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Abstract 

Over the past 30-40 years, dissolved organic carbon (DOC) concentrations have increased in 

soil solutions and surface waters in many acid-sensitive areas of Europe and North America. 

This has been linked to recovery from acidification in response to decreasing levels of 

atmospheric pollution. Evidence from radiocarbon dating suggests that DOC in surface 

waters is typically derived from recently photosynthesised organic matter such as plant 

litter and exudates, yet there is little information on the pH-sensitivity of organic matter 

solubility, or its decomposition, in litter layers and in different organic soils. Based on data 

collected at four established field pH-manipulation experiments in upland areas of the 

United Kingdom, we examined the sources, composition and acid-sensitivity of DOC export 

from the litter and organic soils. We found that litter generated nearly three times more 

DOC than the organic soils, consistent with radiocarbon evidence that recent plant inputs 

are a major source of DOC export. Furthermore, litter derived DOC had lower specific 

ultraviolet light absorbance (SUVA) than organic soil DOC, suggesting greater 

biodegradability. Organic soil DOC concentrations were more strongly related to 

experimentally manipulated pH, implying that the mobility of this DOC is subject to 

physicochemical rather than biotic controls.  



We conceptualise the process of DOC export from these systems as i) production of ‘new’ 

DOC through incomplete decomposition of plant material in the surface litter; ii) the 

remaining undecomposed litter becomes part of the organic soil, and this is subjected to 

further decomposition, producing less biodegradable DOC which is controlled by acidity; 

and iii) mobile DOC is transported to rivers via near surface flows. Our results suggest that 

widely observed increases in surface water DOC in areas undergoing recovery from 

acidification are due primarily to physicochemically mediated controls on organic matter 

solubility, rather than biologically mediated changes in DOC production or decomposition. 
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1.0 Introduction 

Dissolved organic carbon (DOC) represents a major natural carbon export from peatlands 

and other organic rich soils (Hope et al., 1994; Billett et al., 2004; Clark et al., 2007; 

Dinsmore et al., 2010), and waters draining these areas have high concentrations of DOC 

(Aitkenhead et al., 1999; Evans et al., 2006). There has been a considerable increase in DOC 

concentrations in waters draining catchments dominated by organic soils in much of the 

industrialised Northern Hemisphere since the 1980s (Evans et al., 2005; Monteith et al., 

2007; Oulehle and Hruška, 2009; Couture et al., 2012; SanClements et al., 2012b). This 



increase in DOC export from peatlands and other organic soils not only affects carbon 

budgets (Dinsmore et al., 2010), but also adds significantly to drinking water treatment costs 

and efficacy of processes (Ritson et al., 2014). In addition, greater DOC concentrations in 

terrestrial waters can profoundly alter the functioning of aquatic ecosystems by influencing 

light regime (Schindler, 1971), energy and nutrient supply (Wetzel, 1992), and the mobility 

of trace metals and organic pollutants (Haitzer et al., 1998; Lawlor and Tipping, 2003). 

Although a wide range of mechanisms for increasing DOC trends have been proposed, a 

growing body of research suggests that it represents a response to recovery from 

acidification, as reducing levels of acidity and ionic strength within soils permit a greater 

proportion of organic matter to remain in solution, and thus available for leaching to surface 

waters. This mechanism is supported by a range of long-term data analyses (Evans et al., 

2006; de Wit et al., 2007; Monteith et al., 2007; Daniels et al., 2008; Oulehle and Hruška, 

2009; Oulehle et al., 2011; SanClements et al., 2012a; Oulehle et al., 2017); laboratory 

experiments (Clark et al., 2011; Palmer et al., 2013); field experiments (Evans et al., 2008; 

Ekström et al., 2011; Evans et al., 2012; Moldan et al., 2012; Oulehle et al., 2013); and 

palaeolimnological reconstructions (Bragee et al., 2015). 

The significance of increased DOC export for the terrestrial carbon balance is a matter of 

debate. With peatlands being a major store of carbon (Gorham, 1991), and with drastic 

changes in DOC export from these ecosystems, concerns have been raised over the future of 

peatland carbon balances (Freeman et al., 2001). Radiocarbon (14C) measurements of DOC 

in rivers draining peaty catchments that have not been disturbed by intensive land-use 

activities consistently show that this DOC is of relatively recent origin, i.e. that it is 

comprised of material that was photosynthesised from the atmosphere within the last few 

decades, and in some cases the last few years (Palmer et al., 2001; Billett et al., 2006; Evans 

et al., 2007; Raymond et al., 2007; Clark et al., 2008; Tipping et al., 2010). This observation is 

inconsistent with the concept of large-scale destabilisation of soil organic carbon, and 

instead suggests that DOC exports must derive from living plant material (e.g. root 

exudates), recently senesced plant material (partially decomposed litter), or from the near-

surface of organic soils. In soils that have been more disturbed by land-use activities, on the 

other hand, DOC tends to have an older 14C signature, indicating that elevated DOC losses in 



these systems could be indicative of soil carbon destabilisation (Butman et al., 2013; Evans 

et al., 2014). 

Finally, there remains a lack of information regarding the controls on DOC export from 

different soil types. While peats generally represent the largest DOC source per unit area 

(Aitkenhead et al., 1999), other spatially extensive soil types with carbon-rich surface 

horizons may also act as important DOC sources to surface waters, especially during high 

flow periods (Hood et al., 2006; Raymond and Saiers, 2010). Whilst much of the literature 

focuses on DOC exported from peatland areas, the role of organo-mineral soils in this 

context has received less attention, despite marked differences in their structure, chemical 

composition and hydrological properties.  

The key aims of this study were therefore to improve understanding of: i) the relative 

contribution of litter and near surface organic soil to DOC production in terms of quantity 

and quality and how this varies between peat and organo-mineral soils; and ii) the extent to 

which changes in soil pH have modified the amount and/or composition of DOC released. 

2.0 Methods 

2.1 Site Description and Experimental Design 

For this study we used an existing set of four long-term acid manipulation field experiments, 

situated in two unforested upland (moorland) locations in the UK with contrasting historic 

rates of acid deposition, and therefore present-day soil acidity (Evans et al., 2012).  At each 

site, replicated acidity manipulations were established within two soil types; blanket peats 

(histosol) and peaty podzols (histic podzol) (FAO, 2014). These soil types are among the 

commonest soils present in the UK uplands, and they also occur extensively in other cool, 

humid temperate regions. Previous work by Evans et al (2012) focused only on pore water 

dynamics, here we build on this work to study the litter and soil layers separately. 

The first study site, the Migneint (3°48.8’ W, 52°59.6’ N, 460 m a.s.l.), is a relatively 

undisturbed area of predominantly blanket peatland in North Wales, with areas of organo-

mineral soil on steeper slopes and hilltops. The area has historically low levels of 

atmospheric sulphur and nitrogen pollution. Peaknaze (1°54.5’ W, 53°28.3’ N, 440 m a.s.l.), 

in Northern England, is a more disturbed region affected by relatively intensive land 



management and historically high levels of atmospheric pollution, which has led to 

degradation of the ecosystem including Sphagnum loss and erosion (Tallis, 1985). 

2.2 Field Experimental Operation 

The experimental sites were established in August 2007, and consist of twelve 9 m2 plots at 

each of the four experimental sites (termed Migneint Peat, Migneint Podzol, Peaknaze Peat, 

Peaknaze Podzol). Each comprises a randomised blocked design with four replicates of 

control, acid and alkaline treatments. Treatments were applied initially from October 2008 

until December 2012 (Evans et al., 2012), and then re-established for the purposes of this 

study (using the same methods, treatments and plot allocations) from January 2015 until 

October 2016. Acid plots received a monthly dose of sulphuric acid (H2SO4) mixed with 

rainwater (20 l) collected at the site. The concentration applied was 50 kg S ha-1 yr-1 at the 

podzol sites and 100 kg S ha-1 yr-1 at the peat sites, this concentration being similar to the 

ambient sulphur deposition in the Peak District in the 1970s. A higher dose was applied to 

peat plots to achieve a similar pH change after taking account of the buffering effects of 

sulphate reduction. A 10 l rinse of rainwater followed to ensure the treatment infiltrated 

into the soil and to minimise any direct toxicity effects on plant foliage.  

The same procedure was followed for the alkaline plots with sodium hydroxide (NaOH) and 

potassium hydroxide (KOH), followed by a rinse containing Magnesium Chloride (MgCl2) and 

Calcium Chloride (CaCl2) to maintain base cation ratios similar to those observed in rainfall. 

The molar OH- concentration in the alkaline treatments was intended to be comparable to 

the H+ concentration in the acid treatments. Control plots received 20 l of rainwater only. 

2.3 Sampling  

In order to assess the quantity and quality of DOC mobile in the surface litter and soil layers, 

samples were collected and chemical analysis was performed on cold water extracts. Soil 

pore water samples represent direct measurements of DOC which is mobile and could 

potentially leach to terrestrial water bodies.  

We collected monthly pore water samples from September 2015 until October 2016, 

approximately one week after treatments were applied. Samples were collected from a 

depth of 10 cm below the surface using syringes and Rhizon suction samplers (part number 



19.21.35, www.rhizosphere.com), from four locations within each plot. These were then 

bulked into one sample per plot following the protocol described by Evans et al. (2012). 

Litter was collected directly from the soil surface. A soil sample was taken from this position 

by cutting a square ‘flap’ of approximately 10 cm2 through the vegetation, and removing the 

required quantity of organic soil (~30 g) from a depth of 10-20 cm. The flap was then put 

back in place and lightly pressed down, in order to minimise disturbance to the plot. Four 

litter and peat samples were taken from each plot, 10-15 cm in from the edge to avoid areas 

impacted by compaction. We collected samples at three time points during the 2016 

growing season (April, July and October) and stored these at 4 °C in plastic re-sealable bags. 

2.4 Laboratory Analysis 

Organic soil and litter samples were processed in the lab by cutting and/or chopping into 1 – 

2 cm pieces and homogenising. Unwanted material such as stones, invertebrates, thick roots 

and living plant material was removed. Using 4 g of sample and ultrapure (MilliQ 18.2 MΩ)  

water, samples underwent a cold water extraction on a horizontal shaker (30 rpm) at room 

temperature for 3 hours for organic soil (1:10 mass to volume ratio) and 24 hours for litter 

(1:20 mass to volume ratio). Samples were then centrifuged (3500 rpm for 20 minutes) and 

vacuum filtered through 0.45 μm cellulose membrane filter paper. This extraction method 

was adapted from Ghani et al. (2003). 

We analysed extracts and pore water samples for pH, electrical conductivity, total organic 

carbon, and ultraviolet absorbance. A Thermalox TC-TN analyser (Analytical Sciences, Ltd., 

UK) was used to measure the concentration of DOC, by subtracting the amount of total 

inorganic carbon (TIC) from the amount of total carbon (TC). Pore water DOC concentrations 

were expressed in mg l-1 as these samples were direct measures of DOC concentrations in 

situ. However, DOC concentration in organic soil and litter extracts were expressed in terms 

of mg DOC extracted per g of dry material (Pschenyckyj, 2018), as is standard practice for 

this measure (Don and Kalbitz, 2005).   

We used optical measures to define spectroscopic properties as a proxy measure of DOC 

quality. Samples were diluted to less than 1 absorbance unit (AU), as determined by 

measuring absorbance at 240 nm. UV visible absorbance spectra were determined using UV 

transparent 96 well plates on a Spectromax M2e Microplate Reader (Molecular Devices, San 



Jose, CA) set to scan at wavelengths between 240 and 600 nm with a 1 nm increment. As 

absorbance data obtained by the microplate method is slightly lower than the cuvette 

method (due to the difference in absorbance between plastic and quartz), we multiplied 

data by bespoke correction factor developed through calibration data generated in the lab 

(Tim Jones, pers comm) (Pschenyckyj, 2018). Specific ultraviolet absorbance at 254 nm 

(SUVA254, calculated by converting the pathlength to m (multiplying by 100) and dividing 

absorbance value at 254 nm corrected for a pathlength of 1 m by the DOC concentration in 

mg l-1) has been identified as a proxy for the aromatic and hydrophobic fractions, and 

molecular weight of dissolved organic matter (DOM) (Weishaar et al., 2003; Spencer et al., 

2012; Chowdhury, 2013). 

2.5 Data Analysis 

We analysed data using the R statistical package (RDevelopment Core Team, 2008). We 

assessed whether data met the assumptions of Analysis of Variance (ANOVA), including 

normality and equal variance, and transformations were applied where necessary 

(Supplementary Table S2). ANOVA was used to examine the effect of various factors and 

their interactions on sample chemical properties of pH, DOC concentration and SUVA254. 

When significance was apparent, post hoc tests using the ‘Tukey HSD’ function in R were 

used to confirm where significant differences occurred between groups. In addition, we 

used Spearman’s Rank Correlation Coefficient to assess the significance, direction and 

strength of relationships between pH and DOC concentration. 

3.0 Results 

3.1 The relative contribution of litter and near surface organic matter to DOC production  

Significantly more DOC was extracted from litter than from organic soil during April (P = 

<0.001), July (p = <0.001) and October (p = <0.001; Figure 1a), irrespective of soil type or 

location. Over the full set of measurements, mean litter extract DOC was around 2.8 mg g-1 

(with DOC concentration values across all control plots and sampling times ranging from 1.2 

mg g-1 minimum to 6.5 mg g-1 maximum) compared to 1 mg g-1 in organic soil extracts 

(concentration range 0.4 – 2.6 mg g-1). Mean extract DOC increased from 2.4 mg g-1 during 

spring to 3.2 mg g-1 during autumn for litter (p = 0.039) but remained fairly constant in 

organic soil extracts. 



Based on SUVA254 analysis, DOM extracted from organic soil samples was significantly more 

aromatic than DOM extracted from litter samples (mean values for all samples are 2.8 

(concentration range 0.7 – 6.5) and 2.4 (concentration range 0.5 – 6.1) l mg C-1 m-1 

respectively).  Organic soil extract SUVA254 was significantly (p = <0.05) lower in October 

than at other times, whereas in litter extracts it remained fairly uniform at 2.3 - 2.6 l mg C-1 

m-1 (Figure 1b). 

 

Figure 1: a) DOC, and b) SUVA254 from extracts of organic soil and surface litter samples. Data are bulked for all 

control plots during April, July and October 2016. Letters indicate significant differences. Error bars show 

standard errors. 

Based on a correlation analysis, there was no relationship between litter, and organic soil 

DOC extracts (p = 0.114) and pore water DOC (p = 0.376) indicating little connection 

between these two DOC sources in terms of production amounts. However, the SUVA254 in 

surface litter did correlate with that in organic soil (p = 0.005, Rho = 0.407) indicating an 

association between the quality of DOC produced. A significant positive relationship 

between SUVA254 in pore water and in extracts from the organic soil (p = 0.002, Rho = 0.446; 

Table 1) was found, indicating a good association between pore water extracts and water 

extractable carbon from organic soil. By contrast, the SUVA254 in surface litter was found not 

to correlate with that in pore water (p = 0.106), indicating poor correlation between litter 

extracts and direct measures of pore water. 



Table 1: Results of correlation analysis comparing data (DOC and SUVA254) between different sample types. p 

values are bold where significant at <0.05, whilst Spearman’s Rho values are in italics. 

    Litter Organic Soil 

Organic Soil 

DOC 
0.114  
-0.234  

SUVA 
0.005  
0.407  

Pore Water 

DOC 
0.376 0.442 
0.131 -0.099 

SUVA 
0.106 0.002 
0.241 0.446 

 

3.2 Influence of soil type on DOC quantity and quality from different sources 

When assessing how DOC varies between peat and podzol soil, more DOC was extracted 

from podzol litter (3.41 mg g-1) than from peat litter (2.46 mg g-1) (this only being significant 

at Migneint p = <0.001; Figure 2a), but for the organic soil layer, we found that more DOC 

was extracted from peat than podzol soil (1.65 and 0.94 mg g-1 for Migneint Peat and 

Podzol, p < 0.001; 0.97 and 0.52 mg g-1 for Peaknaze Peat and Podzol, p < 0.001; Figure 2c). 

Also, DOM extracted from both litter (Migneint p = <0.001) and organic soil (Migneint p = 

<0.001; Peaknaze p = 0.013) had a significantly higher SUVA254 value when obtained from 

podzol than from peat (Figures 2b & 2d).  

When assessing direct measurements of DOC concentration in pore water, Peaknaze Peat 

had considerably more DOC (80 mg l-1, compared to just 24 - 34 mg l-1 at other sites) (Figure 

2e) which also had a higher SUVA254 value (4.4 l mg C-1 m-1 compared to ~3.7 l mg C-1 m-1 at 

other sites), when compared to other sites (although statistically this was only significantly 

different to Migneint Peat) (Figure 2f). Therefore, apart from this site, there was no 

difference in pore water DOC quantity and quality between soil types. 



 



Figure 2: DOC and SUVA254 of extracts from surface litter (a, b) and organic soil (c, d), and direct measurements 

of DOC concentration in pore water (e, f). Samples were collected from control plots only during April, July and 

October 2016. ‘M’ refers to Migneint and ‘PN’ refers to Peaknaze. Letters signify where significant differences 

occurred. Error bars show standard errors. 

3.3 Effect of acidity on DOC 

As expected the Peaknaze experimental sites were more acidic (mean pore water pH of 3.98 

units at peat control plots and 4.10 units at podzol control plots), while both Migneint sites 

had a control plot pH of ~4.30 units (Figure 3e). We observed clear effects of acidity 

manipulation on the pH of litter extracts, organic soil extracts and pore waters (Figure 3 

a,c,e). Mean litter extract pH across all experimental sites was 5.28 units for the acid 

treatment, and 6.10 units for the alkaline treatment. For organic soil extracts the difference 

in mean pH values between acidity treatments was narrower (4.74 units for acid and 5.22 

units for alkaline). Mean pore water pH was 3.98 units in the acid treatments, and 4.52 units 

in the alkaline treatments. Although not always statistically significant, differences in pH 

between acidity treatments were consistent for all experimental sites and for all 

measurement types (Figure 3a, c, e). In general, differences were larger and statistically 

significant for the two Peaknaze sites and for the Migneint podzol site, and smaller/non-

significant at the Migneint peat site.  

 



 

Figure 3: Mean pH and DOC of surface litter (a, b) and organic soil (c, d) extracts, and pore water samples (e, f). 

Samples for extracts were collected during April, July and October 2016, whilst pore water samples were 

collected over a 13 months period, and data is bulked for these months. ‘M’ refers to Migneint and ‘PN’ refers 

to Peaknaze. Letters signify where significant differences occur. Error bars show standard errors. 



The concentration of DOC in peat surface litter extracts corresponded to the acidity 

treatments applied, with an average DOC of 5.17 mg g-1 for acid plots compared to 6.03 mg 

g-1 for alkaline plots, but these differences were not significant at p <  0.05 (Figure 3b). Litter 

extract DOC from the podzol plots was not related to the acidity manipulations. We also 

found no significant correlation between litter extract pH and DOC across all samples (p = 

0.411; Figure 4a). Acidity treatments also had no significant effect on SUVA254 in litter 

extracts (p = 0.073; Table 2). 

 

Figure 4: Scatterplots comparing mean change in pH and percentage DOC for acid and alkaline treatments 

compared to the control, for each of the four experimental sites and sampling months, for surface litter (a) and 

organic soil (b) extracts, and pore water samples with three (c) and thirteen (d) month datasets. Significance (p 

value) and strength of relationship (Rho value) were obtained using Spearman’s Rank. 



Organic soil extract DOC also showed no relationship to the acidity treatments applied 

(Figure 3d), and treatment effect was found not to depend on site location or soil type (p = 

0.296). However, when assessed further through a correlation analysis, we found that there  

was a significant positive relationship between extract DOC and pH for individual samples 

(Figure 4b). Again we found no effect of acidity treatments on SUVA254 for organic soil 

extracts (p = 0.591; Table 2). 

Table 2: Mean SUVA254 of DOM (l mg C-1 m-1) in litter and organic soil extracts, and pore water samples, with 

standard error values in italics. Significant differences (at p = <0.05) obtained using a post hoc analysis on 

ANOVA tests are summarised in the ‘Significant Differences’ column, where ‘=’ represents no significance. 

 

Sample Site Acid Control Alkaline Significant Differences 

Litter 

Migneint Peat 
1.50 1.28 2.14 

Acid=Control=Alkaline 
0.16 0.16 0.43 

Migneint Podzol 
2.63 3.15 2.78 

Acid=Control=Alkaline 
0.12 0.30 0.10 

Peaknaze Peat 
2.37 2.75 2.59 

Acid=Control=Alkaline 
0.12 0.19 0.16 

Peaknaze Podzol 
2.66 2.56 2.95 

Acid=Control=Alkaline 
0.43 0.15 0.26 

Organic Soil 

Migneint Peat 
1.73 1.64 1.66 

Acid=Control=Alkaline 
0.15 0.19 0.13 

Migneint Podzol 
3.45 3.54 3.43 

Acid=Control=Alkaline 
0.29 0.23 0.30 

Peaknaze Peat 
2.77 2.99 2.76 

Acid=Control=Alkaline 
0.15 0.21 0.18 

Peaknaze Podzol 
4.04 3.62 3.94 

Acid=Control=Alkaline 
0.23 0.22 0.31 

Pore Water 

Migneint Peat 
3.66 3.65 3.72 

Acid=Control=Alkaline 
0.06 0.08 0.07 

Migneint Podzol 
3.33 3.72 3.90 

Acid<Control=Alkaline 
0.12 0.13 0.09 

Peaknaze Peat 
4.33 4.39 4.60 

Acid=Control=Alkaline 
0.09 0.08 0.12 

Peaknaze Podzol 
3.45 3.69 4.25 

Acid=Control<Alkaline 
0.12 0.12 0.13 



In contrast to the litter and soil extracts, pore water DOC concentrations were strongly 

affected by acidity manipulation. This was evident for all sites except Migneint Peat (Figure 

3e), and was consistent throughout the thirteen month experimental period 

(Supplementary Figure S1). If we exclude the Migneint Peat, where acidity treatments did 

not significantly alter pore water pH, the acid treatments reduced pore water DOC 

concentrations by 7-12 mg l-1, whereas alkaline treatments increased DOC by 9-21 mg l-1 

(mean of thirteen month dataset, per experimental site and treatment). For all pore water 

samples collected from all sites over the 13 month period, we observed a strong positive 

correlation between the change in pH and DOC concentration (Rho = 0.816, p < 0.001; 

Figure 4d). Such a correlation is also apparent for the three month period in which other 

organic soil and litter samples were assessed (Figure 4c). The response of pore water 

SUVA254 to acidity treatments was dependent on month (p = 0.014); in summer-autumn, 

SUVA254 was generally lower in the acid treatments, and higher in the alkaline treatments, 

but in the preceding winter-spring period no acidity treatment effect was observed 

(Supplementary Figure S2). At podzol sites, alkaline treatments typically resulted in a greater 

SUVA254 (mean of 3.90 and 3.45 l mg C-1 m-1 at Migneint and Peaknaze), whilst acid 

treatments resulted in lower values (3.90 and 4.25 l mg C-1 m-1; Table 2). However, 

statistically significant differences were only observed between control and acid plots at 

Migneint Podzol, and control and alkaline plots at Peaknaze Podzol. Acidity had no effect on 

the SUVA254 of pore water DOM from peat sites.  

4.0 Discussion 

4.1 DOC production from surface litter and organic soils 

Surface litter produced around three times more DOC per unit dry mass of substrate 

compared to organic soil, regardless of sampling month. Notwithstanding the greater mass 

of organic soil compared to litter, this suggests that litter is an important source of DOC 

production in these systems. The increase in litter extract DOC from 2.4 mg g-1 in April to 3.2 

mg g-1 in October is consistent with a seasonal biotic control on litter degradability through 

the year, with senescence of plant material during autumn providing a source of labile 

organic material and consequently greater DOC production (Clark et al., 2010). Similar 

values of extract DOC are reported in the literature for the species which contribute to the 

litter at these sites, such as Calluna (~6 mg g-1), Eriophorum (1 – 27 mg g-1) and Sphagnum (2 



– 3 mg g-1), as well as peat extracts (~1 mg g-1) (Ritson et al., 2016; Mastný et al., 2018). Few 

studies are available that compare the effect of seasonality on extractable DOC from both 

organic soil and litter, although work is consistent on pore waters. 

DOM released from organic soil was more aromatic, as indicated by SUVA254, during April 

and July at >3 l mg C-1 m-1 compared to ~2.3 l mg C-1 m-1 in litter. Ritson et al. (2017) also 

observed a higher SUVA254 value for peat compared to Calluna litter based on samples 

collected in May. This is attributable to the build-up of more humified material in peat due 

to progressive microbial degradation processes, which will preferentially remove or modify 

labile material in freshly senesced litter, leaving more recalcitrant aromatic material to 

accumulate (Kalbitz et al., 2003; McDowell et al., 2006; Saadi et al., 2006). 

4.2 To what extent have changes in soil pH modified the amount and composition of DOC 

released from organic catchments? 

Firstly, it is apparent that acidity treatments were successful in altering the pH of pore water 

over the 13 month experimental period. Treatments generated a pH range of at least 0.2 pH 

units to a maximum of 0.9 units (when comparing means for acid and alkaline plots at each 

site). This is comparable to the increase in pH observed in the Countryside Survey broad 

habitats between 1978 and 2007 (Evans et al., 2012). There was a strong and significant 

relationship between change in pore water pH and change in DOC concentration, suggesting 

that pore water DOC concentrations are consistently sensitive to changes in acidity. The 

results from this experiment are similar to that of a previous acidity manipulation 

experiment at these sites (Evans et al., 2012), showing reproducibility and further 

supporting the hypothesis that increased DOC concentrations in surface waters are due to 

increased organic matter solubility following recovery from acidification. This change in 

solubility of DOC in soil solution is related to the degree of dissociation of organic acids 

(Oulehle et al., 2013) and is simultaneously related to changes in ionic strength (Clark et al., 

2005). 

The absence of a similar relationship with pH in litter extracts (as a key source of DOC) 

suggest that the effects of acidity on DOC leaching are unlikely to be biologically mediated, 

in contrast to the observations of Kang et al. (2018), whilst the strong relationship between 

changes in pore water acidity and DOC suggest a physio-chemical driver may be the cause of 



the increasing DOC trend in many acid sensitive surface waters. This builds on the findings 

of Evans et al (2012) that looked only at pore water data and was not able to isolate the 

dynamics within the litter layer.   The absence of comparably strong relationships with pH in 

the organic soil extracts, compared to pore water samples collected from the same horizon, 

may reflect the relative level of disturbance involved, with the former method extracting a 

greater proportion of relatively immobile DOM from smaller pores whilst also diluting DOM 

and ions present, and the latter method extracting only that DOM which is mobile at any 

given level of acidity and at the concentration within soil pores.  

DOC in both peat and podzol soil pore water responded to acid and alkaline treatments at 

Peaknaze, whilst only the podzol soil responded at the Migneint site (although pH at the 

Migneint peat site did not significantly change due to acidity treatment). The greatest pH 

increase with the alkaline treatment was achieved at this site of 0.68 pH units, yet only an 

increase of 9 mg l-1 of DOC was achieved in pore water. Migneint had a higher baseline pH 

of 4.3 units compared to ~4 units at Peaknaze, and yet despite the large pH increase at this 

site, there was only a marginal increase in DOC suggesting that there is a pH threshold at 

which solubility controls DOC concentration. Such a trend which was also observed by Evans 

et al. (2012), who suggested that this shift from ‘solubility control’ to ‘supply control’ on 

DOC leaching could have implications on the future of DOC release from peatlands, as 

sensitivity to processes influencing DOC production increase, such as climate change and 

land management. For instance, DOC release from organo-mineral soils (Christ and David, 

1996) and peat (Freeman et al., 2004; Clark et al., 2009) have been shown to increase with 

increased temperature. Climate or land-management induced changes in vegetation cover 

may also lead to increased DOC production with changes in climate, particularly for Calluna 

(Ritson et al., 2014). 

The coloured aromatic fraction of DOC, which is estimated to make up 50 - 75 % of total 

DOC in surface waters (Tipping et al., 1988; Grieve, 1990; Worrall et al., 2003; Hongve et al., 

2004) has been shown to be sensitive to acidity (Clark et al., 2011; SanClements et al., 

2012a). On this basis, we would expect low-SUVA254 litter extract DOC to be less affected by 

pH manipulation than high-SUVA254 organic soil extract DOC, particularly during April and 

July when SUVA254 was highest. This interpretation does appear consistent with the 



correlation analysis of DOC versus pH shown in Figure 4, but is not evidence in the 

comparisons between peat and podzols in ANOVA analysis (Figure 3).  

The observed relationships in DOM quantity and quality between different components of 

the upper soil, and with pH, provide some insights into the production, movement and 

control of DOM within organic soils. Positive relationships of SUVA254 between surface litter 

and organic soil extracts, and between organic soil extracts and pore water, suggest a 

process by which DOM is produced in the litter layer and either directly or via the organic 

soil layer into surface waters. A theoretical pathway model based on these relationships is 

shown in Figure 5. 

 

Figure 5: Theoretical pathway model showing the movement of DOM through the different components of the 

upper surface layer of peat into terrestrial waters.  

Aboveground exudates and freshly senesced litter are added to the soil surface, where 

biological decomposition processes are initiated. A part of the soluble fraction may be 

transported to waters directly through overland flow (Clark et al., 2007). Since litter DOC 

production is biologically mediated, and we did not find clear relationships between DOC 

and pH in litter extracts indicating that DOC released from litter was less sensitivity to 

acidity, the export of DOC to surface waters via this pathway may be largely independent of 

soil acidity changes. The remaining partly decomposed litter material may enter the surface 

organic soil below, in either dissolved or solid form, along with direct inputs from root 

turnover and exudates. In the organic soil, labile organic material is continuously 



decomposed and altered by microbial processes, leading to an accumulation of recalcitrant, 

high molecular weight organic matter (Malik and Gleixner, 2013). DOM produced from this 

pool will tend to be more aromatic, as shown by higher SUVA254 concentrations in our 

organic soil extracts. The mobilisation of this organic matter from organic soils depends on 

the biological production of potentially mobile organic matter, and its subsequent 

dissolution, diffusion and transport into larger soil pores. Our data, showing a very strong 

relationship between pore water DOC and pH, suggest that this process of mobilisation from 

soils to waters is primarily a function of solubility controls related to soil water acidity.  

5.0 Conclusion 

Results from this study indicate that litter is a greater source of DOC, which is less aromatic 

(as indicated by SUVA254), whilst organic soils produced less DOC which is more aromatic. 

The acid sensitive fraction of DOC is likely transported through leaching from the upper 

organic soil layer and not the litter layer. These results suggest it is highly likely that 

increased solubility of DOC in pore water is due to recovery from acidification. We found 

little evidence for impact of changes in acidity on DOC production in the litter layer, whilst 

organic soil DOC concentrations were more strongly related to experimentally manipulated 

pH, implying that the mobility of this DOC is subject to physicochemical rather than biotic 

controls. Therefore we suggest that the increasing DOC trend is due to an increase in export 

from organic soil rather than increased decomposition and DOC production. Further work is 

needed to assess the impact of DOC production with recovery from acidification on DOC 

release from these sources based on longer term monitoring and greater sampling size. 
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