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Forecasting the Volatility of Bitcoin: The Importance of Jumps

and Structural Breaks

Abstract

This paper studies the volatility of Bitcoin and determines the importance of jumps and

structural breaks in forecasting volatility. Using high-frequency data, we perform a model-

free decomposition of realized variance into its continuous and discontinuous components,

positive and negative semivariances, signed jumps and leverage components. We show the

importance of this decomposition in the in-sample regressions using eighteen competing

heterogeneous autoregressive (HAR) models. In the out-of-sample setting, we find that the

HARQ-F-J model is the superior model, indicating the importance of the temporal variation

and squared jump components at different time horizons. We also show that the HAR models

with structural breaks outperform models without structural breaks across all forecasting

horizons. Our results are robust to an alternative jump estimator and estimation method.

Keywords: Volatility Forecasting; Bitcoin; Realized Volatility; Jumps; Structural Breaks.

JEL classification: C53; G15; G17.
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1. Introduction

Bitcoin has received a great deal of attention since it was first proposed by Nakamoto (2008) and this

attention has come from the media, governments, regulators, as well as from investors, who have been

attracted to Bitcoin by its huge increase in price during 2017. However with this surge in price in

2017, has come huge volatility and uncertainty regarding the future price path of this popular

cryptocurrency. There is a growing evidence that Bitcoin offers substantial diversification to

investors when included in portfolios (Kajtazi and Moro 2019; Platanakis and Urquhart 2019) and that

technical trading rules generate signficiant returns to investors (Hudson and Urquhart 2019).

Therefore, forecasting the volatility of Bitcoin is of great interest and this paper provides a

comprehensive overview of the forecasting ability of various time-series models derived from the

innovative heterogenous autoregression (HAR) specification of Corsi (2009). We consider eighteen

HAR models and the analysis is conducted in-sample, and more importantly, out-of-sample for

Bitcoin from January 2012 to September 2018. Our results show that the inclusion of jumps is

important when forecasting Bitcoin volatility at all forecasting horizons. Specifically, we find that the

HARQ-F-J model provides the best out-of-sample forecast of volatility for a 1-day horizon period

indicating the importance of the temporal variation and squared jump components at different

horizons. For the 1-week and 1-month forecast horizons, we find a number of models that include

jumps are superior to models without jumps. Also, we find that the inclusion of structural breaks in

each HAR model improves the forecasting ability of these models when considering forecast horizons

of 1-day, 1-week and 1-month. Therefore our results indicate the importance of the temporal variation

and squared jump components, separated at different horizons, as well as structural breaks, in

forecasting Bitcoin volatility through competing HAR models.

Since the availability of high-frequency data has become more common, there is ample evidence of

the economic value of forecasting volatility using intraday data. Most of the studies find that simple

autoregressive structures such as HAR models provide much better forecasting ability than GARCH-

type models that employ daily data (for instance, see Andersen and Bollerslev (1997); (1998);
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Andersen et al (2001); Andersen et al (2003); Koopman et al (2005); Giot and Laurent (2007)).1 This

improvement comes from the fact that GARCH models employ daily data while HAR models are able

to capture more information contained in intraday data.

The literature on cryptocurrencies is growing, with many papers reporting the inefficiency of Bitcoin

(Urquhart 2016; Khuntia and Pattanayak 2018; Nadarajah and Chu 2018; Tiwari et al 2018), the

hedging and diversification benefits (Bouri et al 2017; Corbet et al 2018a; Urquhart and Zhang 2018;

Borri 2019), the existence of bubbles (Cheah and Fry 2015; Corbet et al 2018b) and the behaviour of

Bitcoin returns (Urquhart 2017; Corbet and Katsiampa 2018; Phillip et al 2018).2 However there is

limited literature examining the volatility dynamics of Bitcoin, with Katsiampa (2017) the first to

explore the optimal conditional heteroskedasticity model with regards to goodness-of-fit to Bitcoin

and finds that an AR-CGARCH model is the most appropriate, indicating both the short- and long-run

component of the conditional variance. Chaim and Luarini (2018) show that jumps to volatility are

permanent in Bitcoin, while jumps to returns are contemporaneous. They also show that large jumps

to mean returns are all negative and associated with hacks and forks. Catania et al (2019) compare

the abilities of several alternative univariate and multivariate models to predictor cryptocurrencies and

show large statistically significant improvements in the point forecasting of Bitcoin when using

combinations of univariate models while Katsiampa et al (2019) show strong interdependencies

between cryptocurrency volatilities and that time-varying conditional correlations of volatility exist

between cryptocurrencies. Gronwald (2019) shows that Bitcoin price dynamics are particularly

influenced by extreme price movements, more than in the markets for crude oil or gold which is

possibly a result of the immaturity of the market. Recently, Kalyvas et al (2019) shows that bitcoin

crash risk is lower when economic policy uncertainty is high, indicating the hedging ability of bitcoin

to economic policy uncertainty.

1 Andersen et al (2006), chapter 15 provides an excellent survey.
2 See Corbet et al (2019) for a recent review of the empirical literature of cryptocurrencies.
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All of the previously mentioned studies employ daily data but there is growing evidence that high-

frequency data is useful in predicting future volatility, especially the decomposition between the

continuous and the jump component, as well as the separation between negative and positive intraday

returns. Jumps have a long history in finance and have traditionally been estimated from daily data

(for instance Andersen et al 2002; Eraker et al 2003; Eraker 2004). However given the upsurge in the

availability of high frequency data, more and more studies have gained insights from the intraday

behaviour of volatility. Andersen and Bollerslev (1998) were the first to use intraday data to measure

volatility when they proposed realized volatility (RV) and since then, high-frequency data

applications have developed rapidly with a strong focus on forecasting financial markets. In more

recent work, Corsi (2009) proposes the heterogeneous autoregressive model of realized volatility

(HAR-RV) and shows that this model is markedly better than the traditional GARCH model and

ARFIMA-RV model at forecasting volatility. Since then, many studies have examined the use of the

HAR-RV model as well as modifications to the model, such as the HAR-RV-J, HAR-RV-CJ and

HAR-RSV model for example. Many studies have shown that these HAR type models offer better

forecasting ability than GARCH, SV, VAR-RV and ARFIMA-RV models (see for example Andersen

et al 2011; Çelik and Ergin 2014; Sévi 2014) indicating the importance of intraday volatility in

forecasting future volatility.

This study provides a comprehensive empirical analysis of the forecasting accuracy of various time

series models derived from the heterogenous autoregressive (HAR) specification proposed by Corsi

(2009). We study 18 competing HAR models that forecast volatility from 1-day to 2-months where

we conduct in-sample and more importantly, out-of-sample analysis of Bitcoin from 1st January 2012

to 30th September 2018. Specifically, we find that the HARQ-F-J model provides the best out-of-

sample forecast of volatility for a 1-day, 1-week and 1-month horizons period indicating the

importance of the separating temporal variation and squared jump components at different horizons.

Also, we find that the inclusion of structural breaks in each HAR model improves the forecasting

ability of these models when considering forecast horizons of 1-day, 1-week and 1-month. Therefore

our results indicate the importance of the temporal variation and squared jump components, separated
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at different horizons, as well as structural breaks, in forecasting Bitcoin volatility through competing

HAR models. We conduct a number of robustness checks where we employ the novel jump-robust

estimator of Andersen et al (2012), as well as using a weighted least squares (WLS) approach rather

than the OLS and our findings remain consistent. Therefore we find that jumps are quite common in

Bitcoin and that jumps as well as structural breaks are important components when forecasting the

volatility of Bitcoin.

Our findings are consistent with the results from Scaillet et al (2018) in that jumps are frequent events

in the Bitcoin market, and therefore in our paper the inclusion of jumps improves the forecasting

power of our HAR models. As argued in Scaillet et al (2018), the presence of “whales”, who are big

money bitcoin players that show their hand in the bitcoin market, can have a large impact on the price

if they make such a big order in the market. These large impacts subsequently cause the jumps in the

bitcoin price and the likelihood of “whales” in the bitcoin market is much higher than in equity

markets. Therefore bitcoin (and other cryptocurrencies) are more susceptible to jumps than more

mature markets. Also, the bitcoin market trades 24 hours a day, 7 days a week which enables traders

from all over the world to trade at whatever time is suitable for them. Consequently, unlike

international stock markets with certain trading times, not all bitcoin traders are active in the market at

the same time and this can lead to certain traders being able to have a large price impact when

liquidity in the market is fairly low. We also find that the inclusion of structural breaks in our HAR

models produces better forecasts of bitcoin volatility. Similar to jumps, structural breaks are inherent

in the bitcoin market due to “whales” and the market structure of bitcoin. This can be clearly seen in

Figure 2 where we report the time-series graph of the price of bitcoin during our sample period. In a

more mature, less volatile market, the inclusion of structural breaks in HAR models may not be as

useful but in the immature bitcoin market, we find that they are very useful. With bitcoin futures

introduced in December 2017, investors are now able to hedge bitcoin much more easily which may

prevent the huge bubbles experienced in 2015 and 2016 (Shiller 2017) and reduce the number of

jumps and structural breaks in the bitcoin price.



6

The remainder of the paper is organized as follows. Section 2 introduces are data employed while

Section 3 provides the methodology, where we explain how we measure realized volatility, jumps as

well the 18 different HAR models employed in this study. Section 4 presents the empirical results

and Section 5 provides some robustness checks. Finally, Section 6 provides a summary of the

findings and concludes.

2. Data

We obtain Bitcoin tick data from www.bitcoincharts.com and focus on Bitstamp from 1st January

2012 to 30th September 2018 since it is one of the largest and longest Bitcoin exchanges and thus

provides sufficient liquidity.3 The sample period is chosen due to data availability as before this date,

Bitcoin lacked intraday liquidity. Bitcoin trades 24 hours a day, 7 days a week and therefore we have

a continuous time-series throughout our sample period.4 Before computing the variances, a sampling

frequency needs to be chosen. It is well documented in the literature that microstructure noise (due to

bid-ask spreads, non-synchronous trading and price discreteness) may impact on the realized variance

estimator at high frequency (see for example Andersen and Bollerslev 1997; Andersen and Bollerslev

1998). To deal with this issue, we plot the volatility signature in Figure 1, which stabilises around the

5-minute frequency and therefore we use this as our sampling frequency.5

Table 1 presents summary statistics for the different measures of variance where we annualize by

multiplying by the square root of 365. We can see that RV is quite large for Bitcoin while we find

strong evidence of jumps in this cryptocurrency. Figure 2 and 3 present the time-series graph of the

daily price and returns of Bitcoin over our sample period and shows the dramatic price rise and large

volatility associated with Bitcoin.

3 Although the volatility of Bitcoin futures may be of interest to forecast, Bitcoin futures only started trading on
the CBOE on 10th December 2017 and therefore there is a limited sample size. Future work will no doubt
examine the volatility forecasting of Bitcoin futures when the market is more mature, and more data is available.
4 Since Bitcoin trades 24/7 unlike traditional equity markets which trade only 5 days a week, our 1-week
horizons are 7 full days, rather than 5.
5 Liu et al (2015) show that it is difficult to beat the standard 5-minute realized variance when forecasting
volatility and the use of the 5-minute frequency is consistent with other studies such as Sévi (2014); Wen (2016),
Behrendt and Schmidt (2018).
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3. Methodology

This section provides an overview of estimating volatility from intraday data, the jump detection tests,

and then we introduce our competing models.

3.1. Estimating Volatility

In order to calculate the realized volatility (RV) from the 5-minutely data, we define any given day t,

and the RV is computed as the sum of the squared intraday returns ��呈௬ at a given sampling frequency

1/M:

���呈h �
௬�h

h

��呈௬
��

(1)

where M is the number of intervals in the trading day. Now we have RV, we now need to disentangle

jumps and from the continuous component of RV. Barndorff-Nielsen and Shephard (2004) propose

the bi-power variation (BPV) measure, which is computed as the scaled summation of the product of

adjacent absolute returns:

�.��呈h � �h
௬�h

hth

��呈௬ ��呈௬�h�
(2)

where �h � �
�
�Γ

h
� ��h

Γ h �
� ᧀ䁒 � �� denotes the mean of the absolute value of standard normally

distributed random variable Z.

3.2. Jump Detection
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We employ the adjusted jump ratio statistic, which has been shown to have power against several

empirically realistic calibrated stochastic volatility jumps diffusion models and the best empirical

properties in Huang and Tauchen (2005), to detect jumps in our study. The test statistic is as follows:

�撠�.�䁒�呈h� � h
���呈h t �.��呈h ���呈h

th

�h
t� � ��h

t� t ㄠ �th h呈�అ�呈h�.��呈h
t�

h�
(3)

where �అ�呈h is the realized tripower quarticity which writes �అ�呈h � h��䁖
䁖

௬�h
ht� ��呈௬�h�

�䁖
��呈௬��

�䁖

and converges in probability to the integrated quarticity. The �撠�.� statistic follows a standard

normal distribution and allows formal testing for the presence of jumps.

Using the test statistic in equation (3) and a significance level of � which we set to 0.999, we extract

significant jumps as follows6:

撠�呈�䁒h� � ���呈h t�.��呈h � � �撠�.� �呈h � Φ� (4)

where �th� is the indicator function which identifies the significance of the �撠�.�䁒�呈h� statistic in

excess of a given critical value of the Gaussian distribution Φ� . The continuous path of realized

variance can be identified as:

��呈� h � �.��呈h � � �撠�.� �呈h � Φ� � ���呈h � � �撠�.� �呈h � Φ� (5)

Therefore if a jump is present, the squared jump component equals the difference between RV and

BPV and the continuous component equals the BPV. If there are no jumps, the jump component is

naturally zero and the continuous component equals RV.

3.3. Semivariances and signed jumps

6 We follow Bajgrowicz et al (2014) and Prokopczuk et al (2016) and choose this criterion to allay concerns that
the test may be driven by false positives.
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Realized semivariances have been shown to have importance in volatility forecasting (Barndorff-

Nielson et al 2010) since negative and positive returns will have different impacts on the volatility.

Therefore the daily negative realized semivariances estimator is:

�s��呈h
t �

௬�h

h

��呈௬
�� � � ��呈௬ ��

(6)

And the positive realized semivariances estimator is:

�s��呈h
� �

௬�h

h

��呈௬
�� � � ��呈௬ ��

(7)

From both these, we follow Patton and Sheppard (2011) and define signed jumps as the difference

between positive and negative realized semivariances:

�撠�呈h � �s��呈h
� t �s��呈h

t (8)

3.4. HAR Models

In this section, we introduce the eighteen different HAR models we examine in this paper.

3.4.1. HAR-RV Model

Based on the heterogenous market hypothesis of Corsi (2009) proposes the HAR-RV model:

��� �� ��h
� � �� � �h���

� � �����
� � �䁖����

� � ���h (9)
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where ��� �� ��h
� is the average realized volatility between time t and t+H. ��� �� ��h

� represents the 1-day

future realized volatility, while ��� �� ���
� represents the 1-week future realized volatility and ��� �� ��䁖�

�

represents the 1-monith future realized volatility. ���
� � ���

�� � ��呈h
� is the daily realized volatility,

���
� � 䁒���

� � ���th
� ��� ���t䁤

� �� is the weekly realized volatility while ���
� � 䁒���

� �

���th
� ��� ���t�㈮

� �䁖� is the monthly realized volatility.

3.4.2. HAR-RV-J Model

To determine whether the inclusion of a jump component can help forecast volatility, Andersen et al

(2007) develop this model by adding the daily discontinuous jump variation to the HAR-RV model

such that:

��� �� ��h
� � �� � �h���

� � �����
� � �䁖����

� � �sఅ撠h撠�
� � ���h (10)

where 撠�
� is the daily discontinuous jump variation that we defined in equation (4).

3.4.3. HAR-CJ Model

The HAR-CJ model, proposed by Andersen et al (2007), separates out the continuous and squared

jumps components at different time horizons. This model can assess the role of these different

volatility components in forecasting volatility such that:

��� �� ��h
� � �� � ��h��

� � �����
� � ��䁖���

� � �sఅ撠h撠�
� � �sఅ撠�撠�

� � �sఅ撠�撠�
� � ���h (11)

where ��
� is the daily continuous sample path variation as measure, ��

� � 䁒��
� � ��th

� �� � ��t�
� ��

is the weekly continuous sample path variation, and ��
� � 䁒��

� � ��th
� ��� ��t�㈮

� �䁖� is the

monthly continuous path variation. The jump component is also decomposed in the following way:
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撠�
� � 䁒撠�

� � 撠�th
� ��� 撠�t�

� �� is the weekly jump variation, and 撠�
� � 䁒撠�

� � 撠�th
� �� � 撠�t�㈮

� �䁖� is

the monthly jump variation.

3.4.4. HAR-PS Model

This model is the basic specification of Patton and Sheppard (2011) which decomposes the one-day

lagged realized variance into a positive and negative component using realized semivariances such

that:

��� �� ��h
� � �� � �h

��s��
� � �h

t�s��
t � �����

� � �䁖����
� � ���h (12)

3.4.5. HAR-PSL Model

This model is similar to the previous HAR-PS model but includes a term for the leverage effect, and

checks whether the superior significance of negative realized semivariance does not come from a

leverage effect:

��� �� ��h
� � �� � �h

��s��
� � �h

t�s��
t � �����t�� ��� � �����

� � �䁖����
� � ���h (13)

3.4.6. HAR-RSV Model

This model by Patton and Sheppard (2011) decomposes realized variance into a positive and negative

component using realized semivariances, since the model assumes that positive and negative realized

semivariances can have different predictive abilities for the short, medium and long terms. The HAR-

RSV model is such that:

��� �� ��h
� � �� � �h

��s��
�� � ��

��s��
�� � �䁖�

� �s��
�� � �h

t�s��
�t � ��

t�s��
�t

� �䁖�
t �s��

�t � ���h
(14)
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where �s��
�� represents the daily positive realized semivariance, �s��

�� represents the weekly

positive realized semivariance and �s��
�� represents the monthly positive realized semivariance,

while �s��
�t represents the daily negative realized semivariance, �s��

�t represents the weekly

negative realized semivariance and �s��
�t represents the monthly negative realized semivariance.

3.4.7. HAR-RSV-J Model

Chen and Ghysels (2011) propose the HAR-RSV-J model, which is similar to the HAR-RSV model

but includes the lagged daily discontinuous jump variation such that:

��� �� ��h
� � �� � �h

��s��
�� � ��

��s��
�� � �䁖�

� �s��
�� � �h

t�s��
�t � ��

t�s��
�t

� �䁖�
t �s��

�t � �sఅ撠h撠�
� � ���h

(15)

3.4.8. HARQ-F Model

Recently, Bollerslev et al. (2016) propose the HARQ-type model by incorporating Realized Quarticity

(RQ) into the basic models, where �అ � h
䁖 ௬�h

h ��呈௬
�� .

��� �� ��h
� � �� � �h � ��అh �అ�

� ���
� � �� � ��అ� �అ�

� ���
�

� �䁖� � ��అ䁖� �అ�
� ���

� � ���h

(16)

where �అ�
� � 䁒�అ�

� � �అ�th
� �� � �అ�t䁤

� �� is the weekly realized quarticity while �అ�
� �

䁒�అ�
� � �అ�th

� ��� �t�t�㈮
� �䁖� is the monthly realized quarticity. Since equation (16) contains all

parameters of measurement of error variance compared to the simplified model described in

subsection 3.4.10, this model is termed the HARQ-F model.

3.4.9. HARQ-F-J Model

The HARQ-F-J model is a new specification where the jump component with a positive sign is

considered based on the HARQ-F model proposed by Bollerslev et al. (2016), which has significantly

improved the forecasting accuracy by incorporating temporal variation. We further add the jump

component to the HARQ model:
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��� �� ��h
� � �� � �h � ��అh �అ�

� ���
� � �� � ��అ� �అ�

� ���
�

� �䁖� � ��అ䁖� �అ�
� ���

� � �sఅ撠h撠�
� � ���h

(17)

where 撠�
� is the daily discontinuous jump variation.

3.4.10. HARQ Model

Bollerslev et al. (2016) also observe that there exists substantial estimation bias in daily ��, while the

attenuation bias is much less severe in the weekly and monthly ones. Therefore, they simplify

equation (16) to the function of daily �అ
h
�.

��� �� ��h
� � �� � �h � ��అh �అ�

� ���
� � �����

� � �䁖����
� � ���h

(18)

which is referred to the HARQ model.

3.4.11. HARQ-J Model

As the HAR-Q-F model has its simplified version, the new specification of HARQ-F-J model can be

also termed as HARQ-J by only focusing on daily realized quarticity and jump component, which is

the second new specification:

��� �� ��h
� � �� � �h � ��అh �అ�

� ���
� � �����

� � �䁖����
� � �sఅ撠h撠�

� � ���h
(19)

3.4.12. HAR-RV-SJ Model

This model introduces the notion of the signed jump and is similar to the previous HAR-RV-J model

but now the lagged daily discontinuous jump variation is replaced with the lagged daily signed jump

such as:
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��� �� ��h
� � �� � �����

� � �䁖����
� � ��h��

� � �撠h�撠�
� � ���h (20)

where �撠�
� is the daily signed jump.

3.4.13. HAR-CSJ Model

This model, suggested by Sévi (2014), considers signed jumps over a longer interval than one day and

considers jumps over the short period of time, as well as takes account the signs of the jumps such

that:

��� �� ��h
� � �� � ��h��

� � �����
� � ��䁖���

� � �撠h�撠�
� � �撠��撠�

� � �撠䁖��撠�
� � ���h (21)

3.4.14. HAR-RV-SJd Model

This model, proposed by Patton and Sheppard (2011), discriminates between positive and negative

signed jumps such that:

��� �� ��h
� � �� � �����

� � �䁖����
� � ��h�� � �撠h

��撠�
��t�撠� ��� � �撠h

t�撠�
��t�撠� ��� � ���h (22)

3.4.15. HAR-CSJd Model

The HAR-CSJd model is proposed by Sévi (2014) and separates positive and negative signed jumps

at various time horizons such that:

��� �� ��h
� � �� � �撠h

��撠�� �撠� �� � �撠h
t�撠�

�� �撠� �� � ��h��
� �

�撠�
��撠�

�� �撠�� �� � �撠�
t�撠�

�� �撠�� �� � �����
� �

�撠䁖�
� �撠�

�� �撠�� �� � �撠䁖�
t �撠�

�� �撠�� �� � ��䁖���
� �

� ���h

(23)
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3.4.16. HAR-J

Proposed by Andersen et al (2007), this model is a simple extension of the HAR-RV model in that it

replaces the most recent RV with a continuous and jump component such that:

��� �� ��h
� � �� � ��h��

� � �����
� � �䁖����

� � �撠h撠�
� � ���h (24)

3.4.17. HAR-RJ

The previous model can be criticized in that it ignores the sign of the jumps and therefore Tauchen

and Zhou (2011) propose the HAR-RJ model such that:

��� �� ��h
� � �� � ��h��

� � �����
� � �䁖����

� � ��௬�撠� � ���h

�th�h �撠� � ���h �� h 撠�

(25)

3.4.18. HAR-ARJ

The final model, suggested by Prokopczuk et al (2016), decomposes RJ into positive and negative

jumps to determine whether the variation from negative jumps has a more pronounced impact on

future volatility than that of positive jumps, such that:

����t � �� � ��h��
� � �����

� � ��䁖���
� � ��撠��撠�

� � ��撠t�撠�
t � ���h (26)

Table 2 provides an overview of the eighteen different HAR models explored in this study which

includes the traditionally popular HAR models, as well as more advanced and innovative models.
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4. Empirical results

This section presents our main results. We begin by comparing the predictive ability of our models in

an in-sample setting, and then present a comprehensive and rigorous analysis of the out-of-sample

performance of these models.

4.1. In-Sample Analysis

We begin by analysing the in-sample predictive power of our competing models introduced in the

previous section. We do this by estimating all the of models noted in the previous section through

OLS regressions and also report the adjusted-R2. We consider different forecasting horizons, notably

1-day, 1-week and 1-month volatility, where we use Newey-West corrected standard errors.7

Table 3 reports our results for models (1) to (9) for each forecasting horizon and we see that in the

HAR-RV model, all coefficients are statistically significant at the 10% level for all forecasting

horizons and the adjusted-R2 for the 1-day, 1-week and 1-month forecasting horizons is 31.8%, 34.6%

and 13.2% respectively. The HAR-RV-J model, which encompasses the jump component, shows that

the jump component is positive and statistically significant, which is found across all forecasting

horizons, which indicates that volatility increases following a jump event. The jump component

magnitude decreases monotonically from the 1-day forecasting horizon to the 1-month forecasting

horizon. The adjusted-R2 of the HAR-RV-J model is larger than that of the HAR-RV model,

indicating that the HAR-RV-J model incorporating jumps predicts Bitcoin volatility more accurately

than the standard HAR-RV model. This is consistent with the results of Corsi et al (2010) who find a

positive and significant effect of the jump component when measuring the squared jumps using their

threshold indicator. Therefore we can conclude that jumps significantly increase the impact of lagged

volatility that is a highly persistent component.

7 We do not put the standard errors in parentheses to conserve space, but the full results are available upon
request from the corresponding author.
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The results for the HAR-RV-CJ model show that the continuous jump component for one day is

positive and statistically significant across all forecasting horizons and has a higher adjusted-R2 to that

of the HAR-RV-J model in 1-week and 1-month horizons, indicating its superiority. The HAR-PS

model of Patton and Sheppard (2011) shows that the negative semi-variance is statistically significant,

however the adjusted-R2 is smaller than that of the HAR-RV-CJ model therefore indicating that the

decomposition between positive and negative semivariances does not contribute to improving the fit

of the predictive regressions. The HAR-PSL model shows that the leverage component is statistically

significant and the high adjusted-R2 shows that this model is the best model for the in-sample 1-day

forecasting horizon. For the HAR-RSV model of Patton and Sheppard (2011) and the extension HAR-

RSV-J model of Chen and Ghysels (2011), we find that the jump component is statistically significant

as are the RV components decomposed into positive and negative realized semivariances. In the last

two rows of Table 3 we report the HARQ-F model of Bollerslev et al (2016) and the HARQ-F-J and

find that the new components incorporated by this model are all statistically significant at the 1-day

forecasting horizon, and most are statistically significant at the 1-week and 1-month forecasting

horizons. Regarding the goodness-of-fit of our models, we find that the model with the highest

adjusted-R2 over the one-day horizon is the HAR-PSL while the HARQ-F-J model has the highest

adjusted-R2 over the 1-week and 1-month forecasting horizons.

Table 4 presents the findings for models (10) to (18) where we find that the models incorporating

realized quarticity, i.e., HARQ and HARQ-J models have larger adjusted-R2 compared to the standard

HAR models. The signed jump component of the HAR-RV-SJ model is negative and statistically

significant at the 5% level. The explanatory power of this compared to the HAR-RSV-J model is

smaller indicating that there is no specific in-sample gain in considering signed jumps. We do show

however that there is an additional increase in explanatory power when signed jumps are considered

separately depending on their sign. We find that positive and negative 1-day jumps are significant

across all forecasting horizons however these models do not offer any higher explanatory power than

the HAR-RSV-J model reported in Table 3. We also study the HAR-J model of Andersen et al (2007)

and show that this simple model does not add any explanatory power. Finally we examine two further
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models, namely the HAR-RJ model of Tauchen and Zhou (2011) and the HAR-ARJ of Prokopczuk et

al (2016). We find that the jump component is negative and statistically significant, indicating that

volatility decreases following a jump event. When we decompose the jump component into positive

and negative jumps in the HAR-ARJ model, we find that the negative jump component dominates its

positive counterpart (consistent with Prokopczuk et al 2016). The adjusted-R2 is also high for the

HAR-ARJ model, as it is the model that has the most explanatory power for the 1-day forecasting

horizon, and it is quite high compared to the other models for the 1-week and 1-month forecasting

horizons.

Combining Tables 3 and 4 together, we find that the model with the highest adjusted-R2 is the HAR-

ARJ over the one-day horizon, while the HARQ-F-J model generates the highest adjusted-R2 over the

one-week and one-month horizons.

4.2. Out of sample analysis

We now turn our attention to the out-of-sample performance of the competing models since this is the

only way to gauge the forecasting performance between different models (Giot and Laurent 2007). A

vast majority of the literature employs the Diebold-Mariano-White (DMW) statistic developed by

Diebold and Mariano (1995) and West (1996). This statistic compares the forecast ability of

competing models by generating a loss function that is a measure of the difference between the

realized value and the forecast in a pseudo out-of-sample forecasting environment. However, the

DMW test is inappropriate when comparing nested models, and therefore we use the Clark and West

(2007) statistic when comparing the eighteen competing models.8 The MSPE-adjusted suggested by

Clark and West (2007) is:

����t � h�hȁ��t
� t h��ȁ��t

� � ��hȁ��t t ���ȁ��t
� (30)

8 In unreported results, we also use the DMW statistic to compare non-nested models and use the CW statistic to
compare nested models, consistent with Corsi and Renò (2012). Our results are qualitatively similar and are
available upon request from the corresponding author.
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where h�hȁ��t is the forecast errors of null model for horizon t , h��ȁ��t is the forecast errors of

alternative model for horizon t , and ��hȁ��t and ���ȁ��t are forecast values of null and alternative

models. Then the CW statistic for horizon t is calculated by:

CW �
��t���

�t� ����t t �t���

(31)

where �t��� is the sample average of ����t , � is the forecast sample number, and �t� � is the sample

variance. A rejection of the null model denotes the forecast errors from the alternative model are

significantly smaller than the null one. Hence, significant and positive CW statistics indicate the

alternative model is the preferred one.

For the 1-day forecast horizon reported in Panel A of Table 5 shows that the HAR-RV model

significantly outperforms most of other models except for HARQ, HARQ-J, HARQ-F and HARQ-F

models. As expected from the in-sample analysis, the HARQ-F and HARQ-F-J models are very good

as they outperform most all other models and most of the time, significantly outperforms them. The

HARQ and HARQ-J models both do quite well and significantly outperform most other models, but

not as good as the HARQ-F and HARQ-F-J models. The worst models are the HAR-RV-CSJD and

HAR-PSL which underperform most of all models. Interestingly, the models with signed jumps or

signed variances do offer any improved performance. Considering the 1-week horizon in Panel B, we

find similar results in that the HARQ-F and HARQ-F-J models are preferred, which also significantly

outperform all other models. Therefore over the 1-day and 1-week forecasting horizons we can

conclude that the HARQ-F and HARQ-F-J models offer the best performance however the CW

statistic of comparison between HARQ-F and HARQ-F-J isn’t significant cross the 1-day and 1-week

horizons. Table 6 reports the out-of-sample results for the 1-month forecasting horizon where we find

that the HARQ-F-J model outperforms all other models indicating that it gives the best out-of-sample

performance. Interestingly however, the second best model is the newly developed HARQ-F model
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of Bollerslev et al. (2016), which outperforms all other models (most of the time significantly

outperforms) except the HARQ-F-J model.

To summarize, our findings show although modest findings in the in-sample period, the HARQ-F-J

model offers the best out-of-sample performance. This points to the well-known in-sample over-

fitting issue which does not translate well into good out-of-sample forecasts. Therefore in an out-of-

sample setting, we find that temporal variation and squared jump components, separated at different

horizons, offer the best forecast of the volatility of Bitcoin.

5. Robustness Check

In this section, we add robustness to our analysis by considering HAR models with structural breaks

as well as an alternative jump estimator by employing the nearest neighbour estimator of Andersen et

al (2012). We add a further robustness check by also employing the weighted least squared estimator

in addition to the ordinary least squares estimator.

5.1. Structural Breaks

In a recent study, Wen et al (2016) introduce HAR models with structural breaks and show that these

models can help explain the volatility of crude oil futures. As shown in Figure 2, the price of Bitcoin

has fluctuated hugely over our sample period, and therefore there is the possibility that introducing

structural breaks into our HAR models may improve the in-sample and more importantly, the out-of-

sample performance. Therefore we employ the Inclán and Tiao (1994) ICSS algorithm to determine

the number of break points, where Figure 4 plots the Bitcoin returns with break points and ± 䁖

standard deviations and Table 7 reports the structural break periods which are identified by the ICSS

algorithm.9 We find 35 break points during our sample period, which is quite considerable given our

sample period which suggests that the inclusion of structural breaks may improve the performance of

the HAR models. Therefore we re-estimate each HAR model but include a structural break as in Wen

9 The ICSS algorithm is a popular method for detecting multiple structural breaks and has been employed by
Vivian and Wohar (2012), Charles et al (2014), Yarovaya et al (2016) and Shahzad et al (2018).
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et al (2016) and report the CW statistics of the HAR models with structural breaks over different

forecasting horizons in Tables 8 and 9.10 Over the 1-day forecasting horizon, we find that the best

model is the HARQ-F model which outperforms all other models, while over the 1-week forecasting

horizon the relatively superior model is the HAR-J model although it doesn’t outperform all models

but outperforms the majority of models. Interestingly, over the longer forecasting horizon of 1-month,

we find that the HARQ-F model is superior over all others. Therefore the inclusion of the structural

breaks into our HAR models changes the superior out-of-sample models quite considerably.

Tables 8 and 9 assess the fit of the HAR models with structural breaks against the HAR models

without structural breaks. However we need to assess whether HAR models with structural breaks

outperform HAR models without structural breaks included in the estimation to determine whether

models with or without structural breaks are superior in the forecasting of volatility of Bitcoin.

Therefore in Table 10, we present the CW statistics when comparing HAR models with structural

breaks (alternative models) and HAR models excluding structural breaks (null models). In this table,

a positive statistic indicates that the corresponding HAR model with structural breaks is preferred

over the HAR model without the structural break and we find that over 1-day forecasting horizon, all

of the statistics are positive indicating that the HAR models with structural breaks offer the best

forecast of future volatility of Bitcoin. When we look at the forecasting horizon of 1-week, we find

that the vast majority of the statistics are positive and statistically significant, indicating that HAR

models with structural breaks significantly outperform HAR models without structural breaks.

Interestingly, when we study the 1-month and 2-months forecasting horizon, we find that the HAR

models without structural breaks are sometimes again preferred although the majority of the statistics

are positive indicating that the inclusion of structural breaks improves the out-of-sample forecasting

power of the HAR models. These results indicate the importance of including structural breaks in

forecasting future volatility at forecasting horizons of 1-day and 1-week, but the results are mixed

when including structural breaks in HAR models forecasting over 1-month and 2-month horizons.

10 We do not report the in-sample results of the structural break HAR models to conserve space as the out-of-
sample analysis is more insightful, but the in-sample results are available upon request from the corresponding
author.
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5.2. Alternative Jump Estimators

As Andersen et al (2012) point out, the standard multipower variations may be biased in finite

samples and propose the ‘median realized variance estimator’ (MedRV) which they show is more

efficient and robust to jumps than its main rivals. Therefore we re-estimator our HAR models and

replace the BPV with the MedRV variation estimator, where the MedRV can be defined as:

hh���� �
�

䁤 t � 䁖 � �
h

ht �䁒�� h�
௬����䁖

h

�h� ��௬t�䁒��h� 呈 ��௬t䁒��h� 呈 ��௬�

�

(30)

where med(.) stands for the median operator and more information can be sought from Andersen et al

(2012). Similar to the above, we do not report all of the in-sample results to conserve space and focus

instead on the out-of-sample analysis.11 Table 11 reports the results and our results are consistent

with our previous analysis.

5.3. Alternative Estimation Method

A potential issue with our previous analysis, as pointed out by Patton and Sheppard (2015), is that the

OLS estimation may put too much weight on highly volatile periods since volatility is the dependent

variable in the model. To ensure that this is not the driving force behind our results, we re-estimate

each model with WLS which employs the inverse of the fitted values as weights for the estimations.

We do not report the results to conserve space, but the in-sample and out-of-sample results are very

similar to before and we come to the same conclusions.12

6. Summary and Conclusions

11 Again, the in-sample results are available upon request from the corresponding author.
12 The full results of the WLS regression are available upon request from the corresponding author.
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The volatility of Bitcoin has been a source of great interest, debate and worry for investors since

Bitcoin is one of the most volatile financial assets. Therefore, forecasting the volatility of Bitcoin is

of great interest if investors are considering including Bitcoin in their investment portfolios. This

paper presents a comprehensive analysis of the forecasting ability of 18 predictive HAR-type time-

series models in the Bitcoin market. To do this, we collect 5-minute high-frequency data of Bitcoin

from Bitstamp and we employ OLS regression with Newey-West standard errors to estimate the

model parameters. The in-sample results show that HAR models that include jumps offer more

explanatory power than models that exclude jumps, with the HAR-ARJ model superior over the 1-day

horizon and the HARQ-F-J model the best model over longer horizons. More importantly, the out-of-

sample results also indicate that the inclusion of jumps improves the forecasting ability of HAR

models, and that the HARQ-F-J model, which considers the temporal variation and the jump

component, is the best model in the out-of-sample setting.

Since the volatility of Bitcoin is so high, and there is the strong possibility of structural breaks, we

follow Wen et al (2016) and re-estimate our HAR models but include structural breaks. We find that

the inclusions of structural breaks improve the forecasting ability of our HAR models, especially over

the 1-day and 1-week forecasting horizons. We also show that our results are robust to alternative

jump estimators as well as using WLS as the estimation method rather than the OLS estimation

method. Therefore our findings suggest that modelling jumps, especially the temporal variation, and

structural breaks significantly improves the accuracy of volatility forecasts of Bitcoin through popular

HAR models.

Therefore our results are consistent with the notion that the bitcoin market has large “whales” who are

large players that have a big price impact within bitcoin markets (Scaillet et al 2018). This helps

explain the large number of jumps and structural breaks in the bitcoin price. Further, the 24 hours a

day, 7 days a week trading structure ensures the bitcoin market does not always have the attention of

all traders and that there are episodes of illiquidity (as shown in Eross et al 2019). With the
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introduction of bitcoin futures in December 2017, investors are now able to speculate on falling

bitcoin prices and may reduce the number of jumps and structural breaks found in the bitcoin market.
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Figure 1: The volatility signature plot of Bitcoin.
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Figure 2: Time-series graph of the price of Bitcoin, in USD, during our sample period.
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Figure 3: Time-series graph of the returns of Bitcoin, in USD, during our sample period.
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Figure 4: A time-series graph of Bitcoin returns during our sample period, with the
structural breaks with ± 3 standard deviation bounds.
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Table 1: Descriptive statistics of the annualized measures of RV.

Mean Std. Skewness Kurtosis Max Min
RV 0.1051 0.5636 406.5385 10721.5314 18.1669 0.0000
BPV 0.0936 0.5025 391.1610 9747.5904 15.6355 0.0000
J(BPV) 0.0134 0.0802 384.3653 9900.7244 2.5314 0.0000
J(MED) 0.0115 0.1586 818.6443 37854.3913 7.4070 0.0000
√RV 1.0164 0.9935 134.0653 1604.9687 18.6312 0.0745
√BPV 0.9457 0.9381 135.5804 1615.5471 17.2843 0.0000
√J(BPV) 0.3019 0.4012 118.4355 1265.7981 6.9542 0.0000
√J(MED) 0.2006 0.4203 225.7501 5127.5704 11.8948 0.0000
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Model Number Model Name Reference Equation number in

this study

1 HAR-RV Corsi (2009) Equation (9)

2 HAR-RV-J Andersen et al (2007) Equation (10)

3 HAR-CJ Andersen et al (2007) Equation (11)

4 HAR-PS Patton and Sheppard (2011) Equation (12)

5 HAR-PSL Patton and Sheppard (2011) Equation (13)

6 HAR-RSV Patton and Sheppard (2011) Equation (14)

7 HAR-RSV-J Chen and Ghysels (2011) Equation (15)

8 HARQ-F Bollerslev et al. (2016) Equation (16)

9 HARQ-F-J New specification. Equation (17)

10 HARQ Bollerslev et al. (2016) Equation (18)

11 HARQ-J New specification. Equation (19)

12 HAR-RV-SJ Patton and Sheppard (2011) Equation (20)

13 HAR-CSJ Sévi (2014) Equation (21)

14 HAR-RV-SJd Patton and Sheppard (2011) Equation (22)

15 HAR-CSJd Sévi (2014) Equation (23)

16 HAR-J Prokopczuk, et al. (2016) Equation (24)

17 HAR-RJ Prokopczuk, et al. (2016) Equation (25)

18 HAR-ARJ Prokopczuk, et al. (2016) Equation (26)

Table 2: The list of HAR models examined in this paper.
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Table 3: In-sample results of models (1) to (9). In each panel, the results show the different forecasting horizon of 1-day, 1-week and 1-month. All regressions are estimated using Newey-West (1987)
corrected standard errors. ***, ** and * indicate significance at the 1%, 5% and 10% levels respectively.

�� �h �� �䁖� �sఅh ��h �sఅ� ���
�sఅ䁖�

��䁖� �h
t �h

� ��
t ��

� �䁖�
t �䁖�

� �
��అh ��అ� ��అ䁖� adj.

��

Panel A: 1-Day Horizon

HAR-RV 0.002*** 0.509*** 0.100*** 0.098* 0.318

HAR-RV-J 0.001** 0.271*** 0.125*** 0.125** 1.915*** 0.329

HAR-RV-CJ 0.001** 2.112*** 0.280*** 0.093 0.345 0.084 0.507 0.328

HAR-PS 0.001*** 0.079** 0.096* 0.964*** 0.143 0.320

HAR-PSL 0.002*** 0.337*** 0.140*** 0.657*** -0.142 0.092* 0.337

HAR-RSV 0.002*** 1.119*** -0.018 -1.589** 1.522*** -0.681 0.853 0.322

HAR-RSV-J 0.002** 2.193*** 1.064*** -0.464*** -1.772*** 1.724*** 0.323 0.020 0.336

HARQ-F 0.001 0.376*** 0.010 0.504*** 0.046*** 0.108** -0.519*** 0.325

HARQ-F-J 0.001 0.219*** -0.017 0.539*** 1.751*** 0.024* 0.125** -0.528*** 0.333

Panel B: 1-Week Horizon

HAR-RV 0.002*** 0.311*** 0.108*** 0.1371*** 0.346

HAR-RV-J 0.002*** 0.213*** 0.118*** 0.148*** 0.792*** 0.351

HAR-RV-CJ 0.002*** 0.847*** 0.233*** 0.121 0.017 -0.080 2.033*** 0.354

HAR-PS 0.002*** 0.116*** 0.138*** 0.125 0.460*** 0.347

HAR-PSL 0.002*** 0.069*** 0.129*** 0.062 0.402*** 0.137*** 0.349

HAR-RSV 0.003*** 0.090 0.504*** 1.470*** -1.084*** -2.722*** 2.645*** 0.351

HAR-RSV-J 0.003*** 0.670*** 0.074 0.368*** 1.413*** -1.023*** -2.415*** 2.389*** 0.354

HARQ-F 0.001* 0.206*** 0.166*** 0.614*** 0.037*** 0.000 -0.709*** 0.367

HARQ-F-J 0.001* 0.156*** 0.158*** 0.625*** 0.563*** 0.030*** 0.005 -0.712*** 0.369

Panel C: 1-Month Horizon

HAR-RV 0.004*** 0.091*** 0.081*** 0.098*** 0.132

HAR-RV-J 0.004*** 0.018 0.088*** 0.106*** 0.588*** 0.137

HAR-RV-CJ 0.004*** 0.166*** 0.070*** 0.102*** 0.121 0.265*** -0.961*** 0.156

HAR-PS 0.004*** 0.084*** 0.098*** 0.030 0.140*** 0.131

HAR-PSL 0.004*** -0.020 0.080*** 0.048 0.157*** 0.099*** 0.131

HAR-RSV 0.005*** 0.103 0.077 0.886*** -0.659** -5.204*** 4.809*** 0.165

HAR-RSV-J 0.005*** 0.426*** 0.091 -0.009 0.850*** -0.619** -5.008*** 4.646*** 0.168

HARQ-F 0.002*** 0.086*** 0.324*** 0.498*** 0.003 -0.158*** -0.721*** 0.203

HARQ-F-J 0.001*** 0.028 0.314*** 0.511*** 0.644*** -0.005 -0.152*** -0.724*** 0.210
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Table 4: In-sample results of models (10) to (18). In each panel, the results show the different forecasting horizon of 1-day, 1-week and 1-month. All regressions are estimated using Newey-West (1987)
corrected standard errors. ***, ** and * indicate significance at the 1%, 5% and 10% levels respectively.

�� �h �� �䁖� ��h ��� ��䁖� �撠h
�撠�

�撠䁖� �撠h
t �撠h

� �撠�
t �撠�

� �撠䁖�
t �撠䁖�

� ��撠
��撠� ��撠t

�sఅh ��అh
adj.
��

Panel A: 1-Day Horizon

HARQ 0.002*** 0.387*** 0.154*** 0.106** 0.044*** 0.322

HARQ-J 0.001*** 0.234*** 0.150*** 0.126** 1.714*** 0.023* 0.329

HAR-RV-SJ 0.002*** 0.089** 0.087* 0.601*** -0.288** 0.311

HAR-RV-CSJ 0.002*** 0.585*** -0.093 0.108 0.147 1.927*** 0.819 0.314

HAR-RV-SJD 0.002*** 0.137*** 0.065 0.619*** -0.168 -3.005*** 0.323

HAR-RV-CSJD 0.002*** 0.346*** 0.030 0.086 -2.759*** 1.007*** 3.593*** 0.197 -0.278 2.218* 0.328

HAR-J 0.002*** 0.104*** 0.089* 0.566*** 0.310

HAR-RJ 0.002*** 0.191*** 0.096* 0.386*** -1.693*** 0.341

HAR-ARJ 0.002*** 0.188*** 0.116** 0.245*** -0.117 -2.675*** 0.347

Panel B: 1-Week Horizon

HARQ 0.002*** 0.223*** 0.147*** 0.143*** 0.032*** 0.351

HARQ-J 0.002*** 0.172*** 0.145*** 0.150*** 0.573*** 0.025*** 0.353

HAR-RV-SJ 0.002*** 0.120*** 0.133*** 0.321*** 0.223** 0.343

HAR-RV-CSJ 0.003*** 0.334*** 0.159*** -0.023 0.562*** -0.755** 2.449*** 0.347

HAR-RV-SJD 0.003*** 0.137*** 0.125*** 0.328*** 0.267*** -0.763*** 0.347

HAR-RV-CSJD 0.003*** 0.210*** 0.248*** -0.069 -0.828*** 0.943*** -0.333 -1.919*** 2.440*** 3.445*** 0.354

HAR-J 0.002*** 0.108*** 0.132*** 0.348*** 0.342

HAR-RJ 0.003*** 0.134*** 0.134*** 0.294*** -0.505*** 0.348

HAR-ARJ 0.002*** 0.133*** 0.146*** 0.207*** 0.477* -1.117*** 0.353

Panel C: 1-Month Horizon

HARQ 0.004*** 0.105*** 0.074*** 0.097*** -0.005 0.132

HARQ-J 0.004*** 0.041* 0.073*** 0.105*** 0.712*** -0.014** 0.139

HAR-RV-SJ 0.004*** 0.087*** 0.097*** 0.090*** 0.080 0.129

HAR-RV-CSJ 0.005*** 0.100*** 0.120*** -0.231* -0.005 -0.707** 5.098*** 0.163

HAR-RV-SJD 0.004*** 0.098*** 0.092*** 0.094*** 0.108 -0.556*** 0.133

HAR-RV-CSJD 0.005*** 0.042* 0.129*** -0.225*** -0.603*** 0.241* -0.758** -0.432 4.748*** 5.317*** 0.167

HAR-J 0.004*** 0.083*** 0.096*** 0.100*** 0.129

HAR-RJ 0.004*** 0.083*** 0.096*** 0.099*** -0.005 0.129

HAR-ARJ 0.004*** 0.081*** 0.107*** 0.021 0.872*** -0.551*** 0.138
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HAR-
RV-J

HAR-
RV-CJ

HAR-
PS

HAR-
PSL

HAR-
RSV

HAR-
RSV-J HARQ HARQ-

J HARQ-F HARQ-
F-J

HAR-
RV-SJ

HAR-
RV-CSJ

HAR-
RV-SJD

HAR-
RV-CSJD HAR-J HAR-

RJ
HAR-
ARJ

Panel A: 1-Day Horizon

HAR-RV -0.240 -0.017 -0.897 -1.328 -1.057 -0.721 2.086** 1.610* 3.634*** 4.529*** -0.707 -0.893 -0.691 -0.825 0.690 -1.613 -1.154

HAR-RV-J 0.884 -0.262 -0.936 -0.059 -0.864 1.867** 2.444*** 2.464*** 4.432*** 1.461* 1.477* 1.364* -0.722 1.432* -1.250 -2.120

HAR-RV-CJ -0.070 -0.750 0.231 -0.781 2.105** 2.618*** 2.669*** 4.600*** 1.728** 1.919** 1.693** -0.678 1.724** -0.386 -1.531

HAR-PS -1.970 0.649 -0.646 1.502* 2.198** 1.904** 2.884*** 1.106 0.911 0.988 -0.904 1.057 0.713 0.866

HAR-PSL 3.202*** 1.304* 2.246** 3.227*** 2.558*** 3.688*** 3.025*** 2.464*** 2.816*** -0.442 2.143** 2.427*** 2.843***

HAR-RSV -0.477 2.756*** 4.717*** 3.233*** 5.718*** 4.839*** 0.859 4.144*** -0.804 2.524*** 3.451*** 3.731***

HAR-RSV-J 1.547* 1.749** 1.660** 1.904** 1.607* 1.035 1.551* -0.805 1.416* 1.428* 1.407*

HARQ -0.185 5.054*** 2.120** -0.335 -0.389 -0.389 -0.809 -0.077 -1.090 -0.805

HARQ-J 1.888** 3.689*** 0.477 0.678 0.431 -0.801 1.067 -1.140 -1.278

HARQ-F -0.597 -0.739 -0.719 -0.689 -0.855 -0.992 -1.397 -1.257

HARQ-F-J 0.901 1.545* 1.002 -0.673 1.687** -0.268 -0.889

HAR-RV-SJ 0.475 0.162 -0.933 0.995 -0.613 -0.227

HAR-RV-CSJ 3.767*** -0.785 4.237*** 3.022*** 2.542***

HAR-RV-SJD -0.710 1.927** 1.254 1.251

HAR-RV-CSJD 1.220 1.232 1.275

HAR-J -1.439 -0.936

HAR-RJ 0.007

Panel B: 1-Week Horizon

HAR-RV 1.408* 1.820** 0.995 0.483 1.121 1.624* 1.149 2.794*** 17.811*** 20.172*** 0.856 0.230 0.619 -0.438 -0.229 -2.907 -0.118

HAR-RV-J 0.836 0.567 0.281 0.930 1.322* 0.649 1.292* 12.586*** 17.141*** 0.642 0.388 0.498 -0.491 0.073 -2.847 -3.841

HAR-RV-CJ 1.289* 1.021 1.745** 2.157** 1.525* 2.448*** 13.171*** 16.793*** 1.192 1.058 1.034 -0.111 1.187 -0.015 0.379

HAR-PS -1.391 0.533 1.226 0.333 1.515* 21.860*** 20.032*** 0.319 -0.585 -0.302 -0.133 -0.919 -1.828 -0.253

HAR-PSL 1.690** 2.136** 2.222** 2.931*** 21.330*** 20.305*** 2.674*** 0.640 1.967** 0.092 1.456* -0.262 0.905

HAR-RSV 2.028** 9.100*** 9.114*** 21.796*** 21.027*** 7.796*** -3.219 7.205*** -0.826 8.747*** 6.474*** 6.369***

HAR-RSV-J 4.238*** 6.606*** 15.534*** 19.195*** 3.105*** -0.889 2.860*** -1.258 5.474*** 6.124*** 7.065***

HARQ 2.057** 20.833*** 18.788*** 1.527* -0.039 0.881 0.001 0.469 -1.066 0.511

HARQ-J 18.066*** 20.090*** 0.619 -0.027 0.353 -0.340 -0.412 -2.553 -0.921

HARQ-F -0.539 -11.785 -3.904 -11.414 -1.961 -12.026 -10.518 -9.381

HARQ-F-J -5.069 -1.343 -4.981 -1.109 -9.132 -8.368 -8.198

HAR-RV-SJ -0.706 -1.055 0.418 -0.520 -1.665 0.724

HAR-RV-CSJ 10.589*** 0.186 10.039*** 8.256*** 8.259***

HAR-RV-SJD 0.894 1.360* 0.033 1.958**

HAR-RV-CSJD 2.050** 2.106** 2.428***

HAR-J -1.940 0.480

HAR-RJ 2.313**

Table 5: The CW statistic for forecasting horizons of 1-day and 1-week. A positive result indicates that the model whose name is in the first row outperforms the model whose name is
provided in the first column. The statistic is computed using Newey and West (1987). ***, **, * indicate significance at the 1%, 5% and 10% respectively.
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HAR-
RV-J

HAR-
RV-CJ

HAR-
PS

HAR-
PSL

HAR-
RSV

HAR-
RSV-J HARQ HARQ-

J HARQ-F HARQ-
F-J

HAR-
RV-SJ

HAR-
RV-CSJ

HAR-
RV-SJD

HAR-
RV-CSJD HAR-J HAR-

RJ
HAR-
ARJ

HAR-RV 4.196*** 13.799*** 1.284* 0.935 -8.216 -7.861 2.792*** 4.237*** 22.916*** 21.909*** 0.538 -8.014 -0.579 -5.546 -2.339 -1.744 6.417***

HAR-RV-J 12.697*** -1.513 -1.477 -8.184 -8.517 -2.186 2.518*** 22.792*** 22.238*** -1.239 -7.863 -1.767 -5.719 -2.912 -3.006 7.160***

HAR-RV-CJ -10.526 -10.338 -11.407 -11.570 -10.816 -6.183 20.295*** 19.509*** -9.508 -11.057 -9.817 -7.970 -11.429 -11.474 -9.239

HAR-PS -0.098 -8.545 -8.006 1.171 4.130*** 22.628*** 21.814*** -1.002 -8.410 -2.378 -5.881 -2.216 -2.127 5.553***

HAR-PSL -8.119 -7.562 2.407*** 4.706*** 22.958*** 22.135*** 1.483* -8.008 0.021 -5.701 0.605 0.319 5.914***

HAR-RSV 6.302*** 13.986*** 14.317*** 20.250*** 20.114*** 13.961*** -6.938 13.832*** 0.378 13.843*** 13.849*** 14.449***

HAR-RSV-J 13.705*** 14.089*** 20.347*** 20.190*** 13.387*** -4.548 13.220*** -1.112 13.475*** 13.495*** 14.285***

HARQ 3.719*** 22.922*** 21.891*** -0.209 -7.968 -1.003 -5.569 -2.722 -2.998 5.568***

HARQ-J 21.607*** 22.906*** -0.972 -6.591 -1.220 -6.089 -1.837 -1.902 -0.074

HARQ-F 1.805** -20.325 -13.679 -20.139 -10.535 -22.361 -22.369 -21.550

HARQ-F-J -11.614 -10.318 -11.511 -10.286 -14.896 -15.064 -17.344

HAR-RV-SJ -8.386 -2.315 -6.040 -0.740 -0.777 5.695***

HAR-RV-CSJ 13.769*** 1.580* 13.781*** 13.787*** 14.367***

HAR-RV-SJD -5.758 1.478* 1.474* 6.714***

HAR-RV-CSJD 7.206*** 7.243*** 8.163***

HAR-J 0.082 6.284***

HAR-RJ 6.499***

Table 6: The CW statistic for forecasting horizons of 1-month. A positive result indicates that the model whose name is in the first row outperforms the model whose name is provided in the first
column. The statistic is computed using Newey and West (1987) HAC. ***, **, * indicate significance at the 1%, 5% and 10% respectively.
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Table 7: The breakpoint dates and standard deviation identified by the ICSS algorithm.
Total Breaks points Time period Standard deviation

1 January 01, 2012 - March 19, 2012 0.211
2 March 20, 2012 - August 14, 2012 0.075
3 August 15, 2012 - August 20, 2012 0.466
4 August 21, 2012 - September 01, 2012 0.207
5 September 02, 2012 - October 29, 2012 0.070
6 October 30, 2012 - January 16, 2013 0.035
7 January 17, 2013 - March 18, 2013 0.098
8 March 19, 2013 - April 09, 2013 0.193
9 April 10, 2013 - April 12, 2013 1.327
10 April 13, 2013 - May 04, 2013 0.398
11 May 05, 2013 - June 30, 2013 0.108
12 July 01, 2013 - July 18, 2013 0.216
13 July 19, 2013 - October 01, 2013 0.065
14 October 02, 2013 - November 17, 2013 0.169
15 November 18, 2013 - December 20, 2013 0.421
16 December 21, 2013 - March 26, 2014 0.142
17 March 27, 2014 - April 19, 2014 0.245
18 April 20, 2014 - January 02, 2015 0.091
19 January 03, 2015 - January 15, 2015 0.312
20 January 16, 2015 - February 15, 2015 0.173
21 February 16, 2015 - August 25, 2015 0.080
22 August 26, 2015 - October 29, 2015 0.048
23 October 30, 2015 - January 22, 2016 0.132
24 January 23, 2016 - February 23, 2016 0.071
25 February 24, 2016 - April 18, 2016 0.036
26 April 19, 2016 - June 10, 2016 0.062
27 June 11, 2016 - August 03, 2016 0.124
28 August 04, 2016 - October 21, 2016 0.035
29 October 22, 2016 - November 04, 2016 0.094
30 November 05, 2016 - January 03, 2017 0.051
31 January 04, 2017 - May 22, 2017 0.113
32 May 23, 2017 - December 05, 2017 0.151
33 December 06, 2017 - February 14, 2018 0.226
34 February 15, 2018 - April 28, 2018 0.150
35 April 29, 2018 - September 30, 2018 0.092
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Table 8: The CW statistic for forecasting horizons of 1-day and 1-week for our models with structural breaks. A positive result indicates that the model whose name is in the first row
outperforms the model whose name is provided in the first column. The statistic is computed using Newey and West (1987). ***, **, * indicate significance at the 1%, 5% and 10%
respectively.

HAR-
RV-J

HAR-
RV-CJ

HAR-
PS

HAR-
PSL

HAR-
RSV

HAR-
RSV-J HARQ HARQ-

J HARQ-F HARQ-
F-J

HAR-
RV-SJ

HAR-
RV-CSJ

HAR-
RV-SJD

HAR-
RV-CSJD HAR-J HAR-

RJ
HAR-
ARJ

Panel A: 1-Day Horizon

HAR-RV -0.376 -0.157 -0.240 4.448*** 0.209 -0.250 7.650*** 7.319*** 7.965*** 7.571*** 1.131 1.539* 0.677 0.111 2.382*** -1.537 -0.223

HAR-RV-J 0.032 0.792 3.816*** 1.624* -0.518 7.573*** 7.226*** 7.815*** 7.599*** 3.014*** 2.594*** 1.086 -0.131 1.551* -0.783 0.574

HAR-RV-CJ 1.405* 3.876*** 2.359*** -0.327 7.354*** 7.095*** 7.524*** 7.397*** 3.336*** 2.939*** 1.285* -0.084 1.798** 0.233 1.177

HAR-PS 3.686*** 1.140 -0.643 7.714*** 8.225*** 7.647*** 8.742*** 1.658** 1.371* 0.852 -0.431 1.167 0.404 1.044

HAR-PSL 1.874** 2.579*** 2.262** 3.035*** 2.222** 3.031*** 1.815** 1.767** 1.569* -0.290 1.609* 1.695** 1.633*

HAR-RSV -0.860 8.860*** 8.616*** 9.193*** 9.238*** 4.170*** 1.505* 1.792** -0.366 2.274** 2.355*** 2.901***

HAR-RSV-J 4.043*** 5.502*** 3.706*** 5.268*** 1.623* 1.216 1.317* -0.350 1.448* 1.423* 1.469*

HARQ -0.319 0.630 0.050 -0.003 0.252 0.432 -0.879 0.210 -0.412 -0.309

HARQ-J 2.771*** 0.722 2.614*** 2.400*** 2.007** -0.309 2.146** 2.213** 2.177**

HARQ-F -0.108 -0.819 -0.588 -0.030 -0.907 -0.584 -1.595 -1.424

HARQ-F-J 2.724*** 2.481*** 2.009** -0.259 2.076** 2.120** 2.090**

HAR-RV-SJ 0.627 0.251 -0.458 0.737 -2.138 -0.499

HAR-RV-CSJ 1.780** -0.350 2.815*** 1.320* 2.403***

HAR-RV-SJD 1.445* 2.586*** 1.673** 1.998**

HAR-RV-CSJD 1.146 1.147 1.152

HAR-J -2.273 -1.054

HAR-RJ 2.446***

Panel B: 1-Week Horizon

HAR-RV 0.263 1.060 -2.074 1.872** 0.041 -0.155 1.873** 1.873** 1.871** 1.870** -1.321 -0.007 -2.015 0.039 -1.220 -1.684 -1.900

HAR-RV-J 1.136 -1.080 1.851** -0.056 -0.278 1.853** 1.852** 1.850** 1.849** -0.729 -0.109 -2.021 -0.060 -0.694 -1.226 -1.979

HAR-RV-CJ -2.145 1.751** -1.711 -1.709 1.753** 1.753** 1.750** 1.749** -1.917 -1.717 -1.802 -1.689 -1.863 -2.053 -1.806

HAR-PS 1.876** 0.141 -0.060 1.878** 1.878** 1.875** 1.874** -0.318 0.094 -2.016 0.150 -0.156 -1.207 -1.873

HAR-PSL 1.839** 1.832** 4.577*** 4.378*** 4.664*** 3.520*** 1.752** 1.852** 1.793** 1.860** 1.719** 1.721** 1.725**

HAR-RSV -1.655 1.766** 1.766** 1.762** 1.761** 1.621* -2.238 -1.844 0.596 1.636* 1.627* -1.377

HAR-RSV-J 1.763** 1.763** 1.759** 1.758** 1.668** 1.617* -1.823 1.684** 1.677** 1.675** 0.601

HARQ -0.291 3.048*** 2.276** 1.715** 1.829** 1.755** 1.850** 1.688** 1.692** 1.701**

HARQ-J 3.322*** 2.311** 1.720** 1.828** 1.762** 1.840** 1.690** 1.689** 1.699**

HARQ-F -2.489 1.636* 1.665** 1.691** 1.707** 1.620* 1.614* 1.626*

HARQ-F-J 1.691** 1.707** 1.743** 1.738** 1.671** 1.659** 1.666**

HAR-RV-SJ 0.161 -2.010 0.213 1.509* -1.527 -1.780

HAR-RV-CSJ -1.869 1.335* 1.586* 1.574* -1.280

HAR-RV-SJD 1.385* 2.035** 2.050** 1.846**

HAR-RV-CSJD 1.626* 1.610* -1.253

HAR-J -1.783 -1.798

HAR-RJ -1.784
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Table 9: The CW statistic for forecasting horizons of 1-month for our models with structural breaks. A positive result indicates that the model whose name is in the first row outperforms the
model whose name is provided in the first column. The statistic is computed using Newey and West (1987). ***, **, * indicate significance at the 1%, 5% and 10% respectively.

HAR-
RV-J

HAR-
RV-CJ

HAR-
PS

HAR-
PSL

HAR-
RSV

HAR-
RSV-J HARQ HARQ-

J HARQ-F HARQ-
F-J

HAR-
RV-SJ

HAR-
RV-CSJ

HAR-
RV-SJD

HAR-
RV-CSJD HAR-J HAR-

RJ
HAR-
ARJ

HAR-RV 1.858** 3.569*** 0.864 4.250*** 1.083 2.024** 4.252*** 4.252*** 4.232*** 4.231*** 0.589 0.856 -4.809 1.450* -4.471 0.542 -0.977

HAR-RV-J 2.848*** -5.284 3.976*** 1.098 1.622* 3.978*** 3.977*** 3.959*** 3.958*** -5.027 0.972 -5.036 1.247 0.011 -4.913 -4.164

HAR-RV-CJ 2.415*** 4.555*** -3.131 -0.461 4.557*** 4.556*** 4.573*** 4.571*** 2.418*** -3.124 1.452* -0.413 2.172** 2.372*** 1.885**

HAR-PS 4.282*** 1.436* 2.042** 4.284*** 4.283*** 4.261*** 4.260*** -4.011 1.237 -4.763 1.470* 0.751 -3.706 -0.271

HAR-PSL 6.103*** 6.110*** 3.826*** 4.000*** 7.244*** 6.978*** 5.769*** 6.239*** 5.657*** 6.469*** 5.595*** 5.678*** 5.465***

HAR-RSV 2.131** 5.093*** 5.092*** 5.074*** 5.073*** 3.054*** -5.327 2.063** 0.831 2.938*** 3.060*** 3.046***

HAR-RSV-J 5.006*** 5.006*** 4.986*** 4.986*** 3.383*** 1.662** 2.684*** -5.738 3.410*** 3.388*** 3.274***

HARQ 0.614 6.830*** 6.545*** 5.665*** 6.157*** 5.567*** 6.384*** 5.502*** 5.578*** 5.368***

HARQ-J 6.740*** 6.312*** 5.676*** 6.196*** 5.575*** 6.410*** 5.513*** 5.581*** 5.362***

HARQ-F -1.644 0.242 0.345 -0.146 -0.638 0.714 0.285 0.359

HARQ-F-J 0.018 0.149 -0.399 -0.760 0.446 0.030 0.071

HAR-RV-SJ 1.389* -4.502 1.609* 1.061 -1.741 1.090

HAR-RV-CSJ 2.288** 1.237 3.201*** 3.310*** 3.346***

HAR-RV-SJD 2.715*** 3.188*** 3.187*** 5.094***

HAR-RV-CSJD 4.052*** 4.045*** 4.072***

HAR-J 0.942 0.871

HAR-RJ 1.246
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Table 10: The CW statistic for forecasting horizons of 1-day, 1-week, 1-month for our models with structural
breaks and without structural breaks. Positive statistics indicate that HAR models with structural breaks
(alternative models) outperform the corresponding HAR model without structural breaks (null models). ***,
** and * indicate significance at the 1%, 5% and 10% respectively.

h � h h � � h � 䁖�
HAR-RV 1.794** 2.497*** 0.731

HAR-RV-J(BPV) 1.332* 2.448*** 1.656**

HAR-RV-CJ(BPV) 1.270 2.350*** 4.248***

HAR-PS 1.654** 2.480*** 0.424
HAR-PSL 7.087*** 16.058*** 21.680***

HAR-RSV 2.573*** 4.895*** 3.373***

HAR-RSV-J(BPV) 1.709** 4.352*** 4.319***

HARQ 2.114** -2.432 7.551***

HARQ-J(BPV) 1.353* 4.796*** 15.937***

HARQ-F 7.548*** 16.319*** 21.556***

HARQ-F-J(BPV) 4.377*** 17.191*** 22.244***

HAR-RV-SJ(BPV) 1.975** 2.511*** 0.108
HAR-RV-CSJ(BPV) 3.398*** 5.411*** 2.717***

HAR-RV-SJD(BPV) 1.569* 2.365*** -0.986
HAR-RV-CSJD(BPV) 1.920** 4.691*** 2.415***

HAR-J(BPV) 2.100** 2.538*** 0.339
HAR-RJ 2.040** 2.656*** 0.357
HAR-ARJ 1.529* 2.484*** 0.704
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HAR-
RV-CJ

HAR-
RSV-J HARQ-J HARQ-

F-J
HAR-
RV-SJ

HAR-
RV-CSJ

HAR-
RV-SJD

HAR-
RV-CSJD

Panel A: 1-Day Horizon
HAR-RV-J -1.907 -0.880 0.789 2.492*** 1.533* 1.298* 1.396* -0.713
HAR-RV-CJ -0.661 1.498* 3.298*** 2.296** 1.815** 2.162** -0.540
HAR-RSV-J 1.432* 1.508* 1.202 1.050 1.166 -0.723
HARQ-J 2.888*** 1.394* 1.308* 1.300* -0.731
HARQ-F-J 1.544* 1.433* 1.487* -0.671
HAR-RV-SJ -0.362 -0.136 -0.809
HAR-RV-CSJ 4.470*** -0.251
HAR-RV-SJD -0.327
Panel B: 1-Week Horizon
HAR-RV-J -1.299 -0.353 2.286** 17.977*** 1.084 0.681 0.942 -0.338
HAR-RV-CJ 0.422 3.593*** 18.565*** 1.546* 1.072 1.407* 0.051
HAR-RSV-J 3.564*** 9.154*** 1.880** 0.985 1.797** -0.356
HARQ-J 18.449*** 1.215 0.753 1.050 -0.199
HARQ-F-J -2.776 -1.462 -2.951 -1.671
HAR-RV-SJ -1.705 -0.098 1.573*

HAR-RV-CSJ 10.337*** 2.069**

HAR-RV-SJD 1.803**

Panel C: 1-Month Horizon
HAR-RV-J 20.201*** -8.259 2.057** 19.325*** 1.204 -6.418 0.444 -4.709
HAR-RV-CJ -12.635 -1.813 17.497*** -7.729 -10.765 -8.425 -8.206
HAR-RSV-J 12.645*** 19.366*** 13.938*** 7.945*** 13.801*** 3.972***

HARQ-J 20.136*** 0.442 -0.961 0.362 -6.624
HARQ-F-J -3.547 -3.588 -3.660 -12.811
HAR-RV-SJ -7.917 -1.843 -5.903
HAR-RV-CSJ 13.866*** 4.500***

HAR-RV-SJD -5.367

Table 11: The CW statistic for forecasting horizons of 1-day, 1-week and 1-month for MED models. A positive
result indicates that the model whose name is in the first row outperforms the model whose name is provided in the
first column. The statistic is computed using Newey and West (1987) HAC. ***, **, * indicate significance at the 1%,
5% and 10% respectively.


