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Abstract 

 

Fifth generation (5G) wireless communication systems promise increased capacity, 

increased data rate, enhanced reliability, reduced latency, improved energy efficiency, 

improved spectrum efficiency and reduced interference, and massive multiple-input 

multiple-output (MIMO) has been identified as a driving technique in achieving this. In 

massive MIMO, the base station is equipped with hundreds of antennas to service tens 

of terminals in the same time-frequency resource. But there are several challenges 

associated with massive MIMO that prevent the achievement of these benefits, and 

these include channel estimation, pilot contamination and radio frequency (RF) 

impairments, etc. The main focus of this thesis is on the use of continuous-time state-

space models to identify the dynamics of massive MIMO wireless channels, i.e. channel 

estimation.  

 

Two identification models, namely the continuous-time integer-order state-space 

and continuous-time fractional-order state-space identification models are considered 

when identifying the massive MIMO frequency-selective wireless channels. These 

models are designed based on the multiple-input multiple-output output-error state 

space (MOESP) algorithm, a subspace system identification algorithm that has been 

proven to successfully identify the dynamics of a system.  

 

Through simulations it is shown that with increase in model order, the 

continuous-time integer-order state-space model is able to model the massive MIMO 

channels with increased accuracy. The performance of the continuous-time fractional-

order state-space model is also studied for different fractional-order values, and its 

performance is then compared with that of the continuous-time integer-order state-space 

model. 

 

Having identified the dynamics of the massive MIMO system, equalizers are then 

designed to help combat the effects of inter-symbol interference (ISI) caused by the 

massive multiple-input multiple-output (MIMO) frequency-selective wireless channels. 

We propose the use of state-space models for channel equalization. The minimum mean 

square error – decision feedback equalizer (MMSE-DFE) is the equalizer of choice in 
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addressing the ISI and is built based on the continuous-time integer-order state-space 

and continuous-time fractional-order state-space identified models. 
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Chapter 1  

 

Introduction 

 

1.1 Motivation 

 

With advances in wireless communications there is need for systems that will address 

the issues associated with capacity, data rates, reliability, latency, energy and spectrum 

efficiency. Massive multiple-input multiple-output (MIMO), an emerging technology 

that uses antenna arrays which have hundreds of antennas at the base station to service 

tens of terminals has been found to play a great role in addressing these issues. But for 

efficient performance the wireless channel of the massive MIMO system must be 

efficiently identified, and this brings about the idea of system identification. The area of 

system identification is one of the important areas in engineering as in can be applied to 

a wide range of problems. System identification is widely used in many areas such as 

broadcasting theory, geology, hydrology, communications, control, etc [1]. There is 

need for exploring novel system identification methods or improving on the already 

existing system identification methods. This research will focus on the multiple-input 

multiple-output output-error state space (MOESP) continuous-time fractional-order 

system identification algorithm which is an extension of the extensively studied 

MOESP continuous-time integer-order system identification algorithm, a subspace 

system identification algorithm. Subspace system identification algorithms have been 

proven to successfully identify the dynamics of a system and this has motivated their 

application in this thesis [2]. The developed continuous-time fractional-order system 

identification will then be used to identify the massive multiple-input multiple-output 

(MIMO) frequency-selective wireless channels. 

 

The reasons of focusing on continuous-time system identification are: i) In most 

cases, dynamic systems in the real world environment are naturally described in the 

continuous-time domain, but most system identification methods have been based on 

discrete-time models with less focus on continuous-time models [3]. ii) The authors in 
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[4] showed that when continuous-time models are directly used to identify a system 

their performance is superior to when the indirect approach is used where discrete-time 

models are first identified and then transformed into continuous-time models. iii) In [5] 

their results showed that discrete-time system identification may be good enough in 

some instances, but if the conditions of the identification experiment are not adequately 

in favour of discrete-time methods then the results may not be reliable in the sense that 

the resultant models may be unstable, or even if they are stable they may not be 

accurate, and rapid sampling can make this problem more pronounced because the 

eigenvalues will lie close to the unit circle in the complex domain making the model 

parameters to be poorly defined in statistical terms thus leading to estimation errors. On 

the other hand, the authors showed that continuous-time system identification may be 

free from all these problems and may result in stable and more accurate models, 

especially with rapidly sampled data. iv) According to [6] continuous-time models 

provide differential equation models whose parameters can be interpreted immediately 

in physically meaningful terms, and these can be of direct use to environmental 

scientists and engineers who most often derive models in differential equation terms 

based on natural laws and who are much less familiar with discrete-time models. All 

these show some of the advantages of the continuous-time system identification 

methods. 

 

Fractional-order system identification has been mostly applied in the field of 

controls and the use of the multiple-input multiple-output output-error state space 

(MOESP) continuous-time fractional-order system identification algorithm to identify 

the massive MIMO frequency-selective wireless channels will provide a novel research 

perspective in the area of wireless communications. 

 

1.2 System Identification 

 

A system is a set of elements or components working together to achieve a particular 

goal or task. Systems can be classified as linear or nonlinear systems. Linear systems 

follow the principle of superposition, i.e. linearity and homogeneity and they have one 

isolated equilibrium point. It is easier to work with linear systems and different methods 
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can be used to identify the dynamics of the system with respect to the inputs, outputs 

and unmeasured disturbances/noise [7]. But in most cases, real life systems are 

nonlinear in nature, as a result the objective is usually to obtain an accurate 

representation of the nonlinear systems which at times can be obtained using localized 

linear models [8]. Nonlinear systems do not obey the principle of superposition and 

may have several isolated equilibrium points.  

 

According to [8], one approach that can be used to model nonlinear systems is to use 

several linear models which when combined together can cover the operating range of 

the nonlinear system. The assumption here is that the process is locally linear within 

each of these operating ranges. Different models can also be used for the identification 

of nonlinear systems, and these may include: Volterra series models, block structured 

models, neural network models, nonlinear autoregressive moving average with 

exogenous input (NARMAX) models and state-space models [9] A brief description of 

these models is presented in Appendix A. 

 

System identification is a technique used to develop mathematical models based 

on the input and output data sets of a system to represent the characteristics or dynamics 

of that particular system. The general form of the developed mathematical model 

involves a number of ordinary differential or difference equations and a set of 

parameters which have to be estimated [10]. The advantage of system identification is 

that models for systems with very complex dynamics or systems with unknown 

physical parameter values can be developed. 

 

Modelling techniques can be classified as a priori modelling, a posteriori 

modelling or grey box modelling. In a priori modelling the models are built based on 

first principles where simple experiments are conducted to find out the physical laws 

involved, e.g. Newton laws. A priori modelling is also called white box modelling or 

theoretical modelling. In a posteriori modelling the model is built based only on 

available data without having previous knowledge about the system, there is no prior 

model available. It describes how the output data depends on the input data. Most 

system models are of this type. A posterior modelling is also called black box 

modelling or experimental modelling. Theoretical modelling can deliver more 
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information about the system to be identified provided that the internal behaviour of the 

system is known and can be described mathematically, but there has been an increased 

attention in experimental modelling because i) theoretical modelling can become quite 

complex even for simple systems, ii) model coefficients derived from the theoretical 

modelling are not precise enough and not all actions taking place inside the system are 

known [11]. In grey box modelling the dynamics of what is going on inside the system 

are not fully known, so it is based on both insight into the system and on experimental 

data analysis [12]. 

 

Linear system identification methods can be broadly categorised into two 

classes, namely parametric and non-parametric identification. Parametric identification 

estimates the unknown parameters in the model that govern a system. In parametric 

identification the system models are completely defined by the system coefficients or 

parameters [13]. Parametric identification models are used to determine the system 

coefficients or parameters and these models include the transfer functions 

autoregressive (AR) models, autoregressive with exogenous input (ARX) models, 

autoregressive moving average with exogenous input (ARMAX) models, Box-Jenkins 

(BJ) models, output-error (OE) models and models and state-space models. A brief 

description of these models is presented in Appendix B. Due to the fact that linear 

systems are easier to work with compared to nonlinear systems and in this case offer a 

good starting point for system identification for the massive MIMO system, the focus of 

this thesis is on linear systems that employ the state-space models for system 

identification. An expanded discussion on state-space models is presented in the 

chapters that follow. 

 

On the other hand, non-parametric identification assumes that the model that 

governs a system is unknown and it tries to estimate the generic model using step 

response, finite impulse response (FIR) and frequency response [14]. Non-parametric 

identification techniques provide a very effective and simple way of finding model 

structure in data sets without the imposition of a parametric one [12].  

 

In system identification the choice of the model to use to identify the system 

depends on the dynamics and the noise characteristics of the system. This is because 
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some models may not consider the noise characteristics when it comes to system 

identification, for example deterministic models ignore the effects of the process noise 

and additive noise. 

 

In general, system identification may follow these steps: 

 

1. Experiment design - Setting up the system in terms of what signals to measure, 

choice of sampling rate and choice of persistently excitation signals. 

 

2. Data acquisition – Getting the system input and output data. 

 

3. Model selection - Determining the type of model that is required for the 

observation, e.g. open loop model or closed loop model. In the open loop model the 

direct identification of the output from the input is considered. But in the closed 

loop model there is a feedback where the output is fed back to the input before 

identification. 

 

4. Model estimation - Identifying which suitable model to use from the different 

available. This model should be the one that provides the best approximation of the 

observed data and minimises the cost function. 

 

5. Model validation - Ascertaining how satisfactory/ accurate the specified model is in 

describing the system. Simulate and compare the model with sets of data. 

 

System identification can be performed in either time domain or frequency domain. 

In time domain identification the measured data is directly used to estimate the model 

parameters. Whereas in frequency domain identification the measured data is first 

transformed to frequency domain using Discrete Fourier transform (DFT) and then the 

model parameters are estimated in the frequency domain transformed data.  

 

The identification process can also be classified as online or offline identification 

[11]. In online identification the system identification process is carried out the same 

time that the input and output data are being collected, i.e. the system identification 
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process is performed parallel to the experiment. Here the data is processed immediately 

after becoming available. This is the typical identification process for real-time systems. 

Online identification can also be referred to as real-time or recursive identification. 

Recursive identification updates the model as each measurement becomes available. 

Hence, the new measurement is always used to improve the model derived in the 

previous step. The old measurements do not need to be stored. On the other hand in 

offline identification the measured data is first stored and then the system identification 

process is carried out on the stored data, here the data is processed in one go. In offline 

identification the identification process usually takes a longer time compared to online 

identification. Offline identification can also be referred to as batch or non-recursive 

identification [15]. Non-recursive identification determines the model from the 

previously stored measurements. Non-recursive identification can be further divided 

into direct processing or iterative processing. In direct processing the model is 

identified in one pass or one step whereas in iterative processing the model is identified 

in several steps. 

 

In system identification the system to be modelled must be excited by an 

operational input signal or an artificially generated signal known as a test signal. The 

operational input signal should excite all relevant frequencies. The test signal is usually 

applied if the operational input signal does not sufficiently or persistently excite the 

system. Persistent excitation plays an important role in establishing parameter 

convergence. The definition of a persistently exciting signal is given in Appendix C. 

Commonly used excitation signals include pseudo random binary sequence, chirp, unit 

step. The estimated model is usually more accurate in frequency ranges where the input 

signal has high energy. 

 

1.3 Massive MIMO 

 

Massive multiple-input multiple-output (MIMO) also known as ARGOS, Very Large 

MIMO, Large-Scale Antenna Systems, Full-Dimension MIMO or Hyper MIMO is an 

emerging technology that uses antenna arrays which have hundreds of antennas at the 

base station to service tens of terminals in the same time-frequency resource [16], [17], 
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[18], [19]. The term massive in this context means that the number of base station 

antennas is one hundred or more. Figure 1.1 shows possible antenna configurations for 

a massive MIMO base station [16].  

 

Figure 1. 1: Possible antenna configurations for a massive MIMO base station 

 

The cylindrical antenna configuration is compact and relatively small in size 

compared to the linear antenna array which is large in size [20]. Based on a design point 

of view, it is more desirable to have a compact array with a large number of antennas at 

the base station end; but making the arrays smaller in size results in high antenna 

correlation which then affects the performance of the wireless system. 

 

With an increase in the  number of base station antennas arrays, the channel 

vectors between the terminals and the base station become very large-size random 

vectors and are under favourable propagation conditions, meaning that they become 

pairwise orthogonal  [21], [22]. As a result, with linear processing such as maximum-

ratio combining (MRC) or zero forcing (ZF), assuming perfect channel state 

information (CSI) at the base station, the interference from other users can be cancelled 

without consuming more time-frequency resources. The limiting factor on the number 

of terminals that can be serviced in massive MIMO is on the inability to obtain channel 

state information for an unlimited number of terminals [17].  
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Massive MIMO is a technology that is being proposed for fifth generation (5G) 

wireless communications, and is said to achieve the benefits of multiuser MIMO such 

as increased capacity, increased data rate, enhanced reliability, reduced latency, 

improved energy efficiency, improved spectrum efficiency and reduced interference but 

at a greater extend [23], [24] with simple linear processing such as maximum-ratio 

combining (MRC) or zero-forcing (ZF) on the uplink and maximum-ratio transmission 

(MRT) or ZF on the downlink [25].  

 

Spectrum efficiency in a wireless communication system is limited by the 

information-theoretic capacity, which depends not only on the signal-to-noise ratio 

(SNR) but also on the spatial correlation in the propagation environment, channel 

estimation accuracy, transceiver hardware impairments and signal processing resources. 

Thus massive MIMO offers the remarkable potential of both increasing the spectral 

efficiency and relaxing implementation issues such as lowering the high price of having 

stricter hardware and overhead requirements. [26]. 

 

In massive MIMO the radiated energy can be focused to specific terminals 

within the network thus leading to reduced intra and intercell interference [18] and 

much higher energy efficiency. Another advantage of massive MIMO includes the use 

of cheap, low quality and low power components in its design, as the use of coaxial 

cables will be eliminated in its design [19]. If expensive components were used then the 

massive MIMO deployment cost would scale up with the number of radio frequency 

(RF) front ends and components [27].  According to [17], with massive MIMO the 

effects of small scale Rayleigh fading and thermal noise can be averaged out so that the 

system performance is mainly affected by interference from neighbouring cells. They 

found out that this effect is more pronounced in the uplink as compared to the 

downlink. They also stated that massive MIMO increased the resolution of the antenna 

arrays, resulting in high precision when it comes to resolving individual scattering 

centres. As the number of antennas gets sufficiently large, interference between co-

scheduled users and the impact of fast fading vanishes [28]. 
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Massive MIMO relies on spatial multiplexing and this is highly dependent on 

the base stations having good channel state information, in both the downlink and the 

uplink [16]. Acquiring the channel state information on the uplink depends on the 

terminals sending pilots to the base stations from which the base stations then estimates 

the channel state information. But the downlink channel estimation is the one which is a 

bit complicated, thus massive MIMO system relies on reciprocity for the channel state 

information [29]. 

 

There are several challenges associated with massive MIMO. These may 

include, channel estimation, pilot contamination and radio frequency (RF) impairments 

[28] and they are discussed in the following sections. 

 

1.3.1 Channel Estimation 

 

Massive MIMO basically operates in the time division duplexing (TDD) mode although 

the frequency division duplexing (FDD) mode may be possible in certain cases [16], 

and relies on reciprocity for channel state information where the downlink channel can 

be acquired by simple processing of the estimated uplink channel and vice-versa. With 

reciprocity the base station can make use of the channel state information estimated 

from the uplink training and in turn the user terminals can also make use of the channel 

state information estimated from the downlink training. 

 

Time division duplexing uses a single frequency band for both transmitting and 

receiving data. This single frequency band is shared by assigning alternative time slots 

for transmission and reception, Figure 1.2. 
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Figure 1. 2: Time division duplexing 

 

Frequency division duplexing uses two different frequency bands, one for 

transmitting and the other one for receiving the data, Figure 1.3. Signal transmission 

and reception can occur simultaneously.  

 

 

Figure 1. 3: Frequency division duplexing 

 

In the FDD mode, the user equipment (UE) provides the network with quantised 

channel state information through a feedback channel. 

 

Exact channel state information (CSI) is very important in massive MIMO 

systems as it has great impact on the accuracy of signal detection.  According to [30], 

channel reciprocity ideally follows this pattern: 

 

i) The transmitting station sends pilot symbols to the receiving station. 

ii) The receiving station then uses these pilot symbols to estimate the 

corresponding channel. 
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iii) After estimation the receiving station then transmits the estimated channel 

information back to the transmitting station. 

 

To be able to use reciprocity and to calculate pre-coding coefficients in massive 

MIMO, it is important to know or estimate the differences in the (frequency) responses 

between the downlink and uplink parts of the hardware chains. This is process of 

estimation is called reciprocity calibration [29]. Reference [29] showed that in massive 

MIMO, reciprocity calibration could be done on the base station side by sounding the 

base station antennas one by one while receiving with the other base station antennas. 

They showed that when having an m  antenna base station, ( )1m m −  signals are 

generated that could be used for calibration purposes. 

 

1.3.2 Pilot Contamination 

 

Another challenge associated with massive MIMO is pilot contamination. Pilot 

contamination results when one pilot symbol from one cell is reused in another 

neighbouring cell resulting in interference between the cells [31]. The reuse of pilot 

symbols between cells is a result of the limited number of orthogonal pilot symbols that 

can be used with increase in the number of base station antennas. During the uplink 

transmission we let users in neighbouring cells be assigned identical pilot symbols as 

shown in Figure 1.4 (a), [32], where , ,i k lh  is the channel between user terminal k which 

is located in cell l  and the neighbouring base station in cell i . The neighbouring base 

stations will then receive these pilot symbols and during the downlink transmission 

these base stations will transmit signals not only to their own users but also to the 

neighbouring users having the same identical pilot symbols as the intended users, as 

shown in Figure 1.4 (b), [32] thus causing interference. Furthermore, due to the limited 

bandwidth, it is not possible to allocate unique pilot symbols for the users in all the 

cells. This restriction on the availability of orthogonal resources forces the reuse of pilot 

symbols for users in different cells [33].  
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Figure 1. 4: Pilot contamination concept, (a) Uplink transmission (b) Downlink 

transmission 

 

When the CSI is estimated from the uplink pilot symbols the uplink transmit 

power per user can only be reduced inversely proportionally to the square-root of the 

number of base station antennas [22]. This is because when the transmit power of each 

user is reduced, channel estimation errors become pronounced. As a result, with CSI 

estimated from pilot symbols, the benefits of using very large antenna arrays are 

somehow reduced. 

 

According to [33], the effect of pilot contamination on system performance is 

more detrimental compared to the effect of additive white noise of similar variance. 

This is because the noise affecting the signal during data transmission is independent of 

the noise corrupting the channel estimate. On the other hand, the pilot contamination is 

correlated during the training and data transmission phase, since the channel does not 

change significantly during this time interval. As the number of antennas at the base 

station increases to an unprecedented number, the effects of additive noise and Rayleigh 

fading disappear and what remains is the inter-cell interference resulting from pilot 

contamination [34]. 
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Several methods have been suggested in [16] to help deal with the drawback 

associated with pilot contamination. These include i) the use of a less aggressive 

frequency reuse factor, i.e. 3 or 7 for the pilot symbols so as to reduce interference 

between neighbouring cells, ii) the use of smart channel estimation techniques or blind 

techniques that would avoid the need for pilot symbols, and iii) the development of new 

precoding schemes such as pilot symbol contamination precoding that would only rely 

on slow fading coefficients.  

 

Conventional channel estimation schemes cannot effectively mitigate the problem of 

pilot contamination, and even then, the computational complexity becomes larger due 

to the large number of antenna arrays employed in massive MIMO systems [21]. The 

authors in [21] proposed an improved multicell minimum mean square error (MMSE) 

joint channel estimation scheme for massive MIMO systems. Their scheme aims to 

mitigate pilot contamination using low computational complexity and in a more 

realistic situation. Their proposed algorithm was shown to save 61.2% computational 

cost with respect to that of the full-cell MMSE scheme. In their proposed scheme, they 

firstly identify highly interfering users in neighbouring cells based on the estimation of 

the large-scale fading and then included in the joint channel processing. 

 

In [35] they proposed an algorithm to avoid pilot contamination in cellular 

systems with power controlled handoff. The dominant complexity of their algorithm is 

a singular value decomposition of the received signal block.  They analysed their 

algorithm by means of random matrix theory. The work in [36] proposed a pilot 

contamination mitigation technique based on a low-complexity pilot power control and 

a pilot contamination avoidance (within a group of cells) scheme based on pilot reuse. 

The authors in [37] addressed the problem of pilot contamination in massive MIMO 

systems and investigated the effect of cell size reduction on the effect of pilot 

contamination. They showed that cell size reduction was capable of removing the effect 

of pilot contamination and improving the performance of massive MIMO systems. 
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1.3.3 Radio Frequency Impairments 

 

Due to the large number of antenna arrays, massive MIMO is expected to use low cost 

radio frequency (RF) components which are susceptible to hardware impairments such 

as in-phase and quadrature (IQ) imbalance, phase noise, amplifier nonlinearity and 

quantization errors [26]. These impairments can create a mismatch between the 

intended data signal and what is actually generated and emitted, and they distort the 

received signal at the receiver end. This causes great system performance degradation 

as these impairments can affect the downlink and uplink capacity of user equipment 

[38] and can also affect the accuracy of the channel estimation [39]. Radio frequency 

impairments can also severely affect the performance of linear detectors [40]. 

Compensation and calibration schemes which can be implemented by analog and digital 

signal processing are usually used to combat the effects of these impairments. The 

compensation techniques do not completely remove these impairments because the 

time-varying hardware characteristics cannot be accurately or fully estimated and 

because of the randomness introduced by the different types of noise in the system and 

as a result we have residual RF impairments [26]. Residual RF impairments also arise 

from the use of inaccurate models to characterise the behaviour of RF impairments and 

from imperfect parameters estimation errors due to thermal noise [41]. 

 

In [26] they studied a massive MIMO system in the presence of RF impairments 

at both the base stations and the single antenna users. They showed that hardware 

impairments limit the accuracy of channel estimation and the uplink/downlink capacity 

of each user equipment (UE). The capacity was mainly limited by the hardware at the 

UE, while the impact of impairments in the large-scale arrays vanishes asymptotically 

and inter-user interference (in particular, pilot contamination) becomes negligible. 

 

1.3.1.1 IQ Imbalance 

 

Owing to its flexibility as it is able to operate with several different air interfaces, 

frequency bands and waveforms [42] and low complexity, direct conversion or 

homodyne or zero intermediate frequency (IF) transceivers are preferred over super 

heterodyne transceivers. In a direct-conversion transceiver much of the signal 
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processing is done digitally, implying minimal errors. But once the signal has been 

converted to the analog domain by the digital-to-analog converter then it is more prone 

to analog impairments such as IQ imbalance.  

 

In direct up-conversion, the message signal in the in-phase (I)-path is up-

converted by the local oscillator. While the quadrature-phase (Q)-path signal is up-

converted with the 90  phase-shifted version of the local oscillator signal. The local 

oscillator is the carrier frequency of the radio frequency (RF) signal. The translated I 

and Q components are then summed up (or subtracted) to produce the final RF signal as 

shown in Figure 1.5. 

 

 

Figure 1. 5: Direct up-conversion 

 

In a direct-conversion transmitter, the real and imaginary parts of the message 

signal are first passed through a digital-to-analogue-convertor (DAC) after which the 

signal is then passed through a low pass filter (LPF) and then up-converted using the 

local oscillator. After up-conversion, the resulting RF signal is amplified by the power 

amplifier (PA) before being transmitted through the communication channel. Figure 1.6 

shows the block diagram of a direct up-conversion transmitter. 

 

 

Figure 1. 6: Block diagram of a direct up-conversion transmitter 
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In the direct down-conversion receiver, the real and imaginary parts of the 

received RF signal are mixed with the local oscillator signal whose frequency is 

identical to the carrier frequency and its 90◦ phase-shifted version, respectively, to 

produce the baseband signal as shown in Figure 1.7. 

 

 

Figure 1. 7: Direct down-conversion 

 

At the receiver end, the received RF signal is passed through a bandpass filter 

(BPF) and then a low-noise power amplifier (LNA). It is then down-converted using the 

local oscillator. The real and imaginary parts of the signal are then passed through a low 

pass filter (LPF), an amplifier (A), an analog-to-digital (ADC) converter and then 

combined to form the baseband signal. Figure 1.8 shows the block diagram of a direct 

down-conversion receiver. 

 

 

Figure 1. 8: Block diagram of a direct down-conversion receiver 

 

In the direct-conversion transceivers, both the sine (in-phase local oscillator) 

and cosine (quadrature-phase local oscillator) waveforms are used to perform the 

conversion. These waveforms multiply the message or received signal so as to perform 
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the up or down-conversion. The sine and cosine waveforms performing the up or down-

conversion need to be orthogonal, i.e., should have exactly 90◦ phase shift between 

them. On top of that they should also have the same amplitude, otherwise any 

mismatches on the I and Q branches after up or down-conversion will contribute to the 

overall IQ imbalance in the system. 

 

The direct conversion architecture provides image attenuation, thus eliminating 

the need for image rejection filters [43] since the signal processing provides for image 

rejection in the in-phase and quadrature arms. This architecture does not have an 

intermediate frequency stage as is the case in the super heterodyne architecture thus 

reducing power consumption and implementation costs [44]. But direct-conversion 

transceivers suffer from DC offset and flicker noise or pink noise (1/f-noise). Due to 

manufacturing imperfections, direct-conversion transceivers also suffer from phase and 

amplitude mismatch in the in-phase and quadrature branches of the IQ arms commonly 

known as IQ imbalance [45].  As a result, it is important to study the effects of IQ 

imbalance on system performance and come up with techniques to mitigate them.  

 

Causes of IQ Imbalance 

 

IQ imbalance can be defined as the mismatch in amplitude and phase of the in-phase 

and quadrature-phase branches of the signal, i.e. this is a mismatch between the real and 

imaginary parts of the complex signal. IQ mismatch occurs because of the error in the 

nominally 90phase shifter and the mismatch between the amplitudes of the LO in-

phase and quadrature-phase outputs [46]. This mismatch is as a result of  limited 

accuracy of analogue hardware such as finite tolerance of capacitors and transistors and 

temperature variations [27]. IQ imbalance can also be defined as the mismatch between 

I and Q balances in the IQ modulation /demodulation of the complex valued signals at 

the transceivers. IQ imbalance can be introduced at both the transmitter end (during 

frequency up-conversion) and the receiver end (during frequency down-conversion), 

leading to severe system performance losses thus affecting the user experience.  
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Effects of IQ Imbalance in Massive MIMO Systems 

 

IQ imbalance causes self-interference between the wanted message signal and its 

image, i.e. the image signal is the conjugate of the wanted message signal. The image 

problem is as a result of multiplication by a sinusoid and not a complex exponential. If 

we could synthesize a complex exponential, we would not have the image problem. 

Typical communication waveforms are circular but in the presence of IQ imbalance 

these waveforms become non-circular [47]. This is because the wanted message signal 

is added up together with its image signal, thus causing self-interference. Figure 1.9 

shows a communication system affected by IQ imbalance. 

 

 

Figure 1. 9: The influence of IQ imbalance on the message (wanted) signal 

 

Figure 1.9 (A) shows the baseband signal after it has been up-converted to the 

RF signal in the presence of local oscillator imbalances, i.e. IQ imbalance. Both the 
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message (wanted) signal and the image (unwanted) signal are present. Figure 1.9 (B) 

shows RF signal after it has been down-converted to the baseband signal. Due to IQ 

imbalance, the unwanted image signal is not fully rejected, and it mixes with the wanted 

message signal thus causing interference to it. Figure 1.9 (C) shows the baseband signal 

after IQ imbalance compensation. Here the IQ imbalance increases the image-rejection 

ratio of the receiver, as a result the unwanted image signal causes less interference to 

the wanted message signal. 

 

Transmitter IQ imbalances can sometimes cause severe inter-user interference 

(IUI) at the receiver end [48]. IQ imbalance becomes more detrimental and more 

difficult to eliminate as the carrier frequencies increase [46]. An increase in carrier 

frequencies is expected to be the trend in future communications systems so as to utilize 

more bandwidth. As future communication systems target higher data rates, higher 

constellation sizes are needed, and higher operating signal-to-noise ratio are to be 

achieved to support such high-density constellations. Higher SNR requirements then 

translate to stricter IQ matching, since small errors of IQ can make the transitions of the 

RF signal too difficult to distinguish. This can then have a negative effect on the ability 

of a receiver to successfully demodulate the received signal [49]. On the other hand, 

adaptive techniques can be developed in the digital domain to track and minimise 

imbalances. 

 

Since the performance of the baseband digital design is related to the RF analog 

processing, it is important to consider IQ imbalance in the design and performance 

evaluation of wireless communication systems [50]. In [46] they stated that different 

circuit topologies have been used in analog circuit designs that are more robust to 

component mismatches. But such techniques increase the device sizes, cost and raise 

the power consumption in the analog domain [48]. Even then, they do not completely 

remove the IQ mismatches. Initially, compensation techniques were proposed in the 

analog domain to calibrate the IQ branches, but these were shown to suffer from 

different offsets, errors in the measurement feedback loop, and a long calibration and 

they do not meet the target performance requirements. An alternative approach is to 

estimate and compensate for such distortions in the digital domain by digital signal 
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processing. Besides the mitigation of multi-user interference, IQ imbalance 

compensation also provides for the reliable detection of signals [40]. 

 

Modelling IQ Imbalance 

 

The received signal at the base station can be expressed as: 

 

y u n= +H       (1.1) 

 

where H  is the channel matrix, u  is the transmitted signal and , ( )00,n CN N  is the 

additive white Gaussian noise vector at the base station 

 

A signal with IQ imbalance can be modelled as [50]: 

 

1 2IQr K r K r= +      (1.2) 

 

where r  is the baseband equivalent signal in the absence of IQ imbalance and the 

operation  ( )


  denotes the complex conjugate or image signal. The IQ imbalance 

coefficients, 1K  and 2K  can be expressed as ( )1 1 / 2jK ge −= +  and ( )2 1 / 2jK ge = − , 

where g  and   denote the amplitude mismatch and the phase mismatch at the receiver, 

respectively. The coefficients can also be expressed as ( ) ( )1 cos / 2 j sin / 2K g = +  

and ( ) ( )2 cos / 2 jsin / 2K g  = − . The relationship between the coefficients 1K  and 

2K  can be expressed as 2 11K K = −
 
[51]. The phase imbalance is any phase deviation 

from the ideal 90  between the I and Q branches. Amplitude imbalance can be 

expressed as [46]: 

 

I Q

I Q

a a
g

a a

−
=

+
      (1.3) 
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where Ia  and Qa  are the amplitude gains on the I and Q branches respectively. In 

decibels (dB), the amplitude imbalance can be expressed as ( )10log 1 g+ . 

 

Under ideal conditions, the imbalance parameters are 1g =  and 0 = , thus 

1 1K =  and 2 0K = . Generally, the degree of IQ imbalance is evaluated using the image 

rejection ratio (IRR) and this can be expressed as [50]: 

 

2

1

2

2

K
IRR

K
=      (1.4) 

 

In an ideal case, where there is no IQ imbalance, IRR is equal to infinity.  An 

alternative measure used to quantify the undesirable leakage of the image signal relative 

to the gain of the desired signal can be defined as image leakage ratio (ILR) [50]: 

 

2

2

2

1

K
ILR

K
=      (1.5) 

 

Ideally, the ILR is equal to zero. The difference between the two is that IRR denotes a 

quality measure, whilst ILR denotes an error measure.  

 

Assuming IQ imbalance is only present at the transmitter end. The signal to be 

transmitted in the presence of IQ imbalance can be expressed as: 

 

*

1 2T T TIQu K u K u= +     (1.6) 

 

where u  is the transmitted message signal in the absence of IQ imbalance, and 1T
K  and 

2T
K  are the transmitter IQ imbalance coefficients.  

 

Next it is assumed that IQ imbalance is only present at the receiver end. The 

received signal in the presence of IQ imbalance can be expressed as: 
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R R R

*

IQ 1 2y = K y+ K y     (1.7) 

 

where y  is the received signal in the absence of IQ imbalance, and 1R
K  and 2R

K  are the 

receiver IQ imbalance coefficients. Substituting (1.1) into (1.6) results in: 

 

( ) ( )1 2R R RIQy K u +n K u +n


= +H H     (1.8) 

 

* * *

1 2 1 2R R R R RIQy K u K u K n K n= + + +H H     (1.9) 

 

According to [50] the received SNR in the presence of IQ imbalance at the receiver end 

can be expressed as: 

 

( )

2

2
1

IQI

SNR
SNR

SNR ILR ILR


=

  + +

H

H
   (1.10) 

 

where SNR  is the ideal signal-to-noise ratio or signal-to-noise ratio in the absence of 

IQ imbalance. 

 

Since the transmitted and received signals, (1.5) and (1.9) respectively are affected by 

IQ imbalance it is then important to find techniques to reduce the effect of IQ 

imbalance on these signals. IQ imbalance compensation is one technique that has been 

identified to help mitigate the problems associated with IQ imbalance. With reference 

[50] the SNR after IQ imbalance compensation can be written as: 

 

2
2

_

1

1
IQI compensation

ILR
SNR SNR

ILR

− 
=   

+ 
H    (1.11) 

 

where SNR  is the ideal signal-to-noise ratio or signal-to-noise ratio in the absence of 

IQ imbalance. 
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We then studied the performance of a massive MIMO system in the presence of IQ 

imbalance with and without compensation in terms of the symbol error rate (SER). The 

SER is one of the performance parameters used in communication systems and it refers 

to the ratio of the number of symbols incorrectly received to the total number of 

symbols transmitted during a specified time interval. Ideally, this ratio should be zero, 

but we know that real life systems do suffer from inefficiencies and as a result this 

value cannot be zero. But for good performing systems this value should be as close as 

possible to zero. We ran our simulations in MATLAB where we considered a massive 

MIMO system equipped with one hundred transmitting antennas at the base station and 

one receiving antenna at the user terminal. For our simulations we considered BPSK, 

QPSK and 256-QAM modulated signals and a quasi-static Rayleigh fading channel. We 

selected an amplitude mismatch of 3g dB=  and a phase mismatch of 15 =  . These 

were arbitrary values chosen with reference to [52]. 

 

Figures 1.10 to 1.12 depict the SER curves for an ideal received signal, i.e. received 

signal not affected by IQ imbalance, received signal in the presence of IQ imbalance 

but without IQ imbalance compesation and received signal after IQ imbalance 

compensation for different modulation schemes. 

 

 

Figure 1. 10: SER vs. SNR for ideal received signal, received signal with IQ imbalance 

and received signal with IQ imbalance compensation for BPSK signal 
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Figure 1. 11: SER vs. SNR for ideal received signal, received signal with IQ imbalance 

and received signal with IQ imbalance compensation for QPSK modulated signal 

 

 

Figure 1. 12: SER vs. SNR for ideal received signal, received signal with IQ imbalance 

and received signal with IQ imbalance compensation for 256 QAM modulated signal 

 

We can observe from Figures 1.10 to 1.12 that after IQ imbalance compensation the 

performance of the massive MIMO system improved, i.e. the IQ imbalance 

compensated case showed better results than the IQ imbalance case without any 

compensation especially with increase in SNR. This is because IQ imbalance degrades 
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system performance leading to poor system performance and this drawback can be 

rectified by using IQ imbalance compensation techniques. 

 

In addressing the issue of IQ imbalance in the massive MIMO system we assumed that 

the channel state information is known, but in reality, the channel state information is 

not available meaning that it needs to be estimated. To estimate the channel of the 

massive MIMO system we propose the use of system identification tools as presented in 

the following chapters. 

 

To exhaust our discussion on RF impairments we then give a brief overview on phase 

noise and amplifier nonlinearity 

 

1.3.3.2 Phase Noise 

 

According to [53], phase noise is introduced at the transmitter during up conversion of 

the baseband signal, i.e. when the baseband signal is multiplied with the carrier 

generated by the local oscillator. The phase of the generated carrier varies randomly, 

resulting in a phase distortion of the transmitted signal. Phase noise also occurs at the 

receiver end during the down-conversion of the bandpass signal, i.e. when the bandpass 

signal is multiplied with the carrier generated by the local oscillator to obtain the 

baseband signal. It can also cause some inconsistencies between the estimated channel 

gain and the actual channel gain during data transmission, known as channel-aging 

phenomenon which can lead to poor system performance [54].  

 

Phase noise is a result of the random mismatch between the phases of the local 

oscillator (LO) and the input carrier signal and has two effects on the received signal 

[55]. The first effect is known as the common phase error (CPE), which is the same 

random phase rotation in all sub-carriers regardless of their index [56]. The second 

effect is the inter-carrier interference (ICI) caused by the loss of orthogonality among 

adjacent sub-carriers [57]. Up and down conversion local oscillators are ideally 

harmonic functions which can be expressed as [57]:  

 

2
( ) cj f t

x t e


=       (1.12) 
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where cf  is the carrier frequency. In the presence of phase noise, the local oscillator 

output can be written as [58]: 

 

2 ( )
( ) cj f t t

PNx t e
 +

=      (1.13) 

 

where ( )t is the random phase fluctuations of the local oscillator. 

 

For higher order modulation schemes, phase noise also prevents carrier recovery 

and causes the constellation plot to spin [49]. 

 

1.3.3.3 Amplifier Nonlinearity 

 

According to [59], due to the large number of subcarriers and multiplexed streams, 

massive MIMO OFDM causes a high peak-to-average-power ratio (PAPR) thus 

amplifier nonlinearity which further degrades the system performance. They went on to 

suggest that massive MIMO single carrier frequency division multiple access (SC-

FDMA) may reduce the PAPR by sacrificing the beamforming gain with subband-

precoding matrices. They then compared the performance of massive MIMO OFDM 

and massive MIMO SC-FDMA systems in the presence of power amplifier nonlinear 

distortion. Simulation results showed that the throughput for massive MIMO OFDM 

was higher than that for massive MIMO SC-FDMA owing to inappropriate subband-

precoding and the equivalent PAPR of SC-FDMA. Thus the effect of amplifier 

nonlinearities in a transmitter can be reduced by having a low peak-to-average power 

ratio (PAPR) [26]. 

 

Having given a brief overview on system identification and massive MIMO 

together with its challenges, the only challenge we will consider in this thesis is channel 

estimation or system identification. 
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1.4 Research Contributions 

 

The significant research contributions are highlighted as follows. 

 

1. Considering IQ imbalance compensation as a technique to address the issue of IQ 

imbalance which degrades the performance of massive MIMO systems. 

 

2. Formulating a continuous-time multiple-input multiple-output output-error state 

space (MOESP) integer-order algorithm to identify linear-time invariant (LTI) 

continuous-time massive multiple-input multiple-output (MIMO) frequency-

selective wireless channels. Evaluating the performance of the proposed integer-

order identification algorithm. 

 

3. Formulating a continuous-time multiple-input multiple-output output-error state 

space (MOESP) fractional-order algorithm to identify linear-time invariant (LTI) 

continuous-time massive multiple-input multiple-output (MIMO) frequency-

selective wireless channels. Evaluating the performance of the proposed fractional-

order identification algorithm and compare it with that of the integer-order 

identification algorithm. 

 

4. Developing a massive MIMO channel equalization algorithm using the identified 

integer-order channel models. Evaluating the performance of the integer-order 

equalization algorithm. 

 

5. Developing a massive MIMO channel equalization algorithm using the identified 

fractional-order channel models. Evaluating the performance of the fractional-order 

equalization algorithm and compared it with that of the integer-order channel 

models. 
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1.6 Thesis Outline 

 

This thesis is organised as follows. 

 

Chapter 2 introduces the idea of state-space modelling and the massive MIMO 

system model. It then discusses on linear-time invariant (LTI), continuous-time massive 

MIMO system identification using the integer-order state-space modelling approach. A 

brief overview is given on different subspace identification algorithms with much 

emphasis on the multiple-input multiple-output output-error state space (MOESP) 

algorithm. The Poisson moment functional (PMF) filtering approach is then applied to 

the MOESP subspace algorithm to develop the identification model for the continuous-

time massive MIMO system. The PMF approach pre-filters the input-output data to 

help overcome the problem associated with the time-derivatives of the data in 

continuous-time system identification. The performance of the proposed integer-order 

algorithm is then evaluated using MATLAB through analytical modelling. 

 

Chapter 3 discusses on linear-time invariant (LTI) continuous-time massive 

MIMO system identification using fractional-order models. The application of 

fractional-order system identification in wireless communications is a novelty and is 

one of the main contributions of this thesis. The chapter looks at the basics of 

http://dblp.uni-trier.de/pers/hd/q/Qi:Jian
http://dblp.uni-trier.de/db/conf/pimrc/pimrc2015.html#LupupaQ15
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fractional-order calculus and commonly used definitions to solve fractional-order 

differentiations and integral. The fractional-order MOESP algorithm is used to identify 

the dynamics of the massive MIMO system The Poisson moment functional (PMF) 

approach is used to pre-filter the input-output data before developing the fractional-

order continuous-time identification models. The PMF approach helps overcome the 

problem associated with fractional-order time-derivatives of the data in continuous-time 

system identification Given the nature of fractional-order systems, their presentation 

and implementation in the practical sense is not easy and this chapter also discusses on 

different approximation methods that can be used to represent fractional-order systems 

given their complicated nature. The performances of the proposed fractional-order 

algorithm and the different approximation methods are then evaluated using MATLAB 

through analytical modelling. 

 

Chapter 4 explores the use of integer-order state-space models in linear-time 

invariant (LTI) continuous-time massive multiple-input multiple-output (MIMO) 

frequency-selective wireless channel equalization. The chapter first looks at inter-

symbol interference (ISI) and the different linear and nonlinear equalizers used to 

mitigate the effects on ISI on system performance. It also discusses on the minimum 

mean square error – decision feedback equalizer (MMSE-DFE), a hybrid equalizer 

which is constructed by combining linear and nonlinear equalizers thus benefiting from 

both equalizers. This hybrid equalizer is then implemented for the FIR massive MIMO 

channel model using the blockwise data model. It is then extended to the integer-order 

state-space massive MIMO channel model. The performance of the FIR massive MIMO 

channel model equalizer is then compared with that of the integer-order state-space 

massive MIMO channel model equalizer in MATLAB through analytical modelling. 

 

Chapter 5 investigates the use of fractional-order models in linear-time invariant 

(LTI) continuous-time massive multiple-input multiple-output (MIMO) frequency-

selective wireless channel equalization. Following from the build-up of the fractional-

order system identification model, the fractional-order system equalization model in 

massive MIMO systems is also another novel contribution of this thesis. The minimum 

mean square error – decision feedback equalizer (MMSE-DFE) is implemented using 

the the blockwise data model to address ISI in the fractional-order state-space model. 



30 

 

The performance of this model is then compared with the performances of the FIR 

massive MIMO channel equalizer and integer-order state-space massive MIMO channel 

equalizer models in MATLAB through analytical modelling. 

 

The conclusions and future work are presented in Chapter 6. 
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Chapter 2  

 

Massive MIMO Continuous-Time System 

Identification Using Subspace Algorithm 

 

2.1 Introduction 

 

This chapter discusses on the use of the continuous-time state-space model to represent 

massive multiple-input multiple-output (MIMO) frequency-selective wireless channels 

for better model approximation or better system identification or better channel 

estimation.  

 

The multiple-input multiple-output output-error state space (MOESP) algorithm 

which is a subspace system identification algorithm is used to identify the linear-time 

invariant continuous-time massive MIMO frequency-selective wireless channels. The 

use of state-space models in system identification in communications is motivated by 

the work by Li [60] and the work by Zhang and Bitmead [61]. In [60], Li used the state-

space technique to estimate the fading wireless communication channels and in [61], 

the authors used the MOESP algorithm to identify the MIMO frequency-selective 

wireless channels. In their study all these authors focused on the discrete-time state-

space model and we will extend the study of system identification in wireless 

communication to the continuous-time state-space model. Obtaining an equivalent 

continuous-time model is not always easy and difficulties are experienced whenever the 

sampling time is either too small or too large. Making the sampling time too small may 

create numerical problems because the poles are constrained to lie in a very small area 

of the s-plane. Making it too large may lead to loss of information, thus making the 

identification process unreliable. Some conversion methods use the matrix logarithm 

which may produce complex arithmetic when the matrix has negative eigenvalues. In 

addition, the zeros of the discrete-time system are not easily translatable to continuous-

time equivalents as is the case with the poles [62]. 
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To address these issues, this calls for the direct identification of the continuous-

time state-space model from the sampled input-output data. The main problem with 

direct identification of the continuous-time state-space model is dealing with the non-

measurable input-output data time-derivatives. In [63] the author mentions different 

methods to overcome this shortcoming when dealing with continuous-time state-space 

modelling, namely the use of linear filtering methods, the use of  integral methods and 

the use of modulating function methods. 

 

In this thesis we will use the Poisson moment functional (PMF) approach, a 

filtering method which is equivalent to the state variable filtering method to help 

overcome the problem associated with the input-output data time-derivatives in 

continuous-time system identification. The motivation behind using the PMF approach 

is that the PMF-based filter technique is most effective and has the advantage of having 

fewer design parameters than the more general state variable filter approach. Secondly, 

the PMF approach has appropriate theoretical frequency properties for estimating the 

time-derivatives or the integrals of the input-output signals [62]. 

 

For our work the channel will be assumed to be a quasi-static or slowly-varying 

Rayleigh fading channel and the pilot-symbol based channel estimation method is used. 

In this, training symbols known to both the transmitter and receiver are transmitted and 

received for training purposes. These training symbols provide the input-output data 

stream that is used for system identification. The performance of the state-space model 

is studied for different system orders. 

 

2.2 Massive MIMO System Model 

 

We consider a massive MIMO wireless system as shown in Figure 2.1, with a base 

station equipped with m  transmitting antenna elements, and a terminal station equipped 

with p  receiving antenna elements having length- L  ISI channel paths, where for 

massive MIMO, m p . 
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Figure 2. 1: Block diagram of a massive MIMO system 

 

where 
( )m

u  is transmitting antenna m , ( )p
y  is receiving antenna p , 

( ),m p
h  is the 

channel path between transmit antenna m  and receive antenna p . 

 

In the modelling process, we assume that the channel is quasi-static, i.e. it is 

time-invariant within each frame and changes independently from frame to frame. We 

also assume that the antennas are sufficiently spaced such that there is no interference 

between antennas. Training symbols known to both the transmitter and receiver are 

inserted at the start of each frame to assist with channel estimation. The received signal 

of the linear-time invariant length- L  ISI channel massive MIMO system is expressed 

as: 

 

( ) ( ) ( )
1

0

L

l

l

t t l t
−

=

= − +y H u  n     (2.1) 

 

where ( )ty  is the 1p  received signal vector, ( )t l−u  is the 1m  transmitted symbols 

vector at time ( )t l− , ( ) ( )00, pt CN Nn I  is the 1p  additive white Gaussian noise 

vector at the receiver side at time t , with 0N  being the noise power and pI  is the p p  
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identity matrix and lH  is the p m  
thl  path massive MIMO channel matrix 

coefficients. 

 

The transfer function of the channel matrix, lH  in (2.1) is expressed as: 

 

( )
1

2

0

l

L
j f

l

l

f e
 

−
−

=

=H a      (2.2) 

 

where la  is the p m  set of complex path gains of the multipath fading channel, l  is 

the set of path delays, f  is the sampling frequency of the input signal. 

 

In the next section the state-space model of the massive MIMO system is 

formulated. 

 

2.3 State-Space Model 

 

The state-space model is a mathematical representation or modelling of a physical 

system as a set of input and output data and state variables related by a first-order 

differential equation. 

The dynamics of the massive multiple-input multiple-output linear-time invariant 

(MIMO LTI) system can be modelled using the continuous-time deterministic (i.e. 

ignoring the effects of the process noise and additive noise) state-space model as [64]: 

 

( ) ( ) ( )t t t= +x Ax Bu     (2.3a) 

( ) ( ) ( )t t t= +y Cx Du      (2.3b) 

 

where ( )tx  is the 1n  state vector, ( )tx  is the time derivative of ( )tx , ( )tu  is the 

1m  input vector, ( )ty  is the 1p  output vector, A  is the n n  system matrix and it 

describes the dynamics of the system, i.e. the eigenvalues of the system, B  is the n m  

input matrix and it describes the linear transformation by which the inputs influence the 

next state, C  is the p n  output matrix, and it describes how the state is transferred to 
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the output, D  is the p m  feed-forward matrix, and in continuous-time systems it is 

usually 0, ( )tx  is the derivative of ( )tx . An integer-order state-space system is stable 

if the eigenvalues are negative or have negative real parts if they are complex 

conjugate, i.e. they are located on the left half of the complex plane as shown in Figure 

2.2. 

 

 

Figure 2. 2: Stability region for integer-order systems 

 

Taking the Laplace transform, (2.3) becomes: 

 

( ) ( ) ( )s s s s= +X AX BU     (2.4a) 

( ) ( ) ( )s s s= +Y CX U     (2.4b) 

 

where ( ) ( )
0

sts t e dt



−= X x , ( ) ( )
0

sts t e dt



−= Y y  and ( ) ( )
0

sts t e dt



−= U u . 

 

Rearranging (2.4) and after some manipulations the transfer function of the state-space 

model is expressed as: 

 

( )
( )

( )
( )

1

n

s
s s

s

−
= = − +

Y
G C I A B D

U
   (2.5) 
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where nI  is an n n  identity matrix. 

 

The block diagram of the state-space model is as shown in Figure 2.3. 

 

 

Figure 2. 3: Block diagram of a state-space model 

 

State-space models have given rise to subspace system identification (SSI) 

algorithms, namely multiple-input multiple-output output-error state space (MOESP), 

numerical algorithm for subspace state-space system identification (N4SID) and 

canonical variate analysis (CVA), and these will be discussed in the following section. 

 

2.4 Subspace Identification Methods 

 

Subspace system algorithms are algorithms that can estimate a linear time-invariant 

state-space model, directly from the input-output data [65]. The advantage of SSI 

algorithms is that they can identify a system in a straightforward way using numerically 

robust computation tools such as linear quadratic (LQ) decomposition (representation of 

a matrix in a simpler form via orthogonal transformations) and singular value 

decomposition (SVD). SVD helps in decomposing a large matrix into a smaller matrix 

which still contains vital information of the large matrix thus allowing for simpler 

matrix calculations. SVD gives critical information about the matrix such as the 

eigenvalues from which the system order can be determined and the stability of the 

system can be determined. Another advantage of SSI algorithms is their computational 

efficiency. With SSI algorithms there is no need for an explicit model parameterisation, 

which for multi dimensional linear systems can be complex. Furthmore, SSI algorithms 
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can provide a direct way to control the complexity of the estimated channel model since 

the order of the channel model can be selected by the user by choosing the number of 

the largest singular values of the estimated extended observability matrix to include [2]. 

 

In subspace system identification the input and output data matrices are 

arranged in input and output Hankel matrices as: 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0 1 1

1 2

1 2

1 1

1 2

2 1 2 2 2

p

f

N

N

i i i N

i i i N

i i i N

i i i N

− 
 
 
 
 

  − + − =   + + −    
+ + + 

 
 

− + −  

u u u

u u u

U u u u

u u uU

u u u

u u u

   (2.6) 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0 1 1

1 2

1 2

1 1

1 2

2 1 2 2 2

p

f

N

N

i i i N

i i i N

i i i N

i i i N

− 
 
 
 
 

  − + − =   + + −    
+ + + 

 
 

− + −  

y y y

y y y

Y y y y

y y yY

y y y

y y y

   (2.7) 

 

respectively, where N  is the number of data points, i  is a user defined index which is 

larger than the system order but less than the number of data points, i.e. n i N  , 

( )tu  and ( )ty  are known input and output data samples at time instant t . pU  and pY  

are the past input and past output Hankel matrices respectively and 
fU  and fY  are the 

future input and future output Hankel matrices respectively. A Hankel matrix is a 

matrix with constant ascending skew-diagonal entries from left to right as show in 

Figure 2.4: 
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Figure 2. 4: Illustrating skew-diagonal entries 

 

The input and output data matrices are divided into two halves, which represent 

the past input, pU  and output, pY   and the future input, 
fU  and output, fY  Hankel 

matrices with respect to a reference point t i= . It is important to stress that this division 

is artificially imposed on the data set, because all data involved in the identification 

process have already been acquired. The purpose of writing the matrix in this manner is 

to write the relations between the input, output and state sequences in a matrix form, 

which allows the identification problem to be placed in a projection geometry 

framework. 

 

2.4.1 The Algebraic Geometric Framework 

 

In this subsection we present definitions for the orthogonal and the oblique projections, 

and in our analysis we considered the following general matrices, p jA  , q jB   

and r jC  . 

 

2.4.1.1 Orthogonal Projection 

 

The orthogonal projection of the row space A  onto the row space of B  is defined as 

[65]: 

 

( )
†

/ T T

BA B AB BB B A= =       (2.8) 
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where ( )
†

  is Moore-Penrose pseudo-inverse, B  defines the operator of orthogonal 

projection which projects the row space of a matrix onto the row space of the matrix B, 

where ( )
†

T T

B AB BB B = . 

 

The row space of matrix p jA  , denoted as ( )row A is the set of all linear 

combinations of the row vectors of A . The column space of matrix p jA  , denoted 

as ( )col A is the set of all linear combinations of the column vectors of A . The 

projection of the row space A  on the orthogonal space to the row space of B  is defined 

as [65]: 

 

( ) ( )( )
†

/ T T

B B
A B A I A I B BB B A ⊥

⊥ = − = − =     (2.9) 

 

where B⊥  denotes a base of the orthogonal space to the row space of B, 
B⊥  defines 

the geometric operator that projects the row space of a matrix onto the orthogonal 

complement to the row space of the matrix B. 

 

The projections /A B  and /A B⊥  decompose the matrix A  into two matrices, 

whose row spaces are mutually orthogonal and this is as shown in Figure 2.5: 

 

/ /A A B A B⊥= +      (2.10) 

 

 

Figure 2. 5: Orthogonal projection 
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A numerically efficient and robust computation of the orthogonal projection can 

be done by LQ decomposition as follows [66]: 

 

11 1

21 22 2

0L QB
LQ

L L QA

    
= =     

     
    (2.11) 

 

The LQ decomposition of a matrix A  is the same as the QR decomposition of its 

transpose TA , i.e. ( ) ( )
T TT TA A QR LQ= = = . 

 

Using (2.11), the orthogonal projections can then be written as: 

 

21 1/A B L Q=      (2.12) 

 

22 2/A B L Q⊥ =     (2.13) 

 

For noise free data, the subspace identification reduces to the orthogonal 

projection. The orthogonal projection is used to minimise the influence of the 

disturbances from the joint space. 

 

2.4.1.2 Oblique Projection 

 

The oblique projection of the row space A  onto the row space of C  along the row 

space of B  is defined as [65]: 

 

( )
††

/ / /B B B
A C A B C B C A C C⊥ ⊥

⊥ ⊥   = =  +        (2.14) 

 

This result can be derived from an orthogonal projection of the row space A  to the row 

space of 
B

C

 
 
 

. 
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Using LQ decomposition we can write: 

 

11 1

21 22 2

31 32 33 3

0 0

0

B L Q

C L L Q

A L L L Q

     
     

=
     
          

    (2.15) 

 

Using (2.15), the orthogonal projections can be written as: 

 

  11 1

32 22 32 22 21 22

2

/B

Q
A C L L C L L L L

Q

− −  
= =  

 
   (2.16) 

 

The oblique projection decomposes the matrix A  into three matrices and this is as 

shown in Figure 2.6: 

 

/ / /B C

B
A A C A B A

C

 
= + +  

 
   (2.17) 

 

 

Figure 2. 6: Oblique projection 

 

The oblique projection is used to simultaneously minimise the influence of the 

disturbances and to minimise the influence of the deterministic measurable signal (the 

input). The oblique projection is mainly used in the N4SID algorithm to obtain the 

subspace generated only by the state sequence, which is later used to obtain the model 

parameters. 

 

The subspace system identification procedure assumes that: 
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i) The system is observable, in the sense that the time evolution of all modes or 

states of interest is reflected at the measured output/ actual output. A system 

is observable if any state ( )0tx  can be determined from the observation of 

( )ty  and the knowledge of the input ( )tu  within the time limit 0 ft t t  . 

 

ii) The system should also be controllable, in the sense that the input excitation 

affects all modes of interest. In this manner, all the modes or states to be 

included in the identification process are related to the input-output behavior 

of the system and can thus be modeled from experimental input-output data. 

A system is controllable if it is possible to establish a nonrestricted control 

vector which can lead the system from an initial state, ( )0tx  to another final 

state ( )ftx , within the time limit 0 ft t t  . 

 

iii)  The input signal is rich enough to excite all the modes that are to be included in 

the model (persistent excitation). 

 

In the next subsection an overview of the different SSI algorithms is presented. 

In the discussion on the different SSI algorithms the discrete-time deterministic system 

of order n  described by the following state-space equations is considered: 

 

( ) ( ) ( )1t t t+ = +x Ax Bu     (2.18a) 

( ) ( ) ( )t t t= +y Cx Du      (2.18b) 

 

where ( )tx  is the 1n  state vector, ( )1t +x  is the next state vector, ( )tu  is the 1m  

input vector, ( )ty  is the 1p  output vector, A  is the n n  system matrix and it 

describes the dynamics of the system, i.e. the eigenvalues of the system, B  is the n m  

input matrix and it describes the linear transformation by which the inputs influence the 

next state, C  is the p n  output matrix, and it describes how the state is transferred to 

the output, D  is the p m  feed-forward matrix.  
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2.4.2 The Multiple-Input Multiple-Output Output-Error State Space 

Algorithm 

 

The MOESP algorithm relies on the knowledge of the Hankel matrices and is based on 

the orthogonal projection. The MOESP algorithm uses the LQ decomposition to 

decompose matrix 
pW  to another matrix with orthogonal rows as a matrix with a row 

space that is equal to the column space.  

 

where  

 

p

p

p

 
=  
 

U
W

Y      
(2.19) 

 

LQ decomposition represents an orthogonal projection of the row space of pY  
 

to the row space of pU . The singular value decomposition (SVD) is then used to obtain 

the order of the system, and estimate of the observability matrix from which the system 

matrices, i.e. A , B , C  and D  are then calculated. The MOESP algorithm can be 

summarised as follows: 

 

1. First arrange the input-output data into Hankel matrices, pU  and pY  and then use 

these matrices to construct matrix 
pW . 

 

2. Apply LQ decomposition to matrix 
pW  to obtain: 

 

11 1

21 22 2

p

p

     
=     
    

U L 0 Q

Y L L Q
    (2.20) 

 

where 11

im imL  and 
22

ip ipL  are lower triangular, 21

ip imL  and 1

N imQ  

and 2

N ipQ  are orthogonal.  
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3. Compute the SVD of 22L as: 

 

  1 1

22 1 2

2

H

H

  
=   

   

S 0 V
L U U

0 0 V
   (2.21) 

 

where 
1

n nS  is a diagonal matrix containing the singular values different from zero, 

1

ip nU , 1V  are unitary matrices and 
( )

2

ip ip n −
U . The order of the system, n  can 

be estimated from 1S  as the number of singular values different from zero. 

 

4. Estimate the extended observability matrix, i  as: 

 

1
2

1 1
ˆ

i =U S      (2.22) 

 

5. Estimate matrix C  which can be obtained directly from the first p  rows of ˆ
i  as: 

 

( )ˆ ˆ 1: ,:i pC =       (2.23) 

 

6. Estimate matrix A  by using the shift property as: 

 

ˆ
i iA =       (2.24a) 

 

†ˆ
i iA =        (2.24b) 

 

where i  is ˆ
i  with the last p  rows removed and i  is ˆ

i  with the first p  rows 

removed. 

 

The estimate of A can also be expressed as: 

 

( ) ( )ˆˆ ˆ1: ,: 1 : ,:i iend p p end− +A =      (2.25) 
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7. Estimate matrices B  and D . Once the estimates of A  and C are known, the 

estimates of B  and D  are obtained using the following input-output equation: 

 

ˆ
p i p i p= +Y X U 

     
(2.26) 

 

where  

 

( ) ( ) ( )1 1p i i i N= + + −  X x x x   (2.27) 

 

ˆ
i  

is the estimated extended observability matrix written as:
  

 

2 1ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ
T

i i ip n

i

− −  = 
 
C CA CA CA    (2.28) 

 

and 

 

i  is the block Toeplitz matrix, written as:  

 

2 3

ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

ip im

i

i i



− −

 
 
 

=  
 
 
 

0 0

0

D

CB D

CA B CA B D

    (2.29) 

 

The system given by (2.18) is observable if and only if matrix defined by (2.28) 

is full-rank (i.e. all the rows and columns are linearly independent). 

 

Premultiplying (2.26) by ˆ
i

⊥  to eliminate ˆ
i pX  and postmultiplying it by 

( )
1

† H H

p p p p

−

=U U U U  yields: 

 

† † †ˆ ˆ ˆ ˆ
i p p i i p p i i p p

⊥ ⊥ ⊥= +Y U X U U U         (2.30) 
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where ˆ
i

⊥ is a full row rank matrix (i.e. all the rows and columns are linearly 

independent) satisfying ˆ ˆ
i i

⊥ = 0  . The equation then simplifies to: 

 

†ˆ ˆ
i p p i i

⊥ ⊥=Y U        (2.31) 

 

Denoting ˆ
i

⊥
L =   and 

†ˆ
i p p

⊥
M = Y U , (2.31) can be rewritten as: 

 

iM = L      (2.32) 

 

where ( )1 2 iL = L L L  where 
( )ip n p

i

− 
L  and ( )1 2 iM = M M M  

where 
( )ip n m

i

− 
M . Equation (2.32) can be written as: 

 

1 2 1

1

2 3

2

3 4

ˆ

ˆ ˆ

i i

i

i

i

i

i

− 
   
      
   =            
   

 

0
0

0 0
0

0 0 0

L L L L
M

L L L
IM D

L L
B

M
L


  (2.33) 

 

which can be solved using least squares. 

 

Having discussed on the MOESP algorithm, the next SSI algorithm to discuss 

on is the N4SID algorithm. 

 

2.4.3 The Numerical Algorithm for Subspace State-Space System 

Identification 

 

Compared to the MOESP algorithm, the N4SID algorithm is based on the oblique 

projection of subspaces generated by the input and output Hankel matrices of the 

system. The N4SID algorithm projects fY  along 
fU  onto 

pW  i.e. /
ff pU

Y W , where  
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p

p

p

 
=  
 

U
W

Y
     (2.34) 

 

Geometric and other mathematics tools of linear algebra such as the singular 

value decomposition (SVD) can be used to obtain the order of the system, an estimate 

of the observability matrix from which the system matrices, i.e. A , B , C  and D  are 

then calculated. With reference to (2.18) and using Hankel matrices we can write the 

following input-output equations: 

 

i

f p i p= + X A X U     (2.35) 

 

p i p i p= +Y X U      (2.36) 

 

f i f i f= +Y X U      (2.37) 

 

where  

 

( ) ( ) ( )0 1 1p i= −  X x x x    (2.38) 

 

( ) ( ) ( )1 1f i i i N= + + −  X x x x   (2.39) 

 

i  is the extended controllability matrix written as:  

 

1 2i i

i

− −  =  A B A B B    (2.40) 

 

The system given by (2.18) is controllable if and only if the matrix defined by (2.40) is 

full-rank. Before defining the N4SID algorithm the following assumptions are stated: 

 

1. The inputs excitation is persistent of order 2i . 
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2. The user defined weighting matrices 
1

pi piW  and 
2

j jW  are such that 1W  is 

full-rank and 2W  satisfies: 

 

( ) ( )2rank rankp p=W W W     (2.41) 

 

where i  and j  are arbitrary constants such that i j N+  . 

 

The N4SID algorithm can then be summarised as follows: 

 

1. First arrange the input-output data into Hankel matrices, pU  ,
fU , pY  and fY  and 

then use these matrices to construct matrix 
pW  as: 

 

p

p

p

 
=  
 

U
W

Y
     (2.34) 

 

2. Calculate the oblique projection, iO  as: 

 

/
fi f pU

O = Y W     (2.42) 

 

Under the assumption that the input is rich enough to excite all the modes that are to be 

included in the model (persistent excitation), the estimate of the state sequence can be 

obtained from:  

 

i i fO = X      (2.43) 

 

3. Compute the SVD of the weighted oblique projection. Start by multiplying iO  by 

1W
 
 on the left and 2W on the right to improve the estimation of (2.43): 

 

  1 1

1 2 1 2 1 1 1

2

H

H

i H

  
= =  

   

S 0 V
W OW U U U S V

0 0 V
  (2.44) 
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where 1S  is a diagonal matrix containing singular values different from zero and 1U , 

1V  are unitary matrices. The order of the system, n  can be estimated from 1S  as the 

number of singular values different from zero. 

 

4. Estimate the extended observability matrix, i  as: 

 

1
21

1 1 1
ˆ

i

−=W U S T     (2.45) 

 

where n nT  is a non-singular similarity transformation matrix. 

 

5. Estimate the state, fX  using (2.43) as: 

  

†ˆ
f i iX = O      (2.46) 

 

6. Estimate matrix C  which can be obtained directly from the first p  rows of ˆ
i  as: 

 

( )ˆ ˆ 1: ,:i pC =       (2.23) 

 

7. Estimate matrix A  by using the shift property as: 

 

ˆ
i iA =       (2.24a) 

 

†ˆ
i iA =        (2.24b) 

 

where i  is ˆ
i  with the last p  rows removed and i  is ˆ

i  with the first p  rows 

removed. 
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The estimate of A can also be expressed as: 

 

( ) ( )ˆˆ ˆ1: ,: 1 : ,:i iend p p end− +A =     (2.25) 

 

8. Estimate matrices B  and D . Once the estimates of A  and C are known, the 

estimates of B  and D  are obtained using the following input-output equation: 

 

ˆ
f i f i f= +Y X U      (2.26) 

 

Premultiplying (2.26) by ˆ
i

⊥  to eliminate ˆ
i fX  and postmultiplying it by 

( )
1

† H H

f f f f

−

=U U U U  yields: 

 

† † †ˆ ˆ ˆ ˆ
i f f i i f f i i f f

⊥ ⊥ ⊥= +Y U X U U U         (2.30) 

 

where ˆ
i

⊥ is a full row rank matrix (i.e. all the rows and columns are linearly 

independent) satisfying ˆ ˆ
i i

⊥ = 0  . The equation then simplifies to: 

 

†ˆ ˆ
i f f i i

⊥ ⊥=Y U       (2.31) 

 

Denoting ˆ
i

⊥
L =   and 

†ˆ
i f f

⊥
M = Y U , (2.31) can be rewritten as: 

 

iM = L      (2.32) 

 

where ( )1 2 iL = L L L  and ( )1 2 iM = M M M . Equation (2.32) can be 

written as: 
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1 2 1

1

2 3

2

3 4

ˆ

ˆ ˆ

i i

i

i

i

i

i

− 
   
      
   =            
   

 

0
0

0 0
0

0 0 0

L L L L
M

L L L
IM D

L L
B

M
L


  (2.33) 

 

which can be solved using least squares. 

 

The discussion on the SSI algorithms is concluded by just making mention of the CVA 

algorithm. 

 

2.4.4 The Canonical Variate Analysis Algorithm 

 

In the canonical variate analysis (CVA) algorithm, canonical correlation analysis is 

performed on the past Hankel matrix, 
pW  and the future output Hankel matrix, fY , 

where 
T

p p p
 =  W U Y  is a combination of past input, pU  and past output, pY  Hankel 

matrices [66]. Generally speaking CVA is a dimensionality reduction algorithm that 

maximises the correlation between two data sets [67]. The dominant canonical variate 

of these two data sets obtained based on the Markov process and the maximum 

likelihood function gives an estimate of the state variables. The Markov process is a 

random process whose future is independent of the past values given the present values. 

The system matrices, i.e. A , B , C  and D  are then estimated using the least squares 

method [68]. 

 

The key idea of SSI methods is to estimate the extended observability matrix 

through the projection of future input-output data onto past input-output data based on 

the 

relationship between Hankel matrices of the input and output data. 
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2.4.5 Constructing Data Matrices 

 

In constructing the data matrices for the continuous-time deterministic system, (2.3) and 

the MOESP algorithm are considered. By computing the successive derivates of (2.3b) 

the data equations are constructed as follows [69]: 

 

First-order derivative yields: 

 

( ) ( ) ( )d t d t d t

dt dt dt
= +

y x u
C D     (2.47) 

 

Then substituting (2.3a) into (2.47) yields: 

 

( )
( ) ( )( )

( )

( )
( ) ( )

( )

d t d t
t t

dt dt

d t d t
t t

dt dt

= + +

= + +

y u
C Ax Bu D

y u
CAx CBu D

   (2.48) 

 

Second-order derivative yields: 

 

( ) ( ) ( ) ( )2 2

2 2

d t d t d t d t

dt dt dt dt
= + +

y x u u
CA CB D    (2.49) 

 

Then substituting (2.3a) into (2.49) to yields: 

 

( )
( ) ( )( )

( ) ( )

( )
( ) ( )

( ) ( )

2 2

2 2

2 2

2

2 2

d t d t d t
t t

dt dt dt

d t d t d t
t t

dt dt dt

= + + +

= + + +

y u u
CA Ax Bu CB D

y u u
CA x CABu CB D

  (2.50) 

 

Third-order derivative yields: 

 

( ) ( ) ( ) ( ) ( )3 2 3

2

3 2 3

d t d t d t d t d t

dt dt dt dt dt
= + + +

y x u u u
CA CAB CB D    (2.51) 
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Then substituting (2.3a) into (2.51) yields: 

 

( )
( ) ( )( )

( ) ( ) ( )

( )
( ) ( )

( ) ( ) ( )

3 2 3

2

3 2 3

3 2 3

3 2

3 2 3

d t d t d t d t
t t

dt dt dt dt

d t d t d t d t
t t

dt dt dt dt

= + + + +

= + + + +

y u u u
CA Ax Bu CAB CB D

y u u u
CA x CA Bu CAB CB D

 

 (2.52) 

 

and so on till the ( )1i − -order derivative. 

 

Stacking these derivatives into a column vector, the input-output relationship is written 

as: 

 

( )

( ) ( )
( )

( )

( ) ( )

( )

( ) ( )
( )

( )

1 1

0| 1 0| 1

1 11 2

i i

i i

i i

i ii i

t t

(t) (t)

d t d t

dt dt
(t)

d t d t

dt dt
− −

− −

− −− −

   
   

   
   

   
   

   = +   
   

   
   

            
      

0 0

0

Y U

y u

C Dy u

CA CB D
x

y uCA CA B CB D

 

 (2.53) 

 

In compact form (2.53) can be written as: 

 

( ) ( ) ( )0| 1 0| 1i i i it t t− −= +Y x U     (2.54) 

 

where the notation ( )
0| 1i−

 denotes the zeroth order derivative to the ( )1i − th order 

derivative, i  and i  are the observability and Toeplitz matrices respectively. 

 

Since the N4SID algorithm can lead in some cases to ambiguous estimation due 

to the use of oblique projection [65] the focus of this thesis will be on system 

identification using the MOESP algorithm which is based on orthogonal projection. 
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Sampling (2.54) at sampling instances 1 2, , , Nt t t , the input-output matrices and the 

state matrix can be rewritten as: 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )1 1 1

1 2

1 2

0| 1,

1 1 1

1 2

i i i

N

N

i N

i i i

N

t t t

d t d t d t

dt dt dt

d t d t d t

dt dt dt
− − −

−

− − −

 
 
 
 

=  
 
 
 
  

u u u

u u u

U

u u u

  (2.55) 

, 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )1 1 1

1 2

1 2

0| 1,

1 1 1

1 2

i i i

N

N

i N

i i i

N

t t t

d t d t d t

dt dt dt

d t d t d t

dt dt dt
− − −

−

− − −

 
 
 
 

=  
 
 
 
  

y y y

y y y

Y

y y y

   (2.56) 

 

and 

 

( ) ( ) ( )1 2N Nt t t  X = x x x
   

(2.57) 

 

where the notation ( )
0| 1,i N−

 denotes the zeroth order derivative to the ( )1i − th order 

derivative for N
 
samples. 

 

Using the above equations, the sampled data equation is rewritten as: 

 

0| 1, 0| 1,i N i N i i N− −= +Y X U     (2.58) 

 

and the data matrix, 0| 1,i N−W  can be constructed as: 
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0| 1,

0| 1,

0| 1,

i N

i N

i N

−

−

−

 
=  
 

U
W

Y
    (2.59) 

 

Unlike in discrete-time system identification, the time-derivatives of the input-

output data are generally not measured which means that the input-output matrices 

0| 1,i N−U  and 0| 1,i N−Y  are not known. As a result, the classical subspace methods originally 

developed for the identification of discrete-time models cannot be directly adapted for 

the identification of continuous-time models. To address this problem we propose the 

use of the Poisson moment functional (PMF) approach as presented in [70] where they 

used the Poisson pulse function to estimate 0| 1,i N−U  and 0| 1,i N−Y  The Poisson moment 

functional approach for the continuous-time integer-order state-space model is outlined 

in Appendix A2. 

 

Applying PMF to the data matrix, 0| 1,i N−W  in (2.59) the PMF filtered data can be 

expressed as: 

 

0| 1,

0| 1,

0| 1,

r

t i Nr

t i N r

t i N

−

−

−

   
   = 
    

P U
P W

P Y
   (2.60) 

 

Having filtered the input-output data, the MOESP identification algorithm 

outlined for discrete-time system identification can then be applied to the PMF filtered 

input-output data. Applying LQ decomposition to matrix (2.60) yields: 

 

0| 1, 11 1

21 22 20| 1,

r

t i N

r

t i N

−

−

       
  =    
        

P U L 0 Q

L L QP Y
   (2.61) 

 

Using (2.61) compute the SVD of 22L as: 

 

  1 1

22 1 2

2

H

H

  
=   

   

S 0 V
L U U

0 0 V    (2.21)
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where 1S  is a diagonal matrix containing the singular values different from zero and the 

order of the system, n  can be estimated from 1S  as the number of singular values 

different from zero. 

 

The extended observability matrix, i  can then be estimated from (2.21) as: 

 

1
2

1 1
ˆ

i =U S      (2.22) 

 

The procedure for estimating matrices A , B , C  and D  is as discussed in the discrete-

time MOESP algorithm. 

 

In our discussion so far we ignored the effects of the noise when identifying the ISI 

channel for the massive MIMO system, but in real life system identification the effects 

of this noise have to be considered. The next section discusses the influence of the 

additive white Gaussian noise in the continuous-time integer-order massive MIMO 

system identification. 

 

2.5 Integer-Order System Identification with Measurement 

Noise Considered 

 

In this case, integer-order system identification is performed having considered the 

measurement noise. Using continuous-time integer-order state-space modelling, the 

dynamics of the linear time invariant length- L  ISI channel massive MIMO system can 

be expressed as: 

 

( ) ( ) ( )t t t= +x Ax Bu     (2.62a) 

( ) ( ) ( ) ( )t = t + t t+y Cx Du n     (2.62b) 

 

where ( )tx  is the 1n  state vector, ( )tx  is the time derivative of ( )tx , ( )tu  is the 

1m  input vector, ( )ty  is the 1p  output vector, ( )tn  is the 1p  additive white 
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Gaussian noise vector, A  is the n n  system matrix and it describes the dynamics of 

the system, i.e. the eigenvalues of the system, B  is the n m  input matrix and it 

describes the linear transformation by which the inputs influence the next state, C  is 

the p n  output matrix, and it describes how the state is transferred to the output, D  is 

the p m  feed-forward matrix, and in continuous-time systems it is usually 0, ( )tx  is 

the derivative of ( )tx  

 

Applying the Laplace transform to (2.62) results in: 

 

( ) ( ) ( )s s s s

(s) (s) (s)+ (s)

= +

= +

X AX BU

Y CX DU N
    (2.63) 

 

First-order derivative yields: 

 

( ) ( ) ( ) ( )d t d t d t d t

dt dt dt dt
= + +

y x u n
C D D    (2.64) 

 

Then substituting (2.62a) into (2.64) yields: 

 

( )
( ) ( )( )

( ) ( )

( )
( ) ( )

( ) ( )

d t d t d t
t t

dt dt dt

d t d t d t
t t

dt dt dt

= + + +

= + + +

y u n
C Ax Bu D D

y u n
CAx CBu D D

   (2.65) 

 

Second-order derivative yields: 

 

( ) ( ) ( ) ( ) ( )2 2 2

2 2 2

d t d t d t d t d t

dt dt dt dt dt
= + + +

y x u u n
CA CB D D    (2.66) 

 

Then substituting (2.62a) into (2.66) to yields: 
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( )
( ) ( )( )

( ) ( ) ( )

( )
( ) ( )

( ) ( ) ( )

2 2 2

2 2 2

2 2 2

2

2 2 2

d t d t d t d t
t t

dt dt dt dt

d t d t d t d t
t t

dt dt dt dt

= + + + +

= + + + +

y u u n
CA Ax Bu CB D D

y u u n
CA x CABu CB D D

  (2.67) 

 

Third-order derivative yields: 

 

( ) ( ) ( ) ( ) ( ) ( )3 2 3 3

2

3 2 3 3

d t d t d t d t d t d t

dt dt dt dt dt dt
= + + + +

y x u u u n
CA CAB CB D D  

 (2.68) 

 

Then substituting (2.62a) into (2.68) yields: 

 

( )
( ) ( )( )

( ) ( ) ( ) ( )

( )
( ) ( )

( ) ( ) ( ) ( )

3 2 3 3

2

3 2 3 3

3 2 3 3

3 2

3 2 3 3

d t d t d t d t d t
t t

dt dt dt dt dt

d t d t d t d t d t
t t

dt dt dt dt dt

= + + + + +

= + + + + +

y u u u n
CA Ax Bu CAB CB D D

y u u u n
CA x CA Bu CAB CB D D

 

(2.69) 

 

and so on till the ( )1i − -order derivative. 

 

Stacking (2.62b) and all these derivatives into a column vector, the input-output 

relationship can be written as: 

 

( )

( ) ( )
( )

( )

( ) ( )

( )

( ) ( )
( )

( )

( )

1 1

0| 1 0| 1

1 11 2

i i

i i

i i

i ii i

t t

(t) (t) (t)

d t d t d t

dt dt
(t)

d t d t

dt dt
− −

− −

− −− −

   
   

   
   

   
   

   = + +   
   
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 (2.70) 

 

where i  is a user defined index . 
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In compact form (2.70) can be written as: 

 

( ) ( ) ( ) ( )0| 1 0| 1 0| 1i i i i it t t t− − −= + +Y x U N     (2.71) 

 

where i  and i  are the observability and Toeplitz matrices respectively. 

 

Sampling (2.71) at sampling instances 1 2, , , Nt t t  results in the following input, 

0| 1,i N−U  output, 0| 1,i N−Y , noise, 0| 1,i N−N and state, NX  matrices: 

 

( ) ( ) ( )

( ) ( ) ( )
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d t d t d t
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 
 
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 
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u u u

u u u
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u u u

  (2.72) 

, 
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   (2.73) 

, 
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  (2.74) 

 

and 
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( ) ( ) ( )1 2N Nt t t  X = x x x
   

(2.75) 

 

respectively, where N
 
is the number of samples. 

 

Using (2.72) , (2.73), (2.74) and (2.75), equation (2.71) can then be transformed into the 

following equation [71]: 

 

  

( )0| 1, 0| 1, 0| 1,i N i N i i N i Nt− − −= + +Y X U N    (2.76) 

 

Equation (2.76) contains time-derivatives of the input data, output data and noise which 

in most practical cases are not measured. To address this problem the Poisson moment 

functional (PMF) approach is applied, details of which are presented in Appendix A2. 

 

Applying PMF to (2.76), the PMF filtered input-output data and noise can be expressed 

as: 

 

 0| 1, 0| 1, 0| 1,

r r r r

t i N i t N i t i N t i N− − −
     = + +     P Y P X P U P N    (2.77) 

 

The idea is to estimate the observability matrix given the input-output data only, 

but equation (2.77) also has a noise term, 
0| 1,

r

t i N−
  P N  which affects the geometrical 

properties of the MOESP algorithm [15]], for that reason there is need to reduce the 

effects of this noise term on the overall filtered data. To address this problem, the 

authors in [72] proposed correlating the PMF filtered output data, 
0| 1,

r

t i N−
  P Y  with 

instrumental variables (IV). For this to work, the noise variables in the output must be 

uncorrelated with those of the instrumental variables and on the other hand, 

0| 1,

r

t i N−
  P Y must remain undistorted. This can be achieved by partitioning the input-

output data and noise into two parts, namely the past and the future parts. The future 

output part can then be used as an observation vector, whilst the past input and output 

parts can be used as instrumental variables. The partitions can be defined as [72]:  
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t pr

t i N r

t f
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r

t pr

t i N r

t f

−

   
   = 
    

P N
P N

P N
    (2.80) 

 

where r

t p
  P U , r

t p
  P Y  and r

t p
  P N  denote the past input, output and noise 

respectively, and r

t f
  P U  r

t f
  P Y  and r

t f
  P N  denote the future input, output and 

noise respectively. The past data is defined for index 0  to ( )1i − , whilst the future data 

is defined for index i  to ( )2 1i − . 

 

An instrumental variables matrix, V  can be constructed using the past input and 

output parts as: 

r

t p

r

t p

   
 =
    

P U
V

P Y
    (2.81) 

 

Considering only the future parts, (2.77) can be rewritten as: 

 

 r r r r

t f i t N i t f t f
     = + +     P Y P X P U P N    (2.82) 

 

Equation (2.82) is then multiplied by (2.81) to help reduce the effects of the noise term 

on r

t f
  P Y , yielding: 

 

 r r r r

t f i t N i t f t f
     = + +     P Y V P X V P U V P N V    (2.83) 
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Since the instrumental variables matrix, V  is independent of the noise term, the noise 

term in (2.82) disappears as a result of r

t f
  = P N V 0 , resulting in: 

 

 r r r

t f i t N i t f
   = +   P Y V P X V P U V    (2.84) 

 

Having addressed the issue with the noise term, the observability matrix can 

now be obtained using LQ decomposition and SVD. In (2.62b), given that additive 

white Gaussian noise is considered, the instrumental variables are chosen to follow the 

past output multiple-input multiple-output output-error state space (PO-MOESP) 

algorithm when computing the LQ decomposition and SVD of the filtered input-output 

data as follows [73]: 

 

Applying the LQ decomposition to matrix (2.84) yields [74]: 
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r

t f

r

t p

r

t p

r

t f

        
            =
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P U
L 0 0 0 Q

P U L L 0 0 Q

L L L 0 QP Y

L L L L Q
P Y

   (2.85) 

 

where 11 22,  im imL L , 
33 44, ip ipL L  are lower triangular matrices, and 

1 2, N imQ Q  , 
3 4,  N ipQ Q  are orthogonal matrices. 

 

Using (2.85) the SVD of  42 43L L  is computed as: 

 

    1 1

42 43 1 2

2

H

H

  
=   

   

S 0 V
L L U U

0 0 V    (2.86)
 

 



63 

 

where 1S  is a diagonal matrix containing the singular values different from zero and the 

order of the system, n  can be estimated from 1S  as the number of singular values 

different from zero. 

 

The extended observability matrix, i  can then be estimated from (2.86) as: 

 

1
2

1 1
ˆ

i =U S      (2.22) 

 

The procedure for estimating matrices A , B , C  and D  is as discussed for the 

MOESP algorithm. 

 

Having presented a discussion on the integer-order MOESP and integer-order PO-

MOESP algorithms for the massive MIMO system, the next step is to study the 

performance of these algorithms. The following section presents the MATLAB 

simulation results and analysis of these algorithms having been applied to the massive 

MIMO system. 

 

2.6 Simulation Results 

 

The simulations were run in MATLAB having considered the input signal, ( )tu  to be a 

chirp signal with frequency ranging from 20Hz to 20 kHz with a sampling frequency 

twice the highest frequency range, which is a persistently excitation signal. This 

frequency range was chosen to cover the range of audible frequencies for humans. The 

chirp excitation signal is shown in Figure 2.7. 
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Figure 2. 7: Chirp signal for the input 

 

Through our simulations we noted that not all these data points are needed for 

system identification. As a result, we reduced the number of data points needed to 

identify the massive MIMO system, and Figure 2.8 shows the reduced length input 

signal on each transmitting antenna and the output signal at the receiving antenna we 

used for system identification. 
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Figure 2. 8: Plot of input and output data 

 

The continuous-time integer-order system identification for the massive MIMO system 

was first implemented using the in-built MATLAB commands found in MATLAB’s 

System Identification Toolbox to help determine the system order that is able to reliably 

capture the dynamics of the massive MIMO system. The results of which are shown in 

Figure 2.9. 
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Figure 2. 9: System order obtained using the MATLAB’s System Identification 

Toolbox 

 

A system of order, 6n =  was identified as one that was able to capture the 

system dynamics reliably. Having obtained the order of the system using MATLAB’s 

in-built System Identification Toolbox, the simulations were then extended to analytical 

modelling where simulations based on the integer-order MOESP system identification 

algorithm discussed in this chapter were run in MATLAB. The data set was divided 

into estimation data and validation data, where the estimation data was the first half of 

the data set and the second half was the validation data. The estimation data was used to 

estimate the system model and the estimated model was verified using the validation 

data. The integer-order MOESP system identification algorithm was based on the 

parameters in Table 2.1. 
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Table 2. 1: System model and system identification parameters for integer-order model 

Symbol Description Value 

Tx  Number of transmitting antennas 100 

Rx  Number of receiving antennas 1 

n  Model order 1 to 7 

t  Sampling time 0.1s 

i  User defined index 8 

N  Number of samples 2001 

estN  Estimation data 1000 

valN  Validation data 1000 

dBSNR  Signal-to-noise ratio 20 

L  Number of channel paths 3 

r  Poisson filter order 8 

  Poisson filter gain 1 

  Poisson filter constant 1 

 

2.6.1 Selection of Identification Parameters 

 

In system identification the performance of the model depends on how much data is 

available to describe the system and whether the sampling time is good enough to 

capture the dynamics of the system. In our simulations, the sampling time was varied 

between different sampling times and sampling time, 0.1t s =  was identified as the 

sampling time that could reliably capture the system dynamics. The user defined index, 

i  was selected to be eight based on the fact that i n  and with reference to system 

identification using the in-built MATLAB’s System Identification Toolbox, 6n =  was 

the system order that was able to capture the system dynamics, so a user defined index, 

i  greater than six had to be selected. The selection of the PMF filter order, r  was based 

on the criteria defined in (A2.11) and the selection of the Poisson filter gain,   and 

Poisson filter constant,   was based on the criteria defined in (A2.12), where for 

simplicity we assumed that, 1 = = . 
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With analytical modelling, the system of order 7n =  was observed as the one 

that reliably captures the dynamics of the massive MIMO system. The comparison of 

the estimation and validation data to the estimated output which was obtained using the 

integer-order MOESP algorithm with order 7n =  is shown in Figure 2.10. 

 

 

 

 

Figure 2. 10: Comparison of estimation and validation data sets for (system order, 

7n = ) 

 with the actual system output 
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We then zoomed in to show a clear picture of our results and Figure 2.11 shows the 

zoomed in results comparing the integer-order MOESP algorithm estimated output for 

system order 7n =  and the actual system output. 

 

 

Figure 2. 11: Comparing the performance of the system output obtained using the 

integer-order MOESP algorithm for 7n =  and the actual system output (zoomed in 

results) 

 

For completeness, Figure 2.12. shows the performance results of the integer-

order MOESP system identification algorithm for different system orders, i.e. 3n = . 

Figures for the other system orders, i.e. 1n = , 2n = , 4n = , 5n =  and 6n =  are not 

shown because for these system orders the system was unstable,. This is why in the 

analytical modelling we had to extend the system order to 7n =  instead of just 6n =  

which was the reliable system order when the in-built MATLAB’s System 

Identification Toolbox commands were used. 
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Figure 2. 12: Comparing the performance of the system output obtained using the 

integer-order MOESP algorithm for 3n =  and the actual system output 

 

All the presented results show that the performance of the integer-order MOESP system 

identification algorithm improved as the system order was increased from three to 

seven, order seven being the best performing system order. This shows that with the 

right selection of the modelling parameters, the proposed continuous-time integer-order 

MOESP algorithm can actually be used to identify the dynamics of the massive MIMO 

system. 

 

The estimated outputs for the different system orders were then compared with 

the measured output/ actual output, and the measure of accuracy of the proposed model 

was expressed using the mean-square error (MSE) as: 

 

( ) ( )
2

1

1
ˆ

N

t

MSE t t
N =

= − y y     (2.74) 

 

where N  is the number of samples and ( )ˆ ty  is the MOESP estimated output. 

 

The MSE test for system orders 3n =  and 7n =  are shown in Table 2.2. Only results 

for system orders 3n =  and 7n = are shown because for system orders 1n = , 2n = , 

4n = , 5n =  and 6n =  the system was unstable due to the fact that the eigenvalues did 
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not meet the stability criteria for integer-order systems which states that for a system to 

be stable the eigenvalues should be negative or should have negative real parts if they 

are complex conjugate. 

 

Table 2. 2: MSE for system orders 3n =  and 7n =  

Model order, n  MSE 

3 61.9715 10  

7 0.4237 

 

In Table 2.2 it can be seen that system order 7n =  has a low value of MSE compared to 

system order 3n =  thus verifying our choice of model order 7n =  as the one that gives 

better performance results. 

 

The simulation results thus far have ignored the effects of the noise when 

identifying the ISI channel for the massive MIMO system. The next set of results take 

into consideration the effects of the measurement noise in system identification and to 

handle this we used the integer-order PO-MOESP identification algorithm. Figure 2.13 

shows the performance results of the integer-order PO-MOESP system identification 

algorithm for system order, 7n = . 

 

 

Figure 2. 13: Comparing the performance of the system output obtained using the 

integer-order PO-MOESP algorithm for 7n =  and the actual system output 
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We then zoomed in to show a clear picture of our results and Figure 2.14 shows the 

zoomed in results comparing the integer-order PO-MOESP algorithm estimated output 

for system order 7n =  and the actual system output. 

 

 

Figure 2. 14: Comparing the performance of the system output obtained using the 

integer-order PO-MOESP algorithm for 7n =  and the actual system output (zoomed in 

results) 

 

Figure 2.15 shows the zoomed in performance results of the integer-order MOESP 

system identification algorithm, integer-order PO-MOESP system identification 

algorithm for system order, 7n =  and the actual system output. 
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Figure 2. 15: Comparing the performance of the system output obtained using the 

integer-order MOESP algorithm, integer-order PO-MOESP algorithm for 7n =  and the 

actual system output (zoomed in results) 

 

The output of the integer-order PO-MOESP identified system was then compared with 

the measured output/ actual output in terms of the MSE, giving a MSE of 0.0046. These 

results show an improvement in system identification with the use of the PO-MOESP 

algorithm. This is because of the introduction of the instrumental variables which help 

reduce the effects of the noise in the system. 

 

2.7 Summary 

 

This chapter presented a continuous-time integer-order state-space identification 

method, namely the MOESP algorithm to identify the massive MIMO frequency-

selective wireless channels. Unlike in discrete-time system identification, the time-

derivatives of the input-output data is generally not measured meaning that the input-

output matrices are not known. As a result, the classical subspace methods originally 

developed for the identification of discrete-time models cannot be directly adapted for 

the identification of continuous-time models. To address this problem the Poisson 

moment functional (PMF) approach was used when dealing with continuous-time 

system identification. The input-output data was filtered using the PMF filter after 

which the MOESP identification algorithm outlined for discrete-time system 
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identification was then applied to the PMF filtered input-output data. Simulations were 

run in MATLAB to identify the massive MIMO system using the proposed algorithm. 

The results showed an improvement in the performance of the continuous-time integer-

order MOESP system identification algorithm as the system order was increased from 

three to seven, order seven being a better performing system order. This shows that the 

integer-order MOESP algorithm can be used to identify the dynamics of the massive 

MIMO system. To try to reduce the effects of noise in the identification process, the 

integer-order PO-MOESP algorithm was considered. This introduced instrumental 

variables which play a great role in reducing the effects of noise that occur in the 

system. In the following chapter we present the fractional-order MOESP algorithm. The 

application of fractional-order system identification in wireless communications is a 

novelty and is one of the main contributions of this thesis. 
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Appendix A2 

 

A2.1 The Poisson Moment Functional Filtering for 

Continuous-Time Integer-Order System Identification 

 

To handle the estimation of 0| 1,i N−U  and 0| 1,i N−Y  the PMF transform of order r is applied 

to (2.58), resulting in: 

 

 0| 1, 0| 1,

r r r

t i N i t N i t i N− −
   = +   P Y P X P U     (A2.1) 

 

where ( )r

t g t  P  is the r th order PMF transform of signal ( )g t  at time instant t  and is 

given by the following convolution product [70]: 

 

( ) ( ) ( ) ( ) ( )
0

t

r

t r rg t g t p t g p t d  =  = −   P   (A2.2) 

 

where ( )rp t  is the r th order Poisson pulse function expressed as: 

 

( )
1

!

r r t

r

t e
p t

r

 + −

=     (A2.3) 

 

where r , r i , whereby i  is the user-defined index and  +  and  +  are 

the Poisson filter constant and gain respectively. 

 

The r th order PMF of ( )g t  can be measured as the output at time instant t  of a 

cascaded low-pass filter chain of ( )1r +  identical stages, each with a transfer function 

expressed as [70]: 

 

( )rP s
s





 
=  

+ 
    (A2.4) 
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According to [62] the PMF transform applied to the successive time derivatives of 

( )g t is a linear combination of the Poisson filter chain outputs of the signal ( )g t . 

Considering signal ( )g t  with highest order derivative of order i , where i  is a user 

defined index and the PMF transform of order r , the state-space model based transfer 

function of the r th order PMF based filter, rP  for signal ( )g t  can be expressed as [62]: 
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 
 
 
 
 

+ 

    (A2.5)

 

 

The transfer function in (A2.5) play a great role in transforming the time derivatives of 

( )g t  using the PMF based approach. For example, given the i th derivative of ( )g t  as: 

 

( )i

i

d g t

dt
    (A2.6) 

 

Applying the PMF based transfer function, (A2.5) to the Laplace transform of 

(A2.6) yields: 
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   (A2.7) 

 

It can be observed that (A2.7) is free of any time-derivatives. 

 

Applying the property of (A2.7) to the ( )1i −  successive time derivatives of the input 

data, the following PMF based filtered input data is obtained: 
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P U u    (A2.8) 

 

where ( )g s  in (A2.7) is replaced by ( )su .  

 

Applying the property of (A2.7) to the ( )1i −  successive time derivatives of the 

output data and the noise, the following PMF based filtered output data and noise is 

obtained: 
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( )

( )
( )

( )

( )
( )

( ) ( )

( )
( )

( )

1

1

1 1

1

0| 1,

1 1

1

r

r

r

rr

s i N

r i

r

s

s

ss

s

s













+

+

+

+

−

+ −

+

 
 

+ 
 
 
   = +   
 
 
 
 

+ 

P Y y    (A2.9) 

 

and 

 

( )

( )
( )

( )

( )
( )

( ) ( )

( )
( )

( )

1

1

1 1

1

0| 1,

1 1

1

r

r

r

rr

s i N

r i

r

s

s

ss

s

s













+

+

+

+

−

+ −

+

 
 

+ 
 
 
   = +   
 
 
 
 

+ 

P N n    (A2.10) 

respectively. 

 

According to [62] the PMF filter order and the PMF filter parameters are chosen as 

follows: 

 

The PMF filter order, r  has to respect the following condition: 

 

r i       (A2.11) 

 

and for the PMF filter parameters, it is generally assumed that: 

 

 =       (A2.12) 

 

This assumption helps to reduce the number of design parameters. 
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Chapter 3  

 

Massive MIMO Continuous-Time System 

Identification Using Fractional-Order Algorithm 

 

3.1 Introduction 

 

The history of fractional-order calculus dates back to the 17th century. It came about 

through the communication between L’Hospital and Leibniz, where L’Hospital asked 

Leibniz, what if the order of a derivative was a not an integer? This then led to the 

founding of the field of fractional-order differentiation and integration, i.e. differ-

integration which they refer to as fractional-order calculus in [75] and [76]. The main 

contribution of this chapter is the application of fractional-order system identification in 

wireless communications which is a novelty. It discusses on the identification of the 

massive MIMO frequency-selective wireless channels using the continuous-time 

fractional-order algorithm. Fractional-order calculus can be thought of as a direct 

extension to integer-order calculus. Fractional-order calculus is very important, 

especially in explaining many events which traditional mathematics cannot explain 

[75]. It has also been observed that many real-world physical systems are well 

characterized by fractional-order differential equations rather than using classical 

integer-order models [8]. In signal processing, fractional-order operators are used in the 

design of fractional-order integrators and fractional-order differentiators and for 

modelling speech signals [77]. The major advantages of fractional-order calculus are 

that they make it possible to obtain mathematical models that describe the results closer 

to the experimental measurements, their ability to predict more accurately the dynamics 

of the system that is being modelled and they make it possible to obtain simplified 

system models with just a few physically motivated parameters [78] and [79]. A linear 

time-invariant fractional-order system can be expressed as [76]: 
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( ) ( ) ( ) ( ) ( ) ( )1 0 1 0

1 0 1 0
n n m m

n n m ma D y t a D y t a D y t b D u t b D u t b D u t
     − −

− −+ + + = + + +

 (3.1) 

 

where ,n ma b   and ,n m  +  , nD
  and mD

 are the fractional-order derivative 

operators. 

 

In (3.1) if the orders of the differentiations are integer multiple of a single base, 

i.e. ,k k k  = , the system is referred to as commensurate fractional-order system. The 

advantage of working with commensurate order models is that all fractional powers in 

the model are integer multiple of a single fractional-order and therefore there is need to 

estimate only one term, i.e.  . The commensurate fractional-order system can then be 

expressed as: 

 

( ) ( )
0 0

n m
k k

k k

k k

a D y t b D u t 

= =

=      (3.2) 

 

Using the fact that operator D  acting in time-domain can be written as s  in s-

domain, the transfer function of (3.2) can be written as: 

 

( )
( )

( )

0

0

m
k

k

k

n
k

k

k

b s

G s

a s





=

=

=



     (3.3) 

 

The fractional-order time-derivatives of the input-output data are generally not 

measured meaning that the input-output matrices are not known, as a result the classical 

subspace methods originally developed for the identification of discrete-time models 

cannot be directly adapted for the identification of continuous-time fractional-order 

models. To address this problem the Poisson moment functional (PMF) approach is 

used when dealing with continuous-time fractional-order system identification, where 

the input-output data is first filtered using the PMF filter after which the MOESP 

identification algorithm outlined for discrete-time system identification is then applied 
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to the PMF filtered input-output data. Details of applying the PMF to fractional-order 

system identification are discussed at a later stage in this chapter. 

 

Given the complexity involved in dealing with fractional-order transfer 

functions as discussed in [80], [81] and [82] the use of different continuous-time 

approximation methods namely Oustaloup, Carlson and Charefs’ methods that can be 

used to present the fractional-order transfer functions as approximated rational transfer 

functions has been proposed. These methods will also be applied in approximating the 

fractional-order transfer function of the massive MIMO frequency-selective wireless 

channels. The mathematical background of fractional-order calculus, i.e. some import 

functions, special properties and definitions of fractional-order calculus is presented in 

Appendix A3 

 

3.2 Fractional-Order System Identification 

 

Fractional-order state-space models in controllable, observable and diagonal canonical 

forms are similar to integer-order state-space models [83]. A fractional-order linear time 

invariant (LTI) system is mathematically equivalent to an infinite dimensional LTI 

filter. Thus, a fractional-order system can be approximated using higher order 

polynomials having integer-order differ-integration operators.  

 

The following assumptions are necessary when dealing with system identification:  

 

i) The system is persistently excited by the training symbols. 

ii) The system is stable, observable and controllable. 

iii) The dimensions of matrix A  are known, and ( )rank n=A , where n  is the order 

of the system. Rank is the number of linearly independent rows. 

iv) The random white noise is uncorrelated to the input signal. 

 

The dynamics of the massive multiple-input multiple-output linear time 

invariant (MIMO LTI) system can be modelled using fractional-order state-space 

modelling. Ignoring the effects of the process noise and additive noise and using 
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continuous-time fractional-order state-space modelling, the linear time invariant length-

L  ISI channel massive MIMO system, (2.1) can be expressed as [84]: 

 

( ) ( ) ( )D t = t + t
x Ax Bu     (3.4a) 

( ) ( ) ( )t = t + ty Cx Du      (3.4b) 

 

where ( )tx  is the 1n  state vector,  ( )tu  is the 1m  input vector, ( )ty  is the 1p  

output vector , A  is the n n  system matrix and it describes the dynamics of the 

system, i.e. the eigenvalues of the system, B  is the n m  input matrix and it describes 

the linear transformation by which the inputs influence the next state, C  is the p n  

output matrix, and it describes how the state is transferred to the output, D  is the p m  

feed-forward matrix,   is the commensurate fractional-order and D  is the fractional 

derivative of order  . Equation (3.4a) is called the fractional-order state equation and 

(3.4b) called the output equation.  

 

Applying the Laplace transform to (3.4) results in: 

 

( ) ( ) ( )s s s s

(s) (s) (s)

 = +

= +

X AX BU

Y CX DU
    (3.5) 

 

Rearranging (3.5) and after some manipulations the transfer function of the system is 

expressed as: 

 

( )
1( )

( )
( )

n

s
s s

s


−

= − +
Y

G = C I A B D
U

   (3.6) 

 

where nI  is an n n  identity matrix. 

 

The general characteristics of the transfer function, (3.6) are [85]: 

 

i) The magnitude curve has a constant slope of 20− dB/dec. 
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ii) The phase plot is a horizontal line of value 
2


− . 

iii) The gain crossover frequency depends on A . 

iv) The Nyquist plot is a straight line which starts from the origin with argument 

2


− . 

 

It is important to know if a fractional-order system is stable or not and in the 

fractional-order LTI case, the stability is different from that of the integer-order one. In 

the fractional-order case a stable fractional-order system may have roots on the right 

half of the complex plane as shown in Figure 3.7. A fractional-order system is stable if 

[86] and [87]: 

 

( )( )
2

eig


Aarg      (3.7) 

 

( )  1
2

k
k n


   =arg , , ,    (3.8) 

 

where 0 2  , ( )eig A  gives the eigenvalues of matrix A  and k
 is the k th 

eigenvalue of A  and ( )k
   - arg . 

 

 

Figure 3. 1: Stability region for fractional-order commensurate systems 
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Since the continuous-time state-space representation of commensurate 

fractional-order systems is similar to that of integer-order systems [88], the analysis of 

the MOESP fractional-order model follows the one outlined for the classical MOESP 

model as proposed in [65] and [84]. 

 

3.2.1 Constructing Data Matrices 

 

In constructing the data matrices for the continuous-time fractional-order system, (3.4) 

and the MOESP algorithm are considered. By computing the successive  -order 

fractional derivatives of (3.4) the data equations are constructed as follows [69]: 

 

Taking the  -order derivative of (3.4b) yields: 

 

( ) ( ) ( )D t D t D t  = +y C x D u    (3.9) 

 

Substituting (3.4a) into (3.9) yields: 

 

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

D t t t D t

D t t t D t

 

 

= + +

= + +

y C Ax Bu D u

y CAx CBu D u
   (3.10) 

 

Taking the 2 -order derivative of (3.4b) and making the necessary simplifications 

yields: 

 

( ) ( ) ( ) ( )2 2D t D t D t D t   = + +y CA x CB u D u   (3.11) 

 

Substituting (3.4a) into (3.11) yields: 

 

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 2

2 2 2

D t t t D t D t

D t t t D t D t

  

  

= + + +

= + + +

y CA Ax Bu CB u D u

y CA x CABu CB u D u
  (3.12) 
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Taking the 3 -order derivative of (3.4b) and making the necessary simplifications 

yields: 

 

( ) ( ) ( ) ( ) ( )3 2 2 3D t D t D t D t D t    = + + +y CA x CAB u CB u D u   (3.13) 

 

Substituting (3.4a) into (3.13) yields: 

 

( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

3 2 2 3

3 3 2 2 3

D t t t D t D t D t

D t t t D t D t D t

   

   

= + + + +

= + + + +

y CA Ax Bu CAB u CB u D u

y CA x CA Bu CAB u CB u D u
 

 (3.14) 

 

and so on till the ( )1i − -order derivative. 

 

Stacking (3.4b) and all its  -order derivatives obtained above up to order 

( )1i −  into a column vector, the input-output relationship can be written as: 

 

( )

( )

( ) ( )

( ) ( )

( )

( )

( )

( )

( )

( ) ( )

( ) ( )0| 1 0| 1

1 11 2

i ii i

i ii i

t t

t t

D t D t
t

D t D t

 

 

 

− −

− −− −

      
      
      = +
      
      
            

0 0

0

Y U

y uC D

y uCA CB D
x

y uCA CA B CB D

 

 (3.15) 

 

where i  is a user defined index . 

 

In compact form (3.15) can be written as: 

 

( ) ( ) ( ) ( ) ( )0| 1 0| 1i ii i
t t t

 − −
= +Y x U      (3.16) 
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where 
( ) ( )

( )

( )

( ) ( )

0| 1

1

im

i

i

t

D t
t

D t







−

−

 
 
 = 
 
 
  

u

u
U

u

 , 
( ) ( )

( )

( )

( ) ( )

0| 1

1

ip

i

i

t

D t
t

D t







−

−

 
 
 = 
 
 
  

y

y
Y

y

, 

1

ip n

i

i



−

 
 
 = 
 
 
 

C

CA

CA

  and

2 3

ip im

i

i i



− −

 
 
 = 
 
 
 

0 0

0

D

CB D

CA B CA B D

  

 

where the notation ( )
( )0| 1i −

 denotes the zeroth order derivative to the ( )1i − th order 

derivative, i  and i  are the observability and Toeplitz matrices respectively. 

 

Sampling (3.16) at sampling instances 1 2, , , Nt t t  results in the following input, 

( )0| 1 ,i N−
U , output, 

( )0| 1 ,i N−
Y  and state NX matrices: 

 

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 2

1 2

0| 1 ,

1 1 1

1 2

N

N im N

i N

i i i

N

t t t

D t D t D t

D t D t D t

  



  



−

− − −

 
 
 
 
 
  

u u u

u u u
U =

u u u

 (3.17)
 

, 

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 2

1 2

0| 1 ,

1 1 1

1 2

N

N ip N

i N

i i i

N

t t t

D t D t D t

D t D t D t

  



  



−

− − −

 
 
 = 
 
 
  

y y y

y y y
Y

y y y

 (3.18)
 

 

and 

( ) ( ) ( )1 2N Nt t t  X = x x x
 

  (3.19) 

 

respectively, where the notation ( )
( )0| 1 ,i N−

 denotes the zeroth order derivative to the 

i th order derivative for N
 
samples. 
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Using (3.17), (3.18) and (3.19), equation (3.16) can then be transformed into the 

following equation [71]: 

 

( ) ( )0| 1 , 0| 1 ,i N ii N i N − −
= +Y X U     (3.20) 

 

3.2.2 Estimating the Extended Observability Matrix 

 

With reference to (3.17) and (3.18) the data matrix, 
( )0| 1 ,i N−

W  can be constructed as: 

 

( )

( )

( )

0| 1 ,

0| 1 ,

0| 1 ,

i N

i N

i N







−

−

−

 
=  
  

U
W

Y
    (3.21) 

 

Equation (3.21) contains successive  -order fractional derivatives of the input-output 

data which in most practical cases are not measured. To address this problem we 

propose the use of the Poisson moment functional (PMF) approach, details of which are 

presented in Appendix A3. 

 

Applying PMF to the data matrix, ( )0| 1 ,i N−
W , the PMF filtered data can be expressed as: 

 

( )

( )

( )

0| 1 ,

0| 1 ,

0| 1 ,

r

t i N
r

t i N
r

t i N







−

−

−

  
    =

    
   

P U
P W

P Y
    (3.22) 

 

Having filtered the input-output data the MOESP identification algorithm can 

then be applied. 

 

Applying LQ decomposition to matrix (3.22) yields: 

 

( )

( )

0| 1 ,
11 1

21 22 2
0| 1 ,

r

t i N

r

t i N





−

−

  
      =          

   

P U L 0 Q

L L QP Y
   (3.23) 
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Using (3.23) compute the SVD of 22L as: 

 

  1 1

22 1 2

2

H

H

  
=   

   

S 0 V
L U U

0 0 V    (3.24)
 

 

where 1S  is a diagonal matrix containing the singular values different from zero and the 

order of the system, n  can be estimated from 1S  as the number of singular values 

different from zero. 

 

The extended observability matrix, i  can then be estimated from (3.24) as: 

 

1
2

1 1
ˆ

i =U S      (2.22) 

 

The procedure for estimating matrices A , B , C  and D  is as discussed for the 

MOESP algorithm. If the fractional-order, ( )0,2   is unknown then it can be 

estimated by minimizing [89]: 

 

( )
( ) ( )

2

2
0 2

1

2
t t






= −y y
,

ˆ ˆarg min    (3.25) 

 

where ( )ˆ ty  is the fractional-order estimated output. 

 

3.2.3 Analytical Solution of the Fractional-Order Massive MIMO 

System 

 

Considering (3.4a), and applying the fractional-order integration of order   on both 

sides results in: 

 

( ) ( ) ( ) ( )0t = I t + I t  +x A x B u x     (3.26) 
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where I  is the fractional-order integral operator and ( )0x is the initial condition. 

 

Assuming that the general solution of (3.26) can be written as [90]: 

 

( ) ( )
0

k

k

t = t


=

x x      (3.27) 

 

where  

 

( ) ( ) ( )0 0t = I t+x x B u     (3.28) 

 

and  

 

( ) ( )1 ,  1k kt = I t k

− x A x     (3.29) 

 

where ( )1k t−x  is the previous state vector. 

 

Using (3.28) and (3.29) the state vector can be recursively written as follows: 

 

At 1k = : 

 

( ) ( )1 0t I t=x A x     (3.30) 

 

Substituting (3.28) into (3.30) yields: 

 

( ) ( ) ( ) ( ) ( )1 0 0t I I t I I t      = + = +   x A x B u Ax AB u   (3.31) 

 

At 2k = : 

 

( ) ( )2 1t I t=x A x     (3.32) 
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Substituting (3.31) into (3.32) yields: 

 

( ) ( ) ( ) ( ) ( )2 2 2

2 0 0t I I I t I I t        = + = +    
x A Ax AB u A x A B u  (3.33) 

 

At 3k = : 

 

( ) ( )3 2t I t=x A x     (3.34) 

 

Substituting (3.33) into (3.34) yields: 

 

( ) ( ) ( ) ( ) ( )2 2 2 3 3 3

3 0 0t I I I t I I t        = + = +    
x A A x A B u A x A B u  (3.35) 

 

and so on we evaluate. 

 

With reference to the above equations, the general expression for ( )k tx  can be 

written as: 

 

( ) ( ) ( )0k k k

k t I I t  = + x A x A B u     (3.36) 

 

Using the property [90]: 

 

( )

( )

1
,  0,  1,  0

1
I t t t   

 
 

+
 +

=   − 
 + +

  (3.37) 

 

equations (3.31), (3.33), (3.35), etc can be written as: 

 

( ) ( ) ( ) ( ) ( )

( ) ( )
( )

( )
( )

2

1

2

1

0 0

1
0

1

t I I t I I t

t t I t

   

 



 = + = + 


= +

 +

x Ax AB u A x AB u

x Ax AB u
  (3.38) 
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( ) ( ) ( ) ( ) ( )

( ) ( )
( )

( )
( )

2 2 2 2 2 2 3

2

2 2 2 3

2

0 0

1
0

2 1

t I I t I I t

t t I t

   

 



 = + = + 


= +

 +

x A x A B u A x A B u

x A x A B u
  (3.39) 

 

( ) ( ) ( ) ( ) ( )

( ) ( )
( )

( )
( )

3 3 3 3 3 3 4

3

3 3 3 4

3

0 0

1
0

3 1

t I I t I I t

t t I t

   

 



 = + = + 


= +

 +

x A x A B u A x A B u

x A x A B u
  (3.40) 

 

respectively, where   is taken to be 0 =  since we do not have the ' 't  term. 

 

Using the above property, the general expression for ( )k tx  can be rewritten as: 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( )

( )
( ) ( )

1

1

0 0

1
0

1

kk k k k k k

k

kk k k

k

t I I t I I t

t t I t
k

  





+

+

 = + = + 


= +

 +

x A x A B u A x A B u

x A x A B u
  (3.41) 

 

Using (3.41), equation (3.27) can now be rewritten as: 

 

( ) ( )
( )

( )
( ) ( )

( ) ( )
( )

( )
( ) ( )

1

0

1

0 0

1
0

1

1
0

1

kk k k

k

kk k k

k k

t t I t
k

t t I t
k










+

=

 
+

= =

 
= +   + 


= +

 +



 

x A x A B u

x A x A B u

   (3.42a) 

 

( )
( )

( ) ( ) ( )

( )
( )

( ) ( ) ( )

1

0

1

0 0

0
1

0
1

k k
kk

k

k k
kk

k k

t
t I t

k

t
t I t

k












+

=

 
+

= =

 
= +   + 

= +
 +



 

A
x x A B u

A
x x A B u

   (3.42b) 
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( )
( )

( ) ( ) ( )

( )
( )
( )

( )
( )

( )

( )( )
( )

1

0 0

1 1

0 00

0
1

0
1 1

k k
kk

k k

k kkt

k k

t
t I t

k

t t
t d

k k









 

 

 
+

= =

+ −
 

= =

= +
 +

−
= +

 +  +

 

 

A
x x A B u

A A
x x Bu

  (3.42c) 

 

In terms of the Mittag-Leffler function in Appendix A3, equation (3.42) can be 

written as: 

 

( ) ( ) ( ) ( ) ( )1

,1 ,0t E t t E t d  

    − = +    
x A x A Bu    (3.43) 

 

Substituting (3.43) into (3.4b), the general solution of the massive MIMO system 

having used fractional-order system identification can be written as: 

 

( ) ( ) ( ) ( ) ( )( ) ( )1

,1 ,0t E t t E t t t  

  

− = + +   
y C A x A Bu Du   (3.44) 

 

In most cases it is not easy to obtain the analytical solution of a linear fractional-

order system having been given the system input and system matrices. To address this 

problem an alternative technique that can used to obtain the output of the fractional-

order massive MIMO system is discussed in the following sections. 

 

3.3 Fractional-Order Realisations / Integer-Order 

Approximation 

 

Using the estimated values of A , B ,C  and D , the estimated fractional-order transfer 

function of the massive MIMO system is written as: 

 

( )
1

ˆ ˆ ˆ ˆ ˆ( ) ns s
−

= − +G C I A B D     (3.45) 

 

where ( )ˆ  indicates an estimate. 
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In the practical sense, transfer functions such as (3.45) are not easy to implement, and 

this has led to the rise in rational transfer functions that can be used to approximate 

these fractional-order transfer functions. This means that whenever there is a fractional-

order transfer function in system identification there is need to replace it with an easier 

to handle approximate rational transfer function. The following sections deal with these 

approximate rational transfer functions.  

 

The realisation of fractional-order systems is complicated and in practice 

fractional-order operators in continuous-time are approximated using different methods, 

namely Oustaloup’s method, Carlson’s method and Charef’s method [84]. In these 

methods an equivalent continuous-time rational model obtained from approximating a 

fractional-order differentiation operator by a rational one is used to get the fractional-

order model output. The fractional behaviour of systems is usually limited within a 

specific frequency range, i.e. lower frequency and upper frequency denoted as ( ),L H   

[91], where 2L Lf =  and 2H Hf = . The lower frequency is limited by the input 

data spectrum, whilst the upper frequency is limited by the sampling period. Thus 

fractional-order systems must have the same dynamics as their approximated 

continuous-time rational counterparts within that specific frequency range. 

 

The Carlson’s realisation performance is sometimes very poor and on top of that the 

frequency intervals of interest cannot be specified by the user which is another 

drawback of the Carlson’s realisation. The Charef’s realisation is used for irrational 

systems which cannot be modelled exactly with the standard form of fractional-order 

transfer functions. It is a useful tool in finding integer-order fitting of the irrational 

model. Lastly, the Oustaloup’s realisation is used in the simulation of complicated 

fractional-order systems by imitating the fractional-order derivative and integral 

actions. In this realisation the frequency intervals of interest can be selected by the user 

[92]. 
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3.3.1 Carlson’s Realisation 

 

Let ( )H s  be the fractional-order transfer function and ( )G s  be a rational transfer 

function. Carlson’s realisation aims to find a rational approximation ( )H s  to a model 

with a fractional power of integer-order ( )G s  such that: 

 

( ) ( )qH s G s      (3.46) 

 

where 
m

q
p

=  is a fractional-order of the transfer function. Using the recursive zeros 

and poles approximation, ( )H s  can be approximated as [84]: 

 

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

1

1 2

1

i

i i

i

p m H s p m G s
H s H s

p m H s p m G s

−

−

−

− + +
=

+ + −
  (3.47) 

 

with the initial model, ( )0H s  set to ( )0 1H s =  

 

Equation (3.47) can be rewritten as: 

 

( ) ( )
( ) ( )

( ) ( )

2

1

1 2

1

i

i i

i

G s H s
H s H s

G s H s





−

−

−

+
=

+
    (3.48) 

 

where 

1
1

:
1

1

m

pp m q

p m qm

p



  
−  

− −  = = =
 + + 
+  
  

 and 
1

:
1

q




−
=

+
 

 

3.3.2 Charef’s Realisation 

 

This is based on finding an integer-order approximation of a fractional-order transfer 

function of the form: 
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( )
1

1

m

T

H s
s

p

=
 
+ 

 

     (3.49) 

 

where Tp  is the pole of the fractional-order transfer function and m  is the fractional-

order of the transfer function. Again using the approximation with recursive zeros and 

poles, the approximation of (3.49) with a maximum allowable deviation of  dB from 

the original magnitude response in the frequency band ( ),L H  is given by [93]: 

 

( )
( )

( )

( )( ) ( )
( )( ) ( )

0 1 1

0 1

1

0

0

1 1 1 1

1 1 11

i
N

N
i

F

s
s s sz
z z zi

F s s s
s p p p
p

i

H s
−

−

=

=

+ + + +
= =

+ + ++




   (3.50) 

 

where F  is the number of zeros and poles. The performance of the approximation is 

strongly dependent on its approximation parameter choice, i.e. the smaller the value of 

F the lower the system order meaning simpler approximations which imply less 

calculations to be performed. 

 

The approximation of the first pole, 0p  is given as: 

 

( )20

0 10 m

Tp p


=       (3.51) 

 

The other poles and zeros can be calculated as: 

 

( )
1

1 0 ,  0,1, , 1
i

ip p ab i F
+

+ = = −     (3.52) 

 

,  0,1, , 1i iz ap i F= = −     (3.53) 

 

where 
( )( )10 1

10
m

a

−

=  and 
( )1010 mb



=  .  
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The value of F  can be obtained as:  

 

( )
( )

max

0
log

1
log

p
F integer

ab

 
 = +
 
 

     (3.54) 

 

where max 100 200H Hf  = =  [94]. 

 

3.3.3 Oustaloup’s Realisation 

 

The Oustaloup’s realisation makes use of a recursive distribution of poles and zeros and 

is based on approximating a function of the form [93] and [95]: 

 

( ) ,  mG s s m +=      (3.55) 

 

within the frequency band ( ),L H  , by a rational transfer function of the form: 

 

( )
'

1

1

i

i

sF

s
i F

H s K


=−

 +
 =
 +
 

     (3.56) 

 

where m

HK = , 

( )1
2

1

2 1

i F m

F
H

i L

L


 



+ + +

+ 
=  

 
 and 

( )1
2

1

2 1
'

i F m

F
H

i L

L


 



+ + −

+ 
=  

 
 for 1,2, ,i F= , F  

is the order of the filter. 

 

All the segments in the asymptotes are generated by integer-order poles and 

zeros such that the slopes of the magnitude asymptotes are alternating at 0 dB/dec and 

−20 dB/dec. If an adequate number of segments is selected, the shapes of the exact 

Bode magnitude may look like a straight line in the range. Therefore, the polylines will 

approximate the straight line in a very close manner. 
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Given its advantage over the Carlson’s and Charef’s realisations and given that our 

model is a rational model, the Oustaloup’s realisation was chosen when approximating 

the continuous-time fractional-order model. 

 

In our discussion so far, we ignored the effects of the noise when identifying the ISI 

channel for the massive MIMO system, but in real life system identification the effects 

of this noise have to be considered. The next section discusses the influence of the 

additive white Gaussian noise in the fractional-order massive MIMO system 

identification. 

 

3.4 Fractional-Order System Identification with 

Measurement Noise Considered 

 

In this case, fractional-order system identification is performed having considered the 

measurement noise. Using continuous-time fractional-order state-space modelling, the 

dynamics of the linear time invariant length- L  ISI channel massive MIMO system can 

be expressed as: 

 

( ) ( ) ( )D t = t + t
x Ax Bu     (3.57a) 

( ) ( ) ( ) ( )t = t + t t+y Cx Du n     (3.57b) 

 

where ( )tx  is the 1n  state vector,  ( )tu  is the 1m  input vector, ( )ty  is the 1p  

output vector, ( )tn  is the 1p  additive white Gaussian noise vector, A  is the n n  

system matrix and it describes the dynamics of the system, i.e. the eigenvalues of the 

system, B  is the n m  input matrix and it describes the linear transformation by which 

the inputs influence the next state, C  is the p n  output matrix, and it describes how 

the state is transferred to the output, D  is the p m  feed-forward matrix,   is the 

commensurate fractional-order and D  is the fractional derivative of order  . 

 

Applying the Laplace transform to (3.57) results in: 
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( ) ( ) ( )s s s s

(s) (s) (s)+ (s)

 = +

= +

X AX BU

Y CX DU N
    (3.58) 

 

Taking the  -order derivative of (3.57b) yields: 

 

( ) ( ) ( ) ( )D t D t D t D t   = + +y C x D u n    (3.59) 

 

Substituting (3.57a) into (3.59) yields: 

 

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

D t t t D t D t

D t t t D t D t

  

  

= + + +

= + + +

y C Ax Bu D u n

y CAx CBu D u n
   (3.60) 

 

Taking the 2 -order derivative of (3.57b) and making the necessary simplifications 

yields: 

 

( ) ( ) ( ) ( ) ( )2 2 2D t D t D t D t D t    = + + +y CA x CB u D u n   (3.61) 

 

Substituting (3.57a) into (3.61) yields: 

 

( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2 2

2 2 2 2

D t t t D t D t D t

D t t t D t D t D t

   

   

= + + + +

= + + + +

y CA Ax Bu CB u D u n

y CA x CABu CB u D u n
 (3.62) 

 

Taking the 3 -order derivative of (3.57b) and making the necessary simplifications 

yields: 

 

( ) ( ) ( ) ( ) ( ) ( )3 2 2 3 3D t D t D t D t D t D t     = + + + +y CA x CAB u CB u D u n

 (3.63) 

 

Substituting (3.57a) into (3.63) yields: 
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( ) ( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

3 2 2 3 3

3 3 2 2 3 3

D t t t D t D t D t D t

D t t t D t D t D t D t

    

    

= + + + + +

= + + + + +

y CA Ax Bu CAB u CB u D u n

y CA x CA Bu CAB u CB u D u n

  (3.64) 

 

and so on till the ( )1i − -order derivative. 

 

Stacking (3.57b) and all its  -order derivatives obtained above up to order 

( )1i −  into a column vector, the input-output relationship can be written as: 

 

( )

( )

( ) ( )

( ) ( )

( )

( )

( )

( )

( )

( ) ( )

( ) ( )

( )

( )

( ) ( )

0| 1 0| 1

1 1 11 2

i ii i

i i ii i

t t

t t t

D t D t D t
t

D t D t D t

 

  

  

− −

− − −− −

        
        
        = + +
        
        
                

0 0

0

Y U N

y u nC D

y u nCA CB D
x

y u nCA CA B CB D

 
( ) ( )0| 1i t−

 (3.65) 

 

where i  is a user defined index . 

 

In compact form (3.65) can be written as: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )0| 1 0| 1 0| 1i ii i i
t t t t

  − − −
= + +Y x U N     

 (3.66) 

 

Sampling (3.66) at sampling instances 1 2, , , Nt t t  results in the following input, 

( )0| 1 ,i N−
U  output, 

( )0| 1 ,i N−
Y , noise, 

( )0| 1 ,i N−
N and state, NX  matrices: 

 

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 2

1 2

0| 1 ,

1 1 1

1 2

N

N im N

i N

i i i

N

t t t

D t D t D t

D t D t D t

  



  



−

− − −

 
 
 
 
 
  

u u u

u u u
U =

u u u

 (3.67)
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( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 2

1 2

0| 1 ,

1 1 1

1 2

N

N ip N

i N

i i i

N

t t t

D t D t D t

D t D t D t

  



  



−

− − −

 
 
 = 
 
 
  

y y y

y y y
Y

y y y

 (3.68)
 

 

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 2

1 2

0| 1 ,

1 1 1

1 2

N

N ip N

i N

i i i

N

t t t

D t D t D t

D t D t D t

  



  



−

− − −

 
 
 = 
 
 
  

n n n

n n n
N

n n n

 
(3.69)

 

 

( ) ( ) ( )1 2N Nt t t  X = x x x
 

  (3.70) 

 

Using (3.67) , (3.68), (3.69) and (3.70), equation (3.66) can then be transformed into the 

following equation [71]: 

  

( ) ( ) ( )0| 1 , 0| 1 , 0| 1 ,i N ii N i N i N  − − −
= + +Y X U N     (3.71) 

 

Equation (3.71) contains successive ( )1i − -order fractional derivatives of the input 

data, output data and noise which in most practical cases are not measured. To address 

this problem the Poisson moment functional (PMF) approach is applied, details of 

which are presented in Appendix A3. 

 

Applying PMF to (3.71), the PMF filtered input-output data and noise can be 

expressed as: 

 

( )   ( ) ( )0| 1 , 0| 1 , 0| 1 ,

r r r r

t i t N i t ti N i N i N  − − −
     = + +
     

P Y P X P U P N   (3.72) 

 

The idea is to estimate the observability matrix given the input-output data only, 

but equation (3.72) also has a noise term, 
0| ,

r

t i N
  P N  which affects the geometrical 

properties of the MOESP algorithm [15], for that reason there is need to reduce the 

effects of this noise term on the overall filtered data. To address this problem, the 
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authors in [72] proposed correlating the PMF filtered output data, ( )0| 1 ,

r

t i N−
 
 

P Y  with 

instrumental variables (IV). For this to work, the noise variables in the output must be 

uncorrelated with those of the instrumental variables and on the other hand, 

( )0| 1 ,

r

t i N−
 
 

P Y must remain undistorted. This can be achieved by partitioning the input-

output data and noise into two parts, namely the past and the future parts. The future 

output part can then be used as an observation vector, whilst the past input and output 

parts can be used as instrumental variables. The partitions can be defined as [72]:  

 

( )0| 1 ,

r

t pr

t i N r

t f

−

      =
      

P U
P U

P U
    (3.73) 

 

( )0| 1 ,

r

t pr

t i N r

t f

−

      =
      

P Y
P Y

P Y
    (3.74) 

 

( )0| 1 ,

r

t pr

t i N r

t f

−

      =
      

P N
P N

P N
    (3.75) 

 

where r

t p
  P U , r

t p
  P Y  and r

t p
  P N  denote the past input, output and noise 

respectively, and r

t f
  P U  r

t f
  P Y  and r

t f
  P N  denote the future input, output and 

noise respectively. The past data is defined for index 0  to ( )1i − , whilst the future 

data is defined for index i to ( )2 1i − . 

 

An instrumental variables matrix, V  can be constructed using the past input and 

output parts as: 

r

t p

r

t p

   
 =
    

P U
V

P Y
    (3.76) 
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Considering only the future parts, (3.72) can be rewritten as: 

 

 r r r r

t f i t N i t f t f
     = + +     P Y P X P U P N    (3.77) 

 

Equation (3.77) is then multiplied by (3.76) to help reduce the effects of the noise term 

on r

t f
  P Y , yielding: 

 

 r r r r

t f i t N i t f t f
     = + +     P Y V P X V P U V P N V   (3.78) 

 

Since the instrumental variables matrix, V  is independent of the noise term, the noise 

term in (3.78) disappears as a result of r

t f
  = P N V 0 , resulting in: 

 

 r r r

t f i t N i t f
   = +   P Y V P X V P U V    (3.79) 

 

Having addressed the issue with the noise term, the observability matrix can 

now be obtained using LQ decomposition and SVD. In (3.57b), given that additive 

white Gaussian noise is considered, the instrumental variables are chosen to follow the 

past output multiple-input multiple-output output-error state space (PO-MOESP) 

algorithm when computing the LQ decomposition and SVD of the filtered input-output 

data as follows [73]: 

 

Applying the LQ decomposition to matrix (3.79) yields [74]: 

 

11 1

21 22 2

31 32 33 3

41 42 43 44 4

r

t f

r

t p

r

t p

r

t f

        
            =
           

      

P U
L 0 0 0 Q

P U L L 0 0 Q

L L L 0 QP Y

L L L L Q
P Y

   (3.80) 

 

where 11 22,  im imL L , 
33 44, ip ipL L  are lower triangular matrices, and 

1 2, N imQ Q  , 
3 4,  N ipQ Q  are orthogonal matrices. 
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Using (3.80) the SVD of  42 43L L  is computed as: 

 

    1 1

42 43 1 2

2

H

H

  
=   

   

S 0 V
L L U U

0 0 V    (3.81)
 

 

where 1S  is a diagonal matrix containing the singular values different from zero and the 

order of the system, n  can be estimated from 1S  as the number of singular values 

different from zero. 

 

The extended observability matrix, i  can then be estimated from (3.81) as: 

 

1
2

1 1
ˆ

i =U S      (3.82) 

 

The procedure for estimating matrices A , B , C  and D  is as discussed for the MOESP 

algorithm. 

 

Having presented a discussion on the fractional-order MOESP and fractional-

order PO-MOESP algorithms for the massive MIMO system, the next step is to study 

the performance of these algorithms. The following section presents the MATLAB 

simulation results and analysis of these algorithms having been applied to the massive 

MIMO system. 

 

3.5 Simulation Results 

 

The simulations were run in MATLAB having considered the input signal, ( )tu  to be a 

chirp signal with frequency ranging from 20Hz to 20 kHz with a sampling frequency 

twice the highest frequency range, which is a persistently excitation signal. This 

frequency range was chosen so as to cover the range of audible frequencies for humans. 

The chirp excitation signal is shown in Figure 3.2 The fractional-order   was chosen to 

be 0.1 = . This is because for fractional-orders greater than 0.1 =  the system proved 
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to be unstable, i.e. the system did not did not meet the stability criteria for fractional-

order systems as stated in (3.7) and (3.8). Given that we assumed zero initial conditions 

for our fractional-order model, the Riemann-Liouville definition was chosen for our 

simulations. 

 

 

Figure 3. 2: Chirp signal for the input 

 

Through our simulations we noted that not all these data points are needed for 

system identification. As a result, we reduced the number of data points needed to 

identify the massive MIMO system, and Figure 3.3 shows the reduced length input 

signal on each transmitting antenna we used for system identification. 
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Figure 3. 3: Plot of input data 

 

In the continuous-time fractional-order system identification algorithm the data set was 

divided into estimation data and validation data, where the estimation data was the first 

half of the data set and the second half was the validation data. The estimation data was 

used to estimate the system model and the estimated model was verified using the 

validation data. The fractional-order MOESP system identification algorithm was based 

on the parameters in Table 3.1  
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Table 3. 1: System model and system identification parameters for fractional-order 

model 

Symbol Description Value 

Tx  Number of transmitting antennas 100 

Rx  Number of receiving antennas 1 

n  Initialising model order 1 

t  Sampling time 0.1s 

i  User defined index 3 

N  Number of samples 2001 

  Fractional-order 0.1 

estN  Estimation data 1000 

valN  Validation data 1000 

dBSNR  Signal-to-noise ratio 20 

L  Number of channel paths 3 

r  Poisson filter order 8 

  Poisson filter gain 1 

  Poisson filter constant 1 

 

3.5.1 Selection of Identification Parameters 

 

In system identification the performance of the model depends on how much data is 

available to describe the system and whether the sampling time is good enough to 

capture the dynamics of the system. In our simulations, the sampling time was varied 

between different sampling times and sampling time, 0.1t s =  was identified as the 

sampling time that could reliably capture the system dynamics. The user defined index, 

i  was selected to be seven as for lower values of i  the dynamics of the massive MIMO 

system could not be well captured. The selection of the PMF filter order, r  was based 

on the criteria defined in (A3.32) and the selection of the Poisson filter gain,   and 

Poisson filter constant,   was based on the criteria defined in (A3.33), where for 

simplicity we assumed that, 1 = = . 
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The fractional-order system identification was implemented in MATLAB and 

the results are shown in Figure 3.4. 

 

 

Figure 3. 4: Comparing the performance of the system output obtained using the 

fractional-order MOESP algorithm for 0.1 =  and the actual system output 

 

We then zoomed in to show a clear picture of our results and Figure 3.5 shows the 

zoomed in results comparing the fractional-order MOESP algorithm estimated output 

for 0.1 =  and the actual system output. 
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Figure 3. 5: Comparing the performance of the system output obtained using the 

fractional-order MOESP algorithm for 0.1 =  and the actual system output (zoomed in 

results) 

 

These results show that the fractional-order MOESP algorithm can actually be used to 

identify the dynamics of the massive MIMO system when the appropriate fractional-

order   value is selected. The estimated fractional-order output was then compared 

with the measured output/ actual output, and the measure of accuracy of the proposed 

model is expressed as the MSE: 

 

( ) ( )
2

1

1
ˆ

N

t

MSE t t
N


=

= − y y     (3.85) 

 

where N  is the number of samples and ( )ˆ ty  is the fractional-order estimated output. 

 

Comparing the output of the fractional-order MOESP identified system and the 

measured output/ actual output, gives a MSE of 0.0455. 

 

The simulation results thus far have ignored the effects of the noise when 

identifying the dynamics of the massive MIMO system. The next set of results take into 

consideration the effects of the measurement noise in fractional-order system 

identification, and to handle this we used the fractional-order PO-MOESP identification 
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algorithm. Figure 3.6 shows the performance results of the fractional-order PO-MOESP 

system identification algorithm 

 

 

Figure 3. 6: Comparing the performance of the system output obtained using the 

fractional-order PO-MOESP algorithm for 0.1 =  and the actual system output 

 

We then zoomed in to show a clear picture of our results and Figure 3.7 shows the 

zoomed in results comparing the fractional-order PO-MOESP algorithm estimated 

output for 0.1 =  and the actual system output. 
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Figure 3. 7: Comparing the performance of the system output obtained using the 

fractional-order PO-MOESP algorithm for 0.1 =  and the actual system output 

(zoomed in results) 

 

Figure 3.8 shows the zoomed in performance results of the fractional-order MOESP 

system identification algorithm, fractional-order PO-MOESP system identification 

algorithm for 0.1 =  and the actual system output. 

 

 

Figure 3. 8: Comparing the performance of the system output obtained using the 

fractional-order MOESP algorithm, fractional-order PO-MOESP algorithm for 0.1 =  

and the actual system output (zoomed in results) 
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The fractional-order PO-MOESP identified system was then compared with the 

measured output/ actual output in terms of the MSE, giving a MSE of 44.3218 10− . 

These results show an improvement in system identification with the use of the 

fractional-order PO-MOESP algorithm. This is because of the introduction of the 

instrumental variables which help reduce the effects of the noise in the system. 

 

Next we present the fractional-order identification results using the fractioal-

order realisations / integer-order approximation Given the advantage of the Oustaloup’s 

realisation over the Carlson’s and Charef’s realisations and given that our model is a 

rational model, the Oustaloup’s realisation was chosen when approximating the 

continuous-time fractional-order model. The simulation parameters for the Oustaloup’s 

realisation are shown in Table 3.2. 

 

Table 3. 2: Simulation parameters for the Oustaloup’s realisation 

Symbol Description Value 

F  Order of filter 1 

  Fractional-order 0.1 

L  Lower frequency limit 17750 

H  Upper frequency limit 20000 

 

The fractional-order   was chosen to be the same value as the one used in the 

analytical solution of the fractional-order system model. The values of the lower and 

upper frequencies for the Oustaloup’s realisation were varied to find a system model 

which gives the best prediction. The number of iterations, F  in the Oustaloup’s 

realisation was selected to be the lowest possible value. Figure 3.9 shows the 

performance of the Oustaloup’s realisation compared to the measured output/ actual 

output giving a MSE of 0.0440. 
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Figure 3. 9: Comparing the performance of the system output obtained using the 

Oustaloup’s realisation for 0.1 =  and the actual system output 

 

We then zoomed in to show a clear picture of our results and Figure 3.10 shows the 

zoomed in results comparing the Oustaloup’s realisation for 0.1 =  and the actual 

system output. 

 

 

Figure 3. 10: Comparing the performance of the system output obtained using the 

Oustaloup’s realisation for 0.1 =  and the actual system output 
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Figure 3.10 shows that with the right selection of the Oustaloup parameters the 

fractional-order algorithm can be used to estimate the continuous-time massive MIMO 

system. 

 

3.6 Summary 

 

This chapter presented the continuous-time MOESP fractional-order system 

identification algorithm to identify the massive MIMO frequency-selective wireless 

channels. Here the Rienmann-Liouville definition had to be used to help transform the 

input-output data to fractional-order derivatives of order  . Given that the fractional-

order time-derivatives of the input-output data are generally not measured meaning that 

the input-output matrices are not known and as a result the classical subspace methods 

originally developed for the identification of discrete-time models cannot be directly 

adapted for the identification of continuous-time fractional-order models. To address 

this problem the Poisson moment functional (PMF) approach was used when dealing 

with continuous-time fractional-order system identification. The fractional-order input-

output data was filtered using the PMF filter after which the MOESP identification 

algorithm outlined for discrete-time system identification was then applied to the PMF 

filtered input-output data. Analytical modelling was carried out in MATLAB to identify 

the massive MIMO system using the proposed algorithm.  

 

The MATLAB simulations were then extended to include the effects of noise 

when identifying the dynamics of the massive MIMO system. To try to reduce the 

effects of noise in the identification process, the fractional-order PO-MOESP algorithm 

was considered. This introduces instrumental variables which play a great role in 

reducing the effects of noise that occur in the system.  

 

The simulation results showed that the proposed continuous-time fractional-

order MOESP system identification algorithm can actually be used to identify the 

dynamics of the massive MIMO system. Due to the challenge of dealing with transfer 

functions such as (3.29) we extended our discussion to the use of rational transfer 

functions that can be used to approximate these fractional-order transfer functions. This 

means that whenever there is a fractional-order transfer function in system 
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identification there is need to replace it with an easier to handle approximate rational 

transfer function. Given its advantage over the Carlson’s and Charef’s realisations, the 

Oustaloup’s realisation was chosen when approximating the continuous-time fractional-

order model. The performance of the Oustaloup realisation was studied with the help of 

MATLAB simulations and it was found to be a very close match to representing the 

massive MIMO system. This also showed that the approximate methods mainly the 

Oustaloup’s method can also be used to identify the dynamics of the massive MIMO 

system. 
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Appendix A3 

 

A3.1 Special Functions 

 

Some important functions that are usually encountered in fractional-order calculus are 

discussed below but are not limited to these. 

 

A3.1.1 Gamma Function 

 

The Gamma function is important because all fractional-order calculus definitions are 

based on it. It is written as [96]: 

 

( ) 1

0

u xx e u du



− − =      (A3.1) 

 

Some useful properties of the Gamma function are [75]: 

 

( ) ( )1x x x + =      (A3.2) 

 

( )1 !x x + =      (A3.3) 

 

( )

( )
( )

1
1

1

d
x x

dx


  






 

−
 +

= =  +
 − +

  (A3.4) 

 

A3.1.2 Mittag-Leffler Function 

 

The Mittag-Leffler function is a direct extension of the exponential function which 

plays an important role in the solution of fractional differential calculus as the 

exponential function does in ordinary differential calculus [97]. The simplest form of 
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the Mittag-Leffler function is the Mittag-Leffler function with one parameter, written as 

[98]: 

 

( )
( )0

,  0
1

k

k

x
E x

k
 





=

= 
 +

   (A3.5) 

 

The two parameter form of the Mittag-Leffler function are as follows [99]: 

 

( )
( )

,

0

,  0, 0
k

k

x
E x

k
   

 



=

=  
 +

   (A3.6) 

 

If 1 =  the Mittag-Leffler function with two parameters, i.e. (A3.6) is similar to the 

one with one parameter, i.e.: 

 

( ) ( ),1E x E x =     (A3.7) 

 

Some properties of the Mittag-Leffler function can be written as: 

 

( )1,1

xE x e=      (A3.8) 

 

( )1,2

1xe
E x

x

−
=     (A3.9) 

 

A3.2 Properties of Fractional-Order Calculus 

 

Just like in integer-order calculus, the Laplace transform can also be applied to 

fractional-order calculus. The integration property is one useful property when dealing 

with fractional-order calculus, and is written as [75]: 

 

( ) ( )0

1
, 0tL D f t F s

s




−  =      (A3.10) 
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where D −  defines fractional integration if   is negative and 0  is the initial time 

instant. 

 

The  th order integral of a function ( )f t  is written as [100]: 

 

( ) ( )
( )

( )
( )

( ) ( )
1

1

0

1
,  0,  0

t
t

D f t I f t f t t f d t


     
 

−
−− = =  = −  

    

 (A3.11) 

 

where I  is the fractional-order integral operator. 

 

Using convolution, (A3.11) can be rewritten as: 

 

( ) ( ) ( ),  0I f t t f t

 =      (A3.12) 

 

where ( )
( )

1t
t






−

 =


 

 

The integration property can also be interpreted as the Laplace transform of a time-

domain convolution and is written as [86]: 

 

( )
( )

( ) ( )
1

0

1
, 0t

t
L D f t L f t F s

s









−
−

 
  =  =     

  (A3.13) 

 

The differentiation property is another useful property when dealing with fractional-

order calculus and when the initial conditions are zero it is expressed as [75]: 

 

( ) ( )0 , 0tL D f t s F s    =     (A3.14) 

 

When the initial conditions are non-zero, the differentiation property in fractional-order 

calculus is expressed in a similar way as in integer-order calculus as [101]: 
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( ) ( ) ( ) ( ) ( )1 2 ' 1

0 0 0 0n n

tL D f t s F s s f s f s f    − − − −  = − − − −    (A3.15a) 

 

( ) ( ) ( )
1

1

0

0

0
n

n n

t

k

L D f t s F s s f  
−

− −

=

  = −     (A3.15b) 

 

Fractional differentiation and fractional integration are linear operations [101]: 

 

( ) ( )( ) ( )( ) ( )( ) ( ) ( )0 0 0 ,  , , ,t t tD af t bg t a D f t b D g t a b f t g t  + = +   (A3.16) 

 

The additive index law (semigroup property) 

  

( ) ( ) ( )0 0 0 0 0t t t t tD D f t D D f t D f t     += =    (A3.17) 

 

holds under zero initial condition. 

 

A3.3 Definitions of Fractional-Order Calculus 

 

In comparison to the derivative operator for integer-order, i.e. 
d

D
dt

= , the fractional-

order derivative operator can be denoted as:  

 

d
D

dt





=      (A3.18) 

 

where   [76] Since analytical solutions of fractional-order differentiations and 

integrals are complicated, the authors in [102] proposed more simplied methods when 

dealing with fractional-order calculus. The commonly used definitions to solve 

fractional-order differentiations and integral are the Riemann-Liouville, Grünwald-

Letnikov and Caputo definitions listed below. 
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The Riemann-Liouville and Grünwald-Letnikov definitions are more suitable to 

describe fractional-order calculus problems with zero-initial conditions whilst the 

Caputo definition is useful in discussing systems with nonzero initial conditions [86]. 

 

A3.3.1 The Grünwald-Letnikov Definition 

 

The  th order Grünwald-Letnikov (G-L) derivative of a function ( )f t  is written as 

[103] and [8] : 

 

( ) ( ) ( )
( )0

0

/

0
0

1
lim 1

t t h
jGL

t t
h

j

D f t f t jh
jh





 − 

→
=

 
= − − 

 
   (A3.19) 

 

where 
( )

( ) ( )

1

1 1j j j

 



 + 
= 
 +  − + 

, the notation GL indicates “Grünwald-Letnikov 

definition”,  the operator D  defines fractional differentiation or integration depending 

on the sign of  . If   is negative then D −  will define fractional integration, and if   

is positive then D  will define fractional differentiation, ( )  is the Euler’s Gamma 

function,  means to round off to the nearest integer, 0t  is the initial time instant and 

h is the finite sampling interval. 

 

A3.3.2 The Riemann-Liouville Definition 

 

The  th order Riemann-Liouville (R-L) derivative of a function ( )f t  is written as [75] 

and [8]: 

 

( ) ( ) ( )
0 0

n
nRL RL

t t t tn

d
D f t D f t

dt

 − − =
 

   (A3.20a) 

 

( )
( )

( )

( )0

0

1

1
tn

RL

t t nn

t

fd
D f t d

n dt t








 
+ −

 
=  

  − − 
   (A3.20b) 
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where the notation RL indicates “Riemann-Liouville definition”, n  is an integer such 

that 1n n−    and 0t  is the initial time instant. 

 

The Riemann-Liouville definition first carries out the fractional-order 

integration of function ( )f t  before applying the integer-order derivative to the result. 

Since in the Riemann-Liouville definition there is fractional-order integration, and this 

calls for the need to define the Riemann-Liouville fractional-order integration, which 

according to [103] and [8] is expressed as: 

 

( )
( )

( )

( )0

0

1

1
t

RL

t t

t

f
D f t d

t








 

−

−
=
 −

    (A3.21) 

 

where 0 1  . 

 

A3.3.3 The Caputo Definition 

 

Caputo derivatives are useful in discussing systems with nonzero initial conditions 

[104]. The  th order Caputo (C) derivative of a function ( )f t  is written as [75]: 

 

( )
( )

( ) ( )

( )0

0

1

1
nt

C

t t n

t

f
D f t d

n t








 
+ −

=
 − −

   (A3.22) 

 

where the notation C indicates “Caputo definition”. The Caputo definition first carries 

out the integer-order differentiation of function ( )f t  before applying the fractional-

order integration to the result. Since in the Caputo definition there is fractional-order 

integration, and this calls for the need to define the Caputo fractional-order integration, 

which according to [105] is written as: 

 

( )
( )

( )

( )0

0

1

1
t

C

t t

t

f
D f t d

t








 

−

−
=
 −

    (A3.23) 
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A3.4 The Poisson Moment Functional Filtering for 

Continuous-Time Fractional-Order System Identification 

 

To handle the estimation of 
( )0| 1 ,i N−

U  and 
( )0| 1 ,i N−

Y  the PMF transform of order r is 

applied to (3.20), resulting in: 

 

( )   ( )0| 1 , 0| 1 ,

r r r

t i t N i ti N i N − −
   = +
   

P Y P X P U    (A3.24) 

 

where ( )r

t D g t  P  is the r th order PMF transform of signal ( )D g t
 at time instant t  

and is given by the following convolution product [70]: 

 

( ) ( ) ( ) ( ) ( )
0

t

r

t r rD g t D g t p t D g p t d       =  = −  P   (A3.25) 

 

where ( )rp t  is the r th order Poisson pulse function expressed as: 

 

( )
1

!

r r t

r

t e
p t

r

 + −

=     (A3.26) 

 

where r , r i , whereby i  is the user-defined index and  +  and  +  are 

the Poisson filter constant and gain respectively. 

 

The r th order PMF of ( )D g t
 can be measured as the output at time instant t  

of a cascaded low-pass filter chain of ( )1r +  identical stages, each with a transfer 

function expressed as [70]: 

 

( )rP s
s





 
=  

+ 
    (A3.27) 

 

According to [71], if we consider two  th differentiable functions ( )g t  and ( )f t , then  
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1g t D f t L G s s F s L s G s F s D g t f t   − −    = = =      (A3.28) 

 

In (A3.28) it can be seen that the  th order derivative of ( )f t  can be 

transmitted to the  th order derivative of ( )g t  and vice-versa. Applying the property of 

(A3.28) to the ( )1i − -order fractional derivatives of the input data, the following 

PMF based filtered input data is obtained: 
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   (A3.29) 

 

where ( )f t  in (A3.28) is replaced by ( )tu .  

 

In (A3.29) the  th order derivatives of ( )g t  can be easily obtained using the Riemann–

Liouville, Grünwald–Letnikov or Caputo definitions. Applying the property of (A3.28) 

to the ( )1i − -order fractional derivatives of the output data and the noise, the 

following PMF based filtered output data and noise is obtained: 

 

( )

( ) ( )

( ) ( )

( ) ( ) ( )

0| 1 ,

1

r

t i N

i

g t t

D g t t

D g t t







−

−

 
 

   =
   

 
  

y

y
P Y

y

   (A3.30) 

and 
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respectively. 

 

According to [62] the PMF filter order and the PMF filter parameters are chosen as 

follows: 

 

The PMF filter order, r  must respect the following condition: 

 

r i       (A3.32) 

 

and for the PMF filter parameters, it is generally assumed that: 

 

 =       (A3.33) 

 

This assumption helps to reduce the number of design parameters. 
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Chapter 4  

 

Massive MIMO Channel Equalization Using Integer-

Order State-Space Models 

 

4.1 Introduction 

 

Channel equalization as a means of mitigating the effects of inter-symbol interference 

(ISI) caused by the massive multiple-input multiple-output (MIMO) frequency-selective 

wireless channels is discussed in this chapter. The equalization technique employed in 

our work takes from works by Zhang and Bitmead [106], Zhang and Bitmead [107] and 

Al-Dhahir and Sayed [108] where they proposed the use of the minimum mean square 

error – decision feedback equalizer (MMSE-DFE) to combat the effects of ISI in a 

multiple-input multiple-output (MIMO) system. The choice of the MMSE-DFE is that it 

benefits from both the advantages of the MMSE and the DF equalizers.  

 

The input-output block data in the integer-order state-space equalization model is 

presented just like in the extensively studied FIR equalization model. The length of 

input-output block data is dependent on the number of feedforward filter taps used in 

the construction of the equalizer. This similarity in presentation will allow for the 

design of the integer-order state-space equalization model to be just a modification of 

the already widely studied FIR equalization model. Unlike in most studies where the 

feedback filter coefficients are calculated independent of the feedforward filter 

coefficients, and then using some relationship to find one from the other, in this study 

we will jointly calculate the feedforward and feedback filter coefficients using a 

technique outlined in [106]. The performance of channel equalization using state-space 

modelling will then be compared with the channel equalization for the finite impulse 

response (FIR) model. 
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4.2 Inter-Symbol Interference  

 

As the signal is transmitted through the communication channel it can suffer from inter-

symbol interference (ISI) which is caused by multipath propagation or frequency-

selective channels. Frequency selective channels are those channels where the 

transmitted signals are subjected to variations in amplitude and phase as they propagate 

through the transmission medium. In frequency selective channels different frequency 

components of the transmitted signal experience different fading magnitudes. In this the 

coherence bandwidth of the channel is smaller than the bandwidth of the transmitted 

signal. But in flat fading channels, the different frequency components of the 

transmitted signal suffer the same fading magnitude. In this the coherence bandwidth of 

the channel is larger than the bandwidth of the signal. ISI is when the receiver receives 

the desired signal and in addition to that it also receives multiple versions of the desired 

signal with different delays. 

 

Considering Figure 4.1, in an ideal situation the transmitted signal (which is 

made up of several symbols) doesn’t suffer any reflection or refraction and as a result 

the receiver only receives one version (A) of the transmitted symbols (S1, S2, S3 and 

S4) [109]. 

 

 

Figure 4. 1: Ideal transmission 

 

But in real life situation the transmitted symbols can be reflected or refracted on trees, 

building, cars and other different objects resulting in the transmitted symbols reaching 

the receiver via multiple paths. These multiple paths can be of different lengths, i.e. one 
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path can take longer time than the other, which results in the different versions of the 

transmitted symbols arriving at the receiver at different times. These delays in arrival 

mean that part or all of a given symbol can spread into the subsequent symbols. Figure 

4.2 shows the receiver receiving the desired transmitted symbols, A and several 

versions of the transmitted symbols, B and C [109]. 

 

 

Figure 4. 2: Real transmission 

 

At the receiver end, the different versions of the transmitted symbols, i.e. A, B 

and C are then summed up resulting in signal 1 as shown in Figure 4.3. Here there is an 

overlap in the summed-up symbols thus causing ISI. For example in signal 1, symbol 

S1 is interfered with by symbol S2 and symbol S3 [109]. 

 

 

Figure 4. 3: Effects of inter-symbol interference (ISI) 
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Generally speaking in a system where there are length- L  ISI channel paths, the 

received signal, ( )y t  taking ISI into consideration can be written as: 

 

( ) ( ) ( ) ( ) ( ) ( )0 1 2

noisedesired signal ISI signal

1 2 Ly t h u t h u t h u t h u t L n t= + − + − + − +   (4.1) 

 

where 0h  is the unreflected or unrefracted channel path, 1 2, Lh h h  are the different 

reflected or refracted multiple paths, ( )u t  is the transmitted signal, 

( ) ( ) ( )1 , 2u t u t u t L− − −  are the delayed versions of the transmitted signal. The 

block diagram of a multipath fading channel is shown in Figure 4.4 [110]. 

 

 

Figure 4. 4: Block diagram of a multipath fading channel 

 

where   denotes the delay. 

 

4.3 Channel Equalization 

 

Equalization is the process of removing the effects of inter-symbol interference (ISI) 

and noise on the received signal thus allowing for better recovery of the originally 

transmitted symbols at the receiver end [111]. The idea with equalization is to reduce 

the mean square error (MSE), i.e. the difference between the desired transmitted 

symbols and the signal at the output of the equalizer. 

 

Equalizers can be classified into linear and nonlinear equalizers as shown in 

Figure 4.5. Linear equalizers are simple and easy to implement. The transfer function of 
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linear equalizers can be thought of as the inverse transfer function of the 

communication channel. Linear equalizers usually don’t have a feedback path to change 

the subsequent outputs of the equalizer and these may include matched filter (MF), zero 

forcing (ZF) and minimum mean square error (MMSE) equalizers. Nonlinear equalizers 

are usually needed when the channel suffers from too much distortion that cannot be 

easily mitigated by linear equalizers [111]. Nonlinear equalizers usually have a 

feedback path to change the subsequent outputs of the equalizer and may include 

decision-feedback (DF) and maximum likelihood sequence estimation (MLSE) 

equalizers [112]. Equalizers can be further classified into non-adaptive and adaptive 

equalizers. Non-adaptive equalizers are ideal when the channel is static or time-

invariant and adaptive equalizers are ideal when the channel is time varying. 

 

 

Figure 4. 5: Summary of linear and nonlinear equalizers 

 

We begin our discussion on equalizers by first having a look at linear equalizers 

whose block diagram is as shown in Figure 4.6 [113], where u  is the transmitted signal, 

H  is the channel matrix, n  is the additive noise at the receiver, y  is the received 

signal, W  is the equalizer matrix which is also referred to as the equalizer coefficients, 

û  is the recovered transmitted signal after equalization, e  is the recovered transmitted 

signal error vector and MSE is the mean square error which is the common measure of 

quality in communication. 
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Figure 4. 6: Block diagram for linear equalizers 

 

In analysing the following equalizers a communication system with the following 

received signal is considered: 

 

= +y Hu n      (4.2) 

 

Under linear equalization the first equalizer to be discussed is the matched filter (MF) 

equalizer. 

 

4.3.1 Matched Filter Equalizer 

 

Matched filter equalizers maximise the signal-to-noise ratio (SNR) but do not 

necessarily cancel the inter-symbol interference, i.e. they are optimal with respect to 

noise, but ignore the ISI. In time domain the matched filter is a time-reversed and 

conjugated version of the ISI channel [114]. 

With reference to (4.2), the matched filter equalizer coefficients MFW  can be written as: 

 

H

MFW = H      (4.3) 

 

where  
H

 is the Hermitian matrix. 
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Applying the MF equalizer to the received signal (4.2), the recovered 

transmitted signal after MF equalization, ˆ
MFu  can then be expressed as: 

 

( )ˆ H H H H

MF MF= = + = +u W y = H y H Hu n H Hu H n   (4.4) 

 

The recovered transmitted signal error vector after the MF equalizer, MFe  is 

given by: 

 

ˆ H H

MF MF − = + −e u u H Hu H n u     (4.5) 

 

At the output of the MF equalizer the signal-to-noise ratio (SNR), MFSNR  can be 

written as [115] and [116]: 

 

H H

MF H
SNR SNR=

H HH H

H H
    (4.6) 

 

The next linear equalizer to discuss is the zero forcing (ZF) equalizer. 

 

4.3.2 Zero Forcing Equalizer 

 

Zero forcing equalizers minimise the ISI but at the cost of probably enhancing the 

noise, i.e. it is optimal with respect to ISI but ignores the noise. The zero forcing 

equalizer is the pseudo inverse of the channel matrix, H  in (4.2) and the zero forcing 

equalizer coefficients ZFW  can be expressed as [117]: 

 

( )
1

† H H

ZF

−

= =W H H H H     (4.7) 

 

Applying the ZF equalizer to the received signal (4.2), the recovered transmitted 

signal after ZF equalization, ˆ
ZFu  can then be expressed as: 
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( ) ( )
1 1

†ˆ H H H H

ZF ZF

− −

= = +u W y = H y = H H H y u H H H n   (4.8) 

 

The recovered transmitted signal error vector after the ZF equalizer, ZFe  is given by: 

 

( )
1

ˆ H H

ZF ZF

−

− =e u u H H H n    (4.9) 

 

According to [117] the SNR at the output of the ZF equalizer for data stream k , 

,ZF kSNR  can be written as: 

 

( )
, 1

,

1
ZF k

H

k k

SNR SNR
−

=
 
  

H H

   (4.10) 

 

where k  ranges from one to total number of transmit antennas, i.e. 1,2, ,k m= , and 

 
,k k

 denotes the k th diagonal element. 

 

The last linear equalizer to consider is the minimum mean square error (MMSE) 

equalizer. 

 

4.3.3 Minimum Mean Square Error Equalizer 

 

The MMSE equalizer does not completely eliminate the ISI but instead minimises the 

ISI and the noise power at the output of the equalizer [118]. MMSE equalizers provide 

a trade-off between ISI cancellation and probable noise enhancement, i.e. it optimally 

weighs both the ISI and noise. 

 

The MMSE equalizer minimises the MSE (mean square error) of the received signal. 

Since the MSE is the common measure of the quality, a lower value of MSE means a 

good equalizer and a high value of MSE implies the equalizer is not so good. In this 

case the MSE is given as: 
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2
ˆ H

MMSEMSE E E   = − =   
u u ee    (4.11) 

 

where ˆ
MMSE−e = u u  is the estimation error vector and ˆ

MMSEu  is the MMSE estimate of 

u  or the recovered transmitted signal after MMSE equalization whose expression is 

given in (4.13) below. 

 

In MMSE equalization the MMSE equalizer coefficients MMSEW  are chosen to 

satisfy the following minimization problem: 

 

2

arg min

ˆarg min

arg min

MMSE

MMSE MMSE

H

MMSE

MSE

E

E

=

 = −
 

 =  

W

W u u

W ee

   (4.12) 

 

The recovered transmitted signal after the MMSE equalizer, ˆ
MMSEu  can be expressed as:  

 

ˆ
MMSE MMSE=u W y     (4.13) 

 

Using the orthogonality principle which states that HE   =  0ey  [110] the MMSE 

equalizer coefficients MMSEW  can be derived as follows: 

 

( )ˆH H

MMSEE E   = − =    0ey u u y    (4.14a) 

 

( ) H

MMSEE  − =  0u W y y     (4.14b) 

 

H H

MMSEE  − =  0uy W yy     (4.14c) 

 

uy yy

H H

MMSEE E   − =    0

R R

uy W yy    (4.14d) 
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uy MMSE yy− = 0R W R      (4.14e) 

 

where uyR  is the cross-correlation matrix of u  and y , and yyR  is the auto-correlation 

matrix of y . 

 

Using (4.14e), the MMSE equalizer coefficients MMSEW  can then be written as: 

 

1

MMSE uy yy

−=W R R     (4.15) 

 

uyR  in (4.15) can be expanded as follows: 

 

( )
HH H H H H H H

uy E E E E E        = = + = + = +        
0

R uy u Hu n uu H un uu H un

 (4.16a) 

 

H H H

uy uuE  = = R uu H R H    (4.16b) 

 

where uuR  is the auto-correlation matrix of u  and is written as:  

 

uu sE=R I      (4.17) 

 

where sE  is the power of the transmitted signal and I  is the identity matrix. 

 

In turn yyR  in (4.15) can be expanded as follows: 

 

( )( )
HH H H H H H H

yy E E E    = = + + = + + +    
R yy Hu n Hu n Huu H Hun nu H nn (4.

18a) 

 

H H H H H H

yy E E E E       = + + +       
0 0

R Huu H Hun nu H nn   (4.18b) 
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H

yy uu nn= +R HR H R      (4.18c) 

 

where nnR  is the auto-correlation matrix of n  and is written as:  

 

0nn N=R I      (4.19) 

 

where 0N  is the noise power at the receiver end and I  is the identity matrix. 

 

Substituting (4.16b) and (4.18c) into (4.15), the MMSE equalizer coefficients MMSEW  

can be rewritten as: 

 

1

1 1H H

MMSE uy yy
SNR

−

−  
= =  

 
W R R H H + I H    (4.20) 

 

According to [117] the SNR at the output of the MMSE equalizer for data 

stream k , 
,MMSE kSNR  can be written as: 

 

, 1

,

1
1

MMSE k

H

k k

SNR
SNR

SNR

−
= −
 
 
 

H H + I

   (4.21) 

 

where k  ranges from one to total number of transmit antennas, i.e. 1,2, ,k m=  and 

 
,k k

 denotes the k th diagonal element. The MMSE equalizer is a better performing 

linear equalizer [114], but its performance is affected when the channels suffer from 

severe ISI. To address this shortcoming of the linear equalizers the discussion on 

equalizers is then extended to nonlinear equalizers namely the decision feedback 

equalizers (DFE). 
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4.3.4. Decision Feedback Equalizer 

 

In linear equalization the linear equalizers (filters) may introduce additional noise 

variance to the output signal thus leading to degraded system performance. This 

drawback of linear equalizers can be avoided by using the decision feedback equalizer 

(DFE). The DFE consists of feedforward and feedback filters [119]. The feedforward 

filter reduces the effect of ISI from future symbols, i.e. the feedforward filter is similar 

to the linear equalizers previously discussed whilst the feedback filter reduces the effect 

of ISI from past symbols [120]. The effect of the previous symbol on the current 

symbol is called post-cursor ISI and the effect of the next symbol on the current symbol 

is called pre-cursor ISI. Since the DFE can only estimate the post-cursors, typically it 

needs to be used in combination with a linear equalizer [121]. The decision feedback 

equalizers have noise reduction as compared to the linear equalizers which suffer from 

noise enhancement [122]. The disadvantages of decision feedback equalizers are their 

complexity compared to linear equalizers and the error propagation in the feedback 

loop, especially if the detection has not been done correctly. To avoid the problem of 

error propagation, it is assumed that no erroneous decisions are passed into the feedback 

filter. 

 

Just like in the case of linear equalizers, a communication system with received 

signal (4.2) is considered when analysing the DFE. The DFE block diagram is as shown 

in Figure 4.7 [123]. 

 

 

Figure 4. 7: Block diagram for DFE 
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The DFE uses the already detected or estimated symbols to minimise their interference 

from future symbols [124]. That is, the interference on the current symbol that was 

caused by previous symbols is subtracted. The received signal y  is passed through a 

feedforward filter, F  .The role of the feedforward filter is to minimise the effects of the 

ISI and also of the noise from future symbols [125]. The signal is then passed through a 

detector to obtain an estimate of the originally transmitted signal, 0û .The detector 

chooses symbol, is  from the set of S  possible symbols  ,  0, , 1is i S= −  transmitted 

over the channel such that the error between the chosen symbol and the transmitted 

symbol is minimised [126]. The nonlinearity of the DFE arises from the inclusion of the 

detector in the feedback loop which has nonlinear characteristics [127]. Detectors may 

include the least squares (LS) detector, minimum mean square error (MMSE) detector, 

maximum likelihood (ML) detector, maximum á posteriori (MAP) detector, etc. After 

detection the detected symbols are fed back to the DFE through the feedback filter, B . 

The role of the feedback filter is to minimise ISI that arises from the previously 

detected symbols [125]. The fed back symbols are then subtracted from the incoming 

symbols to help minimise the effects of the previously detected symbols from the 

incoming signal. DFE is based on the principle that once you have estimated the current 

transmitted symbol, you can exactly remove the ISI contribution of that symbol to 

future received symbols.  

 

Considering the DFE, the communication over the effective channel can be expressed 

as [128]:  
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which can be written more compactly as: 

 

( ) ( ) ( )t t t= +Y QU N
 

(4.23)
 

 

where T

 

is the feedforward filter length and L

 

the feedback filter length. 

 

In the DFE, the feedforward filter, F  and feeddback filter, B coefficients need to be 

calculated with respect to the channel matrix Q  [129]]. 

 

The signal at the output of the feedforward filter, z  is expressed as: 

 

H
z = F y      (4.23) 

 

where F  represents the feedforward filter coefficients.  

 

The signal at the output of the feedback filter, r  is expressed as: 

 

0
ˆH

r = B u      (4.24) 

 

where B  represents the feedback filter coefficients and 0û  the previously detected 

symbol. 

 

The signal from the output of the feedback filter, r  is then subtracted from the 

incoming signal at the output of the feedforward filter, z  to obtain the signal at the 

output of the DFE, v  as: 

 

0
ˆH H= − = −v z r F y B u     (4.25) 

 

This signal is a linear combination of the current symbols and the past symbols of the 

received signal, y  and previous detected symbols of 0û  [127]. Signal v  is then passed 

through the detector to obtain an estimate of the original transmitted signal. Assuming 
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correct detection of previous symbols, the estimation error vector between the symbols 

at the output of the detector and the transmitted symbols is written as: 

 

0 −e = u v      (4.26) 

 

0

H H−e = B u F y     (4.27) 

 

where 0u  is the previously transmitted symbol. 

 

The goal of decision feedback equalizers is to optimise the feedforward, F  and 

feedback, B  filter coefficients so that the MSE of the equalizer output is minimised. 

Given that the MMSE equalizer is a better performing linear equalizer, it is then chosen 

as the linear equalizer to use for the feedforward filter in the DFE and the resulting 

equalizer is termed the minimum mean square error – decision feedback equalizer 

(MMSE-DFE). 

 

According to [106] the arithmetic SNR at the input of the detector for the 

MMSE-DFE is: 

 

( )

( ),min

uu

MMSE DFE

ee

tr
ASNR

tr
− =

R

R
    (4.28) 

 

where ( )tr  denotes the trace and the input auto-correlation matrix, uuR  and the error 

auto-correlation matrix, ,mineeR  are defined as: 

 

H

uu E  =  R uu     (4.29) 

 

and 

 

,min

H

ee E  =  R ee     (4.30) 

 



139 

 

respectively 

 

4.3.5 Maximum Likelihood Sequence Estimation Equalizer 

 

For the sake of completeness, a brief overview of the maximum likelihood sequence 

estimation (MLSE) equalizers is presented. In the previous equalization methods the 

equalizers at the receiver end first attempted to remove the effects of inter-symbol 

interference (ISI) and/or noise before making a decision on the transmitted signal on a 

symbol-by-symbol basis. But in the case of MLSE equalization the receiver attempts to 

recover the entire transmitted sequence of symbols [130]. Due to this MLSE equalizers 

suffer from high computational complexity if the transmitted sequence is long. The 

MLSE equalizer compares the received noisy sequence with all possible multi-path 

noise-free received sequences and selects the closest one. 

 

Again, considering a communication system with received signal (4.2), the 

received noise-free signal, NFy  can be expressed as: 

 

NFy = Hu      (4.31) 

 

In MLSE equalization the recovered transmitted sequence, ˆ
MLSEu is chosen to satisfy the 

following minimization problem: 

 

2
ˆ argminMLSE NF= −u y y    (4.32) 

 

This section presented a general discussion on the different linear and nonlinear 

equalizers. The next section focuses on the MMSE-DFE as the equalizer of choice in 

addressing the shortcomings associated with ISI at the receiver end. This equalizer 

benefits from the advantages of the MMSE and the DF equalizers. The discussion is 

also extended to how the feedforward, F  and feedback, B  filter coefficients are 

calculated in the MMSE-DFE and how this equalizer can be implemented in massive 

MIMO systems using state-space models. Firstly, the discussion focuses on the MMSE-

DFE for the finite impulse response (FIR) massive MIMO channel model. 
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4.4 Minimum Mean Square Error – Decision Feedback 

Equalizer for the Finite Impulse Response Massive MIMO 

Channel Model 

 

A massive MIMO wireless system with a base station equipped with m transmitting 

antenna elements, and a terminal station equipped with p  receiving antenna elements 

having length- L  ISI channel paths is considered: 

 

( ) ( ) ( )
1

0

L

l

l

t t l t
−

=

= − +y H u  n     (2.1) 

 

where ( )ty  is the 1p  received signal vector, ( )t l−u  is the 1m  transmitted symbols 

vector at time ( )t l− , ( ) ( )00, pt CN Nn I  is the 1p  additive white Gaussian noise 

vector at the receiver side at time t , with 0N  being the noise power and pI  is the p p  

identity matrix and lH  is the p m  
thl  path massive MIMO channel matrix 

coefficients. 

 

Taking a length 
fN  block of input-output data into consideration and assuming 

that the channel is time-invariant over this block, (2.1) can be expressed as [106]: 
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 
 
 
 
 
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N

 (4.33) 
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where 
fN  is the length of the feedforward filter matrix or the number of feedforward 

filter taps and   is the equalizer’s decision delay. The decision delay helps in 

determining which symbol is detected at the current time, t . 

 

A more compact representation of (4.33) is written as: 

 

( ) ( ) ( )FIR FIR FIR FIRt t t= +Y H U N    (4.34) 

 

where ( )FIR tY  is the effective FIR output vector, ( )FIR tU  is the effective FIR input 

vector, ( )FIR tN  is the effective noise vector and FIRH  is the effective FIR channel 

matrix. 

 

The block diagram for the DFE for the FIR channel model is shown in Figure 

4.8 [107] 

 

 

Figure 4. 8: DFE for FIR channel models 

 

In MMSE-DFE the matrix of the feedforward filter coefficients, H
F  is expressed as: 

 

0 1 1, , ,
f

H H H H

N −
 =
 

F F F F     (4.35) 
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with 
fN  matrix taps H

iF , each of size p m , where 
fN  is the length of the 

feedforward filter matrix or the number of feedforward filter taps, and the matrix of the 

feedback filter coefficients, H
B  is expressed as: 

 

0 1 1, , ,
b

H H H H

N −
 =  B B B B     (4.36) 

 

with bN  matrix taps H

iB , each of size m m , where bN  is the length of the feedback 

filter matrix or the number of feedback filter taps. 

 

In the MMSE-DFE when 0bN = , i.e. no feedback filters, the MMSE-DFE can be 

treated as the MMSE linear equalizer. 

 

In most cases the feedback filter coefficients, B  are calculated independent of 

the feedforward filter coefficients F , and using the relationship 
1

uy yy

−
F = BR R  the 

feedforward filter coefficients can then be obtained from the feedback filter 

coefficients, where uyR is the cross-correlation matrix of ( )tu  and ( )ty , and yyR  is the 

auto-correlation matrix of ( )ty . But according to [131] and [106], the feedforward and 

feedback filter coefficient matrices can be jointly calculated by defining a new matrix 

of combined filter coefficients, W  as: 

 

 
 
 

F
W

B
     (4.37) 

 

where F  are the feedforward filter coefficients and B  are the feedback filter 

coefficients. 

 

A term ( )tZ  which is a combination of the effective output vector ( )FIR tY  and 

the previously detected symbols, ( )tD  can also be defined as: 
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( )
( )

( )
FIR t

t
t

 
 
 

Y
Z

D
    (4.38) 

 

where 

( )

( )

( )

( )

1

1b

t

t
t

t N

 
 

− 
 
 

− +  

u

u
D

u

   (4.39) 

 

is a vector of previously detected symbols, and assuming correct detection, these are the 

same as the transmitted symbols and bN  is the length of the feedback filter. 

 

Matrix ( )tZ  is important in the joint calculation of the feedforward and feedback filter 

coefficients.  

 

The matrix of the combined filter coefficients, W when optimised using the criterion 

defined in [132] becomes: 

 

( ) ( )
2

,

argminMMSE E t t = −
 F B

W U WZ   (4.40) 

which simplifies to: 

 

( ) ( ) ( )
2

,

ˆargminMMSE FIR MMSE DFE
E t t t

− −

 = −
  F B

W u u   (4.41) 

 

where ( )ˆ
SS MMSE DFE

t
− −

u  is the equalized signal. 

 

The auto-correlation matrix, ZZR  of ( )tZ  is defined as: 

 

( ) ( )H

ZZ E t t =  R Z Z    (4.42) 

 

Substituting (4.37) into (4.39) we yields: 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

H H

FIR FIR FIR

ZZ H H

FIR

E t t E t t

E t t E t t

        =
        

Y Y Y D
R

D Y D D
  (4.43) 

 

Using (4.33) in (4.40) results in: 

 

( ) ( )

( ) ( )

0

H Hs
FIR

ZZ

H H s
FIR

P
N E t t

m

P
E t t

m

 
 +   

=  
     

HH I H U D

R

D U H I

  (4.44) 

 

where sP  is the total transmit power which is assumed to be evenly distributed between 

all the m  transmit antenna elements. 

 

The cross-correlation matrix, ZuR  of ( )tZ  and ( )tu  is defined as: 

 

( ) ( )H

Zu E t t =  R Z u    (4.45) 

 

Using (4.38) and then (4.34) in (4.45) results in: 

 

( ) ( )H

FIR

Zu

E t t
E
   =  
  

H U u
R

0
   (4.46) 

 

According to [106], using (4.44) and (4.46) the MMSE solution of the MMSE-

DFE can be rewritten as: 

 

1

MMSE ZZ Zu

−
W = R R     (4.47) 

 

These are the combined filter coefficients that minimise the mean square error. 

 



145 

 

Using (4.47) and (4.38), the estimate of the transmitted symbols, ( )ˆ
FIR MMSE DFE

t
− −

u  at the 

output of the MMSE-DFE having considered FIR channel modelling can be expressed 

as: 

 

( ) ( )ˆ H

MMSE FIRFIR MMSE DFE
t t

− −
=u W Y    (4.48) 

 

Owing to the fact that the state-space models give good performance results 

when it comes to system identification. The idea is to then extend the discussion on 

identification to channel equalization using state-space models. The discussion on the 

MMSE-DFE for FIR massive MIMO channel model is then extended to the MMSE-

DFE for the integer-order state-space massive MIMO channel model. 

 

4.5 Minimum Mean Square Error – Decision Feedback 

Equalizer for the Integer-Order State-Space Massive MIMO 

Channel Model 

 

Using continuous-time integer-order state-space modelling, the dynamics of the linear 

time invariant length- L  ISI channel massive MIMO system can be expressed as: 

 

( ) ( ) ( )t t t= +x Ax Bu     (2.62a) 

( ) ( ) ( ) ( )t = t + t t+y Cx Du n     (2.62b) 

 

where ( )tx  is the 1n  state vector, ( )tx  is the time derivative of ( )tx , ( )tu  is the 

1m  input vector, ( )ty  is the 1p  output vector, ( )tn  is the 1p  additive white 

Gaussian noise vector, A  is the n n  system matrix and it describes the dynamics of 

the system, i.e. the eigenvalues of the system, B  is the n m  input matrix and it 

describes the linear transformation by which the inputs influence the next state, C  is 

the p n  output matrix, and it describes how the state is transferred to the output, D  is 
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the p m  feed-forward matrix, and in continuous-time systems it is usually p m0 , ( )tx  

is the derivative of ( )tx  

 

Having obtained matrices A , B , C  and D  using the continuous-time integer-

order MOESP algorithm, these matrices can then be used for massive MIMO channel 

equalization in the context of integer-order state-space channel modelling. Following 

the equalization procedure outline in [106] which uses the MMSE-DFE to recover the 

transmitted signal, a length 
fN  block of the input-output data, i.e. the blockwise data 

model for (2.62) can be expressed as: 
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(4.49) 

 

where 
fN  is the length of the feedforward filter matrix or the number of feedforward 

filter taps and   is the equalizer’s decision delay. The decision delay helps in 

determining which symbol is detected at the current time, t . 

 

A more compact representation of (4.49) can be written as: 

 

A more compact representation of (4.49) can be written as: 
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( ) ( ) ( ) ( )1SS f SS SSt t N t t= +− + + +Y x U N    (4.50) 

 

where ( )SS tY  is the effective integer-order state-space output vector or effective 

integer-order state-space received signal, ( )SS tU  is the effective integer-order state-

space input vector or effective integer-order state-space transmitted signal, 

( )1ft N+  − +x  is the state vector, ( )SS tN  is the effective integer-order state-space 

noise vector,   is the observability matrix and   is the Toeplitz matrix. 

 

The block diagram for the DFE for the state-space channel model is shown in 

Figure 4.9 [107]. 

 

 

Figure 4. 9: DFE for state-space channel models 

 

With reference to [106] the blockwise data model (4.49) can be decomposed in terms of 

the impulse response as follows: 

 



149 

 

( )

( ) ( )
( )

( ) ( )
( )

( )

( ) ( )
( )

( ) ( )
( )

1 1

1
1

1

2 3

1 21

1

f

f

f f

f

f

f

f

SS

N
r

rt
t N

N N
r N

t
r

t N

N

r

t N

t

d t
d t

dt
dt

d t
d t

dt

dt

d t

dt


−



−

− +

− −
−

− −

− +

− +

     
     
     

                  =      
    
    

  
  
     

Y

y
uP

P

H H
y

P u
P

H H

H H
y

P

( )

( )

( ) ( )
( )

( )

1 ,  distant past

0 1

0

1

0

,  

0

0 0
                                 

0 0

f

f

f

SS

t N

r

tL

N

r

t N

t

d t

dt

d t

dt

+− +



−

− +

− +





 
 
 
 
 
 
 
 



 
  
    
    

   +
   

    
    

    

x

U

u
PH H

H

uH
P





( )

( ) ( )
( )

( ) ( )
( )

( )

1

1

1

1

recent past

f

f

SS

r

t

r

t

N

r

t N

t

d t

dt

d t

dt

d t

dt





−

−

− +

− +

  
  
  
 

  
  
 +   

 
 

  
  
    

N

n
P

n
P

n
P

 

(4.51) 

 

Since the term ( )1ft N+  − +x  is a contribution from distant past symbols it can be 

subtracted from the effective integer-order state-space output vector or the effective 

integer-order state-space received signal, ( )SS tY  resulting in: 

 

( ) ( ) ( ) ( )' 1SS SS f SSt t t N t= − +− + +Y Y x N   (4.52)  

 

( ) ( ) ( ) ( ) ( )' 1 1SS f SS f SSt t N t t N t = +  − + + − +  − + +
 

Y x U x N    (4.53) 

 

( ) ( ) ( )'

SS SS SSt t t= +Y U N     (4.54) 

 

This signal is then passed to the feedforward filter which helps in minimising the effects 

of ISI and noise from future symbols. The signal at the output of the feedforward filter, 

is expressed as ( )'H

SS tF Y , where F  represents the feedforward filter coefficients. 
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Signal ( )'H

SS tF Y  is then passed through the detector to obtain an estimate of the 

originally transmitted signal, which is expressed as ( )ˆ
SS MMSE DFE

t
− −

u . After detection, 

the detected symbols, ( )ˆ
SS MMSE DFE

t
− −

u  are fed back to the DFE through the feedback 

filter, B .The fed back symbols are then subtracted from the incoming symbols to help 

minimise the effects of the previously detected symbols from the incoming signal, 

( )'

SS tY . 

 

Next, we outline the procedure to follow when calculating the feedforward and 

feedback filter coefficients. We start by defining matrix W  which is a combination of 

the feedforward and feedback filter coefficient matrices expressed as: 

 

 
 
 

F
W

B
     (4.55)  

 

Expressing W  as a combination of the feedforward and feedback filter coefficients 

allows for the joint calculation of these matrix coefficients, thus circumventing the need 

to first calculate the feedforward filter coefficients and then using these to calculate the 

feedback filter coefficients and vice-versa. 

 

A term ( )SS tZ  which is a combination of the effective output vector ( )'

SS tY  and the 

previously detected symbols, ( )tD  can also be defined as: 
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is a vector of previously detected symbols, and assuming correct detection, these are the 

same as the transmitted symbols, bN  is the length of the feedback filter 

 

Matrix ( )SS tZ  plays a great role in the joint calculation of the feedforward and 

feedback filter coefficients.  

 

The matrix of the combined filter coefficients, W when optimised using the criterion 

defined in [132] becomes: 

 

( ) ( )
2

,

argminMMSE SSE t t = −
 F B

W U WZ   (4.58) 

 

which simplifies to: 

 

( ) ( )
2

,

ˆargminMMSE SS MMSE DFE
E t t

− −

 = −
  F B

W u u   (4.59) 

 

where ( )ˆ
SS MMSE DFE

t
− −

u  is the integer-order equalized signal. 

 

Using (4.56) the auto-correlation matrix, 
SS SSZ ZR  of ( )SS tZ  can be defined as: 

 

( ) ( )
SS SS

H

Z Z SS SSE t t =  R Z Z    (4.60) 

 

Substituting (4.56) into (4.60) results in: 

 

( )( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

' ' '

'
SS SS

H
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SS SS SS

Z Z H
H

SS

E t t E t t

E t t E t t
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=  

        

Y Y Y D

R

D Y D D

   (4.61) 

 

Using (4.54) in (4.61) yields: 
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  (4.62) 

 

where sP  is the total transmit power which is assumed to be evenly distributed between 

all the m  transmit antenna elements. 

 

The cross-correlation matrix, 
SSZ uR  of ( )SS tZ  and ( )tu  is defined as: 

 

( ) ( )
SS

Hr

Z u SS tE t t =    
R Z P u    (4.63) 

 

Using (4.56) and then (4.54) in (4.63) yields: 

 

( ) ( )
SS

Hr

SS t

Z u

E t t
E
      =
 
 

U P u
R

0


   (4.64) 

 

According to [106] and using (4.62) and (4.64) the MMSE solution of the 

MMSE-DFE can be rewritten as: 

 

1

SS SS SSMMSE Z Z Z u

−
W = R R     (4.65) 

 

Using (4.65) and (4.56), the estimate of the transmitted symbols at the output of the 

MMSE-DFE, ( )ˆ
SS MMSE DFE

t
− −

u  having considered integer-order state-space channel 

modelling can be expressed as: 

 

( ) ( )ˆ H

MMSE SSSS MMSE DFE
t t

− −
=u W Z   (4.66) 

 

Having presented the theoretical framework for the MMSE-DFE for the FIR massive 

MIMO channel model and MMSE-DFE for the integer-order state-space massive 
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MIMO channel model, the following section presents the MATLAB simulation results 

and analysis for the two models. 

 

4.6 Simulation Results 

 

To study the performance of the MMSE-DFE for the FIR massive MIMO channel 

model and the MMSE-DFE for the inter-order state-space massive MIMO channel 

model, simulations were run in MATLAB based on the parameters in Table 4.1. The 

choice of these parameters was based on [106] where they stated that for the MMSE-

DFE, given the number of channel paths, L , the decision delay of the equalizer is given 

as 2L = + , the optimal feedforward filter length is, 1fN =  +  and the optimal 

feedback filter length is, bN L= . The integer-order MOESP identified system of order 

7n =  was considered. 

 

Table 4. 1: System model and channel equalization parameters for integer-order model 

Symbol Description Value 

L  Number of channel paths 3 

  Decision delay of the equalizer 5 

bN  Number of feedback filter taps 3 

fN  Number of feedforward filter taps 6 

 

Figure 4.10 shows the performances of the MMSE-DFE for the FIR massive 

MIMO channel model and the MMSE-DFE for the integer-order state-space massive 

MIMO channel model for the optimal feedforward filter length of 6fN =  and the 

optimal feedback filter length of 3bN =  for system order 7n =  compared with the 

originally transmitted signal in each transmitting antenna. 
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Figure 4. 10: Plot of the input signal, MMSE-DFE signal for the FIR massive MIMO 

channel model and MMSE-DFE signal for the integer-order state-space massive MIMO 

channel model in each transmitting antenna 

 

We then zoomed in to show a clear picture of our results and Figure 4.11 shows 

the zoomed in results comparing the input signal, MMSE-DFE signal for the FIR 

massive MIMO channel model and MMSE-DFE signal for the integer-order state-space 

massive MIMO channel model in each transmitting antenna for system order 7n = . 
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Figure 4. 11: Plot of the input signal, MMSE-DFE signal for the FIR massive MIMO 

channel model and MMSE-DFE signal for the integer-order state-space massive MIMO 

channel model in each transmitting antenna (zoomed in) 

 

It can be seen from Figure 4.10 and 4.11  that the MMSE-DFE for the integer-order 

state-space massive MIMO and the MMSE-DFE for the FIR massive MIMO channel 

models are both capable of carrying out the desired equalization to recover the 

transmitted signal. 

 

The integer-order equalized signal, ( )ˆ
SS MMSE DFE

t
− −

u  was then compared with the 

originally transmitted signal, ( )tu  in terms of the MSE which is expressed as: 

 

( ) ( )
2

1

1
ˆ

N

SS MMSE DFE
t

MSE t t
N − −

=

= − u u    (4.67) 

 

where N  is the number of samples. 

 

The MSE tests for different feedforward, 
fN , feedback, bN  filter lengths and decision 

delays,   are shown in Table 4.2 to Table 4.4. For clarity in comparison, the MSE 

values have been written to eight decimal places. 
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Table 4. 2: MSE for 6fN = , 5 =  and different bN
 

Number of feedforward 

filter taps, fN  

Number of feedback 

filter taps, b
N  

MSE 

(FIR) 

MSE (integer-

order) 

6 2 0.15273745 0.15273741 

6 3 0.15273753 0.15273387 

 

Table 4. 3: MSE for 3bN = , 5 = and different 
fN
 

Number of feedforward 

filter taps, fN  

Number of feedback 

filter taps, b
N  

MSE 

(FIR) 

MSE (integer-

order) 

3 5 0.15273921 0.15273382 

3 6 0.15273753 0.15273387 

 

Table 4. 4: MSE for 6fN = , 3bN =  and different   

Decision delay,   MSE (FIR) MSE (integer-order) 

4 0.15273740 0.15273910 

5 0.15273753 0.15273387 

 

In Tables 4.2 and 4.3 it can be observed that for the optimal values of 6fN =  

and 3bN =  the MMSE-DFE for the integer-order state-space massive MIMO channel 

model outperforms the MMSE-DFE for the FIR massive MIMO channel model. This 

shows the viability of integer-order state-space models in system identification, i.e. 

channel estimation and also in channel equalization. It can also be observed that for the 

integer-order state-space massive MIMO channel model changing 
fN  and bN  

influences the MSE performance. Reduced values of 
fN  and bN

 
lead to increased 

MSE values which means that the performance of the MMSE-DFE equalizers get 

compromised by the reduction of these parameters. In Table 4.4 different values of   

were considered for 6fN = , 3bN = . It can be observed that the MMSE-DFE for the 

integer-order state-space massive MIMO channel model still outperforms the MMSE-

DFE for the FIR massive MIMO channel model. 
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4.7 Summary 

 

Here, the equalization of the massive multiple-input multiple-output (MIMO) 

frequency-selective wireless channels having considered the finite impulse response 

(FIR) channel model and the integer-order state-space channel model was presented. 

The minimum mean square error – decision feedback equalizer (MMSE-DFE) was 

selected as the equalizer of choice in discussing equalization in the two channel models 

owing to the fact that it benefits from both the advantages of the MMSE and the DF 

equalizers, i.e. the MMSE equalizer is a better performing linear equalizer and the DF 

equalizer is able to minimise the ISI. The MMSE-DFE was developed for both the FIR 

channel model and the integer-order state-space channel model with reference to some 

work by previous authors. The observability matrix of the integer-order state-space 

equalizer was constructed using the matrices obtained through the inter-order MOESP 

algorithm. The performance of the proposed equalizer was studied for both the FIR 

channel model and the integer-order state-space channel model through analytical 

modelling in MATLAB. The performance results showed that the MMSE-DFE for the 

integer-order state-space massive MIMO channel model performed better than the 

MMSE-DFE for the FIR massive MIMO channel model especially for the optimal 

feedforward and feedback filter lengths. This continues to show the viability of the 

integer-order state-space models in system identification, i.e. channel estimation and 

also in channel equalization. 
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Chapter 5  

 

Massive MIMO Channel Equalization Using 

Fractional-Order Models 

 

5.1 Introduction 

 

The main contribution of this chapter is on channel equalization in the context of 

fractional-order models. The equalization technique employed here takes from works 

by Zhang and Bitmead [106], Zhang and Bitmead [107] and Al-Dhahir and Sayed [108] 

where they proposed the use of the minimum mean square error – decision feedback 

equalizer (MMSE-DFE) to combat the effects of ISI in a multiple-input multiple-output 

(MIMO) system. The application of the MMSE-DFE in the equalization of the 

fractional-order massive MIMO channel model is a novelty in wireless 

communications. The choice of the MMSE-DFE is that it benefits from both the 

advantages of the MMSE and the DF equalizers. The input-output block data in the 

fractional-order equalization model is presented just like in the extensively studied FIR 

equalization model. The length of input-output block data is dependent on the number 

of feedforward filter taps used in the construction of the equalizer. The feedforward and 

feedback filter coefficients will be jointly calculated using the technique outlined in 

[106]. The performance of channel equalization using fractional-order modelling will 

then be compared with channel equalization using integer-order state-space modelling 

and also channel equalization for the finite impulse response (FIR) model. 

 

5.2 Minimum Mean Square Error – Decision Feedback 

Equalizer for the Fractional-Order Channel Model 

 

Since the continuous-time state-space representation of commensurate fractional-order 

systems is the same as that of integer-order systems [88] and the analysis of the 

MOESP fractional-order model follows that of the classical MOESP model as proposed 
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in [65] and [84], we conclude that the MMSE-DFE for the commensurate fractional-

order system will also follow the procedure outlined in [106] for the MMSE-DFE for 

the state-space model. Based on this, the equalization of the fractional-order channel 

model is presented in the following section. 

 

Using continuous-time fractional-order state-space modelling, the dynamics of 

the linear time invariant length- L  ISI channel massive MIMO system can be expressed 

as: 

 

( ) ( ) ( )D t = t + t
x Ax Bu     (5.1a) 

( ) ( ) ( ) ( )t = t + t t+y Cx Du n     (5.1b) 

 

where ( )tx  is the 1n  state vector,  ( )tu  is the 1m  input vector, ( )ty  is the 1p  

output vector, ( )tn  is the 1p  additive white Gaussian noise vector, A  is the n n  

system matrix and it describes the dynamics of the system, i.e. the eigenvalues of the 

system, B  is the n m  input matrix and it describes the linear transformation by which 

the inputs influence the next state, C  is the p n  output matrix, and it describes how 

the state is transferred to the output, D  is the p m  feed-forward matrix,   is the 

commensurate fractional-order and D  is the fractional derivative of order  . 

 

Having obtained matrices A , B , C  and D  using the fractional-order system 

identification algorithm, these matrices can then be used for massive MIMO channel 

equalization in the context of fractional-order channel modelling. Following the 

equalization procedure outline in [106] which uses the MMSE-DFE to recover the 

transmitted signal, a length 
fN  block of the input-output data, i.e. the blockwise data 

model for the commensurate fractional-order model (5.1) can be expressed as: 
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(5.2) 

 

where 
fN  is the length of the feedforward filter matrix or the number of feedforward 

filter taps and   is the equalizer’s decision delay. The decision delay helps in 

determining which symbol is detected at the current time, t . 

 

A more compact representation of (5.2) can be written as: 

 

( ) ( ) ( ) ( )1FO f FO FOt t N t t= +− + + +Y x U N    (5.3)  
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where ( )FO tY  is the effective fractional-order output vector, ( )FO tU  is the effective 

fractional-order input vector, ( )1ft N+  − +x  is the state vector, ( )FO tN  is the 

effective fractional-order noise vector,   is the observability matrix and   is the 

Toeplitz matrix. 

 

The block diagram for the DFE for the fractional-order channel model is shown 

in Figure 5.1 [107] 

 

 

Figure 5. 1: DFE for fractional-order channel models 

 

With reference to [106] the blockwise data model (5.2) can be decomposed in terms of 

the impulse response as follows: 
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Since the term ( )1ft N+  − +x  is a contribution from distant past symbols it can be 

subtracted from the effective fractional-order output vector, ( )FO tY  resulting in:  

 

( ) ( ) ( ) ( )' 1FO FO f FOt t t N t= − +− + +Y Y x N   (5.5) 

 

( ) ( ) ( ) ( ) ( )' 1 1FO f FO f FOt t N t t N t = +  − + + − +  − + +
 

Y x U x N    (5.6) 

 

( ) ( ) ( )'

FO FO FOt t t= +Y U N     (5.7) 

 

This signal is then passed to the feedforward filter which helps in minimising the effects 

of ISI and noise from future symbols. The signal at the output of the feedforward filter, 

is expressed as ( )'H

FO tF Y , where F  represents the feedforward filter coefficients. 

Signal ( )'H

FO tF Y  is then passed through the detector to obtain an estimate of the 
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originally transmitted signal, which is expressed as ( )ˆ
FO MMSE DFE

t
− −

u . After detection, 

the detected symbols, ( )ˆ
FO MMSE DFE

t
− −

u  are fed back to the DFE through the feedback 

filter, B .The fed back symbols are then subtracted from the incoming symbols to help 

minimise the effects of the previously detected symbols from the incoming signal, 

( )'

FO tY . 

 

Next, we outline the procedure to follow when calculating the feedforward and 

feedback filter coefficients. We start by defining matrix W  which is a combination of 

the feedforward and feedback filter coefficient matrices expressed as: 

 

 
 
 

F
W

B
     (5.8) 

 

Expressing W  as a combination of the feedforward and feedback filter coefficients 

allows for the joint calculation of these matrix coefficients, thus circumventing the need 

to first calculate the feedforward filter coefficients and then using these to calculate the 

feedback filter coefficients and vice-versa. 

 

A term ( )FO tZ  which is a combination of the effective fractional-order output 

vector, ( )'

FO tY  and the previously detected symbols, ( )tD  can also be defined as: 
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is a vector of previously detected symbols, and assuming correct detection, these are the 

same as the transmitted symbols, bN  is the length of the feedback filter. 

 

Matrix ( )FO tZ  plays a great role in the joint calculation of the feedforward and 

feedback filter coefficients.  

 

The matrix of the combined filter coefficients, W when optimised using the criterion 

defined in [132] becomes: 

 

( ) ( )
2

,

argminMMSE FOE t t = −
 F B

W U WZ   (5.11) 

 

which simplifies to: 

 

( ) ( ) ( )
2

,

ˆargminMMSE FO MMSE DFE
E t t t

− −

 = −
  F B

W u u   (5.12) 

 

where ( )ˆ
FO MMSE DFE

t
− −

u  is the fractional-order equalized signal. 

 

Using (5.9) the auto-correlation matrix, 
FO FOZ ZR  of ( )FO tZ  can be defined as: 

 

( ) ( )
FO FO

H

Z Z FO FOE t t =  R Z Z     (5.13) 

 

Substituting (5.9) into (5.13) results in: 

 

( )( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

' ' '

'
FO FO

H
H

FO FO FO

Z Z H
H

FO

E t t E t t

E t t E t t

        
=  

        

Y Y Y D

R

D Y D D

  (5.14) 

 

Using (5.7) in (5.14) yields: 
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  (5.15) 

 

where sP  is the total transmit power which is assumed to be evenly distributed between 

all the m  transmit antenna elements. 

 

The cross-correlation matrix, 
FOZ uR  of ( )FO tZ  and ( )tu  is defined as: 

 

( ) ( )
FO

Hr

Z u FO tE t t =    
R Z P u    (5.16) 

 

Using (5.9) and then (5.7) in (5.16) yields: 

 

( ) ( )
FO

Hr

FO t

Z u

E t t
E
      =
 
 

U P u
R

0


  (5.17) 

 

According to [106] and using (5.15) and (5.17) the MMSE solution of the 

MMSE-DFE can be rewritten as: 

 

1

FO FO FOMMSE Z Z Z u

−
W = R R     (5.18) 

 

Using (5.18) and (5.9), the estimate of the transmitted symbols at the output of the 

MMSE-DFE, ( )ˆ
FO MMSE DFE

t
− −

u  having considered fractional-order channel modelling 

can be expressed as: 

 

( ) ( )ˆ H

MMSE FOFO MMSE DFE
t t

− −
=u W Z   (5.19) 

 

Having discussed on the MMSE-DFE for the fractional-order channel model it is 

important in communications to then study the performance of the equalized system in 

terms of the symbol error rate. In the following section a discussion on the symbol error 
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rate performance of the MMSE-DFE for the fractional-order channel model is 

presented. 

 

5.3 Symbol Error Rate Performance 

 

The bit error rate (BER) or symbol error rate (SER) is one of the performance 

parameters used in communication systems and it refers to the ratio of the number of 

bits or symbols incorrectly received to the total number of bits or symbols transmitted 

during a specified time interval. In ideal communication systems this ratio is suppose to 

be zero but in reality there are errors experienced in the communication systems 

especially those affected by multipath fading, thus this can never be zero. The best 

performing communication systems are ones that are able to reduce the BER or SER to 

the smallest possible value. 

 

The performance of the massive MIMO system was studied in terms of the 

signal-to-noise ratio and the average symbol error rate (SER). According to [119] and 

[123] the output SNR of the unbiased MMSE-DFE can be expressed as: 

 

1

,min 1MMSE DFE U eeSNR SNR
−

− −
 = − R    (5.20) 

 

and the output SNR of the biased MMSE-DFE can be written as: 

 

1

,minMMSE DFE eeSNR SNR
−

−
 =  R    (5.21) 

 

where ,mineeR is the covariance matrix of the error vector which can be expressed as: 

 

,min

H

ee E ee =  R      (5.22a) 

 

( ) ( ) ( )
2

,min
ˆ

ee FO MMSE DFE
E t t t

− −

 = −
  

R u u   (5.22b) 
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According [133] the average SER having considered quadrature phase shift 

keying (QPSK) modulation for the frequency-selective quasi-static Rayleigh fading 

channel can then be written as: 

 

1
1

2 2
QPSKP





 
= −  + 

    (5.23) 

 

The average SER having considered M-ary phase shift keying (PSK) modulation for the 

frequency-selective quasi-static Rayleigh fading channel can be expressed as [134]: 

 

( )1 /

2

0

1

sin

M M

PSK
M PSK

g
P M d



 
 

−

−

 
=  

 
    (5.24) 

 

where ( )2sin /PSKg M= . 

 

After some manipulations of (5.24), the average BER for binary phase shift keying 

(BPSK) modulation for the frequency-selective quasi-static Rayleigh fading channel 

can then be written as [135]: 

 

1
1

2 1
BPSKP





 
= −  + 

    (5.25) 

 

With reference to [136] and using the moment generation function (MGF) 

approach, the average SER having considered M-ary quadrature amplitude modulation 

(M-QAM) for the frequency-selective quasi-static Rayleigh fading channel can be 

expressed as: 

 

( ) ( )
2

/2 / 4

2 2

0 0

4 1 4 1

sin sin

QAM QAM

M QAM

M Mg g
P M d M d

MM

 

  
  

−

− −   
= − − −   

   
 

 (5.26) 

 

where M  is the number of constellation points,  



168 

 

 

( )

3

2 1
QAMg

M
=

−
    (5.27) 

 

and 

 

( ) ( )
1

1M s s 
−

= −     (5.28) 

 

is the MGF of the SNR,   for Rayleigh fading. 

 

The MGF approach is considered on the bases that it is a bit easier to work with as it 

avoids the need to find the probability density function (PDF) of the output SNR which 

can be a bit tedious for high-order systems [137]. Substituting (5.28) into (5.26 ) and 

after some manipulations, equation (5.26) can then be expressed as [138]: 

 

( ) ( )
2

1

2 2 2

2 1 4 11
1 tan

1 1 1
M QAM

a M a M a
P M

M a a a

−

−

 − −   = − − −   + + +   

 (5.29) 

 

where 
( )

3

2 1
a

M


=

−
 

 

Replacing   with MMSE DFESNR −  in (5.25), (5.23) and (5.29), the average SER for BPSK, 

QPSK and M-QAM having considered the MMSE-DFE signals can then be expressed 

as: 
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−
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and 
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2 2 2

2 1 4 11
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1 1 1
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 − −   = − − −   + + +   

 

 (5.32) 

 

where 
( )

3

2 1

MMSE DFESNR
a

M

−=
−

 

 

respectively. 

 

Next, we present MATLAB simulation results and analysis of the MMSE-DFE 

for the fractional-order massive MIMO channel model and these are compared with the 

MMSE-DFE for FIR massive MIMO channel model and MMSE-DFE for the integer-

order massive MIMO channel model results. The symbol error rate performance for the 

FIR, integer-order and fractional order massive MIMO channel models having applied 

MMSE-DFE are also presented. 

 

5.4 Simulation Results 

 

To study the performance of the MMSE-DFE for the fractional-order massive MIMO 

channel model, simulations were run in MATLAB based on the parameters in Table 

5.1. The choice of these parameters was based on [106] owing to the fact that the 

continuous-time state-space representation of commensurate fractional-order systems is 

the same as that of integer-order systems [88]. In [106] they stated that given the 

number of channel paths, L , the decision delay of the equalizer is given as 2L = + , 

the optimal feedforward filter length is, 1fN =  +  and the optimal feedback filter 

length is, bN L= . The fractional-order MOESP identified system with fractional-order 

of order 0.1 =  was considered. 
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Table 5. 1: System model and channel equalization parameters for fractional-order 

model 

Symbol Description Value 

  Fractional-order 0.1 

L  Number of channel paths 3 

  Decision delay of the equalizer 5 

bN  Number of feedback filter taps 3 

fN  Number of feedforward filter taps 6 

 

Figure 5.2 shows the performance of the MMSE-DFE for the fractional-order 

massive MIMO channel model for the optimal feedforward filter length of 6fN =  and 

the optimal feedback filter length of 3bN =  compared with the originally transmitted 

signal in each transmitting antenna for fractional-order 0.1 = . 

 

 

Figure 5. 2: Plot of the input signal and MMSE-DFE signal for the fractional-order 

massive MIMO channel model in each transmitting antenna 

 

We then zoomed in to show a clear picture of our results and Figure 5.3 shows the 

zoomed in results comparing the input signal and the MMSE-DFE signal for the 

fractional-order massive MIMO channel model in each transmitting antenna for 

0.1 = . 
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Figure 5. 3: Plot of the input signal and MMSE-DFE signal for the fractional-order 

massive MIMO channel model in each transmitting antenna (zoomed in) 

 

We can observe from Figure 5.2 and Figure 5.3 that the MMSE-DFE for the fractional-

order massive MIMO channel model is capable of carrying out the desired equalization 

to recover the transmitted signal. 

 

The fractional-order equalized signal, ( )ˆ
FO MMSE DFE

t
− −

u  was then compared with 

the originally transmitted signal, ( )tu  in terms of the MSE which is expressed as: 

 

( ) ( )
2

1

1
ˆ

N

FO MMSE DFE
t

MSE t t
N − −

=

= − u u     (5.16) 

 

where N  is the number of samples and ( )ˆ
FO MMSE DFE

t
− −

u  is the fractional-order 

equalized signal. 

 

The MSE tests for different feedforward, 
fN , feedback, bN  filter lengths and decision 

delays,   are shown in Table 5.2 to Table 5.4. For clarity in comparison, the MSE 

values have been written to eight decimal places. 
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Table 5. 2: MSE for 6fN = , 5 =  and different bN  

Number of 

feedforward 

filter taps, fN  

Number of 

feedback filter 

taps, b
N  

MSE (FIR) MSE (integer-

order) 

MSE 

(fractional-

order) 

6 2 0.15273745 0.15273741 0.15273741 

6 3 0.15273753 0.15273387 0.15273387 

 

Table 5. 3: MSE for 3bN = , 5 = and different 
fN
 

Number of 

feedforward 

filter taps, fN  

Number of 

feedback filter 

taps, b
N  

MSE (FIR) MSE (integer-

order) 

MSE 

(fractional-

order) 

3 5 0.15273921 0.15273382 0.15273382 

3 6 0.15273753 0.15273387 0.15273387 

 

Table 5. 4: MSE for 6fN = , 3bN =  and different   

Decision delay, 

  

MSE (FIR) MSE (integer-

order) 

MSE (fractional-

order) 

4 0.15273740 0.15273910 0.15273910 

5 0.15273753 0.15273387 0.15273387 

 

In Tables 5.2 and 5.3 it can be observed that the optimal choices of 
fN  and bN  that 

give better results for the MMSE-DFE for the fractional-order massive MIMO channel 

model are 6fN =  and 3bN =  respectively. In Table 5.4, different decision delay 

values were considered for 6fN = , 3bN = . It can be observed that 5 =  is the delay 

choice that gives better results. 

 

Next, we present the simulation results for the symbol error rate performance for 

the fractional-order massive MIMO channel model in comparison with the FIR and 

integer-order channel models. For our simulations we considered BPSK, QPSK and 

256-QAM modulated signals. Figures 5.4 to 5.6 show the SER performances for the 
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FIR, integer-order and fractional-order massive MIMO channel models having applied 

MMSE-DFE plotted against the signal-to-noise ratio for BPSK, QPSK and 256-QAM 

modulated signals. 

 

 

Figure 5. 4: Plot of SER vs. SNR for the MMSE-DFE signal for the FIR, integer-order 

and fractional-order massive MIMO channel models for BPSK modulated signals 

 

 

Figure 5. 5: Plot of SER vs. SNR for the MMSE-DFE signal for the FIR, integer-order 

and fractional-order massive MIMO channel models for QPSK modulated signals 
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Figure 5. 6: Plot of SER vs. SNR for the MMSE-DFE signal for the FIR, integer-order 

and fractional-order massive MIMO channel models for 256QAM modulated signals 

 

We can observe from Figure 5.4 to Figure 5.6 that the MMSE-DFE for the 

fractional-order massive MIMO channel model has lower symbol error rate results 

compared to the MMSE-DFE for the FIR massive MIMO channel model. This implies 

that the fractional-order MMSE-DFE model can be a more robust choice than the FIR 

MMSE-DFE model when it comes to massive MIMO channel equalization. It can also 

be observed that the SER performance of the MMSE-DFE integer-order state-space 

channel model of order 7n =  compares with that of the fractional-order channel model 

of fractional-order 0.7 =  which continues to confirm the MSE results we previously 

presented. This proves the viability of the fractional-order state space models in channel 

equalization. 

 

5.5 Summary 

 

We presented the equalization of the massive multiple-input multiple-output (MIMO) 

frequency-selective wireless channels having considered the fractional-order channel 

model. The minimum mean square error – decision feedback equalizer (MMSE-DFE) 

was selected as the equalizer of choice owing to the fact that it benefits from both the 

advantages of the MMSE and the DF equalizers, i.e. the MMSE equalizer is a better 

performing linear equalizer and the DF equalizer is able to minimise the ISI. The 
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observability matrix of the fractional-order equalizer was constructed using the matrices 

obtained through the fractional-order MOESP identification algorithm. The 

performance of the proposed equalizer was then studied using analytical modelling in 

MATLAB. The performance results showed that the MMSE-DFE for the fractional-

order massive MIMO channel model performed better than the MMSE-DFE for the FIR 

massive MIMO channel model. The fractional-order massive MIMO channel model 

also showed an improved symbol error rate performance when compared to the FIR 

massive MIMO channel model. This implies that the fractional-order massive MIMO 

channel model can be a more robust choice than the FIR massive MIMO channel model 

when it comes to channel estimation and equalization. These results continue to show 

the viability of the fractional-order models in system identification, i.e. channel 

estimation and in channel equalization in wireless communications. 
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Chapter 6  

 

Conclusions and Future Work 

 

6.1 Conclusions 

 

The main focus of this thesis was on five main topics: i) Addressing the issue of 

IQ imbalance which degrades the performance of massive MIMO systems, through IQ 

imbalance compensation, ii) Massive MIMO continuous-time system identification 

using the integer-order subspace algorithm, iii) Massive MIMO continuous-time system 

identification using the fractional-order algorithm, iv) Massive MIMO channel 

equalization using the integer-order subspace model and v) Massive MIMO channel 

equalization using the fractional-order model. In studying the effect of IQ imbalance on 

the performance of the massive MIMO system we considered IQ imbalance at the 

receiver end. IQ imbalance compensation was then applied to mitigate the effects of this 

RF impairment on the massive MIMO system. The IQ imbalance compensated system 

was shown to outperform the one without IQ imbalance compensation, showing the 

importance of addressing issues associated with RF impairments in massive MIMO 

systems. In addressing the issue of IQ imbalance in the massive MIMO system we 

assumed that the channel state information is known, but in reality, the channel 

information is not readily available meaning that it needs to be estimated first. To 

estimate the massive MIMO channel, we used subspace system identification 

algorithms. In this thesis the MOESP algorithm, a subset of subspace system 

identification algorithms was considered when studying the dynamics of the open loop 

massive MIMO system. The performance evaluation was performed over continuous-

time domain using the input and output data having considered the influence of the 

measurement noise and the chirp signal was used as the excitation signal. Before 

applying the MOESP identification algorithm the input and output data was first 

transformed using the Poisson moment functional (PMF) approach, which is a filtering 

method that helps with overcoming the problem associated with the input-output data 

time-derivatives in continuous-time system identification. In both the integer-order and 
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fractional-order massive MIMO continuous-time system identification, the main idea 

was to have a model that would accurately model the system dynamics, i.e. to 

accurately find matrices A , system matrix, which describes the dynamics of the 

system, i.e. the eigenvalues of the system, B , input matrix, which describes the linear 

transformation by which the inputs influence the next state, C , output matrix, which 

describes how the state is transferred to the output and D , feed-forward matrix. Then in 

both the integer-order and fractional-order massive MIMO channel equalization, the 

main idea was to have a channel equalization model that would give an accurate 

estimate of the transmitted symbols, ( )ˆ tu . 

 

A discussion on the use of the continuous-time integer-order state-space models 

to represent massive multiple-input multiple-output (MIMO) frequency-selective 

wireless channels for better system identification or better channel estimation was 

presented in chapter 2. The integer-order multiple-input multiple-output output-error 

state space (MOESP) algorithm was used to identify the linear-time invariant 

continuous-time massive MIMO frequency-selective wireless channels. The input-

output data was filtered using the PMF filter to help overcome the problem associated 

with the input-output data time-derivatives in the continuous-time system identification, 

after which the MOESP identification algorithm outlined for discrete-time system 

identification was then applied to the PMF filtered input-output data. MATLAB 

simulations were then run to identify the massive MIMO system using the continuous-

time MOESP subspace system identification algorithm. The results showed an 

improvement in the performance of the continuous-time MOESP subspace system 

identification algorithm as the system order was increased. This showed that the 

MOESP algorithm could be used to identify the dynamics of the massive MIMO 

system, thus it could be used for massive MIMO channel estimation. 

 

In Chapter 3, the fractional-order system identification algorithm was discussed 

as an alternative to the integer-order system identification algorithm. Fractional-order 

calculus is very important, especially in explaining many events which traditional 

mathematics cannot explain. It has also been observed that many real-world physical 

systems are well characterized by fractional-order differential equations rather than 

using classical integer-order models. The fractional-order time-derivatives of the input-
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output data are generally not measured meaning that the input-output matrices are not 

known, as a result the classical subspace methods originally developed for the 

identification of discrete-time models cannot be directly adapted for the identification 

of continuous-time fractional-order models. To address this problem the Poisson 

moment functional (PMF) approach was used when dealing with continuous-time 

fractional-order system identification, where the input-output data is first filtered using 

the PMF filter after which the MOESP identification algorithm outlined for discrete-

time system identification was then applied to the PMF filtered input-output data. The 

MATLAB simulation results showed that the proposed continuous-time MOESP 

fractional-order system identification algorithm could be used to identify the dynamics 

of the massive MIMO system. Due to the challenge involved in dealing with fractional-

order transfer functions the discussion was extended to the use of rational transfer 

functions that could be used to approximate these fractional-order transfer functions. 

Meaning that whenever there is a fractional-order transfer function in system 

identification there is need to replace it with an easier to handle approximate rational 

transfer function. The Oustaloup continuous-time approximation method was used to 

present the fractional-order transfer function of the massive MIMO frequency-selective 

wireless channels as an approximated rational transfer function. The performance of the 

Oustaloup method was studied through MATLAB simulations and it was found to be a 

very close match to representing the massive MIMO system. 

 

The discussion on the use of channel equalization as a means of mitigating the 

effects of inter-symbol interference (ISI) caused by the massive multiple-input multiple-

output (MIMO) frequency-selective wireless channels was presented in chapter 4. The 

equalizer of choice was the MMSE-DFE as it benefits from both the advantages of the 

MMSE and the DF equalizers. The input-output block data in the integer-order state-

space equalization model was presented just like in the extensively studied FIR 

equalization model. The length of input-output block data is dependent on the number 

of feedforward filter taps used in the construction of the equalizer. Unlike in most 

studies where the feedback filter coefficients and feedforward filter coefficients are 

calculated independently in this thesis these were jointly calculated. Using MATLAB 

simulations, the performance of channel equalization using integer-order state-space 

modelling was then compared with the performance of channel equalization using the 
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finite impulse response (FIR) model. The results showed that the MMSE-DFE for the 

integer-order massive MIMO channel model performed better than the MMSE-DFE for 

the FIR massive MIMO channel model especially for the optimal feedforward and 

feedback filter lengths. 

 

Chapter 5 focused on the discussion on channel equalization in the context of 

fractional-order models where the minimum mean square error – decision feedback 

equalizer (MMSE-DFE) was chosen as the equalizer of choice. The input-output block 

data in the fractional-order equalization model was presented just like in the extensively 

studied FIR equalization model. The length of input-output block data is dependent on 

the number of feedforward filter taps used in the construction of the equalizer. The 

feedback filter and feedforward filter coefficients were then jointly calculated. The 

performance of channel equalization using fractional-order modelling was then 

compared with channel equalization using integer-order state-space modelling and 

channel equalization for the finite impulse response (FIR) model through MATLAB 

simulations where it was shown that the performance of the fractional-order 

equalization model was better than the FIR equalization model. The system 

performance was also studied in terms of the SER. It was observed from the MATLAB 

results that the MMSE-DFE for the fractional-order massive MIMO channel model had 

a lower symbol error rate compared to the MMSE-DFE for the FIR massive MIMO 

channel model. This implies that the fractional-order MMSE-DFE model can be a more 

robust choice than the FIR MMSE-DFE model when it comes to massive MIMO 

channel equalization. This proves the viability of the fractional-order state space models 

in channel equalization. 

 

All these conclusions demonstrate the validity of the fractional-order models in 

the identification and equalization of the massive MIMO frequency-selective wireless 

channels. 
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6.2 Future Work 

 

One of the main focus points of this thesis was on the identification and equalization of 

the quasi-static or slowly-varying, frequency-selective Rayleigh fading massive MIMO 

channels using the integer-order and fractional-order algorithms. But this research could 

be extended to the identification and equalization of the time-varying, frequency-

selective Rayleigh fading massive MIMO channels using these proposed algorithms as 

time-varying channels are usually the case in wireless mobile communications. Time-

varying channels are always varying in time due to the mobility of the transmitter 

and/or receiver unlike quasi-static or time-invariant channels where there is no change 

within each frame, but the change occurs between frames. The mobility of transmitter 

and/or receiver is known to cause the Doppler effect which affects channel estimation 

and also degrades channel equalization. Doppler effect is the change in frequency of a 

signal due to the motion between the transmitter and/or receiver. So it would be 

interesting to study the performance of the identification and equalization algorithms 

under these conditions. 

 

In studying the performance of the identification and equalization algorithms in 

the massive MIMO system an ideal case free of pilot contamination, phase noise and 

amplifier nonlinearity was considered. It would be of great interest to consider the 

effects of pilot contamination and some of the radio frequency (RF) impairments on the 

performance of the identification algorithms. This would probably be useful in 

designing more practical massive MIMO systems that would greatly achieve the 

benefits of multiuser MIMO such as increased capacity, increased data rate, enhanced 

reliability, reduced latency, improved energy efficiency, improved spectrum efficiency 

and reduced interference. 

 

In performing massive MIMO system identification, a linear system was 

considered, but in most cases, real life systems are nonlinear in nature. As a way of 

making the massive MIMO system mimic a real-life communication system, it would 

be of great importance to model it using nonlinear models and then perform system 

identification on the nonlinear system using the integer-order and fractional-order 

system identifications models. 
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In addressing the issue of IQ imbalance in the massive MIMO system we 

assumed perfect channel state information, i.e. the conditions of the channel are known, 

but this is not the case. In reality the conditions of the channel have to be estimated and 

having performed channel estimation/ system identification using the integer-order and 

fractional-order MOESP algorithms, it would be of great interest to extend our study on 

IQ imbalance and IQ imbalance compensation to incorporate a massive MIMO channel 

that has been identified using these algorithms. 
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Appendix A 

 

Nonlinear Models 

 

Volterra series models 

 

The Volterra series is similar to the Taylor series, but unlike the Taylor series, the 

Volterra series has memory [139]. It has been shown that in most cases any time-

invariant, causal, nonlinear system with fading memory can be represented by a finite 

Volterra series [140]. Considering a continuous time-invariant nonlinear systems, the 

Volterra series expresses the relationship between an input signal ( )u t  and its 

corresponding output signal ( )y t  as a sum of multiple convolutions [141] and [142]: 

 

( ) ( ) ( )0 1

1 1

,

b b nN

n n j j

n ja a

y t h h u t d   
= =

= + −      (A.1) 

 

where ( )1,n nh    is the 
thn order Volterra kernel and n  is the system memory. If N is 

finite, the series is said to be truncated. 

 

The representation of the causal discrete-time Volterra series can be expressed as [143]: 

 

( ) ( ) ( )
1

0 1

1 1

,
p

pP b b

p p j

p a a j

y n h h u n
 

  
= = = =

= + −      (A.2) 

 

where ( )1,p ph    are called the discrete-time kernels. If P is finite, the series operator 

is said to be truncated. 

 

A Volterra system is completely defined by its constant output and its Volterra kernel 

coefficients, i.e. ( )1,n nh    or ( )1,p ph    and a common approach is to estimate the 

Volterra kernel coefficients by an expansion of orthogonal functions [144]. 
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Block structured models 

 

Block structured models result from the interconnection of linear dynamic elements and 

nonlinear static elements. Block structured models can be used to simplify the Volterra 

series models. The fundamental idea of block structured models is to identify the 

individual blocks within the system based only on the external input-output data [145]. 

The commonly known block structured models are the Hammerstein model and Wiener 

model. A combination of these models also exists, resulting in the, Wiener-

Hammerstein model and Hammerstein-Wiener model. Figure A.1 shows the 

Hammerstein model, where a static nonlinearity, ( )g  is followed by linear dynamics, 

( )H , and u  and y  are the input and output respectively [146]. The Wiener model 

consists of a linear system followed by a static nonlinearity as show in Figure A.2. The 

Wiener model is the reverse of the Hammerstein model [145]. The Wiener-

Hammerstein model consists of a static nonlinear element sandwiched between two 

dynamic linear elements as shown in Figure A.3, and the Hammerstein-Wiener model 

consists of one or two static nonlinear blocks in series with a linear block [147]. 

 

 

Figure A. 1: Hammerstein model 

 

 

Figure A. 2: Wiener model 

 



203 

 

 

Figure A. 3: The Wiener-Hammerstein model 

 

The nonlinear autoregressive moving average with exogenous input model 

 

The nonlinear autoregressive moving average with exogenous input (NARMAX) model 

is an extension of the ARMAX model which is used when dealing with nonlinear 

systems. The advantage of the NARMAX model is that it can perform system 

identification with fewer parameters compared to the Volterra series model[145]. The 

nonlinear autoregressive moving average with exogenous input (NARMAX) model is 

defined as [148] : 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )1 , , , , , , 1 , ,y u ey t F y t y t n u t u t n e t e t n e t= − − − − − − +

   (A.3) 

 

where ( ) ( ),u t y t  and ( )e t  are the system input, output and noise respectively, and un , 

yn  and en  are the maximum lags for the system input, output and noise, ( )F  is some 

nonlinear function and   is a time delay. Different model structures can be used to 

approximate ( )F  in (A.3) and these may include: polynomial and rational models, 

neural networks and wavelets [149], [150] and [151]. 

 

Neural network models 

 

Neural network (NN) is some form of machine learning algorithm that tries to mimic 

the neural structure of the brain where computation takes place through simple 

processes which are then connected into a large network [152] Neural networks predict 

the behaviour of the system by learning the relationship between the input-output data 

sets of the system through an iterative training process [153] If an incorrect prediction is 

made the system adjusts the weights until an output with a small mean-square error is 
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obtained. This process involves learning the mathematical model of the system and as a 

result neural networks can be used for system identification. In neural networks the 

processing units are arranged in layers and typically, a neural network is arranged in 

three layers, namely the input layer, hidden layers and output layer as shown in Figure 

A.4. 

 

 

Figure A. 4: Neural networks model 

 

The layers are interconnected through paths called neurons or nodes. Neural networks 

can be classified as single-layer networks or multi-layer networks. Single-layer 

networks are the simplest form of neural networks. In single-layer networks there is 

only one layer of input nodes which directly feeds the single layer of output nodes via a 

series of weights. Multi-layer networks usually consist of the input layer with a number 

of nodes, one or more hidden layers and the output layer. In this, each layer of nodes 

receives inputs from the previous layers [154] The hidden layer and the output layer are 

responsible for information processing and computation.  
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Appendix B 

 

The General-Linear Polynomial Models 

 

Considering an nth order, m input and p output state-space linear system, in general, the 

linear system can be described using the diagram shown in Figure B.1, which is known 

as the general-linear polynomial model or the general-linear model. The simpler 

models, i.e. (AR) models, autoregressive with exogenous input (ARX) models, 

autoregressive moving average with exogenous input (ARMAX) models, Box-Jenkins 

(BJ) models and output-error (OE) models are a subset of the general-linear polynomial 

model. According to [155] these models are obtained by setting one or more of 

( )A q , ( )B q , ( )C q  or ( )D q  polynomials equal to 1 in Figure B.1. 

 

 

Figure B. 1: Structure of a general-linear model 

  

where ( )u t , ( )y t  and are the input and output of the system respectively and ( )n t  is 

the zero-mean white noise or the disturbance of the system and q is the delay or shift 

operator. 

 

The transfer function of Figure B.1 can be expressed as: 

 

1

1 0

1 0

( )
( )

( )

m m

m m

n n

n n

y t b q b q b
G q

u t a q a q a

−

−

−

+ + +
= =

+ + +
   (B.1) 

 

where 1 0, , ,n na a a−  and 1 0, , ,m mb b b−  are coefficients to be identified. 
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When using the unit time delay operator, 1q− , ( )A q , ( )B q , ( )C q , ( )D q  and ( )F q  can 

be expressed as [156], [157], [158] and [159]:  

1

1( ) 1 n

nA q a q a q− −= + + +     (B.2) 

 

( )11

0 1 1( )
m

mB q b b q b q
− −−

−= + + +     (B.3) 

 

1

1( ) 1 p

pC q c q c q− −= + + +     (B.4) 

 

1

1( ) 1 d

d

k

kD q d q d q
−−= + + +    (B.5) 

 

1

1( ) 1 f

f

k

kF q f q f q
−−= + + +    (B.6) 

 

where dk  and fk  are the D  order and F  order respectively. 

 

Autoregressive Model 

 

This is a very simple model that is limited in the class of problems it can solve. The 

Autoregressive (AR) model structure is a process model used in the generation of 

models where outputs are only dependent on previous outputs. No system inputs or 

disturbances are used in the modelling. The AR model structure is shown in Figure B.2.  

 

 

Figure B. 2: Structure of an autoregressive model 
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Autoregressive with Exogenous Input Model 

 

The Autoregressive with exogenous input (ARX) model is the simplest model 

incorporating the input signal. The ARX model is preferable when the model order is 

high. The disadvantage of the ARX model is that disturbances are part of the system 

dynamics. The transfer function of the deterministic part of the system and the transfer 

function of the stochastic part of the system have the same set of poles. This coupling 

can be unrealistic. The system dynamics and stochastic dynamics of the system do not 

share the same set of poles all the time. However, you can reduce this disadvantage if 

you have a good signal-to-noise ratio. When the disturbance, ( )n t  of the system is not 

white noise, the coupling between the deterministic and stochastic dynamics can bias 

the estimation of the ARX model. Set the model order higher than the actual model 

order to minimise the equation error, especially when the signal-to-noise ratio is low. 

However, increasing the model order can change some dynamic characteristics of the 

model, such as the stability of the model. The ARX model structure is shown in Figure 

B.3. 

 

 

Figure B. 3: Structure of an autoregressive with exogenous input model 

 

Autoregressive Moving Average with Exogenous Input Model 

 

This model is similar to the ARX model, except that in the autoregressive moving 

average with exogenous input (ARMAX) model on top of the known inputs the systems 

is also driven by unmeasured noise. ARMAX models are useful when you have 

dominating disturbances that enter early in the process, such as at the input. For 

example, a wind gust affecting an aircraft is a dominating disturbance early in the 

process. The ARMAX model has more flexibility in the handling of disturbance 

modelling than the ARX model. The ARMAX model structure is shown in Figure B.4. 
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Figure B. 4: Structure of an autoregressive moving average with exogenous input model 

 

Box-Jenkins Model 

 

The Box-Jenkins (BJ) structure provides a complete model with disturbance properties 

modelled separately from system dynamics. The Box-Jenkins model is useful when you 

have disturbances that enter late in the process. For example, measurement noise on the 

output is a disturbance late in the process. The BJ model structure is shown in Figure 

B.5. 

 

 

Figure B. 5: Structure of a Box-Jenkins model 

 

Output-Error Model 

 

The Output-Error (OE) model structure describes the system dynamics separately. No 

parameters are used for modelling the disturbance characteristics. The OE model 

structure is shown in Figure B.6. 
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Figure B. 6: Structure of an output-error model 
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Appendix C 

 

Definition of a Persistently Exciting Signal 

 

Given a signal ( )u t , it is said to be persistently exciting of order n  if the limits 

 

( ) ( ) ( )
1

1
lim ,  0,1, , 1

N

N
i

c k u i u i k k n
N→

=

= − = −   (C.1) 

 

exist [160], and if the matrix nC  is positive [161], i.e. 
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