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Abstract 

 
Background: Major depressive disorder is associated with altered social functioning and 

impaired learning, on both the behavioural and the neural level. These deficits are likely 

related, considering that successful social interactions require learning to predict other 

people’s emotional responses. Yet, there is little research examining this relation. 

Methods: Forty-three individuals with high (HD; N=21) and low (LD; N=22) depression scores 

answered questions regarding their real-life social experiences and performed a social 

learning task during fMRI scanning. As part of the task, subjects learned associations between 

name cues and rewarding (happy faces) or aversive (fearful faces) social outcomes. Using 

computational modelling, behavioural and neural correlates of social learning were examined 

and related to real-life social experiences. 

Results: HD participants reported reduced motivation to engage in real-life social activities and 

demonstrated elevated uncertainty about social outcomes in the task. Moreover, HD subjects 

displayed altered encoding of social reward predictions in the insula, temporal lobe and 

parietal lobe. Interestingly, across all subjects, higher task uncertainty and reduced parietal 

prediction encoding were associated with decreased motivation to engage in real-life social 

activities. 

Limitations: The size of the included sample was relatively small. The results should thus be 

regarded as preliminary and replications in larger samples are called for. 

Conclusion: Taken together, our findings suggest that reduced learning from social outcomes 

may impair depressed individuals’ ability to predict other people’s responses in real life, which 

renders social situations uncertain. This uncertainty, in turn, may contribute to reduced social 

engagement (motivation) in depression. 

 

Keywords: depression; social; faces; learning; fMRI; computational modelling 



1 Introduction 
 
Deficits in social functioning are commonly observed in major depressive disorder (MDD; Katz, 

Conway, Hammen, Brennan, & Najman, 2011; Rhebergen et al., 2010; Rottenberg & Gotlib, 

2008). Compared to controls, depressed individuals have fewer friends (Brim et al., 1982; Frey 

et al., 2019; Youngren and Lewinsohn, 1980), fewer intimate relationships (Gotlib and Lee, 

1989), and spend less time with people in their social circle (Youngren and Lewinsohn, 1980). 

Additionally, depressed subjects show inappropriate behaviour during social interactions 

(reviewed in Rottenberg & Gotlib, 2008; Segrin, 2000), which can result in the receipt of 

negative feedback from other people (Segrin and Abramson, 1994). 

Successful interpersonal interactions require learning to predict other people’s responses and 

adjusting one’s own behaviour accordingly. Therefore, social functioning abnormalities in MDD 

may partly be linked to impaired learning from interpersonal outcomes. In line with this 

suggestion, we previously found that subjects with depression symptoms show deficits in 

learning from social feedback and demonstrate heightened negative feedback expectancy 

biases during a social decision-making task. Interestingly, impaired learning predicted the 

experience of more negatively perceived social encounters in real life, while negative biases, 

as well as social anhedonia, were associated with decreased amounts of time spent with 

friends (Frey et al., 2019). Moreover, using a social conditioning paradigm it has previously 

been observed that elevated depression scores are correlated with heightened arousal ratings 

in response to faces that had been paired with negative statements about the participant. This 

effect was still seen three months after the conditioning phase, indicating that the learning of 

negative social associations may be enhanced in individuals with higher levels of depressive 

symptomatology (Wiggert et al., 2017). 

The above research provides limited evidence for changes in social learning in depressed 

individuals. Additionally, a range of studies have reported alterations in non-social learning in 

MDD. For instance, using decision-making tasks, it has been observed that depressed 



subjects display impaired reward learning (Blanco et al., 2013; Cooper et al., 2014; Herzallah 

et al., 2013; Kumar et al., 2018; Kunisato et al., 2012; Maddox et al., 2012; Pechtel et al., 

2013; Robinson et al., 2012), while their punishment learning is either enhanced (Beevers et 

al., 2013; Maddox et al., 2012) or unchanged (Herzallah et al., 2013; Kumar et al., 2018; 

Kunisato et al., 2012; Robinson et al., 2012), when compared to controls. Moreover, in 

Pavlovian conditioning paradigms, depressed participants tend to demonstrate less accurate 

reward contingency predictions during or after the conditioning phase (Kumar et al., 2008; 

Robinson et al., 2012, although see Lawson et al., 2017 and Rupprechter, Stankevicius, Huys, 

Steele, & Seriès, 2018 for no group differences). By contrast, behavioural punishment 

conditioning does not seem to differ between depressed and control subjects when assessed 

with explicit measures (although neural group effects have been observed, see below; Lawson 

et al., 2017; Robinson et al., 2012). 

The above behavioural research has been extended by neuroimaging studies which have 

examined neural learning signals with the use of computational models. In these models, the 

predictive value of a given cue is iteratively updated based on the difference between current 

outcomes and previous predictions. The latter difference, referred to as a prediction error (PE), 

as well as model-derived prediction values, have been used as parametric modulators in fMRI 

analyses (as well as to explain neural firing patterns in animal studies). 

A range of brain areas have been implicated in the above learning processes (e.g. reviewed 
 

in Ernst & Paulus, 2005; Khani & Rainer, 2016; Lee, Seo, & Jung, 2012). Specifically, a 
 

network of regions including the striatum, amygdala, insula, orbitofrontal cortex (OFC) and 
 

anterior cingulate cortex (ACC) is thought to be involved in the representation of prediction 
 

values  during  cue  presentation.  In  this  network,  the  subcortical  regions  provide  value 
 

representations which are integrated with other information, such as uncertainty and effort or 
 

delay costs, in the OFC and ACC (Bezzina et al., 2008; Croxson et al., 2009; Holland and 
 

Gallagher, 2004; Palminteri et al., 2012; Rushworth and Behrens, 2008). 



Moreover, the prediction error signal is thought to be computed in the midbrain, with the 
 

substantia nigra and ventral tegmental area (VTA) representing reward PEs and the habenula 
 

encoding punishment PEs (Bromberg-Martin, Matsumoto, & Hikosaka, 2010; Cohen, Haesler, 
 

Vong, Lowell, & Uchida, 2012; Schultz, Dayan, & Montague, 1997). This PE signal is passed 
 

on to the hippocampus and striatum, where it is involved in memory acquisition and updating 
 

(Fernández et al., 2016) and value computation and action selection, respectively (Chase, 
 

Kumar, Eickhoff, & Dombrovski, 2015; Frank, 2006; O’Doherty et al., 2004). 

 

In depressed individuals display reduced reward 
 

PE encoding has been observed in the midbrain, striatum, medial orbitofrontal cortex, dorsal 
 

anterior cingulate cortex, and hippocampus, compared to controls (Gradin et al., 2011; Kumar 

et al., 2018, 2008; Rothkirch et al., 2017). Interestingly, the magnitude of the striatal reward 

PE signal has been shown to moderate the relationship between real-life anticipatory and 

consummatory pleasure in depressed subjects (Bakker et al., 2018). Moreover, while some 

studies have observed attenuated habenula punishment PE representations in depression 

(Liu et al., 2017), others have found these representations to be unchanged in MDD (Rothkirch 

et al., 2017). 

In addition, examinations of neural prediction encoding have found that depressed subjects 

display reduced reward prediction-related responses in the hippocampus and 

parahippocampus (Gradin et al., 2011), as well as decreased inverse correlations between 

reward prediction and PE signals in the ventral striatum (Greenberg et al., 2015), compared 

to controls. Additionally, depressed patients demonstrate reduced punishment prediction 

encoding in the habenula (when shocks are used as outcomes; Lawson et al., 2017). 

The above findings suggest that depression is associated with learning deficits, both on the 

behavioural and the neural level, partly due to impaired generation and updating of outcome 

predictions. However, it should be noted that most previous studies assessing learning in MDD 

utilised non-social outcomes. Given the ubiquity of social stimuli in everyday life, it is important 

to further examine how far depressed subjects’ learning impairments extend to the social 



domain, and whether these impairments are related to the abovementioned social functioning 

deficits in MDD. The current study aimed to address this question. For this purpose, a social 

learning task was developed in which name cues were presented followed by faces that 

probabilistically displayed happy, neutral, or fearful expressions. Participants with high and 

low depression scores completed the task during fMRI scanning and were asked to learn the 

average likelihood of seeing a particular emotional expression after a given name cue. 

Additionally, subjects answered a number of questions about their real-life social experiences. 

A computational model was applied to the learning task data and model-derived prediction 

and PE values were used as parametric modulators in the fMRI analysis to assess the neural 

correlates of social learning. It was hypothesised that individuals with high depression scores 

would show impairments in the behavioural and neural prediction of social outcomes and that 

these deficits would be related to deficits in real-life social experiences. 



2 Methods 

 
2.1 Participants 

 
The current study included 43 right-handed volunteers between the age of 18 and 45 years 

who scored below 8 (LD; N = 21, score range: 0 to 7) or above 16 (HD; N = 22, score range: 

17 to 47) on the Beck Depression Inventory (BDI, Beck, Steer, & Brown, 1996). Sample sizes 
 

were based on previous fMRI studies which detected significant group effects in (non-social) 
 

learning paradigms with 15 participants per group (Gradin et al., 2011; Kumar et al., 2008; 
 

Robinson et al., 2012).   Volunteers were recruited from both the student population and  the 
 

general public using flyers and posters. Subjects were screened using the structured clinical 
 

interview for DSM-IV (SCID; First, Spitzer, Gibbon, & Williams, 1996). Given that the current 
 

study was focused more generally on individuals with depression symptoms, rather than 
 

specifically on those with clinical levels of MDD, the SCID was not used for diagnostic 
 

purposes, but merely to determine if any exclusion criteria were met. Specifically, LD 
 

volunteers were excluded if they had a history of any Axis I disorder or had ever taken any 

psychiatric medication. HD subjects were ineligible if they had ever experienced any Axis I 

disorder, apart from depression and moderate levels of secondary anxiety symptoms, or if 

they had taken any psychiatric medication in the past year. Additional exclusion criteria for 

volunteers in either group were the current use of any medications besides contraceptives, 

the use of recreational drugs in the past three months, smoking more than five cigarettes per 

week, or demonstrating contraindications to MRI scanning. 

The study received ethical approval from the University of Reading Ethics Committee (UREC- 

16/08) and was carried out in accordance with the Declaration of Helsinki. All subjects provided 

informed consent. 

2.2 Procedure 

 
Before the testing session, potential participants attended a screening visit during which the 

SCID, as well as an interview about past and current medical conditions, were conducted to 

ascertain that none of the exclusion criteria were met. Subsequently, a testing session was 



scheduled with eligible subjects and, three days before this session, participants were sent 
 

completed the following online questionnaires to complete at home: trait subscale of the State 
 

and Trait Anxiety Inventory (STAI; Spielberger, Gorsuch, Lushene, Vagg, & Jacobs, 1983), 

Revised Social Anhedonia Scale (RSAS, Eckblad, Chapman, Chapman, & Mishlove, 1982), 

Uncertainty Intolerance Scale (UIS, Buhr & Dugas, 2002), and a demographics form, as well 

as the BDI (to ensure scores had stayed relatively stable; these are the reported BDI scores).. 

 

In addition, subjects answered several questions about their everyday social interactions 

Specifically, participants were asked ‘How many friends do you have?’ and ‘How close do you 

feel to these friends’ (with the latter question being rated from 1 = ‘not close at all’ to 10 = ‘very 
 

close’). Subjects were also asked to rate the following statements (from 1 = ‘strongly disagree’ 
 

to 10 = ‘strongly agree’): I find it difficult to make new friends; I usually really look forward to 
 

pleasant social (/non-social) activities; I usually really enjoy pleasant social (/non-social) 
 

activities; I am usually very motivated to engage in pleasant social (/non-social) activities. 
 

Ratings  for  social  and  non-social  activities  were  made  separately  and,  for clarification, 
 

examples of relevant activities were provided (social = meeting friends or family, dating, going 
 

to parties, etc.; non-social = going running alone, cooking alone, reading, going to museums 
 

alone, etc.). 

 

 

After the above questionnaires had been completed, a testing session was arranged. At the 

beginning of the session, participants filled in the Positive and Negative Affect Scale (PANAS; 

Watson, Clark, & Tellegen, 1988). Subsequently, they performed a name learning test (see 

supplement) and some practice trials of the social learning task outside the MRI scanner. 

Following the practice, subjects completed the social learning task in the MRI scanner, and, 

after the scan, filled in a task feedback questionnaire. 



2.3 Social Learning Task 
 
During the social learning task, participants’ aim was to learn how likely it is that a given name 

cue is followed by a happy, neutral or fearful facial expression. At the beginning of each trial, 

subjects saw one of the six names (1000ms), followed by a visual analogue rating scale 

(5000ms; see below). Subsequently, the face associated with the name was displayed 

(1000ms), showing either a neutral or an emotional expression, as determined by the 

probabilistic contingencies described below. The stimulus presentation was separated by a 

2000ms inter-stimulus interval, and the inter-trial interval was jittered by drawing from an 

exponential distribution with a minimum of 2000ms and a mean of 2500ms (see Figure 1). 

 
[Insert Figure 1 here] 

 

 
The task was divided into social reward and social aversion blocks which were performed in 

counterbalanced order. In the social reward block, three of the six faces were displayed, each 

of which had a different likelihood (25%, 50% or 75%) of showing a happy rather than a neutral 

expression. In the social aversion block, the other three faces were presented, each of which 

had a different likelihood (25%, 50% or 75%) of displaying a fearful rather than a neutral 

expression. The six faces were randomly assigned to the blocks and likelihoods for each 

participant and were presented in a pseudo-random order. 

Subjects were asked to learn how likely it was, on average, that a given face displayed an 

emotional expression. They indicated this likelihood on a visual analogue scale, ranging from 

0% to 100%, in response to the question ‘How likely is it that [name] is [HAPPY / AFRAID]?’. 

Participants were instructed to start with a guess, and to subsequently base their ratings on 

the intuition or ‘gut feeling’ they derived from all the times they had seen the name-face pairing 

before. 

The task practice consisted of 8 repetitions of each name-face pairing, resulting in 24 trials 

per block and 48 practice trials in total (which were performed outside the MRI scanner). The 



experimental phase (which was completed inside the MRI scanner) included 12 presentations 

of each name-face pairing, resulting in 36 trials per block and 72 experimental trials in total. 

 
2.4 Analysis 

 
2.4.1 Behavioural Analysis 

 
Normality assumptions were not met for the questionnaire or name learning data. Group 

differences in these measures were therefore assessed using Mann-Whitney U tests. 

Social learning task performance was examined by performing a mixed-measure (group x 

valence x probability) ANOVA on the likelihood ratings which were averaged across practice 

and experimental trials. 

Moreover, to examine subjects’ uncertainty regarding the task outcomes, likelihood ratings 

were converted into uncertainty scores. For this purpose, 50 (i.e. the value indicating maximal 

uncertainty) was subtracted from each likelihood rating of a given participant, separately for 

social reward and aversion blocks. The resulting values were transformed into absolutes and 

then averaged across probabilities (separately for the two blocks). This yielded two scores for 

each subject, with lower scores indicating higher uncertainty about what outcomes to expect. 

To make the result interpretation more intuitive, scores were reversed by subtracting each 

score from the maximum value across all participants. Thus, in the below analysis high levels 

of uncertainty are indicated by high uncertainty scores. A mixed-measure (group x valence) 

ANOVA was performed on these scores. 

Additionally, to relate the learning task performance to real-life measures, uncertainty scores 

were entered into a regression analysis. Given that the scores for social reward and aversion 

blocks were highly correlated (r = 0.57; p < 0.001), scores were averaged across the two 

blocks. The averaged uncertainty score was then mean-centred and used to predict 

participants’ motivation to engage in real-life social activities, together with BDI, RSAS, and 

mean-centred UIS negativity scores (calculated based on Sexton & Douglas 2009). An 



uncertainty score*UIS negativity interaction term was also included in the analysis, as it is 

likely that uncertainty about social outcomes primarily affects social engagement motivation 

when uncertainty is perceived as negative. STAI scores were not entered into the analysis, 

because this would have resulted in a violation of the multicollinearity assumption (Variance 

Inflation Factor > 10) due to a high correlation between STAI and BDI scores. This high 

correlation is in line with previous findings demonstrating that the STAI contains many items 

that map onto depression rather than specifically onto anxiety (Bados et al., 2010). However, 

it should be noted that STAI scores did not significantly contribute to the prediction of 

motivation when they were included in the regression model and BDI scores were removed. 

 
2.4.2 Computational Modelling 

 

A standard Rescorla-Wagner model (Rescorla and Wagner, 1972) with a free learning rate 

parameter (α) was applied to the data (see supplement for details). Parameters were 

estimated by minimising the sum of squared errors between the model prediction value 

(multiplied by 100) and the participants’ likelihood ratings (similar to Hindi Attar, Finckh, & 

Büchel, 2012). Model parameter values and fits were compared between groups using Mann- 

Whitney U tests. 

 
2.4.3 fMRI Analysis 

 
Functional MRI images were acquired using a three-Tesla Siemens scanner (Siemens AG, 

Erlangen, Germany) and the preprocessing and analysis of the data were performed using the 

Statistical Parametric Mapping software (SPM12; http://www.fil.ion.ucl.ac.uk/spm; see 

supplement for details). A first-level GLM analysis was conducted to examine the neural 

encoding of social outcome predictions. For this purpose, computational model-derived 

prediction values were entered as parametric modulators at the time of the cue, using separate 

regressors for the social reward and aversion blocks. On the second level, whole-brain one- 

way ANOVAs were conducted for group comparisons, which are. reported at a voxelwise 

threshold of 0.01 (uncorrected) and are family wise error (FWE) corrected at p<0.05 at the 

http://www.fil.ion.ucl.ac.uk/spm%3B


cluster-level. Moreover, to relate the fMRI results to real-life measures, parameter estimates 
 

were extracted from the peak voxels of the prediction-related group contrast and were 

correlated with participants’ reported motivation to engage in positive social activities (similar 

to Gradin et al., 2011). 

Additionally, neural prediction error (PE) encoding was examined. PEs reflect the  difference 
 

between the predicted and the actual outcome values. Therefore, bBrain responses encoding 
 

a canonical PE should, at the time of the outcome, covary positively with outcome values and 

negatively with prediction values (derived from the computational model; see supplement). As 

in previous studies (e.g. Chowdhury et al., 2013; Rothkirch et al., 2017; Rutledge et al., 2017), 

these two PE components were thus entered into the first-level analysis as separate 

parametric modulators at the time of the outcome (for the social reward and social aversion 

block). Subsequently, MarsBar (Brett et al., 2002) was used to extract average parameter 

estimates for the two components from a 6mm sphere around striatal coordinates that have 

been found to encode PEs in a previous meta-analysis (left ROI: -10 8 -6; right ROI: 10 8 -10; 

Chase et al., 2015). The extracted values were then compared between groups using one- 

way ANOVAs. 



3 Results 

 
3.1 Behavioural Results 

 
3.1.1 Demographic and Questionnaire Measures 

 
Mann-Whitney U tests revealed that there were no significant group differences in age (U = 

219, p = 0.970). As expected, BDI (U = 0, p < 0.001), RSAS (U = 22, p < 0.001), STAI-T (U = 

0, p < 0.001), UIS negativity (U = 17, p < 0.001), and PANAS Negative Affect Scale (U = 65, 

p < 0.001) scores were significantly higher in HD than in LD participants. Additionally, PANAS 

Positive Affect Scale scores were significantly lower in HD than in LD subjects (U = 349, p = 

0.001; see Table 1). 

 
[Insert Table 1 here] 

 

 
3.1.2 Real-Life Social Experiences 

 
Compared to LD subjects, HD participants indicated having significantly fewer friends (U = 

320, p = 0.001), feeling less close to their friends (U = 364, p < 0.001), and finding it more 

difficult to form new friendships (U = 47, p < 0.001). 

Moreover, HD individuals demonstrated significantly reduced motivation to engage in pleasant 

social activities (U = 294, p = 0.003), as well as significantly decreased anticipation (U = 316, 

p < 0.001) and enjoyment (U = 323, p < 0.001) of pleasant social activities, compared to LD 

controls. By contrast, no group differences were observed for anticipatory (U = 223, p = 0.365), 

motivational (U = 227, p = 0.309), or consummatory (U = 226, p = 0.322) responses to pleasant 

non-social activities. 



3.1.3 Social Learning Task Performance 

 
A mixed measure ANOVA (group x valence x probability) performed on participants’ likelihood 

ratings revealed the expected main effect of probability (F(2, 82) = 94.95, p < 0.001), with 

participants rating the likelihood of seeing an emotional expression higher after cues that were 

more likely to be followed by an emotional face. Moreover, a main effect of valence was 

observed (F(1,41) = 8.30, p = 0.006) which indicated that participants rated the overall 

likelihood of seeing happy faces as higher than the likelihood of seeing fearful faces. 

Additionally, a group by probability interaction was found (F(2,82) = 11.77, p < 0.001) which 

was followed up as described below. All other main effects and interactions were not 

significant (all F < 2.3). 

Follow-up one-way ANOVAs revealed that, compared to LD controls, HD participants’ 

likelihood ratings were significantly lower on trials with a 75% chance of showing a happy 

(F(1,41) = 9.12, p = 0.004) or fearful (F(1,41) = 3.98, p = 0.053) expression. By contrast, HD 

subjects’ ratings were significantly higher than those of controls on trials with a 25% chance 

of showing a happy (F(1,41) = 9.82, p = 0.003) or fearful (F(1,41) = 10.18, p = 0.003) face 

(see Figure 2). No group differences were found on trials with a 50% chance of displaying a 

happy (F(1,41) = 0.15, p = 0.698) or fearful (F(1,41) = 0.07, p = 0.796) expression. 

Moreover, a mixed-measure (group x valence) ANOVA conducted on participants’ uncertainty 

scores (which indicate the average difference between subjects’ ratings and 50%; see section 

2.3.1) revealed a significant main effect of group, as HD subjects tended to be more uncertain 

about the social task outcomes than LD controls (F(1,41) = 3.67, p = 0.062). Additionally, a 

significant main effect of valence was found, showing that subjects were more uncertain about 

aversive than about rewarding outcomes (F(1,41) = 6.62, p = 0.014). No significant interaction 

effect was observed (F(1,41) = 0.160, p = 0.692). 

 
[Insert Figure 2 here] 



Additionally, a multiple regression analysis revealed that task uncertainty scores (averaged 

across blocks), together with questionnaire measures, predicted participants’ motivation to 

engage in pleasant social activities (F(5, 32) = 8.57, p < 0.001, R 2 = 0.51). Predictors 

significantly contributing to this relation were the main effect of UIS negativity (β = -0.55, p = 

0.008), the UIS negativity * task uncertainty interaction term (β = -0.32, p = 0.015; see Figure 

3), and, marginally, RSAS social anhedonia scores (β = -0.37, p = 0.061). By contrast, the 

main effect of task uncertainty (β = -0.21, p = 0.096) and BDI scores (β = 0.32, p = 0.149) had 

no significant effect. Thus, the motivation to engage in pleasant social activities was 

particularly reduced in individuals who were uncertain about what social outcomes to expect 

and who experienced uncertainty as negative. 

 
[Insert Figure 3 here] 

 
 
 
 

 
3.1.4 Computational Modelling 

 
Mann-Whitney U tests on the model parameters revealed that learning rates were significantly 

lower in HD than in LD participants, both in the social reward (U = 351, p = 0.004) and in the 

social aversion (U = 355, p = 0.003) block. The model fit, as indicated by the sum of squared 

errors, did not differ significantly between groups in either the social reward (U = 171, p = 

0.145; U = 169, p = 0.132) or aversion (U = 189, p = 0.308; U = 182, p = 0.234) block when 

using individual or averaged parameters (respectively). 



3.2 fMRI Results 

 
3.2.1 Neural Prediction Value Encoding 

 
Social reward (i.e. happy expression) prediction encoding was reduced in HD, compared to 

LD, subjects in the superior parietal lobe/ precuneus, as well as in a cluster including the right 

insula, supramarginal gyrus and superior temporal lobe (see Table 2 and Figure 4). No group 

differences were found for social aversion (i.e. fearful expression) prediction encoding. 

 

Across all subjects, correlation analyses revealed a significant positive correlation between 

participants’ motivation to engage in pleasant social activities and parameter estimates 

extracted from the peak prediction-related group comparison voxels in the parietal lobe (r = 

0.49, p = 0.002) and insula (r = 0.36, p = 0.023). This relationship remained significant for the 

parietal lobe (r = 0.36, p = 0.027), but not the insula (r = 0.25, p = 0.137), when BDI and task 

uncertainty scores were controlled for. 

 
[Insert Figure 4 and Table 2 here] 

 

 
3.2.2 Neural Prediction Error Encoding 

 
One-way ANOVAs were conducted on the average parameter estimates extracted from a left 

and a right striatal ROI for the encoding of outcome and inverse prediction values (i.e. the two 

PE components). No significant group differences were found for either the social reward or 

the social aversion block (all F < 2.9). 



4 Discussion 

 
 

4.1 Uncertainty about social outcomes predicts reduced social engagement motivation 

 
The current study examined learning from social outcomes in individuals with high (HD) and 

low (LD) depression symptoms, linking task performance to measures of real-life social 

experiences. 

It was found that, in both the social reward and the social aversion block of the learning task, 

HD individuals underestimated the likelihood of being presented with emotional faces on high 

probability trials, while they overestimated this likelihood on low probability trials (when   

compared to LD subjects or the actual outcome contingencies; see supplement). In other 
 

words, HD subjects provided ratings close to 50% across all trial types, indicating general 

uncertainty about what outcomes to expect. These findings are partly consistent with previous 

reports of impaired reward conditioning in depression (Kumar et al., 2008; Robinson et al., 

2012; see also Chen et al., 2015). Yet, it may seem somewhat surprising that HD subjects 

demonstrated higher uncertainty (and thus decreased learning) in the social aversion block, 

considering that past studies have observed enhanced punishment learning in depression 

(Beevers et al., 2013; Maddox et al., 2012). A possible explanation of this finding is that the 

social stimuli used in the current study may have been particularly likely to induce rumination 

in HD individuals, which may have interfered with the aversion learning process (Whitmer et 

al., 2012). Moreover, it is worth noting that, unlike previous tasks, the current paradigm 

required the continuous formation, updating and working memory maintenance of explicit 

outcome contingencies. This may have been particularly difficult for HD individuals 

(independent of the stimulus valence), which would explain the general learning deficit and 

increase in uncertainty observed in this group. 

Notably, in everyday social cognition both implicit and explicit processes play a role (Frith and 

Frith, 2008). Thus, HD individuals’ impaired ability to explicitly predict other people’s 

responses is likely to have an effect on real-life social functioning. In line with this suggestion, 



the current study found that task-based uncertainty, in interaction with the perceived negativity 

of uncertainty, significantly predicted participants’ motivation to engage in positive social 

activities (even when depression scores were controlled for). That is to say, subjects who 

demonstrated more uncertainty about (and thus worse learning from) social outcomes in the 

task, and who were more averse to uncertainty in general, were less motivated to engage in 

pleasant social activities in real life. It is noteworthy that HD subjects demonstrated high levels 

of task uncertainty, regarded uncertainty as negative, and displayed reduced social 

engagement motivation. Taken together, these findings suggest that deficits in learning from 

social outcomes may contribute to social disengagement in depressed individuals. Social 

withdrawal, in turn, may further increase depressed subjects’ uncertainty regarding social 

encounters by reducing their exposure to situations in which social outcome contingencies 

can be learned. 

The current findings are consistent with previous observations of increased intolerance of 

uncertainty in depression (Carleton et al., 2012). Moreover, past studies have reported a link 

between uncertainty intolerance and depressive rumination (Yook et al., 2010), and it has 

been argued that uncertainty leads to behavioural inhibition when it is regarded as negative 

(Carleton, 2016). It may thus be the case that, in response to higher social outcome 

uncertainty, depressed individuals are prone to ruminate about possible negative outcomes, 

which reduces (/inhibits) their motivation to engage in social activities. This idea is supported 

by the supplementary analysis of the present study which shows that the interaction between 

enhanced task uncertainty and inhibitory uncertainty intolerance predicts reduced social 

engagement motivation. In addition, the above suggestion is in line with our previous findings 

showing that increased negative social feedback expectancies are associated with social 

disengagement in individuals with high depressive symptomatology (Frey et al., 2019). It 

would be of interest for future studies to examine whether the relation between uncertainty 

and social disengagement is indeed mediated by rumination-induced negative expectancies. 



4.2 Neural predication of social rewards is impaired in HD subjects 

 
Consistent with the behavioural findings, the current study found that HD individuals displayed 

impaired learning signals on the neural level. Specifically, compared to controls, HD 

participants displayed lower covariation between social reward prediction values and BOLD 

responses in the superior parietal lobe, as well as in a cluster extending from the insula to the 

supramarginal gyrus and superior temporal lobe. 

Given the superior parietal lobe’s involvement in attentional processing (Behrmann et al., 

2004), this region may have been recruited because the repeated pairing of cues with happy 

expressions made the cues more salient targets for active attentional processing. Moreover, 

the insula, supramarginal gyrus and temporal lobe have previously been implicated in the 

processing (Fusar-Poli et al., 2009) and working memory maintenance (Nichols, Kao, 

Verfaellie, & Gabrieli, 2006) of faces. Hence, the increased engagement of these regions by 

cues that were more frequently paired with task-relevant happy expressions may reflect a 

working memory mechanism that aids the learning processes. 

Based on the above, the findings of reduced social reward prediction encoding in HD 

individuals in the above regions could be taken to indicate a deficit in neural attention and 

working memory processing during learning. However, it should be noted that BOLD 

responses were not simply reduced in HD subjects, but were instead reversed. That is to say, 

rather than being close to zero, parameter estimates extracted from the peak voxels of the 

group contrast were significantly below zero in the HD group (and significantly above zero in 

the LD group; see supplement). This indicates that, in HD individuals, BOLD responses were 

higher the more frequently cues were associated with neutral faces. A possible explanation 

for this finding is that, due to negative processing biases, HD individuals perceived the 

ambiguous neutral faces as negative, especially when they were displayed amongst happy 

expressions. Such a negative perception may have made the neutral faces particularly salient, 

and may thus have led to the recruitment of attentional and working memory resources to 

represent and predict neutral rather than happy faces. 



The above suggestion is consistent with previous behavioural observations showing that 

depressed individuals tend to perceive neutral expressions as negative (Bouhuys et al., 1999; 

Hale et al., 1998; Leppannen et al., 2004). Moreover, the increased salience of neutral faces 

may also have contributed to the behavioural findings of the current study. Specifically, the 

mismatch between task demands (of happy expression prediction) and neural processes (of 

neutral expressions prediction) may have given rise to the uncertainty reflected in HD 

participants’ task ratings. Notably, a similar mechanism could play a role in real life, if 

automatic processing supports learning from negative social feedback and reflective 

processes are needed (but potentially unable) to accurately predict the positive value of 

engaging in social activities (along the lines of the dual process model of Beevers, 2005). 

It thus seems plausible that the neural processes of HD subjects may have supported the 

prediction of negatively perceived neutral expressions rather than that of happy faces. 

Following on from this suggestion, it may have been expected that the neural response to 

happy vs. neutral faces would have differed between groups, due to increased (aversive) 

processing of neutral faces in HD participants. Yet, such a group effect was not observed. This 

may potentially be the case because the prediction of neutral expressions in HD subjects, after 

some learning had occurred, may have engaged preparatory downregulation processes 

resulting in similar neural responses to neutral faces in HD and LD individuals. 

Interestingly, the current study further found that lower social reward prediction encoding in 

the parietal lobe was significantly correlated with reduced motivation to engage in positive 

social activities in real life, even when task uncertainty and depression scores were controlled 

for. Considering the abovementioned involvement of the parietal lobe in attentional processing 

(Behrmann et al., 2004), this may indicate that individuals who demonstrate diminished 

attentional processing of positive social feedback, or enhanced attentional processing of 

ambiguous feedback, may be less motivated to engage in social activities (although the 

direction of this relation cannot be determined based on the present data). This may especially 

be the case in HD subjects, who displayed decreased parietal prediction encoding, as well as 



reduced motivation to engage in pleasant social situations. In line with this notion, we recently 

found that adolescents with depression symptoms displayed blunted anticipatory responses 

to reward in the precuneus (and insula) and showed reduced motivation (/effort) to gain 

rewards (Rzepa and McCabe, 2019). 

Somewhat surprisingly, and contrary to previous findings (Gradin et al., 2011; Kumar et al., 
 

2008), the current study did not observe any group differences in PE encoding in the striatum. 
 

A potential explanation for the absence of this effect is that the utilised stimuli (happy faces of 
 

strangers) may not have been rewarding enough to elicit strong striatal PE responses in LD 
 

subjects, leading to only weak group differences. This explanation is speculative and future 
 

studies are needed to assess whether more rewarding social stimuli (such as positive pictures 
 

of close friends, partners or family members) may elicit more robust striatal PE signals in LD 
 

participants, potentially resulting in significant group effects. 

 

4.3 Limitations 
 

It should be noted that the current study included a relatively small sample size. Therefore, 

the results should be regarded as preliminary and replications in larger samples are called for. 

Moreover, it would be advisable for future studies to assess how social learning in depression 

is affected when other, including more rewarding, social stimuli (besides happy, neutral and 

fearful faces) are used. 

 

4.4 Conclusion 
 
All in all, the results of the current study indicate that individuals with high depression scores 

demonstrate impaired learning from social outcomes, on both the neural and the behavioural 

level. Importantly, this deficit was associated with reduced motivation to engage in real-life 

social activities, possibly due to increased negatively-perceived uncertainty about what to 

expect from social encounters. These findings tentatively suggest that improving social 

learning may contribute to reducing social withdrawal in depression. Future studies are 

needed to examine this suggestion. 
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Figure 1: Example of a social learning task trial. 
 
 



Figure 2: Likelihood ratings by chance of seeing an emotional face for A) the social reward 

and B) the social aversion block in individuals with high (HD) and low (LD) depression scores. 

 



Figure 3: Scatter plot showing the association between motivation to engage in pleasant 

social activities (higher scores indicate higher motivation) and uncertainty intolerance (UIS) * 

task uncertainty interaction values. 

 



Figure 4: Clusters showing lower social reward prediction encoding in individuals with high 

(HD) than with low (LD) depression scores, as well as parameter estimates extracted from A) 

the insula peak voxel and B) the parietal peak voxel. 

 



Table 1: Demographic data and questionnaire scores for individuals with high (HD) and low 

(LD) depression scores. 

 
HD (N = 21) LD (N = 22) 

 

 Mean SD Mean SD 

Age (years) 23.20 5.66 22.45 4.35 

N females/ males 17/4 - 14/8 - 

BDI* 26.05 9.63 1.36 1.84 

RSAS* 18.57 6.43 5.77 4.31 

STAI-T* 57.75 7.12 27.85 6.92 

UIS - neg* 94.71 17.81 52.76 17.19 

PANAS - pos* 24.38 5.71 31.52 6.57 

PANAS - neg* 21.29 7.27 13.43 5.26 

SD, standard deviation; BDI, Beck Depression Inventory; RSAS, Revised Social Anhedonia Scale; 

STAS-T, trait score of the State Trait Anxiety Inventory; UIS - neg, Uncertainty Intolerance Negativity 

Scale; PANAS-pos/neg, positive and negative mood scores of the Positive and Negative Affect Scale; 

* asterisks indicate significant group differences 



 

Table 2. Parametric modulation results for social reward prediction encoding in individuals 

with low (LD) vs. high (HD) depression scores. 

 

MNI coordinates 
 

Brain Region X Y Z Z score p value 

 

LD > HD 

     

Superior Parietal Lobe/ Precuneus -18 -58 68 3.80 0.001 

Right Insula 48 -20 18 3.47 0.045 

Right Supramarginal Gyrus 58 -32 24 3.28 
 

Right Superior Temporal Lobe 68 -22 12 3.17 
 

 

Whole-brain cluster p values are family-wise error corrected at p < .05 
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Supplement 
 
 

Supplementary Methods 

 
 

Name Learning Test 

 
Before completing the social learning task, subjects were asked to rate their familiarity and 

their positive and negative associations with a list of modified Scandinavian and Eastern 

European names (on a scale from 0 = ‘no association/ familiarity’ to 10 = ‘strong association/ 

familiarity’). The names with which participants were least familiar, and with which they had 

the weakest associations, were chosen as cues for the social learning task on an individual 

basis. 

As described in the main paper (section 2.3), the social learning task involved learning how 

likely it is that a given name cue is followed by a face with a happy, neutral or fearful 

expression, while the face identity that a particular name is paired with stays constant. To 

ensure that participants were fully focused on learning the name-emotion associations during 

the task, subjects were asked to memorise the name-face identity pairings beforehand. For 

this purpose, participants were shown the selected names together with the (neutral) faces 

that were going to be used during the learning task (i.e. three male and three female faces 

from the Pictures of Facial Affect Series; Ekman & Friesen, 1976). Subjects were given as 

much time as they needed to memorise the name-face identity pairings. Once they felt ready, 

participants completed a name learning test, during which the six faces were numbered and 

displayed in a random order together with one of the learned names. Subjects were instructed 

to select the number of the face that was associated with the presented name. After each 

choice, the words ‘correct’ or ‘wrong – the correct face is:’ were displayed for one second 

together with the correct face. The name test continued until participants had correctly 

matched each name with the corresponding face three times. The order in which the names 

were displayed was pseudo-random. Participants’ memorising time, accuracy, reaction times, 

and number of trials needed to reach criterion were recorded. 



Computational Modelling 

 
 

A Rescorla-Wagner model (Rescorla and Wagner, 1972) was applied to the data, in which the 

prediction error (δ) for a given trial (t) was calculated as the difference between the predicted 

value (V) and the actual outcome (r): 

δ = r(t) – V(t) 

 
Moreover, the predicted value for the next trial was updated by adding the prediction error, 

multiplied by a learning rate (α), to the previous prediction: 

V(t+1) = V(t) + α*δ 

 
The predicted value was (at first, see below) initialised at 0.5, which reflects the mean 

probability of encountering an emotional (rather than a neutral) expression, as well as the fact 

that it is reasonable for participants to initially rate the likelihood of seeing an emotional 

expression as 50% (expressing maximal uncertainty). Moreover, outcome values were coded 

as 0 for neutral expressions and as 1 for happy or fearful faces, thus capturing the prediction 

of salient emotional outcomes. It should be noted that coding fearful faces as -1 (and initialising 

V at -0.5) simply leads to a change in sign of the prediction and prediction error values 

compared to coding fearful expressions as 1. The negative encoding of fear predictions can 

thus be assessed by examining negative covariations between prediction values and BOLD 

responses in the below parametric modulation fMRI analysis. 

Given that the same stimuli and outcome contingencies were used during the practice and 

experimental phases of the social learning task, the computational model was fit to 

participants’ data across both phases, but separately for social reward (happy) and aversion 

(fear) blocks. To account for the fact that forgetting was likely to occur between the practice 

and experimental trials, which were performed outside and inside the MRI scanner, 

respectively, all prediction values were decayed towards the initial value of 0.5 after the 48 

practice trials: 



V(49) = V(49)+ γ*(0.5-V(49)) 

 
where γ is the decay parameter determining the strength of the ‘forgetting’ effect. (A similar 

method has been used by Collins & Frank, 2012 to capture the effects of working memory 

decay.) 

The decay and learning rate parameters were estimated for each participant by minimising 

the sum of squared errors between the model prediction value (V, multiplied by 100) and the 

participant’s likelihood ratings (similar to Hindi Attar, Finckh, & Büchel, 2012). The fitting 

procedure was performed in two steps, because the practice data were missing for four HD 

and nine LD participants (due to technical difficulties). Firstly, the model was fit to only the data 

of those participants for whom the practice data was available. Using the estimated 

parameters, the prediction values (V) for the first experimental trial of each stimulus were 

obtained for each included participant. These prediction values were then averaged across 

subjects. Subsequently, the model fitting was repeated for all participants for only the 

experimental trials (thus estimating only α and not γ), utilising the average prediction values 

from the first fitting step to initialise V (instead of using 0.5). In this way, the learning that 

occurred during the practice trials was taken into account for all subjects, without biasing the 

model fitting depending on whether or not practice data was available for a given participant 

(as V was initialised at the same value for all participants). Note that, for those participants for 

whom experimental and practice data were available, the model fit and the parameter 

estimates were highly similar during the first and second step of the fitting procedure, 

indicating that this approach does not seem to negatively affect the parameter estimation. 

Moreover, it is worth noting that the main purpose of the computational modelling analysis was 

to derive prediction and prediction error values for the parametric modulation fMRI analysis. A 

previous systematic exploration of the effect of model parameter values on fMRI results 

revealed that parametric modulation results did not differ substantially as learning rates (and 

therefore prediction and prediction error values) were varied (Wilson and Niv, 2015). Thus, 



the variations due to the missing data are very unlikely to have had a notable effect on the 

fMRI results. 

To assess group differences, Mann-Whitney U tests were conducted on the parameter 

estimates, as well as on the sum of squared error values (which provide a measure of model 

fit). 

 
fMRI Data Acquisition 

 
A three-Tesla Siemens scanner (Siemens AG, Erlangen, Germany) with a 32-channel head 

coil was used to acquire blood oxygenation level dependent (BOLD) functional images. A 

GRAPPA multiband sequence was utilised with an acceleration factor of 6, a repetition time 

(TR) of 700ms, an echo time (TE) of 30ms, and a flip angle (FA) of 90°. The whole brain was 

covered by the field of view (FOV) with a voxel resolution of 2.4 x 2.4 x 2.4mm3. Additionally, 

structural T1-weighted images were obtained with a magnetisation prepared rapid acquisition 

gradient echo sequence (TR = 2020ms, TE = 3.02ms, FA = 9°) with a FOV covering the whole 

brain and a voxel resolution of 1 x 1 x 1mm3. 

 
fMRI Analysis 

 
Preprocessing and analysis of the fMRI data was performed using the Statistical Parametric 

Mapping software (SPM12; http://www.fil.ion.ucl.ac.uk/spm). Functional images were 

realigned to the average position and motion parameters were saved for inclusion as 

regressors of no interest in the first-level analysis. Structural images were co-registered with 

the functional images and aligned to the SPM MNI space tissue probability map using 

segmentation. The resulting normalisation parameters were applied to the functional images 

which were subsequently smoothed with a Gaussian kernel of 6mm full-width at half- 

maximum. 

Three first-level GLM analyses were run. GLM1 examined covariations between BOLD 

responses and values derived from the computational model described above. For this 

http://www.fil.ion.ucl.ac.uk/spm)


purpose, model-derived prediction values were entered as parametric modulators at the time 

of the cue, using separate regressors for the social reward and aversion blocks. In line with 

the previous literature, prediction values were calculated using average learning rate 

parameters across all participants (social reward block: α = 0.12, social aversion block: α = 

0.08) to ensure that any group differences in the fMRI results were not due to the use of varying 

parameter values (Bakker et al., 2018; Daw, 2011; Daw et al., 2006; Pessiglione et al., 2006; 

Schonberg et al., 2010, 2007). However, for completeness, the above analysis was also run 

with individual learning rate values (GLM2), which yielded very similar results (see 

supplementary fMRI results below). 

As has been commonly reported in the previous literature (e.g. Behrens, Hunt, Woolrich, & 

Rushworth, 2009; Chowdhury et al., 2013; Rothkirch et al., 2017; Tobia et al., 2014), the 

outcome and prediction error (PE) values were highly correlated in the current study. It was, 

therefore, not feasible to unambiguously identify PE-related BOLD responses by using PE 

values as parametric modulators at the time of the outcome. Notably, brain responses 

encoding a canonical PE should, at the time of the outcome, covary positively with outcome 

values and negatively with prediction values. As in previous studies (e.g. Chowdhury et al., 

2013; Rothkirch et al., 2017; Rutledge et al., 2017), these two PE components were thus 

entered into the analysis as separate parametric modulators at the time of the outcome. 

Subsequently, MarsBar (Brett, Jean-Luc, Valabregue, & Poline, 2002) was used to extract 

average parameter estimates for outcome and inverse prediction encoding from a 6mm 

sphere around striatal coordinates that have been found to encode PEs in a previous meta- 

analysis (left ROI: -10 8 -6; right ROI: 10 8 -10; Chase et al., 2015). The extracted values were 

then compared between groups using one-way ANOVAs. 

Additionally, a third GLM analysis was performed (GLM3) to assess valence-dependent BOLD 

responses to the cues and outcomes. Onset timings of the following events were entered as 

regressors: name cues from the social aversion block, name cues from the social reward 



block, fearful faces, happy faces, and neutral faces. Subsequently, contrasts were computed 

for social reward vs. aversion cues, fearful vs. neutral faces, and happy vs. neutral faces. 

In all three GLM analyses, the regressors of interest, as well as their temporal derivatives, 

were convolved with the haemodynamic response function. Moreover, the six motion 

parameters from the realignment preprocessing step and a constant, as well as the onsets of 

the rating scale, were included as regressors of no interest. 

On the second level, whole-brain one-sample t-tests were performed on the data of the LD 

control group to assess main effects, and whole-brain one-way ANOVAs were conducted for 

group comparisons. All results are reported at a voxelwise threshold of 0.01 (uncorrected) and 

are family wise error (FWE) corrected at p<0.05 at the cluster-level. 

Finally, to relate the fMRI results to real-life measures, parameter estimates were extracted 

from the peak voxels of the prediction-related group comparison and were correlated with 

participants’ reported motivation to engage in positive social interactions (similar to Gradin et 

al., 2011). 



Supplementary Behavioural Results 

 
Name Learning Test Performance 

 
For the name learning test, Mann-Whitney U tests showed no significant group differences in 

the memorising time (U = 86, p = 0.320), accuracy (U = 88, p = 0.363), reaction times (U = 

135, p = 0.320), or number of trials needed to reach criterion (U = 126, p = 0.536). Thus, there 

was no indication that HD subjects displayed any general deficits in associative learning 

(between names and face identities). 

 

Social Learning Task Performance – Experimental Data Only 

 
As mentioned above, the name test and social learning task practice data were lost for four 

HD and nine LD participants, due to technical difficulties. The mixed-measure (group x valence 

x probability) ANOVA reported in the main paper was performed on the likelihood ratings 

averaged across all available (practice and/or experimental) data for each participant. 

However, to ensure that the results were not biased by the missing data, the analysis was 

repeated using only the data from the experimental trials (which were available for all 

participants). The pattern of findings was almost identical for the two approaches (see section 

3.1.3 in the main paper). 

 
Specifically, using the experimental data only, a mixed measure ANOVA (group x valence x 

probability) performed on participants’ likelihood ratings revealed the expected main effect of 

probability (F(2, 82) = 82.39, p < 0.001), as participants rated the likelihood of seeing an 

emotional expression higher after cues that were more likely to be followed by an emotional 

face. Moreover, a main effect of valence was observed (F(1,41) = 4.35, p = 0.043) which 

indicated that participants rated the overall likelihood of seeing happy faces as higher than the 

likelihood of seeing fearful faces. Additionally, a group by probability interaction was found 

(F(2,82) = 8.46, p < 0.001) which was followed up as described below. All other main effects 

and interactions were not significant (all F < 2.1). 



Follow-up one-way ANOVAs revealed that, compared to LD controls, HD participants’ 

likelihood ratings were significantly lower on trials with a 75% chance of showing a happy face 

(F(1,41) = 7.59, p = 0.009). By contrast, HD subjects’ ratings were significantly higher than 

those of controls on trials with a 25% chance of showing a happy (F(1,41) = 7.69, p = 0.008) 

or fearful (F(1,41) = 6.95, p = 0.012) face. There were no group differences on trials with a 

50% chance of showing a happy (F(1,41) = 0.001, p = 0.976) or fearful (F(1,41) = 0.07, p = 

0.794) expression, nor on trials with a 75% chance of displaying a fearful face (F(1,41) = 1.38, 

p = 0.248). 

 

Social Learning Task Performance – Accuracy 

 

In order to examine whether there were group differences in the accuracy of the likelihood 
 

ratings, the absolute of the difference between participants’ ratings and the true likelihood 
 

were calculated and entered into a mixed measure ANOVA (group x valence x probability). 
 

This analysis revealed a main effect of probability (F(1.81, 74.23) = 21.29, p < 0.001), as well 
 

as a main effect of group (F(1,41) = 15.88, p < 0.001), with LD participants making significantly 
 

more accurate ratings than HD subjects. In addition, group by probability (F(1.81,74.23) = 
 

4.86, p = 0.013) and valence by probability (F(1.88,77.25) = 3.85, p = 0.028) interactions were 
 

observed, which were followed up as described below. All other main effects and interactions 
 

were not significant (all F < 2.5). 
 
 

Follow-up  one-way  ANOVAs  revealed  that,  compared  to  LD  controls,  HD  participants’ 
 

likelihood ratings were significantly less accurate on trials with a 75% chance of showing a 
 

happy (F(1,41) = 10.50, p = 0.002) or fearful (F(1,41) = 4.10, p  = 0.049) expression, as well 
 

as on trials with a 25% chance of showing a happy (F(1,41) = 10.37 p = 0.003) or fearful 
 

(F(1,41) = 8.15, p = 0.007) expression. By contrast, no significant group differences were  
 

observed on trials with a 50% chance of showing a happy (F(1,41) < 0.01, p = 0.958) or fearful 
 

(F(1,41) = 1.80, p = 0.187) face. 



Prediction of Social Engagement Motivation with Inhibitory Uncertainty Intolerance 

 
Inhibitory uncertainty intolerance (UI) scores were significantly higher in HD than in LD 

participants (U = 31.5, p < 0.001; HD: M = 17.00, SD = 4.34; LD: M = 8.18, SD = 3.19). 

Moreover, similar results were obtained when predicting social engagement motivation using 

inhibitory UI than when utilising UIS negativity scores (as in section 3.1.3 in the main paper). 

Specifically, a multiple regression analysis revealed that task-based uncertainty scores and 

questionnaire measures predicted participants’ motivation to engage in pleasant social 

activities (F(5, 33) = 9.35, p < 0.001, R 2 = 0.52). Predictors significantly contributing to the 

relation were the main effect of inhibitory UI (β = -0.53, p = 0.005), the inhibitory UI* task 

uncertainty interaction term (β = -0.32, p = 0.011), and RSAS social anhedonia scores (β = - 

0.40, p = 0.036). By contrast the main effect of task uncertainty (β = -0.17, p = 0.161) and BDI 

scores (β = 0.31, p = 0.143) had no significant effect. Thus, the motivation to engage in 

pleasant social activities was particularly reduced in individuals who were uncertain about 

what social outcomes to expect and for whom uncertainty had an inhibitory effect. 

 
 
 
 

Task Feedback Questionnaire 

 
 

In a task feedback questionnaire, HD subjects demonstrated a tendency to show higher 

emotional responses to fearful expressions than controls (U = 142, p = 0.069), while their self- 

rated ability to remember happy faces was marginally decreased (U = 280, p = 0.065). No 

group differences were found for emotional responses to happy faces (U = 229, p = 0.615), or 

for the reported ability to remember fearful faces (U = 245, p = 0.363). 



Supplementary fMRI Results 

 
 
Neural Prediction Value Encoding 

 

 
Main Effects 

 
In the LD group, a significant covariation between BOLD responses and model-based social 

reward (i.e. happy expression) prediction values was observed in a right-lateralised cluster 

ranging from the superior to the inferior temporal lobe and the fusiform gyrus (see Table S1). 

By contrast, no significant (positive or negative) covariation between BOLD responses and 

social aversion (i.e. fearful expression) prediction values was found. 

Table S1: Parametric modulation results for social reward prediction encoding in control 

participants (LD) only. 

 

MNI coordinates 
 

Brain Region X Y Z Z score p value 

Right Inferior Temporal Lobe 
52

 
-36 -22 4.40 0.025 

Right Superior Temporal Lobe 44 -24 -4 3.21 
 

Right Fusiform Gyrus 38 -34 -22 3.12 
 

 

Whole-brain cluster p values are family-wise error corrected at p < .05 

 
 
 
 
 

One Sample T-Tests 

 
Visual inspection of the parameter estimates extracted from the peak voxels of the group 

contrast suggested that LD participants encoded social reward predictions positively, while HD 

participants appeared to encode them negatively (see Figure 5 in the main paper). To formally 

test this effect, one-sample t-tests against zero were performed separately for the two groups 

on the extracted parameter estimates. It was found that insula (t(21) = 2.59; p = 0.017) and 

parietal (t(21) = 2.86; p = 0.009) parameter estimates were significantly above zero in the 



LD group, while they were significantly below zero in the HD group (t(20) = 3.06; p = 0.006; 

t(20) = 3.06; p = 0.006, respectively). This suggests that BOLD responses of LD individuals 

tracked the prediction value for happy faces, while neural responses of HD subjects appeared 

to track the prediction value for neutral faces. 

This suggestion was further supported by whole-brain one sample t-tests, which revealed that 

HD subjects demonstrated inverse social reward prediction encoding in a parietal lobe cluster 

(MNI coordinates: 22 -64 56; Z = 3.69; p uncorrected = 0.003; although this result did not quite reach 

significance after family wise error correction on the cluster level; p FWE-corrected =  0.192). By 

contrast, LD participants did not show any encoding of inverse social reward prediction values 

(even at an uncorrected cluster level threshold). However, as reported      in the main paper, 

LD subjects did display positive reward prediction encoding in the temporal lobe and fusiform 

gyrus, while no such effects were seen in HD individuals. 

 
ROI Analysis 

 
A recent meta-analysis identified the subgenual anterior cingulate cortex (sgACC) as the only 

region which consistently encoded model-derived prediction values across studies (Chase et 

al., 2015). Thus, a region of interest analysis was performed on this area. For this purpose, 

MarsBar (Brett et al., 2002) was used to extract prediction-related parameter estimates from 

a 8mm sphere (as in Ham, Greenberg, Chase, & Phillips, 2016) around the sgACC 

coordinates indicated in the meta-analysis (ROI 1: 4 34 -6; ROI 2: -6 28 -20). A one-way 

ANOVAs performed on the extracted parameter estimates revealed no group differences for 

social reward prediction (ROI 1: F(1,41) = 0.01, p = 0.932; ROI 2: F(1,41) = 0.37, p = 0.545) 

or social aversion prediction (ROI 1: F(1,41) = 2.56, p = 0.117; ROI 2: F(1,41) = 1.22, p = 

0.276) encoding. 



Analysis with Individual Parameters 

 
When individual parameter values were used in the computational model to derive prediction 

values for the parametric modulation analysis, similar results were obtained as when average 

parameters were used (as in section 3.2.1 of the main paper). Specifically, it was found that 

HD subjects showed reduced social reward prediction encoding in the precuneus, inferior 

parietal lobe and superior temporal lobe compared to LD controls (see Table S2). No 

significant group differences were observed for social aversion prediction encoding. 

 

Table S2: Parametric modulation results for social reward prediction encoding in individuals 

with low (LD) vs high (HD) depression scores using individual modelling parameters 

 

MNI coordinates 
 

Brain Region X Y Z Z score p value 

 

LD > HD 
 
Precuneus 

 
 

20 

 
 

-50 

 
 

46 

 
 

3.18 

 
 

0.005 

Inferior Parietal Lobe 32 -58 48 3.12 
 

Superior Temporal Lobe 38 -56 18 3.26 0.001 
 

Whole-brain cluster p values family-wise error corrected at p < .05 

 
 

 
Neural Responses to Name Cues and Emotional Faces 

 
None of the name cue or face contrasts resulted in any significant clusters in the LD group 

alone. Yet, group comparisons revealed significantly higher activation to fearful (vs. neutral) 

faces in HD compared to LD subjects in the bilateral supramarginal gyrus, right fusiform gyrus, 

bilateral inferior temporal lobe, dorsal anterior cingulate, and in a cluster ranging from the 

dorsolateral to the ventrolateral PFC and to the insula (see Table S3). No group differences 

were observed for the happy vs. neutral face contrast or for the social reward vs. social 

aversion name cue contrast. 



Table S3: Regions showing higher responses to fearful (vs. neutral) faces in individuals with 

high (HD) compared to low (LD) depression scores 

MNI coordinates 
 

Brain Region X Y Z Z score p value 

 

HD > LD 

     

Dorsal ACC/ MCC -2 10 28 4.73 <0.001 

Right Occipital Lobe 18 -92 -8 4.30 0.033 

Right Fusiform Gyrus 34 -76 -18 3.56 
 

Right dlPFC (BA 8) 50 24 42 4.25 <0.001 

Right vlPFC (BA 45) 54 32 10 3.50 
 

Right Insula 46 10 12 3.18 
 

Right Supramarginal Gyrus 36 -46 50 4.01 <0.001 

Right Inferior Temporal Lobe 58 -54 -4 3.99 0.002 

Left Inferior Temporal Lobe -54 -58 -14 3.96 0.034 

Left Supramarginal Gyrus -28 -48 52 3.36 0.001 
 

Whole-brain cluster p values family-wise error corrected at p < .05; ACC, anterior cingulate cortex; 
MCC, mid cingulate cortex; dlPFC, dorsolateral prefrontal cortex; vlPFC, ventrolateral prefrontal cortex; 
BA, Brodmann Area 
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