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Production Efficiency In The von Liebig Model

Garth Hollowaya and Quirino Parisb

Abstract

The von Liebig hypothesis of non-substitution between inputs and yield plateau
has received renewed attention in the literature.  The von Liebig model was
introduced around 1840 but was downplayed in many circles because it was an
idea too sophisticated for the analytical knowledge of that time. The von Liebig
technology, revisited in the 1970’s, has refocused attention on constraining
factors that limit nutrient response as the defining feature of crop growth.  But
von Liebig estimation has brought with it a host of new challenges for empirical
production investigations. This paper compares two new approaches to von
Liebig estimation.  The first approach, based on a finite-mixture-of-normals
formulation, has not been applied before to von Liebig estimation.  We show
how routine application of Gibbs sampling and data augmentation provide robust
estimates of the production surface given typical input and output data.  The
second approach, based on a hierarchical, normal-linear model formulation,
provides robust estimates of the production frontier.  The techniques are
illustrated using experimental and real and demonstrate routine application of
Markov Chain Monte Carlo (MCMC) methods.  Extensions are discussed.
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Production Efficiency in the von Liebig Model

Introduction

The von Liebig hypothesis, formulated circa 150 years ago, continues to intrigue researchers in the

fields of production economics and econometrics due to its sophisticated simplicity that requires

sophisticated tools for its analysis. The conjecture deals with the way crop yields---according to von

Liebig---respond to differential fertilizer applications.  In von Liebig’s time, lime and manure were

the sole or prelevant soil additives. The use of these natural and complex fertilizer compounds did not

prevent von Liebig’s intuition to formulate the conjecture that chemical elements combine in fixed

proportions not only in an alembic but also in the soil. Toward the end of the 19th century and on the

strength of von Liebig contributions, elemental nitrogen, phosphorus and potassium began to be

recognized as profitable additives for achieving higher levels of productivity.  In 1906, a poster was

circulating among German farmers propounding the benefits of potassium (kalium) as a crop enhancer

and illustrating the working of von Liebig’s “law of the minimum” by means of a barrel with staves of

different height and where the shortest stave corresponds to the actual level of production.  This poster

is the best available illustration of the non-substitution hypothesis that characterizes von Liebig’s

theory of crop response in an essential way.

From the beginning of its enunciation, von Liebig’s law of the minimum received enormous

attention, splitting the camp of agronomists and soil scientists.  When agricultural economists came

onto the scene, toward the first quarter of the past century, they too took side in the debate with J. D.

Black (p. 275)—the distinguished economist from Harvard University—delivering one of the most

scathing criticism of  the law of the minimum.  Black was grossly mistaken in its criticism of von

Liebig, but this fact did not prevent the aura of his professional authority to cast a serious doubt

among the fledging agricultural economics profession on the validity of von Liebig’s hypothesis.

  Von Liebig’s law of the minimum can be expressed by the following analytical relation:

(1) y f N u f P u f K u f C uN N P P K K C C= min{ ( , ), ( , ), ( , ),..., ( , )}

where y  is the realized level of crop production, N P K, ,  and C  are the levels of fertilizer nutrients

(say, nitrogen, phosphorus, potassium and calcium) and u u u uN P K C, , ,  are random disturbances

associated with the corresponding potential yield functions f N u f P u f K uN N P P K K( , ), ( , ), ( , )  and

f C uC C( , )  representing the individual response to the  various fertilizer nutrients.

Until 1977, the von Liebig hypothesis did not received any serious analytical scrutiny and

empirical testing. The most likely reason is that equation (1) poses non-trivial mathematical and

statistical issues for its estimation. Furthermore, the non-nested hypothesis testing procedure
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necessary for discriminating among different models was not available to empirical researchers until

that time.

The objectives of this paper is to revisit the von Liebig hypothesis by re-examining five sample of

experimental data and by applying to it recent advances in Bayesian techniques.  The samples were

published by Hexem and Heady as described in a further section. Prior to outlining the estimation

strategy, we discuss the intuition underlying our approach and, briefly, the literature on which it is

based.  We present an algorithm for the basic von Liebig formulation and demonstrate its application

using simulated data (table 1).  We then discuss modifications needed to the basic model that facilitate

estimation of a von Liebig frontier and we demonstrate the extended algorithm using simulated data

(table 2).  We then explore, empirically, relationships between limiting water and nitrogen in the

Hexem and Heady corn samples and compare the results between the two formulations (table 3).

Finally, some conclusions and suggestions for further research are offered.

Previous Work

The recent revival of interest in the von Liebig’s hypothesis is due to Lanzer who, in his PhD

dissertation of 1977, laid out the algorithm for estimating a linear version of equation (1) using a

mathematical programming approach.  The crucial idea was to convert the “min” operator in equation

(1) into a set of analytical constraints suitable for solution with available nonlinear programming

packages. In the seventies, nonlinear programming packages were in their beta-testing phase, and the

estimation of a von Liebig model as specified by Lanzer was a significant achievement. The

maximum likelihood estimates so derived were presented by Lanzer and Paris.

The first comparison between a von Liebig model with linear regimes and more traditional

production function specifications such as polynomial models was conducted by Ackello, Paris and

Williams. By using a non-nested hypothesis testing procedure, their work showed that the von Liebig

model interpreted the sample data better than several other polynomial specifications.  In all these

studies, the potential yield functions in equation (1) have a common additive error term which can,

therefore, be taken outside the “min” operator. Grimm, Paris and Williams continued in the same line

of research and applied the same procedure to different samples of experimental data. Paris and

Knapp extended the specification of the von Liebig model to include the random disturbances under

the “min” operator, as in equation (1). The von Liebig model thus assumed the structure of a

switching regression model with endogenous sample separation.

Frank, Beattie and Embleton used the famous sample of experimental data collected by Heady and

Pesek to make a non-nested hypothesis pairwise comparison among various models including a
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quadratic polynomial, a linear response and plateau (LRP), and a Mitscherlich-Baule model.  They

concluded that the Mitscherlich-Baule formulation rejects all the other alternatives, including the LRP

specification of the von Liebig model. Paris challenged that conclusion by showing that, when the von

Liebig hypothesis is interpreted in its more general framework using nonlinear regimes in place of the

linear responses, the von Liebig model rejects all the other alternatives, including the Mitscherlich-

Baule specification.

More recently, Chambers and Lichtenberg, Berck, Geoghegan and Stohs, applied non-parametric

methods to test the von Liebig hypothesis using the Heady-Pesek sample of data. While Chambers

and Lichtenberg concluded in favor of the hypothesis, Berck, Geoghegan and Stohs rejected it. It is

difficult to compare the results obtained with parametric and non-parametric methods. We leave this

endeavour for future research.

Our Approach

The starting point for our approach is to combine various concepts (potential estimation problems)

from previous work.  First, there is the problem of correctly accounting for the statistical implications

of the information conveyed by the “min” operator in equation (1).  Second, because any one of

several possible regimes could be limiting at one time, we need account for the possibility of

“swiching” between regimes at any point in the data.  Third—and noteworthy because it appears

neither to have been recognized nor fully exploited in previous work and, crucially, because it

supplies a link to the Markov Chain Monte Carlo (MCMC) literature that solves estimation problems

for us—we note that the two preceding estimation difficulties lend the estimation work toward one of

correctly classifying and discriminating within the entire sample.  To be precise, we view von Liebig

estimation as a straight-forward problem of classification within the sample and, hence, the problem

of discriminating between mixtures in a finite set of normal-mixture regimes.  The classification

problem arises because—by virtue of the “min” operator, and ignoring “ties,”—only one of the

several candidate regimes can dominate the alternatives at any particular sample point.  Thus the

problem of regime estimation, or discriminating within the sample, is a problem of sample sub-

classification, and our estimation technique evolves with this simple fact in mind.  But this problem is

the only impeding practical problem in our way.  To see why, consider the following logic.  Suppose

we know the correct classification of the data within the sample.  That is, suppose we know with

probability equal to one that a particular sample observation, say yt, belongs to a particular category or

mixture component in the sample, where each component of the mixture is specified in probability

terms in relation to one von Liebig regime (say, water limiting, or nitrogen limiting).  Once the
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classification is known, and an error specification is selected, then estimation is standard within each

regime.  In other words, estimation is routine.

The significant problem arises due to the fact that the specification of each regime cannot be made

with certainty, but must be probabilistically ascertained.  When this is the case, we need to augment

the observed data with a latent, classification variable and make estimates based on a particular

classification of the observed data.  In addition, we need to specify a way of relating the observed and

augmented data, the production-surface parameters in each of the limiting regimes, and a relationship

between them and the error structure proposed for the model.  When such a relationship exists and

leads to fully conditional distributions of well-known forms, a procedure known as Gibbs sampling

can be used, alternating between the latent data and the estimated values of the model parameters, to

simulate a draw from the joint posterior distribution corresponding to the von Liebig model.

Fortunately, such a relationship does exist and we exploit it in each of the algorithms that we propose

in this paper.  This relationship between these unknown quantities is the modus operandi for our

estimation procedure and has been formalized neatly in an earlier contribution that studies mixtures of

simple means (Lavine and West).  Except for the focus on frontier production, our extensions of this

paper are relatively modest because they involve only the inclusion of a set of appropriate covariates

into the mean-mixtures formulation.  Subsequently, we provide a less trivial extension to the basic

algorithm in order that a frontier can be estimated.  But here, too, some earlier work (Koop,

Osiewalski and Steel) provides crucial input, and much of the algebra that remains is a fairly simple

extension of details contained in the appendix to that work (see appendix, pp. 100-103).  In short, by

combining two seminal pieces on mixture modelling (Lavine and West) and Bayesian estimation of

production frontiers (Koop, Osiewalski and Steel), we are able to produce a robust algorithm for

estimating von Liebig response regimes.

We now turn to a more detailed discussion of the algorithm.  Readers interested in

additional details concerning the Gibbs sampling procedures and hierarchical models used in

estimation should read papers by Gelfand and Smith, Casella and George and Chib and

Greenberg and a book by Gelman et al.

The Basic Algorithm

Because it provides the basis for all subsequent work, consider the normal-linear regression model

(2) y  =  xββββ + u,

where y ≡ (y1, y2, .., yT)′ denotes an n-vector of observed; x ≡ (x1, x2, .., xT)′, x1 ≡ (x11, x12, .., x1K), x2 ≡

(x21, x22, .., x2k), .., xT ≡ (xT1, xT2, .., xTk) are observations on the covariates; and u ~ N(0T, σ2IT) denotes
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random error.  We observe x and y but neither σ nor ββββ.  Inferences about the locations and scales of

the elements of σ  and ββββ  are, however, easily obtained be deriving their marginal posterior

distributions.  Following standard work (Zellner), these distributions are available in closed form,

respectively as inverse-gamma and (multivariate) normal distributions.  In view of this fact, there is

no need to make any approximation to the full posterior, which we denote in a standard notation

π(ΘΘΘΘ|y), ΘΘΘΘ  ≡ (σ,ββββ)′ .  But suppose that these marginal distributions are not available.  Where Gibbs

sampling becomes important is the case where the fully conditional posterior distributions π(σσσσ|y) and

π(    ββββ |y ) have well-known forms.  In this particular case, these forms are the inverse-gamma and

normal distributions, which we denote, again, in a generic notation, ƒig(σ|v, (y-xββββ)′(y-xββββ)) and ƒN(ββββ|

(x′x)-1, σ2(x′x)-1), where the notation ƒa(b|c, d, .., e) denotes a probability density function of type ‘a’

for random variable ‘b’ that is dependent (conditional) on parameters ‘c’, ‘d’, .., ‘e.’  Given this

dependence, we can select an arbitrary starting value, say σ(0), simulate draws for σ and β, alternating

between the inverse-gamma and normal distributions, namely β(1)|σ(0), σ(1)|β(1), β(2)|σ (1), .., β(S)|σ(S-1),

σ(S)|β(S).  The resulting samples {β(s), s = 1, 2, .., S} and {σ(s), s = 1, 2, .., S} can then be used to

compute means and variances, or any posterior moment of interest, or can be used to plot densities in

order to characterize locations and scales of any σ and ββββ, or, importantly, any function thereof.  The

Gibbs sample, therefore, provides a powerful tool for posterior explorations of data.

Now, in terms of the extended problem of classification, suppose that it is known with some

probability that a particular observation, say yt, comes from one of several components in a mixture of

these normal, linear models.  In other words, suppose that data, t = 1, 2, ..T is distributed yt ~

ƒN(yt|xt
(j)ββββ(j), σ2(j)) with probability θ(j), where j = 1, 2, .., M denote the M components of the mixture.

Unfortunately, the complete posterior for this model π(ΘΘΘΘ|y), ΘΘΘΘ ≡ (σ(j), β(j), θ(j), j = 1, 2, .., M)′ has an

intractable form and so some form of approximation is necessary in order to characterize locations

and scales of its parameters.  However, by augmenting the known data y ≡ (y1, y2, .., yT)′ with latent

classification data z ≡ (z1, z2, .., zT)′, z1 ≡ (z11, z12, .., z1M), z2 ≡ (z21, z22, .., z2M), .., zT ≡ (zT1, zT2, .., zTM),

where zij = 1 if observation i comes from component j of the mixture and zij = 0, otherwise, the data-

augmented posterior distribution π(ΘΘΘΘ , z|y), has a tractable form in the sense that each of the

component conditional distributions are easy to sample from (Lavine and West, p. 452).  In particular,

each of the M-vectors in z ≡ (z1, z2, .., zT)′ has a multinomial distribution; and conditional on this

classification implied by the multinomial distribution, the equation parameters σ(j) and β(j), j = 1, 2, ..,

M, have their (now familiar) inverse-gamma and normal forms.  Further, conditional on classification,

the “mixing weights,” θ(j), j = 1, 2, .., M have Dirichlet forms.  Because it is easy to sample from each

of these distributions, a Gibbs-sampling algorithm can be implemented that samples for a “burn-in”
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phases and then collects samples {z(s), s = 1, 2, .., S}, {β(j)(s), j = 1, 2, .., M; s = 1, 2, .., S}, {σ(j)(s), j = 1,

2, .., M; s = 1, 2, .., S} and {θ(j)(s), j = 1, 2, .., M; s = 1, 2, .., S}, from which posterior conclusions can

be drawn.  It is essentially this algorithm that we implement as our basic von Liebig estimation

procedure.

Basic von Liebig Algorithm

Because, in the Hexem and Heady data to follow, we consider two inputs, water and nitrogen and,

further, because in this initial foray we restrict attention to linear specifications, consider a special

case of equation (1), namely

(3) yt  =  min{ αo + α1 wt, βo + β1 nt, π }  +  ut, t = 1, 2, ..., T;

where yt is crop yield;  wt and nt are, respectively, water and nitrogen application; α o and α 1 are

parameters in the water-limiting regime; βo and β1 are parameters in the nitrogen-limiting regime; and

π denotes a yield plateau.  In terms of the notation just developed, there are j = 1, 2, 3 regimes, with

αo + α1 wt ≡ xt
(1)ββββ(1); βo + β1 nt ≡ xt

(2)ββββ(2); and π ≡ xt
(3)ββββ(3).  We consider that each data point yt, t = 1, 2,

.., T, has probability θ(1) that water is limiting, probability θ(2) that nitrogen is limiting, and probability

θ(3) that the plateau is limiting and, hence, that one of the three regimes governs data generation at that

point.  Consequently, a five-step algorithm for implementing the basic von Liebig model follows from

sampling in turn from multinomial, inverse-gamma, normal and Dirichlet distributions and we now

consider its accuracy.

We illustrate the procedure with an informative prior on the mixing weights but a flat prior over

the regression coefficients and the other parameters in the model.  There are two reasons for this.

First, experience with the algorithm suggests that non-informative analysis sometimes works “too

well.”  By this we mean that some of the cell probabilities comprising the multinomial distribution are

assigned zero mass at successive iterations.  This leads to divisions by zero.  The second reason we

prefer to implement an informative prior is to illustrate to those readers troubled by its use that the

algorithm is robust to prior parameter choice—always a weakly informative prior can be selected so

that the data dominate the outcome.  Hence, in our two-regime problem we select the prior mixing

weights in favor of each regime to be exactly one half, with numerical values selected so that the prior

and data information are combined in proportions 10:100.  (This prior corresponds to fixing ao = (10,

10, 10)) in Lavine and West, section 2.)  This choice enables quick convergence and accurate

estimation of parameters at relatively little cost in terms of real execution time.

In the reports of the results that follow, we choose highly conservative ‘burn-in’ and sample sizes

of t = 10,000 and s = 10,000 observations, respectively.  Experiments with alternative starting values
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suggest that the Gibbs sequence converged after about 50 iterations.  However, even with this highly

conservative burn-in phase the entire estimation procedure took only about 14 minutes of real time on

a DELL™ Precision 340 machine running a Pentium™ IV processor at 2.0 gigahertz with commands

executed in MATLAB™ version 5.1.0.421.  All computer code is available upon request.

We generate data from the simple von Liebig specification in equation (3), with parameters set at

(αo, α1, βo, β1, π) = (0, 1, 0, 1, 100) and data wt and nt generated from uniform distributions in the

intervals [0, 200].  Because the plateau and nutrient-response regimes intersect at the covariate value

100, the covariate values depict “ideal” circumstances for the experiments.  Across the experiments

we hold constant the number of observations at T = 100 but vary the error variance parameter to be σ

= 1, σ = 10 and σ = 100, respectively.  The first case reflects an error variance one one-hundreth the

size of the plateau yield; the second case reflects an error variance equal to the plateau yield; and the

third situation reflects an error variance one-hundred times the plateau yield.  These choices are

sufficient to reflect a wide array of sampling conditions from which to evaluate the performance of

the Gibbs sampler.

The row entries in table 1 are estimates, respectively, of the constant term in the water-regime, the

response term in the water regime, the constant term in the nitrogen regime, the response rate in the

nitrogen regime, the plateau yield, the error variance parameter, the mean number of misclassified

observations in the sample and the execution time in seconds.  Not surprisingly, at σ = 1, the fit of the

model is near perfect.  Both the nutrient-response and the plateau-yield regimes are predicted to a high

degree of accuracy.  However, such conditions are unlikely to prevail in field situations or in

experimental data.  Turning to the second experiment, estimation performance does not appear to be

markedly reduced when the error variance is increased to a more realistic level.  And in the third

experiment, although the actual precision of estimation drops quite dramatically, the pattern of

significance among the estimated coefficients remains robust.  Hence—at least in terms of the

prototype von Liebig model—the Gibbs sampler performs well under varied sampling circumstances

and relatively limited information (N = 100) and appears to be relatively inexpensive in terms of

execution time.

The results motivate three conclusions.  First, the Gibbs sequence appears to converge quite

quickly, even under relatively imprecise sampling conditions.  Second, considering the complex form

of the response relationship, the relatively few observations in the sample and the relatively high

levels of error variance in the second and third experiments, the parameter estimates are surprisingly

accurate.  Third, Gibbs sampling appears to provide a promising, alternative avenue for deriving

estimates of von Liebig production.



9

Frontier von Liebig Estimation

With the results for the basic algorithm now at hand, it is relatively straight-forward to introduce

frontier effects into the estimation.  This work follows closely the path-breaking contribution by

Koop, Osiewalski and Steel, and especially their “marginally independent efficiency distribution”

(MIED) formulation (pp. 83-84).  One important issue in this development that must not be

overlooked is the need to avoid the problem of ‘over-parameterization,’ which arises when more than

T quantities are being estimated from the T available observations (Fernandez, Osiewalski and Steel).

For this reason, we partition the data into N = 5 sub-samples, and restrict attention to efficiency

recommendations between these samples.  The choice of five divisions is motivated by the fact that an

obvious 5-sample division is available in the real-data analysis to follow.

Thus, with i = 1, 2, .., N units in question and t = 1, 2, .., Ti observations on each of the sub-units,

the data are of the form of a panel, and the von Liebig panel data production function is

(4) yit  =  min{ αo + α1 wit, βo + β1 nit, π }  + εi + uit,

i = 1, 2, .., N, t = 1, 2, ..., T.  Except for the introduction of the “inefficiency terms,” ε1, ε2, .., ε5, the

specification shares an obvious proximity with the specification in equation (3).  This proximity is

more than semantic because it follows, naturally, that the extensions required over the basic algorithm

are few.

The inefficiencies ε1, ε2, .., ε5, although they are sub-sample specific, provide an additional source

of variation and are important because their one-sidedness restriction forces the frontier of the basic

von Liebig specification.  Many specifications of these inefficiencies have been postulated in the

literature, including half-normal, gamma, and beta forms.  However, arguably the most simple, and

the one to which we restrict attention henceforth, is the exponential form.  Some algebra (available

upon request) reveals that the resulting posterior has component conditional distribution that are easy

to work with.  In particular, whereas the basic model retains the properties outlined above, the

inclusion of exponential (one-sided) errors implies that the resulting full conditional distribution for

the “inefficiencies” has a truncated-normal form and the at the conditional distribution for the

parameter λ in the exponential distribution for the errors has a gamma distribution.  Because sampling

from these distributions is also straight-forward, the inclusion of “frontier-effects” in the basic von

Liebig algorithm does not appear to pose any considerable difficulty and we turn to examine its

accuracy using simulated data.

One note prior to estimation is that, because of collinearity problems (cf. Koop et al., equation (2),

p. 80), the constant components within the “min”  operator and the “inefficiency terms” are combined

into single elements, εi
* for estimation purposes.  Although there is a potential loss of information
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here, it does not appear to be too troublesome.  With this modification, the data are generated

according to the model, (α1, β1, π, λ ) = (1, 1, 100, 0.01) and the terms ε1
*, ε2

*, ε3
*, ε4

* and ε5
* are

random draws from the exponential distribution with mean 1/λ.

Table 2 contains the estimation of the frontier von Liebig with the same experimental data

used in table 1. The results reflect the degree of uncertainty built into the three sets of data

according to the increasing value of σ. As this parameter’s value increases, the precision of

the frontier decreases substantially. The values of the parameters ε1
*, ε2

*, ε3
*, ε4

* and ε5
*

represent the inefficiencies of the five sub-sets of data in which the sample of was divided. The row

labeled “missclassified”  indicates the average number of observations that were allocated to the

“wrong” regime by the Gibbs procedure, to be compared to the sample size of 220.

Empirical Evidence Using Hexem and Heady Data

The empirical data used in this paper was taken from Hexem and Heady and deal with corn

production at five different locations in the United States using water and nitrogen as fertilizers. The

locations are Fort Collins, CO, Mesa 1971, AR, Mesa 1970, AR, Yuma Mesa 1970, AR, and Yuma

Valley 1970, AR. The agronomic experiments that generated these data utilized an incomplete

factorial design.  Water and nitrogen were applied in various combinations of five different levels.

The five data sets were combined in a single sample to create a panel data of 220 observations.

The estimation of the von Liebig response function and the von Liebig frontier production function

was executed using the Gibbs algorithm explained above without any significant difficulty.  Table 3

presents the results of the two versions of the von Liebig model. The traditional von Liebig

specification corresponds to equation (3). The three different regimes (water, nitrogen, and plateau)

are limiting for the reported average number of observations in the Gibbs sample. The results in the

frontier von Liebig correspond to equation (4).  The intercept for the water and nitrogen regimes was

confounded with the one-sided error of the frontier and appears implicitly in the reported values of

ε1
*, ε2

*, ε3
*, ε4

* and ε5
* that measure the inefficiencies of the five sub-samples from the frontier.  The

significant variation between the two models is somewhat surprising at this stage and  requires further

inquiry into the specification of the von Liebig model in relation to the Gibbs sampling procedure.  In

particular, it seems odd that the value of the plateau in the frontier model is lower that the

corresponding value in the production function model.

Conclusion

This paper has presented a Bayesian procedure to estimate traditional von Liebig production function

models and frontier specifications.  The algorithm is based on an application of the Gibbs sampler as
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applied in the Markov Chain Monte Carlo methodology. This preliminary work indicates that the

procedure constitutes a promising way to tackle a difficult estimation problem as that represented by a

von Liebig model.

Further lines of research have emanated from this work. First of all, the algorithm could be

modified to handle a nonlinear specification of the various regimes in the von Liebig model. Second,

the algorithm could be extended to deal with an endogenous sample separation of the von Liebig

model as estimated in Paris.  This specification corresponds to the most general structure of the von

Liebig hypothesis as stated in equation (1). Third, the marginal-likelihood algorithm suggested in

Chib can be applied in this case for comparing alternative models when the Gibbs sampler is

used to obtain the parameter estimates of the various alternatives.
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Table 1.  Experimental evidence – von Liebig model.

Parameter
Experiment 1

(σ = 1)
Experiment 2

(σ = 10)
Experiment 3

(σ = 100)

α0 0.65 11.08 50.58

(0.23) (2.64) (42.32)
α1 0.99 0.63 0.75

(0.00) (0.06) (0.31)
β0 0.21 9.63 -68.85

(0.23) (4.57) (33.55)
β1 1.00 0.78 0.81

(0.00) (0.12) (0.37)
π 99.93 94.75 62.07

(0.16) (3.16) (40.37)

σ 1.05 10.72 75.87

(0.05) (0.96) (9.02)

missclassified 2.37 65.37 144.07

(1.20) (10.89) (6.79)

Burn-in sample size 10,000 10,000 10,000

Gibbs sample size 10,000 10,000 10,000

Data sample size 220 220 220

Execution time (sec.) 1511 1603 1601

Numbers in parentheses are standard errors in the Gibbs sample.

Table 2.  Experimental evidence – frontier von Liebig model.

Parameter
Experiment 1

(σ = 1)
Experiment 2

(σ = 10)
Experiment 3

(σ = 100)

α1 1.00 0.78 0.47

(0.03) (0.05) (0.24)
β1 1.00 0.80 1.10

(0.02) (0.06) (0.21)
π 100.13 91.36 92.74
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(4.34) (2.96) (29.58)
σ 1.49 10.69 83.75

(4.78) (0.71) (5.96)
ε1

* 249.85 156.24 18.06

(6.12) (2.78) (15.11)

ε2
* 41.62 208.54 172.63

(2.83) (2.83) (21.53)

ε3
* 41.20 11.42 60.08

(2.28) (2.69) (22.28)

ε4
* 144.37 107.92 67.56

(7.80) (2.79) (22.70)

ε5
* 141.78 393.72 103.75

(6.11) (2.30) (22.95)

λ 0.01 0.01 0.01

(0.00) (0.00) (0.01)

missclassified 5.21 65.35 143.94

(13.26) (0.78) (7.01)

Burn-in sample size 10,000 10,000 10,000

Gibbs sample size 10,000 10,000 10,000

Data sample size 220 220 220

Numbers in parentheses are standard errors in the Gibbs sample
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Table 3.  Empirical evidence on Hexem and Heady corn data.

Estimation

Parameter von Liebig Frontier von Liebig

α0 691.55

(346.33)
α1 375.51 828.16

(84.33) (74.94)
β0 1420.33

(247.36)
β1 259.92 698.71

(73.67) (68.35)
π 4462.93 2373.25

(208.90) (251.22)
σ 886.80 778.09

(75.22) (60.09)
water limiting 85.58 81.55

(5.06) (8.94)
nitrogen limiting 70.16 74.40

(6.18) (7.75)
plateau limiting 64.26 64.04

(7.19) (8.00)
ε1

* 4721.92

(208.43)
ε2

* 1992.61

(203.08)
ε3

* 87.68

(78.47)
ε4

* 1846.45

(239.64)
ε5

* 4946.66

(225.07)
λ 4.4 ×10-4

(1.8 ×10-4)

Burn-in sample size 10,000 10,000
Gibbs sample size 10,000 10,000
Data sample size 220 220

Execution time (seconds) 1511 1603

Numbers in parentheses are standard errors in the Gibbs sample.


