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Key Points:28

• High-top models have more skill in the stratosphere and the troposphere compared29

to low-top models.30

• Extreme stratospheric events are predictable at one- to two- week lead times in31
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• SSW events tend to be less predictable than strong vortex events or final warm-33

ing events.34
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Abstract35

The stratosphere has been identified as an important source of predictability for a range36

of processes on subseasonal to seasonal (S2S) timescales. Knowledge about S2S predictabil-37

ity within the stratosphere is however still limited. This study evaluates to what extent38

predictability in the extratropical stratosphere exists in hindcasts of operational predic-39

tion systems in the S2S database. The stratosphere is found to exhibit extended predictabil-40

ity as compared to the troposphere. Prediction systems with higher stratospheric skill41

tend to also exhibit higher skill in the troposphere. The analysis also includes an assess-42

ment of the predictability for stratospheric events, including early and mid-winter sud-43

den stratospheric warming (SSW) events, strong vortex events, and extreme heat flux44

events for the Northern Hemisphere, and final warming events for both hemispheres. Strong45

vortex events and final warming events exhibit higher levels of predictability as compared46

to SSW events. In general, skill is limited to the deterministic range of one to two weeks.47

High-top prediction systems overall exhibit higher stratospheric prediction skill as com-48

pared to their low-top counterparts, pointing to the important role of stratospheric rep-49

resentation in S2S prediction models.50

1 Introduction51

The winter stratosphere is dominated by strong westerly circumpolar winds in the52

extratropics of both hemispheres, which exhibit maximum variability from December-53

March in the Northern Hemisphere (NH) and from October-December in the Southern54

Hemisphere (SH) (R. A. Plumb, 1989; Thompson & Wallace, 2000). This variability, which55

is larger in the Northern Hemisphere, is linked to dynamical extreme events. The most56

prominent events are so-called major sudden stratospheric warming (SSW) events. These57

occur in the polar NH on average every second winter (A. H. Butler, Sjoberg, Seidel, &58

Rosenlof, 2017; Charlton & Polvani, 2007) and are associated with a disruption of the59

polar vortex, reversing the climatological westerly winds to easterlies in mid-winter. Tem-60

peratures at a height of 30 km can increase by around 50◦C within a few days during61

these events, and the troposphere tends to respond with an anomalously persistent neg-62

ative signature of the Northern Annular Mode (NAM) and the North Atlantic Oscilla-63

tion (NAO) (Baldwin & Dunkerton, 2001; Charlton-Perez, Ferranti, & Lee, 2018; D. I. V. Domeisen,64

2019; Karpechko, Hitchcock, Peters, & Schneidereit, 2017). In the SH, only one major65

SSW event has been observed to date, in September 2002 (e.g. Charlton, O’Neill, La-66

hoz, & Berrisford, 2005; Newman & Nash, 2005; Taguchi, Masakazu, 2014). In addition,67

minor stratospheric warming events in the SH can also significantly impact the South-68

ern Annular Mode (SAM) and the associated surface climate (e.g. E. P. Lim, Hendon,69

& Thompson, 2018).70

In the NH, the polar vortex can also significantly weaken early in the season. Early71

winter weak vortex events occur before wind speeds peak in the stratosphere, are strongly72

influenced by the transient development of the vortex into winter, and can precondition73

the vortex for midwinter variability for both the Northern (Albers & Birner, 2014; Ayarzagüena,74

Langematz, & Serrano, 2011; Limpasuvan, V, Thompson, D, & Hartmann, D L, 2004)75

and Southern Hemispheres (Ivy et al., 2017). Early vortex weakening events can poten-76

tially influence early winter surface climate, e.g. in NH winter 2016/17 (Tyrrell, Karpechko,77

Uotila, & Vihma, 2019), despite the fact that they generally do not meet the criteria for78

major mid-winter SSWs. These events can exhibit zonal wind speeds of less than 10 ms−179

for more than a week at 60◦N and 10 hPa and can exhibit easterly zonal mean winds80

at latitudes poleward of 60◦N, which can lead to similar surface impacts as major SSWs81

(A. H. Butler & Gerber, 2018).82

Occasionally, the vortex strengthens significantly in so-called strong polar vortex83

events (e.g. Limpasuvan, Hartmann, Thompson, Jeev, & Yung, 2005) in boreal winter84

or austral spring. Strong polar vortex events occur when the winter polar vortex inten-85
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sifies significantly above climatology, and these events generally have opposite impacts86

to mid-winter SSWs on surface weather (i.e., in the NH (SH) the surface influence projects87

onto the positive phase of the NAO (SAM)). Strong vortex events have been found to88

increase surface predictability (Tripathi, Charlton-Perez, Sigmond, & Vitart, 2015).89

In addition, shorter-lived events, so-called wave reflection and negative heat flux90

events can also impact the entire atmospheric column and often precede strong vortex91

events (Dunn-Sigouin & Shaw, 2015; Perlwitz & Harnik, 2003). Extreme stratospheric92

wave-1 negative heat flux events are coupled with significant changes in the tropospheric93

circulation, in particular, they are followed by a poleward shift of the North Atlantic jet94

consistent with a positive phase of the NAO (Dunn-Sigouin & Shaw, 2015; Lubis, Matthes,95

Omrani, Harnik, & Wahl, 2016; Shaw & Perlwitz, 2013; Shaw, Perlwitz, & Weiner, 2014).96

The tropospheric response following negative heat flux events can be reproduced in dry97

dynamical core experiments if the stratosphere is nudged to the observed event evolu-98

tion and the troposphere is freely evolving (Dunn-Sigouin & Shaw, 2018).99

At the end of winter, the polar vortex collapses to easterlies in a final stratospheric100

warming event in spring (R. Black, McDaniel, & Robinson, 2006; R. X. Black & McDaniel,101

2007). While final warmings are typically induced by the radiative relaxation of the equator-102

to-pole temperature gradient as sunlight returns to the pole, they can also be dynam-103

ically induced by wave breaking in a manner similar to mid-winter SSWs (Hardiman et104

al., 2011; Hu, Ren, & Xu, 2014; Hu, Ren, Yu, & Xu, 2014). Final warmings can exhibit105

different surface impacts than mid-winter SSWs in the NH (Ayarzagüena & Serrano, 2009;106

Hardiman et al., 2011). In the SH the downward impact of the final warming tends to107

manifest in the tropospheric SAM (e.g., E. Gerber et al., 2010; E. P. Lim et al., 2018;108

Seviour et al., 2014; Son, Purich, Hendon, Kim, & Polvani, 2013; Thompson & Solomon,109

2005), which drives variations in surface climate throughout the SH (Bandoro, Solomon,110

Donohoe, Thompson, & Santer, 2014; E. P. Lim et al., 2018). This indicates that a skill-111

ful prediction of the SH stratospheric polar vortex in spring can provide an early warn-112

ing for the polarity of the surface SAM and associated SH climate in spring to summer,113

beyond the SAM’s typical two-week decorrelation time scale (A. G. Marshall, Hudson,114

Wheeler, Hendon, & Alves, 2011).115

The above described extreme events in the stratosphere remain difficult to predict116

deterministically despite significant progress in stratospheric representation, including117

higher model lids and increased stratospheric resolution (e.g. A. H. Butler et al., 2016).118

In idealized dynamical core models in ensemble mode, SSWs can on average be deter-119

ministically predicted 10 days in advance (E. P. Gerber, Orbe, & Polvani, 2009). For more120

complex prediction systems these predictive lead times are similar (Tripathi et al., 2016;121

Tripathi, Baldwin, et al., 2015) but can vary widely between different SSW events (Karpechko,122

2018; A. Marshall & Scaife, 2010; Noguchi et al., 2016; Taguchi, 2018; Taguchi, Masakazu,123

2016).124

Given the influence of the stratosphere on surface weather during NH winter and125

SH spring and the implied added predictability on S2S timescales (e.g. Baldwin et al.,126

2003; Scaife et al., 2016) it is crucial to understand the dynamics and predictability of127

the stratosphere itself. Due to the different mechanisms for the above described events128

there are reasons to expect different timescales of vortex evolution - and hence different129

predictability - for example during weak versus strong vortex events (Limpasuvan et al.,130

2005; Limpasuvan, V et al., 2004) in addition to the different surface impacts previously131

mentioned. Only recently, via the World Climate Research Program (WCRP) and World132

Weather Research Program (WWRP) S2S project, has an intercomparison of a large num-133

ber of state-of-the-art operational S2S prediction systems with stratospheric output been134

made possible. Here, we evaluate the predictability of the extratropical stratosphere of135

both hemispheres using this database, while the second part of this study (D. I. Domeisen136

et al., 2019, hereafter Part II) investigates the influence of the stratosphere on the pre-137

dictability of surface climate with a focus on the NH. Section 2 describes the S2S database138
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and our methodology, including the definition of stratospheric extreme events (section139

2.3). Section 3 evaluates the predictability of the winter stratosphere relative to the tro-140

posphere, while Section 4 considers the predictability of stratospheric extreme events.141

Section 5 provides a summary and discussion of the results.142

2 Methodology143

2.1 Data144

The focus of this study will be the analysis of hindcasts from the subseasonal to145

seasonal forecast project database (Vitart et al., 2017). The database is a repository of146

forecast and hindcast data from 11 different operational subseasonal forecast systems.147

The focus of this study is on the hindcast data, since it spans a broad range of differ-148

ent stratospheric states, at the expense of the large ensemble sizes characteristic of the149

real-time forecasts. Nine of the eleven systems are analyzed in detail in this study. Two150

models (KMA and HMCR) had to be excluded due to data issues. Table 1 lists the model151

systems included in our analysis along with specific details of each system and its out-152

put availability. The hindcast period differs substantially between different ensemble pre-153

diction systems due to their operational strategy. For the majority of the analysis in this154

study, the period 1996-2010, over which hindcasts are available for most prediction sys-155

tems, is used. Not all analyses in this study are able to employ all prediction systems,156

e.g. due to the differing length of the hindcasts or the different time periods for which157

hindcasts are available, hence different sections may use a more limited set of models or158

a different hindcast period depending on the specific requirements of a particular anal-159

ysis. An effort has been made to include as many models as possible into every analy-160

sis. Exceptions to the data listed in Table 1 will be noted.161

Table 1. Details of the prediction systems considered in this study, based on the data available

at the time of analysis. ’×’ indicates high-top models throughout this study, here referring to a

top model level above 0.1 hPa and a stratospheric resolution with several levels above 1 hPa. ALI

refers to the BoM data assimilation scheme. Differing numbers of ensemble members for UKMO

were used in this study, depending on the members available at the time of data acquisition for

each section.

Prediction system Initialization Hindcast period Ensemble size

BoM ERA-interim/ALI 1981-2013 33
CMA NCEP-NCAR R1 1994-2014 4
ECCC ERA-interim 1995-2014 4

ECMWF× ERA-interim 1997-2016 11
JMA× JRA-55 1981-2010 5

CNRM-Meteo× ERA-interim 1993-2014 15
CNR-ISAC ERA-interim 1981-2010 1

NCEP× CFSR 1999-2010 4
UKMO× ERA-interim 1993-2015 2-7

162

There are several ways in which the design of the prediction systems is important163

to consider when thinking about their ability to forecast the stratosphere. Of primary164

importance are the vertical resolution of the atmospheric model component, and the height165

of the model top level. Figure 1 shows the spacing of model levels for the nine systems166
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Figure 1. Schematic representation of model vertical resolution for all S2S prediction systems

used in this study. Each block represents the pressure range indicated on the y-axis. The number

of model levels in each range is shown numerically. The shading in each box is proportional to

the average level spacing [in kilometers] in that region of the atmosphere. The red number at the

top of each bar shows the total number of levels in each model. The dashed line indicates the

separation between high- and low-top models (see Table 1).

considered. The prediction systems are divided into two broad groups, i.e., high-top mod-167

els (as defined in Table 1), which fully represent the stratosphere (ECMWF, UKMO, JMA,168

NCEP and CNRM-Meteo), and low-top models (ECCC, CMA, CNR-ISAC and BoM).169

Note that the prediction systems are initialized with different reanalysis products in the170

atmosphere, i.e. JRA-55 (Kobayashi et al., 2015), ERA-Interim (Dee et al., 2011), NCEP-171

NCAR R1 (Kalnay et al., 1998), and CFSR (Saha et al., 2010) as indicated in Table 1.172

This may lead to differences in the models’ performance in the stratosphere. The detailed173

performance of different reanalysis products in the stratosphere has been reviewed by174

the SPARC Reanalysis Intercomparison Project (e.g. Long, Fujiwara, Davis, Mitchell,175

& Wright, 2017). In this study, we verify all hindcasts against ERA-Interim reanalysis.176

While this could be biased against systems initialized with a different reanalysis, in most177

cases sampling variability will be much larger than variability between reanalysis prod-178

ucts (E. P. Gerber & Martineau, 2018).179

2.2 Skill Measures180

In this study, skill is evaluated according to a range of measures that are commonly181

used in the literature. One common metric is the correlation coefficient r given by182

r =

∑T
t=1(Xmod − Cmod)(Xobs − Cobs)√∑T

t=1(Xmod − Cmod)2 ·
∑T

t=1(Xobs − Cobs)2
(1)

where X is a time-dependent variable, and the subscripts mod and obs denote the183

model ensemble mean and the reanalysis dataset, respectively. Cmod is the lead time de-184
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pendent model climatology, over the same period of time as the observed climatology185

Cobs. T is the number of events or time steps for which r is evaluated.186

To evaluate the spatial skill of the anomaly pattern, we use the anomaly correla-187

tion coefficient (e.g. Table 2 and Figs. 2 and 3):188

ACC =

∑T
t=1

∑S
s=1 w · (Xmod − Cmod)(Xobs − Cobs)√∑T

t=1

∑S
s=1 w · (Xmod − Cmod)2 ·

∑T
t=1

∑S
s=1 w · (Xobs − Cobs)2

. (2)

Spatial weighting by the cosine of latitude w and spatial averaging over S grid spaces189

is applied as an additional summation over the covariance and variance terms separately.190

This formulation of the ACC allows an a posteriori removal of systematic errors in the191

model hindcasts. In this study, the ACC and r are computed for the ensemble mean for192

each prediction system as a function of forecast lead time. The multi-model mean is the193

averaged correlation from all prediction systems. A skill level of 0.6 is used as a thresh-194

old to compare the different models, consistent with other studies of seasonal and sub-195

seasonal predictability.196

A further measure that has recently been introduced by Eade et al. (2014) is the197

ratio of predictable components (RPC), a property of ensemble hindcasts comparing the198

size of a predicted signal to that expected from their correlation coefficient:199

RPC =
r · σtot
σmod

(3)

with r as defined in equation (1). σmod is the standard deviation of the model ensem-200

ble mean, and σtot is the total variance in the ensemble, where σtot uses all ensemble mem-201

bers and start dates for each lead time. Thereby, the RPC is the ratio of the correlation202

coefficient multiplied by the standard deviation across all years and ensemble members203

(the variability we would expect the ensemble mean to contain given the correlation) to204

the standard deviation of the year-to-year variations in the ensemble mean (the variabil-205

ity we actually obtain from the system). RPC = 1 indicates that a forecast system per-206

fectly reflects the predictability of the observed system. Eade et al. (2014) showed that207

we expect an ensemble prediction system that is over-confident to have RPC < 1 and208

one that is under-confident to have RPC > 1. For RPC > 1 the system has less ensem-209

ble mean amplitude than expected by the correlation of the ensemble mean with the ob-210

servations (i.e., the ACC). This is found for many prediction systems on seasonal timescales211

and likely reveals deficiencies in the model (e.g., O’Reilly, Weisheimer, Woollings, Gray,212

and MacLeod (2018)).213

2.3 Classification of Stratospheric Events214

We investigate the predictability of extreme events in the polar stratosphere in sec-215

tion 4. Here we briefly describe how we classify these stratospheric events.216

Early winter weak vortex event. Weak (i.e., less than -1σ from the ERA-interim daily217

climatological mean) zonal mean zonal winds at 60◦N and 10 hPa that persist for at least218

a week beginning in the month of November. There are 4 of these events in the 1996-219

2010 period in ERA-interim.220

Strong polar vortex event. Strong polar vortex events are defined as periods when221

zonal mean zonal winds at 60◦N and 10 hPa exceed a threshold value. Following Tripathi,222

Charlton-Perez, et al. (2015) we use the 80th percentile of ERA-Interim November to223

March (NDJFM) winds over the 1980-2012 period, which is 41.2 m/s. We define the start224

of the event as the date when the winds exceed the threshold for the first time. This con-225

dition is set to ensure that the forecasts are not initiated during a strong polar vortex.226

An event must last for at least two days and events must be separated by at least 30 days.227

During the period 1996-2010, there are 12 strong polar vortex events.228
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Mid-winter SSW event. Though there are several possible definitions for a SSW229

event (A. H. Butler et al., 2015), here we base our analysis on zonal mean zonal wind230

reversals at 60◦N and 10 hPa (Charlton & Polvani, 2007), as listed in Table 2 of A. H. But-231

ler et al. (2017) for ERA-Interim (December - February (DJF) events only). During the232

1996-2010 period, there are 11 mid-winter SSW events.233

Negative heat flux events. Negative heat flux events are defined by extreme values234

of the daily zonal mean wave-1 meridional heat flux (v′T ′k=1, where k denotes the zonal235

wave number) computed from daily mean values of the meridional wind v and temper-236

ature T , and averaged from 60◦-90◦N at 50 hPa during January - March (JFM), as in237

Dunn-Sigouin and Shaw (2015). Negative events are identified when the 5-day running238

mean high latitude heat flux drops below the 5th percentile of the climatological distri-239

bution from reanalysis (-13.5 K ms−1). The central date of the events is defined at the240

day of minimum high latitude heat flux, and events must be separated by a minimum241

of 15 days. 10 events are identified from 1996-2010 (Table 1 in Dunn-Sigouin and Shaw242

(2015)).243

Final stratospheric warming events. The final warming is defined as the last date244

prior to June 30 (December 31) of each year when the ERA-Interim daily mean zonal245

mean zonal winds at 10 hPa and 60◦ latitude in the NH (SH) turn easterly and do not246

return to westerly for more than 10 consecutive days (A. H. Butler & Gerber, 2018). The247

final warming typically occurs around mid-April in the NH and mid-November in the248

SH at the 10 hPa level. This same definition is used for model runs initialized between249

February 1st (September 1st for the SH) and the date of the observed final warming. Note250

that if the zonal wind reverses less than 10 days from the end of the forecast, it is counted251

as a predicted final warming, although the criterion of not returning to westerlies can-252

not be evaluated in this case. Because there is a final warming every spring, there are253

14 observed events from 1997-2010. The climatological mean final warming date from254

ERA-Interim (over the longer 1981-2016 period) is April 15 in the NH and November255

20 in the SH.256

3 Evaluation of the Baseline Prediction Skill in the Stratosphere and257

the Troposphere258

The main purpose of this study is to investigate how well the prediction systems259

in the database simulate the predictability in the stratosphere and troposphere on sub-260

seasonal timescales. As a first step we characterize the baseline skill present in the pre-261

diction systems in the stratosphere and troposphere.262

The stratosphere and the troposphere have different characteristics when it comes263

to persistence and predictability. Large-scale variability in the stratosphere has signif-264

icantly longer decorrelation timescales than the troposphere (Baldwin et al., 2003; E. Ger-265

ber et al., 2010; E. Gerber, Polvani, & Ancukiewicz, 2008; Simpson, Hitchcock, Shep-266

herd, & Scinocca, 2011). The extent to which the decorrelation timescale is determined267

primarily by radiative timescales or a combination of radiative and dynamical processes268

is uncertain (Charlton-Perez & O’Neill, 2010; Hitchcock, Shepherd, Yoden, Taguchi, &269

Noguchi, 2013). The longer decorrelation timescales in the stratosphere result in enhanced270

prediction skill at subseasonal timescales in the stratosphere compared to the skill in the271

troposphere (Zhang, Shin, Dool, & Cai, 2013).272

Table 2 and Figure 2 show the prediction skill (equation 2) at 50 and 500hPa (de-273

fined here by the ACC, see equation 2), characterizing the model predictability in the274

middle stratosphere and the middle troposphere, respectively. The ACC decreases more275

slowly in the stratosphere than in the troposphere. All the prediction systems, even those276

with a poor stratospheric representation, are able to capture the enhanced prediction skill277

in the stratosphere compared to the troposphere. The predictability limit is defined as278
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Model
NH SH

Annual DJF JJA Annual DJF JJA
50hPa 500hPa 50hPa 500hPa 50hPa 500hPa 50hPa 500hPa 50hPa 500hPa 50hPa 500hPa

BoM 10.1 6.0 12.2 6.8 5.3 5.1 8.8 5.7 9.4 5.8 7.6 5.7
CMA 10.9 5.2 11.7 6.0 7.4 4.7 9.0 3.9 11.1 4.4 7.2 3.7
ECCC 15.5 8.3 17.4 9.2 11.2 7.5 13.3 7.9 14.5 8.2 11.4 7.9

ECMWF× 17.9 9.0 20.5 10.1 12.1 8.0 14.8 8.5 15.5 8.6 12.9 8.6
CNR-ISAC 12.0 6.9 12.9 7.3 9.1 6.6 10.7 6.7 11.6 6.8 9.4 6.6

JMA× 16.4 8.5 18.3 9.5 11.8 7.7 13.1 7.9 12.5 7.8 11.1 7.9
CNRM-Meteo× 14.2 7.3 16.4 8.0 10.2 6.6 13.4 7.1 15.0 7.2 11.5 7.2

NCEP× 14.3 7.8 17.6 8.7 8.4 7.0 12.3 7.2 13.7 7.3 10.4 7.2
UKMO× 15.1 8.1 17.2 9.0 11.0 7.4 12.8 7.5 13.8 7.5 11.4 7.5

MMM 14.0±2.4 7.5±1.2 16.0±2.9 8.3±1.3 9.6±2.2 6.7±1.1 12.0±1.9 6.9±1.3 13.0±1.9 7.1±1.2 10.3±1.8 6.9±1.4

Table 2. Maximum forecast lead time (i.e., predictability limit in days) determined by the

lead time when the ACC drops below 0.6, based on the period 1999-2010 for 30◦ - 90◦N and S,

respectively. Values that fall below one standard deviation of the MMM are italicized; values that

fall above one standard deviation of the MMM are bolded. × indicates high-top models.

the day when the ACC drops below 0.6. In the troposphere, the daily ACC drops be-279

low 0.6 typically at lead times of 6-8 days in both hemispheres regardless of the season.280

In the stratosphere of both hemispheres, the predictability limit extends to 12 days or281

longer in DJF. Although the stratospheric predictability limit is shorter in boreal sum-282

mer, it is still longer than tropospheric predictive timescales. The only exception is BoM283

in boreal summer which shows comparable prediction skills for the stratosphere and the284

troposphere. This is likely caused by an unrealistic stratosphere in this prediction sys-285

tem (Y. Lim, Son, Marshall, Hendon, & Seo, 2019). There is notable variation in the strato-286

spheric prediction skill among the prediction systems, with those with little stratospheric287

variation such as BoM and CMA having reduced prediction skill as compared to the multi-288

model average. In particular, the average of the high-top models (indicated by ×) for289

DJF in the NH is 18 days, while it is 13.6 days for the low-top models. While evaluat-290

ing these results it has to be kept in mind that the hemispheres are not fully symmet-291

ric. The enhanced persistence of stratospheric and tropospheric variability that can arise292

due to stratospheric events occurs during mid-winter (December to February) and spring293

(March to May) in the NH and during spring to early summer (October to December)294

for the SH (E. P. Lim et al., 2018; Simpson et al., 2011). The SH stratosphere in Decem-295

ber - February (DJF) tends to be more predictable than its NH counterpart in June -296

August (JJA), likely due to the later break-up of the polar vortex in the SH, leading to297

enhanced predictability in the SH. On the other hand, the NH stratosphere in DJF is298

more predictable than its SH counterpart in JJA. One possible reason for this are the299

stronger remote influences in the Northern Hemisphere winter that affect the stratosphere300

in winter. For the stratosphere, models also often show strongly enhanced predictabil-301

ity for periods of weeks to months after extreme stratospheric events such as SSW events,302

which are absent in the SH stratosphere in JJA.303

It is further found that the stratospheric prediction skill is highly correlated with304

tropospheric prediction skill. Figure 3 shows a scatter plot for the prediction skill shown305

in Figure 2 and Table 2. A significant linear relationship across nine prediction systems306

is found, indicating that the models with a better prediction skill in the stratosphere also307

exhibit a better tropospheric prediction skill. From this analysis it is however not pos-308

sible to infer any causality. In particular, the available model data does not allow us to309

distinguish if the better tropospheric prediction of high-top models is indeed due to a310

better resolved stratosphere, which might improve tropospheric predictability, or if pre-311

diction systems with a higher stratospheric resolution also exhibit better tropospheric312

predictions due to a better representation of processes unrelated to the stratosphere, or313

a combination of both.314

–8–©2019 American Geophysical Union. All rights reserved.



manuscript submitted to JGR: Atmospheres

x

x

x

x

x

Figure 2. ACC for geopotential height for the area (a-f) north of 30◦N and (g-l) south of

30◦S. For both hemispheres, the ACC is examined at 50 hPa (a-c, g-i) and 500 hPa (d-f, j-l) as a

function of lead time [days]. The results for JJA and DJF are plotted separately for the period

common to all prediction systems. Different colors denote individual prediction systems and the

black bold line indicates the multi-model mean, which is computed by averaging the ACC values

of all prediction systems. ’×’ indicates high-top models.
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315

While many prediction systems show appreciable skill in simulating large-scale NH316

winter stratospheric anomalies, they do so with a small signal-to-noise ratio (the so-called317

’signal-to-noise paradox’ (Scaife & Smith, 2018)). For the subseasonal prediction systems318

in the S2S database there is evidence that the same problem is also present, at least at319

lags beyond the limit of predictability in the troposphere. To diagnose signal-to-noise320

problems in the prediction systems, we examine the RPC diagnostic (Section 2.2, equa-321

tion 3) and its behavior as a function of lead time and pressure level for the NH winter322

stratosphere (Fig. 4). For all systems, the RPC starts close to 1.0, indicating, as expected,323

no initial signal-to-noise problem, but the RPC then subsequently grows larger than 1.0,324

indicating under-confident forecasts and a signal-to-noise issue. In the troposphere, the325

speed of this growth and the ultimate level of RPC varies between the systems, but an326

onset at around 10-20 days is typical, leading to the RPC reaching values of about 1.5-327

3.0. Note this is similar to the level found at the seasonal timescale, and the positive val-328

ues indicate under-confidence of the prediction systems (i.e., the prediction systems un-329

derestimate the predictability of the observations). In the stratosphere, the RPC is found330

to grow more slowly than in the troposphere. This is consistent with, but not obviously331

a result of, the higher predictive skill in the stratosphere. Despite the slower onset, the332

eventual values of the RPC attained in the stratosphere still tend to be large, in many333

systems equaling (e.g., CMA, NCEP) or exceeding (e.g. BoM) those reached in the tro-334

posphere. Other systems do not appear to be integrated sufficiently long for the signal-335

to-noise paradox to develop in the stratosphere, e.g., JMA.336

Overall, the results show that all systems in the S2S project possess the signal-to-337

noise paradox as a feature of their predictions. Note that the skill derived in this sec-338

tion is possibly dependent on the ensemble size of the forecasting systems. This has e.g. been339

shown to yield a difference for the tropospheric winter circulation on seasonal timescales340

(Athanasiadis et al., 2017).341

4 Predicting Stratospheric Events342

We now turn to prediction on S2S timescales in the extratropical stratosphere. In343

particular, this section analyzes the predictability of stratospheric extreme events that344

can subsequently influence surface climate on S2S timescales, as discussed in Part II of345

this study.346

Polar vortex events that influence surface climate include early and major mid-winter347

SSW events, strong vortex events, negative heat flux events, and final warming events.348

These extreme events, which are defined in section 2.3, have different characteristics and349

potentially different predictability. For example, for SSW events, anomalously large wave350

breaking is followed by strongly non-linear wave-mean flow interaction that can lead to351

quickly developing changes in the circulation. For strong vortex events, anomalously weak352

wave breaking gives way to slow radiative processes that slowly drive the circulation to-353

wards radiative equilibrium and hence a strong vortex. Negative heat flux events are as-354

sociated with reflection (a reversible process), which is different from wave breaking (an355

irreversible process), and hence different predictability timescales could be expected.356

Here we compare the predictability of these events during a common period 1996-357

2010. Five prediction systems (CMA, ECCC, ECMWF, JMA, and UKMO) were used358

in the analysis of all types of events for the NH to form the multi-model mean (black line359

in Fig. 5); additional modeling systems (BoM, CNR-ISAC, and CNRM-Meteo) were con-360

sidered in some cases where data was available, but are not included in the multi-model361

mean. NCEP is not considered for this analysis as its period of hindcasts begins in 1999.362

Note that only 2 ensemble members from UKMO were available for some initialization363

dates at the time of data acquisition for this section. The data is first bias-corrected by364
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Figure 3. Scatter plot showing the predictability limit (the day for which the ACC crosses

0.6) of geopotential height (a-b) north of 30◦N and (c-d) south of 30◦S for each model at 50hPa

vs. 500hPa for DJF (left) and JJA (right). The average for all prediction systems is shown as the

black square. A linear fit to the data points is shown as the solid line. The correlation coefficient

between the prediction skill at 50 hPa and 500 hPa is indicated in the upper-right corner of each

panel. ’×’ indicates high-top models.
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Figure 4. RPC (equation 3) for each prediction system as a function of lead time and height

for DJF. Below 100 hPa the RPC is calculated for the zonal means of zonal wind at 60◦N for

the North Atlantic-European sector between 90◦W and 60◦E. Above 100hPa the same diagnostic

calculated for the entire latitude circle is used. Before calculating the RPC, the data are aggre-

gated into 7-day running means. These two aspects are necessary so that a reliable RPC can be

obtained. As the correlation r and the ensemble mean become small, the RPC becomes ill de-

fined, resulting in very noisy estimates. To avoid potentially misleading noise, the plot is masked

where the correlation with observations is less than 0.2. For full zonal means at daily resolution

the tropospheric correlation is always less than 0.2 after about 20 days, making it impossible to

trace the growth of the RPC. ’×’ indicates high-top models.
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Figure 5. The average across all events of the percentage of ensemble members as a func-

tion of lead time [days] that detect the event within ± 3 days of the observed event for (a) early

stratospheric warming events, (b) strong polar vortex events, (c) SSW events, (d) negative heat

flux events, and (e) final warming events. The black line shows the multi-model mean based

on 5 prediction systems (CMA, ECCC, ECMWF, JMA, and UKMO). Dotted lines show where

25% and 75% of ensemble members detect the event. ’×’ marks the high-top models in the leg-

end. Where a prediction system was not used for the analysis or where there were not enough

available ensemble members (at least 10 members were required for a given lead time range) is

marked by an × in the color of the prediction system. Patterned black bars give the “false alarm

rate” (events that were predicted but not detected at the given lead times).
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Figure 6. Same as Fig. 5 but for SSW events separated into (a) displacement and (b) split

events. The black line corresponds to the multi-model mean from Figure 5c, the blue / red lines

indicate the multi-model mean for the displayed events only. A student t-test of the differences

between the detection of splits and displacements gives the following p-values for lead times from

left to right: [0.6948,0.0279,0.7550,0.357,0.0925,0.3740]. The false alarm rates shown by the black

patterned bars are for all SSW events, as in Fig. 5c.

removing the model climatology (leaving the year to be corrected out) and then adding365

back ERA-interim climatology. The bias-correction had the strongest influence on the366

detection of strong vortex and negative heat flux events at long-leads (not shown). In367

particular, after bias-correction, a smaller percentage of members across prediction sys-368

tems detected strong vortex events at long lead times (suggesting an overestimation of369

these events in the model climatology), and a greater percentage of detected negative370

heat flux events at long lead times (suggesting an underestimation of these events in model371

climatology, in agreement with results from the the Coupled Model Intercomparison Project372

Phase 5 (CMIP5) models (Shaw et al., 2014, Fig. 5)).373

Figure 5 shows the percentage of ensemble members for each prediction system that374

detects the observed event within ± 3 days of its actual date, for lead times averaged375

over 5-day periods prior to the event, which occurs on day 0. The bin length is chosen376

as a balance between having sufficient hindcasts in each bin for each event while resolv-377

ing the lead times before each event. The “false alarm rate” is the percentage of mem-378

bers that predict an event to occur within a 1-30 day lead time when no event was ob-379

served. The comparison of the hit rate with the false alarm rate in Fig. 5 provides a mea-380

sure of the predictive skill.381

Below, we describe the differences in the predictability between the different types382

of polar vortex events. The results should be prefaced by a number of caveats: 1) not383

all prediction systems produce a hindcast in each time bin for each event; 2) the num-384

ber of ensemble members varies across prediction systems; 3) the number of events is gen-385

erally small, due to the short period covered by the hindcasts; 4) hindcast data from dif-386

ferent model versions of a given model are sometimes used; 5) the ± 3-day window is an387

arbitrary choice which could matter for the accuracy in the detection of the events shown388

here; 6) the false alarm rates are used as a baseline for skill but the prediction systems389

could over- or underestimate these events, even after bias-correction; and 7) the percent-390

age of ensemble members forecasting an event is only one metric for the assessment of391
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predictability, and may be less reliable for models with a small number of ensemble mem-392

bers at a given lead time. Other skill evaluation techniques (such as in Karpechko (2018))393

return similar but not identical results.394

Four early winter weak vortex events events (one each in 1996, 2000, 2005, and 2009)395

are evaluated in the common S2S period. Each of these instances is associated with at396

least one ensemble member from the S2S hindcasts forecasting a major SSW in Novem-397

ber, while other ensemble members miss the event entirely by forecasting vortex inten-398

sification. We find that fewer than 50% of ensemble members accurately detect early warm-399

ing events prior to 6-10 days from the observed event, but almost all capture the event400

within 5 days (Figure 5a). The multi-model mean rises above the false alarm rate at lags401

up to 25 days from the event, suggesting some skill at longer leads. Two low-top systems,402

BoM and CMA, have difficulty predicting early winter weak vortex events even 5 days403

ahead of time, but two other low-top systems, ECCC and CNR-ISAC, perform similarly404

to high-top models at most lead times (and even slightly better at long lead times).405

Accurate detection of strong polar vortex events (Figure 5b) becomes highly prob-406

able (i.e., greater than 75%) up to 10 days before the event. Two exceptions are BoM407

and CMA. CMA has, on average, relatively low probability (about 70%) of detection even408

at lead times less than 5 days before the events. BoM clearly has problems with fore-409

casting a strong polar vortex event, which is likely due to a lack of stratospheric reso-410

lution in this model. JMA indicates the most skill at 6-20 day leads, but overall all sys-411

tems (with the exception of BoM and CMA) perform similarly. At lead times longer than412

15 days, the forecasted probability of detecting an event is between 5-60%, which typ-413

ically exceeds the averaged 30-day lead time false alarm rates. The enhanced detection414

of the event relative to the false alarm rate may indicate some skill even at lead times415

of 30 days.416

Previous studies (e.g., E. P. Gerber et al., 2009; Karpechko, 2018; Karpechko, Perez,417

Balmaseda, Tyrrell, & Vitart, 2018) have found predictability limits for major mid-winter418

SSWs of around 10-20 days. Here we find similar results for the S2S prediction systems419

(Figure 5c). While the percentage of ensemble members detecting an event does exceed420

false alarm rates at lead times of up to 15 days for most prediction systems, less than421

10% of members detect SSW events at long leads (greater than 25 days), and predictions422

do not exceed 50% of members until lead times of 10 days or less. Even at lead times423

of 5 days, a few of the prediction systems (CMA, BoM, and CNRM-Meteo) show 80%424

or less of members detecting the observed SSW. These results generally agree with pre-425

vious estimates of SSW deterministic predictability (Karpechko, 2018; Tripathi, Bald-426

win, et al., 2015), and indicate that predictability of such a major non-linear transition427

can be limited by both the predictability of Rossby wave propagation and their inter-428

action with the stratospheric mean state (R. Plumb, 1981).429

One more interesting implication of mid-winter SSW events is the type of SSW that430

occurs. In a common classification, there are two major types of mid-winter SSW events:431

(1) “split” events, for which the polar vortex splits into two separate vortices, and (2)432

“displacement” events, for which the polar vortex is distorted and displaced off the pole433

(e.g., Charlton & Polvani, 2007). Taguchi (2018) provides an analysis of the predictabil-434

ity in the S2S hindcasts of 5 SSW events (Dec 1998, Dec 2001, Jan 2009, Jan 2013 in435

the NH and Sep 2002 in the SH), showing that the vortex split SSWs (i.e., 2002, 2009,436

2013) were more difficult to forecast than the displacements (1998, 2001). Here, we ex-437

tend that analysis by considering the predictability of 11 NH mid-winter SSW events in438

ERA-Interim during the 1996-2010 period. A separate analysis separating split and dis-439

placement events for this larger number of events, i.e., 6 displacements and 5 split events440

(Figure 6), confirms the results from Taguchi (2018), that is, that displacement events441

tend to be more predictable than split events, especially at lead times of 1-2 weeks, though442

given the limited number of events this difference has limited statistical significance. While443

this points to potentially different mechanisms in the precursors and causes of these events444
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(e.g. D. I. V. Domeisen, Martius, & Jiménez-Esteve, 2018; Esler & Matthewman, 2011;445

Martius, Polvani, & Davies, 2009; Matthewman & Esler, 2011), it will have to be fur-446

ther investigated if this difference is indeed robust and what the reasons for these dif-447

ferences are.448

Next, we consider the predictability of negative eddy heat flux events (Figure 5d).449

Mukougawa, Noguchi, Kuroda, Mizuta, and Kodera (2017) used an ensemble forecast450

model to show that the predictive lead time of a March 2007 negative heat flux event451

was one week. Extending the analysis to multiple extreme negative stratospheric heat452

flux events, here we find that the multi-model mean exhibits predictive skill at lead times453

of up to 30 days. The performance again varies between prediction systems, with JMA454

and CNRM-Meteo showing the highest skill at long leads, and BOM and CMA show-455

ing weaker skill at most leads.456

Finally, we find that the predictability of final warmings is higher for longer lead457

times compared to other events (Figure 5e). However the false alarm rate is also larger458

than for other events since the prediction systems climatologically must predict a final459

warming every year. The detection rate rises above the false alarm rate at lead times of460

up to 25 days. Note also that this particular period (1996-2010) comprises 10 “late” (i.e.,461

after April 15th) final warmings and only 4 “early” (i.e., before April 15th) final warm-462

ings. This is relevant since late final warmings are more predictable at longer lead times463

than early, dynamically-driven final warmings, which show predictability more similar464

to mid-winter SSW events (A. Butler, Charlton-Perez, Domeisen, Simpson, & Sjoberg,465

2019).466

We now perform the same analysis for the SH to obtain the model skill for predict-467

ing the timing of the final stratospheric warming events in the SH using the same ap-468

proach as for the NH discussed above. In the SH, the maximum variability of the po-469

lar vortex is found in spring in the upper stratosphere when the stratospheric polar night470

jet seasonally weakens and becomes more susceptible to wave forcing from the troposphere471

(Byrne & Shepherd, 2018; Graversen, RG & Christiansen, B, 2003; Kuroda & Kodera,472

1998; E. P. Lim et al., 2018; Randel, W, 1988; Sheshadri, A & Plumb, R A, 2016; Sh-473

iotani & Hirota, 1985; Thompson & Wallace, 2000). Anomalous weakening and warm-474

ing (strengthening and cooling) of the SH spring polar vortex generally leads to an ear-475

lier (later) final warming event (Byrne & Shepherd, 2018; Shiotani, Shimoda, & Hirota,476

1993).477

Figure 7 assesses the skill of the sub-seasonal forecasting systems in predicting fi-478

nal warming events in the SH. All models show skill (relative to the false alarm rate at479

these leads, given in black bars), even out to lead times of 30 days. As for the NH, the480

high-top models tend to show the highest skill, though it is notable that several low-top481

models such as CNR-ISAC and ECCC show significant skill for all lead times. In com-482

parison to the NH final warmings, the false alarm rates tend to be smaller in the SH, and483

predictability (the percentage of ensemble members predicting the correct date in com-484

parison to the false alarm rate) can be found for longer lead times: while in the NH, the485

prediction rate falls below the false alarm rate as early as at lead times of 16 to 20 days486

before the event for several models, this is not the case for any model in the SH out to487

30 days before the final warming event. The multi-model mean predictability is similar488

to the NH, though it decays faster for lead times of 6 to 10 days, while it remains high489

for these lead times in the NH. Overall, this indicates a higher predictability of the fi-490

nal warming events at short lead times for the NH, but higher predictability for long lead491

times of 3-4 weeks for the SH. The predictability at longer lead times in the SH might492

arise due to the smaller variability in the timing of the SH final warming compared to493

the NH, despite the observed trend in the timing of the final warming due to ozone vari-494

ability and trends (R. X. Black & McDaniel, 2007; Sheshadri, A & Plumb, R A, 2016;495

Thompson et al., 2011). Given that almost all models use non-interactive or climatolog-496

ical ozone, this demonstrated forecast skill to predict the timing of the SH final warm-497
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Figure 7. Same as Fig. 5e but for final warming events in the Southern Hemisphere. The false

alarm rates are shown by the black patterned bars. The black line shows the multi-model average

over all prediction systems displayed here.

ing indicates that dynamical processes are the dominant drivers of predictability for the498

final warming, but there is scope for further improvement of forecast skill by including499

prognostic ozone (e.g. Seviour et al., 2014).500

While it is difficult to directly compare the predictability of different types of events,501

given the differences in the number of events and their time of occurrence in each case,502

in general we can conclude the following:503

(a) Models with poorer stratospheric resolution or a low model top such as e.g. CMA504

and BoM show a weaker performance in predicting stratospheric events. Note that BoM’s505

top level below the model lid is at 10 hPa, so using metrics based on 10 hPa output may506

not be physically meaningful for this prediction system because of strong damping of wave507

driven processes by the deep sponge layer. However, ECCC, despite its low model top508

(see Figure 1), has a predictability of stratospheric events that is comparable to mod-509

els with a well-resolved stratosphere.510

(b) The probability of accurately detecting the observed event increases as lead time511

decreases, and becomes large (greater than 75%) at lead times of up to 10 days before512

the events. The probability of accurately detecting the observed event has less depen-513

dence on lead time between 30 and 15 days before the event. For these lead times, fore-514

cast probability is between 5-50%, with some types of events exhibiting longer-lead pre-515

dictability than others. Strong vortex events and final warmings appear somewhat more516

predictable at longer leads than SSW events, which hints at the different mechanisms517

causing these events. The lower predictability of SSW events is likely linked to their more518

dynamical and wave-driven nature, while more gradual and/or radiatively driven pro-519

cesses, e.g. strong vortex or late final warming events, tend to be more predictable (A. But-520

ler et al., 2019). While we here provide a first look at the overall predictability of these521

events in the S2S database, more work will have to be done to fully understand the fac-522

tors that drive some events to be more predictable than others.523
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5 Discussion and Outlook524

In this study, we have examined the predictability in the stratosphere using the sub-525

seasonal prediction systems from the S2S database (Vitart et al., 2017). These systems526

provide important operational guidance for prediction on S2S timescales, so it is impor-527

tant to understand the processes that give rise to predictability, including those that in-528

volve the stratosphere. This study focuses on evaluating the predictability of the strato-529

sphere itself, as extreme events in the stratosphere can have significant impacts on the530

predictability of surface weather, which is investigated in Part II of this study (D. I. Domeisen531

et al., 2019).532

Overall, the stratosphere exhibits longer predictability timescales as compared to533

the troposphere, as exemplified by the slower decrease in the prediction skill in compar-534

ison to the troposphere. For most models, predictability beyond two weeks is typical in535

the stratosphere. In addition, the stratosphere exhibits a slower growth of the signal-to-536

noise problem as compared to the troposphere. The stratosphere also exhibits a range537

of extreme events, however, stratospheric extreme events themselves tend not to be pre-538

dictable beyond deterministic timescales and exhibit similar predictability to tropospheric539

weather. This is in particular the case for sudden stratospheric warming events, which540

are predicted by up to 50% of the ensemble members in all models out to only about a541

week. Events that are less abrupt in nature, such as late final warming events and strong542

vortex events tend to be more predictable, with up to 50% of the ensemble members pre-543

dicting the occurrence of the event 2 weeks in advance (see also: A. Butler et al., 2019).544

Final warming events in the SH tend to be more predictable than those in the NH.545

Due to the limited representation of ozone on the S2S models, it is not possible to546

assess the role of ozone on predictability using the current set of models. Given the pos-547

sible influence of ozone on the dynamical evolution of the stratosphere in both hemispheres548

(Ivy et al., 2017; Ivy, Solomon, & Rieder, 2016; Keeble, Braesicke, Abraham, Roscoe, &549

Pyle, 2014; Rieder, Chiodo, Fritzer, Wienerroither, & Polvani, 2019; Seviour et al., 2014;550

Solomon, Haskins, Ivy, & Min, 2014), an improved representation of stratospheric ozone551

might further increase the predictability of the stratosphere on sub-seasonal and longer552

time scales. Significant differences can be found in the predictability of stratospheric events553

between high-top and low-top models, with the high-top models exhibiting significantly554

higher predictability of stratospheric extreme events as compared to low-top models. Note555

that here, high-top refers to models with both a high model top and an improved strato-556

spheric resolution.557

It should be noted that the estimates of skill in the prediction of various param-558

eters in this study are dependent on the frequency and ensemble size of the hindcasts559

in the S2S database. Ensemble size has been shown to have a marked influence on the560

skill of ensemble forecasting of the mid-latitude winter circulation (e.g. Athanasiadis et561

al., 2017), with larger ensembles tending to be more skillful. Operational requirements562

within the centres contributing to the S2S dataset frequently mean that hindcast ensem-563

ble sizes are considerably smaller than those of operational forecasts. As a result, when564

the same systems are used to produce forecasts in real-time, they may have levels of skill565

that exceed those shown here. It might be reasonable to assume, therefore, that the skill566

shown here is a lower limit for the skill of real-time operational forecasts. In a similar567

way, our results cannot be used to infer the relative performance of the underlying mod-568

els within the prediction systems, as any differences in skill measures may be a result of569

differences in their ensemble size and initialisation strategy rather than the model itself.570

Overall, this study shows a clear dependence of S2S prediction skill on the season571

and the type of extreme event in the stratosphere for all models. In addition, a clear dif-572

ference in predictability between high-top and low-top models can be observed, with a573

significantly better prediction of stratospheric extreme events in high-top models. While574

this study provides an overview of the prediction skill available in the S2S database, fur-575
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ther detailed studies of S2S prediction skill for the stratosphere will be necessary in or-576

der to assess the full range of stratospheric predictability, especially with further strato-577

spheric data becoming available in future versions of the S2S database.578
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