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Key Points: 10 

• Uncertainty in the Atlantic Meridional Overturning Circulation is the main cause of the 11 

model spread in evolution of the warming pattern. 12 

• Warming in Northern Hemisphere extratropics tends to be surface trapped, leading to 13 

more positive lapse-rate and cloud feedbacks. 14 

• Models with stronger recovery in Atlantic Meridional Overturning Circulation tend to 15 

project a larger increase in net climate feedback.  16 
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Abstract 17 

In most coupled climate models, effective climate sensitivity increases for a few decades 18 

following an abrupt CO2 increase. The change in the climate feedback parameter between the first 19 

20 years and the subsequent 130 years is highly model-dependent. In this study, we suggest that 20 

the intermodel spread of changes in climate feedback can be partially traced to the evolution of the 21 

Atlantic Meridional Overturning Circulation (AMOC). Models with stronger AMOC recovery 22 

tend to project more amplified warming in the Northern Hemisphere a few decades after a 23 

quadrupling of CO2. Tropospheric stability then decreases as the Northern Hemisphere gets 24 

warmer, which leads to an increase in both the lapse-rate and shortwave cloud feedbacks. Our 25 

results suggest that constraining future ocean circulation changes will be necessary for accurate 26 

climate sensitivity projections. 27 

Plain Language Summary 28 

How much the Earth’s climate will warm in response to increasing carbon dioxide 29 

concentration, a number known as climate sensitivity, is an essential metric of the impacts of 30 

anthropogenic climate change. Most current global climate models agree that the climate will 31 

become more sensitive as time passes, indicating an underestimation of future warming inferred 32 

from historical records. In this study, we report that the slow response of oceanic circulation has 33 

an influence on this time evolution of climate sensitivity. In the 15 state-of-the-art global climate 34 

models we investigate, the models projecting re-strengthening of Atlantic Meridional Overturning 35 

Circulation (AMOC) after a few decades of weakening tend to simulate a more significant increase 36 

in climate sensitivity. We propose a mechanism as follows: AMOC strengthening causes more 37 

enhanced surface warming in the Northern Hemisphere, altering the vertical stability of the global 38 

atmosphere. The changes in atmospheric vertical stability then strengthen the radiative feedbacks 39 

that amplify greenhouse gas forcing, accounting for the larger increase in climate sensitivity in 40 

these models. Our findings emphasize the important contribution of ocean circulation to the 41 

intermodel spread in climate change projections. 42 

1 Introduction 43 

Equilibrium climate sensitivity (ECS) refers to the globally-averaged equilibrium surface 44 

air temperature response to an abrupt doubling of CO2 concentration, and it has spanned a range 45 

of 1.5 − 4.5 K for decades (Charney et al., 1979; Flato et al., 2013). Since it takes thousands of 46 

years for coupled models to reach steady state, ECS is usually estimated by assuming the net 47 

climate feedback (λ) is time-invariant (Gregory et al., 2004): 48 

ECS = −F/λ.  (1) 57 

F is radiative forcing of 2×CO2. The “constant λ” approximation has been applied to some 49 

atmospheric general circulation models (AGCMs) coupled to slab ocean models, pointing out that 50 

the uncertainty in cloud feedback is the main cause of the intermodel spread of ECS (Bony et al., 51 

2006). Many studies, however, have reported a time dependence of λ  in atmosphere−ocean 52 

coupled general circulation models (AOGCMs), which adds another uncertainty in determining 53 

ECS (Block & Mauritsen, 2013; Geoffroy et al., 2013; Armour, 2017). The time dependence of λ 54 

has been related to the evolution of the surface warming pattern (Armour et al., 2013; Rose et al., 55 

2014; Zhou et al., 2016). 56 

 How the surface warming pattern evolves under CO2 forcing and how it varies among 58 

models are further issues to be confronted in narrowing the uncertainty of ECS. Many have argued 59 

for the importance of the ocean in controlling the surface warming pattern (Winton et al., 2010; 60 
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Winton et al., 2013; Marshall et al., 2015). For example, Marshall et al. (2015) observed a broad 61 

correspondence in SST anomaly between the ocean-only model and multiple AOGCMs, especially 62 

the delayed warming in the North Atlantic and the Southern Ocean, suggesting that mechanisms 63 

controlling the SST response in coupled models are influenced by ocean processes.  64 

 To identify the mechanisms driving the distinct time evolution of climate feedbacks across 65 

AOGCMs, we diagnose the time-varying ocean processes, surface warming patterns, and climate 66 

feedbacks in fully coupled models (section 2). We show that part of the intermodel spread in 67 

climate feedback evolution can be traced to the evolution of the Atlantic Meridional Overturning 68 

Circulation (AMOC), via changes in the surface warming pattern and atmospheric stability 69 

(section 3). In section 4 we summarize our results and compare them with the previous studies 70 

focusing on the multimodel mean. 71 

2 Materials and Methods 72 

2.1 Model data 73 

We analyze the output from 15 climate models participating in the Coupled Model 74 

Intercomparison Project Phase 5 (CMIP5) that provide the required variables for our study (Table 75 

S1). 150-year simulations with pre-industrial conditions (piControl) and forced with an abrupt 76 

quadrupling of atmospheric CO2 concentration (abrupt4×CO2) are assessed. To remove any model 77 

drift, we calculate the anomalies by subtracting the piControl integration from the corresponding 78 

parallel abrupt4×CO2 integration. 79 

2.2 The evolution of the climate system per 1K global warming  80 

To represent the evolution of the climate system, we define an operator "δ" as follows: 81 

δX =
dX

d(GMT)
|
Y21-150

−
dX

d(GMT)
|
Y1-20

.  (2) 92 

X can be any of the target fields. Ordinary least-squares regression of annual-mean anomalies in 82 

X against annual- and global-mean surface air temperature anomaly (GMT) is separately done for 83 

the early (years 1-20) and late (years 21-150) periods. The separation at year 20 approximately 84 

divides climate responses into fast and slow components (Held et al., 2010; Geoffroy et al., 2013). 85 

When X is surface air temperature (TAS), equation (2) gives the “surface warming pattern 86 

evolution” (δTAS) (Figure 2a). When X is the global-mean net radiation at the TOA, the terms in 87 

equation (2) are the net climate feedback (λ) for the two time periods, and the difference gives the 88 

“net climate feedback evolution” (δλ). Different choices of separation year have little influence 89 

on the magnitudes of δλ  (Andrews et al., 2015). δλ  can be further decomposed into various 90 

components using the radiative kernel method (Soden et al. (2008); see Text S1).  91 

The terms in equation (2) are chosen to be derivatives with respect to GMT for two reasons 93 

(see Figure S1 for GMT evolution). First, the patterns of surface temperature and TOA radiation, 94 

expressed per unit of GMT increase, are generally assumed to be constant in a given model. This 95 

is an application of the common “pattern scaling” assumption. If pattern scaling holds exactly for 96 

X, equation (2) gives X=0; otherwise, X measures the deviation from pattern scaling. Second, 97 

the change in any X tends to be larger for models which have greater ECS, and hence greater GMT 98 

at all time. The use of the derivatives thus in effect normalizes X with respect to ECS, removing 99 

that factor from the consideration of the spread among models in the projected changes. 100 
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2.3 AMOC index (δψ) 101 

For each model, we first identify the AMOC strength (ψ) as the maximum of the ocean 102 

overturning mass streamfunction (variable name msftmyz or msftyyz) over the North Atlantic (north 103 

of 30°N), excluding the overturning shallower than 500 m (Gregory et al., 2005). We then define 104 

the “AMOC index (δψ)” as per equation (2) with X as the AMOC strength (ψ). The AMOC index 105 

quantifies the AMOC evolution from early to late periods in each model and is insensitive to the 106 

choice of separation year discussed in section 2.2 (Table S2). Variations in AMOC strength arising 107 

from natural variability tend to be substantially smaller than AMOC index values and are unlikely 108 

to explain the intermodel spread (see Text S2). With regard to our motivation for taking derivatives 109 

with respect to GMT (cf. the previous paragraph), there is no significant correlation of AMOC 110 

changes with ECS across models, so the second reason does not apply. The first reason is valid 111 

because it makes the early and late terms comparable, by normalizing responses with respect to 112 

the magnitude of climate change in the two periods. 113 

3 Results 114 

On average in the 15 CMIP5 coupled climate models analyzed in this study, the climate 115 

system becomes more sensitive as it approaches equilibrium, with the multimodel-mean net 116 

climate feedback (λ) evolving from -1.37 Wm−2K−1 during the first 20 years of abrupt4×CO2 117 

simulations to -0.87 Wm−2K−1 during the following 130 years. The difference in multimodel-118 

mean λ (0.50 Wm−2K−1) between the periods is consistent with previous studies (Andrews et al., 119 

2015; Ceppi & Gregory, 2017). At the same time, this time evolution of climate feedback (δλ) is 120 

highly model-dependent, ranging from -0.18 to 1.05 Wm−2K−1 across models, a range 2.5 times 121 

as large as the magnitude of their multimodel mean. 122 

           To identify the root cause of the intermodel spread of climate feedback evolution, we 123 

investigate the evolution of global meridional overturning circulation (GMOC), quantified as the 124 

meridional mass streamfunction for the global ocean (Manabe & Stouffer, 1993; Talley et al., 125 

2003). An Empirical Orthogonal Function (EOF) analysis (also known as Principal Component 126 

Analysis) of GMOC evolution, applied across models, shows that the AMOC evolution is the main 127 

uncertainty of the global ocean circulation response (see Text S3). This is consistent with previous 128 

studies highlighting the uncertainty in AMOC projections in CMIP5 models (Cheng et al., 2013; 129 

Wang et al., 2014; Heuzé et al., 2015). Based on the AMOC evolution, the 15 CMIP5 models can 130 

be classified into three groups, with high, medium, and low AMOC indices (𝛿ψ; see Figure S2 for 131 

the list of models in each composite). In the high AMOC index composite, the AMOC slows down 132 

significantly in the initial stage of warming but recovers in strength in the later stage; by contrast, 133 

in the low AMOC index composite, the AMOC slows down moderately in the initial warming but 134 

continues slowing down as warming proceeds (Figure 1a). It is possible that models in the low 135 

index group would eventually project AMOC re-strengthening if the lengths of the simulations 136 

were extended. The timing of the re-strengthening could be more than a thousand years after 137 

quadrupling CO2 (Stouffer & Manabe, 2003; Li et al., 2013). The weakening of the AMOC in 138 

response to greenhouse-gas forcing is predominantly due to the buoyancy effect of changes in 139 

surface heat flux, with the effect of changes in surface water flux being relatively minor (Gregory 140 

et al., 2005; Gregory et al., 2016). However, substantially increased meltwater from the Greenland 141 

ice sheet, not included in CMIP5 experiments, could further weaken the AMOC (Stouffer et al., 142 

2006; Swingedouw et al., 2009; Sgubin et al., 2015; Swingedouw et al., 2015; Saenko et al., 2017).  143 
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The cause of the intermodel spread in AMOC evolution is beyond the scope of this study. 144 

Instead, we report that the spread in the AMOC evolution can partly contribute to the intermodel 145 

spread in net climate feedback evolution (δλ). δλ is positively correlated with the AMOC index 146 

(𝛿ψ) (r=0.55; Figure 1b). In the rest of the paper, we will explain why models with higher AMOC 147 

index tend to project a larger increase in λ  through changes in surface warming pattern and 148 

tropospheric stability. 149 

3.1 The uncertainty in the surface warming pattern evolution (δTAS) 150 

As the climate system approaches equilibrium, the multimodel-mean surface warming 151 

pattern becomes less pronounced over the Arctic region and the western North Pacific, and more 152 

pronounced over the tropical East Pacific and the Southern Ocean (Figure 2a), consistent with 153 

Andrews et al. (2015) and Ceppi and Gregory (2017). In most regions over the globe, we note that 154 

the evolution of the surface warming pattern (δTAS)  is quite model-dependent, since the 155 

magnitudes of 1 standard deviation of δTAS across models are larger than the multimodel-mean 156 

δTAS. In addition, the first EOF of δTAS across models, explaining 48% of the total variance, 157 

exhibits a difference between the northern and southern hemispheres (Figure 2b), suggesting that 158 

the degree of hemispheric asymmetry is the main uncertainty in the evolution of the surface 159 

warming pattern. 160 

We propose that the intermodel spread of the AMOC evolution is a cause of the spread in 161 

δTAS. To visualize the spatial pattern of the AMOC-related δTAS spread, Figure 2c shows the 162 

regression slopes of δTAS against the AMOC index. Models with higher AMOC index tend to 163 

project increasingly pronounced warming in the Northern Hemisphere (NH) extratropics, and 164 

increasingly weak warming in the tropics and Southern Hemisphere (SH) as time passes, and vice 165 

versa for models with lower AMOC index (Figures 2c and 2d). Note the remarkable similarity 166 

between the AMOC-related spread of δTAS (Figure 2c) and the first EOF of δTAS (Figure 2b) 167 

(area-weighted pattern correlation = 0.94). Also, the AMOC index is well correlated with the 168 

principal component (PC) corresponding to the first EOF (Figure 2e). We therefore suggest that 169 

the varying AMOC evolution is the main cause for the uncertainties in the warming pattern 170 

evolution (δTAS). Previous studies have attributed the surface temperature response on decadal 171 

and longer timescales to the strength of the deep ocean circulation, based on results from a single 172 

model or from the CMIP5 multimodel-mean (Marshall et al., 2015; Trossman et al., 2016). Here 173 

we corroborate that attribution by relating the intermodel spread of the surface warming pattern 174 

evolution to the varying AMOC evolution among models. 175 

3.2 The uncertainty in the tropospheric stability evolution (δEIS) 176 

Varying hemispheric asymmetry in the surface warming pattern evolution can lead to 177 

uncertainty in the tropospheric stability response, shown to be a key mechanism for the time 178 

evolution of climate feedbacks (Ceppi & Gregory, 2017; Andrews & Webb, 2018). Here we 179 

quantify tropospheric stability by calculating the estimated inversion strength (EIS), defined as the 180 

difference in potential temperature between 700 hPa and the surface, corrected to account for the 181 

dependence of the moist adiabat on mean temperature (Wood & Bretherton, 2006). In general, the 182 

multimodel-mean EIS evolution (δEIS, defined using equation (2)) has the opposite sign from the 183 

multimodel-mean warming pattern evolution (δTAS) (Figure S3, consistent with Figure 1b in 184 

Ceppi and Gregory (2017)). Also, similar to δTAS, δEIS appears to be model-dependent. For 185 

example, in the Arctic, the North Atlantic, and the western North Pacific, the negative regression 186 

slopes indicate that models with stronger AMOC recovery (high AMOC index) tend to project an 187 
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increasingly unstable troposphere in these regions, and vice versa for the positive regression slopes 188 

in the tropical South Atlantic (Figure 3a). Dominated by the negative correlation in the NH, Figure 189 

3c shows that the global-mean EIS evolution negatively correlates with the AMOC index. 190 

Our interpretation for the link between hemispherically asymmetric warming pattern and 191 

global EIS response is as follows. The pronounced warming in the relatively stable NH extratropics 192 

tends to remain trapped near the surface, resulting in a more unstable troposphere. The warming 193 

is increasingly pronounced if the AMOC index is higher, accounting for the negative regression 194 

slopes of δEIS against the AMOC index. In the tropics, consistent with the weak temperature 195 

gradient approximation (Sobel et al., 2002), the temperature of the free troposphere is uniform and 196 

is determined by the SST over the deep convective regions (e.g., the West Pacific warm pool), 197 

where the lapse rate is close to a moist adiabat. The regression slopes of δTAS against the AMOC 198 

index are negative in the West Pacific warm pool (Figure 2c). The approximation explains a larger 199 

decrease in temperature of the free troposphere throughout the entire tropics for models with higher 200 

AMOC index (not shown). Therefore, regions with positive or insignificant regression slopes of 201 

δTAS against AMOC index exhibit negative regression slopes of δEIS. Consistently, Figure 3a 202 

shows that regions with more positive δTAS relative to the warm pool (red contours) would project 203 

more negative δEIS, and vice versa for the regions with more negative δTAS relative to the warm 204 

pool (green contours). An exception to this behavior is in the SH extratropics, where the suppressed 205 

warming response over Antarctica is not trapped near the surface as in the NH extratropics. Instead, 206 

it is vertically uniform and can be ascribed to a more positive southern hemisphere annular mode 207 

(SAM). A more positive SAM is characterized by the band of westerly winds contracting toward 208 

Antarctica (Figure 3e) and is associated with equivalent barotropic wind and temperature 209 

anomalies (Thompson & Wallace, 2000).  210 

3.3 The uncertainty in the climate feedback evolution (δλ) 211 

The AMOC-related spread in global EIS evolution affects the lapse-rate feedback. Figure 212 

4a shows the regression slopes of lapse-rate feedback evolution against the AMOC index, which 213 

is strongly anticorrelated with the regression slopes of the EIS evolution (Figure 3a) (area-214 

weighted pattern correlation = -0.92). In the Arctic, the North Atlantic, and most of the North 215 

Pacific, the troposphere becomes more unstable in the models with higher AMOC index. A more 216 

unstable troposphere indicates a reduced cooling ability of the free troposphere, which then results 217 

in a more positive lapse-rate feedback. Since models with a more positive AMOC index tend to 218 

project a larger decrease in global-mean EIS (Figure 3c), those models should also feature a larger 219 

increase in global-mean lapse-rate feedback. Indeed, Figure 4c shows a positive correlation (r=0.83) 220 

between the AMOC index and the global-mean change in lapse-rate feedback. In summary, models 221 

with a higher AMOC index tend to project a stronger decrease in the NH tropospheric stability 222 

while having little influence on the vertical temperature profile in the SH. This hemispherically 223 

asymmetric amplitude of stability response to the varying AMOC evolution results in global-mean 224 

changes in EIS and lapse-rate feedback against the AMOC index. 225 

Meanwhile, the EIS evolution also contributes to the evolution of shortwave cloud 226 

feedback in specific regions. Figure 4d shows that shortwave cloud feedback becomes more 227 

positive in the North Atlantic and the North Pacific mid-latitudes, where EIS is negative. The 228 

destabilization of the lower troposphere acts to reduce low cloud cover, which leads to a more 229 

positive shortwave cloud feedback, associated with a higher AMOC index. In the tropics, the 230 

degree of ITCZ shift affects the shortwave cloud feedback. Consistent with the energetic 231 

framework (Kang et al., 2008; Kang et al., 2009; Friedman et al., 2013), models with higher 232 
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AMOC index, tending to project NH warming, produce a weaker southward ITCZ shift (Figure 233 

S4), which results in a more negative (positive) shortwave cloud feedback in the north (south) 234 

(Figures 4d and 4e). With positive and negative values generally cancelling out, the AMOC-related 235 

spread in tropical mean shortwave cloud feedback evolution contributes little to the global-mean 236 

change. Instead, it is the spread in the NH mid-latitudes that largely makes up the positive 237 

correlation between the AMOC index and the global-mean change in shortwave cloud feedback 238 

(Figure 4f). While some of the spread in shortwave cloud feedback is compensated by the spread 239 

in longwave cloud feedback, we note that this compensation mostly happens in the tropics (Figure 240 

S5g). In the extratropics, the change in net cloud feedback is dominated by the shortwave 241 

component (Figure S5j). Thus, the mechanism described above may explain the positive 242 

correlation between the AMOC index and the area-averaged net cloud feedback evolution 243 

poleward of 30 degrees (r=0.61). Apart from the influence of tropospheric stability mentioned here, 244 

we note that the intermodel spread of cloud feedback could arise from a dependence on 245 

parameterization and resolution (Vial et al., 2013; Webb et al., 2015). 246 

In addition to lapse-rate and cloud feedbacks, the AMOC evolution also has an impact on 247 

other feedback components. In models with stronger AMOC recovery, for example, albedo 248 

feedback becomes more positive in the NH polar region due to more melting ice, where the 249 

enhanced warming occurs, and vice versa for the SH polar region with smaller magnitudes (Figure 250 

S5a). Similar to longwave cloud feedback, the relative humidity feedback evolves toward more 251 

positive (negative) values in the NH (SH) tropics, indicating a northward shift of the ITCZ (Figure 252 

S5d). While the varying AMOC evolution influences the pattern evolution of these two feedbacks, 253 

the correlations between the AMOC index and the global-mean changes in relative humidity and 254 

surface albedo feedbacks are not significant (Figures S5c and S5f). Also, we note that the 255 

relationship between the AMOC index and the changes in most of the climate feedback 256 

components cannot be explained if assuming time-invariant local feedbacks (Armour et al., 2013). 257 

Instead, the evolution of tropospheric stability introduces nonlinearity in local climate feedbacks 258 

(Zhou et al., 2016; Ceppi & Gregory, 2017) (see Text S4). 259 

4 Summary and discussion 260 

In this study, we suggest that the intermodel spread in net climate feedback evolution (δλ) 261 

can be partially traced to the evolution of the AMOC strength. Models with stronger AMOC 262 

recovery tend to project a larger increase in net climate feedback, indicating more sensitive climate 263 

over longer timescales. The interpretation for the link between the AMOC evolution and the 264 

feedback change is as follows: the strengthening of AMOC over long timescales shifts the location 265 

of warming to NH extratropical regions, leading to a global destabilization of the troposphere, and 266 

resulting in more positive lapse rate and shortwave cloud feedbacks. Similar relationships between 267 

AMOC strength and radiative anomalies are also found in decadal-scale unforced variability in the 268 

piControl simulations (see Text S5). 269 

Interestingly, our interpretation that warmer NH leads to more sensitive climate cannot be 270 

applied to understanding the evolution of the multimodel-mean climate feedback. For the 271 

multimodel-mean, the increase in λ is accompanied by enhanced warming mostly in the SH, 272 

especially in the tropical Southeast Pacific and the Southern Ocean (Figure 2a). In our analysis of 273 

the intermodel spread, the warming pattern evolution among models includes varying degrees of 274 

the north-south contrast (Figure 2b), which contributes to the intermodel spread of the global EIS 275 

response and the climate feedback evolution. 276 
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The dependence of climate feedbacks on the surface warming pattern has been an active 277 

research area. Some studies have focused on the east-west contrast of the surface warming pattern 278 

(Ceppi & Gregory, 2017; Zhou et al., 2017; Andrews & Webb, 2018); for example, Zhou et al. 279 

(2017) suggest that the cloud feedback is more negative in response to western Pacific warming, 280 

and more positive in response to warming in the eastern Pacific. On the other hand, others 281 

emphasize the tropics-extratropics contrast, suggesting that the climate will become more sensitive 282 

as the ocean heat uptake pattern evolves (Rose et al., 2014; Rugenstein et al., 2016; Liu et al., 283 

2018a; Liu et al., 2018b). By investigating the cause of inter-model spread in the time dependence 284 

of climate feedbacks, we identify an additional geographical structure for controlling global-mean 285 

climate feedbacks: the variation of SST in the more stable NH high latitudes tends to be more 286 

confined in the lower troposphere than the variation of SST in the SH counterparts and is more 287 

likely to trigger positive radiative feedbacks. In future work, idealized experiments will be needed 288 

to provide a full understanding of the influence of SST patterns on climate feedbacks. 289 
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 432 

Figure 1. (a) The time evolution of AMOC strength in abrupt4×CO2 simulations. The strength at 433 

year 0 is the 150-year mean in corresponding parallel piControl simulations. The black line 434 

indicates the multimodel mean, while the thick red (blue) line indicates the high (low) AMOC 435 

index composite mean, and the thin red (blue/gray) lines are from individual models with high 436 

(low/medium) AMOC index. (b) δλ versus the AMOC index. Each dot is one model, labeled in 437 

the box and colored according to the AMOC index. 438 

 439 

 440 

Figure 2. (a) Multimodel-mean pattern evolution of surface air temperature (δTAS). Hatching 441 

denotes an absolute multimodel mean < 1 standard deviation across models. (b) The first EOF 442 

pattern of δTAS across models. Statistical significance is assessed by regressing δTAS onto the PC 443 

according to the first EOF. (c) The regression slopes of δTAS  against the AMOC index. (d) 444 

                   
                

 
 
 
 
  
  
 
 
 
  
  
 
  

  

 

 

  

  

  

  

  

  

Year in abrupt4xCO2

 (  )

High         Low          Mean

AMOC Index (
  

 
)

  

(a) (b)

(
 

    
)

AMOC index

PC
(according 

to EOF1)

(a)     (model mean) (b)     (1st EOF mode)

-0.8  -0.6  -0.4  -0.25  -0.1    0.1   0.25   0.4    0.6    0.8

-0.35   -0.1   -0.05  -0.03  -0.01   0.01   0.03   0.05    0.1    0.35
    

 

 

 

 

 

  

(c)     (d) (e)

High       Low        Mean

ave:0.000

  

 

(regressed onto AMOC index)



Confidential manuscript submitted to Geophysical Research Letters 

 

Zonally-averaged δTAS. The meaning of colored lines is the same as in Figure 1a. The gray 445 

shading represents the multimodel mean ± 1 standard deviation (K/K) across models. Meshing in 446 

(b) and (c) denotes the significance at 95% confidence level. (e) The PC corresponding to the first 447 

EOF of δTAS versus the AMOC index. 448 

 449 

 450 

Figure 3. The regression slopes of (a) EIS evolution (δEIS) (d) zonal-mean potential temperature 451 

evolution (δθ), and (e) 250 hPa zonal wind evolution (δU250) against the AMOC index. Stippling 452 

and meshing denote the significance at 95% confidence level. Contours in (a) denote the 453 

anomalous δTAS relative to the warm pool (black box), with solid red (dashed green) indicating a 454 

more positive (negative) δTAS. This is done only in the tropics. (b) Zonally-averaged δEIS. The 455 

meaning of colored lines and shading is the same as in Figure 2d. (c) Global-mean δEIS versus the 456 

AMOC index. 457 
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 458 

Figure 4. (a) The regression slopes of lapse-rate feedback evolution (δLR) against the AMOC 459 

index, with meshing denoting the significance at 95% confidence level. (b) Zonally-averaged δLR. 460 

The meaning of colored lines and shading is the same as in Figure 2d. (c) The global-mean δLR 461 

versus the AMOC index. (d, e, f) Same as (a, b, c) but for shortwave cloud feedback evolution 462 

(δSWcld). 463 
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