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Abstract
Diet-microbe interactions play an important role in modulating the early-life microbiota, with Bifidobacterium strains and
species dominating the gut of breast-fed infants. Here, we sought to explore how infant diet drives distinct bifidobacterial
community composition and dynamics within individual infant ecosystems. Genomic characterisation of 19 strains isolated
from breast-fed infants revealed a diverse genomic architecture enriched in carbohydrate metabolism genes, which was
distinct to each strain, but collectively formed a pangenome across infants. Presence of gene clusters implicated in digestion of
human milk oligosaccharides (HMOs) varied between species, with growth studies indicating that within single infants there
were differences in the ability to utilise 2′FL and LNnT HMOs between strains. Cross-feeding experiments were performed
with HMO degraders and non-HMO users (using spent or ‘conditioned’ media and direct co-culture). Further 1H-NMR
analysis identified fucose, galactose, acetate, and N-acetylglucosamine as key by-products of HMO metabolism; as
demonstrated by modest growth of non-HMO users on spend media from HMO metabolism. These experiments indicate how
HMO metabolism permits the sharing of resources to maximise nutrient consumption from the diet and highlights
the cooperative nature of bifidobacterial strains and their role as ‘foundation’ species in the infant ecosystem. The intra- and
inter-infant bifidobacterial community behaviour may contribute to the diversity and dominance of Bifidobacterium in early
life and suggests avenues for future development of new diet and microbiota-based therapies to promote infant health.

Introduction

The early-life developmental window represents a critical
time for microbe–host interactions as this is when foundations
for future health and well-being are established. Colonisation
of pioneer microbes shortly after birth represents a key first
step in this mutualistic relationship; shaping the developing
microbial community, and in turn impacting numerous host
physiological processes [1–5]. Although the microbiota of
adults is complex in nature, the gastrointestinal (GI) tract of
full-term healthy infants is relatively simplistic, dominated by
the genus Bifidobacterium that can persist into early child-
hood [3, 6]. In the first months of birth, the loss of Bifido-
bacterium species or gain of other bacteria during this critical
window of opportunity, may significantly alter the ‘natural’
progression of the microbial community that may lead to a
variety of negative consequences for host health including a
predisposition to autoimmune/metabolic diseases (like aller-
gies and childhood obesity) [1, 2].

Due to the high abundance of Bifidobacterium within
the infant gut, this genus can be considered a foundation
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microbiota member that strongly influences the intestinal
environment, the structure of burgeoning microbial commu-
nities in early life, and ultimately host development [7, 8].
Infant diet is suggested to be one of the key factors that shapes
the early-life microbiota, and breast-feeding encourages Bifi-
dobacterium growth within the infant gut, thus highlighting a
strong diet-microbe association [9]. Recently the WHO and the
Scientific Advisory Committee on Nutrition (UK) released new
guidelines regarding the optimal time to start breast feeding and
highlighted the health benefits associated with solely breast-
feeding infants [9, 10]. Indeed, breast-fed and formula-fed
infants differ in microbial composition [11], including sig-
nificant differences in bifidobacterial populations, which has
also been linked to differential health outcomes e.g., induction
of allergies, asthma, and obesity in formula-fed infants [11, 12].
Breast milk contains prebiotic human milk oligosaccharides
(HMOs) that preferentially feed beneficial gut bacteria,
including Bifidobacterium [13]. HMOs are unconjugated gly-
cans with a lactose core varying in chain length from 3 to 15
carbohydrates (glucose, galactose, fucose, N-acetylglucosamine
(GlcNAc), and N-acetylneuraminic acid (NeuAc) or sialic acid)
[14, 15]. The lactose HMO backbone can additionally be
fucosylated or sialylated to form trisaccharide HMO structures,
termed 2′ or 3′-fucosyllactose (2′or and 3′ or 6′-sialyllactose
(3′ or 6′SL), respectively (reviewed in [15]). The variety of
HMO appears endless; to date over 200 different structures of
HMOs have been identified in breast milk [15].

Establishment of this breast milk associated bifidobacterial
dominant community is aided, in part, by the abundance of
carbohydrate utilisation genes [16, 17], and specific gene
clusters allowing for metabolism of HMOs [18–20], which
are absent in many adult associated strains [13]. Notably,
previous work has indicated that multiple Bifidobacterium
strains coexist in a single infant GI tract, rather than one strain
dominating and competitively excluding all other strains [21].
To investigate these key community dynamic questions, we
have probed the genomic and phenotypic similarities between
bifidobacterial strains that coexist in the same individual,
including their responses to specific early-life diet compo-
nents, namely HMOs. By examining microbial interactions on
a strain-level we provide important insights into how multiple
species of Bifidobacterium coexist within a single infant in
early life, which may have implications for design of diet- and
microbial-based early-life therapies.

Results

Bifidobacterium dominate the gut microbiota of
breast-fed infants

To investigate bifidobacterial community interactions in
early life, the faecal microbial community profiles from

three full term, healthy infants (herein termed infant V1,
V2, and V3) were subjected to metataxonomic profiling
using 16S rRNA gene sequencing (Figs. 1a, S1A and
Tables S1 and S2). At the time of sample collection, all
infants were of similar age (mean= 145 ± 38d), born vag-
inally and exclusively breast-fed (two isolates from infant
V3 where isolated from an earlier stool sample, Fig. S1B).
In agreement with previous studies [22–24], we observed a
high prevalence of Bifidobacterium in each infant faecal
sample (mean= 82.53 ± 12.36%). Further analysis indi-
cated a dynamic bifidobacterial community comprised of
different strains and species and as such we chose multiple
Bifidobacterium strains to explore how these genus-specific
microbial community interact with each other. Strains were
next examined for probiotic-traits (‘live microorganisms
which when administered in adequate amounts confer a
health benefit on the host’ [25]); these traits include (but are
not limited to) the ability to survive in aerobic conditions,
bile acids, and after acid shock (pH2 akin to stomach acid;
Fig. S2). Briefly, we found that LH23 from infant V2 was
able to withstand exposure to 0.3% bile salt when compared
to other strains tested (Fig. S2A). Examining isolate
response against specific bile acids including the hydrolysis
of taurocholic, taurodeoxycholic, and sodium glycodeox-
ycholate bile acids demonstrated variability in strain
responses. Strain LH12 from infant V1 could only use the
taurodeoxycholic bile acid; whilst isolates from the other
infants, such as LH206 and LH277 from V3 could not
hydrolyse any of the bile salts tested regardless of the fact
these strains both possess a known bile salt hydrolase gene
(Tables S3 and S4). We also found high variability between
the survival ability of strains from the same infants (and
within the same species, species annotation described
below) when tested after against oxygen exposure and acid
shock. In total, 18 of 19 strains showed resistance to all the
above environmental stressors, properties that are advanta-
geous when choosing strains for use as probiotics [25].

As the phenotypic tests suggested there may be strain-
level differences, we sequenced and performed comparative
genomic analysis on all novel 19 bifidobacterial strains.
Sequencing and assembly using the PROKKA pipeline
resulted in sets of contigs ranging from 7 to 46 per strain
(Table S1). The G+C content ranged from 56.50% for LH9
to 60.04% for LH277, while the number of predicted ORFs
was lowest in LH11 (1888), and highest in LH23 (2521)
(Table S1). Genome sizes ranged from 2.25Mb (LH13) to
2.75Mb (LH23), with an average of 2.38Mb, consistent
with previously published data [26]. Genetic relatedness
based on core-genome phylogeny (Fig. 1b) and average
nucleotide identity (ANI) values (Fig. S3), indicates clus-
tering into three main phylogenetic groups; Bifidobacterium
longum (encompassing the members of the longum and
the infantis subspecies), Bifidobacterium breve and
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Fig. 1 a Faecal bacterial community profiles of three healthy, full-term
infants as determined by 16S rRNA gene sequencing. Paired-end reads
were generated using the MiSeq Illumina platform, all data sets were
normalised and relative abundance of each bacterial taxa is represented
in percentages of number of total reads for the top ten most prevalent
genus in each infant. Bar colours represent different genus taxa, and
bar lengths signify the relative abundance of each taxon. 16S rRNA
bacterial profiles are named according to the sample used for bifido-
bacteria isolation. V1 at 102 days of age, V2 at 174 days of age, and
V3 at 159 days of age. The number of reads obtained by 16S rRNA
gene sequencing data for each sample can be found in Table S2.

b Core-genome phylogeny of 83 Bifidobacterium isolates, 19 of which
are novel strains identified in this study and denoted by arrows and the
annotation of LHXX. Isolates from infant V1 are denoted with a red
star, V2 with a purple circle, and V3 with a blue triangle. Bootstrap
values >70 are shown with a yellow square on each node. c ORFs from
each genome was submitted to eggNOG-mapper (http://eggnogdb.
embl.de/#/app/emapper) for functional classification. The proportion
of ORFs for each classification was calculated and is presented as a
percentage of total ORFs in each genome. The values indicated for
each orthologous group represent the average percentage of ORFs in
that group for all genomes in that infant
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Bifidobacterium pseudocatenulatum groups. Strains isolated
from infant V1 were classified as either B. longum sub-
species longum (hereafter referred to as B. longum, LH12)
or B. pseudocatenulatum (LH9, LH11, LH13, LH14);
V2 strains classified as B. breve (LH21, LH24) or B.
longum subspecies infantis (hereafter referred to as
B. infantis, LH23), and V3 strains were classified as either
B. pseudocatenulatum (LH656, LH657, LH658, LH659,
LH662, LH663), B. infantis (LH664, LH665, LH666), or B.
longum (LH206, LH277) (Fig. 1b).

Functional annotation of genomes of
Bifidobacterium from infants—carbohydrate
utilisation

We next functionally characterised the open reading frames
of each genome with EggNOG-mapper. This identified car-
bohydrate transport and metabolism as the second most
abundant genes present in all genomes, linking to the glycan
rich environment of the colon [27, 28] (the most annotated
gene function was: unknown function; Fig. 1c and
Table S5A). V1 strains had the largest proportion of carbo-
hydrate metabolism and transport genes (10.32%), whilst
strains from infant V2 and V3 were slightly lower (10.06%
and 9.53% respectively). Intraspecies gene differences in
carbohydrate metabolism have been well described for B.
pseudocatenulatum (albeit limited), and more so for B.
longum and B. breve [29–31]. The B. pseudocatenulatum
genome has a high proportion of glycosyl hydrolase family
(GH)-43 enzymes that aid in the degradation of complex
plant glycans, similar to other species including B. dentium
and Bifidobacterium adolescentis [32]. As we isolated a
number of B. pseudocatenulatum strains from a single infant
—consistent with other studies [31]—the ROARY pipeline
was used to identify unique genes in the pangenome from
infants V1—333 unique genes (215 functionally assigned)—
and V3—333 unique genes (236 functionally assigned,
Table S6A). Many of these genes were annotated as
encoding proteins involved in carbohydrate transport and
metabolism (Table S5B). Further B. pseudocatenulatum
investigation (Fig. S4A, Tables S6B and S6C) indicated
strains from the same infant shared many core genes (Infant
V1= 1779 genes; Infant V3= 1839 genes), with differences
in accessory genes (Infant V1= 108 genes, Infant V3= 83
genes, Fig. S4). Notable characterisation findings indicated
V1 strains LH13 and LH14 possess unique putative carbo-
hydrate utilisation gene clusters; LH13 encodes a beta-
xylosidase, ABC transporters and multiple permeases
(LH_13_00067-LH_13_00071), while the LH14 cluster
encodes a beta-D-glucosidase, alpha-xylosidase, two per-
meases and a putative sugar-binding periplasmic protein
precursor (LH_14_01835-LH_14_01839) which suggests
this strain may perform xylan degradation (Fig. S4A). LH14

genome also encodes fimbriae and sortase genes implying
the presence of sortase dependent fimbriae (Fig. S4A). LH13,
LH656 and LH658 have partial but incomplete prophage
clusters within their genomes (Tables S7A and S7B). How-
ever, due to the draft nature of the genomes analysed, and
regardless of differences in the accessory genome (discussed
above and in Tables S7A and S7B), isolates of the same
species, from the same infant, at the same time point may in
fact be clonal strains of each other rather than independent
isolates.

As Bifidobacterium possess a large repertoire of glyco-
side hydrolases (GH) that facilitate digestion and metabo-
lism of glycans in the gut we analysed and compared GH
repertoires (Figs. 2 and S4B). A total of 39 different GH
families were found in all Bifidobacterium strains isolated;
~62 GH genes (3.68 % of OFRs) in B. pseudocatenulatum
strains, followed by ~48 GH genes (2.82% of ORFs) per B.
longum genome, 46 GH genes (2.51 % of ORFs) per B.
breve genome, and finally 42 GH genes (2.11% of ORFs)
per B. infantis genome, consistent with published data [27].

The predominant GH in all strains was GH13 which
represents enzymes for the hydrolysis of alpha-glucosidic
linkages in plant di-, oligo-, and polysaccharides [29].
Whilst, the second most abundant GH family present in
infant V1 and V3 (but not infant V2) was GH43, which
contains enzymes like beta-xylosidases (involved in xylan
digestion). The presence of GH33 gene cluster that encodes
exo-sialidases in B. infantis and B. breve strains from
infants V2 and V3, suggests these strains may be capable of
directly utilising host mucins to liberate sialic acids, as well
as metabolise free sialic acids in the gut (for potential cross-
feeding, [33] (Fig. 2). However, the absence of this GH
gene (in some B. pseudocatenulatum and B. longum strains)
does not strictly indicate a lack of cross-feeding of sialic
acids [34]. Other highly represented GH families within
Bifidobacterium populations identified were GH3, GH2,
and GH42. GH3 family members include beta-glucosidases
that hydrolyse a wide variety of glycans present in plant cell
walls; while GH2 and GH42 family members contain beta-
galactosidases that are active on galactooligosaccharides
and galactans found in plant cell walls, but can also meta-
bolise lactose, the primary sugar in breast milk.

Functional annotation of genomes of
Bifidobacterium from infants—human milk
oligosaccharide utilisation

Many early life-associated bifidobacterial species and
strains contain GH genes that are specifically target
HMOs for degradation and metabolism [35]. B. infantis,
B. breve, B. longum, and B. pseudocatenulatum
have genomic clusters required for HMO utilisation
[18, 19, 35, 36], thus we searched for the presence of

M. A. E. Lawson et al.



these clusters in our novel 19 strains. Genomically
B. infantis ATCC 15,697 has a large 45 kb HMO cluster
(BLON_RS12070-BLON_RS12215) that allows for
digestion of multiple HMOs [18]. In our strains, we
identified homologous HMO clusters in B. infantis LH23,
LH664, LH665, and LH666 (Fig. S5A); although our
strains often had altered gene cluster organisation to the
published cluster (Fig. S5A) potentially due to incomplete
genome information.

A specific gene cluster has also been identified for 2′FL
(fucosyllated HMO) in B. longum SC569, which contains
an alpha1-3/4-fucosidase (GH29) and/or alpha1-2 fucosi-
dase (GH95) within a carbohydrate utilisation gene cluster
(BLNG_01254-BLNG_01264) [36]. We could not identify
any homologous gene clusters or any potential alpha-
fucosidases in our B. longum strains; but B. infantis
(LH23, LH664, LH665, and LH666) strains from infant
V2 and V3 did have these encoded (data not shown). In
addition, a similar 2′FL gene cluster in B. pseudocatenu-
latum type strain DSM 20438, containing a single alpha-
fucosidase (GH95) as previously reported [36], was also

identified in B. pseudocatenulatum strains from infant V1:
LH9, LH11, LH13, and LH14, including the key GH95
gene (Fig. 3a).

LNT and LNnT HMO clusters have been well annotated in
B. breve UCC2003; lnt cluster (BBR_RS13080-
BBR_RS13100); lac cluster (BBR_RS18470-BBR_RS18480),
the nah cluster (BBR_RS18490-BBR_RS18520) and lnp/glt
cluster (BBR_RS18650-BBR_RS18675) [19]. Homologues to
the lac, nah, and lnp/lgt clusters were identified in B. breve
LH21 and LH24. The lnp/glt cluster was also identified in B.
longum strains LH12, LH206, and LH277 [37]. Interestingly,
the lnt HMO cluster was not present in B. breve LH21 and
LH24; however, we could identify homologous clusters in B.
infantis strains LH206, LH277, and B. longum strain LH12. It
should be noted that these are draft whole genome sequences
and thus, it is possible that the absence of the lnt cluster in
LH21 and LH24 may be due to this.

HMOs that are sialylated require sialidase enzymes for
degradation such as the extracellular sialidase (SiaBb1)
found in B. bifidum ATCC 15696 that permits sialylated
HMOs digestion on the bacterial cell surface [38, 39]. Our
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Colour KeyFig. 2 Functional classification
of Bifidobacterium genomes.
Presence of genes encoding
glycosyl hydrolases was
determined using the dbCAN
server (http://csbl.bmb.uga.edu/
dbCAN/) which annotates genes
based on HMMs of GH
generated from data in the CAZy
database (http://www.cazy.org).
The heatmap shows the number
of ORFs annotated as GH for
each GH family (y-axis) for each
genome (x-axis) (Enumeration
of GH ORFs in subfamilies of
GH5, GH13 and GH43 is shown
in Supplementary Fig. 4B)
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analysis identified sialidases in B. infantis strains LH23,
LH664, LH665, and LH666; however, in all strains the
transmembrane domains was absent suggesting that these
strains may perform intracellular digestion of sialylated
HMOs (Table S8), as previously shown for B. infantis
ATCC 15697 [18].

The presence of different HMO utilisation clusters in
species within a single infant further highlights the adaptation
of Bifidobacterium to a diet rich in HMO and potentially
facilitating establishment within the early-life gut.

Phenotypic characterisation of HMO usage

Next to lactose, HMOs are the second most abundant car-
bohydrate in breast milk (5–15 g/L in breast milk) [40–42].
Although we identified putative HMO genomic clusters in
our strains, we next sought to investigate the ability of our
strains to use HMOs as a sole carbon source for growth; 2′
FL and LNnT (Fig. 3b–d). We identified 9 strains capable of
using 2′FL and 12 strains capable of using LNnT (or both)
from each infant. In agreement with genomic analysis

indicating that V1 B. pseudocatenulatum strains (LH9,
LH11, LH13, and LH14) contained a known fucosylated
HMO utilisation gene cluster, we also observed growth on
2′FL [36] (Fig. 3a–c). The B. longum LH12 strain from
infant V1 did not contain a 2′FL gene cluster and was
unable to use this HMO for growth. Testing strains from
infant V1 for growth with the HMO LNnT indicated that
only B. pseudocatenulatum LH11 could use the more
complex HMO, despite lacking known enzymatic clusters.
B. infantis LH23 isolated from infant V2 could degrade
both 2′FL and LNnT and contains key GH genes previously
associated with the metabolism of these HMOs [18, 43].
Neither B. breve strains LH21 or LH24 grew on 2′FL
potentially as they lack a GH29 fucosidase gene [46]. All
three strains (LH21, LH23, and LH24) grew well with
LNnT as a sole carbon source (Fig. 3d). The distinct
genomic cluster implicated in LNnT metabolism in B. breve
UCC2003 was not identified in LH24, but this may be due
to the draft nature of the genome. The bifidobacterial
community within infant V3, containing the largest group of
isolates, however none of the B. pseudocatenulatum strains

Fig. 3 HMOs function as key carbon sources for Bifidobacterium
growth. a HMO heatmap illustrating the presence of known HMO
gene clusters in the 19 novel infant isolates (see “Methods” section for
details); b chemical structure of HMO 2′FL and LNnT generated by
ChemDraw; c Growth kinetics of all 19 strains in mMRS with either

HMO 2′FL or d LNnT as a sole carbon source; all strains from each
infant are illustrated together. Data shown are a representative graph of
three independent experimental repeats, containing the mean from
duplicate/triplicate well measurements

M. A. E. Lawson et al.



could use either HMOs tested (possibly linking to absence
of appropriate encoded HMO clusters). All B. longum and
B. infantis strains metabolised both HMOs tested (although
there is variability in growth kinetics for each strain), sup-
porting previous studies and our genomic analysis indicat-
ing B. infantis can grow on a wide range of HMOs, and
some B. longum strains can also metabolise 2FL and LNnT
[18, 30, 36, 43]. When HMO utilisation was tested in type
strains for B. longum, B. infantis, and B. pseudocatenulatum
we found there was not a global ability of all strains within a
species of Bifidobacterium to utilise HMOs (Fig. S5B),
demonstrating that HMO utilisation is dependent on the
type of HMO and the strain (rather than the species) tested.

HMOs degradation by Bifidobacterium influences
growth dynamics of neighbouring strains

Previous work, including data presented in this study, indi-
cates that multiple Bifidobacterium species and strains exist as
a community within a single microbial (i.e., infant) ecosystem
[23, 24]. To address if infant-specific strains modulate growth
of neighbouring strains we first generated spent or ‘condi-
tioned’ media from identified ‘HMO-degraders’ strains
(Fig. 4a; HMOs 2′FL; Fig. 4b, or LNnT; Fig. 4c. This con-
ditioned media were then used as a growth substrate for other
‘non-HMO users’ identified within the same microbial
(infant) community (Fig. 4a). 2′FL derived-substrates from all
B. pseudocatenulatum strains in infant V1 (LH9, LH11,
LH13, LH14) supported growth of their ‘non-HMO user’ B.
longum LH12 (Fig. 4b), indicating potential cross-feeding.
Conversely, infant V2-associated B. infantis LH23 2′FL
HMO degradation metabolic by-products did not suppport B.
breve (LH21 and LH24) growth. Infant V3 B. longum and
two B. infantis isolates (LH206, LH277, LH664, and LH665
respectively) grew on 2′FL (Fig. 3c). However, only condi-
tioned media from isolate B. longum LH206 were able to
support the growth of other isolates within the same infant
(Fig. 4b), even though bioinformatic analysis did not identify
any alpha-fucosidase genes in LH206. Moreover, LH206-2′
FL conditioned media enhanced the growth of all tested
strains (B. infantis and B. pseudocatenulatum), which sug-
gests that metabolism of 2′FL by LH206 may generate a
wider variety of growth-promoting components. To confirm
conditioned media findings, we also monitored bacterial DNA
concentration (as an indicator of abundance) over time with
quantitative PCR. Culturing of B. pseudocatenulatum LH13
together with B. longum LH12 on 2′FL and showed growth
of both strains in co-culture (Fig. S5C). We also observed
growth of both strains when either B. pseudocatenulatum
strains LH657, LH659, or LH663 were co-cultured with B.
longum LH206 on 2′FL (Fig. S5C).

Overall fewer isolates appeared to utilise LNnT, likely
because LNnT is a structurally more complex HMO that

contains a glycosidic linkage within the nonreducing
terminal disaccharide, Galβ1-3/4GlcNAc [44]. LH11 from
infant V1 grew in the presence of LNnT; however, the
metabolic by-products did not support growth of any other
identified strains in this infant. B. infantis LH23 strain from
infant V2 and B. infantis LH664 and LH665 from infant V3
utilised LNnT, but we did not detect the presence of cross-
feeding (Fig. 4c). Both B. longum LH206 and LH277 uti-
lised LNnT, however only metabolites produced following
LNnT utilisation in the conditioned media from the strain
LH206 supported the growth of other ‘non-HMO users’ in
infant V3. We observed moderate growth for specific strains
B. pseudocatenulatum LH656, LH657, and LH663.

HMO degradation by Bifidobacterium and associated
metabolites

To explore potential HMO degradation products, we used
1H-NMR to identify metabolic compounds in cross-feeding
studies. B. longum LH206 generated acetate and formate
after 2-FL metabolism (formate is an intermediate meta-
bolite of fermentation to lactate) [45] (Fig. 5a). Metabolism
of 2′FL by LH206 (with concurrent reduction in 2′FL) was
followed by an increase in fucose and, to a lesser extent,
lactose suggesting 2′FL is cleaved into fucose and lactose
by this strain (Table S9). The high levels of fucose
remaining in the media following growth suggests that
fucose is not fully metabolised by this strain. Fucose was
not detected following B. pseudocatenulatum LH13 growth
in 2′FL but 1, 2-propanediol was present suggesting that
this strain metabolises fucose to 1, 2-propanediol as
described elsewhere [46] (Fig. S7 and Table S9).

Cell free supernatant from the growth of LH206 on 2′FL
was diluted (1:1) with fresh 2′FL-free media and used as
media to grow LH659, as described above (Fig. 4a). When
this dilution is taken into account modest increases in
acetate (30.35–34.64 R.U) were detected, suggesting low
level growth of LH659 (Fig. S6 and Table S9). We
observed a reduction in 2′FL and production of acetate,
ethanol, formate, and 1,2 propandiol by HMO degrader B.
pseudocatenulatum LH13. Growth on LH13 supernatant by
the HMO nondegrader B. longum LH12 (infant V1) pro-
duced low levels of acetate, ethanol, and pyruvate indicat-
ing modest metabolic activity by LH12 under these
conditions. (Fig. S7 and Table S9).

We also investigated metabolites from LNnT degrada-
tion by B. longum LH206, and subsequently profiled
metabolites involved with cross-feeding to the non-LNnT
degrader, B. pseudocatenulatum LH663 (Figs. 5b, S8 and
Table S9). From LH206-LNnT digestion there were
increases in SCFA acetate, the energy-related compound
formate, and the end product of fermentation ethanol, sug-
gesting LNnT degradation by LH206. In addition, galactose

Breast milk-derived human milk oligosaccharides promote Bifidobacterium interactions within a single. . .



was liberated by LH206 into the supernatant, and after
LH663 growth it could no longer be detected. Growth of
LH663 in LH206 supernatant also resulted in an increase in
acetate, ethanol, and formate, collectively this data suggests
LH663 was metabolically active and growing in the con-
ditioned media from LH206 (Table S9). Similar results were
found for cross-feeding of LH206 to LH657 (Fig. S9 and
Table S9). These data suggest that metabolites resulting
from HMO metabolism by one species allow for modest
growth of another, non-HMO metabolising, species.

Discussion

Bifidobacterium spp. are central players in the early-life
microbiota and healthy infant development. We show that

this genus is present at very high levels in breast-fed infants,
and that distinct bifidobacterial communities exist within an
individual infant, consistent with other findings [47]. Our
data indicate differences in genomic content for these
individual strains, which links to their ability to thrive on
breast milk-associated dietary components like HMOs by
multiple members of Bifidobacterium within a single infant
(‘community’). These results further highlight the role of
bifidobacterial communities in adaption to a breast milk
(HMO) diet.

We isolated a significant number of diverse bifidobacterial
strains and species including members commonly associated
with infants including B. infantis, B. longum, B. breve, and
B. pseudocatenulatum from three healthy, breast-fed infants
[48, 49]. We identified genotypic and phenotypic differences
between these strains and species within a single infant
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bifidobacterial community. However, these differences appear
to be complementary and likely contributing to a flexible and
cooperative relationship between the infant breast milk diet
(i.e., HMOs) and the early-life Bifidobacterium populations.
HMOs represent a key nutritional component of breast milk,
but these complex carbohydrates cannot be directly metabo-
lised by the infant [50], but rather specialised members of the
resident gut microbiota breakdown these HMOs. In particular
certain species and strains of Bifidobacterium utilise HMOs
and likely contributes to their ability to function as a foun-
dation genus within the wider context of the early-life
microbiota [15, 41]. Multiple studies have identified genomic
clusters for the degradation of milk carbohydrates, including
specific clusters for utilisation of specific HMOs [18, 19, 36].
We identified that the genomic arrangement of these clusters
exhibits interspecies variability and consistent with other
studies, the presence of gene members from these HMO
clusters does not always result in a growth phenotype on the
specified HMOs. For instance, both B. breve strains in this
study possessed a key GH for fucosylated HMO degradation
but did not grow on 2′FL which could potentially be due to
the lack of a second fucosidase (GH29) or appropriate
transport genes [46]. Furthermore, we identified growth on
HMOs in strains lacking known clusters, suggesting a wider
variety of novel gene clusters devoted to HMO degradation
that could be explored further to provide more mechanistic
rationale for development of early-life microbiota therapies.

The use of key metabolites produced from HMO degra-
dation from one species of Bifidobacterium to another, high-
lights a potential way to permit growth of multiple different
bifidobacterial species and strains within the breast-fed infant
gut [13, 27, 38]. Moreover, a cooperative balance between
bifidobacterial strains in the early-life microbiota [51] may
further enhance their dominance in breast-fed infants by
enabling a genus-specific exploitative competition i.e.,
depleting the GI tract of breast milk-derived nutrients, thereby
preventing colonisation of other microbes, including patho-
bionts. Our direct co-cultures studies suggest there is growth
enhancement of non-HMO degraders in the presence of a
corresponding HMO-utiliser. Conditioned media studies also
suggest that metabolites from 2′FL and LNnT degradation
may promote (low level) growth of nondegraders Bifido-
bacterium species within the same infant, indicating sharing of
resources. For example, metabolites from 2′FL degradation by
B. pseudocatenulatum strains appears to support growth of B.
longum, a process that has not previously been described for
these species. Quantified metabolic products indicates that
fucose, acetate, pyruvate, and 1,2-propanediol are liberated
from HMO degradation and could potentially function as
candidates for cross-feeding. However, we did not see evi-
dence of metabolism of these compounds by the B. longum
strain as has been reported with other members of the infant
microbiota; such as the 2′FL metabolic end product 1,2-pro-
panediol which drives cross-feeding interactions between
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B. infantis and Eubacterium halli [52]. Recent work suggests
that extracellular sialidases are the main source of cross-
feeding interactions between bifidobacterial strains, as has
been described for B. longum, which by producing sialylated
carbohydrates and free sialic acid promotes B. breve growth
[38, 39]. Currently there is little evidence suggesting coop-
eration between non-extracellular HMO degraders. Whilst we
have not detected known extracellular sialidases (within
HMO-degrading putative cross-feeding strains), it may be our
strain(s) encode novel enzymatic clusters that perform this
type of extracellular degradation. Moreover, intracellular
HMO utilisation clusters may also be important in cross-
feeding with metabolites released via cell lysis (i.e., metabo-
lites leakage [53]) or in some cases actively secreted [54], as
has recently been proposed with genome-scale metabolic
models (including ‘costless’ secretion of amino acids by
B. adolescentis [55]). As we utilised NMR spectroscopy,
which was untargeted, this may have impacted our ability to
detect metabolites at low concentrations (in our low volume
cultures). Further studies using transcriptomic assays, LC-MS
or GC-MS, in tandem with stable isotope labelling of HMOs
could also be performed to probe these extra- vs. intracellular
degradation cross-feeding questions [56].

In conclusion, this research provides new insight into how
Bifidobacterium strains from the same infant have over-
lapping, but distinct HMO abilities (genomic, phenotypic, and
putative cross-feeding). Bifidobacterium may therefore act as
a foundation genus, acting within a community to maximise
nutrient utilisation from breast milk, specifically HMOs.
Determining these interactions with respect to infant diet, will
be critical for the development of optimal multiple strain/
species microbiota therapies to promote early-life health.

Methods

Bacterial isolation and strains

Faeces was collected from healthy (i.e., had not received any
antibiotics/probiotics prior to sampling), full-term breast-fed
infants in accordance with protocols laid out by the National
Research Ethics Service approved UEA/QIB Biorepository
(Licence no: 11208) and Quadram Institute Bioscience Ethics
Committee (see Table S1). Infant faeces were isolated on
RCM (Oxoid, Hampshire, UK) supplemented with mupirocin
and L-cysteine (0.05 mg/mL each, Sigma-Aldrich, Dorset,
UK). Bacterial isolates were randomly selected from agar
plates, and all subsequent Bifidobacterium and Lactobacillus
strains were grown at 37 °C in either RCM, de Man
Rogosa and Sharpe (MRS) media, or modified MRS (mMRS)
with specified carbohydrates in an anaerobic chamber (Don
Whitley Scientific, Bingley, UK) containing 5% CO2, 10%
hydrogen, 85% nitrogen gas.

Bile salt survival and hydrolysis

To determine Bifidobacterium survival in bile, isolates were
first grown in RCM and then subcultured using a 1:50
dilution into MRS ± 0.3% unfractionated bovine bile salt
(Sigma-Aldrich), as described by [57]. After 48 h of sta-
tionary growth in an anaerobic chamber at 37 °C OD600 nm

using the Benchmark Plus microplate spectrophotometer
(Bio-Rad) for both conditions. For the MRS plate the mean
blank OD600 nmvalue was 0.1585 and for the anaerobic plate
it was 0.1825. Data shown are mean values from three
experimental repeats.To assess bile salt hydrolyase activity,
overnight cultures were spotted (3 mL) onto MRS plates
supplemented with L-cysteine and 0.5% w/v of either
taurocholic acid, taurodeoxycholic acid, and sodium gly-
codeoxycholate bile salt (Sigma-Aldrich). Bile salt pre-
cipitation was assessed after a maximum of 96 h of
anaerobic incubation at 37 °C. For both assays, unin-
oculated MRS media were used as a control.

Aerotolerant assay

MRS media inoculated with a 1:50 dilution of each strain
that had been grown aerobically or anaerobically at 37 °C
for 48 h stationary. A blank average absorbance (from three
wells per plate) was subtracted from each experimental
OD600 reading, as described in [61]. For the aerobic plate
the blank OD600 nm value was 0.1507 and for the anaerobic
plate it was 0.1549. Data shown are mean values from three
experimental repeats.

16S rRNA gene library preparation and
bioinformatics analysis

DNA extraction was performed using the FastDNA Spin
Kit for Soil (MPBIO, California, USA) and V1–V2 16S
rRNA gene primers as previously described [58]. Illumina
MiSeq Raw reads underwent quality control using FASTX-
Toolkit53 maintaining a minimum quality threshold of 33
for at least 50% of the bases. Passed read were then aligned
against the SILVA database [59] using BLASTN55 [60]
separately for both pairs. All output files were annotated
using the paired-end protocol in MEGAN4 [61].

Genomic DNA extraction

Bacteria was lysed with lysozyme, Proteinase K, RNase A
(all from Roche Molecular Systems, West Sussex, UK),
EDTA, and Sarkosyl NL30 (Sigma-Aldrich). Samples were
purified with three rounds of phenol:chloroform:isoamyl
alcohol (25:24:1; Sigma-Aldrich) extraction followed by
multiple rounds of extractions with chloroform:isoamyl
alcohol (24:1; Sigma-Aldrich). Genomic DNA pellets were
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resuspended in 10 mM Tris (pH8.0) and quantified using
Qubit dsDNA BR assay kit (Invitrogen). See supplementary
methods for additional information.

Whole genome sequencing

DNA sequencing was performed using Illumina HiSeq
2500 platform with paired-end read length 2 × 125 bp, with
an average coverage of 60×. Draft genome assemblies and
annotation pipeline were performed as described in [62].
Publically assembled sequences (n= 64) were retrieved
from NCBI Genomes database [63] and all genomes were
annotated using Prokka v1.10 [64].

Phylogenetic analysis of whole genomes

General feature format files of 83 Bifidobacterium strains
were inputed into Roary pangenome pipeline v.3.8.0 to
obtain core-genome data [65]. Phylogeny was reconstructed
from core-genome alignment generated using MAFFT
v7.305b [66] and cleaned up by manual curation and
Gblocks [67, 68]. Maximum likelihood analysis was per-
formed in Sea view v.4.0 [69] using PhyML v.3.1 with 100
bootstrap iterations [70]. Python3 module pyANI with
default BLASTN+ settings was employed to calculate the
ANI [71]. Species delineation cut-off was 95% identity.

Functional annotation of genomes

For each genome, all ORFs were submitted to eggNOG-
mapper for annotation and classification [72, 73]. Prediction
of HMO clusters was performed by comparing known
protein sequences to the draft genomes in this study using
local BLAST (64) (e-value < 1e−50, percentage identify
>70%). HMO clusters were annotated ‘present’ if over 90%
of genes were homologous in the cluster. For prediction of
GH, ORFs were submitted to the dbCAN web server [74]
and the number of GH were calculated. Prophage presence
was predicted using PHASTER [75, 76].

HMO utilisation and cross-feeding

Bifidobacterium growth in mMRS+ 2% (w/v) LNnT or 2′
FL (Glycom, Hørsholm, Denmark) was determined using a
microplate spectrophotometer. To assess cross-feeding
potential within Bifidobacterium species we followed the
experimental outline as described in [77], briefly we gen-
erated cell free supernatants (CFS) by sterile filtration of
cultures grown anaerobically for 48 h in mMRS+ 5% (w/v)
LNnT or 2′FL. Fresh media were added to the CFS (1:1),
and anaerobic growth was monitored every 15 min for 48 h
in a microplate spectrophotometer (Tecan Infinite F50).

1H-nuclear magnetic resonance (NMR) spectroscopy
analysis

For functional assessment of Bifidobacterium strains, media in
which the bacterial cells had been grown were analysed using
1H-NMR spectroscopy. Media samples were mixed (2:1) with
0.2M sodium phosphate buffer solution (pH 7.4) made in
100% deuterium oxide and 0.01% of sodium 3-(trimethylsi-
lyl) [2,2,3,3,-2H4] propionate 3mM NaN3. The mixture was
vortexed and centrifuged and transferred to a 5 mm outer
diameter NMR tube (Wilmad). One-dimensional spectro-
scopic data were acquired using a 500MHz NMR spectro-
meter (Bruker Biospin, Germany) operating at 300 K. A
standard one-dimensional NMR pulse sequence with water
presaturation was applied to acquire spectroscopic data, using
four dummy scans followed by 64 scans and collected into
24 K data points. 1H-NMR spectra were manually corrected
for phase and baseline distortions and referenced to the TSP
signal at δ 0.0, using the TopSpin 3.5 software package
(Bruker Biospin, Germany). Spectra from the different bac-
terial strains grown under different conditions were overlaid
in TopSpin and compared for differences. The integrate
function was utilised to integrate peaks of interest. Spectral
compound libraries (e.g., Human Metabolome DataBase,
Biological Magnetic Resonance Data Bank) published lit-
erature and in-house spectral reference libraries were used to
confirm metabolite assignments.

Data availability

All metagenomic data are available at the European
Nucleotide Archive, study accession ID PRJEB28188.
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