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 Symbiosis up-regulates metallothionein PtMT2b in roots regardless of 

contamination 

 PtMT2b greatly increases Cd tolerance in transgenic yeast under Cd 

stress 
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Abstract 

We investigated how arbuscular mycorrhizal symbiosis can alter trace element 

uptake, distribution and toxicity in plants by examining some of the molecular 

mechanisms behind Populus trichocarpa tolerance to Cd and Zn, and the effects of AMF 

in metal homeostasis. Plants were grown under Cd and Zn contamination, with and 

without Rhizophagus irregularis inoculation. We determined organ metal concentrations, 

the expression of genes involved in trace element homeostasis, and the function of 

metallothionein PtMT2b by heterologous expression in yeast. P. trichocarpa was highly 

tolerant to both elements, with AMF increasing Zn accumulation. AMF altered the 

partitioning of Cd, but maintained the same patterns for Zn, indicating that despite being 

geochemically similar and carried mostly by the same transporters, the nutrient metal (Zn) 

is handled differently from the non-essential metal (Cd). High Zn and Cd down-regulated 

PtHMA4 (roots), and up-regulated PtZIP1 (leaves), suggesting their involvement in 

transporting both metals in poplar. PtMT2b was highly up-regulated in mycorrhizal roots 

and enhanced Cd tolerance in transformed yeast. R. irregularis reduced Cd transfer to 

poplar shoots, but did not affect Zn partitioning. The gene expression patterns observed 

offer a glimpse into the mechanisms behind trace element uptake/translocation dynamic 

in poplars, influenced by AMF symbiosis. 

 

Keywords: arbuscular mycorrhizal fungi, heavy metal transporters, heterologous 

expression, metallothionein, phytoremediation  
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1. Introduction  

 Soil contamination by trace elements (TEs) – also known as heavy metals – is an 

increasing threat to environmental safety and human health (Ali et al., 2013). Cadmium 

(Cd) is an extremely toxic metal even at low concentrations (Alloway, 2013) and has high 

mobility in soils, which can lead to groundwater contamination (Lei et al., 2010). Cd is 

geochemically similar to zinc (Zn) and is often found in Zn bearing minerals (Alloway, 

2013); therefore, Zn ores can be responsible for releasing both Cd and Zn into the 

environment (He et al., 2015) and despite being an essential element, high concentrations 

of Zn in soils can be harmful to plants and other organisms in the food chain (Green and 

Tibbett 2008; Green et al., 2010; Nagajyoti et al., 2010; Ali et al., 2013). 

Plants have a series of transporters involved in metal uptake and homeostasis that 

regulates metal movement into the symplast and subsequent loading into vascular tissues 

(Palmer and Guerinot, 2009). Gene families encoding metal transporters in plants are very 

diverse and this variation is responsible for the high and low affinity systems necessary 

to withstand different metal availability in soils (Guerra et al., 2011). Transport of metals 

into the symplast can be carried out by members of numerous transporter families, such 

as the heavy metal (Cpx-type) ATPases, the cation diffusion facilitators (CDF), the zrt-, 

irt-like proteins (ZIP), metal tolerance proteins (MTPs) and the natural resistance-

associated macrophage proteins (NRAMP) (Yang et al., 2005; Colangelo and Guerinot, 

2006; Sheoran et al., 2011; Ricachenevsky et al., 2013). Since Cd and Zn are very similar, 

it is generally believed that Cd2+ uptake by plants happens by a carrier for Zn2+, or even 

other divalent cations, such as Cu2+ or Fe2+, or by Ca2+ and Mg2+ transporters/channels 

(Clemens, 2006; Guerra et al., 2011).  

Most metal ions in plants require constant chelation after being taken up by the 

cell. Chelators bind these ions and contribute to metal detoxification by buffering metal 

concentrations in the cytosol (Clemens, 2001). One of the main groups of characterised 

chelators in plant cells are the metallothioneins (MTs) (Clemens, 2006). These low-

molecular weight proteins are rich in cysteine, which bind metals in metal-thiolate 

clusters (Cobbett and Goldsbrough, 2002), and they are considered to be responsible for 

the homeostasis of essential TEs (Kotrba et al., 2009). In order to understand TE 

sequestration, Kohler et al., (2004) characterized six MT genes (PtdMTs) in the hybrid P. 

trichocarpa x deltoides and verified through heterologous expression of PtdMT cDNAs 

in Cd-sensitive yeasts, that these genes could confer Cd tolerance. However, data about 

MT production in poplars are still very limited (Guerra et al., 2011). Expression of genes 
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that encode TE transporters and MTs in plants can be regulated by environmental 

conditions, metal concentration in soil, pathogen infection and symbiotic interactions 

(Kohler et al., 2004), such as with mycorrhizal fungi (Hildebrandt et al., 2007). 

Almost all terrestrial plants form mycorrhizal associations, especially with 

arbuscular mycorrhizal fungi (AMF) (Smith and Read, 2008), in which an interplay 

between direct plant uptake and the mycorrhizal pathway uptake influences the overall 

plant nutritional status and metal homeostasis. The fact that AMF fungi can increase Zn 

uptake under deficient conditions is almost a basic tenet when it comes to AM symbiosis 

(Smith et al., 2010), in some cases, the mycorrhizal fungi pathway can account for almost 

25% of the plant’s Zn supply (Watts-Williams et al., 2015). Although both pathways for 

nutrient acquisition in soils are well established (e.g. absorption via plant roots and root 

hairs and/or fungal hyphae and external mycelium) (Smith et al., 2011), recent works, 

both physiological and molecular, have been elucidating a more integrated system 

between these pathways, mainly on the expression of P-transporter genes (Christophersen 

et al., 2009; Kariman et al., 2016).  

The influence of AMF under high Zn concentrations sometimes leads to a 

decrease in Zn plant uptake (Cavagnaro et al., 2010), which can be due to a weaker 

contribution of the mycorrhizal pathway (Watts-Williams et al., 2015), or by altering the 

uptake machinery in the host plant. Under Zn stress, mycorrhizal fungi was shown to 

down-regulate plant Zn transporters in order to promote homeostatic balance (Burleigh 

and Bechman, 2002), or to up-regulate the expression MT genes as a detoxification 

strategy (Cicatelli et al., 2010). Similarly, symbiosis with AMF was also shown to alter 

plant gene expression patterns in host plants exposed to Cd (Rivera-Becerril et al., 2005; 

Kumar et al., 2015). 

In general, AMF symbiosis will often improve plant tolerance to TE toxicity 

(Andrade et al., 2008; Miransari, 2010; Kariman et al., 2018), mostly by cell wall and 

glomalin binding or by cytosolic chelation (Saraswat and Rai, 2011), however the 

molecular mechanisms by which they confer tolerance to TEs are highly variable and 

have not been fully clarified (Cicatelli et al., 2014). For instance, despite Cd and Zn 

sharing similar uptake pathways in plants (Clemens, 2006) and most of the same 

membrane metal transporters (Martinka et al., 2014), AMF can have divergent effects on 

the expression of transporter and tolerance genes in the same plant, depending if it is 

under Cd or Zn stress (Blaudez et al., 2003). Cadmium and Zn may be geochemically 

similar, but by being inherently different in terms of essentiality for plant or fungal 
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development, it becomes apparent that the AMF influence on plant gene expression will 

not be the same in terms of toxicity avoidance. Nonetheless, studies that help elucidate 

these divergent molecular responses are lacking. 

 Phytoremediation is the use of plants and associated microbiota for environmental 

decontamination (Pilon-Smits, 2005; Gomes et al., 2016), in which phytoextraction 

(uptake and translocation of metals to aboveground parts) and phytostabilisation 

(immobilisation of contaminants in roots reducing their availability in soils) are the most 

common processes for remediation of inorganic contaminants such as TEs (Ali et al., 

2013). Trees from the Populus genus (poplars) are increasingly being considered for 

remediation of several metals, such as Cd, Zn and Cu (Guerra et al., 2011; Luo et al., 

2016; Redovnikovic et al., 2017), due to their high biomass production, deep root 

systems, rapid growth and tolerance to elevated metal concentrations (Robinson et al., 

2009; Bhargava et al., 2012; De Oliveira and Tibbett, 2018). Poplars can promptly invade 

disturbed sites, reproduce asexually (Hamberg et al., 2011) and are not a source of food 

for farm animals (Sebastiani et al., 2004; Shim et al., 2013), reducing the risk of TEs 

entering the ecosystem/human food chain. Inoculation of poplar trees with AMF can 

significantly increase their biomass and tolerance (Cicatelli et al., 2010; Ciadamidaro et 

al., 2017), enhance Cd accumulation (Chen et al., 2016) and phytostabilisation of TEs 

such as Cu and Zn (Cicatelli et al., 2014). However, metal uptake in plants under AMF 

symbiosis varies greatly depending on species, cultivars and symbiont partners, factors 

that certainly affect their overall phytoremediation potential (Bissonnette et al., 2010; Sun 

et al., 2018). 

The genome of P. trichocarpa has been completely sequenced (Tuskan et al., 

2006) and offers great opportunities for identifying candidate genes for TE uptake in the 

presence or the absence of AMF (Göhre and Paszkowski, 2006). Assessing the effects of 

AMF on the patterns of gene expression in host plants is also relevant for elucidating the 

extent of the mycorrhizal influence, since these fungi are known for promoting systemic 

effects on their symbiont’s gene expression and transcriptional responses (Liu et al., 

2007; Kariman et al., 2016). 

Therefore, the objectives of this work were to investigate changes caused by 

mycorrhizal symbiosis (Rhizophagus irregularis) to the uptake and transport of Cd and 

Zn in P. trichocarpa under sub-lethal Cd and Zn stress.  Our a priori hypotheses were 

that: i) mycorrhizal symbiosis enhances Cd and Zn uptake and increases plant tolerance 

to toxicity; ii) poplar genes for metal uptake are down-regulated under metal exposure as 
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an avoidance strategy, while genes associated with metal chelation are up-regulated as a 

detoxifying mechanism; and iii) AMF alters Cd and Zn partitioning and distribution in 

plant organs, and modulates the expression of transporter/chelation genes in poplar. Our 

results on the effect of AMF on the expression of PtMT2b in poplar roots, and its 

association with Cd immobilisation, led us to subsequently investigate its function in 

providing Cd tolerance by expressing this gene in a yeast system. 

 

2. Materials and Methods 

2.1 Growth substrate preparation, plant material and AMF inoculation. 

Growth substrate was made up from a mixture of TerraGreen® clay (American 

Granules Plain, OIL-DRI, UK) and sand (1:5 w/w) (Sibelco, UK) and autoclaved twice 

(121oC for 15 min). Plastic pots (1 kg, 13 cm diameter) were prepared with 900 g of the 

substrate and 100 g of the mycorrhizal inoculum (sand mix containing colonised root 

fragments, hyphae and fungal spores). R. irregularis inoculum was obtained from the 

University of Reading mycorrhizal collection, which is cultured using Plantago 

lanceolata as the host plant. Non-mycorrhizal treatments received 100 g of autoclaved 

inoculum. The substrate surface in all pots was covered with a thin layer (0.5 cm) of 

plastic pellets, to avoid possible cross contamination among treatments. 

Poplar cuttings (Populus trichocarpa cv Trichobel) were obtained from AF Hill 

and Son, Redditch, UK and were kept refrigerated at 4oC until the experiment. One cutting 

(15 cm, two nodes) was planted in the centre of each pot to grow for five weeks in a 

growth chamber (23oC; light per day, 16 h; photosynthetic photon flux, 100 µmol m-2 s-1 

- Philips MCFE 40W/840) and all plants were fertilised weekly for the first three weeks 

with 10 mL of a modified Long Ashton’s solution (macronutrients: (NH4)2SO4 (4 mM), 

K2SO4 (2 mM), CaCl2·2H2O (3 mM), MgSO4 ·7H2O (1.5 mM), NaNO3 (8 mM), FeEDTA 

(0.1 mM); micronutrients: H3BO3 (2.86 mg L–1), MnCl2·4H2O (1.81 mg L–1), 

CuSO4·5H2O (0.08 mg L–1), NaMoO4·2H2O (0.025 mg L–1), ZnSO4·7H2O (0.22 mg L–

1)), according to Kariman et al., (2014). Water holding capacity was maintained at 70% 

(300 mL of distilled water). 

 

2.2 Contamination and experimental design 

 After five weeks of growth, pots were divided randomly into six different 

treatments: (1) Non-mycorrhizal control (Control NM); (2) mycorrhizal control (Control 

+ M); (3) non-mycorrhizal under Cd amendment (Cd NM); (4) mycorrhizal under Cd 
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contamination (Cd + M); (5) non-mycorrhizal under Zn contamination (Zn NM); and (6) 

mycorrhizal under Zn contamination (Zn + M). For the Cd treatments, pots were spiked 

with a stock solution of CdCl2 to reach a final concentration of 81 mg kg-1 Cd; to avoid 

osmotic shock the application was split into three consecutive days (27 mg Cd day-1). For 

the Zn treatments, a solution of ZnSO4 was used to reach a final concentration of 300 mg 

kg-1 Zn; application was also split into three consecutive days (100 mg Zn day-1). These 

concentrations of Cd and Zn were based on a previous study, in which they caused 

significant yet sub-lethal toxic effects (De Oliveira and Tibbett 2018). Each treatment had 

six replicates and they were set up in a completely randomised design. Non-contaminated 

controls received deionised water instead of metal solutions. 

 

2.3 Transpiration rate, harvest and pH 

After four weeks of exposure to contamination, the two youngest expanded leaves 

from each plant were assessed for stomatal conductance (gs, in mol m-2 s-1) and 

transpiration rate (mmol m-2 s-1) using a portable infrared gas analyser (LCi Portable 

Photosynthesis System). Eight weeks after contamination, plants were harvested and split 

into leaves, stems and roots (original cutting was discarded). The 9th leaf of each plant 

(counting from the bottom of the stem) was sampled and immediately frozen in liquid 

nitrogen for RNA extraction. Roots were washed thoroughly with tap water and random 

sections of 2 cm from the root tips were sampled both for determination of mycorrhizal 

colonisation and for gene expression analyses, the latter were immediately frozen in liquid 

nitrogen. The remaining roots were immersed in a 0.05 M CaCl2 solution for 30 minutes 

to remove any surface adhering metals (Marmiroli et al., 2013).  

All plant parts were dried in an oven at 70oC for seven days before dry weight (DW) 

was determined. Soil was air dried, sieved (2 mm) and soil pH was determined in a water-

soil suspension (2.5:1) shaken for 15 min at 120 rpm (Rowell, 1994). 

 

2.4 Mycorrhizal colonisation 

Root sub-samples were cleared in KOH solution (10% w/v) at room temperature for 

10 days, then stained in a 5% (v/v) black ink vinegar solution (Vierheilig et al., 1998) for 

1 hour before being washed and transferred to a solution of lactoglycerol (Walker, 2005). 

Colonisation scoring was done by the line intercept method, in which the presence of 

either hyphae, arbuscule or vesicle  was considered as evidence of mycorrhizae 

(Giovanetti and Mosse, 1980). 
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2.5 Acid digestion and determination of metal content 

Leaf, stem and root dried samples were ground and digested (50 mg) for 8 hours in 

5 mL of 70% HNO3 (≥69% TraceSELECT®) in closed glass vessels on heating blocks at 

110oC (Huang et al., 2004). Every digestion run was performed in duplicate, with a blank 

and a plant certified material (IAEA-359 cabbage leaves) included for quality control. 

Extracts were diluted in a solution of 2% HNO3 + 5 ppb Rh (rhodium), and filtered. Cd 

and Zn concentrations were determined by inductively coupled plasma mass spectrometry 

(Thermo Scientific™ iCAP™ Q ICP-MS), using Rh as an internal standard. Total metal 

contents – expressed in µg (Cd) or mg (Zn) per plant – were calculated by multiplying 

the determined metal concentration (mg kg-1) by their respective biomass weight, for each 

organ separately (roots, stems and leaves) and then for the entire plant. 

The translocation factor (Tf %) is an index used to assess the plant’s capacity to 

translocate TEs from roots to aboveground parts (Rafati et al., 2011), and is the ratio 

between the metal concentrations in leaves and roots (Saraswat and Rai, 2009; Zacchini 

et al., 2009). In the present work, total metal contents (µg or mg per organ) were used 

instead of the traditional metal concentrations (mg kg-1), as it takes into account the 

biomass of each organ, and provides a more accurate representation of the proportion of 

metals that can be translocated and stored in leaves and roots:  

 

𝑇𝑓 =  
𝑇𝑜𝑡𝑎𝑙 𝑙𝑒𝑎𝑓 𝑐𝑜𝑛𝑡𝑒𝑛𝑡

𝑇𝑜𝑡𝑎𝑙 𝑟𝑜𝑜𝑡 𝑐𝑜𝑛𝑡𝑒𝑛𝑡
 × 100  

  

2.6 RNA extraction and cDNA synthesis 

 Total RNA was extracted from approximately 100 g of fresh weight material 

(leaves or roots) macerated in liquid nitrogen via TissueLyser II (Qiagen®). Extraction 

was performed by a modified version of the CTAB method (Jaakola et al., 2001): 

macerated samples were incubated with CTAB buffer (hexadecyltrimethylammonium 

bromide) for 25 min at 65oC (instead of 10 min), LiCl addition was 1/3 of total extract 

volume (instead of 1/4) and after overnight precipitation at 4oC, extract was centrifuged 

for 60 min (instead of 20 min). After centrifugation, the supernatant was discarded and 

RNA pellets were purified with the RNeasy Plant Mini kit (Qiagen, UK), including a 

DNAse treatment (Qiagen, UK) for 20 min. Three replicates of each experimental 

treatment with the highest RNA concentration and quality were selected for cDNA 
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synthesis (SensiFAST cDNA synthesis kit, Bioline - UK) and following the 

manufacturer’s instructions. Both DNA and RNAs were quantified using a NanoDrop 

2000 Spectrophotometer. 
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2.7 Primer design and gene expression analyses by qPCR 

Specific primers for all the selected P. trichocarpa genes were designed with the 

Primer-BLAST tool (Ye et al., 2012) (Table S1). In some cases, homologues from P. 

tremula x P. alba or P. trichocarpa x P. deltoides genes were used based on their identity 

to the P. trichocarpa genome (≥ 93% identity). Eight genes were selected, four associated 

with metal transport (MTP1, HMA4, ZIP1 and NRAMP3), three with metal chelation 

(MT2a, MT2b and PCS1) and one reference gene that encodes ubiquitin (UBQ), with 

stable expression throughout organs and experimental treatments (ANOVA, p > 0.76). 

The qPCR was performed in duplicate for each sample, in roots and leaves using 

PowerUp™ SYBRGreen™ (Applied Biosystems). Parameters for the qPCR reactions 

were as follows: 1 cycle (2 min) at 50oC followed by 2 min at 95oC, then 40 cycles of 

95oC (3 sec) and 60oC (30 sec). Primer specificity was verified by electrophoresis and 

confirmed by melt curve analyses. The qPCR run and analyses were performed using 

StepOne™ Real-Time PCR System (Applied Biosystems). Results were analysed by the 

standard curve method, and gene expression was normalised using UBQ as the house 

keeping gene. 

 

2.8 Expression of PtMT2b in Saccharomyces cerevisiae 

PtMT2b expression in roots was up-regulated and highly correlated to mycorrhizal 

colonisation, which appears to be involved in the restriction of Cd transport from roots to 

shoots (see Results section; Fig. 4, 5). Therefore we hypothesised that this gene is highly 

effective in conferring Cd tolerance. This was tested by overexpressing PtMT2b in yeast 

under different Cd concentrations. 

The wild-type S. cerevisiae strain DY1457 (WT) was used for transformation. The 

cDNA synthesised previously was used as template to amplify the open reading frame 

(ORF) of PtMT2b using a primer set containing attB overhang (annealing temperature: 

58oC), with sequences (5’ – 3’):   

F: GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGTCTTGCTGTGGAGGAAA; 

R: GGGGACCACTTTGTACAAGAAAGCTGGGTCTCA TTTGCAGGAGCATGGAT. 

The gene was introduced into a Gateway® donor vector pDONR221 (with 

kanamycin resistance gene – Fig. S1) using Gateway® BP Clonase® II enzyme mix. 

Chemically competent E. coli cells (TOP10) were transformed with the entry clone and 

grown overnight in LB agar + Kanamycin medium at 37oC. Plasmids were isolated from 

transformed E. coli and introduced into destination vector pDR195 (Fig. S2) using the 
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Gateway® LR Clonase® II enzyme mix. E. coli cells were transformed with the 

expression vector and grown in LB agar + Ampicillin, same parameters as before. WT 

yeast was transformed with the expression vector containing PtMT2b, and an empty 

vector (as control). The transformants were selected on synthetic complete (SC) drop-out 

medium without uracil [1 g/L drop out medium Y1501 Sigma® + 6.7 g L-1 yeast nitrogen 

base Invitrogen™] + 2% dextrose (v/v). Plasmids were restricted (entry vector: SacI and 

SspI; expression vector: SacI and HindIII) and sequenced at every stage to confirm ORF 

integrity and direction.  

Yeast cells were grown overnight at 30oC (250 rpm) in SC liquid media (5 mL). 

OD600 was recorded using SpectraMax i3x (Molecular Devices) microplate reader. 

Cultures were diluted in sterile water to reach OD600 of 0.1, and then used for serial 

dilutions (1:10 v/v). All dilutions of transformed yeast (‘PtMT2b’) and empty vector 

control yeast (‘WT’) were spotted (5 µL) in SC agar plates (2% bacteriological agar w/v) 

at 0; 10; 20; and 50 µM Cd (via CdCl2), then grown at 30oC for 72 hours in the dark (three 

replicates). 

 

2.9 Statistical analyses 

All statistical analyses were performed using R software. Dry weight (DW), leaf 

transpiration (E), and stomatal conductance (gs) were analysed by two-way ANOVA and 

further Tukey tests (p < 0.05). One-Way ANOVA and Tukey test (p < 0.05) were used to 

determine the differences in colonisation percentage of mycorrhizal roots, and the 

differences in metal concentrations between leaves, stems and root organs. The effects of 

both AMF and contamination (Cd or Zn) on plant metal concentrations (leaves, stems and 

roots, in mg kg-1) had an inverse Gaussian distribution and therefore were analysed using 

generalised linear models (GLM; p < 0.05) – instead of two-way ANOVA – followed by 

Tukey contrast analyses. The overall extraction (µg of Cd or mg of Zn per plant) in 

mycorrhizal and non-mycorrhizal poplars was compared by t-test (p < 0.05).  

Gene expression data was analysed by two-way ANOVA, followed by a Tukey 

test when significance was detected (p < 0.05), however two variables (MTP1-root and 

NRAMP3-root) were transformed to attain the ANOVA’s normality and homoscedasticity 

assumptions, using log(x). To compare the overall gene expression between leaves and 

roots, a simple t-test was performed. A pair-wise Spearman correlation (p < 0.05) was 

also carried out among the gene expression values in roots and leaves, as well as other 
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parameters assessed such as metal concentrations and colonisation scores (untransformed 

data). 

 

3 Results 

3.1 Biomass, transpiration rate and AMF colonisation. 

Shoot biomass (dry weight) ranged from 5.6 to 7.0 g, while root biomass (dry 

weight) ranged from 0.4 to 0.5 g (Table 1), with no significant differences among 

treatments (ANOVA, p < 0.05). Although biomass was virtually the same in all 

treatments, two-way ANOVA detected an overall higher shoot biomass (~ 0.7 g) in 

mycorrhizal poplars than in non-inoculated plants regardless of metal additions (F value: 

4.25; p = 0.048). Similarly, transpiration rates (E) were in general 15% higher in 

mycorrhizal poplars than in non-mycorrhizal (two-way ANOVA, F value: 13.1; p = 

0.001). 

 

No colonisation was detected in non-inoculated poplars. In inoculated treatments, 

percentage of colonisation did not differ from the non-contaminated control, but plants 

exposed to Cd (81 mg kg-1) had significantly higher colonisation than plants under Zn 

treatment (300 mg kg-1). Overall there was no apparent visual toxicity symptoms in 

comparison to control plants, regardless of metal addition or AMF inoculation. 

 

3.2 Translocation and accumulation of Cd and Zn in mycorrhizal poplars 

Cd accumulation in poplar shoots (leaves and stems) was generally the same in 

both mycorrhizal and non-mycorrhizal plants when growing in non-contaminated soil 

(Control vs Control + M), except for roots, in which Cd concentration doubled from ~ 1.3 

to ~ 2.6 mg kg-1 (Table 2), where translocation (Tf) decreased sharply from 524% to 233% 

in mycorrhizal poplars. Under Cd exposure the opposite effect was observed; in this case, 

root concentrations were similar, but in leaves Cd accumulation decreased by at least 40% 

in mycorrhizal poplars, in which an interactive effect was also detected between metal 

addition and inoculation (leaves, p = 0.022; stems, p = 0.015). Under Cd treatment, root-

to-shoot translocation was much lower than found in non-contaminated soil (Tf %, Table 

2), where roots were the main sink for Cd storage. 

 

Unlike with Cd, AMF did not affect Zn accumulation, partitioning or translocation 

in poplars growing in the non-contaminated soil (Table 3), with roots accumulating at 
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least three times more Zn than leaves in this case. In poplars growing under 300 mg kg-1 

Zn, concentrations were at least 10 times higher in roots and stems, and 50 times higher 

in leaves than in control treatments (Table 3). Zinc partitioning also shifted under 

contamination, where both leaves and roots acted equally as the main sinks for 

accumulation. However, the overall Zn concentrations were not increased by AMF (Table 

3), and no interactive effects were detected by GLM analyses (p > 0.2 for all plant organs). 

 

Considering the total amount of metals extracted from the contaminated soil (µg 

per plant), Cd contents were similar between non- and mycorrhizal poplars, both with the 

following order: roots > stems > leaves (Fig. 1). Yet, inoculation with R. irregularis 

clearly affected Cd partitioning, which increased Cd percentage content in roots from 64 

to 78%. Under Zn contamination, mycorrhizal poplars extracted overall 38% more Zn (in 

mg per plant) than their non-mycorrhizal counterparts, although metal allocation followed 

the same pattern of: leaves > stems > roots (Fig. 1), with only 8% of Zn being sequestered 

in roots for both cases. It should be noted, however, that Zn concentrations in poplar 

tissues (mg kg-1) were not significantly affected by mycorrhization (Table 3), only the 

total metal content (mg per plant/organ), which takes into account the overall plant 

biomass produced (Fig. 1). 

 

 

3.3 Effects of Cd and AMF on gene expression 

Gene expression varied greatly depending on the treatment applied (Cd or 

inoculation) and the organ assessed (roots or leaves). The membrane metal transporter 

PtHMA4 was down-regulated in poplar roots subjected to Cd contamination, however in 

leaves, AMF lead to a slightly lower expression regardless of metal addition (Fig. 2A). 

PtMTP1 expression was not significantly different across treatments in both leaf and root 

organs (Fig. 2B), but its overall expression was two times higher in leaves than in roots 

(t-test, p < 0.001). Similar results were found for transporter PtNRAMP3 (Fig. 2C), which 

had lower expression in roots (t-test, p < 0.001) and was overall unaffected by either metal 

or mycorrhizal treatments.  

Metallothionein gene PtMT2a was mostly expressed in leaves (t-test, p = 0.0012), 

and was up-regulated due to Cd stress only in non-inoculated plants (Fig. 2E), where there 

was an interaction effect between mycorrhizal and metal treatments (p = 0.0031). The 

opposite was observed for PtMT2b, this gene was highly expressed in the root system (t-
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test, p < 0.001) and up-regulated considerably by AMF symbiosis, around four times 

higher than in non-inoculated plants (Fig. 2F). PtPCS1 expression was similar across all 

treatments (Fig. 2D) and organs assessed (t-test, p = 0.209). The expression of the zinc-

Iron transporter PtZIP1 was twofold higher with Cd exposure, but was not affected by 

AMF (Fig. 2G). 

 

3.4 Effects of Zn and AMF on gene expression 

In poplars exposed to excess Zn, gene expression patterns were similar to Cd 

treatments, in most cases. PtHMA4 was also down-regulated in roots due to Zn exposure 

(Fig. 3A), which also had higher expression than in leaves (t-test, p = 0.006), although no 

effects were found in leaves. PtMTP1 was not differentially expressed (Fig. 3B) with 

higher expression observed in leaves than in roots (t-test, p < 0.001). PtNRAMP3 was 

mostly expressed in leaves (t-test, p < 0.001), but overall was not affected by either AMF 

or Zn treatments (Fig. 3C).  

As with Cd, expression of the PtZIP1 transporter was only affected by metal 

treatment, however Zn exposure quadrupled its expression in poplar leaves (Fig. 3G) 

while only a twofold increase was observed under Cd (Fig. 2G). In roots, PtMT2a 

expression was down-regulated under both high Zn and AMF symbiosis (Fig. 3E), while 

in leaves up-regulation was caused by AMF alone; overall this gene was mostly expressed 

in leaves (t-test, p = 0014). The other metallothionein gene assessed, PtMT2b, was more 

highly expressed in roots than in leaves (t-test, p < 0.001), with up-regulation occurring 

in control treatments under AMF symbiosis, but only slightly higher after Zn addition 

(Fig. 3F). Similar to Cd treatments, no changes were verified in PtPCS1 expression 

between treatments (Fig. 3D) or organs (t-test, p = 0.139). 

Expression levels of metal transporter genes were more correlated to metal 

treatments (Cd or Zn) than were genes involved in metal chelation (Table S2). 

Relationships among the genes assessed were mainly negative, with the only positive 

correlations observed between PtHMA4 and PtMTP1 in both roots and leaves (Fig. 4). 

PtMT2b expression in either leaves or roots had no correlations with the other genes; 

however, the level of PtMT2b transcripts in roots was highly correlated (rs = 0.76) to the 

percentage of R. irregularis colonisation (Fig. 4). 

 

 

 3.5 Functional expression of PtMT2b in yeast 
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Yeasts carrying the metallothionein gene MT2b from P. trichocarpa were grown 

in Cd contaminated media. At lower concentrations of Cd, both WT and transformed 

yeast presented similar growth (Fig. 5); however, at 20 µM Cd there was a clear 

distinction in growth between the strains. At the highest treatment applied (50 µM Cd), 

only the transformed strain was able to withstand the Cd toxicity and grew even at 1/1000 

dilution, demonstrating the role of PtMT2b in increasing Cd tolerance. 

4 Discussion 

4.1 Mycorrhizal effects in Cd and Zn tolerance 

Populus trichocarpa cv. Trichobel showed a very high tolerance to Cd and Zn 

stress (Table 1). The distinct tolerance of this poplar clone has been demonstrated before 

under a range of Cd and Zn concentrations (De Oliveira and Tibbett, 2018). Such 

attributes may account for the small change in biomass production found between 

mycorrhizal and non-mycorrhizal plants growing under metal stress. Although it has been 

reported that symbiosis with R. irregularis can increase biomass production in poplars 

under Cd stress (Ciadamidaro et al., 2017), in general, biomass increment as a response 

to AMF inoculation is highly variable, depending on the plant hosts and ecotypes, fungal 

partners, metal concentrations, soil attributes etc. (Gaurg and Bhandari, 2014; Coninx et 

al., 2017). 

 All inoculated poplars presented on average 40% of root colonisation, including 

metal contaminated treatments (Table 1). This is not surprising considering AMF are 

commonly found in roots of plants growing in soils contaminated by TEs (Bedini et al., 

2010; Javaid, 2011). Comparable colonisation rates by R. irregularis were also found in 

P. deltoides under Cd contamination (Chen et al., 2016). 

 

4.2 Decreased Cd and increased Zn translocation to shoots occurred under symbiosis 

Despite not showing any toxicity symptoms nor biomass reduction, P. trichocarpa 

exposed accumulated considerable amounts of Cd (Table 2) and Zn (Table 3), mainly in 

roots for Cd which are usually reported as the main sink for Cd in poplars (Zacchini et 

al., 2009; Di Lonardo et al., 2011; De Oliveira and Tibbett, 2018).  

Mycorrhizal symbiosis decreased Cd concentration in leaves and stems by around 

40%, but did not affect root concentrations (Table 2). A similar response was reported 

previously for some individuals of P. deltoides colonised by R. irregularis (Chen et al., 

2016), while in P. nigra, Cd concentrations were not affected by mycorrhization (Mrnka 

et al., 2012). Nonetheless, the question of whether R. irregularis enhances or decreases 
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metal accumulation cannot be viewed on a whole plant basis, and will vary depending on 

metal concentration and soil characteristics (Audet and Charest, 2007). Different plant 

partners can lead to different outcomes for Cd partitioning. For example, in Nicotiana 

tabacum and the macrophyte Phragmites australis, R. irregularis significantly increased 

Cd concentration in shoots (Janouskova et al., 2006; Huang et al., 2018). 

 Overall Cd extraction (µg per plant) was similar for both non- and inoculated 

treatments (Fig. 1), however, mycorrhizal roots accumulated 78% of the total Cd (14% 

higher than the control), suggesting that R. irregularis can promote Cd phytostabilisation 

by limiting Cd transport to aboveground organs. Mycorrhizal fungi have several defence 

mechanisms against TE toxicity which may have contributed to Cd immobilisation in 

roots, mainly cell wall binding, chelation in cytoplasm and metal transport into 

intracellular compartments (Coninx et al., 2017), or spores (Gonzalez-Guerrero et al., 

2008). Furthermore, R. irregularis forms vesicles: thick-walled ovoid structures abundant 

in lipids that can act as storage units (Smith and Read, 2008) and are believed to be a sink 

for TE storage within mycorrhizal roots (Göhre and Paszkowski, 2006; Nayuki et al., 

2014). 

 Regardless of inoculation, P. trichocarpa accumulated high contents of Zn under 

300 mg kg-1 Zn amendment (Table 3), and despite concentrations in leaves and roots 

being similar, the overall Zn accumulated (in mg per plant) had a very different 

distribution among organs (Fig. 1), with at least 60% accumulated in leaves against only 

8% in roots. Our findings confirm the initial hypothesis that AMF symbiosis increases Zn 

accumulation in P. trichocarpa and are in line with reports on other Salicaceae species 

(Laureysens et al., 2004; Lingua et al., 2008; Castiglione et al., 2009; Cicatelli et al., 

2010; Todeschini et al., 2011). 

Although the role of AMF in increasing Zn uptake is well established, especially 

under Zn deficiency, their effect in plants under high Zn concentrations vary (Toler et al. 

2005; Ferrol et al., 2016). For instance, in Zn-contaminated soil, inoculation of two poplar 

hybrids resulted in higher Zn concentration in leaves of one clone, but not the other 

(Phanthavongsa et al., 2017). In P. alba under 950 mg kg-1 Zn, inoculation with 

Funneliformis mossae increased Zn accumulation in both roots and leaves, while 

symbiosis with R. irregularis had no effects (Cicatelli et al., 2010).  

In the present work, mycorrhizal poplars had a mean concentration of 1,227 mg 

kg-1 Zn in leaves (Table 3), a concentration considered to be highly toxic for foliar tissues 

(> 300 mg kg-1 Zn) (Marschner, 1995), but in this case did not impair plant growth. It has 
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been suggested that for host plants with high accumulation capacity and TE translocation 

towards shoots – such as in the present work – AMF would increase this phenomenon 

and enhance phytoextraction (Affholder et al., 2014). 

 

4.4 AMF and gene expression under metal stress 

 Seven poplar genes involved in metal transport and chelation processes were 

assessed under AMF colonisation and Cd/Zn stress. 

PtHMA4: HMA4 transporters can selectively transport essential metals as well as 

TEs, especially Zn2+ and Cd2+ (Hussain et al., 2004). Both metals were responsible for a 

sharp down-regulation in PtHMA4 expression in poplar roots, regardless of inoculation 

(Fig. 3A, 4A). HMA4 is highly expressed in the root pericycle and is involved in xylem 

loading of Zn and Cd (Verret et al., 2004; Hanikenne et al., 2008; Migeon et al., 2010) 

playing an important role in long distance transport in plants (Luo et al., 2016; Sarwar et 

al., 2017). Thus, down-regulating its expression is probably one of the mechanisms by 

which P. trichocarpa avoids metal toxicity in aboveground organs, and is a common 

response in non-hyperaccumulator plants (Hammond et al. 2006). Similar results were 

verified in P. nigra exposed to high Zn (Adams et al., 2011), however this gene has many 

splice variants, which were not assessed in the present study (Li et al., 2015). 

PtMTP1: MTPs are involved in metal efflux from the cytoplasm, either to 

extracellular spaces or into organelles, e.g. vacuoles and Golgi apparatus (Peiter et al., 

2007; Ricachenevsky et al., 2013), in which MTP1 usually acts on the transport of Zn, 

Cd, Fe and Mn and tends to have similar roles and localisation across different species 

(Kramer et al., 2005; Hammond et al., 2006; Ricachenevsky et al., 2013). Contrary to our 

hypothesis, PtMTP1 expression was not different in P. trichocarpa regardless of Cd/Zn 

addition or AMF inoculation (Fig. 3B, 4B). Blaudez et al. (2003) have shown that in P. 

deltoides MTP1 expression was influenced by Zn, but not Cd. Nonetheless, it is important 

to consider that qPCR analyses was performed after eight weeks of metal exposure, at 

which time the transcript levels may have returned to their original baseline (control).  

PtNRAMP3: NRAMPs are membrane metal transporters usually located in 

tonoplasts, from which NRAMP3 is involved in the metal trafficking between the vacuole 

and the cytoplasm (Iori et al. 2016; Sharma et al., 2016). Although there are not many 

studies of NRAMP3 in poplars, there is agreement that this gene is usually affected by 

metal exposure in P. trichocarpa itself (Le Thi, 2015), or its homologues in A. thaliana 

and Nocceae caerulescens (Oomen et al., 2009). The fact that no treatments affected the 
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expression of this gene in the present study (Fig. 3C, 4C) suggests that its transcriptional 

regulation happened early on during Cd and Zn exposure, since gene expression during 

Cd stress varies depending on time of exposure (Rome et al., 2016). 

 PtPCS1: Phytochelatins (PCs) are proteins involved in Cd and Zn chelation and 

sequestration in plant cells, with their syntheses catalysed by the enzyme phytochelatin 

synthase (PCS) (Cobbett and Goldsbrough, 2002). Although a variation due to metal 

exposure was hypothesised, PtPCS1 expression was not significantly different across 

treatments. Similar results were observed in tomato plants inoculated with AMF, in which 

neither symbiosis nor TE exposure affected the expression of this gene (Ouziad et al., 

2005). In a poplar hybrid exposed to Cd, up-regulation of a PCS gene occurred after 12 

hours, only to decrease to control levels after 240 hours (Lin et al., 2016), suggesting that 

this gene is also regulated during early Cd/Zn exposure. 

PtZIP1: Members of the ZIP family are able to transport several cations, such as 

Zn and Cd into the cytosol (Pottier et al., 2015; Iori et al., 2016). Expression of PtZIP1 

was around three times greater in leaves of poplars exposed to high Zn than in non-

polluted soil, due to the high influx of Zn to those organs (Fig. 3G). Cd also up-regulated 

PtZIP1 expression, but to a lesser extent, highlighting the role of this gene in Cd transport 

in poplars (Fig. 2G). In the present study, the level of ZIP1 transcripts was too low to be 

detected in roots via qPCR (data not shown), similar to results from Shi et al. 2016, in 

willow (Salix integra) 

 

4.5 AMF effects on metallothioneins: gene expression and functional expression of 

PtMT2b in yeast. 

Metallothioneins are small proteins rich in cysteine (Cys) residues capable of 

binding a range of transition metal ions, such as Zn and Cd, which are mainly bound by 

members of the MT2 subfamily (Hassinen et al., 2011). Thus, tolerance and homeostasis 

are considered to be their main functions (Cobbett and Goldsbrough, 2002).  

PtMT2a: Expression of MTs is generally responsive to TE exposure (Chen et al., 

2014), but in this study, only MT2a was affected by metals (Fig. 3E, 4E), with higher 

expression found in leaves of non-mycorrhizal poplars exposed to Cd, the treatment with 

the highest foliar Cd concentration. MT2a expression in willow leaves (S. caprea) was 

also induced by Cd exposure (Konlechner et al., 2013), while in P. trichocarpa x deltoides 

both Cd and Zn affected its expression in leaves (Kohler et al., 2004).  
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PtMT2b: Despite not being influenced much by Cd and Zn, MT2b expression in 

roots was significantly increased by AMF symbiosis, which helps explain the high 

percentage of Cd found in colonised roots (78% of total Cd). Up-regulation of MT2b 

solely by AMF symbiosis is in accordance with other studies involving R. irregularis 

inoculation of poplars (Cicatelli et al., 2012; Pallara et al., 2013), highlighting AMF 

ability in protecting plants against stress by activating detoxifying defences in plants 

(Miransari, 2017). The up-regulation of MTs in mycorrhizal roots regardless of TE 

exposure could be related to their secondary role in ROS (reactive oxygen species) 

scavenging (Wong et al., 2004; Ruttkay-Nedecky et al., 2013), which occurs through the 

same Cys residues responsible for metal binding (Hassinen et al., 2011). During the 

symbiosis establishment, fungal hyphae trigger an intracellular burst of ROS in the host 

plant, and even accumulation of H2O2 (Kapoor and Singh, 2017), thus it is possible that 

MT2b up-regulation in roots is a result of the colonisation itself, and an indirect 

mechanism of alleviating TE stress. This explanation is supported by results from 

Hrynkiewicz et al., (2012) and Haq et al., (2003). 

Spearman analyses showed an interesting positive correlation (76%) between 

PtMT2b expression in roots and the colonisation rates (Fig. 4). Therefore, immobilisation 

of Cd in roots is probably a combined effect from both fungal binding and MT2b chelation 

as a detoxifying strategy. Indeed we demonstrate here that PtMT2b is able to successfully 

enhance Cd tolerance when expressed in yeast (50 µM Cd). To the best of our knowledge, 

the function of PtMT2b in Cd tolerance has not been previously tested in S. cerevisiae, 

the closest being the work from Kohler et al., (2004), with a poplar hybrid, although most 

studies are still from herbaceous species (Guo et al., 2008; Zhang et al., 2014).  

 

5 Conclusions 

 Mycorrhizal symbiosis with R. irregularis clearly altered the partitioning of Cd in 

P. trichocarpa, but maintained the same patterns for Zn, indicating that despite these 

metals being geochemically similar and carried mostly by the same transporters, the 

nutrient metal (Zn) is handled differently from the non-essential metal (Cd). Increase in 

Zn accumulation and decrease in Cd root-to-shoot transport suggest that this association 

enhances the potential for Zn phytoextraction and Cd phytostabilisation. Overall, the 

results from this work advance the knowledge on the effects of AMF in poplars under Cd 

and Zn stress, not only in terms of tolerance and remediation applications but also on the 

transcriptional level, contributing to unravel the mechanisms behind AMF symbiosis in 
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woody species, and highlighting potential candidate genes for future investigations and 

biotechnological applications, such as the possibility of PtMT2b to be used in transgenic 

plants or microorganisms for Cd remediation. 

 

6. Supplementary data 

Table S1. List of primers.  

Table S2. Spearman correlations between parameters assessed in P. trichocarpa 

Table S3. Total Cd and Zn accumulation (per organ) in P. trichocarpa 

Fig. S1. Donor vector. 

Fig. S2. Expression vector. 
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10. Figure Captions 

 

Fig. 1 Organ distribution of Cd and Zn in P. trichocarpa plants under 81 mg kg-1 Cd or 

300 mg kg-1 Zn, with and without inoculation of R. irregularis. Cd NM: under Cd non-

mycorrhizal; Cd + M: under Cd mycorrhizal; Zn NM: under Zn non-mycorrhizal; Zn + 

M: under Zn mycorrhizal. Total content extracted per plant of Cd or Zn were compared 

by t-test, different letters represent significant differences (p < 0.05; n = 6). 

 

Fig. 2 Relative gene expression of PtHMA4 (a), PtMTP1(b), PtNRAMP3 (c), PtPCS1 (d), 

PtMT2a (e), PtMT2b (f), and PtZIP1(g) in P. trichocarpa cv. Trichobel grown under 81 

mg kg-1 Cd for eight weeks, with or without mycorrhizal symbiosis (R. irregularis). 

Values are means ± standard error (n = 3) of expression normalised by UBQ. Different 

letters represent significant differences by ANOVA, Tukey test (p < 0.05) for each plant 

organ. n.s. = not significant. 
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Fig. 3 Relative gene expression of PtHMA4 (a), PtMTP1 (b), PtNRAMP3 (c), PtPCS1 

(d), PtMT2a (e), PtMT2b (f), and PtZIP1 (g) in P. trichocarpa cv. Trichobel grown under 

300 mg kg-1 Zn for eight weeks, with or without mycorrhizal symbiosis (R. irregularis). 

Values are means ± standard error (n = 3) of expression normalised by UBQ. Different 

letters represent significant differences by ANOVA + Tukey test (p < 0.05) for each plant 

organ. n.s. = not significant. 
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Fig. 4 Diagram representing significant correlations between the expression of different 

genes in roots and leaves of Populus trichocarpa under Cd and Zn stress, with or without 

mycorrhizal inoculation (R. irregularis). Circles: genes associated with metal chelation; 

Rectangles: genes involved in metal transport; Squares: metal concentration (Cd or Zn) 

in leaves and roots. Line: positive correlation; Dotted line: negative correlation; AMF: 

percentage of mycorrhizal colonisation. Pair-wise Spearman; p < 0.05. 
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Fig. 5 Growth of Saccharomyces cerevisiae (DY1457) expressing the metallothionein 

gene PtMT2b under increasing Cd concentrations. The wild-type (WT) strain transformed 

with an empty vector was included as a control. Plates were grown in SC agar medium at 

30oC for 72 hours in the dark. 
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Tables 123 

 

Table 1.  Biomass (dry weight), transpiration rates (E) and root colonisation of 

Populus trichocarpa under Cd (81 mg kg-1) or Zn (300 mg kg-1) stress, with 

mycorrhizal inoculation (R. irregularis; + M) or without (autoclaved inoculum, 

NM). 

Treatment 
Biomass (g) E Colonisation 

Shoot Root mmol m-2 s-1 % 

Control NM 5.6 ± 1.9 0.5 ± 0.1 1.6 ± 0.2 - 

Control + M 6.4 ± 0.9 0.4 ± 0.0 2.0 ± 0.1 46 ± 8 ab 

Cd NM 6.1 ± 0.5 0.4 ± 0.1 1.7 ± 0.2 - 

Cd + M 6.6 ± 0.6 0.4 ± 0.1 2.1 ± 0.2 50 ± 6 a 

Zn NM 6.3 ± 0.3 0.5 ± 0.1 1.9 ± 0.3 - 

Zn + M 7.0 ± 0.9 0.5 ± 0.0 1.9 ± 0.2 36 ± 9 b 

Values are the means ± standard deviations, n = 6. 

Significant differences among colonisation percentages are represented by 

different letters, by ANOVA (p = 0.022) followed by Tukey test. 

No colonisation was detected in non-inoculated treatments. 
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Table 2. Cd concentration (mg kg-1) and translocation factor (Tf) in Populus 

trichocarpa under Cd stress (81 mg kg-1) with (+ M) or without (NM) inoculation 

of R. irregularis. 

Treatment 
---------------- Cd concentration ----------------- 

Tf (%) 

Leaf Stem Root 

Control NM 0.99 ± 0.3 aA 1.23 ± 0.3 aA 1.34 ± 0.3 aA 74 

Control + M 0.76 ± 0.2 aA 0.96 ± 0.1 aA 2.57 ± 0.7 bB 30 

Cd NM 8.47 ± 2.4 bA 48.0 ± 11 bA 725 ± 240 cB 1.2 

Cd + M 5.02 ± 1.7 cA 26.2 ± 6.6 cA 871 ± 248 cB 0.6 

Values are the means ± standard deviations, n = 6. 

Different lowercase letters represent significant differences between treatments 

(columns) by GLM, followed by Tukey contrasts (p < 0.05). 

Different uppercase letters represent significant differences between plant organs 

within the same treatment (rows), by ANOVA and Tukey test (p < 0.05). 

Tf = (leaf concentration / root concentration) × 100.  
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Table 3. Zn concentration (mg kg-1) and translocation factor (Tf) in Populus 

trichocarpa under Zn stress (300 mg kg-1) with (+ M) or without inoculation of 

R. irregularis.  

Treatment 
---------------- Zn concentration ----------------- 

Tf (%) 

Leaf Stem Root 

Control NM 21.0 ± 8.5 aA 40.0 ± 5.4 aAB 72.2 ± 41 aB 29 

Control + M 21.4 ± 10 aA 39.4 ± 8.5 aAB 84.3 ± 57 aB 25 

Zn NM   926 ± 225 bA 426 ± 68 bB 780 ± 102 bA 119 

Zn + M 1227 ± 214 bA  472 ± 142 bB 1071 ± 63 bA 115 

Values are the means ± standard deviations, n = 6. 

Different lowercase letters represent significant differences between treatments 

(columns) by GLM, followed by Tukey contrasts (p < 0.05). 

Different uppercase letters represent significant differences between plant organs 

within the same treatment (rows), by ANOVA and Tukey test (p < 0.05). 

Tf = (leaf concentration / root concentration) × 100.  
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