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Abstract 

Methods to retrieve urban surface temperature (Ts) from remote sensing observations with sub-building scale resolution are developed using the 

Discrete Anisotropic Radiative Transfer (DART, Gastellu-Etchegorry, Grau and Lauret, 2012) model. Corrections account for the emission and 

absorption of radiation by air between the surface and instrument (atmospheric correction), and for the reflected longwave infrared (LWIR) 

radiation from non-black-body surfaces (“emissivity” correction) within a single modelling framework. The atmospheric correction a) can use 

horizontally and vertically variable distributions of atmosphere properties at high resolution (< 5 m); b) is applied here with vertically 

extrapolated weather observations and MODTRAN atmosphere profiles; and c) is a solution to ray tracing and cross section (e.g. absorption) 

conflicts (e.g. cross section needs the path length but it is typically unavailable during ray tracing). The emissivity correction resolves the 

reflection of LWIR radiation as a series of scattering events at high spatial (< 1 m) and angular (ΔΩ ≈ 0.02 sr) resolution using a heterogeneous 

distribution of radiation leaving the urban surfaces. The method is applied to a novel network of seven ground-based cameras measuring LWIR 

radiation across a dense urban area (extent: 420 m x 420 m) where a detailed 3-dimensional representation of the surface and vegetation 

geometry is used. Our unique observation set allows the method to be tested over a range of realistic conditions as there are variations in: path 

lengths, view angles, brightness temperatures, atmospheric conditions and observed surface geometry. For pixels with 250 (± 10) m path length 

the median (5th and 95th percentile) atmospheric correction magnitude is up to 4.5 (3.1 and 8.1) K at 10:10 on a mainly clear-sky day. The 

detailed surface geometry resolves camera pixel path lengths accurately, even with complex features such as sloped roofs. 

The atmospheric correction method evaluation, with simultaneous “near” (~15 m) and “far” (~155 m) observations, has a mean absolute error of 

0.39 K. Using broadband approximations, the emissivity correction has clear diurnal variability, particularly when a cool and shaded surface 

(e.g. north facing) is irradiated by warmer (up to 17.0 K) surfaces (e.g. south facing). Varying the material emissivity with bulk values common 

for dark building materials (ε = 0.89 → 0.97) alters the corrected roof (south facing) surface temperatures by ~3 (1.5) K, and the corrected cooler 

north facing surfaces by less than 0.1 K. Corrected observations, assuming a homogeneous radiation distribution from surfaces (analogous to a 

sky view factor correction), differ from a heterogeneous distribution by up to 0.25 K. Our proposed correction provides more accurate Ts 

observations with improved uncertainty estimates. Potential applications include ground-truthing airborne or space-borne surface temperatures 

and evaluation of urban energy balance models. 

1. Introduction 

Development of sustainable cities, informed by weather and climate models, requires a clear understanding of how urban areas modify the 

surface energy balance (SEB). A key variable in the SEB is the surface temperature Ts (Porson et al., 2010), which is affected by surface 

morphology, material composition and human activities. Ts observations are hence valuable for the evaluation and improvement of urban SEB 

models (Grimmond et al., 2010). While longwave infrared (LWIR) remote sensing (RS) from space provides Ts observations for this purpose at 

increasing resolutions (Chrysoulakis et al., 2018), their biased view of the full three-dimensional (3D) surface (Voogt and Oke, 2003) and low 

temporal resolution means the complex spatio-temporal variations of Ts related to components of the SEB are not fully captured. Ground-based 

LWIR thermography, however, allows temporally continuous observations of individual facets (e.g. roof, wall) and sub-facets (e.g. material, 

shadowing) that make up the 3D urban form (Voogt and Oke, 1997; Morrison et al., 2018). These observations are crucial for understanding 

uncertainties of satellite derived Ts and have proven valuable as inputs to urban SEB models studies (e.g. Ghent et al., 2010) and for model 

evaluation (e.g. Krayenhoff and Voogt, 2007; Pigeon et al., 2008; Harshan et al., 2018).  

To derive Ts from RS, a range of corrections are required. A LWIR camera may record a radiometrically calibrated brightness temperature 

(Tb
cam) that differs from Ts because of radiation emitted or attenuated by the atmosphere between the surface and the sensor (atmospheric 

effects). Further, emissivity effects arise from LWIR radiation emitted by and reflected between non-blackbody (BB) surfaces. Ground-based 

LWIR RS in urban areas has unique challenges associated with these corrections. Satellite Ts retrieval procedures (e.g. Wan, 2014) are not 

directly applicable as urban geometry, materials and radiative exchanges are resolved at sub-building scales (rather than from within a mixed 

satellite pixel). Depending on the viewing geometry and sensor resolution, a similar issue affects airborne observations (e.g. Voogt and 

Grimmond, 2000; Lagouarde et al., 2010).  

There are few studies with full Ts retrieval from observations at sub-building scales in complex urban areas. Ground-based cameras sensitive to 

LWIR in the atmosphere window (~ 8 – 14 μm) can underestimate atmospherically corrected Ts by more than 6 K for surface-camera path 

lengths (zpath) of ~300 m in an urban setting (Meier et al., 2011). Ground-based RS with oblique view angles cause zpath and atmospheric effects 

to vary greatly. Corrections have treated zpath as constant (e.g. Yang and Li, 2009) or spatially variable (e.g. Meier et al., 2011; Hammerle et al., 

2017).  

While zpath primarily influences the atmospheric correction, to correct for reflected radiation from non-BB surfaces (hereafter referred to as the 

emissivity correction, following Adderley, Christen and Voogt, 2015), quantifying the material emissivity and reflected radiance across the 

observed surfaces is critical. Facet surface materials and emissivity can be highly variable (Kotthaus et al., 2014). Although urban geometry is 

an important influence on scattered radiation from the sky and canopy elements (Harman, Best and Belcher, 2004), spaceborne or airborne RS 

emissivity corrections often only consider material effects (e.g. Mitraka et al., 2012; Chrysoulakis et al., 2018). To account for multiple 

scattering of radiation within street canyons, the emissivity correction has been parameterised using the sky view factors (SVF) for both urban 

earth observation (EO) (Yang et al., 2015, 2016) and sub-building scale ground-based LWIR RS (Adderley, Christen and Voogt, 2015).  

The current methods to retrieve sub-building scale Ts contain limitations. Meier et al.'s (2011) correction procedure considers only the 

atmospheric effect, with a sensor specific lookup table based on the MODTRAN radiative transfer (RT) model. MODTRAN is based on 1-D 

analytical computation of atmospheric contributions, i.e. the 3-D environment is unaccounted for. Adderley et al.'s (2015) emissivity correction 

simplifies the reflected radiation contribution by assuming isothermal radiation emission relative to the SVF of the target surface. No previous 
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study has accounted for both the atmospheric and emissivity corrections within a single framework that explicitly resolves the related RT 

processes with flexibility in both instrument siting and number.  

Anisotropic factors determining the LWIR irradiance across urban surfaces may be important for the description (and correction) of emissivity 

effects in RS observations. LWIR radiance of clear sky varies with zenith angle (Verseghy and Munro, 1989), material and shadow patterns 

cause variability in surface temperature (Voogt and Oke, 1997; Morrison et al., 2018), and materials may have anisotropic emissivity (Sobrino 

and Cuenca, 1999). Relatively little is known about the magnitude of the uncertainties associated with these effects. Beyond Adderley et al.'s 

(2015) emissivity correction procedure, ground-based studies that derive Ts use: (1) bulk approximations for surface emissivity and reflected 

radiation (Yang and Li, 2009); (2) nocturnal observations (e.g. Ghandehari, Emig and Aghamohamadnia, 2018) when radiation received from 

sky and buildings are more similar; or (3) in-situ measurements (e.g. thermocouples affixed to surfaces, e.g. Rotach et al., 2005; Offerle et al., 

2007) with very limited spatial extent and portability. Given the complexity of within-canopy radiation scattering, many studies avoid obtaining 

Ts altogether by assuming BB characteristics (Voogt and Oke, 1997; Christen, Meier and Scherer, 2012) meaning observations are brightness 

temperatures Tb (K) rather than Ts. However, the magnitude of the emissivity correction can be substantial (Jiménez-Muñoz and Sobrino, 2006; 

Chen et al., 2016) with effects on spatial thermal variations (Morrison et al., 2018). 

Here the objective is to retrieve high-quality Ts at the sub-building scale from ground-based LWIR RS within a single modelling framework with 

both atmospheric and emissivity corrections. The approach developed is flexible, uses RT, and is applicable to any high-resolution ground-based 

thermography. The 3D RT modelling accounts for atmospheric and emissivity effects using recent enhancements of the Discrete Anisotropic 

Radiative Transfer (DART, Gastellu-Etchegorry et al., 2015) model. Now, DART has an atmosphere around complex terrain features (e.g. urban 

areas) which is high resolution (here 2.5 m), 3D and uses easily modifiable MODTRAN gas and aerosol optical properties. The scattering of LW 

radiation for the emissivity correction has high angular resolution (here ≈ 0.02 sr) and, unlike radiosity models, can account for anisotropic 

scattering effects. No other high-resolution 3D sensor view and RT model (e.g. LESS, Qi et al., 2019) accounts for the atmosphere or LWIR 

surface emission and multiple scattering effects or describes temperature and optical properties of the surface and atmosphere at similar 

resolutions. This is the first study to exploit and evaluate these high-resolution RT capabilities of DART which are shown to be highly valuable 

for complex 3D terrain (e.g. urban areas). Through using these methods, new insights into LWIR radiation exchanges between surfaces at high 

spatial resolution (< 1 m) are obtainable.  

After the theoretical background for the retrieval of Ts is introduced (Section 2), the methods developed using DART (Section 3.1) are outlined, 

separated into the atmospheric (Section 3.2) and emissivity (Section 3.3) corrections. The developed methods are applied to LWIR cameras in a 

dense urban canopy characterised at a uniquely high level of detail (LOD) (Section 4). The atmospheric correction is evaluated using 

observations (Section 5.1), while the emissivity correction results are assessed using a sensitivity analysis (Section 5.2). Alternative and future 

ways the method can be applied are discussed (Section 6). 

2. Theoretical background to the corrections 

Atmospheric correction of RS observations is undertaken to remove the effects of the emitted and absorbed radiation by the air between the 

sensor and target (Sobrino, Coll and Caselles, 1991). The spectrally dependent path radiance (Lλ
atm) and transmittance of the atmosphere (Γλ

atm) 

between a target surface and a RS instrument contribute to the at-sensor radiance. For pixel (x, y) of a LWIR camera, the at-camera band 

radiance (Lcam, W m-2 sr-1) is (Meier et al., 2011):  

where Rλ is the RS instrument normalised spectral response function and Bλ(Ts) is the BB Planck LW radiance (W m-2 sr-1 μm-1) that exits the 

surface. 

Eqn. 1 assumes the target surface is a perfect emitter of BB radiation, whereas typically the spectral emissivity (ελ) is less than unity so that the 

radiance Lλ (W m-2 sr-1 μm-1) emitted by a body at temperature T is less than the Planck BB radiance at the same temperature (Becker and Zhao-

Liang Li, 1995): 

The spectral radiance from an opaque, non-BB surface located on a horizontal plane detected by a theoretical LWIR camera pixel at wavelength 

λ (Lλ
cam(x, y), W m-2 sr-1 μm-1) is a combination of emitted and reflected radiation from the surface, after correction for any atmospheric effects. 

Assuming ελ is isotropic, the surface temperature can be related to Lλ
cam by: 

with Eλ (W m-2 μm-1) the downwelling, isotropic spectral irradiance from the sky. Rearranging Eqn. 3 gives Bλ(Ts): 

which is related to Ts using the inverse of the Planck function (Bλ
-1) as (Jimenez-Munoz et al., 2009): 

with c1 = 1.191042 x 109 (W m-2 sr-1 μm-1) and c2 = 1.4387770 x 104 (μm K) the first and second radiation constants. 

In urban areas, the 3D surface structure gives rise to LW irradiance contributions from other surfaces and a reduction of sky irradiance. For a 

given point within the urban canopy, the spectral irradiance (Eλ, W m-2) can be described as (Nunez, Eliasson and Lindgren, 2000): 

𝐿cam(x, y) = ∫ dλ[𝐵λ(𝑇s)(x, y) ⋅ Γλ
atm(x, y) + 𝐿λ

atm(x, y)] ⋅ 𝑅λ(x, y)

λ2

λ1

 Eqn. 1 

ελ =
𝐿λ(𝑇)

𝐵λ(𝑇)
 Eqn. 2 

𝐿λ
cam(x, y) = ελ𝐵λ(𝑇s) + (1 − ελ)

1

π
𝐸λ Eqn. 3 

𝐵λ(𝑇s) =
𝐿λ
cam(x, y) − (1 − ελ)

1
π

𝐸λ

ελ
 Eqn. 4 

𝑇s = 𝐵λ
−1[𝐵λ(𝑇s)] = 𝑐2

[
 
 
 
 

λ ∙ ln

(

 
 c1

λ5
𝐿λ
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⁄  Eqn. 5 
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with Lλ
sky(Ω↓) [Lλ

can(Ω↓)] the spectral radiance (W m-2 sr-1 μm-1) that originates from the sky [canopy] after any multiple scattering received by 

the surface from solid angle dΩ (sr), with θ the angle of incidence to the surface normal. Lλ
can(Ω↓) varies with surface temperature and emissivity 

within the given solid angle. For wavelengths in the LWIR atmospheric window, where thermal RS instruments are typically sensitive to 

absorption, emission, and scattering of LW radiation, the air within the canopy surfaces (i.e. between buildings) can be neglected if the path 

lengths are short (determined by canyon geometry). Lλ
sky(Ω↓) varies with wavelength, the depth of precipitable water within the atmosphere and 

the portion of the sky seen (Verseghy and Munro, 1989). Critically, both Lλ
sky and Lλ

can change due to any prior scattering of both diffuse and 

specular radiation. 

3. Methods 

The correction of LWIR RS observations for atmospheric (Section 3.2) and emissivity (Section 3.3) effects are outlined then applied to a central 

urban area (Section 4). The methods suit any ground-based or airborne sensor for atmospheric window (7 – 14 μm) radiation and are applied 

here to LWIR camera observations. Morrison and Yin (2019) provides further examples and tutorials. 

3.1 DART radiative transfer and sensor view model 

The Discrete Anisotropic Radiative Transfer (DART) model (Gastellu-Etchegorry, Grau and Lauret, 2012) is used to determine Ts from LWIR 

camera observations. This state-of-the-art 3D RT model has tools to generate and import surface and atmosphere properties of realistic 

landscapes, as well as to simulate RT processes in the shortwave (e.g. Wu et al., 2018) and longwave (e.g. Wang et al., 2018) IR spectrum. 

DART has been evaluated for simple terrain (Sobrino et al., 2011). Recent updates (Grau and Gastellu-Etchegorry, 2013; Gastellu-Etchegorry et 

al., 2017) have good agreement between the atmosphere RT in DART and MODTRAN simulations at the top of the atmosphere. Using a 

discrete ordinate (DO) ray tracing approach, DART simulates 3D RT processes in both natural and urban landscapes. Individual rays are tracked 

along discrete directions within angular cones that sample the 4𝜋 space so the radiation from both the sky and landscape can be accurately 

estimated (Yin et al., 2013; Yin, Lauret and Gastellu-Etchegorry, 2015a). DART’s “forward-tracking” allows emitted radiation from any 

combination of surface, sun, and atmosphere, which is unavailable in other software (e.g. LESS, Qi et al., 2019). For a full description of the 

DART model see Gastellu-Etchegorry et al. (2015). 

Unlike Meier et al.'s (2011) MODTRAN-based atmospheric correction approach that uses sensor-specific lookup tables (LUT) for each pixel 

distance, DART’s DO and 3D ray-tracing is combined with its recently updated ability to describe both the atmosphere and any number of 

virtual sensors among the landscape elements. This update is evaluated here for the first time with ground-based observations. Optical and 

temperature properties of air between the surface and sensor can be described at high horizontal and vertical resolution (< 5 m). An update to 

DART’s sensor view model, first shown here, accepts hemispherical to narrow field of view (FOV) radiometers and frame cameras. The number 

of sensors used does not significantly alter the computation time of forward ray tracing. The sensor view model now allows the landscape to be 

viewed from any location and direction with any sensor type rather than only downward directions with orthographic (Sobrino et al., 2011) or 

frame camera (Yin, Lauret and Gastellu-Etchegorry, 2015b; Morrison et al., 2018) perspectives. The virtual sensors can be set up to exactly 

reproduce “real-world” observations with any sensor view perspective, geometry and spectral response functions. Modelled output images for 

the perspective of these sensors include the atmospheric transmittance and the surface thermal emission and scattering. Such a model-based 

setup allows for very fast adjustments of virtual camera settings without the need to create specific correction factors for a new viewing 

geometry. 

Multiple scattering effects on emissivity corrections are simulated using DART at ground-based LWIR camera spatial resolutions (< 1 m). The 

DO approach tracks individual rays within the model landscape in many directions to simulate multiple scattering affecting the radiation 

reflected from the urban canopy surfaces that is then detected by the LWIR cameras.  

To correct observations, DART uses a “model world” (MW) extending beyond the observed surface area, with the following components:  

1) A vector-based 3D surface model (digital surface model, DSM) with a voxelated vegetation distribution (of e.g. trees and shrubs). The 

DSM consists of a mesh of triangles. 

2) A spatial distribution of surface temperature and materials to apply across the DSM and vegetation geometry. 

3) A spatial distribution of atmospheric properties to prescribe to the air around the terrain. 

4) The position, view angle, resolution and focal length (if applicable) of the RS observations to be corrected. 

DART populates the volume occupied by the MW surface with a 3D array of voxels with a selected horizontal (ΔX = ΔY) and vertical (ΔZ) 

resolution (Gastellu-Etchegorry, 2008). Each voxel manages the tracking of radiation for the media that occupies its space and stores optical 

properties (e.g. surface emissivity, extinction coefficient of air), temperatures (surface and air), and land cover properties (e.g. surface orientation 

and material). Here, the atmospheric correction (Section 3.2) and multiple scattering of LWIR radiation (emissivity correction, Section 3.3) are 

determined using DART and the MW (Figure 1). DART virtual sensors are chosen as frame (or “pinhole”) cameras (hereafter “MW cameras”) 

with any straight line of the MW surface projected as a straight line for the camera perspective (Hartley and Zisserman, 2004). The RT processes 

are simulated for the perspective of these LWIR RS instruments to facilitate correction of atmospheric and emissivity effects on the 

observations. 

𝐸λ = ∫ 𝐿λ
sky(Ω↓)𝑐𝑜𝑠𝜃𝑑Ω + ∫ 𝐿λ

can(Ω↓)𝑐𝑜𝑠𝜃𝑑Ω

2𝜋2𝜋

 Eqn. 6 
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Figure 1. Procedure to correct longwave infrared camera observations for atmospheric and emissivity effects to obtain surface temperature (Ts) for each 
pixel. See list of symbols and acronyms for definitions. 

3.2 Atmospheric correction procedure 

3.2.1 DART simulation 

MW voxels that do not intersect any DSM geometry are “air voxels”. Each air voxel contains aerosols and gases, with a respective cross section, 

density, single scattering albedo and scattering regime (Rayleigh function for gases, double Henyey-Greenstein functions for aerosols), air 

temperature (Ta, K) and water vapour content. Horizontally, the gas and aerosol optical properties are homogeneous. A vertical profile is fitted 

with weather station observations based on an interpolation from MODTRAN gas and aerosol databases. The choice of voxel dimension needs 

to consider computational resources, MW surface complexity, sensor spatial resolution and surface-sensor path lengths. Following tests (zpath > 

100 m) with the applied setup (Section 4) a voxel dimension of < 10 m was found to be suitable. There are no other studies at this high resolution 

for reference.  

To simulate the atmosphere RT process in DART, all MW surfaces are initially prescribed a homogeneous kinetic surface temperature. Emission 

of rays W from the surface (Wsurf) are used by DART to determine the path atmospheric transmittance. Rays that cross a DART camera pixel 

carry at-sensor spectral radiances for the atmosphere and surface components separately. Watm carry at-sensor spectral radiance from the 

atmosphere only [Lλ
atm(x, y)]. Wsurf carry at-sensor radiance from the surface [Lλ

cam(x, y, Wsurf)] with Γλ
atm(x, y) determined by DART using 

(derived from Eqn. 1): 

By using BB surfaces and radiation tracked for one iteration, the transmittance is greater than if using non-BB surfaces and multiple scattering 

iterations. The benefit is shorter computation time and the overestimation is assumed to be negligible.  

3.2.2 Post-processing of DART simulation 

Although Γλ
atm(x, y) and Lλ

atm(x, y) can be used in the final atmospheric correction, with highly varying zpath across camera images a post-

processing step is implemented for the following reasons. Atmospheric transmittance and thermal emission between two points depends on the 

characteristics of the atmosphere (optical depth, single scattering albedo, temperature) present along that path. For LWIR the most important 

contribution comes from water (H2O) vapour, and to a lesser extent, carbon dioxide and ozone. The optical depth describes the spatial integral of 

the product of particle density and cross section. The cross section of H2O varies as a function of zpath, relative humidity (RH, %), Ta, pressure 

and wavelength. With ray tracing, an essential conflict exists between the tracing of a ray and the variation of cross-section with zpath, whereby 

the zpath and cross section calculation can only be determined after the ray tracing and associated RT calculations. Furthermore, within the 

thermal infrared spectral domain and across the bandwidth used (0.1 μm), the ray transmission does not really follow Beer Lambert’s law. As the 

cross section of H2O for the DART simulation cannot be calculated during ray tracing, the DART simulations (Section 3.2.1) use a single line of 

sight (SLOS, Meier et al., 2011) approximation where a single H2O cross section is applied to all air voxels. The average zpath of all camera 

pixels in the simulation (zpath,SLOS) is used to derive the associated SLOS cross section. DART Γλ
atm and Lλ

atm simulation outputs (Section 3.2.1) 

that use the cross sections based on zpath,SLOS (outputs defined here as Γλ
atm,SLOS and Lλ

atm,SLOS) are then corrected for the multi-line of sight 

(MLOS) variation of H2O cross section to give Γλ
atm and Lλ

atm using a five-dimensional (5D) LUT, with dimensions: zpath (1 m – 1000 m), RH 

(30 % – 100 %), Ta (259 K – 315 K), pressure (880 hPa – 1050 hPa) and wavelength (7 µm – 14 µm). The wavelength database has a spectral 

resolution of 0.1 µm. Therefore, it can handle any spectral response function of LWIR sensors unlike Meier et al. (2011) being limited to a 

specific sensor. 

The LUT uses zpath(x, y) and values from the same MODTRAN database as used by the SLOS approximation in the DART simulations. To 

obtain zpath, the MW instrumentation and 3D surface is loaded into rendering software (e.g. Blender, 2018) to render images from the MW 

instruments as zpath(x, y) using the z-buffer image channel output. This method is recommended as it requires less configuration compared to 

determining zpath(x, y) by transforming 3D DSM geometry coordinates to the sensor view geometry (e.g. Meier et al., 2011). 

The optical depths (τ) of H2O (τλ
H20) obtained from the 5D LUT for zpath,SLOS [τλ

H20,SLOS(x, y)] and zpath(x, y) [τλ
H20,MLOS(x, y)] are used to convert 

Γλ
atm,SLOS(x, y) to Γλ

atm,MLOS(x, y) using: 

For Lλ
atm,MLOS, the equivalent emissivity for the SLOS path (ελ

SLOS) is estimated:  
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Γλ
atm(x, y) = 𝐿λ

cam(x, y,𝑊surf) 𝐵λ(x, y,𝑊
surf).⁄  Eqn. 7 

Γλ
atm(x, y) = exp [ln (Γλ

atm,SLOS(x, y)) + τλ
H2O,SLOS(x, y) − τλ

H2O,MLOS(x, y)]. Eqn. 8 

ελ
SLOS = 𝐿λ

atm,SLOS 𝐵λ(𝑇𝑎
̅̅ ̅)⁄  Eqn. 9 
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where 𝑇𝑎
̅̅ ̅ (K) is the equivalent temperature of all air voxels in the MW area and 𝐵λ(𝑇𝑎

̅̅ ̅) the Planck radiance at 𝑇𝑎
̅̅ ̅ .The equivalent emissivity for 

each MLOS path [ελ
MLOS(x, y)] is estimated with: 

to calculate Lλ
atm: 

This efficient (e.g. < 1 min for six cameras each with 160 x 120 pixels) post-processing uses a Python script (Morrison and Yin, 2019) that can 

be configured by DART to run automatically after a main DART simulation. The post-processed Lλ
atm(x, y) and Γλ

atm(x, y) are used to calculate 

the per-pixel and band-integrated LW radiance from the observed surface [Lsurf(x, y), W m2 sr-1] using Eqn. 1. Lsurf is related to the surface 

brightness temperature (Tb
surf) using a polynomial fit derived from a relation between band radiance and temperature, using band radiance 

calculated from: 

and fitted using a range of brightness temperatures (250 K → 350 K, ΔK = 0.1). 

3.3 Emissivity correction procedure 

LW emission and scattering processes from surface reflected radiation is determined for the at-sensor radiance using DART multiple scattering 

simulations of LWIR radiation across the MW surface.  

3.3.1 Surface temperature and optical properties 

Optical properties and LWIR radiation exiting the MW canopy surfaces are assigned. DART voxels that occupy DSM geometry space are 

surface voxels (VxS) with a specified surface temperature and emissivity. Unlike other RT models with sub-facet resolution, geometry is not 

limited to planar 3D voxels (e.g. TUF, Krayenhoff and Voogt, 2007) nor are DSM triangles the smallest spatial unit (e.g. SOLENE, Hénon et al., 

2012; Ghandehari, Emig and Aghamohamadnia, 2018). Thus, the DART combination of voxels and complex DSM geometry for RT models is 

both unique and highly flexible for prescribing and simulating surface properties for complex terrain. Here surface temperature and optical 

properties are assigned to voxels that occupy DSM surfaces classified by type (e.g. roofs, walls of different orientation, ground, grass). 

Observed vegetation (e.g. trees or bushes) have leaves with optical properties as a turbid representation with a given angular distribution (Wang, 

Li and Su, 2007; Pisek, Ryu and Alikas, 2011). Given the highly heterogeneous urban surface: temperatures, materials, and RT processes; 

emissivity correction simulations are performed using a higher voxel resolution (i.e. < 2.5 m) than the atmospheric correction. 

3.3.2 Simulation and emissivity correction 

DART-tracked rays are emitted across the surface geometry with varying surface temperatures and optical properties for the simulated 

wavelength(s) across the selected number of discrete directions (Ω) in the 4π space. Each VxS face is split into multiple sub-faces to increase 

accuracy. Any rays tracked along the same discrete direction that cross the same sub-face are aggregated to a single ray.  

A specified number of rays are emitted across the top layer of voxels in the MW (bottom of atmosphere (BOA) layer) to simulate the 

downwelling spectral radiance from the sky (Lλ
sky) using a prescribed isotropic sky brightness temperature (Tb

sky). DART determines an isotropic 

Lλ
sky using the Planck function at the simulation wavelength. 

After all rays are emitted and tracked to other surfaces or have crossed the BOA layer, some energy is scattered from the rays that intercept 

surface elements based on the surface reflectance (1 – ελ) under a state of thermodynamic equilibrium. Scattered rays are re-intercepted by 

surfaces for a specified maximum number of scattering events. A ray is halted if its energy becomes lower than a set threshold. Rays exiting a 

MW vertical side re-enter on the opposite side with the same direction but at a height that accounts for differences in topography between the 

exit and re-entry points.  

Rays tracked across MW camera pixels determine the at-sensor spectral radiance from the surfaces as Lλ
DART(x, y) (W m-2 sr-1 μm-1). At each 

timestep both a BB (ελ = 1) and a non-BB (ελ < 1) DART simulation are processed to separate the radiation received by the surfaces within each 

camera pixel IFOV (instantaneous FOV). Both simulation types use the same voxel resolution (Section 3.3.1). DART allows for spatial 

variations in surface temperature unlike the SVF emissivity correction method (e.g. Adderley, Christen and Voogt, 2015). 

MW camera images for the non-BB simulation [Lλ
DART(x, y, Ω↑, ελ < 1) (W m-2 sr-1 μm-1)] have radiance contributions from both emitted and 

reflected radiation leaving (Ω↑) the surfaces, which is analogous to Lλ
cam (Eqn. 3). MW camera images for the BB simulation [Lλ

DART(x, y, Ω↑, ελ 

= 1)] have radiance contributions from the emission only (analogous to Bλ(Ts), Eqn. 3). The BB simulation is computationally cheap as only the 

rays from surfaces within the FOV of the MW camera(s) are tracked. DART simulation results are used to separate the spectral radiance 

received (Ω↓) by the surfaces within the IFOV of each camera pixel [Lλ
DART(x, y, Ω↓)] (W m-2 sr-1 μm-1) by rearrangement of Eqn. 3: 

with ελ(x, y) the per-pixel surface emissivity.  

ελ(x, y) for Eqn. 13 can be created in two ways: a) the optical properties across the MW surface may have a simple or homogeneous distribution 

in the applied correction (Section 4) and have an isotropic scattering phase function (i.e. creating an ε(x, y) image mask); b) for scenes with more 

complex emissivity distributions including anisotropic scattering phase functions, the view angle dependent emissivity across an image can be 

determined using DART (Appendix A).  

The final conversion of Tb
surf(x, y) to surface temperature Ts(x, y) is performed using the inverse of the Planck function on the emissivity 

corrected spectral radiance: 

ελ
MLOS(x, y) = 1 − exp[ln(1 − ελ

SLOS) + τλ
SLOS − τλ

MLOS(x, y)] Eqn. 10 

𝐿λ
atm(x, y) = ελ

MLOS(x, y) ∙ 𝐵λ(𝑇a̅). Eqn. 11 

𝐿 = ∫ dλ ⋅ 𝑅λ(λ) ⋅ 𝐵λ(𝑇b)

14 μm

7 μm

 Eqn. 12 

𝐿λ
DART(x, y, Ω↓) =

𝐿λ
DART(x, y, Ω↑, ελ  <  1) − ελ(x, y)𝐿λ

DART(x, y, Ω↑, ελ = 1)

1 − ελ(x, y)
  Eqn. 13 

𝑇s(x, y) = 𝐵λ
−1 {

𝐵λ[𝑇b
surf(x, y)] − [1 − ελ(x, y)]𝐿λ

DART(x, y, Ω↓)

ελ(x, y)
} Eqn. 14 
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using Lλ
DART(x, y, Ω↓) from Eqn. 13 to inform the at-sensor radiance contribution from scattered radiation. By simulation of RT processes at a 

narrow waveband, this approach assumes the surface and sky are grey bodies. Not explored in this study is the possibility of integrating over a 

broader range of wavelengths with spectral variance in surface emissivity. 

4. Application and Evaluation of Methods 

4.1 Study area and observation sites 

The study area (Figure 2), in the Borough of Islington, London, UK (51°31’35” N, 0°06’19” W), has two primary observation sites on two high-

rise residential tower blocks: IMU at 74 m AGL (above ground level) and WCT at 36 m AGL. A third rooftop (CUB, 26 m AGL) is used for 

observational evaluation of the atmospheric correction. The area has an irregular arrangement of streets often lined with deciduous trees, with 

four- to six-storey residential and commercial buildings either as terraces or as large single units, parks with green space and asphalt, and three 

additional high-rise residential tower blocks (i.e. five high-rise buildings including IMU and WCT). 

 
Figure 2. Study area characteristics: plan view of (a) above sea level (ASL) raster digital surface model (rDSM) of all surfaces with (black lines) a reference 

building footprint model from Evans, Hudson-Smith and Batty (2006), (b) orthorectified raster RGB (rRGB) image from a mosaic of Google Earth 
(Google, 2019a) images (Appendix B.1) with (symbols) locations of the study sites, (c) “model world” (MW) surface geometry with surface orientation 

and material properties (Σ), (d) impervious and grass surfaces (white) and vegetation canopy elements (VCEs, light green) seen by the LWIR cameras 

within the observation network ( 
Table 1). Camera locations (numbers) shown as pink dots (white text) with approximate azimuthal facing (pink arrow). Dark colours are surfaces not seen 

by any camera. MW surface geometry rendered using Blender (Blender, 2018) for: (e) camera C2 perspective and (f) oblique orthogonal view of scene. 
Coordinates for (a – d) are Coordinate Reference System WGS84 UTM grid zone 31N for study area extent of 420 m x 420 m. 
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The MW is a 420 m x 420 m plan area centred on the IMU site with a DSM and vegetation canopy elements (VCE) (Figure 2e, f) determined by 

Google Earth Pro (Google, 2019a) images and photogrammetry (Appendix B). The DSM (Figure 2e, f; grey) has ~750,000 triangles to capture 

all the Google Earth 3D surface elements except vegetation. VCE are a 3D array of voxels (VxV) at ΔX = ΔY = 1 m, ΔZ = 0.1 m (Figure 2e, f; 

green) where each voxel is either filled with or empty of VCE. 

As with vegetation canopies (Kuusk, 2017), a key issue in developing 3D RT models for urban canopies relates to how the canopy structure is 

described. Here a uniquely high LOD canopy representation is created (Appendix B.1), with sub-facet structures (e.g. sloped roofs, balconies), 

rather than planar faces as used in other studies (e.g. Meier et al., 2011; Ghandehari, Emig and Aghamohamadnia, 2018). Its triangles are 

classified by orientation and material properties (Σ) including cardinal facing, roofs, ground and vegetation (Figure 2c, Appendix B.2). 

4.2 Instrumentation and observations 

Optris PI-160 (Optris GmbH, 2018) LWIR cameras are deployed to observe the upwelling LWIR radiation ( 

Table 1; Figure 3). The small, lightweight, industrial-grade camera uses uncooled microbolometer detectors, with 25 μm x 25 μm bolometer 

elements in a 160 x 120 focal plane array. The instrument outputs digital number (DN) values for each microbolometer pixel. DN values relate 

to at-sensor 7.5 – 14 μm radiance and were radiometrically calibrated by the manufacturer two months prior to measurements using a BB 

reference. Each operational measurement is calibrated using an internal shutter with reference temperature and BB characteristics. During this 

calibration the shutter is put in the optical path of the instrument whereby its emission is sampled. The noise equivalent differential temperature 

(NEDT) is 0.1 K and the manufacturer’s specified accuracy is ±2 K at ambient temperatures 296 ±5 K (Optris GmbH, 2018). These 

specifications are typical of most microbolometer LWIR camera systems available and used for such applications (e.g. Meier and Scherer, 2012; 

Adderley, Christen and Voogt, 2015; Lee et al., 2018). The cameras have external enclosures (Figure 3, Appendix C and Supplement S1) to 

reduce body temperature changes from strong winds and/or direct sunlight and protect against corrosion. The application of the correction to 

these cameras does not include instrument uncertainty effects. The spectral response functions are derived in the laboratory (Supplement S2). 

 
Figure 3. Digital camera images of: (a) cameras C5 and C6 taken at WCT site on 25 October 2017 looking southwest, with C6 enclosure shown open for 
maintenance, (b) southeast view from IMU site taken next to C4 on 21 July, (c) C1 enclosure taken at IMU site on 12 July looking east with WCT (C5, 

C6) site in background, and (d) northeast view from IMU site taken next to C2 and C3 on 30 May, with a portion of the roof at CUB site sampled by C7 

(Supplement S3) annotated. 

Seven LWIR cameras installed at the IMU, WCT and CUB observation sites (Section 4.1) for the study period (7 July – 10 November 2017) 

enable sampling of multiple view angles of surfaces with different orientation, material, microscale structure and distances to the cameras. 

Sample frequency is 1 min and a final temporal analysis is 5 min based on the median brightness temperature from 5 images (e.g. Figure 4a). 

This is done to reduce the observational gaps. 

Table 1. Siting properties of the ground-based longwave infrared (LWIR) cameras installed on high-rise residential towers (IMU, WCT; Figure 2, Figure 

3) and City University of London Building roof (CUB, Supplement S3) within the study area. See list of symbols and acronyms for all other definitions. 

Camera 

name 

Installation 

site 

Field of view (°) 

Horizontal x vertical 

Cardinal 

facing 

Viewing zenith 

angle (°) 

5th percentile 

path length (m) 

Median path 

length (m) 

95th percentile 

path length (m) 

  FOV  θ zpath zpath zpath 
C1 IMU 68.6 x 54.2 E 46.5 72.3 88.8 178.8 
C2 IMU 62.6 x 49.1 NE 51.7 70.1 97.9 198.93 
C3 IMU 62.8 x 49.2 NWW 52.9 73.1 106.6 198.2 
C4 IMU 37.3 x 28.4 SE 56.7 89.0 122.7 201.2 
C5 WCT 38.4 x 29.3 SW 66.6 47.1 79.0 167.4 
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C6 WCT 62.4 x 48.9 W 61.7 41.3 67.5 220.1 
C7 CUB 38.1 x 29.0 N ~60 ~15 ~15 ~15 

 
Figure 4. (a) Undistorted brightness temperature images (Tb

cam) from Optris PI longwave infrared (LWIR) cameras at 11:30 on 27 August 2017 and (b) 

surface orientation and material class (Σ) projected onto the image plane (IP) of each “model world” (MW) camera classified for each image pixel using 

the perspective projection (Morrison et al., 2018) of a similarly classified DSM (Appendix B.2). 

The uncertainty in UTC time is assumed to be < 10 s. The cameras require a 2 h “warm up” period (Morrison et al., 2018) to allow the current-

induced self-heating of the sensor elements to stabilize (Vollmer and Möllmann, 2017). Data prior to this are excluded. All data 0.5 h prior and 8 

h after any rain event are excluded. A Davis Vantage Pro 2 weather station installed 114 m AGL on top of a residential tower block located at 

the BCT site (1.1 km southeast of the IMU site) provides measurements of rain rate (mm h-1) along with Ta, RH, and atmospheric pressure (hPa) 

required for the atmospheric correction routine. Similar to Adderley, Christen and Voogt (2015) a net radiometer (Kipp & Zonen CNR1) 

installed at IMU next to C4 (Figure 2e, f) measured broadband (4.5 – 42 μm) LWIR irradiance downward from the sky (ELW
sky, W m-2) for the 

emissivity correction routine. 

The LWIR camera lens distortion is corrected to match the rectilinear projection of the MW cameras. The MW cameras are sited in the model 

domain using on-site measurements of each camera location and view angle ( 

Table 1) and a fine-adjustment (Morrison et al., 2018).  

The per-pixel orientation and material classes (Σ(x, y), Figure 4b) uses information from the similarly classified DSM (Appendix B.2) that is 

projected for the MW camera perspectives following methods by Morrison et al. (2018). Σ(x, y) enables the inter-Σ classification of observations 

for use in prescribing temperature for the DART emissivity correction (Section 4.3.2). 

4.3 Model setup 

4.3.1 Atmospheric correction 

General model parameters for the atmospheric correction of observations are given in Table 2. 

The vertical profile of gas and aerosols is informed by inputs of Ta, RH and atmospheric pressure from the BCT measurements and the gas and 

aerosol databases are selected in DART (mid-latitude summer and urban 5 km visibility, respectively). As the weather station is 40 m above the 

top of the MW surface, Ta is extrapolated down to the bottom layer of the MW using the dry adiabatic lapse rate. 

Given the large number of camera observations, DART simulations for each observation timestep (5 min) are not computationally viable (8 CPU 

threads per simulation: ~12 min using ~8GB memory and 8 processor cores). Instead, a 60 min simulation timestep is used. Post-processed 

(Section 3.2.2) results for each band and timestep are temporally interpolated to the observational resolution using a spline (Moritz and Bartz-

Beielstein, 2017). Interpolated values near timesteps without observations (e.g. maintenance, quality control) are rejected. To reduce the number 

of emission sources and subsequent computation time, VCE geometry is excluded during atmospheric correction. 
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4.3.2 Emissivity correction 

For the downwelling LW radiation from the sky, ELW
sky from the CNR1 radiometer is related to Tb

sky for DART (Table 2), using the Stefan-

Boltzmann law: 

The surface temperature across the MW (buildings, roads, etc) is approximated using atmospherically corrected surface brightness temperature 

(Tb
surf) observations.  The median Tb

surf of all pixels within a certain orientation and material class (Σ) 〈Tb
surf(Σ)〉 (class median = 〈 〉) is allocated 

to the associated DSM class (e.g. Figure 2c), except for VCE. As Ts for trees is nearly equal to Ta (Meier and Scherer, 2012), Ta from the Davis 

weather station is used for VCE. Broadband emissivity values are allocated for each DSM surface orientation and material class. As 

comprehensive spatial databases of urban emissivity are not readily available (Ghandehari, Emig and Aghamohamadnia, 2018), a representative 

range of urban emissivity values is used for the emissivity correction. Similar to Mitraka et al. (2012), the broadband (8 – 14 μm) emissivity 

from all non-metal and anthropogenic materials in a spectral library (SLUM, Kotthaus et al., 2014) is used as a fully opaque and grey body 

estimate for all non-vegetative surfaces (roof, ground, all walls) with the mean (ε0.93) considered as a baseline value. Minimum (ε0.89) and 

maximum (ε0.97) values are used in the sensitivity analysis (Section 5.2.3). VCE have a turbid representation of leaves within each VxV and are 

given a spherical angular distribution. Leaves are given “deciduous leaf” optical properties at 10 μm from the DART spectral database (leaf 

transmissivity = 0.0145, reflectance = 0.0195) with a leaf area density [leaf area within voxel / voxel volume (m2 m-3)] of 1.6 (Lalic and 

Mihailovic, 2004; Jeanjean et al., 2017).  

Rays tracked from turbid VCE directly to camera pixels are not considered. Accurate tracking of rays from turbid media across camera pixels 

requires higher resolution DART runs (e.g. higher density of rays and voxel sub-faces) and/or leaves determined using the discrete triangle cloud 

option (Table 2). These factors are not tested as part of this study, so VCE pixel temperatures are not corrected for emissivity effects and are 

masked (e.g. Figure 4b). Ground-based thermography specific to urban trees and a simple emissivity correction applicable to observed VCE can 

be found in Meier and Scherer (2012). 

Table 2. General model parameters set for the Discrete Anisotropic Radiative Transfer (DART) model atmospheric and emissivity correction routines. 

Model parameter Units Atmospheric correction Emissivity Correction 

DART version used - 5.7.4 build 1094 5.7.1 build 1058 (applicable: 5.7.4 build 1094) 

Voxel dimension ΔX, ΔY, ΔZ m 2.5, 2.5, 2.5 1, 1, 1 

Voxel sub-faces - 1 36 

Wavelength(s) μm 7 – 14, Δλ = 0.2 10 

Discrete directions - 628 (for image directions only, 
see Yin et al., 2013) 

628 

BOA ray density rays m-2 - 1600 

Surface ray density rays m-2 10,000 10,000 

Number of scattering events - 0 5 

Surface temperature description - Homogeneous (300 K) Approximated using LWIR camera observations (Tb
surf) classified by orientation 

and material (e.g. Figure 4b) prescribed across the classified DSM (e.g. Figure 

2c). See text for details. 

Emissivity - 1 Bulk variation across anthropogenic surfaces using SLUM dataset (0.89 – 0.97) 

5. Results 

5.1 Atmospheric correction 

To evaluate the atmospheric correction, two cameras (C2 and C7,  

Table 1) both viewing a flat asphalt roof (C7 siting at CUB in Supplement S3) are used. C2 observes a ~50 m2 area ~155 m (zpath) away which 

covers seven pixels (Figure 4a, x = 35, y = 140), whereas C7 (zpath < 15 m) has a 18542 pixel view. After DART shadow distribution simulations 

(Morrison et al., 2018), pixels are manually selected to exclude any shaded areas during the day as found in Meier et al.'s (2011) evaluation. 

Given the short C7 path length, atmospheric effects for this camera are assumed to be negligible [i.e. Tb
cam(C7) ≈ Tb

surf(C7)].  

During the predominantly cloudy multi-day (cf. to Meier et al.’s 2011 single-day) evaluation period (7 – 26 September 2017) the minimum 

(maximum) Ta is 281.4 (293.9) K and minimum (maximum) absolute humidity ρv was 7.03 (12.71) g m-3 (Figure 5c). Less cloudy daytime 

conditions near the end of the period (from 22 September) coincide with higher Ta values. The roof is fully sunlit (Figure 5d) from ~40 min after 

sunrise (e.g. 15 September sunrise = 06:30, sample area fully sunlit at 07:05). Quality control (e.g. rain events (Figure 5d), camera maintenance) 

removed 1670 (29 %) 5-min periods of Tb
cam observations (Section 4.2). 

The difference in the median brightness temperature observed by the two cameras ΔTb
cam = Tb

cam(C2) - Tb
surf(C7) (Figure 5a, blue) quantifies the 

atmospheric effect on the raw observations. Generally, ΔTb
cam is negative during the day and approaches zero at night. As atmospheric 

absorption reduces the amount of radiation leaving the surface that is received by the sensor, the effect correlates with the absolute magnitude of 

surface temperature and is hence particularly strong during daytime when the surface is much warmer than the air. For clear and partly-cloudy 

daytime periods, ΔTb
cam is typically < -2 K (minimum -2.97 K, 15 September 09:15) when the brightness - air temperature differences (Tb

cam(C7) 

- Ta) are > ~10 K. Nocturnal clear and partly-cloudy periods (e.g. 12 and 16 September, Figure 5d) can have high ΔTb
cam variability between 

timesteps. This variability may be explained by a combination of effects: intermittent cloud cover, anthropogenic heat sources, and potential 

differences of the sensor timesteps in the order of ~10 s combined with fast temporal response (seconds) of Ts to changes in turbulent sensible 

heat fluxes (Christen, Meier and Scherer, 2012; Crawford et al., 2017). 

After correction of atmospheric effects, Tb
surf(C2) is significantly closer to the reference observations (ΔTb

surf = Tb
surf(C7) - Tb

surf(C2) Figure 5a, 

black). The mean absolute error (MAE) between Tb
surf(C7) and Tb

surf(C2) is 0.39 K for all observations (r2 = 0.998, Figure 6) and 0.48 K (0.28 

K) for day (night) time observations, respectively. This is a significant improvement compared to the uncertainty associated with omitting the 

atmospheric correction particularly during daytime where Tb
surf(C7) and Tb

cam(C2) have 1.03 K MAE. While the magnitude of the atmospheric 

correction (Tb
cam(C2) - Tb

surf(C2), Figure 5a, red) generally follows the variations of atmospheric effect [quantified by Tb
cam(C2) - Tb

surf(C7)], 

some artefacts remain during morning when ΔTb
surf is strongly positive at times. Of the 1st percentile of ΔTb

surf (> 1.02 K), most (93 %, n = 39) 

occur between 07:00 – 09:00 under clear or partly-clear sky conditions. Observations with strongly negative ΔTb
surf occur in the afternoon, with 

95 % (n = 42) of observations in the 99th percentile (ΔTb
surf < -0.97 K) being between 12:00 – 15:00. 

𝑇b
sky

= √𝐸LW
sky

σ⁄ .
4

 Eqn. 15 
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Both the strongly positive and negative ΔTb
surf values could partly result from uncertainties in camera calibration. During morning, rapid changes 

in air temperature can cause uneven heating of the camera bodies. During the afternoon, the vertical profile of air temperature may cause the air 

temperature between the cameras to differ. As the dry adiabatic lapse rate rather than the environmental lapse rate are used, humidity is not 

accounted for (Section 3.2.1). Unfortunately, a weather station installed near ground level of the MW area to further inform vertical variation in 

temperature and water vapour for the correction and associated uncertainties failed shortly prior to the evaluation period. 

 
Figure 5. Atmospheric correction evaluation using the C2 and C7 cameras ( 

Table 1, Figure 2, Figure 3) and meteorological variables (Section 4.2) observed at BCT and IMU sites (Figure 2): (a) uncorrected (Tb
cam) minus corrected 

(Tb
surf) surface brightness temperature, (b) Tb

cam(C2), (c) air temperature (Ta) and absolute humidity (ρv) and (d) incoming shortwave (ESW
sky) and 

longwave (ELW
sky) radiation, and timing of rainfall (blue). 

 
Figure 6. Comparison of surface brightness temperature corrected for atmospheric effects above a flat felt roof sampled with path length ~155 m 
[Tb

surf(C2)] and surface brightness temperature of the same surface sampled with path length ~15 m [Tb
surf(C7)] with negligible atmospheric effects. 

When the atmospheric correction procedure is applied to all cameras with substantial path length differences ( 

Table 1) for the evaluation period, the greatest differences between the uncorrected at-sensor brightness temperature Tb
cam(x, y) to surface 

brightness temperature Tb
surf(x, y) are seen on 24 September. The median of Tb

cam(x, y) - Tb
surf(x, y) for pixels with zpath between 240 – 260 m 

reaches a minimum of -4.53 K (largest absolute value) at 10:10. Impacts of different path lengths on this day are summarised in Figure 7 

(Supplement S4 for other days). The variability of Tb
cam(x, y) - Tb

surf(x, y) within each zpath bin (Figure 7) can be large (e.g. median = -2.34 K, 

interquartile range (IQR) = 1.93 K at 06:00) as the magnitude of the correction varies based on the absolute value of Tb
cam(x, y), which can be 

highly variable in the urban setting (e.g. Figure 4a). 
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Figure 7. Atmospheric correction of longwave infrared (LWIR) camera observations for six timesteps on 24 September 2017, using pixels within ±10 m 

of five path lengths (zpath) with (white cells) meteorological input variables (coloured cells) median[IQR] values of: (a) difference between uncorrected 
camera brightness temperature (Tb

cam) and corrected surface brightness temperature (Tb
surf), (b) surface-camera path contribution from the at-sensor band 

integrated atmosphere radiance (Latm), and (c) surface-camera path contribution from band integrated atmospheric transmissivity (Γatm). See list of symbols 

and acronyms for all definitions and Supplement S4 for other days. 

Analysis of all pixels from all cameras on 24 September (Figure 8a) indicates a decrease in the atmospheric effect Tb
cam(x, y) - Tb

surf(x, y) with 

zpath. This is explained by the associated increase (decrease) of Latm (Γatm) (Figure 8b, c). The outlier points (grey < 1000 pixels or 0.003 % of 

observations throughout the day) in Figure 8 are mainly from Γatm artefacts (Figure 9c). The 1st to 99th percentile range in Figure 8a is -3.17 to 

0.06 K. These results are similar to Meier et al. (2011) who found Tb
cam - Tb

surf ≈ -6.5 K for zpath = 310 m around midday, but are potentially 

underestimated compared to Adderley, Christen and Voogt (2015), where Tb
cam - Tb

surf was up to -8.6 K for a 15 – 75 m zpath range. However, 

inter-study comparisons are challenging as differences in zpath, Tb
cam, meteorological conditions and spectral response functions affect the 

magnitude of atmospheric effects. 

 
Figure 8. Per-pixel atmospheric correction of all longwave infrared (LWIR) camera observations at 5 min resolution on 24 September 2017, with density 
of pixels (coloured shading; grey < 1000 pixels) against surface-camera path length (zpath) and (a) difference between uncorrected camera brightness 

temperature (Tb
cam) and corrected surface brightness temperature (Tb

surf), (b) surface-camera path contribution of the at-sensor band integrated atmosphere 
radiance (Latm), and (c) surface-camera path contribution of band integrated atmospheric transmissivity (Γatm). 

Spatial variations of the atmospheric correction components (zpath, Latm and Γatm) for the study area are shown for the MW camera perspectives 

(Figure 9). As seen from the path lengths (Figure 9a), the complex real world (RW) surface geometry (Figure 2) is accurately reproduced, 

including buildings with complex footprints, multiple storeys (e.g. Figure 9a C3, x = 40, y = 35), and sloped roofs (e.g. Figure 9a C5, x = 40, y = 

50; C6, x = 40, y = 10). Oblique view angles under RW conditions demand a high LOD surface geometry model, as simplified MW geometry 

(e.g. flat roofs, planar walls) could lead to inaccuracies in modelled surface-sensor view geometry. For example, a C6 pixel viewing a sloped 

roof (Figure 9a C6, x = 40, y = 10) with zpath ≈ 75 m would not be registered to this roof when using a MW with flat roof low LOD geometry. 

This would lead to zpath > 250 m and hence an error in atmospheric correction of over 3 K (Figure 7). 
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Variability of zpath with buildings and oblique viewing geometry (Figure 9a) is resolved by the atmospheric emission (Figure 9b) and 

transmissivity (Figure 9c) components of the correction. The spatial variability of Latm(x, y) and Γatm(x, y) is related to the building geometry and 

zpath. Typically, a greater zpath causes an increase (decrease) of Latm (Γatm) (Figure 7). A small number of pixels underestimate Γatm (e.g. Figure 9c 

C5, x = 65, y = 80). For the surface within the IFOV of these pixels, the density of emitted rays (Wsurf, Section 3.2.1) may be too low for the 

accurate determination of Lcam(Wsurf). These artefacts can be eliminated by increasing the voxel resolution and the density of Wsurf at the expense 

of computation time. Pixels that view surfaces outside the MW area (e.g. Figure 9c C4, x = 38, y = 5) are excluded. 

 

Figure 9. Atmospheric correction variables for each camera ( 

Table 1) at 12:00 (24th September 2017): (a) Surface – sensor path length (zpath, m), (b) band integrated longwave emission from the atmosphere [Latm(x, y) 

= ∫  
14μm

7μm
dλ · Rλ (x, y) · Lλ

atm(x, y)] with dλ = 0.2 and Rλ(x, y) the sensor spectral response function, (c) band average atmospheric transmissivity. DART 

calculated Γλ
atm(x, y) and Lλ

atm(x, y), and (d) final difference between uncorrected (Tb
cam) and corrected (Tb

surf) brightness temperature observations. C3 

shows more foreground roof than in Figure 4 (pixels excluded from all other results) as the view angle was altered between these dates. 
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5.2 Emissivity correction 

5.2.1 Temporally resolved surface temperatures and incoming LWIR radiation 

The impact of the emissivity correction on the atmospherically corrected surface brightness temperatures (Tb
surf) is assessed on a predominantly 

clear-sky day (27 August 2017, Figure 10) with large Ts variability between surfaces. For this analysis, the radiance received by the surface 

[Lλ
DART(x, y, Ω↓, ε0.93), Eqn. 13] is shown as broadband irradiance ELW (W m-2) using the Planck function and Stefan-Boltzmann law: 

Surface brightness temperature observations used to prescribe spatial variability of radiation leaving the surfaces of different surface types (Σ) 

differ broadly as a function of the incoming shortwave radiation (ESW
sky) diurnal cycle (Figure 10b). While surfaces with a high SVF are more 

likely to receive shortwave energy input (Morrison et al., 2018), the inverse is true for longwave irradiance (Figure 10c) as surfaces within the 

canopy are warmer than the sky (for day and night). The median for north walls 〈Tb
surf(ΣNorth)〉 generally follows the diurnal cycle of Ta as the 

facets are mostly shaded throughout the day. 〈Tb
surf(ΣEast)〉 peaks at 10:00 (306.0 K), while the maximum (314.9 K) of 〈Tb

surf(ΣSouth)〉 is reached 

~100 mins later. This relatively short time between maxima of east and south facing walls is explained by the predominant south-southeast 

facing direction of these facets (median azimuth for “South” wall is 147.9°, cf. for “East” is 91.6°). 

Inter-class Tb
surf variations contribute to the simulated differences in ELW(x, y, Σ) (Figure 10c). This has implications on the final emissivity 

corrected observations (Figure 10d). Median differences for ELW(x, y, Σ) reach 74.3 W m-2 between ΣRoof[dark] and ΣEast during 13:00 – 14:55 

(Figure 10c). The high SVF of roofs means ELW for roof surfaces [ELW(x, y, ΣRoof)] are mostly composed of sky irradiance and hence is in 

closest agreement to the broadband radiometer observations used to specify ELW
sky, while east-facing walls receive large energy emissions from 

the opposing warm walls. The median for ELW(x, y, ΣRoof) is up to 19.9 W m-2 greater than the median ELW
sky during 13:00 – 14:55 (Figure 10c) 

as the roof receives some radiation from other surfaces. Inter-wall differences in the median of ELW(x, y) reach 17.4 W m-2 between east and 

west walls during 13:00 – 14:55, which is driven by the lower temperatures of the shaded north-facing walls. 

Of the walls, ELW shows greatest variability for those facing east, which is explained by very small-scale variations of these structures. Cameras 

C5 and C6 primarily observe non-planar, east facing walls (Figure 4) with complex features such as balconies. Combined with the high zenith 

angle of observations ( 

Table 1), the cameras have a near-perpendicular view of the east walls and thus sample both the upper and lower parts of the balconies that have 

contrasting view factors to the sky and ground surfaces. 

 
Figure 10. Observed and modelled data for 27 August 2017 stratified by surface orientation and material type (Σ, colours) with (a) median per-pixel 

surface brightness temperatures [Tb
surf(x, y)]. For spatial pattern of emissivity correction (11:30, dashed lined) see Figure 11. (b) BCT observations of air 

temperature, relative humidity, Kipp & Zonen CNR1 net radiometer broadband incoming shortwave (ESW
sky) and longwave (ELW

sky) radiation. (c) 
Broadband LWIR irradiance (ELW) onto surfaces within the camera field of view, with ELW

sky for comparison. (d) Difference between emissivity (0.93) 

corrected surface temperature [Ts(ε0.93)] for non-vegetative surfaces and surface brightness temperature. Boxplots: based on pixels from all camera images 

𝐸LW
cam(x, y) = σ𝐵λ

−1[𝐿λ
DART(x, y, Ω↓, ε0.93)]

4
. Eqn. 16 
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(5 min resolution, for 2 h: 07:00 – 08:55 i.e. 08:00 is between 07:00 and 09:00 vertical lines) with 5th and 95th percentiles (whiskers), interquartile range 
(box), and median (horizontal line). ELW

sky boxplot uses 15 min resolution observations and min and max values (whiskers). 

5.2.2 Spatially resolved longwave irradiance and emissivity correction 

On 27 August 2017 the spatially resolved emissivity correction for all cameras (Figure 11, Tb
cam in Figure 4a, Supplement S5 for combined 

atmospheric and emissivity correction) maximum inter-facet variability of surface brightness temperature occurs for within-canopy surfaces at 

11:30 (Figure 10a, dashed line). The 〈Tb
surf(ΣSouth)〉 is 314.8 K, or 17.0 K higher than 〈Tb

surf(ΣNorth)〉. As a single surface emissivity is used for all 

the non-vegetative surfaces when correcting Tb
surf, the magnitude of the correction (Figure 11b) is related to spatial differences in ELW (Figure 

11a). The ELW results account for RT process across the complex geometry seen by the RW camera observations (Figure 4a), e.g. compare east 

wall balconies (C5 and C6), sloped roofs (e.g. C2 x = 40, y = 40), complex roofs (e.g. C1, x = 55, y = 35; C3, x = 50 y = 60; C4 x ≈ 70 → 120, y 

≈ 55 → 70), and vegetation (e.g. C2, x = 120, y = 80; C6, x = 120, y = 75). The atmospheric correction is not as sensitive to such small details 

across building facades. 

Wall ELW (Figure 11a) has high spatial variability associated with the wall geometry complexity. The overall ELW increases closer to ground 

level and in narrow street canyons where SVF are reduced (Figure 11a). ELW is typically lowest for roof surfaces (i.e. high sky view factor) and 

increasingly varies for roofs within the canopy (e.g. C6 x = 40, y = 60). Compared to adjoining walls, ELW for ground surfaces is typically lower 

as there is a preferential orientation of ground surfaces to the cool sky. Overall, ELW for the ground surfaces decreases with distance to buildings 

and is greater for ground surfaces close to trees, as these occlude the ground from most downwelling sky irradiance. When the longwave 

irradiance approaches the radiation emitted by a surface, the emissivity correction is minimised (Figure 10b). 

 
Figure 11. Observed and modelled results (27 August 2017 at 11:30) of (a) longwave irradiance (ELW) from broadband hemispherical radiometer (sky 
component) and 3D distribution of surface brightness temperatures from the network of longwave infrared cameras (canopy component) prescribed to 

DART to simulate the emission, irradiance and multiple scattering processes of LWIR radiation for correction of surface brightness temperature (Tb
surf) to 

emissivity (0.93) corrected surface temperature [Ts(ε0.93)], and (b) Ts - Tb
surf difference. 

5.2.3 Uncertainty analysis 

The variability of Ts based on the emissivity and temperature value prescribed across the non-vegetative surfaces is evaluated for each timestep. 

Initially with ε0.93, a heterogeneous distribution of surface temperature is used (Figure 12) and then repeated using the minimum (ε0.89) and 

maximum (ε0.97) broadband emissivity values for dark impervious urban materials in the Kotthaus et al. (2014) spectral library; and repeated 

again (Figure 13) with an isothermal surface temperature that resolves the RT process similarly to the SVF approach of Adderley, Christen and 

Voogt (2015). 
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Figure 12. Per-pixel emissivity corrected surface temperature Ts differences (median = black lines, IQR = shading) from LWIR camera observations (27 
August 2017, 60 min resolution) using DART for different spectral library (Kotthaus et al., 2014) broadband emissivity values: mean (ε0.93), minimum 

(ε0.89, orange) and maximum (ε0.97, aqua) for non-vegetative surfaces (walls E, N, S, W; ground, roof). 

The facet most sensitive to changes in surface emissivity is the roof as its high Tb
surf and SVF combine with the low incoming (sky) LWIR 

radiation to produce large contrasts between received and emitted radiation. The emissivity effect for roof surfaces is most pronounced at 13:00 

(on this day), when the median difference between the surface temperature derived using an emissivity of 0.93 (ε0.93)  is 1.4 K higher (1.3 K 

lower) than with ε0.89 (ε0.97) (Figure 12). Although ground surfaces also mostly receive radiance from the cold sky, temporal variability in Ts(x, y, 

ΣGround) is lower compared to roof surfaces as the diurnal amplitude of surface temperatures of this facet type is less because of the smaller 

shortwave energy receipt (Figure 10a). 

For the wall facets, the magnitude of the emissivity effect is impacted by their orientation (Figure 12). Depending on the emissivity value used, 

the sign of the differences between surface temperatures obtained can even change throughout the day. For east- and south-facing walls the 

uncertainty is greatest in the morning when the surfaces are insolated and have high Ts, whilst opposing walls (west and north) are shaded with 

low Ts. By the afternoon, differences for east-facing walls are minimised when the west-facing walls are insolated and have similar temperature 

to east facing walls. The asymmetry of the uncertainty for south-facing walls around solar noon, with greater uncertainty before noon, is linked 

to the preferential view of south-southeast walls and resulting diurnal cycle of Tb
surf(ΣSouth) (Figure 10a). Although east walls have a similar 

distribution of orientations to west walls, they respond differently to changes in prescribed emissivity. This is associated with the high diurnal 

variability of observed brightness temperatures in this class (Figure 10).  

To assess the impact of variations in LWIR radiation leaving the canopy surfaces, the correction to Ts(ε0.93) is performed using two different 

distributions of surface brightness temperature across the MW area. The “heterogeneous” temperature (Tb
3D) is derived from the full temperature 

distribution [Tb
surf(X, Y, Z, Σ)]. This is compared to an “isothermal” case (Tb

iso) with two classes: roof (including both ΣRoof[dark], ΣRoof[light]), and 

“within canopy” (i.e. walls and ground). The combination of isothermal within-canopy temperatures, isotropy of surface emissivity and 

downwelling sky radiance means Tb
iso is analogous to the SVF approach of Adderley, Christen and Voogt (2015). The isothermal distribution of 

temperatures eliminates strong contrasts between the walls, such as 〈Tb
surf(ΣSouth)〉 up to 14.6 K greater than the median brightness temperature 

for the overall “within canopy” class at 11:30.  

Assigning a more realistic temperature distribution (Tb
3D) allows the heterogeneous urban canopy influences to impact the derived surface 

temperature [Ts(x, y, Tb
3D)] compared to the isothermal case [Ts(x, y, Tb

iso)]. A reduced emissivity enhances the surface temperature differences 

between the heterogeneous [Ts(x, y, Tb
3D)] and isothermal [Ts(x, y, Tb

iso)] cases (Figure 13). As the proportion of reflected radiation increases, the 

effect of assigning contrasting brightness temperature distributions increases with decreasing emissivity. Simulations using ε0.97 have a 5th – 95th 

percentile range of Ts(x, y, ε0.97, Tb
3D) - Ts(x, y, ε0.97, Tb

iso) that is typically less than 0.1 K (Figure 13, blue). The range for simulations using ε0.89 

[5th – 95th percentile, Ts(x, y, ε0.89, Tb
3D) - Ts(x, y, ε0.89, Tb

iso)] is greatest for ΣGround[imp.] surfaces (up to 0.4 K at 11:00). As ΣRoof have low wall 

view factors, the sensitivity of this class to incoming LWIR radiation from within canopy surfaces is low throughout the day. The emissivity 

effect for the other within-canopy surfaces varies through the day with the brightness temperature of the opposite facets (Figure 10a). Given the 

surface emissivity impact increases if the facing wall has a very different temperature (Figure 12), the relative temperature distribution between 

walls is important. For ΣNorth, the 5th percentile of Ts(x, y, ε0.89 Tb
iso) overestimates the 5th percentile of Ts(x, y, ε0.89, Tb

3D) by 0.25 K in the period 

11:30 – 12:00. This effect of temperature distribution within the canopy on the emissivity correction can therefore be larger than when changing 

the actual emissivity value used for north walls, as the 5th and 95th percentile differences in Ts(x, y, ε0.89) - Ts(x, y, ε0.97) are within ±0.2 K during 

the same 11:30 – 12:00 period (within ±0.5 K for 08:00 – 18:00) (Figure 12). These results highlight that assuming emitted radiation is only a 
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function of SVF does not account for the full complex thermal heterogeneity of the urban canopy and can contribute towards uncertainty in the 

emissivity correction. 

 
Figure 13. Difference in surface temperature Ts (60 min resolution, 27 August 2017) derived from LWIR camera observations based on emissivity (ε) 
corrections with a heterogeneous (Tb

3D) and isothermal (Tb
iso) assumption, using a range of ε values (non-vegetative surfaces) from the dark impervious 

materials in the Kotthaus et al. (2014) spectral library. As observations are not areally weighted, the lower and upper extent of the distributions can still 
represent large fractions of the surface seen by the LWIR cameras. 

6. Discussion 

6.1 Flexibility in the correction framework 

The correction methodology can be used for a wide range of observation sites and applications beyond the case-study. 

For the atmospheric correction, climate model or reanalysis data could be used as input data instead of the more costly and challenging vertical 

extrapolation of in-situ weather station observations applied here. A trade-off may exist with model grid resolution and skill, but the horizontal 

and vertical distribution of air temperature, pressure and water vapour from the model may be more accurately resolved than by some 

observations. Alternatively, standard gas and aerosol models are available within the DART database. In addition to vertical atmospheric 

variations, the 3D RT approach is unique in that any horizontal variability (e.g. associated with localised point sources or distributions of water 

vapour or soot) can be specified. We aimed for atmospheric correction processing at close to real time (< 5 min simulation time). The final ~12 

min simulation time per timestep across all cameras means the sensitivity of the model resolution (e.g. voxels, number of rays) to the simulated 

results requires more investigation and there is much scope for reduction in simulation time. 

The emissivity correction uncertainty analysis could be expanded to consider more spatially variable materials and anisotropy in surface 

emissivity such as specular reflections from glass. The discrete ordinate (DO) nature of DART means spectral properties and scattering phase 

functions can be determined either manually or from the DART database. In general, the distribution of material properties for the correction is 

only limited by the input data. As more detailed optical property information become available, this could be incorporated into other datasets and 

classification techniques. Given a primary benefit of ground-based RS is that observations can be made of the full 3D structure including vertical 

surfaces, a description of the material composition of the vertical surfaces is particularly important and can be used here. Google Street View has 

been applied in urban climate studies (Gong et al., 2018; Zeng et al., 2018) and could be used to obtain structure and material composition 

information for within-canopy surfaces across large areas (Lindberg et al., 2019).  

To further understand uncertainties with emissivity correction from changes in surface temperature distributions, the surface temperature 

distribution can be pre-processed by DART (e.g. Wang, Chen and Zhan, 2018) or by user-defined approaches (Morrison et al., 2018) to resolve 

its variability from shadow patterns.  

We assumed downwelling radiance from the sky to be an isotropic source to isolate variance from the other effects studied. However, an 

anisotropic sky radiance can be prescribed which uses the full above-BOA (bottom of atmosphere) radiative transfer capabilities of DART as 

opposed to the broadband sky irradiances used here.  

Additional sensitivity analyses considering all of these processes could contribute to a benchmarking effort to reduce simulation times (each 

emissivity correction takes ~12 h using 4 cores, 40 GB ram) and allow for larger domain areas. This could involve simplifications (e.g. using 

first-order scattering of LWIR radiation only) and/or reduction of model resolution (e.g. fewer voxels and lower density of rays). 

6.2 Future application of corrected ground-based observations 

To enhance the applicability of ground-based thermography observations for studying physical exchange processes, the correction of 

atmospheric and emissivity effects is crucial. Surface kinetic temperature (Ts) from high resolution LWIR RS on ground-based platforms in 
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urban areas is increasingly required for a wide range of applications. The role of complex geometry to 3D RT processes is important to 

understand, particularly as modelling typically uses low LOD geometry restricted by data availability (e.g. Ghandehari, Emig and 

Aghamohamadnia, 2018) or the nature of the model as a 2D (Harman, Best and Belcher, 2004) or simplified 3D (Krayenhoff and Voogt, 2007; 

Aoyagi and Takahashi, 2012) schemes. The corrected ground-based observations are expected to have application in the following specific 

fields: ground-truthing of airborne or space-borne surface temperatures by assessment of the anisotropy (directional variability) of upwelling 

LWIR radiation (Lagouarde et al., 2014; Krayenhoff and Voogt, 2016), estimation of complete urban surface temperatures (Voogt and Oke, 

1997), evaluation of urban radiation schemes (Hogan, 2019) and urban surface (e.g. Masson, 2000; Harshan et al., 2018) and building (Bueno et 

al., 2012) energy balance models, studies of shadow hysteresis effects (Meier, Scherer and Richters, 2010), inputs to unstably stratified large 

eddy simulations (Gronemeier, Raasch and Ng, 2017) and data assimilation (e.g. Ghent et al., 2010; Li and Bou-Zeid, 2014). 

7. Conclusions 

As high-resolution thermal imagery starts to be gathered in urban settings for long periods, detailed automatic correction techniques are required. 

Buildings and vegetation often have different patterns and heterogeneity across a city (cf. city centre to residential), meaning flexible methods 

are needed to account for the specific urban morphology. Here, a radiative transfer model is used to convert brightness temperature observations 

to kinetic surface temperature from a network of seven thermal cameras deployed in a complex urban area. The methods applied to correct for 

the emission and absorption of radiation between the surface and camera (atmospheric correction) and longwave scattering from non-black-body 

surfaces (“emissivity” correction) are advantageous over earlier work as: (a) the correction is applied within one modelling framework; (b) a 

large number of cameras with varying properties can be corrected simultaneously with minimal increase to computational cost; (c) a very high 

level of detail and realistic surface model is created and explicitly represents buildings with sloped roofs, micro-scale structures (e.g. balconies), 

and vegetation; (d) multiple scattering of radiation within the urban atmosphere and between building structures is accounted for; and (e) 

heterogeneous temperature distributions within the urban canopy are used. 

The conclusions drawn from this work are: 

• The atmospheric correction can be large (e.g. 2.97 K) over relatively short path lengths (e.g. 155 m). The proposed correction is 

demonstrated to have good agreement with simultaneous observations at a very short path length (mean absolute error 0.39 K). A 

seasonally varying evaluation is needed. 

• A high level of detail surface geometry model allows for accurate pixel path length, even with complex features (e.g. sloped roofs), giving 

much more accurate atmospheric corrections compared to more simplified geometry (e.g. assuming flat roofs may make path lengths much 

longer and for this study could give errors over 3 K). 

• The emissivity correction has a diurnal pattern and varies by surface type. For example, on a clear-sky day the correction is greatest around 

midday, with roofs over 3 K warmer when corrected.  

• Roofs likely have the greatest uncertainty in estimated Ts. Because of their high sky view factor, error sources are the prescribed material 

emissivity and longwave sky irradiance. A more general error source is rapid changes in camera body temperature during clear-sky 

mornings which correspond to relatively poor agreement between modelled and observed atmospheric correction magnitudes (~ 1 K 

difference). More work on the calibration and housing of longwave infrared cameras for outdoor settings is required. 

• A baseline correction using an emissivity of 0.93 (ε0.93) across all built surfaces has an order of ±1.4 K variation compared to a correction 

using expected emissivity values for dark building materials (ε0.89 to ε0.97, Kotthaus et al., 2014).  

• Driven by varied surface temperatures and sky view factors, the irradiance across the surfaces is highly variable (intra-pixel differences > 

70 W m-2). South facing walls are up to 17 K warmer than north walls. The latter generally follow the air temperature and have cooler 

temperature when corrected (< -0.25 K around midday). By removing the surface temperature variation, which is analogous to a sky view 

factor correction (Adderley, Christen and Voogt, 2015), the correction changes by around 0.25 K (0.1 K) using the low (high) emissivity 

values of ε0.89 (ε0.97). Thus, the uncertainty introduced when using a simplified SVF approach could be larger than the uncertainty 

introduced from material emissivity choice. 

Overall, the technique introduced is flexible and corrects for atmospheric and emissivity effects at an unprecedented level of detail. Once a 

“model world” is defined that describes the observational area (i.e. observed surface geometry and sensor perspective), the use of an anisotropic 

radiative transfer model (DART, Gastellu-Etchegorry et al., 2015) simplifies this challenging and complex correction procedure within a single 

model interface. There is flexibility in the choice of model inputs and parameters including the: 3D distributions of atmospheric optical 

properties, surface temperatures and (directional) surface emissivity; anisotropic downwelling longwave radiance from the sky; surface and 

vegetation geometry; remote sensing observations from different platforms and design (e.g. cameras and narrow-wide FOV radiometers), which 

may be important for configurations where the observations and model resolve more detailed material properties, including anisotropic 

emissivity and specular reflections. By using a network of cameras with observations of a broad range of urban surface types and surface-camera 

distances, the approach encompasses a range of these parameters which will invariably be relevant as a benchmark for future applications. 

List of symbols and acronyms [units] 

3D Three dimensional 

AGL Above ground level (m) 

Bλ Black-body Planck radiance [W m-2 sr-1 μm-1] 

BB Black-body 

BCT Observation site for weather data (~1 km outside study area) 

BOA Bottom of atmosphere 

C# Nonspecific camera (C) and unique reference number (#) 

c1 First radiation constant [1.191042 x 109 W m-2 sr-1 μm-1]  

c2 Second radiation constant [1.4387770 x 104 μm K] 

CUB Observation site within the study area 

DART Discrete Anisotropic Radiative Transfer model 

DO Discrete ordinate 

DSM Digital surface model (3D vector-based) 

ΔTb
cam  Atmosphere effect for C2 (no correction) as Tb

cam(C2) - Tb
surf(C7) [K] 

ΔTb
surf  Atmosphere effect corrected for C2 as Tb

surf(C2) - Tb
surf(C7) [K] 

ELW Broadband incoming longwave radiation flux (irradiance) [W m-2] 

ELW
sky Broadband incoming longwave radiation flux (irradiance) from sky [W m-2] 

ε Emissivity 
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FOV Field of view [°] 

IFOV Instantaneous field of view 

IMU Observation site within the study area 

L Band radiance [W m-2 sr-1] 

λ Wavelength [μm] 

LOD Level of detail 

LUT Lookup table 

LWIR Longwave infrared 

Lλ Spectral radiance [W m-2 sr-1 μm-1] 

Lλ
atm Spectral atmospheric radiance contribution along zpath

 [W m-2 sr-1 μm-1] 

Lλ
cam At-sensor radiance [W m-2 sr-1 μm-1] 

MLOS Multi line of sight 

MW Model world 

Ω Solid angle [sr] 

Ω↓ Solid angle [sr] associated with radiation received by a surface 

Ω↑  Solid angle [sr] associated with radiation leaving a surface 

ϕ Zenith angle [°] 

p Scattering phase function 

r Nonspecific raster spatial dataset (nadir orthorectified) 

rDSM Raster digital surface model (ground and building height AGL) 

RH Relative humidity [%]  

ρv absolute humidity [g m-3] 

rRGB True-colour raster RGB image 

RT Radiative transfer 

RW Real world 

Rλ Camera relative spectral response function 

Σ Surface orientation and material class 

σ Stefan-Boltzmann constant [5.67 x 10-8 W m-2 K-4] 

SEB Surface energy balance 

SLUM Spectral Library of impervious Urban Materials (Kotthaus et al., 2014) 

Ta Air temperature [K] 

τ Optical depth 

Γatm Transmittance of atmosphere 

Γλ
atm Spectral transmittance of atmosphere 

Tb
3D Three-dimensional parameterisation of brightness temperature across MW surfaces 

Tb
cam Camera brightness temperature [K] 

Tb
iso Isothermal parameterisation of brightness temperature across MW surfaces 

Tb
surf Surface brightness temperature [K] 

θ Azimuth angle [°] 

Ts Surface temperature [K] 

VCE Vegetation canopy element: e.g. trees, bushes or shrubs taller than 1.5 m AGL 

VxS Surface voxel (intersected by DSM triangles) 

VxV VCE voxel 

x, y Nonspecific coordinate in 2D camera image 

X, Y, Z Nonspecific coordinate of 3D space 

zpath
 Path length between camera and target surface [m] 
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8. Appendices 

Appendix A. Camera image emissivity maps from the DART model 

An emissivity map is required for the emissivity correction of longwave infrared (LWIR) cameras. It needs to have the camera image perspective 

with emissivity values for each pixel informed by the surfaces observed and their associated material and optical properties. With an isotropic 

emissivity, the view angle of the camera does not alter the observed surface emissivity, thus an emissivity map can be created that is referenced to 

any prior image classification (e.g. surface orientation and material maps, Figure 4).  

For anisotropic emissivity situations, DART is used to pre-calculate an emissivity map considering the view angle dependence of surface emissivity 

for any given camera. For this, the DART model world (MW) surfaces are configured to have materials with scattering phase functions (p) to give 

an anisotropic and spectral emissivity ελ,p. A DART simulation similar to that used for the non-black-body (non-BB) radiance calculation (Lλ
DART(x, 

y, Ω↑, ελ,p < 1), W m-2 sr-1 μm-1, Section 3.3) is used and adjusted to have: one known surface temperature (𝑇�̅�) across all surfaces, no sky emission 

(sky brightness temperature Tb
sky = 0 K) and no scattering events. This gives a non-BB surface-leaving radiance product [Lλ

DART(x, y, Ω↑, ελ,p < 1, 

Tb
sky = 0, 𝑇�̅�)] used to determine ελ,p(x, y) across the MW camera perspective with: 

ελ,𝑝(x, y) =
𝐿λ
DART (x, y, Ω↑, ελ,𝑝  <  1, 𝑇b

sky
= 0, 𝑇�̅�)

𝐵λ(𝑇�̅�)
 Eqn. A.1 
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where Bλ(𝑇�̅�) is the expected at-sensor Planck radiance for a black-body (i.e. ελ,p = 1) at the given homogeneous temperature. All other terms are 

defined in notation list. 

Appendix B. Creation and classification of complex 3D surface and vegetation models 

Photogrammetry techniques are used to build a high level of detail (LOD) description of the surface geometry of the central London study area. 

B.1. Creation 

Urban surface geometry of buildings, roads, and vegetation (Figure B-1) are resolved to include sub-facet details (e.g. sloped roofs and balconies). 

The model world (MW) area has an initial horizontal extent of 450 x 450 m. 

 
Figure B-1. Urban surface geometry includes a vector-based 3D surface model (grey) and voxel-based model of vegetation canopy elements (green). The 

central London (UK) study area rendered using Blender (Blender, 2018) showing: (a) full extent (450 m x 450 m) and (b) more detail around the centre of 

the area. 

Initially, the MW area is split into nine 150 m x 150 m georeferenced tiles (3 x 3 array). In Google Earth Pro (Google, 2019a), a programmed 

“tour” takes 32 images per tile at 200 m from the centre of each tile with a 45° zenith angle at 11.25° azimuth angle steps (tile height: mean height 

above ground level (centre), derived from Google Maps API, Google, 2019b). The tour, saved in .kml file format, can be read by Google Earth. 

By taking images around a centre point, most of the Google Earth 3D surface present within a tile is captured (Figure B-2).  

 
Figure B-2. Nine sample images captured by Google Earth using a pre-programmed Google Earth “tour”. Images are used to create a dense point cloud 

“tile” in Agisoft PhotoScan Professional (Figure B-3). 
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Agisoft PhotoScan Professional (Agisoft LLC, 2013) photogrammetry software suite (“PhotoScan”) Version 1.3.4 build 506 is used to process the 

Google Earth images. The relative position and rotation of the cameras stored in the .kml file is verified by Photoscan using unsupervised detection 

of inter- and intra-image control points. For each tile, image depth mapping with Photoscan is used to construct a dense 3D point cloud (120,000 

– 160,000 points) of Google Earth surfaces containing the 3D coordinate (X, Y, Z), surface normal and RGB attributes (Figure B-3). 

 
Figure B-3. Screen captures from the Agisoft PhotoScan Pro user interface (Version 1.3.4 build 506) with (a) a dense point cloud (1.56 x 107 points) 

across a 150 x 150 m “tile” centred on WGS UTM 31N coordinates (x = 284450, y = 5712800) with the camera position for the Google Earth images 

shown above, and (b) a close-up of the sample dense point cloud. 

Point clouds for each tile are rasterised at 0.2 m resolution to give raster (r) digital surface models (rDSM, e.g. Figure B-4a) for each tile, which are 

then merged.  

As the Google Earth images only sample the top and sides of convoluted urban surfaces, the complete vegetation canopy is underrepresented by 

the point cloud. Thus, vegetation canopy points are extracted from the point cloud and modelled separately. Ground points within each point cloud 

are automatically classified with Photoscan and rasterized to create a raster digital elevation model (rDEM) at 0.2 m resolution (rDEM, Figure B-4b) 

which is aggregated to 5 m using the median values and resampled back to 0.2 m. Green vegetation canopies are selected using an RGB colour 

filter applied to an orthorectified true-colour raster of the Google Earth surface (rRGB, Figure B-4d) combined with an above ground level (AGL) 

height threshold ([rDSM - rDEM] > 1.5 m). Manual digitisation is used to select any shaded or non-green vegetation not selected, and to deselect any 

raster cells incorrectly identified (e.g. artificial turf). The combined automated filter and manual digitised vegetation forms a vegetation map (rVEG). 

Any point cloud points with horizontal coordinates that intersect a vegetation cell from rVEG are moved to the height of the corresponding rDEM 

cell, to produce a modified point cloud that excludes all vegetation canopy elements (VCE). A VCE is defined as any vegetation taller than 1.5 m 

AGL (e.g. trees, bushes or shrubs). 

The modified point cloud is converted to a 3D vector DSM using Poisson surface reconstruction (Kazhdan and Hoppe, 2013). As surfaces near 

(<10 m) each edge of the DSM extent are poorly reconstructed with this method, they are removed; hence, the final horizontal extent of the DSM 

is 430 x 430 m. 

The geometry of VCE is contained with a 3D array of voxels (VxV) at ΔX = ΔY = 1 m, ΔZ = 0.1 m, that are either filled with VCE or empty. rVEG 

cells that intersect VxV give the horizontal distribution of VCE. The vertical distribution of VxV uses a canopy top and base height, between which 

all voxels are filled. The canopy top is assumed to be the 95th percentile height of the corresponding rDSM and rVEG cells. The canopy base height 

is determined for each VCE. Initially, individual VCE crowns are identified by applying a local maxima filter (Roussel and Auty, 2018) to rDSM 

cells mapped as rVEG. The horizontal extent of each VCE crown, determined using a watershed algorithm (Plowright, 2018), produces a polygon 

outline for each (Figure B-4d). The “Virtual London” building footprint model (Evans, Hudson-Smith and Batty, 2006; Figure 2a) is used to 

determine if a VCE is on top of or near a building. A VCE polygon that intersects > 90 % of the area of a building footprint polygon is assumed 

to originate from a roof surface. The base height of each VxV within a roof VCE is set to the 25th percentile height of all rDSM pixels within 0.5 m 

of the roof VCE perimeter. For the voxels within each non-roof VCE, the base or “trunk” height is assumed as 0.25 of the 95th percentile height 

of rDSM pixels within the VCE polygon. 
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Figure B-4. Raster (r) products for one 150 x 150 m “tile” of the larger study area, photogrammetrically processed from the 3D point cloud with (a) 

digital surface model (rDSM), (b) base resolution (0.2 m) digital elevation model (rDEM), (c) above ground (green) surfaces, and (d) orthoimage determined 

by Agisoft using the raw Google Earth images and classified vegetation canopy elements (VCE, red lines). All rasters are (i) used to determine a 3D 
distribution of VCE (ii) shown in grid coordinate system UTM 31N (m) and (iii) above sea level (m) where appropriate. 

B.2. Classification 

The classified London surface geometry (Figure 2c) is created, after each DSM triangle is assigned an “orientation” (either north, east, south or 

west facing wall, roof or ground) using Blender 3D modelling software version 2.79 (Blender Foundation, 2018, hereafter “Blender”). The 

orientation of each triangle is defined by the smallest angular difference between the normal of a DSM triangle and the normal of each cardinal 

and upward (downward) direction. To differentiate upward-facing triangles as roof or ground, the height of the centroid of each upward facing 

triangle (i.e. triangles not assigned a cardinal orientation) is compared to the height of the corresponding rDSM (e.g. Figure B-4) cell. A triangle is 

classified as ground if its centroid height is within 2 m of the corresponding rDSM cell. Remaining upward triangles are assigned as roofs. 

Land cover (rLC) and hyperspectral reflectance (rλ
ω) maps are used to assign simple materials characteristics of: Roof [light | dark] and Ground 

[imp. (impervious) | grass]. rLC contains built surfaces, grass and “tree” classes at 4 m resolution (Lindberg and Grimmond, 2011). As VCE are 

modelled (Section B.1) and classified separately, the ground below each VCE within rLC is assigned as Ground[grass] for pixels that intersect the 

Ordnance Survey Greenspace dataset (Ordnance Survey, 2018) or otherwise as impervious (Ground[imp.]). rλ
ω is derived from Specim AISA 

“Eagle” pushbroom sensor (0.40 – 0.97 μm, 253 channels) mounted on the Natural Environment Research Council (NERC) Airborne Research 

and Survey Facility (ARSF) Dornier 228 plane observed on 3 June 2010 (NERC ARSF, 2010). The radiometrically calibrated observations are 

georeferenced using flight navigation data and orthorectified using on-board Light Detection and Ranging (LiDAR) data with NERC-ARF-DAN 

(Natural Environmental Research Council Airborne Research Facility Data Analysis Node) APL (Airborne Processing Library) software (NERC-

ARF, 2016) at 1 m spatial resolution and cropped to the MW area extent. After rejecting shaded pixels and atmospheric absorption bands, rλ
ω is 

classified using k-means (k = 3) clustering (Leutner and Horning, 2016). The three clusters identified are: low reflectance, high reflectance and 

vegetation. Low reflectance and shaded surface clusters are assigned to “dark” pixels in the rλ
ω dataset and high reflectance clusters are assigned 

to “light” pixels. Google Earth imagery between 2010 and 2017 suggests land cover and surface materials remain largely unchanged within the 

study area. Processes such as weathering and re-roofing that may impact the classification are not accounted for. 

Roof and ground DSM triangles are assigned materials using rLC and rλ
ω based on the intersection of the (X, Y) coordinates of a triangle centroid 

and the (X, Y) coordinates of each raster cell. Ground surfaces are assigned ground[grass] from rLC. Roof surfaces are assigned Roof[dark] or 

Roof[light] from rλ
ω. Ground surfaces are not assigned any further material properties as they are often shaded and occluded by trees and buildings 

when viewed from airborne platforms (Weng, 2012). Materials of vertical surfaces cannot be informed by the plan view raster datasets. As high-

resolution urban land cover and material datasets are almost universally limited, further land cover classes and surface material classification are 

challenging to include. 
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Appendix C. Thermal camera enclosures 

For this observation campaign new enclosures were designed. Consideration was given to sealed enclosures but as these would require LWIR-

transparent windows they were not used as the windows 1) may also be susceptible to the same degradation, and 2) would gradually and 

unaccountably reduce the transmittance of the camera system. The solution developed protects the lenses without directly interfering with the 

camera system.  

Each enclosure (Spelsberg TK-PS IP66 polystyrene enclosures, 182 mm x 180 mm x 111 mm) housed a camera, a Raspberry Pi model B computer 

and a servo motor (Hitec HS-322HD) that controlled an external shutter. Enclosures are covered in reflective aluminium tape to minimise 

absorption of radiation. The Raspberry Pi controlled the servo motor, the internal shutter motor of the camera, and recorded the internal body 

temperature sensor of the camera. A shutter mounted on the servo motor occluded an opening in the enclosure located in front of the camera. A 

schematic for the components used inside each enclosure is shown in Figure S-4 and Table S-1 (Supplement S1). 
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