consistent with an eruption repose interval of <3 ka 

829 throughout the Holocene. 

830

831 The new Changbaishan-derived tephra layers identified in the Suigetsu 

832 sediments indicate that at least eight explosive eruptions have produced 

833 significant ash dispersals over the last 86 kyrs which include the: ca. 85.8 ka B-

834 Ym (Lim et al., 2013); ca. 70 ka B-Sado (Lim et al., 2013; Derkachev et al., in 

835 press); ca. 50.5 ka B-J tephra (Ikehara et al., 2014; Lim et al., 2013; Derkachev 

836 et al., in press); ca. 42.5 ka B-Sg-42 (this study), ca. 38 ka B-Un1 (Derkachev et 

837 al., in press), ca. 25 ka B-V (Machida and Arai, 2003); ca. 8.1 ka B-Sg-08 

838 (McLean et al., 2018); and AD 946 B-Tm tephra associated with the ME 

839 (Hakozaki et al., 2017; Oppenheimer et al., 2017). It is possible that additional 

840 ash fall events will be discovered in other distal records in the future, as there 

841 are some proximal units near Changbaishan (e.g., the compositionally distinct 
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842 NS-4 and NS-5 layers; Sun et al., 2017) that have not yet been correlated to 

843 distal markers. 

844

845 Even though Lake Suigetsu is located ca. 500 km E of Ulleungdo and ca. 1000 

846 km SSE of Changbaishan (i.e., not downwind of the current prevailing winds), 

847 tephra from these volcanoes is clearly preserved in the sediments. The 

848 eruptions responsible for the B-Sg-42 and B-Sg-08 distal tephra must have 

849 been large eruption events (i.e., greater than VEI 5-6), based on the shard 

850 concentrations preserved in Suigetsu (>18,000 shards per gram of dried 

851 sediment). Unfortunately, it is not possible to get better constraints on volume 

852 and magnitude of these events given that they have not yet been found as 

853 visible layers and have not been identified in multiple locations. The precise 

854 ages provided in this paper from the Lake Suigetsu chronology may help locate 

855 these deposits in other records, which may provide more information about the 

856 eruptions and the dispersal of the events. Critically, these tephra occurrences 

857 demonstrate that both Ulleungdo and Changbaishan have been more active 

858 than previously thought, and the ash plumes from these explosive eruptions 

859 were widespread. 

860
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