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Abstract 

Background – In recent years, mass spectrometry (MS) has been applied to clinical microbial 

biotyping, exploiting the speed of matrix-assisted laser desorption/ionization (MALDI) in 

recording microbe-specific MS profiles. More recently, liquid atmospheric pressure (AP) 

MALDI has been shown to produce extremely stable ion flux from homogenous samples and 

‘ESI-like’ multiply charged ions for larger biomolecules, whilst maintaining the benefits of 

traditional MALDI including high tolerance to contaminants, low analyte consumption and 

rapid analysis. These and other advantages of liquid AP-MALDI MS have been explored in 

this study to investigate its potential in microbial biotyping. 

Methods – Genetically diverse bacterial strains were analyzed using liquid AP-MALDI MS, 

including clinically relevant species such as Escherichia coli, Staphylococcus aureus and 

Klebsiella pneumoniae. Bacterial cultures were subjected to a simple and fast extraction 

protocol using ethanol and formic acid. Extracts were spotted with a liquid support matrix 

(LSM) and analyzed using a Synapt G2-Si mass spectrometer with an in-house built AP-

MALDI source. 

Results – Each species produces a unique lipid profile in the m/z range of 400-1100, allowing 

species discrimination. Traditional (solid) MALDI MS produced spectra containing a high 

abundance of matrix-related clusters and an absence of lipid peaks. The MS profiles of the 

bacterial species tested form distinct clusters using principle component analysis (PCA) with 

a classification accuracy of 98.63% using a PCA-based prediction model. 

Conclusions – Liquid AP-MALDI MS profiles can be sufficient to distinguish clinically relevant 

bacterial pathogens and other bacteria, based on their unique lipid profiles. The analysis of 
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the lipid MS profiles is typically excluded from commercial instruments approved for clinical 

diagnostics.  
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Introduction 

Biotyping using mass spectrometry (MS) has proved highly beneficial in many sectors, 

including the food industry and clinical laboratories, overtaking traditional microbiological 

methods such as analysis by microscopy and biochemical assays. The crucial limiting factor 

of these classical methods is time, requiring after initial bacterial culture at least an 

additional 18 hours for a complete identification(1).  

The use of MS for bacterial identification is now a vital tool in the clinical laboratory, leading 

to a vast reduction in identification turnaround time, from 24-48 hours to approximately 

one hour(2) following the growth period. Thus, the length of stay of patients in hospitals, as 

well as patient mortality, can be reduced, which in turn significantly reduces hospital costs 

per infection(3, 4) in comparison to traditional methods. Commercial MS instruments 

approved for clinical use utilize a (MALDI) source coupled to an axial time-of-flight (TOF) 

mass spectrometer. These instruments analyze the unique peptide/protein microbial 

fingerprint in the m/z range of 2,000-12,000, which can provide species-level identification 

(5, 6). The range below m/z 2,000 is typically excluded from these scans due to the 

interference of matrix related ions, however this also excludes the detection of low 

molecular weight metabolites and lipids.  

Lipids are essential macromolecules within the bacterial cell, being a major component of 

the phospholipid bilayer of the cell membrane, as well as having roles in storage and 

signalling pathways. The term ‘lipidomics’ was first coined by Han and Gross in 2003(7), 

encompassing the study of the cellular lipidome of biological samples, including bacterial 

cells. Most commonly, the analytical study of bacterial lipids is performed using pyrolysis MS 

(8-10), and more recently electrospray ionization (ESI) MS (11, 12). However there has also 
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been research performed using MALDI-TOF MS (13). These and other MS techniques have 

demonstrated that certain strains can be distinguished based on their lipid profiles, lending 

the field of lipidomics to bacterial classification and identification (14, 15). However, only a 

few studies have explored the use of bacterial lipid profiles for clinical biotyping, and even 

less by using MALDI MS (16, 17). 

Recent developments in liquid AP-MALDI have shown this technique to provide benefits 

beyond those of traditional MALDI, which is performed with solid samples under vacuum 

conditions. Liquid MALDI samples are typically comprised of a liquid support matrix (LSM), 

formed of matrix chromophore molecules and the addition of a viscous support liquid such 

as glycerol. Liquid MALDI samples have self-healing properties, which allow for a relatively 

stable ion flux with relatively low sample ablation (18). Liquid MALDI samples also have a 

greater homogenous distribution of matrix and analyte molecules than solid MALDI samples 

(19), enabling prolonged analyte ion detection and removing the need for the user to find a 

’sweet-spot’ on the sample for sufficient analyte ionization which is often needed with solid 

MALDI samples. 

Another major advantage of the use of liquid AP-MALDI is the production of multiply 

charged ions, which is usually only obtained with an ESI source. This offers greater choice for 

MS/MS analysis, including ETD/ECD, and provides low m/z values for high-molecular weight 

biomolecules, thus facilitating the use of conventional, high-performing, hybrid ESI MS 

instrumentation. The mechanism behind the formation of multiply charged ions has been 

discussed elsewhere (20-22). However, despite having shown that with the addition of 

divalent metal cations liquid AP-MALDI can produce doubly charged lipids, diagnostically 

informative lipid profiles are easier obtained with singly charged lipids as shown in the 
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analysis of biological samples such as milk extracts (23). The current main limitation of liquid 

AP-MALDI MS lies in the routine analysis of larger peptides and proteins above 30kDa from 

complex biological samples (24, 25). 

This study demonstrates the novel application of liquid AP-MALDI for the profiling of 

bacterial lipids to provide species-level identification. We demonstrate that bacteria can be 

identified using their unique lipid mass fingerprint, providing a rapid analytical alternative 

for bacterial identification, which in clinical analysis is mostly performed using a 

peptidomic/proteomic mass fingerprint. The benefits of using liquid MALDI samples over 

solid MALDI samples to analyze bacterial extracts are demonstrated. Bacterial extracts were 

prepared using a simple ethanol/formic acid extraction protocol similar to clinical biotyping 

protocols for solid MALDI MS (26). Secondly, several bacterial species were analyzed to 

obtain a unique lipid profile for each bacterium to allow for species differentiation. These 

data were used to perform principle component analysis (PCA) to determine the differences 

between the MS profiles obtained for each bacterial species.  

Materials and Methods 

2.1 Materials 

All MALDI matrix components and protein standards were purchased from Sigma-Aldrich 

(Gillingham, UK), besides porcine insulin which was purchased from VWR (Leighton Buzzard, 

UK). The peptide standard mixture was purchased from Bruker UK Ltd. (Coventry, UK) while 

the sodium iodide MS calibration solution was purchased from Waters (Wilmslow, UK). 

Water, formic acid and acetonitrile (all HPLC grade), as well as ethanol (reagent grade) were 

purchased from Fisher Scientific (Loughborough, UK).  
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2.2 Sample preparation 

First-generation bacterial strains (Pro-Lab Diagnostics, Merseyside, UK) were received in 

freeze-dried discs and revived according to recommended growth conditions from Public 

Health England which were obtained by searching for strain number (see Supplemental 

Material, Table S1) in the National Collection of Type Cultures (27). All culture media were 

obtained from Oxoid/ThermoFisher (Basingstoke, UK) and prepared according to 

manufacturer instructions, including autoclaving at 121˚C for 15 minutes to ensure sterility. 

Following incubation at 37°C for 24 hours (or 72 hours in the case of L. brevis), bacterial 

growth was scraped off the surface of the media and resuspended in 300µL of HPLC grade 

water. A volume of 900µL of ethanol was added and mixed by pipetting. The suspension was 

centrifuged for 2 minutes at 13,000 rpm, and the supernatant decanted and discarded. 

Further centrifugation for 2 minutes at 13,000 rpm was performed, and the supernatant 

removed by pipetting. The resultant pellet was resuspended in 30µL of 70% formic acid, 

followed by an equal volume of acetonitrile. The suspension was mixed by pipetting, and 

then centrifuged for 2 minutes at 13,000 rpm. Finally, the supernatant was collected and 

used for AP-MALDI analysis. 

An in-house made protein standard mixture consisting of bovine cytochrome C, bovine 

ubiquitin, equine myoglobin and porcine insulin was run by liquid MALDI MS prior to each 

experiment to ensure the instrument was satisfactorily working. The peptide standard 

mixture was prepared as per manufacturer’s guidelines and used as a standard for both 

solid and liquid MALDI MS analysis.  

An ethylene glycol-based LSM was used for all liquid MALDI samples. This was prepared 

using a 25mg/mL α-cyano-4-hydroxycinnamic acid (CHCA) or 2,5-dihydroxybenzoic acid 
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(DHB) solution in acetonitrile and water (70:30, v:v), using vortexing and sonication to 

dissolve the matrix chromophore crystals, followed by the addition of 70% ethylene glycol 

and vortexing. Liquid MALDI samples were spotted onto a stainless-steel target plate, 

starting with 0.5µL of LSM solution, then adding 0.5µL of the analyte solution (bacterial 

extract, protein standard or peptide standard). 

For solid MALDI, a CHCA matrix solution was prepared at a concentration of 15mg/mL using 

acetonitrile and water (70:30, v:v) with 0.1% trifluoroacetic acid as solvent. Similarly, a DHB 

matrix solution was prepared at a concentration of 25mg/mL using the same solvent. Solid 

MALDI samples were spotted onto the stainless-steel target plate, starting with 1µL of 

analyte solution followed by 1µL of matrix solution. The solid MALDI sample was left to dry 

at room temperature prior to analysis. 

For calibrating the time-of-flight (TOF) mass analyzer, a liquid sample droplet containing 

0.5µL sodium iodide MS calibration solution (2µg/mL in 1:1 isopropanol:H2O, v:v) and 0.5µL 

of a solution of water, acetonitrile and ethylene glycol (3:7:6, v:v:v) was prepared. 

Calibration was performed over the m/z range of 100-2000. 

2.3 Liquid AP-MALDI MS Analysis 

All MS data were acquired on a Synapt G2-Si (Waters) in positive TOF mode coupled to an 

in-house built MALDI source. Details of the instrumental setup have been described in a 

previous report (20). A potential of +3kV was applied between the target plate and heated 

transfer tube. The ion source was operated at 3.5kV, with 180L/h N2 counter-gas flow. A 

pulsed nitrogen laser (337nm wavelength, 3ns pulse duration) was used at a laser pulse 

repetition rate of 10Hz at 18µJ/pulse. 
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Collision-induced dissociation (CID) was used for MS/MS analysis with argon as the collision 

gas. MS/MS data was acquired using a trap collision energy of 30 V (28). 

2.4 MS Data Analysis 

All data were processed using MassLynx 4.1 (Waters) software. AMX Model Builder (Waters) 

was used to perform PCA on the data. Deconvolution of mass spectral data was performed 

by UniDec software (29). 

2.5 Ethical Approval 

Ethical approval was not required for this study as the research undertaken did not involve 

human or animal material. 

 

3. Results  

3.1 Comparison of Liquid and Solid MALDI MS Analysis of Bacterial Extracts 

A single bacterial extract was selected for MS analysis with both a solid MALDI sample and a 

liquid MALDI sample. Figure 1A shows the spectrum obtained for Escherichia coli following 

MS analysis from a solid MALDI sample. The spectrum contains an abundance of high-

intensity MALDI matrix-related ions, found in clusters spaced 211 Da apart, decreasing in 

intensity as the m/z value increases. The mass difference of 211 Da can be attributed to the 

addition of a sodiated deprotonated CHCA molecule. In general, cluster matrix ion signals 

for CHCA are typically formed as a result of sodium and potassium ions in varying 

compositions as previously noted by Smirnov et al. (30). 
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MALDI MS analysis of lipids typically employs matrix chromophore compounds such as DHB 

(31, 32) or 9-aminoacridine (33-35) rather than CHCA. Thus, the bacterial extracts were also 

analyzed by AP-MALDI MS using DHB (Supplemental Material, Figure S2). However, no 

improvement was obtained in solid AP-MALDI MS, with the DHB cluster ions being the 

dominant ion signals, while the mass spectra obtained from DHB-based liquid MALDI 

samples revealed lower abundance and less variety for lipid ion signals and no ion signals for 

peptides or proteins when compared to the spectra obtained from CHCA-based liquid 

MALDI samples. 

Spectra of the peptide calibration standard were also recorded from solid MALDI samples to 

demonstrate the efficacy of solid AP-MALDI on the MS instrument used for this study 

(Supplemental Material, Figure S1). All peptides that were expected to be detected within 

the given m/z range of up to 2000 were recorded as singly charged ions using solid AP-

MALDI. No multiply charged ions of these or higher molecular mass peptides were detected. 

However, lipid ions from the bacterial extracts were not detected by solid AP-MALDI MS. 

On the other hand, when E. coli is analyzed using a liquid MALDI sample, the resultant 

spectrum contains a unique fingerprint of lipids in the m/z range of 500-850. Above m/z 

850, five peaks from multiply charged ions are present in the spectrum. Deconvolution of 

these peaks indicate these are the [M+8H]8+, [M+7H]7+, [M+6H]6+, [M+5H]5+and [M+4H]4+ 

ions from the same protein or protein fragment, with a software-calculated average mass of 

7180 Da. 

3.2 Liquid AP-MALDI MS Profiling of Multiple Bacterial Strains  

A selection of 10 bacterial species were analyzed using liquid AP-MALDI, including 

Escherichia coli, Klebsiella pneumoniae, Campylobacter jejuni, Staphylococcus aureus, 
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Staphylococcus epidermidis, Streptococcus pyogenes, Lactobacillus brevis, Enterococcus 

faecalis, Enterococcus hirae and Pseudomonas aeruginosa. Typical mass spectra from their 

analysis are shown in Figure 2. Visual inspection of these spectra already shows that each 

species possesses a unique lipid profile in the m/z range of 400-1100. However, many peaks 

observed in this region are common to multiple bacterial species albeit in varying relative 

abundances. Putative identification of the lipid ion peaks has been performed using the 

open access LIPID MAPS structure database (Supplemental Material, Table S2) (36). 

3.3 MS/MS Analysis of E. coli Lipid Profile Peaks 

To confirm the suspected identity of putative lipid profile peaks in the selected m/z ranges, 

MS/MS analysis was performed. Figure 3 shows the MS/MS spectrum of the precursor ion at 

m/z 726.5, which can be attributed to the sodium adduct of a phosphatidylethanolamine 

(PE) lipid. Evidence for this identification can be found in the loss of 43 Da (presumably 

C2H5N from the head group), resulting in a peak at m/z 683.5, and the loss of 141 Da 

(ethanolamine phosphate head group), resulting in a peak at m/z 585.5 - both are 

characteristic fragments of PEs as reported earlier(37). Other fragmentation detected in the 

MS/MS spectrum include the putative loss of fatty acid groups C16:0 and C17:1 as seen as a 

loss of 256 Da and 268 Da, respectively, from the fragment ion at m/z 683.44 (see Figure 3). 

All of the above peaks have been previously identified by Zhang et al. (37). 

3.4 Principle Component Analysis 

Raw MS profile data files were imported to the AMX Model Builder software for PCA. For 

each of the ten species, nine data files acquired from three biological replicates from 

separate cultures analyzed in triplicates were added to the model, and the m/z range 400-

1100 was selected for multivariate statistics. Classification performance of the AMX model 
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was assessed by the software’s built-in ‘leave 20% out’ cross validation method, reporting a 

correct classification rate of 97.78%. Figure 4 shows a plot of the PCA data for the first 3 

principle components (PC1, PC2 and PC3). Data points for each species form separate 

clusters, allowing species discrimination. The peaks associated with the highest influence on 

variation in PC1 and PC2 are tabulated in the Supplemental Material (Table S3). 

Discussion 

Each bacterial species in this study produced a unique lipid MS profile when analyzed using 

liquid AP-MALDI MS. In clinical MS biotyping instruments, lipid profiles are typically not 

analyzed, as these instruments are optimized for the analysis of the unique 

peptidomic/proteomic fingerprint of microbial extracts, detecting mainly ribosomal proteins 

and their fragments in the m/z range of 2,000-12,000. The analytical sensitivity of such 

instruments is commonly enhanced by using axial TOF mass analyzers in the linear mode 

with ion deflection devices or lower detector voltages for lowering the detection of the m/z 

range in which lipids are detected. Thus, lipids are excluded from the analysis in these 

instruments, arguably due to reasons associated with excessive ion suppression from matrix 

cluster formation when using solid MALDI and detector saturation in the low m/z range as it 

is often the case for axial MALDI-TOF instruments operated in the linear mode. 

As shown, by using liquid AP-MALDI the lower m/z range is far less populated with high-

intensity matrix cluster ions as observed with solid AP-MALDI in this study (see Figure 1) and 

solid MALDI as reported in the literature (30). E. coli extracts analyzed by solid AP-MALDI MS 

only revealed matrix cluster ions, providing no diagnostic information. 

The use of liquid AP-MALDI coupled to an orthogonal Q-TOF mass analyzer also overcomes 

some of the limitation due the potentially excessive desorption of neutral matrix 
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compounds and clusters as well as late matrix ion cluster formation due to sodium- and 

potassium-mediated cation formation, which can pose far greater detector saturation issues 

in linear mode axial TOF mass analyzers. Thus, lipids and metabolites occupying the same 

m/z range as matrix/cation clusters will be easier to detect with orthogonal hybrid 

instrumentation that can effectively decouple the source from the analyzer for the purpose 

of limiting the amount of matrix clusters reaching the detector. 

Some hybrid MS instrumentation like the one used in this study also allow ion mobility 

separation, which particularly for lipids can provide another dimension of separation and 

will be further investigated in future studies. Ion mobility has the capability to separate ions 

based on their collisional cross section, which can provide the separation of isobaric species 

(38), as well as a substantial reduction of chemical background noise (39). 

As lipids are essential components of the cell membrane, with roles in protein localization 

which is vital to the bacterial life cycle (40), the detection of their ion signals provides 

valuable diagnostic information, allowing to distinguish bacteria based on their lipid profile 

(15, 37). 

A diverse set of bacteria were selected for analysis in this study to account for species 

diversity in demonstrating the use of liquid AP-MALDI MS in bacterial classification for a 

genetically varied group of organisms. Some of the selected species are of high clinical 

importance. Amongst these, S. aureus, K. pneumoniae and P. aeruginosa are part of a group 

named ESKAPE pathogens, which are organisms that have a high potential to resist actions 

of antibiotics (41). Closely related species were also included to test how well these can be 

distinguished using their lipid profiles. Thus, S. aureus and S. epidermidis, as well as E. hirae 

and E. faecalis were included as these bacteria respectively belong to the same genus and 
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possess relatively similar lipid profiles. Also, a high degree of similarity can be seen between 

certain species, such as E. coli and K. pneumoniae, with an almost identical lipid profile. 

These were distinguishable by the intensities of their lipid ion peaks. As both species are 

member of the same family, Enterobacteriaeceae, the close resemblance of their lipid 

profiles can be expected. Similar lipid MS profiles have also been observed in other studies 

for Enterobacteriaeceae, with the distribution of PEs significantly varying based on their 

genus (42). However, here it has been shown that it is possible to achieve species-level 

discrimination. 

A marked difference in the profile pattern can be seen for lipid profiles obtained for gram-

positive and gram-negative bacteria. Previous MS studies by Zhang et al. have shown that 

spectra of gram-negative bacteria contain fatty acids, lyso-phospholipids, 

phosphatidylethanolamines (PE) and phosphatidylglycerols (PG) in abundance, while spectra 

of gram-positive bacteria contain lipopeptides, and with limited abundance lyso-

phospholipids (37). This difference can also be seen in the distribution of the lipid profiles 

between the gram-positive and gram-negative species used in this study. All gram-positive 

bacteria investigated (Figure 2E-J) exhibit a lipid profile in the m/z range of 900-1000, 

whereas gram-negative species show the highest intensity distribution of lipid ion signals in 

the m/z range of 650-800. This is consistent with MS studies that demonstrate that gram-

negative bacteria have a high ion signal abundance of PEs and PGs within this range (43). 

Gram-positive bacteria exhibit a lipid profile in a higher m/z range, due to the presence of 

different lipid classes, such as lysophospholipids present in S. aureus (44) and cardiolipins 

found in Lactobacillus species (45). 
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It is not only the lipid profile that can be potentially exploited using liquid AP-MALDI MS. In 

Figure 1B, the higher m/z range shows that multiply charged ions can be obtained from 

bacterial samples. The estimated molecular weight of the underlying molecular species is 

7180 Da, possibly a ribosomal protein or protein fragment as typically detected in 

commercial MALDI MS biotyping instruments (46). The detection of proteins using MALDI 

and axial-TOF instrumentation is the current standard for mass spectrometry in clinical 

microbiology, and therefore the acquisition of lipid ion signals alongside peptide and protein 

ion signals contributes valuable diagnostic information. 

In this study, species-level discrimination has been achieved for all investigated bacteria 

using lipid profiles. However, there might be species that cannot be distinguished based on 

their lipid MS profile alone. In these cases, the ability of liquid AP-MALDI MS to detect lipid 

profiles in combination with some multiply charged peptide and protein ions can further 

improve bacterial biotyping, potentially allowing the discrimination between closely related 

species and strain-level identification, which could allow tracking of strain evolution and 

acquisition of resistance profiles. 

Abundant ion signals for lipids and proteins in hybrid MS instruments also allow superior 

MS/MS analysis compared to current commercial MS biotyping instrumentation, thus 

providing structural information for these macromolecules. As clinical biotyping of 

microorganisms is performed on axial MALDI-TOF mass spectrometers, MS/MS analysis and 

therefore bacterial identification is principally inferior. The use of the AP-MALDI source and 

Q-TOF mass analyzer in this study allows the acquisition of high-quality MS/MS data, 

providing further highly specific sequence information for peptides and proteins from the 

same analysis without additional sample preparation. Protocols for optimised 
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lipid/peptide/protein extraction and the combined lipid profile and sequence analysis are 

currently under development and will be reported elsewhere. 

In summary, this study has investigated the application of liquid AP-MALDI MS on a hybrid 

Q-TOF MS instrument for the analysis of bacterial extracts. In a clinical laboratory, bacterial 

identification by mass spectrometry is typically performed based on a unique proteomic 

fingerprint. The data presented here shows that there is the potential to perform species-

level identification based on the unique lipid MS profile of the bacteria, which is typically not 

obtained from commercial MALDI-TOF instruments approved for clinical analysis. It is 

important to note that environmental factors can influence the lipid composition in 

bacteria. Thus, further studies with respect to the influence of the growth medium, 

temperature and incubation time are needed. 

The ability of liquid AP-MALDI to generate multiply charged peptide/protein ions through its 

application on hybrid high-performing MS/MS instrumentation will undoubtedly add 

analytical power to the detection of lipid MS profiles. Ultimately, this option should provide 

bacterial identification of higher confidence compared to current instruments approved for 

clinical use. 

Data supporting the results reported in this paper are openly available from the University 

of Reading Research Data Archive at http://dx.doi.org/10.17864/1947.221. 

  

http://dx.doi.org/10.17864/1947
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Figure 1 – AP-MALDI mass spectra of E. coli obtained from a solid (A) and liquid (B) MALDI 

sample, where CHCA represents the matrix chromophore compound. The most abundant 

isotopologues are labelled. 
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Figure 2 - Liquid AP-MALDI mass spectra of the lipid profiles of several bacterial species in 

positive ion mode. 
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Figure 3 – Liquid AP-MALDI MS/MS spectrum of the precursor ion at m/z 726.5, detected in 

the lipid MS profile of E. coli. 
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Figure 4 – Plot of the PCA data points for the first three principle components (PC1, PC2 and 

PC3) using MS profile data from 10 bacterial species. 
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