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ABSTRACT

The NASA Energy and Water Cycle Study (NEWS) climatology is a self-consistent coupled annual and
seasonal cycle solution for radiative, turbulent, and water fluxes over Earth’s surface using Earth observation
data covering 2000-09. Here we seek to improve the NEWS solution, particularly over the ocean basins, by
considering spatial covariances in the observation errors (some evidence for which is found by comparing five
turbulent flux products over the oceans) and by introducing additional horizontal transports from ocean
reanalyses as weak constraints. By explicitly representing large error covariances between surface heat flux
components over the major ocean basins we retain the flux contrasts present in the original data and infer
additional heat losses over the North Atlantic Ocean, more consistent with a strong Atlantic overturning. This
change does not alter the global flux balance but if only the errors in evaporation and precipitation
are correlated then those fluxes experience larger adjustments (e.g., the surface latent heat flux increases to
85 = 2Wm ™ ?). Replacing SeaFlux v1 with J-OFURO v3 (Japanese Ocean Flux Data Sets with Use of Re-
mote Sensing Observations) ocean fluxes also leads to a considerable increase in the global latent heat loss as
well as a larger North Atlantic heat loss. Furthermore, including a weak constraint on the horizontal trans-
ports of heat and freshwater from high-resolution ocean reanalyses improves the net fluxes over the North At-
lantic, Caribbean Sea, and Arctic Ocean, without any impact on the global flux balances. These results suggest that
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better characterized flux uncertainties can greatly improve the quality of the optimized flux solution.

1. Introduction

Vertical and horizontal energy flows between Earth’s
surface, atmosphere, and space play a fundamental role
in establishing the large-scale atmosphere and ocean
circulation patterns driving weather and climate. The
water cycle is closely coupled to these energy flows due
to the exchanges of latent heat that occur during evap-
oration/transpiration and precipitation.

A wide variety of Earth observation (EO) datasets are
now available, enabling different vertical components of
the Earth’s energy and water cycles to be quantified. For
example, spatial and temporal variations in the top-of-
atmosphere (TOA) radiation fluxes, both shortwave and
longwave, are now well monitored by satellites, including
the CERES product (Wielicki et al. 1996; Stephens et al.
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2012). The vertical structure of clouds derived from
CloudSat/ CALIPSO observations (Henderson et al. 2013)
permits surface radiative fluxes to be estimated rea-
sonably precisely. Ocean heat content estimates from
Argo measurements (Roemmich et al. 2015) allow long-
term oceanic energy storage to be included in a deter-
mination of the global energy cycle. Satellite-based
turbulent flux products can be used to determine sur-
face latent and sensible heat exchanges. Precipitation
fluxes are available from combinations of satellite ob-
servations such as that produced in the GPCP project
(Adler et al. 2003; Huffman et al. 2009). Finally there are
over a decade of surface water storage estimates from
the GRACE satellites (Tapley et al. 2004; Chambers
and Bonin 2012; Johnson and Chambers 2013).

Large imbalances have been shown to exist when in-
dependent energy flux observations are combined at
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both global and regional scales (e.g., Josey et al. 1999); the
net vertical fluxes are inconsistent with any realis-
tic storage or horizontal transports, limiting the value of
such observations for constraining climate models (Wild
et al. 2015). Attempts to reconcile these imbalances have
had rather limited impact (e.g., Grist and Josey 2003). An
alternative approach that uses reanalysis output to esti-
mate energy and water fluxes, particularly at the surface,
has also been widely employed (e.g., Trenberth and
Caron 2001; Fasullo and Trenberth 2008a,b; Liu et al.
2015, 2017; Valdivieso et al. 2017). However, estimates of
fluxes based on these reanalyses alone will be sensitive to
numerical model parameterizations and biases, and subtle
water mass corrections should be applied prior to the
energy flux calculations (Mayer et al. 2017). Furthermore,
these estimates will generally lack robust uncertainty
estimates as most current operational centers do not
provide such uncertainties, although ensemble and mul-
tiproduct approaches partly mitigate this concern.

A novel approach to reconciling the satellite derived ob-
servational fluxes was developed for the NASA Energy and
Water Cycle Study (NEWS). Whereas EO datasets have
previously been used for assessing either energy (Isemer
et al. 1989; da Silva et al. 1994; Grist and Josey 2003) or
water (Trenberth et al. 2011) budgets separately, the NEWS
papers by L’Ecuyer et al. (2015) and Rodell et al. (2015b)
demonstrate for the first time how to explicitly couple the
energy and water cycles. The NEWS method takes the
2000-09 EO-based estimates of vertical fluxes and their
uncertainties, at both the top of the atmosphere (TOA) and
Earth’s surface, in 16 land and ocean regions across the
globe. A variety of physical balance constraints are then
imposed and the fluxes are allowed to change according to
their uncertainties in order to close the energy and water
budgets in the atmosphere and at the surface. Both annual
and monthly 10-yr mean solutions are determined.

The main physical balance constraints used in the
NEWS solution are as follows. Land areas are assumed
not to absorb any energy in the long-term mean, and the
global ocean is assumed to absorb ~1.0 = 0.6Wm 2 in
line with Argo measurements, although the spatial dis-
tribution of this warming is not imposed. The atmosphere
is assumed to absorb very little energy due to its low heat
capacity. Water is conserved within the Earth system,
providing additional constraints. An estimate of surface
(and groundwater) runoff from the land regions into
ocean basins is incorporated into the fit, and this is com-
plemented by horizontal water exchange between regions
in the atmosphere provided by the MERRA reanalysis
(Rienecker et al. 2011). These are the only horizontal
exchanges that have specified prior values; no estimates of
horizontal energy exchange are employed. The optimized
solution then provides estimates of all of the energy and
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water exchanges within the atmosphere and oceans, and
at Earth’s surface, along with new uncertainty estimates.

The purpose of the current paper is to extend the
NEWS approach in two ways. The first is to explicitly
permit spatially correlated errors in the original EO flux
products. We show that this can make the NEWS solu-
tions more realistic, especially over the oceans, bringing
the regional surface fluxes closer to reanalysis-derived
values and modifying the global estimates of turbulent
heat exchanges. Second we bring reanalysis results into
the NEWS framework by using ocean reanalysis-derived
horizontal energy and water flux priors to complement the
vertical fluxes taken from EO data. Such a complementary
combination of approaches is advocated, for example, by
the recent CLIVAR Research Focus on Planetary heat
balance and ocean heat storage (CONCEPT-HEAT) in-
ternational program looking at Earth’s energy imbalance.

The paper is organized as follows. Section 2 describes
the original NEWS flux solution, including the key ob-
servation datasets and the solution method, and compares
surface fluxes and transports between the NEWS solution
and reanalysis-derived quantities. Section 3 details the
introduction of explicit error covariances over the oceans
and the corresponding impact on the regional and global
fluxes. We demonstrate the evidence for error covariances
in five different ocean turbulent heat flux products and
also explore the impact of using different turbulent fluxes
on the optimized solution. In section 4 the incorporation
of ocean reanalysis values into the solution is described
and its influence on the regional and global fluxes is
evaluated. Section 5 then provides some discussion of
the new optimized flux fields and their uncertainties, as
well as of additional improvements that could be made.
Finally section 6 contains a summary and conclusions.

2. Methods and motivation
a. Energy and water flux input data

We use very similar flux datasets to those employed in
the NEWS study, which were chosen based on a variety
of factors such as the time period covered, the avail-
ability of robust uncertainty estimates, and the extent
to which the data had been adopted by the scientific
community. The datasets are extensively discussed in
L’Ecuyer et al. (2015) and Rodell et al. (2015b) and
published online at Rodell et al. (2015a), and so will be
only briefly reviewed here. The data cover the period
2000-09 (inclusive) and both the 10-yr annual mean
and 10-yr mean seasonal cycle data are used. We also use
the uncertainties provided for both time scales. The time
period chosen has several desirable properties: for
example, a large variety of datasets, both satellite and
otherwise, are available for uncertainty evaluation, and
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the trend in global mean surface temperature was small
(although other aspects of climate change were evident
during this time). Although some datasets have missing
years, the interannual variations are smaller than the
uncertainties so the decadal mean can be taken as rep-
resentative of the entire period.

TOA and surface radiative fluxes are taken from the
CERES dataset (Wielicki et al. 1996) and precipita-
tion measurements are obtained from the Global Pre-
cipitation Climatology Product v2.2 (Adler et al. 2003;
Huffman et al. 2009). Ocean evaporation is taken from
the SeaFlux v1.0 product (Curry et al. 2004), and land
evapotranspiration is taken from a dataset produced at
Princeton University (Vinukollu et al. 2011) combined
with the MERRA (Rienecker et al. 2011; Bosilovich
etal.2011) and GLDAS (Rodell et al. 2004) reanalyses
produced by NASA. Observations of runoff from land
are obtained from a dataset produced at the University
of Washington (Clark et al. 2015). Terrestrial water
storage changes are calculated from globally detrended
GRACE satellite measurements (Tapley et al. 2004;
Chambers and Bonin 2012; Johnson and Chambers
2013). Finally, total precipitable water vapor is calcu-
lated from the AIRS and AMSR-E instruments on the
Aqua satellite (Fetzer et al. 2006).

We favor solely using the direct CERES observa-
tions of TOA radiation but the NEWS team also
employed the Global Energy and Water Cycle Ex-
periment Surface Radiation Budget dataset (Gupta
et al. 1999) and the International Satellite Cloud
Climatology Project Flux Data product (Zhang et al.
2004). Furthermore we do not use priors for atmo-
spheric water vapor convergence [NEWS took these
from MERRA, QuikSCAT (Liu et al. 2006), and the
Passive Microwave Water Cycle dataset (Hilburn
2009)]. This means we do not use water convergence
data over individual ocean basins (Rodell et al. 2015b,
their Table 3) until section 4 when we explicitly in-
troduce additional ocean transport data. The motiva-
tion for initially excluding the reanalysis data is that the
surface runoff observations already provide a strong
enough constraint on the horizontal transport of water.

The 16 land and ocean regions used in our study are the
same as those used in the NEWS solution, because we
have used much of the same data provided by NEWS,
and are presented in Fig. 1.

b. Inverse model

An inverse model is used to impose budget con-
straints on all the component fluxes of the annual mean
seasonal cycles of energy and water in the 16 regions
used in the NEWS study. The vertical and horizontal
energy and water fluxes combined in the fit are as follows:

THOMAS ET AL.

1709

F1G. 1. Land and ocean regions used in the study. Abbrevia-
tions are as follows: N = North, S = South, Am = America, Eur =
Eurasia, Afr = Africa, Aus = Australia, Isl = Island continents,
Ant = Antarctica, Arc = Arctic, Atl = Atlantic, Pac = Pacific,
Ind = Indian, Bla = Black Sea, Med = Mediterranean Sea, Car =
Caribbean Sea.

ISR (incoming TOA radiation); OSR and OLR (out-
going shortwave/longwave TOA radiation); DSR and
DLR (downwelling shortwave/longwave surface radia-
tion); USW and ULW (upwelling shortwave/longwave
surface radiation); SH and LE (upwelling surface sen-
sible/latent heat flux); P (precipitation); ADC and
AWC (atmospheric horizontal dry static energy/water
convergence); SEC and SWC [(sub)surface horizontal
energy/water convergence]; and dS and dW (change in
subsurface/atmospheric water storage). The terms P
and LE appear in both energy and water balance
equations and ensure the energy and water cycles are
coupled.

In each region r the following balance equations must
be satisfied. The water cycle terms are converted to units
of energy prior to including them in the equations.

The first balance equation expresses the fact that the
annual average atmospheric energy residual is close to
zero:

ISR —OLR —OSR —DLR —DSR + ULW,
+USW, +SH, +P +ADC=0%0.05 W m™>Vr.
1)
The second equation represents (sub)surface energy
balance:
DLR +DSR - ULW,—USW _—-SH —LE,
+SEC =b, + 0 Vr, (2)
where the annual average b, + o,is 0 = 0.05 W m 2and 1.0
+ 0.6 Wm ™2 for land and oceans, respectively. The latter
values reflect the global ocean energy imbalance estimated
from Argo measurements (Roemmich et al. 2015). The two

energy balance equations neglect the heat capacity of water
being exchanged with the atmosphere; in other words, they
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do not account for evaporation and precipitation and hor-
izontal water convergences taking place at different tem-
peratures, but these terms are likely small compared to
adjustments made to other fluxes (Mayer et al. 2017). On a
monthly time scale there can be residual surface energy
storage that is not distinguishable from changes in hori-
zontal convergence (SEC,) given the observations above.
The equation expressing atmospheric water balance is

LE — P, + AWC=dW Vr 3)
and similarly the (sub)surface water balance is
P —LE +SWC =dS Vr. 4)

On an annual average the storage change terms dS, and
dW, are all assumed to be zero; in this case the variable
AWC is redundant (because AWC, = SWC, V,) and is
thus not included in the fit. In our implementation of the
fit the terms ADC, SEC, and AWC do not have prior
estimates but are instead derived indirectly. The values
of SWC and dS only have priors over land areas; section
4 describes the use of prior values of SWC (and SEC)
over the oceans as additional constraints.

Last, the global sum of each horizontal convergence is
required to be exactly zero:

YADC, =) SEC, =>AWC,=YSWC, =0 (5)

except when a convergence cannot be distinguished
from a storage change, as occurs for SEC, in the
monthly fit.

A cost function is set up to determine the opti-
mized fluxes, convergences, and storage terms. The vector
F contains all optimized variables that have prior observed
values (F,ps); the optimized variables are penalized in the
cost function according to the offsets relative to their prior
values weighted by the inverse of the observation error
covariance matrix Rgps. Variables without prior values are
contained in the vector G and are determined by the
various physical balance constraints. The cost function is

1 B K
J(F.G.A) =5 (F - F,) R (F—F, )+ kZl f(F,G,A),
(6)

where there are K physical budget constraints. Lagrange
multipliers A are used to enforce any exact physical
constraints. Inexact constraints are expressed by cost
function terms such as

[S(F,G) - V]
20'%,

s ™)
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where S(F, G) is a particular linear combination of op-
timized variables and V * oy is the value and un-
certainty of the constraint on this combination [see Egs.
(1) and (2)]. The minimum value of the cost function,
Jimin, 18 found in order to determine the values of F and G
that best match both Fs and the physical balances. A
full description the cost function and its minimization
can be found in appendix A.

Uncertainties in the solution are determined by invert-
ing the cost function Hessian matrix. These uncertainties
contain contributions from the disparate datasets’ uncer-
tainties as well as the constraints that link the physical
variables, and should not be interpreted as independent
improvements in each observational flux uncertainty.

c. Net surface fluxes, ocean transports, and globally
averaged fluxes

There are some small differences in our imple-
mentation of this solution compared to the NEWS fit; as
well as using slightly different datasets (section 2a), we
perform the minimization directly in the 16 regions
(assumed to be uncorrelated), in contrast to the NEWS
approach of using a two-stage fit that is initially solved
using a global ocean region. The regional fluxes de-
termined in the inverse method are very similar to
those shown in L’Ecuyer et al. (2015) and Rodell et al.
(2015b) but with slightly smaller final uncertainties.

In this section we describe some of the problems with
the NEWS solution, providing motivation for our work
in the remainder of the paper. We first consider the time
mean (2000-09) net downward surface energy flux (NSF,
consisting of net downward longwave and shortwave ra-
diation and sensible and latent heat fluxes). Figure 2
shows the NSF in the 16 NEWS regions both for the
initial EO data (Fig. 2a) and from the optimized solution
(Fig. 2b).

The initial EO data clearly have large NSF imbalances
over the land surface as well as a grossly positive energy
flux into the oceans of approximately 20-30 Wm 2,
which has been noted in many previous heat flux studies
(e.g., Grist and Josey 2003). The inverse solution has
successfully reduced the values of NSF to zero over the
land areas, as required by Eq. (2), and reduced NSF over
the ocean basins to much smaller values that are both
positive and negative, consistent with a small global
average. The uncertainties over land become small be-
cause of the strong NSF regional constraint but the un-
certainties over the oceans have not greatly reduced,
although the component fluxes (radiative and turbulent)
that they consist of now have correlated uncertainties
imposed by the optimization process.

For comparison, Fig. 3 shows the regional NSF based
on the CERES TOA radiation fluxes combined with the
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NSF (Wm~2)

FI1G. 2. Net surface flux (NSF; positive downward) in each region for (a) input and (b) optimized output in the
NEWS solution (described in text). The values correspond to the regions shown in Fig. 1.

ERA-Interim reanalysis (Dee et al. 2011) horizontal
energy convergences, following the recent surface flux
derivation approach of Liu et al. (2015). Only the NSF
can be provided by this method, without any breakdown
into flux components, and there is also no objective
means of calculating an uncertainty in the final product.
However, some idea of the uncertainties may be taken
from the residual NSF into the land areas (about
+4Wm™?), which presumably reflects inaccuracies in
the imposed reanalysis transports. Liu et al. (2015)
provide ad hoc solutions to these problems.

Leaving aside the land areas noted above, the
reanalysis-derived NSF is clearly within the uncertainty
limits of the NEWS solution over nearly all ocean ba-
sins, but large discrepancies can be seen over the North
Atlantic, Caribbean, and Arctic basins, which exhibit
large surface energy losses. The North Atlantic basin is
known to be a region of strong heat loss from the
oceans to the atmosphere due to the northward

transport of heat in the Atlantic meridional over-
turning circulation (AMOC) (Hall and Bryden 1982;
Ganachaud and Wunsch 2000, 2001; Trenberth and
Caron 2001; Mignac et al. 2018). In the NEWS solution
the implied cross-equatorial heat flux is 0.01 = 0.53 PW
southward and the heat flux into the Arctic is 0 = 130
TW (assuming no heat flux through the Bering Strait;
see appendix B for a description of the method used to
determine these quantities). The North Atlantic NSF in
the NEWS solution and the associated cross-equatorial
heat flux are clearly unrealistic. In contrast, the implied
ocean cross-equatorial steady state heat flux in the
Atlantic Ocean in the reanalysis-derived solution is
0.72 PW northward, consistent with a strong AMOC,
and the heat flux into the Arctic is 120 TW. The cross-
equatorial transport in the reanalysis-derived solution is
considerably more realistic, although the implied ocean
heat transport into the Arctic is much too strong in the
ERA-Interim solution and is rather more realistic in

-
g
=

2 ?
Z

-4

-6

-8

-10

FIG. 3. Net surface flux (NSF; positive downward) obtained by combining ERA-Interim and CERES data. The
values correspond to the regions shown in Fig. 1.
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the NEWS solution. We will focus on the North At-
lantic, Caribbean, and Arctic basins as we explore
modifications to the NEWS solution process in order to
provide improved objective flux analyses.

Considering the global fluxes in the NEWS solution,
L’Ecuyer et al. (2015) comment that there are consid-
erable variations between published estimates of
some of the components. The global sensible heat flux
mean of ~24 Wm ™ ?is rather larger than estimates from
models (e.g., Trenberth et al. 2009; Wild et al. 2015) and
the global latent heat flux ~80 W m ™2 is lower than some
other estimates (e.g., Wild et al. 2013; Stephens et al.
2012). Other fluxes obtained in the NEWS solution are
closer to alternative estimates in the literature; for ex-
ample, the global precipitation is compatible with Adler
et al. (2012) and Trenberth et al. (2009), and the global
downwelling longwave radiation is similar to those in
Stephens et al. (2012), Wild et al. (2013), and Wang and
Dickinson (2013). The considerable variation in pub-
lished values for these global flux components in par-
ticular prompts us to explore how these quantities are
sensitive to adjustments to the solution method.

3. Ocean fluxes and their uncertainties

In this section we consider changes to the treatment of
the heat fluxes over the oceans in the NEWS solution
method. We assess the impact both on the global aver-
age flux optimization and on the North Atlantic NSF in
particular.

a. Correlated uncertainties in the NEWS solution

We first note that in the original flux data (Fig. 2a) the
North Atlantic NSF substantially contrasts with other
basins in showing much less heat gain. However, this
NSF contrast is not retained in the optimized solution
(Fig. 2b). If all the major basins were adjusted by a
more similar amount then the North Atlantic would
exhibit a substantial heat loss, more consistent with a
strong AMOC transport. To retain the contrast in the
North Atlantic fluxes during the optimization we can
explicitly allow for spatially correlated uncertainties in
the original fluxes, reflecting a modified observation
error covariance matrix [Ryps in Eq. (6)]. These corre-
lated uncertainties could, for example, be caused by
large-scale structural uncertainties in the experimental
methods used to derive the regional fluxes from the
raw data.

In fact the NEWS solution method is somewhat in-
consistent in its approach to spatial error correlations.
The monthly, regional, and global uncertainties given
in L’Ecuyer et al. (2015, their Table 2) and Rodell et al.
(2015a) are only self-consistent if all monthly and
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regional uncertainties in each flux component are per-
fectly correlated. However, this would prevent a strong
NSF constraint being imposed simultaneously over
the multiple land areas. The regional NEWS solution
therefore assumes a diagonal (uncorrelated) error co-
variance matrix when solving in the individual regions,
while imposing a global constraint on each flux to match
the result obtained using the global annual mean values
in L’Ecuyer et al. (2015, their Table 2).

In the following solutions (denoted AllCorr and
PLECorr) we aim for a more consistent treatment of
uncertainties, listing all of the resulting global fluxes in
Table 1. The leftmost result in the table is our im-
plementation of the NEWS solution. Note that in all
solutions the TOA flux values are as follows (all in
Wm ?): ISR = 340.0 = 0.1, OSR =99 = 2, and OLR =
240 * 2. The slightly different OSR compared to the
original NEWS value is due to the exclusive use of
CERES data in our study.

b. AllCorr solution: All fluxes correlated in major
ocean basins

The North Atlantic NSF contrasts shown in Figs. 2a
and 2b strongly suggest that spatial error correlations
need to be represented explicitly over the oceans to get a
more physically reasonable result. Considering Fig. 2a
it is clear that the large ocean basins (excepting the
North Atlantic) are all initially gaining large amounts of
heat and, after optimization, have values of NSF much
closer to zero. The small basins (Mediterranean, Arctic
Sea, and Black Sea) are not highly out of balance, but
the Caribbean has a very large heat gain, which is more
similar to the North Pacific. In the AllCorr solution we
therefore impose high spatial covariances between
prior uncertainties in the North and South Pacific, the
North and South Atlantic, the Indian, and the Carib-
bean basins, for each surface energy flux and pre-
cipitation (correlations between different fluxes
remain zero). To do this we modify Rops by changing
the relevant off-diagonal error covariances such that
each has a Pearson correlation coefficient of 0.99, an
idealized number that is chosen to impose almost per-
fect correlation between each region. All other regions
are allowed to have spatially uncorrelated errors.

Figure 4a shows the optimized NSF for the AllCorr
solution. The strongly negative North Atlantic NSF
implies that this basin is now losing a large amount of
heat to the atmosphere. The values of NSF in the Pacific
and Indian basins do not exhibit the large differences
observed in the North Atlantic. They are compatible
with the values found in the NEWS solution (Fig. 2b)
and the ERA-Interim version (Fig. 3). This reflects the
fact that only the North Atlantic is an outlier in the input
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TABLE 1. Global fluxes for different solutions as described in the text (W m™?2).

Flux NEWS AllCorr PLECorr AltTH ORA
DLR 340 =2 340 =3 342 =2 3392 340 =2
DSR 186 £ 2 186 £ 3 188 =2 186 £ 2 186 £ 2
ULW 398 =2 398 =2 3972 398 =2 398 =2
USW 22+1 22 +1 22 +1 22 +1 22+1
SH 24+1 243 23+ 1 19=*1 24+1
LE 80 £2 80 £3 86 = 2 85 +2 80 £2
P 80 =2 803 86 = 2 85+ 2 80 = 2
NSF 0.76 = 0.19 0.72 = 0.19 0.73 = 0.19 0.76 = 0.19 0.76 = 0.19

NSF (Fig. 2a) and the AllCorr solution simply preserves
its anomalous status using error covariances. The Atlantic
Ocean cross-equatorial heat flux implied by the AllCorr
solution is 0.52 *= 0.14 PW northward, which is much
larger than in the NEWS solution. The regional ocean
uncertainties are now smaller than those in Fig. 2b due
to the strong error correlations connecting the basins.

The AllCorr solution has almost identical global flux
components to the NEWS solution values in L’Ecuyer
et al. (2015, their Table 3), although we have not im-
posed any global constraints on each component flux.
The global uncertainties have substantially increased
and are closer to the global uncertainties quoted in
L’Ecuyer et al. (2015, their Table 3) (which implies a
solution with all flux component errors correlated
across all regions). The AllCorr solution therefore
gives a more realistic NSF distribution over the ocean
basins and is otherwise fully consistent with the global
NEWS solution.

¢. PLECorr solution: Precipitation and latent heat
correlated in major ocean basins

The PLECorr solution is the same as the AllCorr so-
lution except we take solely the latent heat flux and
precipitation uncertainties to have high correlations
(0.99) between the six larger ocean basins. The surface
radiative and sensible heat flux component errors are
taken as uncorrelated, enabling a stronger focus on the
impact of the correlations on the water cycle.

Figure 4b shows the NSF for the PLECorr solution;
this solution still allows the North Atlantic to show large
net heat losses, although not as large as in Fig. 4a. The
Atlantic Ocean cross-equatorial heat flux is equal to 0.34
+ 0.43 PW northward. We note that the six correlated
basins account for ~85% of the global evaporation, and
the larger error covariances for both latent heat and
precipitation permit larger global adjustments to the
water cycle terms relative to the radiative and sensible
heat fluxes. As shown in Table 1 there is now a large
increase in global latent heat flux losses. Comparing this
result with previous global energy budgets it can be seen
that the PLECorr solution is much closer to Stephens
et al. (2012), who find strong global latent heat and
precipitation fluxes of 88 = 10 W m 2. As the water cycle
adjusts more globally, the other fluxes have adjusted by
smaller amounts, including the sensible heat fluxes,
which slightly decrease in the PLECorr solution. The
regional uncertainties in the PLECorr solution lie be-
tween those of the AllCorr solution and the NEWS so-
lution because the implied global uncertainties are only
amplified for latent heat and precipitation and not for
the other flux terms. The AllCorr and PLECorr solu-
tions both have more realistic-looking ocean NSF than
the original NEWS solution and also illustrate the role
of spatial error covariances in controlling the global flux
solutions. We now consider some evidence for spatial
covariability by looking at alternative ocean turbulent
flux products.

NSF (Wm~2)

FIG. 4. Net surface flux (NSF; positive downward) for the (a) AllCorr and (b) PLECorr solutions (described in text).
The values correspond to the regions shown in Fig. 1.
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TABLE 2. Sensible heat flux estimates in ocean turbulent flux products (W m~?).

Region SeaFlux HOAPS IFREMER OAFlux J-OFURO Mean
North Atlantic 19 =4 14 17 15 15 16 =2
South Atlantic 184 16 9 8 5 11x6
North Pacific 15+3 12 14 12 9 12+2
South Pacific 17 =4 15 11 10 6 12+5
Indian 18 =4 18 10 9 6 12+5
Caribbean 11 x5 16 9 9 9 11+3
Global ocean 18+2 15 14 12 10 14+3
Global total 24 x2 22 21 20 19 21+3

d. AltTH solution: Alternative ocean turbulent flux
products

The NEWS study used sensible and latent heat fluxes
taken from the SeaFlux v1 product (Curry et al. 2004).
Given the differences observed in the NEWS latent heat
solution relative to other studies, it is interesting to
consider whether the use of an alternative flux product
would influence the solution and potentially bring it
closer to the other estimates.

Tables 2 and 3 compare the 19982007 10-yr mean latent
and sensible heat fluxes for the global ocean and over the
major ocean basins from five different EO-based turbulent
flux products: SeaFlux v1, OAFlux (Yu et al. 2008), L’In-
stitut Frangais de Recherche pour I’Exploitation de la Mer
(IFREMER) v3 (Bentamy et al. 2013), Hamburg Ocean
Atmosphere Parameters and Fluxes from Satellite Data
(HOAPS) v3 (Andersson et al. 2010), and Japanese Ocean
Flux Data Sets with Use of Remote-Sensing Observations
(J-OFURO) v3 (Tomita et al. 2019), taken from the sur-
face flux comparison projects of Bentamy et al. (2017) and
Valdivieso et al. (2017). The last row of each table shows
the globally averaged fluxes when combined with the land
surface fluxes used in the NEWS study. The regional un-
certainties on the SeaFlux values are taken from Rodell
et al. (2015a), although the global ocean uncertainties as-
sume uncorrelated basins. The mean and standard deviation
of the five flux products are also shown in the table. The
product standard deviation is generally very consistent with
the regional uncertainties provided for SeaFlux, supporting
the regional uncertainty estimates used in the NEWS study.

We can also assess interproduct covariability. The
mean interbasin correlation coefficient for the six major
basins is 0.9 = 0.1 for latent heat and 0.6 = 0.3 for
sensible heat fluxes, going some way to justify the as-
sumption of correlated errors between these basins in
the AllCorr and PLECorr solutions above.

The J-OFURO v3 product is of particular interest due to
its smaller Bowen ratio and larger net turbulent heat losses
over the North Atlantic. Compared to SeaFlux v1, the
J-OFURO v3 flux quality has been improved, benefitting
from its use of multiple satellite sensors with state-of-the-
art atmospheric humidity retrieval algorithms. In the AItTH
solution we replace the SeaFlux vl turbulent heat fluxes
with those from J-OFURO v3, retaining the SeaFlux
uncertainties (the interproduct standard deviation could
also be used), and without assuming any spatial error
covariances. We have, however, retained the SeaFlux
Arctic fluxes as the J-OFURO fluxes lack good coverage
in that region.

The global energy and water budget components for
the AltTH solution are shown in Table 1. Introducing J-
OFURO v3 reduces the global sensible heat flux from 24
to 19 W m ™2 and increases the global latent heat flux from
80 to 85Wm 2 The large reduction in sensible heat
fluxes brings the solution closer to some previous global
estimates from models (e.g., Trenberth et al. 2009; Wild
et al. 2015). The NSF in Fig. 5a shows more heat loss over
the North Atlantic compared to the NEWS solution, and
the cross-equatorial Atlantic heat transport is 0.34 £ 0.53
PW northward. The heat flux into the Caribbean remains

TABLE 3. Latent heat flux estimates in ocean turbulent heat flux products (W m™2).

Region SeaFlux HOAPS IFREMER OAFlux J-OFURO Mean
North Atlantic 97 £ 8 101 91 96 106 98 *6
South Atlantic 81*6 89 76 77 92 837
North Pacific 95 £8 110 99 101 105 102 = 6
South Pacific 93 =7 103 91 92 101 9 = 6
Indian 98 £ 9 110 94 98 108 101 =7
Caribbean 129 + 12 160 131 131 138 138 = 13
Global ocean 92 *+4 102 89 92 102 95*+6
Global total 76 £ 3 84 75 76 83 79 4
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NSF (Wm~2)

FI1G. 5. Net surface flux (NSF; positive downward) for the (a) AItTH and (b) ORA solutions (described in text). The
values correspond to the regions shown in Fig. 1.

large when the basins are not correlated, but otherwise
the AItTH solution is quite similar to the PLECorr
solution.

Both introducing J-OFURO v3 fluxes and allowing
nonzero error covariances for SeaFlux latent heat and
precipitation fluxes lead to increased heat loss over the
North Atlantic and a global intensification in the water
cycle. The effects are approximately additive if both
approaches are used together (not shown). None of
these solutions gives quite as much heat loss over the
North Atlantic as the solution using the ERA-Interim
reanalysis (Fig. 3). Also none of the solutions (including
the ERA-Interim solution) gives realistic heat losses
over the Arctic (see, e.g., Tsubouchi et al. 2018).

e. Seasonal cycle with correlated ocean fluxes

In this section we consider the seasonal cycle for the
PLECorr solution, for which the precipitation and latent
heat fluxes are correlated over the six major ocean ba-
sins. We retain the monthly SeaFlux uncertainty esti-
mates and use the same spatial error correlations (0.99)
each month. The monthly water cycle components for
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both the PLECorr solution and the NEWS solution, and
the difference between the two, are shown in Figs. 6a—
and the monthly NSF is shown in Fig. 6d.

The adjustments represent an intensification of the
water cycle; both precipitation (Fig. 6a) and evaporation
(Fig. 6b) increase by ~10% throughout the year in all
ocean basins. The changes in atmospheric water con-
vergence (Fig. 6¢) are smaller, with slightly more mois-
ture divergence over the Atlantic basins and more
convergence over the Pacific, and almost no impact on
land areas. The increased latent heat losses at the ocean
surface are partly compensated by other component
fluxes in the NSF (Fig. 6d), with all basins showing
downward radiation fluxes slightly larger and upward
radiation and sensible fluxes slightly smaller. We will
compare this seasonal response with that produced by a
reanalysis constraint in section 4.

4. Reanalysis transport constraints

We noted earlier that we had dispensed with the use of
the MERRA reanalysis atmospheric water convergences
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FI1G. 6. Monthly solutions in the major ocean basins and the global land area for (a) precipitation, (b) latent heat, (c) atmospheric water convergence
(AWC), and (d) net surface heat flux. Both the NEWS solution and the PLECorr solution (described in text) are shown. The differences between these
two solutions are shown with an expanded scale below each plot. The region abbreviations are explained in the caption of Fig. 1.
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since the surface runoff product supplies the equivalent
long-term mean information over land. In this section we
investigate reintroducing reanalysis constraints into the
inverse model as priors to be adjusted along with the
EO-based fluxes.

Adding time-mean horizontal atmospheric energy
flux convergences over land would be ineffective be-
cause we already impose a strong surface constraint of
very small mean NSF in these regions. Similarly, runoff
data from land areas offer a sufficient constraint for
closing the freshwater budgets and have uncertainties
of similar magnitude to those assigned to the MERRA
transports in the NEWS study. Over the ocean basins,
however, neither (sub)surface energy nor freshwater
storage has any regional constraints. Introducing priors
for horizontal energy and water convergences from either
atmospheric or ocean reanalyses should have an equiva-
lent impact on the regional energy and water budgets.

Here we choose to introduce horizontal heat flux
convergences based on ocean reanalysis data rather than
use atmospheric reanalysis data for two reasons: first,
atmospheric reanalysis energy convergences can be
challenging to calculate due to the need to apply a mass
correction to the water vapor transport (Mayer et al.
2017); second, atmospheric reanalysis convergences
over the oceans have open boundaries at the coasts and
will not necessarily sum to small ocean net values (see,
e.g., Fig. 2 of Valdivieso et al. 2017). In contrast, ocean
reanalysis convergences must closely sum to zero over
the global ocean and there is no need to apply a mass
correction. For consistency, we use freshwater conver-
gences from the reanalyses that are used to determine
the energy convergences; additionally, freshwater con-
vergences from an atmospheric product may conflict
with the runoff data provided, as indeed was noted when
using MERRA data in Rodell et al. (2015b).

Four ocean reanalyses are considered in this study: the
Ocean ReAnalysis Pilot 5 (ORAPS; Zuo et al. 2017),
CMCC Global Ocean Reanalysis System version 5
(C-GLORSVYS; Storto and Masina 2016), University of
Reading 0.25° Global Ocean Reanalysis 4 (UR025.4;
Haines et al. 2012), and Global Ocean Reanalysis 2
(GLORYS2v4; Ferry et al. 2012). Each reanalysis was
produced using the ocean model NEMO v3 coupled to
the Louvain-la-Neuve sea ice model (LIM) v2 with a
model resolution of 0.25°. All products assimilated sea
surface temperature (in situ observations, satellite
data, or both), sea level from satellite altimetry, sub-
surface temperature and salinity profiles, and sea ice
concentration, together with atmospheric forcing taken
from ERA-Interim. The heat transport across all sections
bounding each of the nine oceanic regions used in the
inverse model study is calculated as
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Jpcp@ v-da, ®)

where p is the density of seawater, ¢, is the specific heat
capacity of seawater, 6 is the potential temperature, v is
the velocity across the section, n is the unit normal
vector of the section, and the integral is calculated over
the section (Ganachaud and Wunsch 2001). The fresh-
water transports are calculated as

Jp(l —S/S)v- di, ©)

where S is the salinity and S=35 psu is the global
average ocean salinity (Ganachaud and Wunsch 2001;
Wijffels 2001).

The heat and freshwater flux convergences in each
region are then calculated from each of the four ocean
reanalysis products and the mean is determined,
with the uncertainty defined as the standard deviation
of the products around the mean. When computing
the freshwater convergences the runoff data are also
accounted for.

a. ORA solution: Transport constraints from ocean
reanalyses

In the ORA solution the mean and standard deviation
of the heat and freshwater transport constraints are used
to include prior values of the variables SEC and SWC
[see Egs. (2) and (4)] over the oceans. Note this ap-
proach is different from the direct combination of
CERES TOA fluxes and ERA-Interim convergences
(described in section 2c) because the reanalysis con-
straints are only provided as weak (comparatively un-
certain) priors and do not dominate the solution. No
error correlations are imposed in this case.

The global fluxes produced in the ORA solution are
listed in Table 1. These are unchanged from the NEWS
solution as, on a global basis, the convergences of heat
and freshwater sum to zero and we have not altered the
balance of flux adjustments between the radiative and
turbulent contributions at the surface.

The regional NSF incorporating these ocean conver-
gences into the NEWS solution is shown in Fig. 5b.
There are several striking features of this solution. The
heat loss in the North Atlantic has a much larger central
value than in the NEWS fit and although the Caribbean
is still gaining heat the magnitude of the increase is
greatly reduced from previous solutions. The Arctic now
shows surface heat loss, although rather less than in the
ERA-Interim constrained solution. This solution cor-
responds to a cross-equatorial heat transport in the At-
lantic Ocean of 0.73 = 0.13 PW northward, very similar
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FI1G. 7. Monthly solutions in the major ocean basins and the global land area for (a) precipitation, (b) latent heat, (c) atmospheric water
convergence (AWC), and (d) net surface heat flux. Both the NEWS solution and the ORA solution (described in text) are shown. The
differences between these two solutions are shown with an expanded scale below each plot. The region abbreviations are explained in the

caption of Fig. 1.

to the ERA-Interim derived solution. The ocean heat
transport from the North Atlantic into the Arcticis 35 £ 5
TW. This is the only solution that produces a realistic
value of the Arctic net energy budget (Tsubouchi et al.
2018). Given the sparsity of observations it is not sur-
prising that EO data alone over the Arctic are insufficient
to separate the atmospheric and oceanic energy and wa-
ter transports, even if the TOA data are reliable.

Another feature of this reanalysis-constrained solu-
tion is the small regional uncertainties assigned to the
optimized ocean NSF values compared to most solutions
in section 3. This is the result of introducing a net flux
constraint, just as introducing a strong constraint on
NSF over land leads to small uncertainties.

The values of NSF in the Pacific and Indian basins
computed in the ORA solution are still consistent with
those found in the NEWS solution (Fig. 2b) and the
ERA-Interim version (Fig. 3).

b. Seasonal cycle results

One way of clearly separating the impact of the EO
fluxes and the reanalysis convergences is to solve for the
seasonal cycle while only applying the reanalysis conver-
gences as time-mean constraints. Any seasonal variability
will thus result purely from the EO flux data. The method
is similar to the monthly solution presented in Rodell et al.
(2015b), which constrains the time mean fluxes but allows
their monthly values to vary. The seasonal results including
these annual convergences are shown in Fig. 7, with dif-
ferences relative to the NEWS solution at the bottom.

The latent heat losses over the North Atlantic in-
crease relative to the NEWS solution throughout the
year, but are larger in winter due to the seasonally
varying uncertainties. The precipitation also increases

over the North Atlantic, reflecting a strengthening of
the water cycle over that basin. The other ocean basins
show both increases and decreases in latent heat loss,
precipitation, and atmospheric water convergence, con-
sistent with no overall global change for the ORA solu-
tion in Table 1. The South Pacific exhibits the largest
change in atmospheric water convergence, reflecting both
increased precipitation and decreased evaporation. In
contrast to the PLECorr solution (Fig. 6) the smaller in-
crease in latent heat loss over the North Atlantic, ranging
from 3 to 6 Wm 2, is reinforced by changes in the other
energy fluxes; the downwelling radiation is reduced and
the upward radiation and sensible fluxes are increased,
giving a larger net heat loss ranging from 10 to 18 Wm ™2
and an annual average loss of 16 = 3Wm 2.

5. Discussion

The AllCorr solution (section 3a), which retains corre-
lated errors in all fluxes over the six largest ocean basins,
might be considered a minimal update to the NEWS solu-
tion. The correlations allow the ocean flux adjustments to
produce more realistic results while still allowing strong
land surface energy constraints to be imposed. Spatial co-
variances such as those applied in the AllCorr and PLECorr
solutions are highly likely to arise in EO-based products due
to structural uncertainties in the satellite retrieval methods
and instrumental biases. These biases will dominate on
larger scales when regional random uncertainties average
out (Adler et al. 2012) but it is hard to quantify the spatial
error correlations for any single flux product.

We note that simply changing the size of the flux un-
certainties without introducing correlations does not
impact spatial flux distributions very much. For example,
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if the default LE and SH uncertainties are doubled
(without imposing error correlations) the global and
regional fit values are quite similar to those of the
NEWS solution albeit with larger uncertainties. The
optimized global turbulent heat fluxes in this case are
SH =27 £ 2Wm “and LE = 81 = 2Wm™” and the
North Atlantic net surface flux is —1.4 + 18.7Wm 2%
The lack of correlations means the regional fluxes are
not required to adjust in concert and the distinct im-
provements to the North Atlantic solution are lost.

When considering spatial correlations we have used
idealized values of 0.99 but we have also demonstrated
that the correlated variability among five turbulent
flux products is very high both for the 10-yr means and
for the seasonal fluxes in each year (not shown). The
interproduct variability does exhibit a seasonal cycle,
suggesting that the uncertainties in the different
products are dependent on the seasonal environmental
conditions. The disadvantage of this method is that the
interproduct variability does not account for errors
relative to the truth that are shared between the flux
products. We have compared the satellite flux prod-
ucts with ICOADS ship data, which can be thought of
as a proxy for the truth and, in principle, enables a
determination of the true error covariances. The EO
product differences relative to ICOADS are correlated
on large spatial scales, but the ship data are too spa-
tially and temporally inhomogeneous to take reliable
averages for performing a bias correction. Allowing
precipitation errors to also be spatially correlated has a
significant impact on the solution. If the precipitation
errors remain uncorrelated this strongly reduces the
adjustments to the water cycle when introducing latent
heat error correlations. It is known that the microwave
data upon which EO precipitation fluxes are estimated
are unable to fully detect weak precipitation (Behrangi
et al. 2014) and this bias is likely to be present in all
basins and represent a highly correlated error.

We have not sought to investigate spatial error cor-
relations in the radiative flux components although
they too could make a significant difference to the re-
sults. As noted above it is generally very hard to estimate
EO flux errors on large scales because in situ data can-
not be used to test error correlations unless they dom-
inate over local temporally varying errors. Improved
retrieval methods based on physical processes or state
dependence using analyzed atmosphere or ocean con-
ditions are needed. Additionally, correlations between
different fluxes (e.g., between precipitation and latent
heat flux observations, whose derivations share com-
mon data) could also have an import