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Abstract. The Earth System Model Evaluation Tool (ESM-
ValTool) is a community diagnostics and performance met-
rics tool designed to improve comprehensive and routine
evaluation of Earth system models (ESMs) participating in
the Coupled Model Intercomparison Project (CMIP). It has
undergone rapid development since the first release in 2016
and is now a well-tested tool that provides end-to-end prove-
nance tracking to ensure reproducibility. It consists of (1) an
easy-to-install, well-documented Python package providing
the core functionalities (ESMValCore) that performs com-
mon preprocessing operations and (2) a diagnostic part that
includes tailored diagnostics and performance metrics for
specific scientific applications. Here we describe large-scale
diagnostics of the second major release of the tool that sup-
ports the evaluation of ESMs participating in CMIP Phase 6
(CMIP6). ESMValTool v2.0 includes a large collection of di-
agnostics and performance metrics for atmospheric, oceanic,
and terrestrial variables for the mean state, trends, and vari-
ability. ESMValTool v2.0 also successfully reproduces fig-
ures from the evaluation and projections chapters of the In-
tergovernmental Panel on Climate Change (IPCC) Fifth As-
sessment Report (AR5) and incorporates updates from tar-
geted analysis packages, such as the NCAR Climate Vari-
ability Diagnostics Package for the evaluation of modes of
variability, the Thermodynamic Diagnostic Tool (TheDiaTo)
to evaluate the energetics of the climate system, as well as
parts of AutoAssess that contains a mix of top–down perfor-
mance metrics. The tool has been fully integrated into the
Earth System Grid Federation (ESGF) infrastructure at the
Deutsches Klimarechenzentrum (DKRZ) to provide evalua-
tion results from CMIP6 model simulations shortly after the
output is published to the CMIP archive. A result browser
has been implemented that enables advanced monitoring of
the evaluation results by a broad user community at much
faster timescales than what was possible in CMIP5.

1 Introduction

The Intergovernmental Panel on Climate Change (IPCC)
Fifth Assessment Report (AR5) concluded that the warm-
ing of the climate system is unequivocal and that the hu-

man influence on the climate system is clear (IPCC, 2013).
Observed increases in greenhouse gases, warming of the at-
mosphere and ocean, sea ice decline, and sea level rise, in
combination with climate model projections of a likely tem-
perature increase between 2.1 and 4.7 ◦C for a doubling of
atmospheric CO2 concentration from pre-industrial (1980)
levels make it an international priority to improve our under-
standing of the climate system and to reduce greenhouse gas
emissions. This is reflected for example in the Paris Agree-
ment of the United Nations Framework Convention on Cli-
mate Change (UNFCCC) 21st session of the Conference of
the Parties (COP21; UNFCCC, 2015).

Simulations with climate and Earth system models
(ESMs) performed by the major climate modelling centres
around the world under common protocols have been coor-
dinated as part of the World Climate Research Programme
(WCRP) Coupled Model Intercomparison Project (CMIP)
since the early 90s (Eyring et al., 2016a; Meehl et al., 2000,
2007; Taylor et al., 2012). CMIP simulations provide a fun-
damental source for IPCC Assessment Reports and for im-
proving our understanding of past, present, and future cli-
mate change. Standardization of model output in a common
format (Juckes et al., 2020) and publication of the CMIP
model output on the Earth System Grid Federation (ESGF)
facilitates multi-model evaluation and analysis (Balaji et al.,
2018; Eyring et al., 2016a; Taylor et al., 2012). This effort is
additionally supported by observations for the Model Inter-
comparison Project (obs4MIPs) which provides the commu-
nity with access to CMIP-like datasets (in terms of variable
definitions, temporal and spatial coordinates, time frequen-
cies, and coverages) of satellite data (Ferraro et al., 2015;
Teixeira et al., 2014; Waliser et al., 2019). The availability of
observations and models in the same format strongly facili-
tates model evaluation and analysis.

CMIP is now in its sixth phase (CMIP6, Eyring et al.,
2016a) and is confronted with a number of new challenges.
More centres are running more versions of more models
of increasing complexity. An ongoing demand to resolve
more processes requires increasingly higher model resolu-
tions. Accordingly, the data volume of 2 PB in CMIP5 is
expected to grow by a factor of 10–20 for CMIP6, result-
ing in a CMIP6 database of between 20 and 40 PB, de-

Geosci. Model Dev., 13, 3383–3438, 2020 https://doi.org/10.5194/gmd-13-3383-2020



V. Eyring et al.: ESMValTool v2.0 3385

pending on model resolution and the number of modelling
centres ultimately contributing to the project (Balaji et al.,
2018). Archiving, documenting, subsetting, supporting, dis-
tributing, and analysing the huge CMIP6 output together
with observations challenges the capacity and creativity of
the largest data centres and fastest data networks. In addi-
tion, the growing dependency on CMIP products by a broad
research community and by national and international cli-
mate assessments, as well as the increasing desire for opera-
tional analysis in support of mitigation and adaptation, means
that systems should be set in place that allow for an efficient
and comprehensive analysis of the large volume of data from
models and observations.

To help achieve this, the Earth System Model Evaluation
Tool (ESMValTool) is developed. A first version that was
tested on CMIP5 models was released in 2016 (Eyring et al.,
2016c). With the release of ESMValTool version 2.0 (v2.0),
for the first time in CMIP an evaluation tool is now avail-
able that provides evaluation results from CMIP6 simula-
tions as soon as the model output is published to the ESGF
(https://cmip-esmvaltool.dkrz.de/, last access: 13 July 2020).
This is realized through text files that we refer to as recipes,
each calling a certain set of diagnostics and performance
metrics to reproduce analyses that have been demonstrated
to be of importance in ESM evaluation in previous peer-
reviewed papers or assessment reports. ESMValTool is de-
veloped as a community diagnostics and performance met-
rics tool that allows for routine comparison of single or mul-
tiple models, either against predecessor versions or against
observations. It is developed as a community effort currently
involving more than 40 institutes with a rapidly growing de-
veloper and user community. Given the level of detailed eval-
uation diagnostics included in ESMValTool v2.0, several di-
agnostics are of interest only to the climate modelling com-
munity, whereas others, including but not limited to those on
global mean temperature or precipitation, will also be valu-
able for the wider scientific user community. The tool allows
for full traceability and provenance of all figures and outputs
produced. This includes preservation of the netCDF meta-
data of the input files including the global attributes. These
metadata are also written to the products (netCDF and plots)
using the Python package W3C-PROV. Details can be found
in the ESMValTool v2.0 technical overview description pa-
per by Righi et al. (2020).

The release of ESMValTool v2.0 is documented in four
companion papers: Righi et al. (2020) provide the technical
overview of ESMValTool v2.0 and show a schematic repre-
sentation of the ESMValCore, a Python package that provides
the core functionalities, and the diagnostic part (see their
Fig. 1). This paper describes recipes of the diagnostic part
for the evaluation of large-scale diagnostics. Recipes for ex-
treme events and in support of regional model evaluation are
described by Weigel et al. (2020) and recipes for emergent
constraints and model weighting by Lauer et al. (2020). In the
present paper, the use of the tool is demonstrated by show-

ing example figures for each recipe for either all or a subset
of CMIP5 models. Section 2 describes the type of modelling
and observational data currently supported by ESMValTool
v2.0. In Sect. 3 an overview of the recipes for large-scale
diagnostics provided with the ESMValTool v2.0 release is
given along with their diagnostics and performance metrics
as well as the variables and observations used. Section 4 de-
scribes the workflow of routine analysis of CMIP model out-
put alongside the ESGF and the ESMValTool result browser.
Section 5 closes with a summary and an outlook.

2 Models and observations

The open-source release of ESMValTool v2.0 that accom-
panies this paper is intended to work with CMIP5 and
CMIP6 model output and partly also with CMIP3 (although
the availability of data for the latter is significantly lower,
resulting in a limited number of recipes and diagnostics
that can be applied with such data), but the tool is com-
patible with any arbitrary model output, provided that it
is in CF-compliant netCDF format (CF: climate and fore-
cast; http://cfconventions.org/, last access: 13 July 2020) and
that the variables and metadata follow the CMOR (Climate
Model Output Rewriter, https://pcmdi.github.io/cmor-site/
media/pdf/cmor_users_guide.pdf, last access: 13 July 2020)
tables and definitions (see, e.g., https://github.com/PCMDI/
cmip6-cmor-tables/tree/master/TablesforCMIP6, last access:
13 July 2020). As in ESMValTool v1.0, for the evaluation of
the models with observations, we make use of the large ob-
servational effort to deliver long-term, high-quality observa-
tions from international efforts such as obs4MIPs (Ferraro et
al., 2015; Teixeira et al., 2014; Waliser et al., 2019) or obser-
vations from the ESA Climate Change Initiative (CCI; Lauer
et al., 2017). In addition, observations from other sources and
reanalysis data are used in several diagnostics (see Table 3 in
Righi et al., 2020). The processing of observational data for
use in ESMValTool v2.0 is described in Righi et al. (2020).
The observations used by individual recipes and diagnostics
are described in Sect. 3 and listed in Table 1. With the broad
evaluation of the CMIP models, ESMValTool substantially
supports one of CMIP’s main goals, which is the comparison
of the models with observations (Eyring et al., 2016a, 2019).

3 Overview of recipes included in ESMValTool v2.0

In this section, all recipes for large-scale diagnostics that
have been newly added in v2.0 since the first release of
ESMValTool in 2016 (see Table 1 in Eyring et al., 2016c,
for an overview of namelists, now called recipes, included in
v1.0) are described. In each subsection, we first scientifically
motivate the inclusion of the recipe by reviewing the main
systematic biases in current ESMs and their importance and
implications. We then give an overview of the recipes that
can be used to evaluate such biases along with the diag-
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Figure 1. Relative space–time root-mean-square deviation (RMSD) calculated from the climatological seasonal cycle of the CMIP5 simu-
lations. The years averaged depend on the years with observational data available. A relative performance is displayed, with blue shading
indicating better and red shading indicating worse performance than the median of all model results. Note that the colours would change if
models were added or removed. A diagonal split of a grid square shows the relative error with respect to the reference dataset (lower right
triangle) and the alternative dataset (upper left triangle). White boxes are used when data are not available for a given model and variable.
The performance metrics are shown separately for atmosphere, ocean and sea ice (a), and land (b). Extended from Fig. 9.7 of IPCC WG I
AR5 chap. 9 (Flato et al., 2013) and produced with recipe_perfmetrics_CMIP5.yml.; see details in Sect. 3.1.1.

nostics and performance metrics included and the required
variables and corresponding observations that are used in
ESMValTool v2.0. For each recipe we provide 1–2 example
figures that are applied to either all or a subset of the CMIP5
models. An assessment of CMIP5 or CMIP6 models is,
however, not the focus of this paper. Rather, we attempt
to illustrate how the recipes contained within ESMValTool
v2.0 can facilitate the development and evaluation of climate
models in the targeted areas. Therefore, the results of
each figure are only briefly described. Table 1 provides a
summary of all recipes included in ESMValTool v2.0 along
with a short description, information on the quantities and

ESMValTool variable names for which the recipe is tested,
the corresponding diagnostic scripts and observations. All
recipes are included in the ESMValTool repository on
GitHub (see Righi et al., 2020, for details) and can be
found in the directory: https://github.com/ESMValGroup/
ESMValTool/tree/master/esmvaltool/recipes (last access:
13 July 2020).

We describe recipes separately for integrative measures of
model performance (Sect. 3.1) and for the evaluation of pro-
cesses in the atmosphere (Sect. 3.2), ocean and cryosphere
(Sect. 3.3), land (Sect. 3.4), and biogeochemistry (Sect. 3.5).
Recipes that reproduce chapters from the evaluation chapter

Geosci. Model Dev., 13, 3383–3438, 2020 https://doi.org/10.5194/gmd-13-3383-2020
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Table 1. Overview of standard recipes implemented in ESMValTool v2.0 along with the section they are described, a brief description, the
diagnostic scripts included, as well as the variables and observational datasets used. For further details we refer to the GitHub repository.

Recipe name Chapter Description Diagnostic scripts Variables Observational datasets

Section 3.1: Integrative measures of model performance

recipe_perfmetrics_
CMIP5.yml

3.1.2.1 Recipe for plotting
the performance met-
rics for the CMIP5
datasets, includ-
ing the standard
ECVs (Essential
Climate Variables)
as in Flato et
al. (2013), and some
additional variables
(e.g. ozone, sea ice,
aerosol).

perfmetrics/main.ncl
perfmetrics/collect.ncl

ta
ua
va
zg
tas

ERA-Interim (Tier 3; Dee et al., 2011)
NCEP (Tier 2; Kalnay et al., 1996)

hus AIRS (Tier 1; Aumann et al., 2003)
ERA-Interim (Tier 3; Dee et al., 2011)

ts ESACCI-SST (Tier 2; Merchant,
2014), HadISST (Tier 2; Rayner et al.,
2003)

pr GPCP-SG (Tier 1; Adler et al., 2003)

clt ESACCI-CLOUD (Tier 2; Stengel et
al., 2016), PATMOS-X (Tier 2; Hei-
dinger et al., 2014)

rlut
rsut
lwcre
swcre

CERES-EBAF (Tier 2; Loeb et al.,
2018)

od550aer
od870aer
abs550aer
d550lt1aer

ESACCI-AEROSOL (Tier 2; Popp et
al., 2016)

toz ESACCI-OZONE (Tier 2; Loyola et
al., 2009), NIWA-BS (Tier 3; Bodeker
et al., 2005)

sm ESACCI-SOILMOISTURE (Tier 2;
Liu et al., 2012b)

et LandFlux-EVAL (Tier 3; Mueller et al.,
2013)

fgco2 JMA-TRANSCOM (Tier 3; Maki et
al., 2017), Landschuetzer2016 (Tier 2;
Landschuetzer et al., 2016)

nbp JMA-TRANSCOM (Tier 3; Maki et
al., 2017)

lai LAI3g (Tier 3; Zhu et al., 2013)

gpp FLUXCOM (Tier 3; Jung et al., 2019),
MTE (Tier 3; Jung et al., 2011)

rlus
rlds
rsus
rsds

CERES-EBAF (Tier 2; Loeb et al.,
2018)

https://doi.org/10.5194/gmd-13-3383-2020 Geosci. Model Dev., 13, 3383–3438, 2020
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Table 1. Continued.

Recipe name Chapter Description Diagnostic scripts Variables Observational datasets

Section 3.1: Integrative measures of model performance

recipe_smpi.yml 3.1.2.3 Recipe for comput-
ing single-model
performance index.
Follows Reichler and
Kim (2008).

perfmetrics/main.ncl
perfmetrics/collect.ncl

ta
va
ua
hus
tas
psl
hfds
tauu
tauv

ERA-Interim (Tier 3; Dee et al., 2011)

pr GPCP-SG (Tier 1; Adler et al., 2003)

tos
sic

HadISST (Tier 2; Rayner et al., 2003)

recipe_autoassess_
*.yml

3.1.2.4 Recipe for mix of
top–down metrics
evaluating key model
output variables and
bottom–up metrics.

autoassess/autoassess_
area_base.py
autoassess/plot_
autoassess_metrics.py
autoassess/autoassess_r
adiation_rms.py

rtnt
rsnt
swcre
lwcre
rsns
rlns
rsut
rlut
rsutcs

CERES-EBAF (Tier 2; Loeb et al.,
2018)

rlutcs
rldscs

J RA-55 (Tier 1; Onogi et al., 2007)

prw SSMI-MERIS (Tier 1; Schröder, 2012)

pr GPCP-SG (Tier 1; Adler et al., 2003)

rtnt
rsnt
swcre
lwcre
rsns
rlns
rsut
rlut
rsutcs

CERES-EBAF (Tier 2; Loeb et al.,
2018), CERES-SYN1deg (Tier 3;
Wielicki et al., 1996)

rlutcs
rldscs

JRA-55 (Tier 1; ana4mips)
CERES-SYN1deg (Tier 3; Wielicki et
al., 1996)

prw SSMI-MERIS (Tier 1; obs4mips)
SSMI (Tier 1; obs4mips)

cllmtisccp
clltkisccp
clmmtisccp
clmtkisccp
clhmtisccp
clhtkisccp

ISCCP (Tier 1; Rossow and Schiffer,
1991)

ta
ua
hus

ERA-Interim (Tier 3; Dee et al., 2011)

Geosci. Model Dev., 13, 3383–3438, 2020 https://doi.org/10.5194/gmd-13-3383-2020
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Table 1. Continued.

Recipe name Chapter Description Diagnostic scripts Variables Observational datasets

Section 3.2: Detection of systematic biases in the physical climate: atmosphere

recipe_flato13ipcc.yml 3.1.2
3.2.1
3.3.1

Recipe to reproduce
selected figures from
IPCC AR5, chap. 9
(Flato et al., 2013)
9.2, 9.4, 9.5, 9.6, 9.8,
9.14.

clouds/clouds_bias.ncl
clouds/clouds_ipcc.ncl
ipcc_ar5/tsline.ncl
ipcc_ar5/ch09_fig09_
06.ncl
ipcc_ar5/ch09_fig09_
06_collect.ncl
ipcc_ar5/ch09_
fig09_14.py

tas ERA-Interim (Tier 3; Dee et al., 2011)
HadCRUT4 (Tier 2; Morice et al.,
2012)

tos HadISST (Tier 2; Rayner et al., 2003)

swcre
lwcre
netcre
rlut

CERES-EBAF (Tier 2; Loeb et al.,
2018)

pr GPCP-SG (Tier 1; Adler et al., 2003)

recipe_
quantilebias.yml

3.2.2 Recipe for calcula-
tion of precipitation
quantile bias.

quantilebias/
quantilebias.R

pr GPCP-SG (Tier 1; Adler et al., 2003)

recipe_zmnam.yml 3.2.3.1 Recipe for zonal
mean Northern An-
nular Mode. The
diagnostic computes
the index and the
spatial pattern to
assess the simulation
of the stratosphere–
troposphere coupling
in the boreal hemi-
sphere.

zmnam/zmnam.py zg –

recipe_miles_
block.yml

3.2.3.2 Recipe for comput-
ing 1-D and 2-D at-
mospheric blocking
indices and diagnos-
tics.

miles/miles_block.R zg ERA-Interim (Tier 3; Dee et al., 2011)

recipe_thermodyn_
diagtool.yml

3.2.4 Recipe for the com-
putation of various
aspects associated
with the thermody-
namics of the climate
system, such as en-
ergy and water mass
budgets, meridional
enthalpy trans-
ports, the Lorenz
energy cycle, and
the material entropy
production.

thermodyn_diagtool/
thermo-
dyn_diagnostics.py

hfls
hfss
pr
ps
prsn
rlds
rlus
rlut
rsds
rsus
rsdt
rsut
ts
hus
tas
uas
vas
ta
ua
va
wap

–
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Table 1. Continued.

Recipe name Chapter Description Diagnostic scripts Variables Observational datasets

Section 3.2: Detection of systematic biases in the physical climate: atmosphere

recipe_CVDP.yml 3.2.5.1 Recipe for execut-
ing the NCAR CVDP
package in the ESM-
ValTool framework.

cvdp/cvdp_wrapper.py pr GPCP-SG (Tier 1; Adler et al., 2003)

psl ERA-Interim (Tier 3; Dee et al., 2011)

tas Berkeley Earth (Tier 1; Rohde and
Groom, 2013)

ts ERSSTv5 (Tier 1; Huang et al. 2017)

recipe_modes_of_
variability.yml

3.2.5.2 Recipe to compute
the RMSE between
the observed and
modelled patterns of
variability obtained
through classification
and their relative
bias (percentage)
in the frequency of
occurrence and the
persistence of each
mode.

magic_bsc/
weather_regime.r

zg –

recipe_miles_
regimes.yml

3.2.5.2 Recipe for comput-
ing Euro-Atlantic
weather regimes
based on k mean
clustering.

miles/miles_regimes.R zg ERA-Interim (Tier 3; Dee et al., 2011)

recipe_miles_eof.yml 3.2.5.3 Recipe for comput-
ing the Northern
Hemisphere EOFs.

miles/miles_eof.R zg ERA-Interim (Tier 3; Dee et al., 2011)

recipe_combined_
indices.yml

3.2.5.4 Recipe for comput-
ing seasonal means
or running averages,
combining indices
from multiple mod-
els and computing
area averages.

magic_bsc/ com-
bined_indices.r

psl –

Section 3.3: Detection of systematic biases in the physical climate: ocean and cryosphere

recipe_ocean_
scalar_fields.yml

3.3.1 Recipe to reproduce
time series figures of
scalar quantities in
the ocean.

ocean/diagnostic_
time series.py

gtintpp
gtfgco2
amoc
mfo
thetaoga
soga
zostoga

–

recipe_ocean_
amoc.yml

3.3.1 Recipe to reproduce
time series figures
of the AMOC, the
Drake passage cur-
rent, and the stream
function.

ocean/diagnostic_
time series.py
ocean/diagnostic_
transects.py

amoc
mfo
msftmyz

–
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Table 1. Continued.

Recipe name Chapter Description Diagnostic scripts Variables Observational datasets

recipe_
russell18jgr.yml

3.3.2 Recipe to reproduce
figure from Russell et
al. (2018).

russell18jgr/
russell18jgr-polar.ncl
russell18jgr/
russell18jgr-fig*.ncl

tauu
tauuo
thetao
so
uo
vo
sic
pH
fgco2

–

recipe_arctic_
ocean.yml

3.3.3 Recipe for evaluation
of ocean components
of climate models in
the Arctic Ocean.

arctic_ocean/arctic_
ocean.py

thetao(K)
so (0.001)

PHC (Tier 2; Steele et al., 2001)

recipe_seaice_ feed-
back.yml

3.3.4 Recipe to evaluate
the negative ice
growth–thickness
feedback.

seaice_feedback/
negative_seaice_feedback.py

sithick ICESat (Tier2, Kwok et al., 2009)

recipe_sea_
ice_drift.yml

3.3.4 Recipe for sea
ice drift–strength
evaluation.

seaice_drift/
seaice_drift.py

siconc OSI-450-nh (Tier 2; Lavergne et al.,
2019)

sivol PIOMAS (Tier 2; Zhang and Rothrock,
2003)

sispeed IABP (Tier 2; Tschudi et al., 2016)

recipe_SeaIce.yml 3.3.4 Recipe for plotting
sea ice diagnostics
at the Arctic and
Antarctic.

seaice/SeaIce_ancyc.ncl
seaice/SeaIce_tsline.ncl
seaice/SeaIce_polcon.ncl
seaice/SeaIce_polcon_diff.ncl

sic HadISST (Tier 2; Rayner et al., 2003)

Section 3.4: Detection of systematic biases in the physical climate: land

recipe_landcover.yml 3.4.1 Recipe for plotting
the accumulated
area, average frac-
tion, and bias of
land cover classes
in comparison to
ESA_CCI_LC data
for the full globe and
large-scale regions.

landcover/landcover.py baresoilFrac
grassFrac
treeFrac
shrubFrac
cropFrac

ESACCI-LANDCOVER (Tier 2;
Defourny et al., 2016)

recipe_ albedoland-
cover.yml

3.4.2 Recipe for evaluate
land-cover-specific
albedo values.

land cover/
albedolandcover.py

alb Duveiller 2018 (Tier 2; Duveiller et al.,
2018a)

Section 3.5: Detection of biogeochemical biases

recipe_
anav13jclim.yml

3.5.1 Recipe to reproduce
most of the figures of
Anav et al. (2013).

carbon_cycle/mvi.ncl
carbon_cycle/main.ncl
carbon_cycle/
two_variables.ncl
perfmetrics/main.ncl
perfmetrics/collect.ncl

tas
pr

CRU (Tier 3; Harris et al., 2014)

lai LAI3g (Tier 3; Zhu et al., 2013)

fgco2
nbp

JMA-TRANSCOM (Tier 2; Maki et
al., 2017); GCP (Tier 2; Le Quéré et al.,
2018)

tos HadISST (Tier 2; Rayner et al., 2003)

gpp MTE (Tier 2; Jung et al., 2011)

cSoil HWSD (Tier 2; Wieder, 2014)

cVeg NDP (Tier 2; Gibbs, 2006)
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Table 1. Continued.

Recipe name Chapter Description Diagnostic scripts Variables Observational datasets

recipe_
carval-
hais2014nat.yml

3.5.2 Recipe to evaluated
the biases in ecosys-
tem carbon turnover
time.

regrid_areaweighted.py
compare_tau_
modelVobs_matrix.py
compare_tau_
modelVobs_
climatebins.py
compare_zonal_tau.py
compare_zonal_
correlations_
tauVclimate.py

tau (non-
CMOR
variable,
which is
derived as
the ratio
of total
ecosystem
carbon
stock
and gross
primary
productiv-
ity)

Carvalhais et al. (2014)

recipe_ocean_bgc.yml 3.5.3 Recipe to evaluate
the marine biogeo-
chemistry models of
CMIP5. There are
also some physical
evaluation metrics.

ocean/diagnostic_
time series.py
ocean/diagnostic_
profiles.py
ocean/diagnostic_
maps.py
ocean/diagnostic_
model_vs_obs.py ocean/
diagnostic_transects.py
ocean/diagnostic_
maps_multimodel.py

thetao
so
no3
o2
si

WOA (Tier 2; Locarnini, 2013)
WOA (Tier 2; Garcia et al., 2013)

intpp Eppley-VGPM-MODIS (Tier 2;
Behrenfeld and Falkowski, 1997)

chl ESACCI-OC (Tier 2;
Volpe et al., 2019)

fgco2 Landschuetzer2016 (Tier 2;
Landschuetzer et al., 2016)

dfe
talk
mfo

recipe_
eyring06jgr.yml

3.5.4 Recipe to reproduce
stratospheric dynam-
ics and chemistry fig-
ures from Eyring et
al. (2006).

eyring06jgr/
eyring06jgr_fig*.ncl

ta
ua

ERA-Interim (Tier 3; Dee et al., 2011)

vmro3
vmrh2o

HALOE (Tier 2; Russell et al., 1993;
Grooß and Russell III, 2005)

toz NIWA-BS (Tier 3; Bodeker et al.,
2005)

of the IPCC Fifth Assessment Report (Flato et al., 2013) are
described within these sections.

3.1 Integrative measures of model performance

3.1.1 Performance metrics for essential climate
variables for the atmosphere, ocean, sea ice, and
land

Performance metrics are quantitative measures of agreement
between a simulated and observed quantity. Various sta-
tistical measures can be used to quantify differences be-
tween individual models or generations of models and ob-
servations. Atmospheric performance metrics were already
included in namelist_perfmetrics_CMIP5.nml of ESMVal-

Tool v1.0. This recipe has now been extended to include
additional atmospheric variables as well as new variables
from the ocean, sea ice, and land. Similar to Fig. 9.7 of
Flato et al. (2013), Fig. 1 shows the relative space–time
root-mean-square deviation (RMSD) for the CMIP5 histor-
ical simulations (1980–2005) against a reference observa-
tion and, where available, an alternative observational dataset
(recipe_perfmetrics_CMIP5.yml). Performance varies across
CMIP5 models and variables, with some models comparing
better with observations for one variable and another model
performing better for a different variable. Except for global
average temperatures at 200 hPa (ta_Glob-200), where most
but not all models have a systematic bias, the multi-model
mean outperforms any individual model. Additional vari-
ables can easily be added if observations are available, by
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Figure 2. Centred pattern correlations for the annual mean clima-
tology over the period 1980–1999 between models and observa-
tions. Results for individual CMIP5 models are shown (thin dashes),
as well as the ensemble average (longer thick dash) and median
(open circle). The correlations are computed between the models
and the reference dataset. When an alternate observational dataset
is present, its correlation to the reference dataset is also shown (solid
green circles). Similar to Fig. 9.6 of IPCC WG I AR5 chap. 9 (Flato
et al., 2013) and produced with recipe_flato13ipcc.yml; see details
in Sect. 3.1.2.

providing a custom CMOR table and a Python script to do
the calculations in the case of derived variables; see further
details in Sect. 4.1.1 of Eyring et al. (2016c). In addition to
the performance metrics displayed in Fig. 1, several other
quantitative measures of model performance are included in
some of the recipes and are described throughout the respec-
tive sections of this paper.

3.1.2 Centred pattern correlations for different CMIP
ensembles

Another example of a performance metric is the pattern cor-
relation between the observed and simulated climatological
annual mean spatial patterns. Following Fig. 9.6 of the IPCC
AR5 chap. 9 (Flato et al., 2013), a diagnostic for computing
and plotting centred pattern correlations for different models
and CMIP ensembles has been implemented (Fig. 2) and
added to recipe_flato13ipcc.yml. The variables are first
regridded to a 4◦× 5◦ longitude by latitude grid to avoid
favouring a specific model resolution. Regridding is done by
the Iris package, which offers different regridding schemes
(see https://esmvaltool.readthedocs.io/projects/esmvalcore/
en/latest/recipe/preprocessor.html#horizontal-regridding,
last access: 13 July 2020). The figure shows both a large
model spread as well as a large spread in the correlation
depending on the variable, signifying that some aspects of

the simulated climate agree better with observations than
others. The centred pattern correlations, which measure the
similarity of two patterns after removing the global mean,
are computed against a reference observation. Should the
input models be from different CMIP ensembles, they are
grouped by ensemble and each ensemble is plotted side by
side for each variable with a different colour. If an alternate
model is given, it is shown as a solid green circle. The
axis ratio of the plot reacts dynamically to the number of
variables (nvar) and ensembles (nensemble) after it surpasses
a combined number of nvar× nensemble= 16, and the y axis
range is calculated to encompass all values. The centred
pattern correlation is a good measure to quantify both the
spread in models within a single variable as well as obtaining
a quick overview of how well other variables and aspects of
the climate on a large scale are reproduced with respect to
observations. Furthermore when using several ensembles,
the progress made by each ensemble on a variable basis can
be seen at a quick glance.

3.1.3 Single-model performance index

Most model performance metrics only display the skill for a
specific model and a specific variable at a time, not mak-
ing an overall index for a model. This works well when
only a few variables or models are considered but can re-
sult in an overload of information for a multitude of vari-
ables and models. Following Reichler and Kim (2008), a
single-model performance index (SMPI) has been imple-
mented in recipe_smpi.yml. The SMPI (called “I2”) is based
on the comparison of several different climate variables (at-
mospheric, surface, and oceanic) between climate model
simulations and observations or reanalyses and evaluates the
time-mean state of climate. For I2 to be determined, the dif-
ferences between the climatological mean of each model
variable and observations at each of the available data grid
points are calculated and scaled to the interannual variance
from the validating observations. This interannual variability
is determined by performing a bootstrapping method (ran-
dom selection with replacement) for the creation of a large
synthetic ensemble of observational climatologies. The re-
sults are then scaled to the average error from a reference
ensemble of models, and in a final step the mean over all cli-
mate variables and one model is calculated. Figure 3 shows
the I2 values for each model (orange circles) and the multi-
model mean (black circle), with the diameter of each circle
representing the range of I2 values encompassed by the 5th
and 95th percentiles of the bootstrap ensemble. The SMPI
allows for a quick estimation of which models perform the
best on average across the sampled variables (see Table 1),
and in this case it shows that the common practice of taking
the multi-model mean as a best overall model is valid. The
I2 values vary around 1, with values greater than 1 for under-
performing models and values less than 1 for more accurate
models. This diagnostic requires that all models have input
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Figure 3. Single-model performance index I2 for individual models (orange circles). The size of each circle represents the 95 % confidence
interval of the bootstrap ensemble. The black circle indicates the I2 of the CMIP5 multi-model mean. The I2 values vary around 1, with
underperforming models having a value greater than 1, while values below 1 represent more accurate models. Similar to Reichler and Kim
(2008, Fig. 1) and produced with recipe_smpi.yml; see details in Sect. 3.1.3.

for all of the variables considered, as this is the basis for hav-
ing a meaningful comparison of the resulting I2 values.

3.1.4 AutoAssess

While highly condensed metrics are useful for comparing a
large number of models, for the purpose of model develop-
ment it is important to retain granularity on which aspects
of model performance have changed and why. For this rea-
son, many modelling centres have their own suite of met-
rics which they use to compare candidate model versions
against a predecessor. AutoAssess is such a system, devel-
oped by the UK Met Office and used in the development
of the HadGEM3 and UKESM1 models. The output of Au-
toAssess contains a mix of top–down metrics evaluating key
model output variables (e.g. temperature and precipitation)
and bottom–up metrics which assess the realism of model
processes and emergent behaviour such as cloud variabil-
ity and El Niño–Southern Oscillation (ENSO). The output
of AutoAssess includes around 300 individual metrics. To
facilitate the interpretation of the results, these are grouped
into 11 thematic areas, ranging from broad-scale ones such
as global tropic circulation and stratospheric mean state and
variability, to region- and process-specific, such as monsoon
regions and the hydrological cycle.

It is planned that all the metrics currently in AutoAssess
will be implemented in ESMValTool. At this time, a sin-
gle assessment area (group of metrics) has been included as
a technical demonstration: that for the stratosphere. These
metrics have been implemented in a set of recipes named
recipe_autoassess_*.yml. They include metrics of the Quasi-
Biennial Oscillation (QBO) as a measure of tropical variabil-
ity in the stratosphere. Zonal mean zonal wind at 30 hPa is
used to define metrics for the period and amplitude of the
QBO. Figure 4 displays the downward propagation of the

QBO for a single model using zonal mean zonal wind av-
eraged between 5◦ S and 5◦ N. Zonal wind anomalies prop-
agate downward from the upper stratosphere. The figure
shows that the period of the QBO in the chosen model is
about 6 years, significantly longer than the observed pe-
riod of ∼ 2.3 years. Metrics are also defined for the tropical
tropopause cold point (100 hPa, 10◦ S–10◦ N) temperature,
and stratospheric water vapour concentrations at entry point
(70 hPa, 10◦ S–10◦ N). The cold point temperature is impor-
tant in determining the entry point humidity, which in turn is
important for the accurate simulation of stratospheric chem-
istry and radiative balance (Hardiman et al., 2015). Other
metrics characterize the realism of the stratospheric easterly
jet and polar night jet.

3.2 Diagnostics for the evaluation of processes in the
atmosphere

3.2.1 Multi-model mean bias for temperature and
precipitation

Near-surface air temperature (tas) and precipitation (pr) of
ESM simulations are the two variables most commonly re-
quested by users. Often, diagnostics for tas and pr are shown
for the multi-model mean of an ensemble. Both of these vari-
ables are the end result of numerous interacting processes
in the models, making it challenging to understand and im-
prove biases in these quantities. For example, near-surface
air temperature biases depend on the models’ representation
of radiation, convection, clouds, land characteristics, surface
fluxes, as well as atmospheric circulation and turbulent trans-
port (Flato et al., 2013), each with their own potential biases
that may either augment or oppose one another.

The diagnostic that calculates the multi-model
mean bias compared to a reference dataset is part of
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Figure 4. AutoAssess diagnostic for the Quasi-Biennial Oscillation (QBO) showing the time–height plot of zonal mean zonal wind averaged
between 5◦ S and 5◦ N for UKESM1-0-LL over the period 1995–2014 in m s−1. Produced with recipe_autoassess_*.yml.; see details in
Sect. 3.1.4.

recipe_flato13ipcc.yml and reproduces Figs. 9.2 and 9.4 of
Flato et al. (2013). We extended the namelist_flato13ipcc.xml
of ESMValTool v1.0 by adding the mean root-mean-square
error of the seasonal cycle with respect to the reference
dataset. The multi-model mean near-surface temperature
agrees with ERA-Interim mostly within ±2 ◦C (Fig. 5).
Larger biases can be seen in regions with sharp gradients in
temperature, for example in areas with high topography such
as the Himalaya, the sea ice edge in the North Atlantic, and
over the coastal upwelling regions in the subtropical oceans.
Biases in the simulated multi-model mean precipitation
compared to Global Precipitation Climatology Project
(GPCP; Adler et al., 2003) data include precipitation that
is too low along the Equator in the western Pacific and
precipitation amounts that are too high in the tropics south of
the Equator (Fig. 6). Figure 7 shows observed and simulated
time series of the anomalies in annual and global mean
surface temperature. The model datasets are subsampled
by the HadCRUT4 observational data mask (Morice et al.,
2012) and preprocessed as described by Jones et al. (2013).
Overall, the models represent the annual global-mean
surface temperature increase over the historical period quite
well, including the more rapid warming in the second half
of the 20th century and the cooling immediately following
large volcanic eruptions. The figure reproduces Fig. 9.8 of
Flato et al. (2013) and is part of recipe_flato13ipcc.yml.

3.2.2 Precipitation quantile bias

Precipitation is a dominant component of the hydrological
cycle and as such a main driver of the climate system and
human development. The reliability of climate projections
and water resource strategies therefore depends on how well
precipitation can be simulated by the models. While CMIP5
models can reproduce the main patterns of mean precipita-
tion (e.g. compared to observational data from GPCP; Adler
et al., 2003), they often show shortages and biases under par-
ticular conditions. Comparison of precipitation from CMIP5
models and observations shows a general good agreement
for mean values at a large scale (Kumar et al., 2013; Liu
et al., 2012a). Models, however, have a poor representa-
tion of frontal, convective, and mesoscale processes, result-
ing in substantial biases at a regional scale (Mehran et al.,
2014): models tend to overestimate precipitation over com-
plex topography and underestimate it especially over arid or
some subcontinental regions as for example northern Eura-
sia, eastern Russia, and central Australia. Biases are typically
stronger at high quantiles of precipitation, making the study
of precipitation quantile biases an effective diagnostic for ad-
dressing the quality of simulated precipitation.

The recipe_quantilebias.yml implements the calculation
of the quantile bias to allow for the evaluation of precipitation
biases based on a user-defined quantile in models as com-
pared to a reference dataset following Mehran et al. (2014).
The quantile bias is defined as the ratio of monthly precip-
itation amounts in each simulation to that of the reference
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Figure 5. Annual-mean surface (2 m) air temperature (◦C) for the period 1980–2005. (a) Multi-model (ensemble) mean constructed with
one realization of all available models used in the CMIP5 historical experiment. (b) Multi-model mean bias as the difference between the
CMIP5 multi-model mean and the climatology from ECMWF reanalysis of the global atmosphere and surface conditions (ERA)-Interim
(Dee et al., 2011). (c) Mean absolute model error with respect to the climatology from ERA-Interim. (d) Mean root-mean-square error of the
seasonal cycle with respect to the ERA-Interim. Updated from Fig. 9.2 of IPCC WG I AR5 chap. 9 (Flato et al., 2013) and produced with
recipe_flato13ipcc.yml; see details in Sect. 3.2.1.

dataset above a specified threshold t (e.g. the 75th percentile
of all the local monthly values). An example is displayed in
Fig. 8, where gridded observations from the GPCP project
were adopted. A quantile bias equal to 1 indicates no bias
in the simulations, whereas a value above (below) 1 corre-
sponds to a model’s overestimation (underestimation) of the
precipitation amount above the specified threshold t , with re-
spect to that of the reference dataset. An overestimation over
Africa for models in the right column and an underestimation
crossing central Asia from Siberia to the Arabic peninsula is
visible, promptly identifying the best performances or out-
liers. For example, the HadGEM2-ES model here shows a
smaller bias compared to the other models in this subset. The
recipe allows the evaluation of the precipitation bias based
on a user-defined quantile in models as compared to the ref-
erence dataset.

3.2.3 Atmospheric dynamics

Stratosphere–troposphere coupling

The current generation of climate models include the repre-
sentation of stratospheric processes, as the vertical coupling
with the troposphere is important for the representation of
weather and climate at the surface (Baldwin and Dunker-
ton, 2001). Stratosphere-resolving models are able to inter-
nally generate realistic annular modes of variability in the
extratropical atmosphere (Charlton-Perez et al., 2013) which
are, however, too persistent in the troposphere and delayed in
the stratosphere compared to reanalysis (Gerber et al., 2010),
leading to biases in the simulated impacts on surface condi-
tions.

The recipe recipe_zmnam.yml can be used to evaluate the
representation of the Northern Annular Mode (NAM; Wal-
lace, 2000) in climate simulations, using reanalysis datasets
as a reference. The calculation is based on the “zonal mean
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Figure 6. Annual-mean precipitation rate (mm d−1) for the period 1980–2005. (a) Multi-model (ensemble) mean constructed with one
realization of all available models used in the CMIP5 historical experiment. (b) Multi-model mean bias as the difference between the CMIP5
multi-model mean and the analyses from the Global Precipitation Climatology Project (Adler et al., 2003). (c) Mean root-mean-square error
of the seasonal cycle with respect to observations. (d) Mean relative model error with respect to observations. Updated from Fig. 9.4 of IPCC
WG I AR5 chap. 9 (Flato et al., 2013) and produced with recipe_flato13ipcc.yml; see details in Sect. 3.2.1.

algorithm” of Baldwin and Thompson (2009) and is an alter-
native to pressure-based or height-dependent methods. This
approach provides a robust description of the stratosphere–
troposphere coupling on daily timescales, requiring less sub-
jective choices and a reduced amount of input data. Start-
ing from daily mean geopotential height on pressure levels,
the leading empirical orthogonal functions (EOFs)/principal
components are computed from linearly detrended zonal
mean daily anomalies, with the principal component repre-
senting the zonal mean NAM index. Missing values, which
may occur near the surface level, are filled with a bilinear in-
terpolation procedure. The regression of the monthly mean
geopotential height onto this monthly averaged index repre-
sents the NAM pattern for each selected pressure level. The
outputs of the procedure are the time series (Fig. 9a) and the
histogram (not shown) of the zonal-mean NAM index and
the regression maps for selected pressure levels (Fig. 9b).
The well-known annular pattern, with opposite anomalies be-
tween polar and mid-latitudes, can be seen in the regression
plot. The user can select the specific datasets (climate model

simulation and/or reanalysis) to be evaluated and a subset of
pressure levels of interest.

Atmospheric blocking indices

Atmospheric blocking is a recurrent mid-latitude weather
pattern identified by a large-amplitude, quasi-stationary,
long-lasting, high-pressure anomaly that “blocks” the west-
erly flow forcing the jet stream to split or meander (Rex,
1950). It is typically initiated by the breaking of a Rossby
wave in a region at the exit of the storm track, where it am-
plifies the underlying stationary ridge (Tibaldi and Molteni,
1990). Blocking occurs more frequently in the Northern
Hemisphere cold season, with larger frequencies observed
over the Euro-Atlantic and North Pacific sectors. Its lifetime
oscillates from a few days up to several weeks (Davini et
al., 2012). Atmospheric blocking still represents an open is-
sue for the climate modelling community since state-of-the-
art weather and climate models show limited skill in repro-
ducing it (Davini and D’Andrea, 2016; Masato et al., 2013).
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Figure 7. Anomalies in annual and global mean surface temperature of CMIP5 models and HadCRUT4 observations. Yellow shading
indicates the reference period (1961–1990); vertical dashed grey lines represent times of major volcanic eruptions. The right bar shows the
global mean surface temperature of the reference period. CMIP5 model data are subsampled by the HadCRUT4 observational data mask and
processed as described in Jones et al. (2013). All simulations are historical experiments up to and including 2005 and the RCP 4.5 scenario
after 2005. Extended from Fig. 9.8 of IPCC WG I AR5 chap. 9 (Flato et al., 2013) and produced with recipe_flato13ipcc.yml; see details in
Sect. 3.2.1.

Models are indeed characterized by large negative bias over
the Euro-Atlantic sector, a region where blocking is often at
the origin of extreme events, leading to cold spells in winter
and heat waves in summer (Coumou and Rahmstorf, 2012;
Sillmann et al., 2011).

Several objective blocking indices have been developed
aimed at identifying different aspects of the phenomenon
(see Barriopedro et al., 2010, for details). The recipe
recipe_miles_block.yml integrates diagnostics from the Mid-
Latitude Evaluation System (MiLES) v0.51 (Davini, 2018)
tool in order to calculate two different blocking indices based
on the reversal of the meridional gradient of daily 500 hPa
geopotential height. The first one is a 1-D index, namely the
Tibaldi and Molteni (1990) blocking index, here adapted to
work with 2.5◦× 2.5◦ grids. Blocking is defined when the
reversal of the meridional gradient of geopotential height
at 60◦ N is detected, i.e. when easterly winds are found in
the mid-latitudes. The second one is the atmospheric block-
ing index following Davini et al. (2012). It is a 2-D exten-
sion of Tibaldi and Molteni (1990) covering latitudes from
30 up to 75◦ N. The recipe computes both the instanta-
neous blocking frequencies and the blocking event frequency
(which includes both spatial and 5 d minimum temporal con-
straints). It reports also two intensity indices, namely the
Meridional Gradient Index and the Blocking Intensity in-
dex, and it evaluates the wave-breaking characteristic asso-
ciated with blocking (cyclonic or anticyclonic) through the
Rossby wave orientation index. A supplementary instanta-

neous blocking index (named “ExtraBlock”) including an ex-
tra condition to filter out low-latitude blocking events is also
provided. The recipe compares multiple datasets against a
reference one (the default is ERA-Interim) and provides out-
put (in netCDF4 compressed Zip format) as well as figures
for the climatology of each diagnostic. An example output is
shown in Fig. 10. The Max Planck Institute for Meteorology
(MPI-ESM-MR) model shows the well-known underestima-
tion of atmospheric blocking – typical of many climate mod-
els – over central Europe, where blocking frequencies are
about the half when compared to reanalysis. A slight overes-
timation of low-latitude blocking and North Pacific blocking
can also be seen, while Greenland blocking frequencies show
negligible bias.

3.2.4 Thermodynamics of the climate system

The climate system can be seen as a forced and dissipa-
tive non-equilibrium thermodynamic system (Lucarini et al.,
2014), converting potential into mechanical energy, and gen-
erating entropy via a variety of irreversible processes The
atmospheric and oceanic circulation are caused by the in-
homogeneous absorption of solar radiation, and, all in all,
they act in such a way as to reduce the temperature gradients
across the climate system. At steady state, assuming station-
arity, the long-term global energy input and output should
balance. Previous studies have shown that this is essentially
not the case, and most of the models are affected by non-
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Figure 8. Precipitation quantile bias (75% level, unitless) evaluated for an example subset of CMIP5 models over the period 1979–2005 using
GPCP-SG v2.3 gridded precipitation as a reference dataset. Similar to Mehran et al. (2014) and produced with recipe_quantilebias.yml. See
details in Sect. 3.2.2.

negligible energy drift (Lucarini et al., 2011; Mauritsen et
al., 2012). This severely impacts the prediction capability of
state-of-the-art models, given that most of the energy imbal-
ance is known to be taken up by oceans (Exarchou et al.,
2015). Global energy biases are also associated with incon-
sistent thermodynamic treatment of processes taking place
in the atmosphere, such as the dissipation of kinetic energy
(Lucarini et al., 2011) and the water mass balance inside
the hydrological cycle (Liepert and Previdi, 2012; Wild and
Liepert, 2010). Climate models feature substantial disagree-
ments in the peak intensity of the meridional heat transport,
both in the ocean and in the atmospheric parts, whereas the

position of the peaks of the (atmospheric) transport block-
ing are consistently captured (Lucarini and Pascale, 2014).
In the atmosphere, these issues are related to inconsistencies
in the models’ ability to reproduce the mid-latitude atmo-
spheric variability (Di Biagio et al., 2014; Lucarini et al.,
2007) and intensity of the Lorenz energy cycle (Marques et
al., 2011). Energy and water mass budgets, as well as the
treatment of the hydrological cycle and atmospheric dynam-
ics, all affect the material entropy production in the climate
system, i.e. the entropy production related to irreversible pro-
cesses in the system. It is possible to estimate the entropy
production either via an indirect method, based on the ra-
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Figure 9. The standardized zonal mean NAM index (a, unitless) at 250 hPa for the atmosphere-only CMIP5 simulation of the Max Planck
Institute for Meteorology (MPI-ESM-MR) model, and the regression map of the monthly geopotential height on this zonal-mean NAM
index (b, in metres). Note the variability on different temporal scales of the index, from monthly to decadal. Similar to Fig. 2 of Baldwin and
Thompson (2009) and produced with recipe_zmnam.yml; see details in Sect. 3.2.3.

Figure 10. Two-dimensional blocking event frequency (percentage of blocked days) following the Davini et al. (2012) index over the 1979–
2005 DJF period for (a) the CMIP5 MPI-ESM-MR historical r1i1p1 run, (b) the ERA-Interim Reanalysis, and (c) their differences. Produced
with recipe_miles_block.yml; see details in Sect. 3.2.3.2.

diative heat convergence in the atmosphere (the ocean ac-
counts only for a minimal part of the entropy production)
or via a direct method, based on the explicit computation of
entropy production due to all irreversible processes (Goody,
2000). Differences in the two methods emerge when con-
sidering coarse-grained data in space and/or in time (Lu-
carini and Pascale, 2014), as subgrid-scale processes have
long been known to be a critical issue when attempting to
provide an accurate climate entropy budget (Gassmann and
Herzog, 2015; Kleidon and Lorenz, 2004; Kunz et al., 2008).
When possible (energy budgets, water mass, and latent en-
ergy budgets, components of the material entropy production
with the indirect method) horizontal maps for the average
of annual means are provided. For the Lorenz energy cycle,
a flux diagram (Ulbrich and Speth, 1991), showing all the
storage, conversion, source, and sink terms for every year,

is provided. The diagram in Fig. 11 shows the baroclinic
conversion of the available potential energy (APE) to ki-
netic energy (KE) and ultimately its dissipation through fric-
tional heating (Lorenz, 1955; Lucarini et al., 2014). When
a multi-model ensemble is provided, global metrics are re-
lated in scatter plots, where each dot is a member of the en-
semble, and the multi-model mean, together with uncertainty
range, is displayed. An output log file contains all the infor-
mation about the time-averaged global mean values, includ-
ing all components of the material entropy production bud-
get. For the meridional heat transports, annual mean merid-
ional sections are shown in Fig. 12 (Lembo et al., 2017; Lu-
carini and Pascale, 2014; Trenberth et al., 2001). The model
spread has roughly the same magnitude in the atmospheric
and oceanic transports, but its relevance is much larger for
the oceanic transports. The model spread is also crucial in
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Figure 11. A Lorenz energy cycle flux diagram for 1 year of a
CMIP5 model pre-industrial control run (cf. Ulbrich and Speth,
1991). “A” stands for available potential energy (APE), “K” for
kinetic energy (KE), “Z” for zonal 1115 mean, “S” for stationary
eddies, and “T” for transient eddies. The “+” sign indicates source
of energy, “−” a sink. For the energy reservoirs, the unit of measure
is joules per square metre; for the energy conversion terms, the unit
of measure is watts per square metre. Similar to Fig. 5 of Lembo et
al. (2019) and produced with recipe_thermodyn_diagtool.yml; see
details in Sect. 3.2.4.

the magnitude and sign of the atmospheric heat transports
across the Equator, given its implications for atmospheric
general circulation. The diagnostic tool is run through the
recipe recipe_thermodyn_diagtool.yml, where the user can
also specify the options on which modules should be run.

3.2.5 Natural modes of climate variability and weather
regimes

NCAR Climate Variability Diagnostic Package

Natural modes of climate variability co-exist with externally
forced climate change and have large impacts on climate,
especially at regional and decadal scales. These modes of
variability are due to processes intrinsic to the coupled cli-
mate system and exhibit limited predictability. As such, they
complicate model evaluation as the observational record is
often not long enough to reliably assess the variability and
confound assessments of anthropogenic influences on cli-
mate (Bengtsson and Hodges, 2019; Deser et al., 2012, 2014,
2017; Kay et al., 2015; Suárez-Gutiérrez et al., 2017). De-
spite their importance, systematic evaluation of these modes
in Earth system models remains a challenge due to the wide
range of phenomena to consider, the length of record needed
to adequately characterize them, and uncertainties in the
short observational datasets (Deser et al., 2010; Frankignoul
et al., 2017; Simpson et al., 2018). While the temporal se-
quences of internal variability in models do not necessarily
need to match those in the single realization of nature, their

Figure 12. Annual mean meridional sections of zonal mean merid-
ional total (a), atmospheric (b), and oceanic (c) heat transports for
12 CMIP5 models control runs. Transports are implied from merid-
ionally integrating top-of-the-atmosphere (TOA), atmospheric, and
surface energy budgets (Trenberth et al., 2001) and then applying
the usual correction accounting for energy imbalances, as in Caris-
simo et al. (1985). Values are in watts. Similar to Fig. 8 of Lembo et
al. (2019) and produced with recipe_thermodyn_diagtool.yml; see
details in Sect. 3.2.4.
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statistical properties (e.g. timescale, autocorrelation, spectral
characteristics, and spatial patterns) need to be realistically
simulated for credible climate projections.

In order to assess natural modes of climate variability in
models, the NCAR Climate Variability Diagnostics Package
(CVDP; Phillips et al., 2014) has been implemented into ES-
MValTool. The CVDP has been developed as a standalone
tool. To allow for easy updating of the CVDP once a new
version is released, the structure of the CVDP is kept in
its original form and a single recipe recipe_CVDP.yml has
been written to enable the CVDP to be run directly within
ESMValTool. The CVDP facilitates evaluation of the ma-
jor modes of climate variability, including ENSO (Deser et
al., 2010), the Pacific Decadal Oscillation (PDO; Deser et
al., 2010; Mantua et al., 1997), the Atlantic Multi-decadal
Oscillation (AMO; Trenberth and Shea, 2006), the Atlantic
Meridional Overturning Circulation (AMOC; Danabasoglu
et al., 2012), and atmospheric teleconnection patterns such
as the Northern and Southern Annular Modes (NAM and
SAM; Hurrell and Deser, 2009; Thompson and Wallace,
2000), North Atlantic Oscillation (NAO; Hurrell and Deser,
2009), and Pacific North and South American (PNA and
PSA; Thompson and Wallace, 2000) patterns. For details on
the actual calculation of these modes in CVDP we refer to
the original CVDP package and explanations available at
http://www.cesm.ucar.edu/working_groups/CVC/cvdp/ (last
access: 13 July 2020).

Depending on the climate mode analysed, the CVDP
package uses the following variables: precipitation (pr), sea
level pressure (psl), near-surface air temperature (tas), skin
temperature (ts), snow depth (snd), sea ice concentration
(siconc), and basin-average ocean meridional overturning
mass stream function (msftmz). The models are evaluated
against a wide range of observations and reanalysis data, for
example, the Berkeley Earth System Temperature (BEST)
for near-surface air temperature, the Extended Reconstructed
Sea Surface Temperature v5 (ERSSTv5) for skin tempera-
ture, and ERA-20C extended with ERA-Interim for sea level
pressure. Additional observations or reanalysis can be added
by the user for these variables. The ESMValTool v2.0 recipe
runs on all CMIP5 models. As an example, Fig. 13 shows
the representation of ENSO teleconnections during the peak
phase (December–February). Models produce a wide range
of ENSO amplitudes and teleconnections. Note that even
when based on over 100 years of record, the ENSO com-
posites are subject to uncertainty due to sampling variabil-
ity (Deser et al., 2017). Figure 14 shows the representation
of the AMO as simulated by 41 CMIP5 models and obser-
vations during the historical period. The pattern of SSTA∗

associated with the AMO is generally realistically simulated
by models within the North Atlantic basin, although its am-
plitude varies. However, outside of the North Atlantic, the
models show a wide range of spatial patterns and polarities
of the AMO.

Weather regimes

Weather regimes (WRs) refer to recurrent large-scale at-
mospheric circulation structures that allow the characteriza-
tion of complex atmospheric dynamics in a particular region
(Michelangeli et al., 1995; Vautard, 1990). The identifica-
tion of WRs reduces the continuum of atmospheric circula-
tion to a few recurrent and quasi-stationary (persistent) pat-
terns. WRs have been extensively used to investigate atmo-
spheric variability in the mid-latitudes, as they are associated
with extreme weather events such as heat waves or droughts
(Yiou et al., 2008). For example, there is a growing recog-
nition of their significance especially over the Euro-Atlantic
sector during the winter season, where four robust weather
regimes have been identified – namely the NAO+, NAO−,
Atlantic Ridge, and Scandinavian Blocking (Cassou et al.,
2005). These WRs can also be used as a diagnostic to investi-
gate the performance of state-of-the-art climate forecast sys-
tems: difficulties in reproducing the Atlantic Ridge and the
Scandinavian Blocking have been often reported (Dawson et
al., 2012; Ferranti et al., 2015). Forecast systems which are
not able to reproduce the observed spatial patterns and fre-
quency of occurrence of WRs may have difficulties in repro-
ducing climate variability and its long-term changes (Han-
nachi et al., 2017). Hence, the assessment of WRs can help
improve our understanding of predictability on intra-seasonal
to interannual timescales. In addition, the use of WRs to
evaluate the impact of the atmospheric circulation on essen-
tial climate variables and sectoral climatic indices is of great
interest to the climate services communities (Grams et al.,
2017). The diagnostic can be applied to model simulations
under future scenarios as well. However, caution must be ap-
plied since large changes in the average climate, due to large
radiative forcing, might affect the results and lead to some-
what misleading conclusions. In such cases further analysis
will be needed to assess to what extent the response to cli-
mate change projects on the regimes patterns identified by
the tool in the historical and future periods and to verify how
future anomalies project onto the regime patterns identified
in the historical period.

The recipe recipe_modes_of_variability.yml takes daily or
monthly data from a particular region, season (or month), and
period as input and then applies k mean clustering or hierar-
chical clustering either directly to the spatial data or after
computing the EOFs. This recipe can be run for both a refer-
ence or observational dataset and climate projections simul-
taneously, and the root-mean-square error is then calculated
between the mean anomalies obtained for the clusters from
the reference and projection datasets. The user can specify
the number of clusters to be computed. The recipe output
consists of netCDF files of the time series of the cluster oc-
currences, the mean anomaly corresponding to each cluster
at each location and the corresponding p value, for both the
observed and projected WR and the RMSE between them.
The recipe also creates three plots: the observed or reference
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Figure 13. Global ENSO teleconnections during the peak phase (December–February) as simulated by 41 CMIP5 models (individual panels
labelled by model name) and observations (first row, upper left panel) for the historical period (1900–2005 for models and 1920–2017 for
observations). These patterns are based on composite differences between all El Niño events and all La Niña events (using a ±1 standard
deviation threshold of the Niño 3.4 SST Index) occurring in the period of record. Colour shading denotes SST and terrestrial TREFHT
(surface air temperature at reference height) (◦C), and contours denote sea level pressure (psl); contour interval of 2 hPa, with negative
values dashed). The period of record is given in the upper left of each panel. Observational composites use ERSSTv5 for SST, BEST for tas
(near-surface air temperature), and ERA20C updated with ERA-I for psl. Figure produced with recipe_CVDP.yml.; see details in Sect. 3.2.5.

modes of variability (Fig. 15), the reassigned modes of vari-
ability for the future projection (Fig. 16), and a table display-
ing the RMSE values between reference and projected modes
of variability (Fig. 17). Low RMSE values along the diago-
nal show that the modes of variability simulated by the future
projection (Fig. 16) match the reference modes of variabil-
ity (Fig. 15). The recipe recipe_miles_regimes.yml integrates
the diagnostics from the MiLES v0.51 tool (Davini, 2018)

in order to calculate the four relevant North Atlantic weather
regimes. This is done by analysing the 500 hPa geopotential
height over the North Atlantic (30–87.5◦ N, 80◦W–40◦ E).
Once a 5 d smoothed daily seasonal cycle is removed, the
EOFs which explain at least the 80 % of the variance are
extracted in order to reduce the phase-space dimensions.
A k mean clustering using Hartigan–Wong algorithm with
k = 4 is then applied providing the final weather regimes
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Figure 14. Representation of the AMO in 41 CMIP5 models (individual panels labelled by model name) and observations (first row, upper
left panel) for the historical period (1900–2005 for models and 1920–2017 for observations). These patterns are based regressing monthly
SST anomalies (denoted SSTA∗) at each grid box onto the time series of the AMO SSTA∗ Index (defined as SSTA∗ averaged over the North
Atlantic 0–60◦ N, 80–0◦W), where the asterisk denotes that the global (60◦ N–60◦ S) mean SSTA has been subtracted from SSTA at each
grid box following Trenberth and Shea (2006). Figure produced with recipe_CVDP.yml; see details in Sect. 3.2.5.

identification. The recipe compares multiple datasets against
a reference one (default is ERA-Interim), producing multiple
figures which show the pattern of each regime and its dif-
ference against the reference dataset. Weather regimes pat-
terns and time series are provided in netCDF4 compressed
zip format. Considering the limited physical significance of
Euro-Atlantic weather regimes in other seasons, only win-
ter is currently supported. An example output is shown in
Fig. 18. The Atlantic Ridge regime, which is usually badly
simulated by climate models, is reproduced with the right

frequency of occupancy and pattern in MPI-ESM-MR when
compared to ERA-Interim reanalysis.

Empirical orthogonal functions

EOF analysis is a powerful method to decompose spatiotem-
poral data using an orthogonal basis of spatial patterns. In
weather sciences, EOFs have been extensively used to iden-
tify the most important modes of climate variability and their
associated teleconnection patterns: for instance, the NAO
(Ambaum, 2010; Wallace and Gutzler, 1981) and the Arctic
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Figure 15. Four modes of variability for autumn (September–October–November) in the North Atlantic European sector during the reference
period 1971–2000 for the BCC-CSM1-1 historical simulations. The frequency of occurrence of each variability mode is indicated in the title
of each map. The four clusters are reminiscent of the Atlantic Ridge, the Scandinavian Blocking, the NAO+, and the NAO− pattern. Result
for recipe_modes_of_variability.yml; see details in Sect. 3.2.5.

Figure 16. Four modes of variability for autumn (September–October–November) in the North Atlantic European sector for the RCP 8.5
scenario using BCC-CSM1-1 future projection during the period 2020–2075. The frequency of occurrence of each variability mode is
indicated in the title of each map. The four clusters are reminiscent of the Atlantic Ridge, the Scandinavian Blocking, the NAO+, and the
NAO- pattern. Result for recipe_modes_of_variability.yml; see details in Sect. 3.2.5.
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Figure 17. RMSE between the spatial patterns obtained for
the future “Pre” (2020–2075) and the reference “Obs” (1971–
2000) modes of variability from the BCC-CSM1-1 simula-
tions in autumn (September–October–November). Result for
recipe_modes_of_variability.yml, see details in Sect. 3.2.5.

Oscillation (AO; Thompson and Wallace, 2000) are usually
defined with EOFs. Biases in the representation of the NAO
or the AO have been found to be typical in many CMIP5
models (Davini and Cagnazzo, 2013).

The recipe recipe_miles_eof.yml integrates diagnostics
from the MiLES v0.51 tool (Davini, 2018) in order to ex-
tract the first EOFs over a user-defined domain. Three default
patterns are supported, namely the NAO (over the 20–85◦ N,
90◦W–40◦ E box), the PNA (over the 20–85◦ N, 140◦W–
80◦ E box) and the AO (over the 20–85◦ N box). The compu-
tation is based on singular-value decomposition (SVD) ap-
plied to the anomalies of the monthly 500 hPa geopotential
height. The recipe compares multiple datasets against a ref-
erence one (default is ERA-Interim), producing multiple fig-
ures which show the linear regressions of the principal com-
ponent (PC) of each EOF on the monthly 500 hPa geopo-
tential and its differences against the reference dataset. By
default the first four EOFs are stored and plotted. As an ex-
ample, Fig. 19 shows that the NAO is well represented by the
MPI-ESM-LR model (which is used here for illustration),
although the variance explained is underestimated and the
northern centre of action, which is found close to Iceland in
reanalysis, is displaced westward over Greenland.

Indices from differences between area averages

In addition to indices and modes of variability obtained from
EOF and clustering analyses, users may wish to compute
their own indices based on area-weighted averages or dif-
ference in area-weighted averages. For example, the Niño
3.4 index is defined as the sea surface temperature (SST)
anomalies averaged over 5◦ N–5◦ S, 170–120◦W. Similarly,
the NAO index can be defined as the standardized difference
between the weighted area-average mean sea level pressure
of the domain bounded by 30–50◦ N, 0–80◦W and 60–80◦ N,
0–80◦W.

The functions for computing indices based on area aver-
ages in recipe_combined_indices.yml have been adapted to
allow users to compute indices for the Niño 3, Niño 3.4,
Niño 4, NAO, and the Southern Oscillation Index (SOI) de-
fined region(s), with the option of selecting different vari-

ables (e.g. temperature of the ocean surface (tos, commonly
named sea surface temperature) or pressure at sea level, psl,
sea level pressure) with the option of computing standard-
ized variables, applying running means and select different
seasons by selecting the start and end months. The output of
this recipe is a netCDF file containing a time series of the
computed indices and a time series of the evolution of the
index for individual models and the multi-model mean (see
Fig. 20).

3.3 Diagnostics for the evaluation of processes in the
ocean and cryosphere

3.3.1 Physical ocean

The global ocean is a core component of the Earth system. A
significant bias in the physical ocean can impact the perfor-
mance of the entire model. Several diagnostics exist in ESM-
ValTool v2.0 to evaluate the broad behaviour of models of the
global ocean. Figures 21–26 show several diagnostics of the
ability of the CMIP5 models to simulate the global ocean. All
available CF-compliant CMIP5 models are compared; how-
ever, each figure shown in this section may include a different
set of models, as not all CMIP5 models produced all the re-
quired datasets in a CF-compliant format. To minimize noise,
these figures are shown with a 6-year moving window aver-
age.

The volume-weighted global average temperature
anomaly of the ocean is shown in Fig. 21 and displays
the change in the mean temperature of the ocean relative
to the start of the historical simulation. The temperature
anomaly is calculated against the years 1850–1900. Nearly
all CMIP5 models show an increase in the mean temperature
of the ocean over the historical period. This figure was pro-
duced using the recipe recipe_ocean_scalar_fields.yml. The
AMOC is an indication of the strength of the overturning
circulation in the Atlantic Ocean and is shown in Fig. 22. It
transfers heat from tropical waters to the northern Atlantic
Ocean. The AMOC has an observed strength of 17.2 Sv
(McCarthy et al., 2015). In the example shown in Fig. 22,
all CMIP5 models show some interannual variability in
the AMOC behaviour, but the decline in the multi-model
mean over the historical period is not statistically significant.
Previous modelling studies (Cheng et al., 2013; Gregory
et al., 2005) have predicted a decline in the strength of the
AMOC over the 20th century. The Drake Passage Current
is a measure of the strength of the Antarctic Circumpolar
Current (ACC). This is the strongest current in the global
ocean and runs clockwise around Antarctica. The ACC
was recently measured through the Drake Passage at
173.3± 10.7 Sv (Donohue et al., 2016). Four of the CMIP5
models fall within this range (Fig. 23). Figures 22 and 23
were produced using the recipe recipe_ocean_amocs.yml.
The global total flux of CO2 from the atmosphere into
the ocean for several CMIP5 models is shown in Fig. 24.
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Figure 18. 500 hPa geopotential height anomalies (m) associated with the Atlantic Ridge weather regime over the 1979–2005 DJF period for
(a) the CMIP5 MPI-ESM-MR historical r1i1p1 run, (b) the ERA-Interim reanalysis, and (c) their differences. The frequency of occupancy
of each regime is reported at the top of each panel. Produced with recipe_miles_regimes.yml; see details in Sect. 3.2.5.

Figure 19. Linear regression over the 500 hPa geopotential height (m) of the first North Atlantic EOF (i.e. the North Atlantic Oscillation,
NAO) over the 1979–2005 DJF period for (a) the CMIP5 MPI-ESM-MR historical r1i1p1 run, (b) the ERA-Interim Reanalysis, and (c) their
differences. The variance explained is reported at the top of each panel. Produced with recipe_miles_eof.yml; see details in Sect. 3.2.5.

This figure shows the absorption of atmospheric carbon by
the ocean. At the start of the historic period, most of the
models shown here have been spun up, meaning that the
air-to-sea flux of CO2 should be close to zero. As the CO2
concentration in the atmosphere increases over the course of
the historical simulation, the flux of carbon from the air into
the sea also increases.

The CMIP5 models shown in Fig. 24 agree very closely on
the behaviour of the air-to-sea flux of CO2 over the histori-
cal period, with all models showing an increase from close
to zero and rising up to approximately 2 Pg of carbon per
year (C yr−1) by the start of the 21st century. The global total
integrated primary production from phytoplankton is shown
in Fig. 25. Marine phytoplankton is responsible for 56±
7 Pg C yr−1 of primary production (Buitenhuis et al., 2013),
which is of similar magnitude to that of land plants (Field et
al., 1998). In all cases, we do not expect to observe a sig-
nificant change in primary production over the course of the
historical period. However, the differences in the magnitude

of the total integrated primary production inform us about the
level of activity of the marine ecosystem. All CMIP5 models
in Fig. 25 show little interannual variability in the integrated
marine primary production, and there is no clear trend in the
multi-model mean. Figures 24 and 25 were both produced
with the recipe recipe_ocean_scalar_fields.yml. The combi-
nation of these five key time series figures allows a coarse-
scale evaluation of the ocean circulation and biogeochem-
istry. The global volume-weighted temperature shows the ef-
fect of a warming ocean, while the change in the Drake Pas-
sage and the AMOC shows significant global changes in cir-
culation. The integrated primary production shows changes
in marine productivity, and the air–sea flux of CO2 shows
the absorption of anthropogenic atmospheric carbon by the
ocean.

In addition, a diagnostic from chap. 9 of IPCC AR5 for
the ocean is added (Flato et al., 2013), which is included in
recipe_flato13ipcc.yml. Figure 26 shows an analysis of the
SST that documents the performance of models compared
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Figure 20. Time series of the standardized sea surface temper-
ature (tos) area averaged over the Niño 3.4 region during bo-
real winter (December–January–February). The time series cor-
respond to the MPI-ESM-MR (red) and BCC-CSM1-1 (blue)
models and their mean (black) during the period 1950–2005 for
the ensemble r1i1p1 of the historical simulations. Produced with
recipe_combined_indices.yml; see details in Sect. 3.2.5.

to one standard observational dataset, namely the SST part
of the Hadley Centre Sea Ice and Sea Surface Temperature
(HadISST) (Rayner et al., 2003) dataset. The SST plays an
important role in climate simulations because it is the main
oceanic driver of the atmosphere. As such, a good model
performance for SST has long been a hallmark of accurate
climate projections. In this figure we reproduce Fig. 9.14 of
Flato et al. (2013). It shows both zonal mean and equato-
rial (averaged over 5◦ S to 5◦ N) SST. For the zonal mean
it shows (a) the error compared to observations for the indi-
vidual models and (c) the multi-model mean with the stan-
dard deviation. For the equatorial average it shows (b) the
individual model errors and (d) the multi-model mean of the
temperatures together with the observational dataset. In this
way a good overview of both the error and the absolute tem-
peratures can be provided for the individual model level. Fig-
ure 26 shows the overall good agreement of the CMIP5 mod-
els among themselves as well as compared to observations
but also highlights the global areas with the largest uncer-
tainty and biggest room for improvement. This is an impor-
tant benchmark for the upcoming CMIP6 ensemble.

3.3.2 Southern Ocean

The Southern Ocean is central to the global climate and the
global carbon cycle and to the climate’s response to increas-

ing levels of atmospheric greenhouse gases, as it ventilates
a large fraction of the global ocean volume. Roemmich et
al. (2015) concluded that the Southern Ocean was respon-
sible for 67 %–98 % of the total oceanic heat uptake; the
oceanic increase in heat accounts for 93 % of the radiative
imbalance at the top of the atmosphere. Global coupled cli-
mate models and Earth system models, however, vary widely
in their simulations of the Southern Ocean and its role in
and response to anthropogenic forcing. Due to the region’s
complex water mass structure and dynamics, Southern Ocean
carbon and heat uptake depend on a combination of winds,
eddies, mixing, buoyancy fluxes, and topography. Russell
et al. (2018) laid out a series of diagnostic, observationally
based metrics that highlight biases in critical components of
the Southern Hemisphere climate system, especially those
related to the uptake of heat and carbon by the ocean. These
components include the surface fluxes (including wind and
heat and carbon), the frontal structure, the circulation and
transport within the ocean, the carbon system (in the ESMs),
and the sea ice simulation. Each component is associated
with one or more model diagnostics and with relevant obser-
vational datasets that can be used for the model evaluation.
Russell et al. (2018) noted that biases in the strength and po-
sition of the surface westerlies over the Southern Ocean were
indicative of biases in several other variables. The strength,
extent, and latitudinal position of the Southern Hemisphere
surface westerlies are crucial to the simulation of the circula-
tion, vertical exchange and overturning, and heat and carbon
fluxes over the Southern Ocean. The net transfer of wind en-
ergy to the ocean depends critically on the strength and lati-
tudinal structure of the winds. Equatorward-shifted winds are
less aligned with the latitudes of the Drake Passage and are
situated over shallower isopycnal surfaces, making them less
effective at both driving the ACC and bringing dense deep
water up to the surface.

Figure 27 shows the annually averaged, zonally averaged
zonal wind stress over the Southern Ocean from a sample
of the CMIP5 climate simulations and the equivalent quan-
tity from the Climate Forecast System Reanalysis (Saha et
al., 2013). While most model metrics indicate that simula-
tions generally bracket the observed quantity, this metric in-
dicates thatall of the models have an equatorward bias rel-
ative to the observations, an indication of a deeper mod-
elling issue. Although Russell et al. (2018) only included six
of the simulations submitted as part of CMIP5, the recipe
recipe_russell18jgr.yml will recreate all of the metrics of
this study for all CMIP5 simulations. Each metric assesses
a simulated variable or a climatically relevant quantity calcu-
lated from one or more simulated variables (e.g. heat content
is calculated from the simulated ocean temperature, thetao,
while the meridional heat transport depends on both the tem-
perature, thetao, and the meridional velocity, vo) relative
to the observations. The recipe focuses on factors affect-
ing the simulated heat and carbon uptake by the Southern
Ocean. Figure 28 shows the relationship between the latitu-
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Figure 21. The volume-weighted thermosteric sea level change anomaly in several CMIP5 models, in the historical experiment, and in
the r1i1p1 ensemble member, with a 6-year moving average smoothing function. The anomaly is calculated against the mean of all years
in the historical experiment before 1900. The multi-model mean is shown as a dashed line. Produced with recipe_ocean_scalar_fields.yml
described in Sect. 3.3.1.

Figure 22. The Atlantic Meridional Overturn Circulation (AMOC) in several CMIP5 models, in the historical experiment, and in the r1i1p1
ensemble member, with a 6-year moving average smoothing function. The multi-model mean is shown as a dashed line. The AMOC in-
dicates the strength of the northbound current and this current transfers heat from tropical water to the North Atlantic. Produced with
recipe_ocean_amoc.yml described in Sect. 3.3.1.

dinal width of the surface westerly winds over the Southern
Ocean with the net heat uptake south of 30◦ S – the correla-
tion (−0.8) is significant above the 98 % level.

3.3.3 Arctic Ocean

The Arctic Ocean is one of the areas of the Earth where the
effects of climate change are especially visible today. The

two most prominent processes are Arctic atmospheric tem-
perature warming amplification (Serreze and Barry, 2011)
and a decrease in the sea ice area and thickness (see
Sect. 3.3.2). Both receive good coverage in the literature and
are already well-studied. Much less attention is paid to the
interior of the Arctic Ocean itself. In order to increase our

https://doi.org/10.5194/gmd-13-3383-2020 Geosci. Model Dev., 13, 3383–3438, 2020



3410 V. Eyring et al.: ESMValTool v2.0

Figure 23. The Antarctic Circumpolar Current calculated through Drake Passage for a range of CMIP5 models in the historical experiment in
the r1i1p1 ensemble member, with a 6-year moving average smoothing function. The multi-model mean is shown as a dashed line. Produced
with recipe_ocean_amoc.yml described in Sect. 3.3.1.

Figure 24. The global total air-to-sea flux of CO2 for a range of CMIP5 models in the historical experiment in the r1i1p1 ensem-
ble member, with a 6-year moving average smoothing function. The multi-model mean is shown as a dashed line. Produced with
recipe_ocean_scalar_fields.yml described in Sect. 3.3.1.

confidence in projections of the Arctic climate future, proper
representation of the Arctic Ocean hydrography is necessary.

The vertical structure of temperature and salinity (T and
S) in the ocean model is a key diagnostic that is used for
ocean model evaluation. Realistic temperature and salinity
distributions mean that the models properly represent dy-
namic and thermodynamic processes in the ocean. Differ-
ent ocean basins have different hydrological regimes, so it
is important to perform analysis of vertical T –S distribution

for different basins separately. The basic diagnostics in this
sense are the mean vertical profiles of temperature and salin-
ity over some basin averaged for a relatively long period of
time. Figure 29 shows the mean (1970–2005) vertical ocean
potential temperature distribution in the Eurasian Basin of
the Arctic Ocean as produced with recipe_arctic_ocean.yml.
It shows that CMIP5 models tend to overestimate tempera-
ture in the interior of the Arctic Ocean and have too deep
Atlantic water depth. In addition to individual vertical pro-
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Figure 25. The global total integrated primary production from phytoplankton for a range of CMIP5 models in the historical experiment in
the r1i1p1 ensemble member, with a 6-year moving average smoothing function. The multi-model mean is shown as a dashed line. Produced
with recipe_ocean_scalar_fields.yml described in Sect. 3.3.1.

Figure 26. (a) Zonally averaged sea surface temperature (SST) error in CMIP5 models. (b) Equatorial SST error in CMIP5 models. (c) Zon-
ally averaged multi-model mean SST error for CMIP5 together with inter-model standard deviation (shading). (d) Equatorial multi-model
mean SST in CMIP5 together with inter-model standard deviation (shading) and observations (black). Model climatologies are derived from
the 1979–1999 mean of the historical simulations. The Hadley Centre Sea Ice and Sea Surface Temperature (HadISST; Rayner et al., 2003)
observational climatology for 1979–1999 is used as a reference for the error calculation (a–c) and for observations in (d). Updated from
Fig. 9.14 of IPCC WG I AR5 chap. 9 (Flato et al., 2013) and produced with recipe_flato13ipcc.yml; see details in Sect. 3.3.1.
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Figure 27. The zonal and annual means of the zonal wind stress
(N m−2) for the reanalysis, six of the CMIP5 simulations, and the
B-SOSE (Biogeochemical - Southern Ocean State Estimate) – note
that each of the model simulations (colours) and B-SOSE (grey)
have the peak wind stress equatorward of the observations (black).
Also shown are the latitudes of the observed “poleward zero wind
stress” and the “equatorward zero wind stress” which delineate the
“width of the westerly band” that is highly correlated with total
heat uptake by the Southern Ocean. Enhanced from figure produced
by recipe_russell18jgr.yml see Sect. 3.3.2. For further discussion of
this figure; see the original in Russell et al. (2018).

files for every model, we also show the mean over all partic-
ipating models and similar profiles from climatological data
(PHC3; Steele et al, 2001). The characteristics of vertical T –
S distribution can change with time, and consequently the
vertical T –S distribution is an important indicator of the be-
haviour of the coupled ocean–sea-ice–atmosphere system in
the North Atlantic and Arctic oceans. One way to evaluate
these changes is by using Hovmöller diagrams. We have cre-
ated Hovmöller diagrams for two main Arctic Ocean basins –
the Eurasian and Amerasian ones (as defined in Holloway et
al., 2007), with T and S spatially averaged on a monthly basis
for every vertical level. This diagnostic allows the temporal
evolution of vertical ocean potential temperature distribution
to be assessed. The T –S diagrams allow the analysis of wa-
ter masses and their potential for mixing. The lines of con-
stant density for specific ranges of temperature and salinity
are shown against the background of the T –S diagram. The
dots on the diagram are individual grid points from a spec-
ified region at all model levels within user-specified depth
range. The depths are colour coded. Examples of the mean
(1970–2005) T –S diagram for the Eurasian Basin of the Arc-
tic Ocean shown in Fig. 30 refer to recipe_arctic_ocean.yml.
Most models cannot properly represent Arctic Ocean water

Figure 28. Scatter plot of the width of the Southern Hemisphere
westerly wind band (in degrees of latitude) against the annual-mean
integrated heat uptake south of 30◦ S (in petawatts, PW – negative
uptake is heat lost from the ocean), along with the “best fit” linear
relationship for the models and observations shown. Enhanced from
figure produced by recipe_russell18jgr.yml; see Sect. 3.3.2. For fur-
ther discussion of this figure, see the original in Russell et al. (2018).
The calculation of the “observed” heat flux into the Southern Ocean
is described in the text. The correlation is significant above the 98 %
level based on a simple t test.

masses and either have wrong values for temperature and
salinity or miss specific water masses completely.

The spatial distribution of basic oceanographic variables
characterizes the properties and spreading of ocean water
masses. For the coupled models, capturing the spatial distri-
bution of oceanographic variables is especially important in
order to correctly represent the ocean–ice–atmosphere inter-
face. We have implemented plots with spatial maps of tem-
perature, salinity, and current speeds at original model lev-
els. For temperature and salinity, we have also implemented
spatial maps of model biases from the observed climatology
with respect to PHC3 climatology. For the model biases, val-
ues from the original model levels are linearly interpolated
to the climatology (PHC3) levels and then spatially interpo-
lated from the model grid to the regular PHC3 climatology
grid. Resulting fields show model performance in simulat-
ing the spatial distribution of temperature and salinity. Verti-
cal transects through arbitrary sections are important for an
analysis of the vertical distribution of ocean water proper-
ties. Therefore, diagnostics that allow for the definition of an
arbitrary ocean section by providing a set of points on the
ocean surface are also implemented. For each point, a ver-
tical profile of temperature or salinity on the original model
levels is interpolated. All profiles are then connected to form
a transect. The great-circle distance between the points is cal-
culated and used as along-track distance. One of the main use
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Figure 29. Mean (1970–2005) vertical potential temperature dis-
tribution in the Eurasian Basin for CMIP5 coupled ocean models,
PHC3 climatology (dotted red line), and multi-model mean (dotted
black line). Similar to Fig. 7 of Ilıcak et al. (2016) and produced
with recipe_arctic_ocean.yml; see details in Sect. 3.3.3.

cases for transects is to create vertical sections across ocean
passages. Transects that follow the pathway of the Atlantic
water according to Ilıcak et al. (2016) are also included. At-
lantic water is a key water mass of the Arctic Ocean and its
proper representation is one of the main challenges in Arctic
Ocean modelling. A diagnostic that calculates the tempera-
ture of the Atlantic water core for every model as the max-
imum potential temperature between 200 and 1000 m depth
in the Eurasian Basin is included. The depth of the Atlantic
water core is calculated as the model level depth where the
maximum temperature is found in Eurasian Basin (Atlantic
water core temperature). In order to evaluate the spatial dis-
tribution of Atlantic water in different climate models, we
also provide diagnostics with maps of the spatial distribution
of water temperature at the depth of Atlantic water core in
recipe_arctic_ocean.yml.

3.3.4 Sea ice

Sea ice is a critical component of the climate system, which
considerably influences the ocean and atmosphere through
different processes and feedbacks (Goosse et al., 2018). In
the Arctic, sea ice has been dramatically retreating (Stroeve
and Notz, 2018) and thinning (Kwok, 2018) in the past
decades (Meredith et al., 2019). In the Antarctic, the sea ice
cover has exhibited no significant change over the period of
satellite observations, although this is the result of regional
compensations and large interannual variability (Meredith et

al., 2019). Climate models constitute a useful tool to make
projections of the future changes in sea ice (Massonnet et
al., 2012). However, the different climate models largely dis-
agree on the magnitude of sea ice changes, even for the same
forcing (Stroeve et al., 2012). One reason could be the differ-
ent treatment of thermodynamic and dynamic processes and
feedbacks related to sea ice.

In order to better understand and reduce model errors, two
recipes related to sea ice have been implemented in ESM-
ValTool v2.0. The first recipe, recipe_seaice_feedback.yml,
is related to the negative sea ice growth–thickness feedback
(Massonnet et al., 2018b). In this recipe, one process-based
diagnostic named the ice formation efficiency (IFE) is com-
puted based on monthly mean sea ice volume estimated north
of 80◦ N. The diagnostic intends to evaluate the strength
of the negative sea ice thickness–growth feedback, which
causes late-summer negative anomalies in sea ice area and
volume to be partially recovered during the next growing sea-
son (Notz and Bitz, 2017). To estimate the strength of that
feedback, anomalies of the annual minimum of sea ice vol-
ume north of 80◦ N are first estimated. Then, the increase
in sea ice volume until the next annual maximum is com-
puted for each year. The IFE is defined as the regression of
this ice volume production onto the baseline summer vol-
ume anomaly (Fig. 31). All CMIP5 models, without excep-
tion, simulate negative IFE over the historical period, imply-
ing that all these models display a basic mechanism of ice
volume recovery when large negative anomalies occur in late
summer. However, the strength of the IFE is simulated very
differently by the models (Massonnet et al., 2018a). The IFE
is closely associated with the annual mean sea ice volume
north of 80◦ N. Also, the strength of the IFE is directly con-
nected to the long-term variability, providing prospects for
the application of emergent constraints. However, the short-
ness of observational records of sea ice thickness and their
large uncertainty preclude rigorous applications of such con-
straints. The analyses nevertheless allow us (1) to pin down
that the spread in CMIP5 sea ice volume projections is inher-
ently linked to the way they represent the strength of sea ice
feedbacks, and so their mean state, and (2) to provide guid-
ance for the development of future observing systems in the
Arctic, by stressing the need for more reliable estimates of
sea ice thickness in the central Arctic basin (Ponsoni et al.,
2019).

The second recipe, recipe_sea_ice_drift.yml, allows us to
quantify the relationships between Arctic sea ice drift speed,
concentration, and thickness (Docquier et al., 2017). A de-
crease in concentration or thickness, as observed in recent
decades in the Arctic Ocean (Kwok, 2018; Stroeve and Notz,
2018), leads to reduced sea ice strength and internal stress
and thus larger sea ice drift speed (Rampal et al., 2011).
Olason and Notz (2014) investigate the relationships be-
tween Arctic sea ice drift speed, concentration, and thick-
ness using satellite and buoy observations. They show that
both seasonal and recent long-term changes in sea ice drift
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Figure 30. Mean (1970–2005) T –S diagrams for Eurasian Basin of the Arctic Ocean. PHC3.0 shows climatological values for selected
CMIP5 models and PHC3.0 observations. Produced with recipe_arctic_ocean.yml; see details in Sect. 3.3.3.
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Figure 31. Quantitative evaluation of the ice formation efficiency (IFE). (a) Example time series (1970–1979) of the monthly mean Arctic
sea ice volume north of 80◦ N of one CMIP5 model (ACCESS1-0), with its annual minimum and maximum values marked with the dark
and light dots, respectively. (b) Estimation of the IFE, defined as the regression between anomalies of sea ice volume produced during the
growing season (difference between one annual maximum and the preceding minimum) and anomalies of the preceding minimum. A value of
IFE=−1 means that the late-summer ice volume anomaly is fully recovered during the following winter (strong negative feedback damping
all anomalies), while a value of IFE= 0 means that the wintertime volume production is essentially decoupled from the late-summer anoma-
lies (inexistent feedback). Similar to extended data Fig. 7a–b of Massonnet et al. (2018a) and produced with recipe_seaice_feedback.yml;
see details in Sect. 3.3.4.

Figure 32. Scatter plots of modelled (red) and observed (blue) monthly mean sea ice drift speed against sea ice concentration (a, c) and sea
ice thickness (b, d) temporally averaged over the period 1979–2005 and spatially averaged over the SCICEX box. Panels (a, b) show results
from the GDFL-ESM2G model and (c, d) show results from the MPI-ESM-LR model (CMIP5 historical runs). Observations/reanalysis are
shown in all panels (IABP for drift speed, OSI-450 for concentration, and PIOMAS for thickness). Numbers denote months. Dotted lines
show linear regressions. This figure was produced in a similar way to Fig. 4 of Docquier et al. (2017) with recipe_sea_ice_drift.yml; see
details in Sect. 3.3.4.
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Figure 33. The panels show plots produced by the metric recipe_landcover.yml using model output from historical CMIP5 simulations
(period 2008–2012) of the ESMs MPI-ESM and INMCM4 compared to land cover observations provided by ESA CCI for different regions.
Panels (a, b) display the relative bias (%) between the models M and the observation O computed as (M −O)/O × 100. This can be
visualized either for one model (i.e. MPI-ESM) and several land cover types (a) or for one land cover type (i.e. bare soil fraction) and all
selected models (b). Panels (c, d) display the area (106 km2) covered by a specific land cover type (i.e. bare soil fraction) for given regions (c),
as well as the average cover fractions (%) (d) with respect to the total area of the regions. Thus, the land cover analysis provides a quick
overview for major land cover types and the ability of different models to reproduce them. The metric is based on the analysis presented in
Lauer et al. (2017) and Georgievski and Hagemann (2018) and discussed in Sect. 3.4.1.

are primarily correlated to changes in sea ice concentra-
tion and thickness. Our recipe allows quantifying these re-
lationships in climate models. In this recipe, four process-
based metrics are computed based on the multi-year monthly
mean sea ice drift speed, concentration, and thickness, av-
eraged over the central Arctic. The first metric is the ratio
between the modelled drift-concentration slope and the ob-
served drift-concentration slope. The second metric is simi-
lar to the first one, except that sea ice thickness is involved
instead of sea ice concentration. The third metric is the nor-
malized distance between the model and observations in the
drift-concentration space. The fourth metric is similar to
the third one, except that sea ice thickness is involved in-
stead of sea ice concentration. Sea ice concentration from

the European Organisation for the Exploitation of Meteo-
rological Satellites Ocean and Sea Ice Satellite Application
Facility (Lavergne et al., 2019), sea ice thickness from the
Pan-Arctic Ice-Ocean Modeling and Assimilation System re-
analysis (PIOMAS; Zhang and Rothrock, 2003), and sea ice
drift from the International Arctic Buoy Programme (IABP;
Tschudi et al., 2016) are used as reference products to com-
pute these metrics (Fig. 32). Results in this example show
that the GFDL-ESM2G model can reproduce the sea ice-
drift speed–concentration–thickness relationships compared
to observations, with higher drift speed with lower concen-
tration or thickness, despite the ice which is too thin in the
model, while the MPI-ESM-LR model cannot reproduce this
result.
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3.4 Diagnostics for the evaluation of land processes

3.4.1 Land cover

Land cover (LC) is either prescribed in the CMIP mod-
els or simulated using a dynamic global vegetation model
(DGVM). Within the recent decade, numerous studies fo-
cused on the quantification of the impact of land cover
change on climate (see Mahmood et al., 2014, and refer-
ences therein for a comprehensive review). There is a grow-
ing body of evidence that vegetation, especially tree cover,
significantly affects the terrestrial water cycle, energy bal-
ance (Alkama and Cescatti, 2016; Duveiller et al., 2018b),
and carbon cycle (Achard et al., 2014). However, understand-
ing the impact of LC change on climate remains controver-
sial and is still work in progress (Bonan, 2008; Ellison et al.,
2012; Mahmood et al., 2014; Sheil and Murdiyarso, 2009).
In order to judge the LC-related ESM results, an independent
assessment of the accuracy of the simulated spatial distribu-
tions of major land cover types is desirable to evaluate the
DGVM accuracy for present climate conditions (Lauer et al.,
2017).

Recently in the frame of the European Space Agency
(ESA) Climate Change Initiative (CCI), a new global LC
dataset has been published (Defourny et al., 2014, 2016) that
can be used to evaluate or prescribe vegetation distributions
for climate modelling. Effects of LC uncertainty in the ESA
CCI LC dataset on land surface fluxes and climate are de-
scribed by Hartley et al. (2017) and Georgievski and Hage-
mann (2018), respectively. Satellite-derived LC classes can-
not directly be used for the evaluation of ESM vegetation
due to the different concepts of vegetation representation in
DGVMs, which are typically based on the concept of plant
functional types (PFTs) that are supposed to represent groups
of LC with similar functional behaviour. Thus, an important
first step is to map the ESA CCI LC classes to PFTs as de-
scribed by Poulter et al. (2015). As the PFTs in ESMs dif-
fer, the current LC diagnostic analyses only major LC types
(bare soil, crops, grass, shrubs, trees), which is similar to
the approach chosen by Brovkin et al. (2013) and Lauer et
al. (2017). The corresponding evaluation metric was imple-
mented into ESMValTool in recipe_landcover.yml. It evalu-
ates areas, mean fractions, and biases compared to ESA CCI
LC data over the land area of four major regions (global, trop-
ics, northern and southern extratropics). Currently the evalu-
ation uses ESA CCI LC data for the epoch 2008–2012 that
have been generated with the ESA CCI LC user tool at 0.5◦

resolution. Consequently, model data are interpolated to the
same resolution. For the calculation of mean fractions per
major region, a land area of these regions needs to be speci-
fied and is currently taken from ESA CCI land cover. Exam-
ple plots of accumulated area and biases in major LC types
for different models are shown in Fig. 33.

3.4.2 Albedo changes associated with land cover
transitions

Land cover changes (LCCs) can modify climate by altering
land surface properties such as surface albedo, surface rough-
ness, and evaporative fraction. In particular, historical defor-
estation since the pre-industrial era has led to an increase
in surface albedo corresponding to a global radiative forc-
ing of −0.15± 0.10 W m−2 (Myhre et al., 2013). There are
however large uncertainties, even concerning the sign of the
effect, regarding the impacts of LCC on near-surface tem-
perature due to persistent model disagreement (Davin et al.,
2020; de Noblet-Ducoudré et al., 2012; Lejeune et al., 2017;
Pitman et al., 2009). These disagreements arise from uncer-
tainties in (1) the interplay between radiative (albedo) and
non-radiative processes (surface roughness and evaporative
fraction), (2) the role of local versus large-scale processes
and feedbacks (Winckler et al., 2017), and (3) the magnitude
of change in given surface properties (e.g. albedo). Concern-
ing the latter, Myhre et al. (2005) and Kvalevåg et al. (2010)
suggest that the albedo change between natural vegetation
and croplands is usually overestimated in climate simula-
tions compared to satellite-derived observational evidence.
In addition to this potential bias compared to observational
data, there is a substantial spread in the model parameteri-
zations for the albedo response to land cover perturbations.
Boisier et al. (2012) identified that as being responsible for
half of the dispersion in the albedo response to LCC since
pre-industrial times among models participating in the LU-
CID project, whereas the remaining uncertainty was found to
result from differences in the prescribed land cover. A more
systematic evaluation of model performance in simulating
LUC (land use change)-induced changes in albedo based on
the latest available observations is therefore essential in order
to reduce these uncertainties.

A satellite-based dataset providing a potential effect of a
range of land cover transitions on the full surface energy
balance (including albedo), at a global scale, 1◦ resolution,
and monthly timescale is now available (Duveiller et al.,
2018a). The potential albedo changes associated with veg-
etation transitions were extracted by a statistical treatment
combining the ESA CCI LC data (see Sect. 3.4.1 for refer-
ences) and the mean of the white-sky and black-sky albedo
values of the NASA MCD43C3 albedo product for the 2008–
2012 period (see Schaaf et al., 2002, for information on the
retrieval algorithm). Because land-over-specific albedo val-
ues are not a standard output of climate models, in order
to retrieve them a diagnostic was developed by Lejeune et
al. (2020), which has been implemented into ESMValTool
v2.0 in recipe_albedolandcover.yml. This approach deter-
mines the coefficients of multiple linear regressions between
the albedo values and the tree, shrub, short vegetation (crops
and grasses), and bare soil fractions of each grid cell within
spatially moving windows encompassing 5◦×5◦ model grid
cells. These four LC classes correspond to the “IGBPgen”
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Figure 34. Potential albedo change due to a transition from land cover type “tree” to “crops and grasses” calculated through a multiple linear
regression between the present-day land cover fractions (predictors) and albedo (predictands) within a moving window encompassing 5◦×5◦

grid cells. Results are shown for (a) the MPI-ESM-LR model (2001–2005 July mean) and (b) the observational dataset from Duveiller et
al. (2018a) (2008–2012 July mean). Produced with recipe_landcoveralbedo.yml; see details in Sect. 3.4.2 and in Lejeune et al. (2020).

Figure 35. Time series plot of the global land–atmosphere CO2 flux
(nbp) for CMIP5 models compared to observational estimates from
GCP (Le Quéré et al., 2018) (black line). Grey shading represents
the range of the CMIP5 models; green shading shows the confi-
dence interval evaluated from the CMIP5 ensemble standard de-
viation assuming a t distribution centred at the multi-model mean
(white line). Vertical lines indicate volcanic eruptions (grey) and El
Niño events (orange). Similar to Fig. 5 of Anav et al. (2013) and
produced with recipe_anav13jclim.yml; see details in Sect. 3.5.1.

classification in Duveiller et al. (2018a). The recipe provides
the option to run the algorithm on an interpolated grid or
on the native model grid. The latter option was used in the
example provided in Fig. 34. Solving these regressions pro-
vides the albedo values for trees, shrubs, and short vegetation
(crops and grasses) from which the albedo changes associ-
ated with transitions between these three land cover types are
derived. The diagnostic is applied to monthly data and, based
on the value of the snow area fraction (snc), distinguishes
between snow-free (snc< 0.1) and snow-covered (snc> 0.9)
grid cells for each month. It can calculate albedo estimates
for each of these two cases and each of the three land cover
types, given that some criteria are fulfilled: the regressions
are only conducted in the areas with a minimum number
of 15 grid cells (either snow-free or snow-covered), taking
into account only the grid cells where the sum of the area

fractions occupied by the three considered land cover types
exceeds 90 %. The algorithm eventually plots global maps
of the albedo changes associated with the corresponding LC
transitions for each model in their original resolution, next to
the satellite-derived estimates from Duveiller et al. (2018a).
The diagnostic shows data according to the IGBPgen classi-
fication, which entails only four LC classes that can be di-
rectly compared to model PFTs. An example plot is shown
in Fig. 34 for the July albedo change associated with a transi-
tion from trees to short vegetation types (crops and grasses).
Almost only snow-free areas are visible for this month, while
grey areas indicate where the spatial co-existence of the two
LC classes was not high enough for the regression technique
to be performed, where the regression results did not pass the
required quality checks, or where there were grid cells which
could not be categorized either as snow-free or as snow-
covered (Duveiller et al., 2018a). In the example shown here,
the July albedo difference between trees and crops or grasses
is about at least twice as high in the MPI-ESM-LR model
as in the observations, strongly suggesting that the simulated
summer albedo increase from historical land cover changes
is overestimated in this model. The results reveal that the July
albedo difference between trees and crops or grasses is about
at least twice as high in the MPI-ESM-LR model as in the
observations, strongly suggesting that the simulated summer
albedo increase from historical LCC is overestimated in this
model.

3.5 Diagnostics for the evaluation of biogeochemical
processes

3.5.1 Terrestrial biogeochemistry

With CO2 being the most important anthropogenic green-
house gas, it is vital for ESMs to have a realistic representa-
tion of the carbon cycle. Atmospheric concentration of CO2
can be inferred from the difference between anthropogenic
emissions and the land and ocean carbon sinks simulated by
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Figure 36. Zonal distribution of ecosystem turnover time of car-
bon (in years). The zonal values are calculated as the ratio of total
carbon stock and the gross primary productivity per latitude. The in-
dividual models are plotted as thin coloured lines, the multi-model
ensemble as a thick blue line, and the observation-based estimate
(Carvalhais et al., 2014) as a thick black line with shaded region
showing the observational uncertainty. The median of all models is
adopted as the multi-model ensemble. Note the logarithmic hori-
zontal axis. Produced with recipe_carvalhais2014nat.yml; see de-
tails in Sect. 3.5.2.

the models. These sinks are affected by atmospheric CO2
and climate change, thus introducing feedbacks between the
climate system and the carbon cycle (Arora et al., 2013;
Friedlingstein et al., 2006). The quantification of these feed-
backs to estimate the evolution of these carbon sinks and thus
the atmospheric CO2 concentration and the resulting climate
change is paramount (Cox et al., 2013; Friedlingstein et al.,
2014; Wenzel et al., 2014, 2016). The Anav et al. (2013) pa-
per evaluated CMIP5 models in three different timescales:
long-term trends, interannual variability, and seasonal cycles
for the main climatic variables controlling both the spatial
and temporal characteristics of the carbon cycle, i.e. surface
land temperature (tas), precipitation over land (pr), sea sur-
face temperature (tos), land–atmosphere (nbp) and ocean-
atmosphere fluxes (fgco2), gross primary production (gpp),
leaf area index (lai), and carbon content in soil and vegetation
(cSoil, cVeg). Models are able to simulate key characteristics
of the main climatic variables and their seasonal evolution,
but deficiencies in the simulation of specific variables, espe-
cially in the land carbon cycle with a general overestimation
of photosynthesis and leaf area index, as well as an underes-
timation of the primary production in the ocean exist.

The analysis from Anav et al. (2013) can be reproduced
with recipe_anav13jclim.yml. In addition to the diagnos-
tics already implemented in ESMValTool v1.0 and ported to
v2.0, new diagnostics for the time series anomalies of tas,
pr, and tos as well as time series for nbp and fgco2 have
been added, reproducing Figs. 1, 2, 3, 5, and 13 of Anav
et al. (2013), with the latter two also forming Fig. 26 of
Flato et al. (2013). In ESMValTool v2.0, observational es-
timates of gpp are included from the latest data release of
the FLUXCOM project (Jung et al., 2019), which integrates
FLUXNET measurements, satellite remote sensing, and cli-
mate data with machine learning to provide improved global
products of land–atmosphere fluxes for evaluation. The rou-
tines needed to make carbon and energy fluxes from the
FLUXCOM project CMOR-compliant to facilitate process-
based model evaluation is also made available as part of ES-
MValTool v2.0. As an example of the newly added plots,
Fig. 35 shows the time series for the land–atmosphere car-
bon flux nbp, similar to Fig. 5 of Anav et al. (2013). Shad-
ing indicates the confidence interval of the CMIP5 ensemble
standard deviation, derived from assuming a t distribution
centred on the ensemble mean (inner curve), while the grey
shading shows the overall range of variability of the models.
As positive values correspond to a carbon uptake of the land,
the plot shows a slight increase in the land carbon uptake over
the whole period.

3.5.2 Ecosystem turnover times of carbon

The exchange of carbon between the land biosphere and at-
mosphere represents a key feedback mechanism that will de-
termine the effect of global changes on the carbon cycle and
vice versa (Heimann and Reichstein, 2008). Despite signif-
icant implications, the uncertainties in simulated land car-
bon stocks that integrate the land–atmosphere carbon ex-
change are large and, therefore, represent a major challenge
for ESMs (Friedlingstein et al., 2014; Friend et al., 2014).
One of the major factors leading to these uncertainties is
the turnover time of carbon, the time period that a carbon
atom on average spends in land ecosystems, from assimila-
tion through photosynthesis to its release back into the at-
mosphere. This emergent ecosystem property, calculated, for
example, as a ratio of long-term average total carbon stock
to gross primary productivity, has been extensively used to
evaluate ESM simulations (Carvalhais et al., 2014; Koven et
al., 2015, 2017; Todd-Brown et al., 2013). Despite the large
range of observational uncertainties and sources, ESM simu-
lations consistently exhibit a robust correlation with the ob-
servation ensembles but with a substantial underestimation
bias.

Carvalhais et al. (2014) evaluated the biases in ecosystem
carbon turnover time in CMIP5 models and their associations
with climate variables and then quantified multi-model bi-
ases and agreements. The recipe_carvalhais2014nat.yml re-
produces the analysis of Carvalhais et al. (2014). It requires
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the simulations of total vegetation carbon content (cVeg),
total soil carbon content (cSoil), gross primary productiv-
ity (gpp) as well as precipitation (pr), and near-surface air
temperature (tas). As an example, an evaluation of the zonal
means of turnover time in CMIP5 models is shown in Figure
36. The models follow the gradient of increasing turnover
times of carbon from the tropics to higher latitudes, much
related to temperature decreases, as observed in observa-
tions. However, for most of the latitudinal bands, with the
exception of one model, most simulations reveal turnover
times that are faster than the observations. Most CMIP5
models (and multi-model ensemble) have a much shorter
turnover time than the observation-based estimate across the
whole latitudinal range. Even though different estimates of
observation-based carbon fluxes and stocks can vary signifi-
cantly, a recent study by Fan et al. (2020), their Fig. 5a, shows
that the zonal distributions of observation-based estimates of
turnover time are robust against the differences in observa-
tions. The spread among the models is also large and can vary
by 1 order of magnitude. This results not only in a large bias
in turnover time but also a considerable disagreement among
the models. In fact, the majority of CMIP5 models simulate a
turnover time more than 4 times shorter than the observation-
based estimate in most regions (Fig. 37). A generalized un-
derestimation of turnover times of carbon is apparently dom-
inant in water-limited regions. In most of these regions most
models show estimates outside of the observational uncer-
tainties (stippling). These results challenge the combined ef-
fects of water and temperature limitations on turnover times
of carbon and suggest the need for an improvement on the
description of the water cycle in terrestrial ecosystems. In
arid and semi-arid regions model agreement is also low with
2 or fewer (out of 10) models within the observational uncer-
tainty.

In addition, the recipe also produces the full facto-
rial model–model–observation comparison matrix that can
be used to evaluate individual models. It further provides
a quantitative measure of turnover times across different
biomes, as well as its relationship with precipitation and tem-
perature.

3.5.3 Marine biogeochemistry

ESMValTool v2.0 now includes a wide set of metrics to as-
sess marine biogeochemistry performances of ESMs, con-
tained in recipe_ocean_bgc.yml. This recipe allows a direct
comparison of the models against observational data for tem-
perature (thetao), salinity (so), oxygen (o2), nitrate (no3),
phosphate (po4), and silicate (si) from the World Ocean Atlas
2013 (WOA; Garcia et al., 2013), CO2 air–sea fluxes (fgco2)
estimated by Landschuetzer et al. (2016), chlorophyll-a (chl)
fields from ESACCI-OC (Volpe et al., 2019), and primary
production expressed as carbon (intpp) produced by Ore-
gon State University using MODIS data (Behrenfeld and
Falkowski, 1997).

Figure 37. Global distribution of the biases in the multi-model en-
semble ecosystem turnover time of carbon (years) and the multi-
model agreement in CMIP5 models. The bias is calculated as the ra-
tio between multi-model ensemble and observation-based estimate
(Carvalhais et al., 2014). The stippling indicates the regions where
only two or fewer models (out of 10) are within the range of ob-
servational uncertainties (5th and 95th percentiles). Produced with
recipe_carvalhais2014nat.yml; see details in Sect. 3.5.2.

We first demonstrate the recipe using the nitrate concen-
tration in the HadGEM2-ES model in the r1i1p1 ensem-
ble member of the historical experiment in the years 2001–
2005. However, this recipe can be expanded to include any
other ESM with a marine biogeochemical component or any
other field with a suitable observational dataset. The anal-
ysis produced by the recipe is a point-to-point comparison
of the model against the observational dataset, similar to the
method described in De Mora et al. (2013). Figures 38 and 39
show the results of a comparison the surface dissolved nitrate
concentration in the HadGEM2-ES model compared against
the World Ocean Atlas nitrate. To produce these two figures,
the surface layer is extracted, an average over the time dimen-
sion is produced, and then the model observational data are
regridded to a common grid. Figure 38 includes four panels;
the model and observations in panels a and b and then the
difference and the quotient in panels b and c. It highlights
that the HadGEM2-ES model is proficient at reproducing
the surface nitrate concentration in the Atlantic Ocean and at
mid-latitudes but may struggle to reproduce observations at
high latitudes. Figure 39 uses the same preprocessed data as
Fig. 38, with the model data plotted along the x axis and the
observational data along the y axis. A linear regression line
of best fit is shown as a black line. A dashed line indicates
the 1 : 1 line. The results of a linear regression are shown in
the top left corner of the figure, where β̂0 is the intercept,
β1 is the slope, R is the correlation, P is the P value, and
N is the number of data point pairs. As both the fitted slope
and the correlation coefficient are near 1, the HadGEM2-ES
simulation excelled at reproducing the observed values of the
surface nitrate concentration. When viewed together, Figs. 38
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Figure 38. The surface dissolved nitrate concentration in the
CMIP5 HadGEM2-ES model compared against the World Ocean
Atlas 2013 nitrate. Panels (a) and (b) show the surface fields; (c) and
(d) show the difference and the quotient between the two datasets.
Produced with recipe_ocean_bgc.yml; see details in Sect. 3.5.3.

Figure 39. The surface dissolved nitrate concentration in the
CMIP5 HadGEM2-ES model (log10(N)) compared against the
World Ocean Atlas 2013 nitrate. This figure shows the paired model
and observational datasets. A linear regression line of best fit is
shown as a black line. A dashed line indicates the 1 : 1 line. The
result of a linear regression are shown in the top left corner of the
figure, where β̂0 is the intersect, β1 is the slope, R is the correlation,
P is the P value, and N is the number of data point pairs. Produced
with recipe_ocean_bgc.yml; see details in Sect. 3.5.3.

and 39 show the biases between the model and the observa-
tions in the surface layer relative to each other, both in terms
of their spatially independent distribution in Fig. 38 and their
spatially dependent distribution in Fig. 39.

Figure 40 shows the global average depth profile of the dis-
solved nitrate concentration in the HadGEM2-ES model and

against the World Ocean Atlas dataset. The colour scale indi-
cates the annual average, although in this specific case there
is little observed interannual variability so the annual aver-
ages are closely overlaid. Nevertheless, this class of figure
can be useful to evaluate biases between model and observa-
tions over the entire depth profile of the ocean and can also be
used to identify long-term changes in the vertical structure of
the ocean models. This figure shows that while the model and
the observations both have a similar overall depth structure,
the model is not able to produce the observed maximum ni-
trate concentration at approximately 1000 m depth and over-
estimates the nitrate concentration deeper in the water col-
umn. A multiple-panel comparison of satellite-derived ob-
servations for marine primary production against 16 CMIP5
models over the period 1995–2004 is shown in Fig. 41. Both
observation and model data are regridded to a regular 1◦×1◦

horizontal grid and differences are then computed. System-
atic biases characterize all models mainly in the equatorial
Pacific and Antarctic regions, in some cases with the oppo-
site sign, and coastal ocean productivity is generally under-
estimated with major deviations in the equatorial zone.

3.5.4 Stratospheric temperature and trace species
influencing stratospheric ozone chemistry

The recipe_eyring06jgr.yml has been ported in ESMVal-
Tool v2.0 from the CCMVal-Diag tool described by Gettel-
man et al. (2012) to evaluate a coupled chemistry–climate
model (CCM) based on a set of core processes relevant for
stratospheric ozone concentrations, centred around four main
categories (radiation, dynamics, transport, and stratospheric
chemistry). Each process is associated with one or more
model diagnostics and with relevant observational datasets
that can be used for the model evaluation (Eyring et al., 2006,
2005).

Since most of the chemical reactions determining ozone
distribution in the stratosphere depend on temperature,
recipe_eyring06jgr.yml allows the comparison of modelled
stratospheric temperature with observations in terms of cli-
matological mean, variability, and trends (Fig. 42). High-
latitude temperatures in winter and spring are particularly
important for correctly modelling polar ozone depletion in-
duced by polar stratospheric clouds. In the middle strato-
sphere there are large variations between the analyses and
most models, with no clear bias direction, whereas the tem-
perature bias in the troposphere between analyses and mod-
els is somewhat smaller but is negative around 200 hPa in
most models. The upper stratosphere is only available for a
few models, and while for most of the seasons shown the
agreement is relatively good, the spread between analyses
and models is very large for the Antarctic polar regions in
JJA. The recipe_eyring06jgr.yml evaluates the main features
of the atmospheric transport by examining the distribution
of long-lived traces (such as methane or N2O), the verti-
cal propagation of the annual cycle of water vapour (“tape
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Figure 40. The global area-weighted average depth profile of
the dissolved nitrate concentration in the CMIP5 HadGEM2-ES
model and against the World Ocean Atlas 2013. Produced with
recipe_ocean_bgc.yml; see details in Sect. 3.5.3.

recorder”), and the mean age of air. Due to its important
role in driving stratospheric ozone depletion, especially in
the polar regions, this recipe includes the vertical distribu-
tion and temporal evolution of modelled chlorine (Cly). It
also assesses the capability of the models to simulate realis-
tic ozone vertical distributions (Fig. 43) and total ozone an-
nual cycle. Ozone is clearly overestimated by most models,
compared to the observations, in the northern high latitudes
between 50 and 10 hPa, which also becomes apparent in the
climatological zonal mean at 50 hPa. Southern high latitudes
are slightly better represented in the models at 50 hPa with
a more general spread around the observations, but at lower
pressure levels an overestimation of ozone compared to the
observations becomes apparent in some models.

4 Routine evaluation of CMIP6 models

4.1 Running ESMValTool alongside the ESGF

An important goal for CMIP6 was to establish a system
that allows for routine model evaluation alongside the ESGF
directly after the model output is published to the CMIP
archive (Eyring et al., 2016a, b, 2019). With the release
of ESMValTool v2.0, this was reached through a semi-
automatic execution of ESMValTool at the Deutsches Kli-
marechenzentrum (DKRZ) on CMIP6 data published to the
ESGF. This is supported by the following components: (1) a
locally hosted CMIP6 replica data pool, (2) an automatic
CMIP6 data replication process, embracing ESMValTool
data needs as replication priorities, and (3) a query mecha-
nism to inform ESMValTool of the availability of new data
in the data pool. Based on these components both regularly
scheduled ESMValTool executions as well as executions trig-

gered by the availability of new data can be realized. At
the moment, the automatic regular execution is implemented.
The replica pool is hosted as part of the parallel Lustre HPC
(high-performance computing) file system at DKRZ and as-
sociated with a dedicated data project which is supervised
by a panel deciding on CMIP6 data storage priorities. How-
ever, rapid data replication from ESGF to the local replica
tool remains an issue that requires further work; see also the
discussion in Eyring et al. (2016b).

ESMValTool data needs are managed in a GitHub repos-
itory and automatically integrated into the Synda tool (http:
//prodiguer.github.io/synda/, last access: 13 July 2020) based
CMIP6 replication pipeline at DKRZ. The content of the data
pool is regularly indexed, thus providing a high-performance
query mechanism on locally available data. This index is
used to automatically update several recipes with all avail-
able CMIP6 models. If new model output has been published
to the ESGF, an ESMValTool execution is triggered and new
plots are created. The results produced by ESMValTool are
automatically copied to a result cache which is used by the
result browser (see next section).

4.2 ESMValTool result browser at DKRZ

The ESMValTool result browser has been set up at http:
//cmip-esmvaltool.dkrz.de/ (last access: 13 July 2020). The
ESMValTool results are visualized with the Freie University
Evaluation System (FREVA). FREVA provides efficient and
comprehensive access to the evaluation results and datasets.
The application system is developed as an easy to use low-
end application minimizing technical requirements for users
and tool developers. Initially this website shows CMIP5 re-
sults that are already published. Newly produced results for
CMIP6 are initially watermarked and are only made available
without a watermark once quality control has taken place and
related papers have been written. This strategy has been sup-
ported, encouraged, and approved by the WCRP Working
Group of Coupled Modelling (WGCM). The result browser
includes a search function that allows us to sort by ESM-
ValTool recipes, projects, CMIP6 realms, scientific themes,
domain, plot type, applied statistics, references, variables,
datasets (including models, multi-model mean, and median
and observations), and results. Each figure includes a caption,
which is displayed alongside with the figure, and the corre-
sponding metadata. These metadata include the ESMValTool
configuration used to perform the analysis and draw the plot,
software versions, date of production, input data, program
output, notes, and results. In order to get a quick overview, a
summary of the ESMValTool configuration used to create a
given plot is also available. This summary includes the recipe
name, variables, and models used as well as the name of the
diagnostic script run and the exact version of ESMValTool
(corresponds to the release tag on GitHub) used as basic in-
formation to reproduce a plot. Full provenance information
providing all details on the figure creation such as the version
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Figure 41. Global maps of marine primary production as carbon (mol m−2 yr−1) estimated from MODIS satellite data using the Eppley
VGPM algorithm (top panel) and differences computed for 16 CMIP5 models with data averaged over the period 1995–2004. See Sect. 3.5.3
for details on recipe_ocean_bgc.yml.

of the input files and preprocessing steps applied is stored in
the metadata of the figure file itself and can be retrieved by
downloading the figure and reading the Exif header of the
image file.

5 Summary and outlook

ESMValTool is a community diagnostics and performance
metrics tool specifically targeted at facilitating and enhanc-
ing a comprehensive evaluation of ESMs participating in
CMIP. Since the first ESMValTool release in 2016 (v1.0,
Eyring et al., 2016c), substantial technical improvements
have been made by a continuously growing developer com-
munity and additional diagnostics have been added. The
tool is now developed by more than 40 institutions as
open-source code on a Github repository (https://github.com/
ESMValGroup, last access: 13 July 2020).

This paper is part of a series of publications that describe
the release of ESMValTool version 2.0 (v2.0). One of the
main structural changes compared to v1.0 is the separation of
the tool into ESMValCore and a diagnostic part. ESMValCore
is an easy-to-install, well-documented Python package that
provides the core functionalities to perform common prepro-
cessing operations and writes the output from models and ob-
servations to netCDF files (Righi et al., 2020). These prepro-
cessed output files are then read by the diagnostic part that in-
cludes tailored diagnostics and performance metrics for spe-
cific scientific applications that are called by recipes. These
recipes reproduce sets of diagnostics or performance metrics
that have demonstrated their importance in ESM evaluation
in the peer-reviewed literature.

This paper describes recipes for the evaluation of large-
scale diagnostics in ESMValTool v2.0. It focuses on those
diagnostics that were not part of the first major release of the
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Figure 42. CCM climatological mean temperature biases for (a, b) 60–90◦ N and (c, d) 60–90◦ S for the (a, c) winter and (b, d) spring
seasons for the period 1980 to 1999. Biases are calculated relative to ERA-40 reanalyses. The grey area shows ERA-40 plus and minus 1
standard deviation about the climatological mean. Similar to Fig. 1 of Eyring et al. (2006) and produced with the recipe_eyring06jgr.yml.
See details in Sect. 3.5.4.

tool (Eyring et al., 2016c) and includes (1) integrative mea-
sures of model performance, as well as diagnostics for the
evaluation of processes in (2) the atmosphere, (3) the ocean
and cryosphere, (4) land, and (5) biogeochemistry. Recipes
for extreme events and in support of regional model eval-
uation are described by Weigel et al. (2020) and recipes
for emergent constraints and model weighting by Lauer et
al. (2020).

Compared to ESMValTool v1.0, the integrative measures
of model performance have been expanded with additional
atmospheric variables as well as new variables from the
ocean, sea ice, and land (extending Fig. 9.7 of Flato et al.,

2013). In addition, the centred pattern correlation that allows
the quantification of progress between different ensembles of
CMIP models for multiple variables (extending Fig. 9.6 of
Flato et al., 2013) and the single-model performance index
proposed by Reichler and Kim (2008) that allows an over-
all assessment of model performance have been added. For
the purpose of model development it is important to look at
many different metrics. AutoAssess, which is developed by
the UK Met Office, therefore includes a mix of top–down
metrics evaluating key model output variables and bottom–
up process-oriented metrics. AutoAssess includes 11 the-
matic areas, which will all be implemented in ESMValTool,
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Figure 43. Climatological zonal mean ozone mixing ratios from the CMIP5 simulations and HALOE in parts per million by volume. Vertical
profiles at (a) 80◦ N in March, (b) 0 in March, and (c) 80◦ S in October. Latitudinal profiles at 50 hPa in (d) March and (e) October. The grey
area shows HALOE plus and minus 1 standard deviation (s) about the climatological zonal mean. Similar to Fig. 5 of Eyring et al. (2006)
and produced with the recipe_eyring06jgr.yml. See details in Sect. 3.5.4.

but in v2.0, as a technical demonstration, only the area for
the stratosphere was implemented.

For the evaluation of processes in the atmosphere, the
recipe to calculate multi-model averages (e.g. for surface
temperature and precipitation) now not only includes abso-
lute values but also the mean root-mean-square error of the
seasonal cycle compared to observations. The time series
of the anomalies in annual and global mean surface tem-
perature with the models being subsampled as in the ob-
servations from HadCRUT4 is also included. In addition, a

recipe for the evaluation of the precipitation quantile bias has
been added. For atmospheric dynamics, recipes to evaluate
stratosphere–troposphere coupling and atmospheric blocking
indices have been included. A new diagnostic tool for the
evaluation of the water, energy, and entropy budgets in cli-
mate models (TheDiaTo (v1.0), Lembo et al., 2019) has been
newly implemented, while the NCAR Climate Variability Di-
agnostic Package (Phillips et al., 2014), already available in
v1.0, has been updated in ESMValTool v2.0 to its latest ver-
sion. In addition, several other diagnostics to evaluate modes
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Table 2. Overview of CMIP5 models used in the figures shown in this paper alongside with a reference.

Modelling centre Model Reference

1 Centre for Australian Weather and Climate Research, Australia ACCESS1-0 Dix et al. (2013)

ACCESS1-3 Dix et al. (2013)

2 Beijing Climate Center, China Meteorological BCC-CSM1.1 Wu (2012)

Administration, China BCC-CSM1.1-M Wu (2012)

3 College of Global Change and Earth System Science,
Beijing Normal University, China

BNU-ESM

4 Canadian Centre for Climate Modelling and Analysis, Canada CanAM4 von Salzen et al. (2013)

CanCM4 von Salzen et al. (2013)

CanESM2 Arora et al. (2011)

5 National Centre for Atmospheric Research, USA CCSM4 Gent et al. (2011);
Meehl et al. (2012)

Community Earth System Model Contributors CESM1(BGC) Gent et al. (2011);
Meehl et al. (2012)

CESM1(CAM5) Gent et al. (2011);
Meehl et al. (2012)

CESM1(FASTCHEM) Gent et al. (2011);
Meehl et al. (2012)

CESM1(WACCM) Calvo et al. (2012);
Gent et al. (2011);
Marsh et al. (2013)

6 Centro Euro-Mediterraneo per I Cambiamenti CMCC-CM Fogli et al. (2009)

Climatici, Italy CMCC-CMS Fogli et al. (2009)

7 Centre National de Recherches Meteorologiques, France CNRM-CM5 Voldoire et al. (2012)

CNRM-CM5-2 Voldoire et al. (2012)

8 Commonwealth Scientific and Industrial Research Organization
in collaboration with Queensland Climate Change Centre of Ex-
cellence, Australia

CSIRO-Mk3-6-0 Rotstayn et al. (2012)

9 EC-EARTH consortium, Europe EC-EARTH Hazeleger et al. (2012)

10 LASG, Institute of Atmospheric Physics, Chinese Academy of
Sciences and CESS,Tsinghua University, China

FGOALS-g2 Li et al. (2013)

11 LASG, Institute of Atmospheric Physics, Chinese Academy of
Sciences, China

FGOALS-s2 Bao et al. (2013)

12 The First Institute of Oceanography, SOA, China FIO-ESM Zhou et al. (2014)

13 NOAA Geophysical Fluid Dynamics Laboratory, USA GFDL-CM2p1 Qiao et al. (2004);
Song et al. (2012)

GFDL-CM3 Donner et al. (2011)

GFDL-ESM2G Dunne et al. (2012)

GFDL-ESM2M Dunne et al. (2012)

14 NASA Goddard Institute for Space Studies, USA GISS-E2-H Schmidt et al. (2006)

GISS-E2-R Schmidt et al. (2006)
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Table 2. Continued.

Modelling centre Model Reference

15 Met Office Hadley Centre, UK HadCM3 Gordon et al. (2000)

HadGEM2-CC The HadGEM2 Devel-
opment Team (2011)

HadGEM2-ES Collins et al. (2011)

16 National Institute of Meteorological Research, Korea
Meteorological Administration, Korea

HadGEM2-AO The HadGEM2 Devel-
opment Team (2011)

17 Russian Institute for Numerical Mathematics, Russia INM-CM4 Volodin et al. (2010)

18 Institut Pierre Simon Laplace, France IPSL-CM5A-LR Dufresne et al. (2013)

IPSL-CM5A-MR Dufresne et al. (2013)

IPSL-CM5B-LR Dufresne et al. (2013)

19 Japan Agency for Marine-Earth Science and Technology, MIROC-ESM Watanabe et al. (2011)

Atmosphere and Ocean Research Institute (The University of MIROC-ESM-CHEM Watanabe et al. (2011)

Tokyo), and National Institute for Environmental Studies, Japan MIROC4h Sakamoto et al. (2012)

MIROC5 Watanabe et al. (2010)

20 Max Planck Institute for Meteorology, Germany MPI-ESM-LR Giorgetta et al. (2013)

MPI-ESM-MR Giorgetta et al. (2013)

MPI-ESM-P Giorgetta et al. (2013)

21 Meteorological Research Institute, Japan MRI-CGCM3 Yukimoto et al. (2012)

22 Norwegian Climate Centre, Norway NorESM1-M Bentsen et al. (2013);
Iversen et al. (2013)

NorESM1-ME Bentsen et al. (2013);
Iversen et al. (2013)

of variability as well as weather regimes calculated by the
MiLES package (Davini, 2018) have been added.

To evaluate the broad behaviour of models for the global
ocean, several diagnostics have been newly implemented, in-
cluding diagnostics to evaluate the volume-weighted global
average temperature anomaly, the AMOC, the Drake Pas-
sage Current, the global total flux of CO2 from the atmo-
sphere into the ocean, and the global total integrated primary
production from phytoplankton. A recipe to evaluate specifi-
cally the Southern Ocean following Russell et al. (2018) has
been included, and for the Arctic Ocean, vertical ocean dis-
tributions (e.g. temperature and salinity) for different Arctic
Ocean basins and a transect that follows the pathway of the
Atlantic water can now be calculated. For sea ice, a recipe
related to the evaluation of the negative sea ice growth–
thickness feedback which includes the IFE as a process-
based diagnostic (Massonnet et al., 2018b) and a recipe that
can quantify the relationships between Arctic sea ice drift
speed, concentration, and thickness (Docquier et al., 2017)
have been added.

For the evaluation of land processes, satellite-derived land
cover classes cannot directly be used for ESM vegetation
evaluation because DGVMs use different concepts for veg-
etation representation, typically based on plant functional
types. A recipe has therefore been added that maps the ESA
CCI land cover classes to plant functional types as described
by Poulter et al. (2015). It includes major land cover types
(bare soil, crops, grass, shrubs, trees) similar to the evalua-
tion study by Lauer et al. (2017). In addition, a recipe has
been added that can be used to evaluate albedo changes asso-
ciated with land cover transitions using the ESA CCI dataset
of Duveiller et al. (2018a).

For the terrestrial biosphere, a recipe that allows the eval-
uation of the main climatic variables controlling both the
spatial and temporal characteristics of the carbon cycle on
three different timescales (long-term trends, interannual vari-
ability, and seasonal cycles) has been added following Anav
et al. (2013). These key variables include surface land tem-
perature, precipitation over land, sea surface temperatures,
land–atmosphere and ocean–atmosphere fluxes, gross pri-
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mary production, leaf area index, and carbon content in soil
and vegetation. To evaluate the simulated land carbon stocks
that integrate the land–atmosphere carbon exchange, a recipe
to evaluate biases in ecosystem carbon turnover time, the
time period that a carbon atom on average spends in land
ecosystems, from assimilation through photosynthesis to its
release back into the atmosphere (Carvalhais et al., 2014)
has been added. For marine biogeochemistry, v2.0 now in-
cludes a recipe that allows a direct comparison of the mod-
els against observational data for several variables includ-
ing temperature, salinity, oxygen, nitrate, phosphate, silicate,
CO2 air–sea fluxes, chlorophyll a, and primary production.
The point-to-point comparison of the model against the ob-
servational dataset is similar to De Mora et al. (2013). To
evaluate stratospheric dynamics and chemistry a recipe based
on a set of core processes relevant for stratospheric ozone
concentrations, centred around four main categories (radia-
tion, dynamics, transport, and stratospheric chemistry) has
been added (Eyring et al., 2006). Overall these recipes to-
gether with those already included in v1.0 allow a broad char-
acterization of the models for key variables (such as temper-
ature and precipitation) on the large scale, but v2.0 also in-
cludes several process-oriented diagnostics.

With this release, for the first time in CMIP it is now possi-
ble to evaluate the models as soon as the output is published
to the ESGF in a quasi-operational manner. To achieve this,
ESMValTool has been fully integrated into the ESGF struc-
ture at DKRZ. The data from the ESGF are first copied to
a local replica, and ESMValTool is then automatically ex-
ecuted alongside the ESGF as soon as new output arrives.
An ESMValTool result browser has been set up that makes
the evaluation results available to the wider community (http:
//cmip-esmvaltool.dkrz.de/, last access: 13 July 2020).

Another major advancement of ESMValTool v2.0 is that
it provides full provenance and traceability (see Sect. 5.2 in
Righi et al., 2020, for details). Provenance information, for
example, includes technical information such as global at-
tributes of all input netCDF files, preprocessor settings, diag-
nostic script settings, and software version numbers but also
diagnostic script name and recipe authors, funding projects,
references for citation purposes, as well as tags for categoriz-
ing the result plots into various scientific topics (like chem-
istry, dynamics, sea ice) realms (land, atmosphere, ocean,
etc.) or the statistics applied (RMSE, anomaly, trend, clima-
tology, etc.). This not only facilitates the sorting of the results
in the ESMValTool result browser but also qualifies the tool
for the use in studies or assessments where provenance and
traceability is particularly important. The current approach to
provenance and tags (i.e. what is reported) can be adjusted to
international provenance standards as they become available.

These recent ESMValTool developments and their cou-
pling to the ESGF results can now be exploited by global and
regional ESM developers as well as by the data analysis and
user communities, to better understand the large CMIP en-
semble and to support data exploitation. In particular with the

addition of provenance, the tool can also provide a valuable
source for producing figures in national and international as-
sessment reports (such as the IPCC climate assessments) to
enhance the quality control, reproducibility, and traceability
of the figures included.

The ESMValTool development community will further en-
hance the capabilities of the tool with the goal of taking cli-
mate model evaluation – together with other activities – to
the next level (Eyring et al., 2019). Targeted technical en-
hancements will, for example, include the development of
quick-look capabilities that allow users to monitor the sim-
ulations while they are running to help identify errors in the
simulations early on, a further extension to the application
to regional models so that a consistent evaluation between
global and regional models can be provided, and distributed
computing functionalities. In addition, the tool will be ex-
panded with additional process-oriented diagnostics in var-
ious projects to further enhance comprehensive evaluation
and analysis of the CMIP models.

Code and data availability. ESMValTool v2.0 is released un-
der the Apache License, VERSION 2.0. The latest release
of ESMValTool v2.0 is publicly available on Zenodo at
https://doi.org/10.5281/zenodo.3759523 (Andela et al., 2020a). The
source code of the ESMValCore package, which is installed as
a dependency of the ESMValTool v2.0, is also publicly available
on Zenodo at https://doi.org/10.5281/zenodo.3952695 (Andela et
al., 2020b). ESMValTool and ESMValCore are developed on the
GitHub repositories available at https://github.com/ESMValGroup
(last access: 13 July 2020).

CMIP5 data are available freely and publicly from the Earth Sys-
tem Grid Federation. Observations used in the evaluation are de-
tailed in the various sections of the paper and listed in Table 1. They
are not distributed with ESMValTool, which is restricted to the code
as open-source software.
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