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In-Field Detection and Quantification 
of Septoria Tritici Blotch in Diverse 
Wheat Germplasm Using Spectral–
Temporal Features
Jonas Anderegg 1*, Andreas Hund 1, Petteri Karisto 2 and Alexey Mikaberidze 2

1 Crop Science Group, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland, 2 Plant Pathology Group, Institute of 
Integrative Biology, ETH Zurich, Zurich, Switzerland

Hyperspectral remote sensing holds the potential to detect and quantify crop diseases 
in a rapid and non-invasive manner. Such tools could greatly benefit resistance breeding, 
but their adoption is hampered by i) a lack of specificity to disease-related effects and 
ii) insufficient robustness to variation in reflectance caused by genotypic diversity and 
varying environmental conditions, which are fundamental elements of resistance breeding. 
We hypothesized that relying exclusively on temporal changes in canopy reflectance 
during pathogenesis may allow to specifically detect and quantify crop diseases while 
minimizing the confounding effects of genotype and environment. To test this hypothesis, 
we collected time-resolved canopy hyperspectral reflectance data for 18 diverse 
genotypes on infected and disease-free plots and engineered spectral–temporal features 
representing this hypothesis. Our results confirm the lack of specificity and robustness of 
disease assessments based on reflectance spectra at individual time points. We show 
that changes in spectral reflectance over time are indicative of the presence and severity 
of Septoria tritici blotch (STB) infections. Furthermore, the proposed time-integrated 
approach facilitated the delineation of disease from physiological senescence, which is 
pivotal for efficient selection of STB-resistant material under field conditions. A validation of 
models based on spectral–temporal features on a diverse panel of 330 wheat genotypes 
offered evidence for the robustness of the proposed method. This study demonstrates 
the potential of time-resolved canopy reflectance measurements for robust assessments 
of foliar diseases in the context of resistance breeding.

Keywords: high-throughput phenotyping, field-based phenotyping, feature engineering, feature selection, 
spectral vegetation index

INTRODUCTION

Hyperspectral remote sensing has shown significant potential for the rapid, non-invasive assessment 
of crop diseases at different scales, ranging from single leaves (e.g., Mahlein et al., 2010; Ashourloo 
et al., 2014) to the canopy (e.g., Cao et al., 2013; Yu et al., 2018) to fields and regions (Wakie et al., 
2016). Applications have been proposed primarily in the context of precision agriculture, but 
resistance breeding may equally benefit (Mahlein, 2016). The identification of novel sources of 
durable, quantitative disease resistance requires screening large and diverse germplasm collections 
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under field conditions. Reflectance-based techniques hold the 
potential to reduce associated costs and allow for the screening 
of more genetic variation, if deployed on adequate phenotyping 
platforms (Kirchgessner et al., 2017; Aasen et al., 2018; Aasen 
and Bolten, 2018). This may enable indirect selection in early 
breeding generations and facilitate the identification of novel 
sources of resistance.

However, to benefit crop breeding, new methods must 
accurately estimate phenotypes for large numbers of diverse 
genotypes under field conditions (Furbank and Tester, 2011; 
Araus and Cairns, 2014; Araus et al., 2018). This represents a 
significant challenge because genotypic diversity and contrasting 
environmental conditions are major sources of variation 
in spectral reflectance. This variation arises mostly from i) 
genotype morphology, canopy cover, and canopy 3-D structure 
(Haboudane et al., 2002; Zarco-Tejada et al., 2005; Jacquemoud 
et al., 2009; Gutierrez et al., 2015); ii) differences in genotype 
phenology and the timing of developmental transitions such 
as heading, flowering, and senescence (Pimstein et al., 2009; 
Stuckens et al., 2011; Kipp et al., 2014); and iii) reactions to other 
biotic or abiotic stresses, which may result in similar spectral 
responses as the disease of interest (Zhang et al., 2012). At present, 
effects of diseases on canopy reflectance are often investigated at 
specific points in time (see e.g., Yang, 2010; Cao et al., 2013; Yu et 
al., 2018). Such investigations have provided valuable but highly 
context-specific insights (i.e., specific to the genotype, growth 
stage and/or site and environment under study; see e.g., Delalieux 
et al., 2007; Zhang et al., 2012; Zheng et al., 2019). Accordingly, 
identified spectral features and corresponding thresholds or 
calibration curves are not sufficiently robust (i.e., universally 
applicable) for use in resistance breeding. Largely due to such 
difficulties, high throughput phenotyping of disease resistance 
under field conditions using hyperspectral reflectance is still 
elusive (Araus et al., 2018).

Septoria tritici blotch (STB) caused by the fungal pathogen 
Zymoseptoria tritici is a serious threat to wheat production 
in major wheat growing areas around the world (Orton et al., 
2011; Torriani et al., 2015). The development of cultivars with 
improved resistance to this disease has become a significant 
objective in wheat breeding and constitutes a key component of 
STB management strategies (O’Driscoll et al., 2014; Brown et al., 
2015; McDonald and Mundt, 2016). Several major resistance 
genes conferring near-complete resistance to certain Z. tritici 
isolates have been identified and used in commercial cultivars 
(reviewed by Brown et al., 2015). However, these genes are 
frequently overcome within a few years of their introduction 
due to the high evolutionary potential of Z. tritici populations 
(McDonald and Mundt, 2016). Genetic loci conferring broadly 
effective partial resistance are thought to be more durable than 
major resistance genes (McDonald and Linde, 2002; McDonald 
and Mundt, 2016). However, sources of partial resistance are 
much more difficult to identify, as subtle differences in disease 
severity must be accurately quantified under field conditions, 
ideally over time.

Automated image analysis has shown great potential to 
accurately quantify STB resistance and characterize different 
components of resistance in genetically diverse breeding 

material (Stewart et al., 2016; Karisto et al., 2018). However, such 
measurements are more labor-intensive than visual scorings and 
do not provide the necessary throughput to routinely screen large 
breeding trials over time. Some recent work has investigated the 
potential of reflectance-based techniques to detect and quantify 
STB non-destructively at the leaf and canopy levels (Odilbekov 
et al., 2018; Yu et al., 2018). At the canopy level, the above-
mentioned challenges are particularly pronounced in the case 
of STB, because epidemics frequently reach damaging levels 
and affect crop performance most during the grain filling phase 
(Bancal et al., 2007). Consequently, detection and quantification 
of STB must be achieved in fully developed canopies with 
a complex architecture, and a clear delineation of STB and 
physiological senescence is essential for efficient selection.

Recently, efforts have been made to increase the specificity of 
reflectance-based methods. For example, new spectral vegetation 
indices (SVIs) with improved specificity to diseases have been 
developed by several authors for various patho-systems (e.g., 
Mahlein et al., 2013; Ashourloo et al., 2014). Other work has 
demonstrated that SVI combinations may allow to differentiate 
between diseases (Mahlein et al., 2010) and to delineate disease 
symptoms and nitrogen deficiency in wheat (Devadas et al., 
2015). Yu et al. (2018) investigated the potential of different 
spectral features to robustly estimate STB severity at the canopy 
level in a large population of genetically diverse wheat genotypes. 
Other work has demonstrated that the sequence of temporal 
changes in hyperspectral reflectance signatures at the leaf level 
may be disease-specific, allowing to differentiate between sources 
of biological stress (Mahlein et al., 2010; Mahlein et al., 2012; 
Wahabzada et al., 2015).

Here, we aimed to achieve robust reflectance-based detection 
and quantification of STB under field conditions by exploiting 
changes in hyperspectral canopy reflectance over time. The basic 
rationale of the proposed approach is that pathogenesis consists 
in a specific and fixed sequence of events producing a constant 
outcome (i.e., disease symptoms). Accordingly, these events 
and outcomes should result in a specific and fixed sequence of 
changes in canopy spectral reflectance over time, irrespective of 
the genotype or environment under study. It seems highly likely 
that relying exclusively on this type of information increases the 
robustness of resulting estimations.

To test the feasibility of this approach, we engineered 
spectral–temporal features based on hyperspectral time series 
measurements. These features are designed to capture relevant 
changes in reflectance over time while minimizing the effect of 
the known confounding factors discussed above. We put forward 
the following hypotheses: (H1) Confounding effects of contrasting 
morphology, canopy cover, and canopy 3-D structure are strongly 
reduced, if only relative changes in reflectance over time at the 
level of individual plots are analyzed. (H2) Confounding effects 
of phenology can be reduced by using combinations of STB-
sensitive and STB-insensitive spectral features. Specifically, we 
hypothesize that several plant traits are relatively unaffected in 
their temporal dynamics by STB. Thus, related spectral features 
can be used as a baseline of changes in spectral reflectance over 
time, arising primarily from advancing crop phenology. This 
baseline can then be used to correct temporal patterns observed 
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in STB-sensitive features for variation in phenology. Finally, we 
hypothesized (H3) that the sequence and the dynamics of STB-
sensitive features are to a certain extent specific to this disease 
and not related to other biotic or abiotic stresses.

Thus, the objective of this study was i) to evaluate the potential 
of time-resolved hyperspectral reflectance measurements 
to detect and quantify STB infections, ii) to delineate 
STB and physiological senescence, and iii) to estimate the 
robustness of the proposed method and hence its potential for 
breeding applications.

MATERIALS AND METHODS

Plant Materials, Experimental Design, 
Phenology, and Meteorological Data
A field experiment was carried out in the field phenotyping platform 
(FIP, Kirchgessner et al., 2017) at the ETH Research Station for Plant 
Sciences Lindau-Eschikon, Switzerland (47.449N, 8.682E, 520 m 
a.s.l.; soil type: eutric cambisol), in the wheat growing season of 2017–
2018. A subset of 18 bread wheat (Triticum aestivum) genotypes was 
selected from the genom-analyse in biologischen system pflanze 
(GABI) wheat panel (Kollers et al., 2013; complemented with 
Swiss cultivars) for contrasting levels of resistance to STB and for 
contrasting stay-green properties based on previous experiments 
at the same location (Anderegg et al., 2019, submitted to this issue; 
Karisto et  al., 2018). The set comprised morphologically diverse 
genotypes (e.g., awned and unawned), and there were obvious 
differences in canopy structural parameters (e.g., flag leaf angle) 
among the selected genotypes (Supplementary Figure 1). The study 
was conducted as a two-factorial experiment in a split-plot design 
with the presence/absence of artificial pathogen inoculation as a 
whole-plot factor and genotype as a split-plot factor.

Artificial inoculation with Z. tritici spore suspension was done 
on May 21, 2018. Z. tritici strains ST99CH_1A5, ST99CH_1E4, 
ST99CH_3D1, and ST99CH_3D7 were used (Zhan et al., 2002; 
see also http://www.septoria-tritici-blotch.net/isolate-collections.
html). Spores were grown for 6 days in 200 ml of yeast sucrose 
broth liquid media (10 g yeast extract and 10 g sucrose in 1 L of 
water) in several flasks for each strain. The spore suspension was 
filtered and pooled together for each strain. Spore concentration 
was adjusted, and spore suspensions of each strain were mixed to 
achieve 150 ml of inoculum for each plot containing in total 106 
spores/ml (2.5 x 105 sp/ml of each strain). Inoculum was sprayed 
in the evening into wet canopy of each plot.

There were two replications for the whole-plot factor. On the 
same site, the entire GABI panel was also grown in two replicates 
(two spatially separated lots). One replication of the inoculated 
plots each was located in a row adjacent to a lot of the GABI 
panel, separated by one row sown with the resistant cultivar CH 
NARA (DSP, Delley, Switzerland). One replication of the non-
inoculated control plots each was spatially randomized within a 
lot of the GABI panel. The experiments were sown with a sowing 
density of 400 plants m−2 on Oct 18, 2017. The plots sown with 
the GABI panel (and thus control plots within it) were treated 
with fungicides on three occasions: i) Input, Bayer (a mixture 
of sprioxamine at 300 g/L and prothioconazole at 150 g/L), 

was applied with a dose of 1.25 L/ha on 23 April 2018 (BBCH 
31); ii) Aviator Xpro, Bayer (a mixture of bixafen at 75 g/L and 
metconazole at 41.25 g/L), was applied with a dose of 1.25 L/ha 
on 14 May 2018 (BBCH 51); and iii) Osiris, BASF (a mixture of 
epoxiconazole at 56.25 g/L and metconazole at 41.25 g/L), was 
applied with a dose of 2.5 L/ha on 28 May 2018 (BBCH 65). The 
inoculated control plots did not receive fungicide treatment. 
Temperature data was obtained from an on-site weather station. 
Rainfall data was obtained from a nearby weather station of 
the federal Swiss meteorological network Agrometeo (www.
agrometeo.ch) located at ca. 250 m distance to the field trial. 
The temperature data was used to calculate growing degree-days 
(GDD) following
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where Tmeand is the mean temperature for day d after sowing, 
maxTd,h and minTd,h are hourly maximum and minimum 
temperatures for day d after sowing, respectively, and baseT is 
the base temperature, set to 0°C. Heading date was recorded 
when 50% of the spikes were fully emerged from the flag leaf 
sheath (BBCH 59, Lancashire et al., 1991). BBCH scores within 
the main growth stages were linearly interpolated between 
assessment dates. Stay-green was assessed visually as described 
previously (Anderegg et al., 2019, submitted), separately for the 
flag leaf and the whole canopy, following guidelines provided by 
Pask et al. (2012). Flag leaf stay-green was scored based on the 
portion of green leaf area on a scale from 0 (0% green leaf area) to 
10 (100% green leaf area). An integer mean value was estimated 
for plants located in a central region of about 0.5 m × 0.5 m of 
each plot. Canopy stay-green was scored on the same scale by 
estimating the overall greenness of the plot when inspected at a 
view angle of approximately 45° considering the entire plot area. 
All scorings were done by the same person in 2–3 day intervals. 
An overview of measurements, scorings, and samplings is given 
in Table 1. Growth stages were recorded until physiological 
maturity following the BBCH scale (Lancashire et al., 1991).

Hyperspectral Reflectance Measurements
Canopy hyperspectral reflectance in the optical domain from 
350 to 2500 nm was measured using a passive non-imaging 
spectroradiometer (ASD FieldSpec® 4 spectroradiometer, ASD 
Inc., USA) equipped with an optic fiber with a field of view 
of 25°. Five spectra were recorded as the average of 15–25 
separate spectral records while moving the fiber optic once 
along the diagonal of each plot at a height of approximately 
0.4 m above the canopy. A Spectralon® white reference panel 
was used for calibration before measuring canopy reflectance. 
The calibration was repeated after measuring one-half of a 
replicate (i.e., after nine plots, approximately every 3–5 min). 

https://www.frontiersin.org/journals/plant-science#articles
https://www.frontiersin.org/journals/plant-science/
www.frontiersin.org
http://www.septoria-tritici-blotch.net/isolate-collections.html
http://www.septoria-tritici-blotch.net/isolate-collections.html
www.agrometeo.ch
www.agrometeo.ch


Disease Phenotyping for Resistance BreedingAnderegg et al.

4 October 2019 | Volume 10 | Article 1355Frontiers in Plant Science | www.frontiersin.org

Measurements were carried out on 14 dates between heading 
and physiological maturity (i.e., between May 30 and July 12, 
2018), resulting in an average of one measurement every 3 days. 
The maximum distance between two consecutive measurement 
dates was 6 days. In parallel, one lot of the GABI panel was 
measured on 13 dates. Here, the sensor calibration was repeated 
approximately every 10 min after completion of measurements 
on two rows.

STB Disease Assessment
The amount of STB in each plot was assessed on five dates 
(t1–t5) between 16 days after inoculation (dai, June 6, 2018) 
and 42 dai (July 2, 2018). STB was quantified by combined 
assessments of disease incidence (i.e., the proportion of leaves 
showing visible symptoms of STB) and conditional disease 
severity (i.e., the amount of disease on symptomatic plants). 
Disease incidence was assessed visually for 30 plants per plot 
by inspecting the leaves of one tiller per plant. Incidence 
scorings were obtained per leaf layer. Conditional disease 
severity was then measured using automated analysis of 
scanned leaves exhibiting obvious disease symptoms. To this 
end, eight infected leaves were sampled per plot, transported 
to the laboratory, and imaged on flatbed scanners following 
the method described by Stewart et  al. (2016) and Karisto 
et al. (2018). However, to avoid interfering excessively with 
the development of the disease epidemic, leaf samples from 
inoculated plots were taken only if disease incidence was at 
least 1/3 (i.e., if at least 10 out of 30 examined leaves exhibited 
symptoms of STB infection). Thus, no leaf samples were taken 
at t1, while at t2, second leaves from the top were sampled from 
a subset of plots. Starting at t3, all plots were sampled at the flag 
leaf layer. In contrast, from non-inoculated control plots, eight 
leaves were sampled without reference to their disease status 
due to very low disease incidence. Automated image analysis 
was then used to extract the percent of leaf area covered by 

lesions (PLACL) from the generated leaf scans using thresholds 
in the HSV color space and functions of the Python application 
program interface of OpenCV V3.0.0 (https://opencv.org/). The 
precision of the automated image analysis method used here to 
assess STB has been demonstrated repeatedly in greenhouse 
and field studies (Lendenmann et al., 2014; Zhong et al., 
2017; Krishnan et al., 2018; Meile et al., 2018; Stewart et  al., 
2018). The procedure was optimized to minimize the effect of 
insect damage, powdery mildew infections, and physiological 
senescence, particularly leaf-tip necrosis, on the derivation of 
PLACL. PLACL was extracted only from t2 and t3 scans, as 
leaves increasingly displayed physiological senescence at later 
time-points. Finally, overall disease severity was calculated by 
multiplying disease incidence with conditional disease severity 
for inoculated plots, whereas it was directly extracted from the 
leaf scans for control plots. 

Data Analysis
All data analyses were done in the R environment for statistical 
computing (R version 3.5.2; R Core Team, 2018). Raw spectra 
were smoothed using the Savitzky–Golay smoothing filter 
(Savitzky and Golay, 1964) with a window size of 11 spectral 
bands and a third order polynomial, using the R package 
“prospectr” V0.1.3. (Ramirez-Lopez and Stevens, 2014). 
Spectral regions comprising the wavelengths from 1,350 to 
1,475 nm, from 1,781 to 1,990 nm, and from 2,400 to 2,500 
nm were removed because of the very low signal-to-noise 
ratio resulting from high atmospheric absorption. Spectra 
were averaged for each experimental plot. Pre-processed 
spectra, consisting of reflectance values at 1,709 wavelengths, 
were then used for time-point specific analysis as well as for 
time-integrated analyses, as described in the next sections. 
For ease of notation, the reflectance at a specific wavelength 
will be abbreviated by R followed by the wavelength in nm 
(e.g., R750).

TABLE 1 | Overview of wheat phenology, canopy reflectance measurements, visual scorings, and samplings. 

Date dai dah Reflectance STB scoring Leaf samplings GS Stg Cnp Stg Fl0

25.05.2018 4 0    59   
30.05.2018 9 5 x   65   
02.06.2018 11 7 x   73   
05.06.2018 14 10 x      
06.06.2018 15 11  t1     
10.06.2018 19 15 x      
14.06.2018 23 19  t2 t2 (Fl1)  10 10
16.06.2018 25 21 x    10 10
19.06.2018 28 24 x t3 t3 (Fl0) 77 10 10
20.06.2018 29 25 x    9 10
22.06.2018 31 27 x    8 9
26.06.2018 35 31 x t4 t4 (Fl0) 79 8 8
30.06.2018 39 35 x   83 3 3
02.07.2018 41 37 x t5 t5 (Fl0)  1 1
07.07.2018 46 42 x   87 0 0
09.07.2018 48 44 x    0 0
12.07.2018 51 47 x   89 0 0

Visual incidence scorings of Septoria tritici blotch (STB), leaf samplings (Fl1 = second leaf, Fl0 = flag leaf), average growth stage (GS), canopy stay-green (Stg Cnp), and flag leaf 
stay-green (Stg Fl0) are reported. Days after inoculation (dai) and days after heading (dah) are indicated for each date.
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Benchmark Time-Point Specific Analysis
The relationship between spectral reflectance and STB was studied 
on a diverse panel of wheat genotypes by Yu et al. (2018), but 
the analysis was limited to single time-points. We performed 
a comparable analysis for each measurement time-point as a 
benchmark and to estimate model transferability across time. 
Yu et al. (2018) reported improved prediction of STB severity 
metrics and classification accuracy when using the full spectrum 
rather than single SVIs. Therefore, our analysis focuses on these 
approaches. We tested two parametrically structured linear models 
[partial least squares (PLS) regression and ridge regression] and 
two tree-based ensemble models (random forest regression and 
cubist regression) for their capability to predict STB severity 
metrics. For classification, PLS discriminant analysis (PLSDA) 
was used (for details on these methods we refer to Kuhn and 
Johnson, 2013 and citations therein). Prior to modeling, spectral 
resolution was reduced to 6 nm by binning (i.e., by computing 
average values for six adjacent wavelengths) due to very high 
correlation of reflectance values at neighboring wavelengths. 
Following a standard procedure (Kuhn and Johnson, 2013), model 
hyperparameters were tuned using 10 times repeated 10-fold 
cross-validation. Thus, training and test datasets comprised 90 
and 10% of the original dataset, respectively. The root mean square 
error of predictions (RMSE) and overall classification accuracy 
were used as performance metrics for regression and classification, 
respectively. The overall accuracy reflects the agreement between 
the predicted and the observed classes. This agreement can also be 
expressed in terms of sensitivity and specificity of the model, with

Sensitivity plots correctly predicted as dise=  #         aased
diseased plots

 
#  

 and

Specificity plots correctly predicted as heal=  #         tthy
healthy plots#   .

The simplest model with a performance within one standard 
error of the absolute best model was chosen as the final model. 
Variable importance for the projection (VIP) was computed 
for PLSDA models to estimate the importance of individual 
wavebands to predict the class (i.e., “healthy” or “diseased”). In 
the regression setting, two different training datasets were used 
for model fitting: the full dataset, including all control plots, 
and a dataset consisting of the inoculated plots only. When all 
control plots were used for model fitting, the RMSE and R2 of 
the resulting models were adjusted by removing the predicted 
and observed values for the control plots again, in order to avoid 
overly optimistic performance estimates resulting from a good 
prediction of disease severity in control plots. The R packages 
“caret” V6.0.80 (Kuhn, 2008), “mixOmics” V6.3.2 (Rohart et al., 
2017), “pls” V2.7.0 (Mevik et al., 2018), “Cubist” V0.2.2 (Kuhn 
et al., 2018), “ranger” V0.10.1 (Wright and Ziegler, 2017), and 
“elasticnet” V1.1.1 (Hastie, 2018) were used for the analysis. 

Time-Integrated Analysis
Summarizing H1–H3, we hypothesized that the analysis of 
temporal dynamics in hyperspectral reflectance signatures may 

facilitate a robust detection and quantification of STB across 
diverse wheat genotypes under field conditions. To evaluate these 
hypotheses, we condensed the hyperspectral time series into 
time series of SVIs, similar to the procedure described previously 
(Anderegg et al., 2019, submitted). Thereby, we obtained a 
comprehensive summary representation of the hyperspectral 
dataset collected over time, interpretable in terms of plant 
physiology and canopy characteristics. The smoothness of SVI 
values over time was evaluated graphically, and only SVIs showing 
a clear and interpretable temporal trend were maintained for 
further analyses. Values of the selected SVIs were scaled to range 
from 0 to 10, representing the minimum and maximum values 
recorded during the assessment period for the corresponding 
experimental plot, respectively. To simplify subsequent steps in 
the analysis, the scale for SVIs with increasing values over time 
was inverted. Measurement dates were converted to thermal 
time after heading by subtracting the plot-specific accumulated 
thermal time at heading from the accumulated thermal time at 
each measurement date. The scaled SVI values were then fitted 
against thermal time after heading for each experimental plot 
and SVI using a Gompertz model with asymptotes constrained 
to 0 and 10 (eq. 1).

 
S b t M= − − ∗ −( ) 





10exp exp  

 
(1)

where S represents the scaled SVI value, t is the accumulated 
thermal time after heading, b is the rate of change at time M, and 
M is the accumulated thermal time after heading when the rate 
is at its maximum (Gooding et al., 2000). Eq. (1) was fitted using 
the R package “nls.multstart” V1.0.0 (Padfield and Matheson, 
2018). Two types of dynamics parameters for each experimental 
plot and SVI were extracted from the resulting model fits: 1) “key 
time-points,” which are specific points in time when a certain 
criterion (e.g., a threshold) is met, and 2) “change parameters,” 
which represent the rate or duration of a process (Figure 1). 
We extracted two key time-points: the M parameter of the 
Gompertz model and the time when fitted values decreased to 
8.5 (t85). As change parameters, we used the rate parameter b 
of the Gompertz model and the duration between t85 and M 
(dur). While the b and M parameters of the Gompertz model 
fully describe the fitted curve, the t85 and dur parameters are 
affected by both Gompertz model parameters, thus representing 
a mix of both. The threshold was set to 8.5 because i) this level 
efficiently captured observed variation during the late stay-green 
phase (Figure 2), ii) it was little affected by somewhat unstable 
values during the stay-green phase observed for some SVIs, and 
iii) for some SVIs, the initial highest values were not optimally 
represented by the Gompertz model.

Next, SVIs least affected in their temporal dynamics by the 
presence or absence of STB infections were selected separately for 
each dynamics parameter as follows: for the key time-points (t85, 
M) by selecting SVIs with the smallest average difference between 
the parameter values of the inoculated and non-inoculated 
control plots and for change parameters (b, dur) by selecting 
SVIs with the smallest average deviance from 1 of the ratio of the 
change parameter values. For each dynamics parameter, a subset 
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of eight SVIs with the smallest difference or ratio was selected. 
All other SVIs were considered to be significantly affected by STB 
infection. Figure 2 shows an example of an STB-sensitive and an 
STB-insensitive SVI.

We then performed unsupervised subset selection (i.e., 
without considering the response) on both sets of SVIs (i.e., 
the STB-sensitive and STB-insensitive SVIs) with the aim of 
removing redundant SVIs. For each dynamics parameter (t85, 
M, dur, b), pairwise Pearson correlation coefficients between 
the parameter values derived from all used SVIs were computed. 
For change parameters, the maximum linear correlation allowed 
was set to r = 0.9, whereas for the key time-points, it was set to 
r = 0.95, as these were generally highly collinear. In cases where 
pair-wise correlations were higher than these threshold values, 
only one of the two SVIs was retained, preferring narrow-band 
SVIs over broad-band SVIs, SVIs with a specific physiological 
interpretation, and SVIs developed specifically for use in wheat 
or barley canopies over more generic SVIs. Additionally, the 
goodness of the Gompertz model fit was evaluated qualitatively 
(i.e., graphically) and used as an additional selection criterion. 
The parameters were then combined by calculating differences 
between the key time-points derived from selected STB-
sensitive and STB-insensitive SVIs and the ratios of the change 
parameters derived from STB-sensitive and STB-insensitive 
SVIs (Figure 3). These differences and ratios were calculated 
for all possible pairs of STB-sensitive and STB-insensitive 
SVIs and were then used as features for 1) the classification of 
plots into non-inoculated healthy control plots and inoculated, 
diseased plots and 2) the prediction of STB severity in each 
plot. This final step was performed primarily to estimate 
whether a combination of features outperform single features 
in predicting STB severity (relevant with respect to H3) and to 
identify the most predictive features (see section 2.4.3). Models 
and model fitting procedures were identical to the time-point 
specific analysis.

Selection of Spectral–Temporal Features
While tree-based models are considered naturally resistant 
to non-informative predictors and some perform feature 
selection intrinsically, the presence of highly correlated 
predictors makes the interpretation of resulting variable 

FIGURE 1 | Extraction of dynamics parameters for one spectral vegetation 
index (SVI; here scaled values of the plant senescence reflectance index) and 
one experimental plot (here a non-inoculated control plot). The t85 parameter 
is the time point when fitted scaled SVI values decrease to 8.5; M is a 
parameter of the Gompertz model, representing the time point when the rate 
of decrease is at its maximum; the dur parameter represents the duration 
in thermal time between t85 and M; and b is a parameter of the Gompertz 
model, representing the maximum rate of decrease. M and t85 are labeled 
“key points”; dur and b are labeled “change parameters.”

FIGURE 2 | Temporal dynamics of spectral vegetation indices (SVIs). Gompertz model fits for all 72 experimental plots are shown. (A) A disease-insensitive SVI 
(here the flowering intensity index, FII) displays the same temporal patterns for both treatments (inoculated and control). (B) A disease-sensitive SVI (here the 
modified chlorophyll absorption ratio index, MCARI2) displays contrasting temporal patterns for control and inoculated plots.
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importance measures challenging (Strobl et al., 2007). Hence, 
we performed supervised feature selection by recursive feature 
elimination with cubist and random forest regression as base-
learners, using a nested cross-validation approach. The dataset 
was resampled 30 times with an 80:20 split using stratified 
sampling. Samples were binned into eight classes based on 
percentiles of STB severity to ensure balanced evaluation 
datasets. Thus, for each resample, feature elimination was 
carried out on 80% of the data, and model performance 
was evaluated on the remaining 20% in 28 decreasing steps. 
Eliminated features were assigned a rank corresponding to the 
iteration after which they were excluded (i.e., those eliminated 
first had rank 28, whereas the feature retained as the last had 
rank 1). In each iteration, the base-learner hyperparameters 
were tuned using 10-fold cross-validation (see Ambroise and 
McLachlan, 2002; Guyon et al., 2002; Granitto et al., 2006 for a 
detailed discussion of the methodology). 

Independent Model Validation
Due to the relatively small size of the experiment (n = 72 
experimental plots), we did not rely exclusively on the 
cross-validated training performance estimates for model 
evaluation. The performance and robustness of the developed 
models were further evaluated using data of 360 wheat 
plots sown with 330 registered varieties obtained from one 
replication of the GABI panel. Low to intermediate disease 
incidence and very low conditional disease severity as well as 
late appearance of symptoms in all 36 control plots spatially 
randomized within the two replications of the panel suggested 
that STB disease should not have reached damaging levels in 
the vast majority of these plots. Therefore, these plots were 
considered as essentially disease-free. For all of these plots, 
spectral–temporal features were extracted from the 13 
measurement time-points as described previously and were 
then used to generate a class label and class probabilities 

from the classification models as well as a prediction of 
disease severity from the regression models. To distinguish 
the performance measures obtained for held-out samples 
of the main experiment (i.e., the cross-validated training 
performance) from those obtained for the independent plots, 
these are referred to as the internal accuracy (accint) and the 
generalized accuracy (accgen), respectively. It is important to 
note that accuracy represents only model specificity in this 
case, as no independent plots with significant levels of STB 
were available. In a final validation step, the spatial distribution 
of class labels and severity predictions were examined by 
creating plots of the experimental design. Thus, we aimed 
to test the robustness of the models to heterogeneous field 
conditions. Field heterogeneity may affect plant physiology 
and thus hyperspectral reflectance over time (e.g., through 
the development of local drought stress). The presence or 
absence of spatial patterns in model predictions can therefore 
be interpreted as an additional measure of model robustness.

Validation of the Most Predictive Feature in a 
Contrasting Environment
Spectral–temporal features were engineered specifically to 
minimize effects of genotype and environment. However, it is 
still conceivable that relative changes in spectral reflectance over 
time are also affected by environmental conditions. This may 
result in the extraction of environment-specific relationships 
between spectral–temporal features and disease severity. We 
therefore evaluated the relationship between the most predictive 
spectral–temporal feature and STB severity using data from 
a separate year. This dataset enables a rigorous validation of 
the spectral–temporal features as predictors of STB for several 
reasons: i) it originates from a strongly contrasting environment 
with wet and cool weather conditions; ii) sowing parameters 
were different, likely affecting canopy structural parameters; 
iii) only natural variance in disease resistance was observed, as 

FIGURE 3 | Derivation of the final key time points based predictors for disease classification and quantification. Key time points extracted from disease-sensitive and 
disease-insensitive spectral vegetation indices (SVI) are combined to isolate the effect of the disease from other effects (e.g., contrasting stay-green) by calculating 
the differences (highlighted by red arrows). (A) Control, “healthy” plot. (B) Inoculated, “diseased” plot. For change parameters, the ratio, rather than the difference, 
was calculated.
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artificial inoculations were not performed; iv) a large number 
of morphologically, phenologically, and structurally diverse 
genotypes not contained in the training population were 
assessed; v) reflectance measurements were not carried out with 
a sufficient frequency to allow fitting of parametric models, and 
we had to use linear interpolations of individual measurement 
time points instead, losing the advantage of the smoothing effect; 
and finally, vi) sampling procedures to quantify STB severity were 
not optimal for our purpose. As parametric models could not be 
fitted, the time point when interpolated values decreased below 
50% of their initial value (t50) was extracted as an equivalent to 
the M parameter of the Gompertz model. For more details on 
datasets and experiments, we refer to Karisto et al. (2018) and 
Anderegg et al. (2019, submitted).

RESULTS

Development of STB Disease
Toward the end of the vegetation period, all inoculated plots had 
substantial levels of STB. In contrast, non-inoculated control plots 
were essentially disease-free until late in the vegetation period. 
Thus, artificial inoculations were effective in all plots, and the 
dataset was suitable for testing the feasibility of the classification 
of plots into healthy and diseased canopies based on reflectance 
spectra or spectral–temporal features. Furthermore, large variation 
in the levels of STB could be observed among the inoculated plots, 
probably attributable to different levels of resistance, with the 

largest variation observed during late stay-green (i.e., at t3, June 19, 
2018, compare with Figure 4B). Thus, the dataset was also suitable 
for testing the feasibility of disease quantification using reflectance 
spectra or spectral–temporal features.

High levels of STB in inoculated plots were the result of both 
high incidence and high conditional severity, particularly at t4 
and t5 (Figure 5A, Table 2). Visual assessments of scanned leaves 
suggested a high conditional severity in all inoculated plots at 
these late stages. In contrast, the non-inoculated control plots 
displayed very low levels of STB even at late stages. STB incidence 
increased in some plots at t4 and t5, but visual assessments of 
the sampled leaves demonstrated very low conditional disease 
severity even at t5. Since the subset of genotypes used for the 
experiment also included some highly susceptible genotypes, 
this suggests that natural infections did not cause agronomically 
significant levels of STB in this experiment. This was likely the 
result of fungicide applications and the very low rainfall in the 
period from May to July. Rainfall in this period totaled 178 mm, 
which represents 52% of the average of 343 mm in the reference 
period 1981–2010 (MeteoSwiss, 2019).

STB incidence was low at t1, both in inoculated and in control 
plots. Symptoms were apparent at significant levels only on lower 
leaf layers of inoculated plots, whereas flag leaves were essentially 
disease-free in both treatments. At t2, there was approximately a 
five-fold increase in STB incidence at the flag leaf and subtending 
leaf layer in many inoculated plots (Figure 5A, Table 2). At 
t3, STB incidence on flag leaves reached very high levels in 
most inoculated plots, and PLACL reached an average of 17%, 

FIGURE 4 | Symptoms of Septoria tritici blotch (STB) and associated spectral reflectance characteristics over time. (A) Date-wise averaged reflectance spectra of 
healthy canopies (upper panel) and of inoculated, diseased canopies (lower panel). Colors approximate the average color of the vegetation on the corresponding 
measurement date (estimated based on average visual canopy senescence scorings). The thick black spectra mark the average reflectance spectra measured at t3 
(i.e., June 19, 2018). (B) Images of two inoculated plots, taken on June 16, 2018. The genotype in the upper panel was highly resistant to STB, developing visible 
symptoms only later, whereas the genotype in the lower panel was highly susceptible and displays severe symptoms of STB. Images were captured using the field 
phenotyping platform (FIP, Kirchgessner et al., 2017). (C) Values of the structure insensitive pigment index (SIPI) for both treatments on three measurement dates. 
The plots shown in panel B are contained in this boxplot (indicated by the red box). No obvious signs of apical senescence were visible by June 20, 2018, in any of 
the healthy control plots, but senescence started shortly after.
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indicating a moderate conditional STB severity on average. 
Thus, the observed differences in STB severity among inoculated 
plots are primarily a result of differences in conditional severity, 
with PLACL ranging from 0 to 38% (Figure 5B). In control 
plots, almost no lesions were detected. There were some signs of 
physiological senescence on sampled flag leaves at t3, but these 
were mostly limited to yellowing of the entire leaves and/or leaf 
tip necrosis. As there was ample variation for disease severity at 
t3 among the inoculated plots and physiological senescence did 
not significantly affect extraction of PLACL from leaf scans, this 
time-point was chosen as a measure of overall disease severity 
and used as response variable in the time-integrated analysis.

Effects of STB and Phenology on Canopy 
Spectral Reflectance
Over the assessment period, observed changes in spectral 
reflectance were similar for diseased and healthy canopies 

(Figure 4A), showing the typical pattern of senescing canopies. 
However, an obvious effect of STB infections consisted in an early 
marked decrease in reflectance in the near-infrared region (NIR) 
not observable in healthy canopies. This decrease preceded the 
appearance of physiological senescence and was observable in 
the pre-symptomatic phase of STB infections. Furthermore, an 
early increase in reflectance in the VIS, especially for wavelengths 
greater than 535 nm, was observed. An early increase in short-
wave infrared region (SWIR) reflectance in diseased canopies 
compared to healthy canopies was also discernible. However, 
these differences were small compared to changes in reflectance 
over time.

Canopy spectral reflectance seemed to remain relatively 
constant throughout the stay-green phase in healthy canopies 
(Figure 4A, upper panel). However, the examination of 
SVI values over time revealed significant changes in canopy 
reflectance during this period (Figure 4C). Importantly, variation 
caused by advancing phenology (i.e., within-treatment variation 

FIGURE 5 | Development of Septoria tritici blotch (STB) disease. (A) STB incidence at five different assessment dates for non-inoculated “healthy” control plots 
(ctrl) and for artificially inoculated “diseased” plots (dis). In diseased plots, STB incidence on flag leaves was assessed at all time points, whereas for the control 
plots, it was assessed only from t3 onward. Filled boxes represent STB incidence on flag leaves; open boxes represent STB incidence on lower leaf layers. 1)Open 
boxes represent STB incidence on third leaves from the top; 2)open boxes represent STB incidence on second leaves from the top. (B) Conditional disease severity 
measured as percent leaf area covered by lesions (PLACL) at t3 (June 19, 2018) for eight flag leaves per plot for all 72 experimental plots.

TABLE 2 | Summary of Septoria tritici blotch (STB) assessments. STB incidence and conditional severity were assessed at the level of individual leaf layers, namely, the 
flag leaf (Fl0), the penultimate leaf (Fl1), and the ante-penultimate leaf (Fl2). Conditional severity was measured as percent leaf area covered by lesions (PLACL). Severity 
was calculated as the product of STB incidence and conditional severity. Values are reported separately for non-inoculated control plots and inoculated plots, separated 
by a slash. Mean values across all plots are reported, with minima and maxima in brackets. Disease assessments were carried out on five dates (t1–t5) covering the 
growth phases of 15 days after inoculation (dai) to 41 dai.

 Time point dai STB incidence PLACL Severity

Fl0 Fl1 Fl2 Fl0 Fl1 Fl0 Fl1

t1 15 -/
0.05 (0, 0.57)

-/
0.10 (0, 0.53)

0.02 (0, 0.13)/
0.20 (0, 0.57)

-/
-

-/
-

-/
-

-/
-

t2 23 -/
0.26 (0, 0.87)

0.05 (0, 0.23)/
0.45 (0.03, 0.87)

-/
-

-/
-

-/
0.05 (0, 0.25)

-/
-

-/
0.03 (0, 0.20)

t3 28 0.03 (0, 0.13)/
0.87 (0.10, 1)

0.09 (0, 0.50)/
0.91 (0.10, 1)

-/
-

-/
0.17 (0, 0.38)

-/
-

0 (0, 0.04)/
0.16 (0, 0.38)

-/
-

t4 35 0.09 (0, 0.33)/
0.92 (0.30, 1)

-/
-

-/
-

-/
-

-/
-

-/
-

-/
-

t5 41 0.17 (0, 0.77)/
0.92 (0.37, 1)

-/
-

-/
-

-/
-

-/
-

-/
-

-/
-

https://www.frontiersin.org/journals/plant-science#articles
https://www.frontiersin.org/journals/plant-science/
www.frontiersin.org


Disease Phenotyping for Resistance BreedingAnderegg et al.

10 October 2019 | Volume 10 | Article 1355Frontiers in Plant Science | www.frontiersin.org

in Figure  4C) was prominent with respect to STB-induced 
variation (i.e., between-treatment variation in Figure 4C). This 
is true even for the structure insensitive pigment index (SIPI), 
which has been proposed as a potential surrogate for crop disease 
under field conditions (Yu et al., 2018; Figure 4C). For several 
other spectral indices, initial variation as well as variation over 
time was even larger (data not shown).

Time-Point Specific Full-Spectrum 
Analysis
Binary Classification Into Healthy and Diseased 
Canopies Using Reflectance Spectra
PLSDA models correctly classified all held-out samples in most 
resampling iterations, resulting in classification accuracies 
accint ≥ 0.96 for all time-points (Figure 6). The optimal number 
of  components used by the PLSDA models (determined 
via repeated CV) was between 5 and 17, depending on the 

time-point. Correct class labels were obtained for all held-out 
samples even for the first time-point at 9 dai, when no visual 
symptoms of STB were present in most experimental plots. 
However, prediction accuracies for the independent GABI plots 
were distinctly lower, particularly for models calibrated with data 
from early and late measurement time-points (data not shown). 
A satisfactory performance on independent plots was observed 
for models calibrated with data from the late stay-green phase 
(i.e., between 2018-06-10 and 2018-06-22), which correctly 
predicted the independent plots as disease-free in most cases 
(accgen ≥ 0.88 in all cases).

VIP scores quantify the importance of wavebands to 
predict the response, i.e., to generate the class label (“healthy” 
or “diseased”) or to predict STB disease severity here (Yu 
et al., 2018). VIP scores for the first three components showed 
some general patterns across time-points (Figure 6). The NIR 
(750–1,300 nm) and the SWIR (1,475–1,781 and 1,991–2,400 
nm) had a relatively high importance (Figure 6). However, the 

FIGURE 6 | Variable importance for the projection (VIP) of the time point specific partial least squares discriminant analysis (PLSDA) models for the first three 
components (comp.1–comp.3). The total number of components used by the model (ncomp), the prediction accuracy for plots included in the experiment (accint), 
and prediction accuracy for the independent test set comprising >300 plots of an adjacent experiment measured on the same day or with a maximum delay of one 
day (accgen) are also reported for each model. The earliest and latest time points are not represented. The gray shaded area represents the spectral range between 
680 and 750 nm, i.e., the red edge. The horizontal black line marks a commonly used threshold value for an important contribution (VIP = 0.8).
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relative importance of the SWIR compared to the NIR drastically 
changes over time. The importance of the SWIR is comparably 
low during early stay-green, but its importance greatly increases 
and exceeds the importance of the NIR during late stay-
green. Furthermore, the red edge (RE, 680–750 nm) had a low 
importance at the beginning but is increasingly important at later 
stages, as indicated by a gradual left-shift of the peak in VIP at the 
NIR for later time-points. Finally, at early time-points, there is a 
significant contribution of wavebands in the visible range (VIS, 
400–700 nm). This feature is somewhat transformed over time, 
resulting in a narrow peak in VIP at wavelengths around 535 
nm at intermediate time-points. Toward later time-points, this 
feature broadens again.

Given the common patterns but also significant differences 
across time-points, we aimed to evaluate the robustness of 
the developed models to temporal changes in reflectance 
induced by advancing crop phenology, as differences in crop 
phenology are typically present among genotypes in breeding 
programs. Model performance across time is shown in Figure 
7. The performance of models calibrated with data from early 
and late time-points quickly deteriorates. In contrast, models 
calibrated with data of intermediate time-points show a higher 
stability over time, although the performance of some models 
still decreases rather fast. The models created using data from 
2018-06-10 and 2018-06-19 were most robust over time and 
produce accurate class predictions over a period of about 10 
days. It is essential to note that these performance estimates 
are derived from the same plots used to calibrate the models, 
although at different time-points. Given the lower accgen 
compared to the accint (see above), significantly decreased 
performance should be expected on entirely independent plots 
(different genotypes).

Regression Models to Quantify Disease Severity 
Using Reflectance Spectra
Cubist regression models performed best in predicting disease 
severity. The smallest RMSE was obtained for models trained 
on data from inoculated plots only (RMSE = 0.061, R2 = 0.67; 
Figure 8). The underlying model was simple, building on only 
four variables (R748, R766, R892, and R1084) in a single model 
tree. Model performance was slightly decreased when all available 
data was used for model fitting (RMSEadj = 0.066, R2

adj = 0.55). 
Here, significant improvements were achieved by increasing 
model complexity. Validation on the largely disease-free plots of 
the GABI panel suggested a high specificity of the model (i.e., 
disease levels on healthy plots were predicted to be virtually zero 
for almost all plots). This was true irrespective of whether the 
control plots were included in the training dataset or not. PLS 
and ridge regression performed similarly (RMSE = 0.063, R2 = 
0.64), whereas random forest regression performed comparably 
poorly (RMSE = 0.087, R2 = 0.46). A strong systematic bias was 
observed in predictions of the random forest, with low values of 
disease severity overestimated and high values underestimated.

Time-Integrated Analysis Using 
Combinations of Spectral Vegetation 
Indices
Engineering of Spectral–Temporal Features as  
New Predictors
Fifty-seven of the tested SVIs were deemed amenable for analysis 
of their temporal dynamics in the proposed framework (i.e., 
they displayed a clear and interpretable temporal trend, which 
could be represented using a Gompertz-type model). For seven 
of these, the last three measurements were excluded prior to 

FIGURE 7 | Overall prediction accuracy of PLSDA models across time. Binary classification models were calibrated for each measurement time point, using 
reflectance spectra collected on this date as predictors and the known class label (i.e., “diseased” or “healthy”) as response. The performance of these models was 
evaluated on held out samples of the same date as well as on all plots of the subsequent measurement time points as the overall accuracy of classification. Colored 
lines track the performance of each date-specific model across time (e.g., the left-most red line represents the performance of the model calibrated with spectra 
obtained on May 30, 2018, when tested on the same date, and for all subsequent measurement dates). The broken black line indicates a performance of 0.5, i.e., 
the performance of a random guess of the class label.
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modeling their temporal dynamics, as values increased again in 
later stages. After subset selection, 7 and 13 SVIs were retained 
as insensitive and sensitive SVIs, respectively, for the key time-
points. For change parameters, 4 and 12 SVIs were retained as 
insensitive and sensitive SVIs, respectively. In total, 24 distinct 
SVIs were retained, of which 10 sensitive and 14 insensitive SVIs. 
From their fitted dynamics, a total of 278 (i.e., 4 insensitive SVIs * 
12 sensitive SVIs * 2 parameters + 7 insensitive SVIs * 13 sensitive 
SVIs * 2 parameters) spectral–temporal features were generated 
as pairwise combinations of dynamics parameters obtained from 
sensitive and insensitive SVIs. These features were then used for 
classification and regression, as described below.

Binary Classification Into Healthy and Diseased 
Canopies Using Spectral–Temporal Features
A PLSDA model using four components achieved a classification 
accuracy accint = 1.00, suggesting correct classification of each 
experimental plot as healthy or diseased canopy based on 
spectral–temporal features. In the external validation, the model 
achieved accgen = 0.86, thus correctly classifying 304/353 plots 
as healthy. This is slightly less accurate than the best time-point 
specific models (Figure 6).

Regression Models to Quantify Disease Severity 
Using Spectral–Temporal Features
Overall, disease severity predictions from spectral–temporal 
features were similarly accurate as those obtained from 

time-point specific models based on reflectance spectra. The 
lowest RMSE was achieved when no control plots were used 
as training data using the PLS algorithm (RMSE = 0.068, R2 = 
0.71). Differences in performance among algorithms were 
smaller than in time-point specific analyses, but the random 
forest performed relatively poorly also in this case (RMSE = 
0.076, R2 = 0.62). Both tree-based models, and particularly the 
random forest, produced systematically biased predictions, 
which was not observable for PLS and ridge regression. In 
contrast to the time-point specific analyses, validation on 
the largely disease-free plots of the GABI panel suggested the 
necessity to include the control plots in the training data in 
order to obtain accurate predictions for low levels of disease, 
except for ridge regression. When these were included, tree-
based models produced good estimates of the low disease-
levels, whereas PLS and ridge regression still predicted disease 
severity of >0.05 in a significant number of plots. The inclusion 
of the control plots resulted in a lower systematic bias of the 
tree-based predictions, while only marginally decreasing model 
performance (RMSEadj = 0.074 and RMSEadj = 0.076 for cubist 
and random forest, respectively; Figure 9A). Importantly, 
the inclusion of the control plots also strongly reduced or 
eliminated spatial patterns in predictions of the GABI panel, 
except for ridge regression (Figure 9B). Thus, cubist regression 
seemed to perform best when taking all evaluated aspects of 
model performance into account.

Feature Selection and Validation
Feature selection was performed to identify the most important 
spectral–temporal features and to estimate the benefit of adding 
additional features. The difference between M derived from the 
modified chlorophyll absorption ratio index (MCARI2) and the 
SIPI was consistently the most informative spectral–temporal 
feature (Supplementary Table 1). The MCARI2 was designed 
to estimate green leaf area index in crop canopies, whereas the 
SIPI measures pigment concentrations and ratios in leaves. 
This feature was retained as the last in all 30 resamples by the 
random forest and in 29 resamples by cubist. Following features 
had much increased ranks. The most influential features were all 
based on the M parameter of the Gompertz model, while other 
parameters were clearly less important. In particular, differences 
in change parameters did not seem to be informative of disease 
severity. Most selected features used the SIPI, R780/R740, and 
PRInorm indices as STB-insensitive index, even though they 
seemed to be somewhat more affected by the presence of disease 
than the flowering intensity index (FII) on average (Table 3). 
There was little evidence for the existence of complementary 
information among the spectral–temporal features, as model 
performance was affected little by the sequential removal of 
features (Figure 10). However, the small sample size resulted 
in very high variance of the performance estimates obtained 
from the test set and contrasting patterns between the cross-
validated training and the test performance estimates (Figure 
10). The top-selected spectral–temporal feature was found to be 
informative of STB severity in the separate experiment carried 
out under contrasting environmental conditions (Pearson r = 
0.53, p < 0.001; Figure 11).

FIGURE 8 | Predicted vs. observed Septoria tritici blotch (STB) severity levels 
of 36 artificially inoculated wheat plots. Mean and standard error of predictions 
are shown. STB severity was measured on flag leaves using a combination 
of visual incidence scorings and scans of flag leaves exhibiting disease 
symptoms. Predictions were obtained from a cubist regression model based 
on the reflectance spectrum of the canopies measured on June 19, 2018. 
The broken red line represents the 1:1 line, the blue line represents the least 
squares line of the linear regression of predicted vs. observed values, and the 
gray area represents the 95% confidence interval of the least squares line.
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DISCUSSION

Limitations of Time-Point Specific 
Analyses
Current reflectance-based approaches to high throughput 
phenotyping of crop diseases under field conditions suffer from 
a lack of specificity and from insufficient robustness to genotypic 
diversity and environmental variability (i.e., context specificity). 
This problem has previously been described in detail with regard 
to growth stages of the crop, different phases in the pathogenesis, 
and the presence of other stresses (Zhang et al., 2012; Devadas 
et al., 2015; Zheng et al., 2019).

Our results prominently illustrate context-specificity of the 
relationship between spectral reflectance and disease. Firstly, 
variation on a specific date in potentially disease-sensitive spectral 
features, such as the SIPI (see Bajwa et al., 2017; Yu et al., 2018), is 
quickly overridden by variation caused by advancing phenology 
(Figure 4C), illustrating the difficulty in defining thresholds 
or calibration curves. Secondly, unstable VIP values of single 
wavelengths in PLSDA models, systematic shifts in VIP patterns 
(Figure 6), and limited model applicability over time, even for 
the plots contained in the training dataset (Figure 7), illustrate 
marked short-term changes in the relationship between STB and 
spectral reflectance. Thirdly, the decreased classification accuracy 
on independent test plots (Figure 6) indicates context-specificity 
related to the effect of genotypes and, possibly, field heterogeneity.

There was a short period during late stay-green when 
classification models were transferable between time-points to 

FIGURE 9 | (A) Predicted vs. observed Septoria tritici blotch (STB) severity levels of 36 artificially inoculated wheat plots. Mean and standard error of predictions are 
shown. Data from all experimental plots (n = 72) was used to tune/train the model, but reported performance estimates are based only on artificially inoculated plots 
(n = 36) in order to avoid overly optimistic performance estimates resulting from a good prediction of disease severity in control plots. STB severity was measured 
on flag leaves using a combination of visual incidence scorings and scans of flag leaves exhibiting disease symptoms. Predictions were obtained from a cubist 
regression model based on spectral–temporal features for the same 36 plots and 36 non-inoculated control plots sown with the same genotypes. The broken red 
line represents the 1:1 line, the blue line represents the least squares line of the linear regression of predicted vs. observed values, and the gray area represents the 
95% confidence interval of the least squares line. (B) Spatial distribution of predicted STB severity levels of ~360 largely disease-free plots of the GABI wheat panel, 
grown next to the plots used as training dataset. White fields correspond to the plots contained in the training dataset.

TABLE 3 | Spectral vegetation indices (SVI) identified to be insensitive in their 
temporal dynamics to the presence or absence of Septoria tritici blotch (STB) 
disease. For each dynamics parameter, a subset of eight SVI with the smallest 
difference (diff, GDD) or ratio (dimensionless) of the parameters between 
treatments was selected. The reported SVI were retained after subset selection 
based on pairwise correlations. The mean pairwise correlation (corr) is reported 
per dynamics parameter. Values in brackets report the minimum and maximum 
pairwise correlations.

SVI DynPar diff/ratio Pairwise corr

R780/R740 t85 75.3 0.66 (0.26, 0.95)
CHLRE t85 55.6
DCNI t85 45.6
FII t85 33.2
GNDVI t85 81.3
PRInorm t85 58.2
SIPI t85 45.3
R780/R740 M 37 0.82 (0.60, 0.95)
CHLRE M 55.6
DCNI M 25.7
FII M 4.4
GNDVI M 40.5
PRInorm M 21.6
SIPI M 22.7
R780/R750 b 1.03 0.73 (0.48, 0.88)
CHLRE b 0.98
MTCI b 0.95
SR b 0.99
R780/R750 dur 1.03 0.75 (0.53, 0.88)
CHLRE dur 1
MTCI dur 1.02
SR dur 0.99
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some extent (Figure 6). This can be explained by the relatively 
synchronized appearance of moderate to high levels of STB in front 
of the relatively stable background of a stay-green canopy. In this 
intermittent phase, the signal caused by STB is strong compared to 

the noise caused by genotypic diversity and in-field measurements 
(see also Figure 4A). Nonetheless, the regression model for STB-
severity based on reflectance spectra is still context-specific, as 
reflectance in the NIR (used as predictors) gradually decreases 
during the stay-green and senescence phase irrespective of the 
presence of STB (Figure 4A). NIR reflectance is also strongly affected 
by genotype morphology, canopy 3-D structure, and canopy cover 
(Jacquemoud et al., 2009; Gutierrez et al., 2015) and is therefore not 
specific to STB if analyzed on a particular point in time. In addition, 
time-point specific models highlight the potential of detecting STB 
in different phases, using different spectral features. This potential 
would be left unused if only a short period would be targeted.

Potential of Temporal Changes in 
Reflectance to Detect and Quantify STB
Due to the strong limitations of models based on reflectance 
spectra, we evaluated the potential of exploiting temporal changes 
in reflectance for disease detection and quantification instead. 
Models based on spectral–temporal features were characterized 
by a somewhat lower performance compared with models 
trained on reflectance spectra of a specific time-point (Figure 7, 
Figure 8). Nevertheless, classification accuracies were similar to 
the time-point specific PLSDA models, and regression models 
suggested that spectral–temporal features were also informative 
of disease severity. This is encouraging, particularly given the 
strongly contrasting morphological, canopy structural, and stay-
green properties of the genotypes comprised in the experiment.

Selected Spectral Indices and Resulting 
Spectral–Temporal Features
Even though high levels of STB developed during the stay-green 
phase in most artificially inoculated plots (Figure 4), several SVIs 
could be identified which displayed similar temporal patterns 
across treatments (Table 3). In particular, the FII (Stuckens et al., 

FIGURE 11 | STB severity as measured by the percent leaf area covered by 
lesions (PLACL) plotted against the spectral–temporal feature identified as 
most predictive of STB severity (the difference between t50 extracted from 
the MCARI2 and SIPI spectral vegetation indices, expressed in growing 
degree days). The Pearson product moment correlation coefficient and the 
p-value of the linear correlation are based on 592 experimental plots. Data 
was collected in a separate experiment conducted in 2016 without artificial 
inoculation. In this experiment, 330 genotypes were grown in two replicates, 
but some plots were excluded from the analysis due to heavy lodging.

FIGURE 10 | Performance profile of models based on spectral–temporal features to predict STB severity as a function of the number of spectral–temporal features 
used. Mean performance and standard deviation are shown based on 30 resamples of the data.
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2011), i.e., the normalized difference of R475 and R365, was found 
to be almost unaffected by STB (Figure 2A). In a previous study, 
we found that early physiological senescence of wheat canopies 
results in only (proportionally) small increases in reflectance at 
wavelengths shorter than 500 nm (unpublished data). Strong 
increases were observable only toward later stages of senescence. 
The observed insensitivity of the FII to STB likely results from 
the fact that STB affects only parts of the vegetation, initially 
mostly lower leaf layers, while significant amounts of healthy 
green tissue remain. Thus, FII values should change significantly 
only with the onset of rapid apical senescence, encompassing a 
generalized loss of green leaf area. It has been suggested that STB 
does not accelerate or anticipate apical senescence under a range 
of environmental conditions (Bancal et al., 2016). This is in line 
with the observed insensitivity of the FII to STB. Interestingly, 
the dynamic pattern of the SIPI (Penuelas et al., 1995) was also 
found to be highly insensitive to STB. In contrast, this SVI was 
previously suggested as a potential surrogate for crop disease 
under field conditions (Bajwa et al., 2017; Yu et al., 2018). This 
index was developed at the leaf scale to maximize sensitivity to 
the ratio between carotenoid and chlorophyll a concentrations 
(Car/Chl a ratio), while minimizing the effect of leaf surface and 
mesophyll structure (Penuelas et al., 1995). Provided the principles 
underlying the SIPI hold also for canopy level reflectance, a low 
sensitivity of the dynamic pattern to the presence of STB would 
be expected, as there seems to be no reason to expect a significant 
change at canopy level of the Car/Chl a ratio due to STB. STB 
causes the appearance of localized necrotic lesions; however, a 
general increase in the Car/Chl a ratio is not expected, unless 
STB accelerates or anticipates apical senescence, which does 
not seem to be the case (Bancal et al., 2016). The PRInorm was 
also among the most STB-insensitive SVIs. This SVI is based on 
the photochemical reflectance index (PRI), initially employed 
to measure changes in the relative levels of pigments in the 
xanthophyll cycle (Gamon et al., 1992). Over larger temporal 
scales, the PRI was shown to be strongly responsive to the Car/
Chl ratio (Sims and Gamon, 2002). Zarco-Tejada et al. (2013) 
modified this SVI to decrease the effect of reduced canopy leaf 
area resulting from water stress. Thus, its insensitivity to STB can 
probably be explained in an analogous manner as for the SIPI.

The temporal patterns of water-sensitive SVIs such as the 
water index (WI; Peñuelas and Inoue, 1999) and the normalized 
difference water index (NDWI; Gao, 1996) were found to be 
highly sensitive to STB. Similarly, the disease water stress index 
(DSWI; Apan et al., 2004), which uses information from the 
water-sensitive SWIR and the NIR, was strongly affected in its 
temporal dynamics. In particular, water sensitive SVIs decreased 
much earlier for inoculated than for control plots, and the decrease 
occurred more gradually than in healthy plots (data not shown). 
This is in line with findings by Yu et al. (2018), who reported both 
the WI and NDWI to discriminate best between STB-diseased 
and healthy canopies in early stages of disease development. 
Several SVIs using reflectance in the RE and NIR also showed 
strongly contrasting temporal patterns [e.g., DSWI, normalized 
difference vegetation index, plant senescence reflectance index 
(PSRI), and VI700]. Similar to the SIPI, the PSRI (Merzlyak et 
al., 1999) is highly sensitive to the Car/Chl ratio at the leaf level. 

However, NIR reflectance is used to normalize the difference 
between R677 and R500. It seems highly questionable whether 
the PSRI is particularly sensitive to the Car/Chl ratio in diverse 
germplasm at the canopy level. Variation in the PSRI seems to arise 
primarily from differences in canopy structure among genotypes 
and from canopy structural changes over time (Anderegg et al., 
2019, submitted). The modified chlorophyll absorption ratio index 
(MCARI2; Haboudane et al., 2004), sensitive to green leaf area 
index, also showed strongly contrasting dynamic patterns (Figure 
2B). The healthy index (HI; Mahlein et al., 2013) was developed 
to separate healthy sugar beet leaf tissue from tissues affected by 
various foliar diseases. The prominent use of the RE by this index 
suggests that in our case, HI values are mostly driven by canopy 
structure and to a lesser extent chlorophyll absorption. Overall, 
our results thus suggest that SVIs sensitive to leaf internal structure 
and canopy structure are strongly affected by the presence of STB. 
This effect has been previously described for various patho-systems 
(e.g., Zhang et al., 2012; Yu et al., 2018; Zheng et al., 2019).

In summary, it seems that many of the derived spectral–temporal 
features can be interpreted as robust measures of STB-induced 
temporal changes in leaf internal structure, canopy structural 
parameters, and canopy water content. These are obtained by 
normalizing the temporal dynamics of corresponding SVIs via the 
estimation of temporal changes in pigment ratios and reflectance 
at short wavelengths centered around 465 nm, likely representing 
physiological apical senescence. Thus, spectral–temporal features 
seem to well represent our hypothesis H2, as STB-affected plant 
and canopy traits are expressed relative to phenology-related traits.

Robustness of Spectral–Temporal 
Features
As far as quantifiable in the framework of this experiment, models 
based on spectral–temporal features were robust to variation in 
genotype morphology, phenology, canopy cover, and canopy 
3D structure as well as genotype-specific temporal changes 
thereof. Accurate predictions were obtained also for 330 diverse 
genotypes comprised in the GABI panel and grown in a large 
field experiment, suggesting robustness of the method to varying 
growing conditions arising from field heterogeneity (Figure 9B). 
The most predictive feature was also among the best predictors of 
STB severity in a different experiment. The observed correlation 
is very similar to the correlations reported by Yu et al. (2018) 
for simple SVI measured at individual time points, however with 
the advantages discussed throughout the manuscript. The results 
of this final validation likely underestimate the power of the 
developed approach for several reasons as described in section 
2.4.5 but offer evidence for the transferability of our results across 
sites, environments, genotypes, and agricultural practices.

Results from feature selection suggested that a single spectral–
temporal feature (i.e., the difference between M derived from 
MCARI2 and SIPI), relating structural changes in leaves and 
canopies to senescence-induced changes in pigment composition, 
was sufficient to achieve the performance illustrated above. 
Other stresses occurring during grain filling such as terminal 
drought stress and nitrogen shortages are likely to result in a 
similar decrease in green leaf area index. However, these stresses 
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are also known to accelerate physiological senescence (Martre 
et al., 2006; Bogard et al., 2011; Distelfeld et al., 2014). Therefore, 
we speculate that the developed models may be moderately 
robust against the effect of common other stresses despite their 
simplicity. Yet, we conclude that our hypothesis H3 (i.e., that the 
combination of several spectral–temporal features representing 
the unique sequence and dynamics of separate events during 
pathogenesis could increase the specificity of the method) remains 
to be confirmed in larger experiments including other stress 
factors. In particular, other diseases causing similar symptoms 
and prevalent in the same developmental stage of the crop may 
have similar effects on the temporal evolution of hyperspectral 
reflectance. Large multifactor experiments will be required to 
judge the potential of the proposed approach to detect, quantify, 
and delineate individual necrotrophic foliar diseases. Finally, it 
should be noted that some effects of fungicide applications on 
canopy reflectance characteristics cannot be excluded in our 
experiment. However, a fungicide formulation without greening 
effect was used for the last treatment at BBCH 65. It seems 
unlikely that this or earlier fungicide applications significantly 
affected the temporal dynamics of canopy reflectance.

Multiple Spectral Vegetation Indices to 
Exploit Temporal Dynamics in Reflectance
A key component of the proposed approach consists in 
summarizing hyperspectral data in terms of multiple SVIs and 
modeling of their temporal dynamics. Though this may result in 
the loss of some relevant information contained in reflectance 
spectra (Pauli et al., 2016), the use of SVIs presented a number of 
advantages here: i) noise in temporal patterns was much reduced 
compared to reflectance values at single wavelengths, facilitating the 
fitting of parametric models; ii) the inevitable subset selection step 
preceding feature combination could be based on objective criteria 
related to the form and purpose of SVIs; iii) many of the used SVIs 
were designed specifically to maximize responsiveness to certain 
vegetation properties while minimizing the effect of common 
confounding factors, which is likely to also increase the robustness 
of derived spectral–temporal features (see e.g., Penuelas et al., 1995; 
Haboudane et al., 2004); and finally, iv) the procedure results in a 
summary of the hyperspectral dataset that is interpretable in terms 
of plant physiology and canopy characteristics, which also holds 
true for derived spectral–temporal features. Fitting parametric 
models to scaled SVI values may smooth out measurement errors 
related to single measurement dates, resulting for example from 
varying sun angle at measurement or short-term variation in 
illumination conditions. Thus, scaling SVI values and modeling 
their temporal dynamics reduces the effect of confounding factors 
on initial reflectance spectra and minimizes the effect of errors 
related to single measurements in the series.

Context and Scope
In this study, we used a non-imaging spectroradiometer and manual 
feature engineering for disease detection and quantification. A 
high spatial resolution of imaging sensors has been deemed critical 
for disease detection, identification, and quantification by others 

(Mahlein et al., 2010; Mahlein et al., 2012; Mahlein, 2016). The high 
potential of 2-D information in combination with deep learning 
methods for disease identification has been demonstrated recently 
(Mohanty et al., 2016; Fuentes et al., 2017). However, changes in 
spectral reflectance over time have also been shown to be highly 
informative at the leaf level (Mahlein et al., 2010; Wahabzada 
et al., 2015). To make use of the spatial and temporal dimensions 
under field conditions, individual lesions would arguably have to 
be tracked across time. Some solutions to this problem have been 
presented for close-range hyperspectral measurements (Behmann 
et al., 2018). However, similar solutions at the canopy level may 
be technically extremely challenging to implement and require 
extensive studies due to problems in tracking individual pixels 
or organs over time and in obtaining a clean spectral signal from 
objects with varying orientation. Existing approaches to make use 
of spectral, spatial, and temporal information rely on automated 
and data-driven extraction of characteristic spectral features 
for diseased plants under controlled conditions (Wahabzada 
et al., 2015; Wahabzada et al., 2016; Thomas et al., 2018). Here, 
promising results were achieved using a non-imaging sensor 
and manual feature extraction. This highlights that an improved 
understanding of potential confounding factors arising under 
field conditions may equally boost the potential of remote sensing 
methods for applications in crop breeding.

We developed and validated the presented method to facilitate 
robust in-field detection and quantification of STB. However, 
the underlying concepts should be transferrable to different 
problems, such as the detection and quantification of other 
foliar diseases. Several features of the proposed approach (e.g., 
exploiting plot-based relative changes in reflectance over time, 
combining sensitive and insensitive features, or the SVI-based 
parameterization of temporal dynamics) may also be valuable in 
quantifying other breeding-relevant traits, such as the timing and 
dynamics of nitrogen remobilization.

CONCLUSION

Here, we tested the possibility to detect and quantify STB relying 
exclusively on relative changes in spectral reflectance over time, 
which is expected to minimize confounding effects on spectral 
reflectance arising from genotypic diversity and environmental 
conditions. Our results demonstrated the feasibility of the 
proposed approach and suggested that resulting models were 
robust against variation in several common nuisance factors. 
Specifically, it appears that the temporal dynamics in green leaf 
area index when set in relation to the dynamics of physiological 
apical senescence is highly indicative of the presence of STB 
infections and of STB severity. Time-resolved measurements of 
the MCARI2 and the SIPI SVIs could allow to assess these traits 
at very high throughput, facilitating time-resolved large-scale 
screenings of breeding nurseries.

Larger calibration experiments will offer the opportunity to 
evaluate the inclusion of additional spectral–temporal features 
that better capture relevant information in different phases of 
pathogenesis. This is likely to improve sensitivity and specificity 
of resulting models, which should also be tested in more detail. 
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Furthermore, the evaluation of the scalability to unmanned aerial 
vehicles will represent a crucial step toward application of such 
methods in breeding programs.
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