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Comparative prebiotic activity of mixtures 
of cereal grain polysaccharides
Suzanne Harris1,2*  , Andrea Monteagudo‑Mera1, Ondrej Kosik2, Dimitris Charalampopoulos1, Peter Shewry1,2 
and Alison Lovegrove2

Abstract 

The main components of the non-starch polysaccharide (NSP) fraction of wheat flour are arabinoxylan (AX) and 
β-glucan. These are also present in other cereal grains, but their proportions vary with AX being the major component 
in wheat and rye and β-glucan in barley and oats. Therefore, it was hypothesised that these NSPs could act synergis‑
tically when fermented in vitro at the ratios present in the major foods consumed, resulting in increased prebiotic 
activity. AX and β-glucan were therefore tested in in vitro fermentation studies to assess their prebiotic activity when 
used individually and/or in different ratios. Short-chain fatty-acids (SCFAs) produced from in vitro fermentation were 
measured using HPLC and bacterial populations were measured using flow cytometry with fluorescence in situ 
hybridisation (Flow-FISH). Fermentation of AX alone resulted in a significant bifidogenic activity and increased con‑
centrations of SCFAs, mainly acetate, after 8–24 h of fermentation, however β-glucan alone did not show prebiotic 
activity. The greatest prebiotic activity, based on concentration of total SCFAs and increases in total bacteria as well as 
beneficial Bifidobacterium and Clostridium coccoides/Eubacterium groups, was observed when AX and β-glucan were 
combined at a 3:1 ratio, which corresponds to their ratios in wheat flour which is major source of cereal fibre in the 
diet. This indicates that the population of bacteria in the human GI tract may be modulated by the composition of the 
fibre in the diet, to maximise the prebiotic potential.

Keywords:  Prebiotic, Batch culture, Fluorescence in situ hybridisation (FISH), Short chain fatty acids (SCFA), β-Glucan, 
Arabinoxylan
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Introduction
Wheat is most important cereal in terms of global con-
sumption, being the staple food crop in temperate 
countries and increasingly replacing traditional crops 
in sub-Saharan Africa and Asia. Wheat is usually con-
sumed after processing into two types of food: as bread 
and other baked goods and as noodles or pasta. In most 
cases these are produced from white flour which is made 
from the endosperm and contains around 2–3% total 
dietary fibre (TDF) compared with wholemeal which also 
contains the outer bran layers and contains about 11.5 to 
15.5% TDF (Shewry and Hey 2015). Nevertheless, white 

bread contributes about 10% of the TDF in the adult 
UK diet (Steer et  al. 2008), and correspondingly more 
in regions such as North Africa and Central Asia where 
wheat can account for between 50 and 70% of the total 
energy intake. Hence, the biological activity of wheat 
flour fibre is of significant interest, including their prop-
erties as a prebiotic (which can be defined as ‘non-digest-
ible (by the host) food ingredients that have a beneficial 
effect through their selective metabolism in the intestinal 
tract’ (Gibson et al. 2017).

The major dietary fibre (DF) components in wheat 
flour are cell wall polysaccharides, fructans, resist-
ant starch and the arabinogalactan peptide. Fructans 
account for 1–2% of white flour (Haskå et al. 2008) and 
have well-established prebiotic properties, while the 
level of resistant starch is low (< 0.1%) compared to non-
starch polysaccharides (Siljeström and Asp 1985). The 
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cell wall polysaccharides of wheat flour comprise two 
major components, about 70% arabinoxylan (AX) and 
20% (1 → 3,1 → 4)-β-d-glucan (β-glucan), with about 
2% cellulose ((1 → 4)-β-d-glucan) and 7% glucomannan 
(Mares and Stone 1973). AX comprises a backbone of 
β-d-xylopyranosyl residues linked through (1 → 4) gly-
cosidic linkages with some residues being substituted 
with α-l-arabinofuranosyl residues at either position 3 or 
positions 2 and 3 (Fincher and Stone 1974). Some arab-
inofuranosyl residues at position 3 of the xylan residues 
may themselves be substituted with ferulic acid at the 5 
position which allows the formation of cross-links, by 
oxidation of ferulate present on adjacent AX chains to 
give dehydrodimers (diferulates). AX occurs in water-
soluble and insoluble forms, which may differ in their 
molecular weight, degree of substitution, and extent of 
diferulate cross-linking. β-glucan has a simpler struc-
ture, comprising only glucose residues joined by (1 → 3) 
and (1 → 4) linkages. Single (1 → 3) linkages are usually 
separated by two or three (1 → 4) linkages but longer 
stretches of (1 → 4) linked glucan of up to 14 units have 
been reported for wheat bran β-glucan (Li et  al. 2006). 
Such regions are sometimes referred to as “cellulose-like”, 
as cellulose is (1 → 4)-β-d-glucan without any (1 → 3) 
linkages. β-Glucan occurs in soluble and insoluble forms, 
which may differ in their size and distribution of (1 → 3) 
and (1 → 4) linkages (Johansson et al. 2004).

Several previous studies of the prebiotic effects of 
AX from wheat and β-glucan from barley have been 
reported (Hughes et  al. 2007, 2008; Wang et  al. 2016). 
However, should be noted that these components are 
not consumed singly in human diets but as mixtures in 
complex foods. In particular, AX and β-glucan are most 
widely consumed in a ratio of about 3:1 in bread and 
other wheat products and it is therefore possible that the 
human colonic microflora has adapted to provide more 
efficient fermentation of this ratio. We have therefore 
compared the fermentation of AX and β-glucan as single 
compounds with mixtures at ratios of 1:3, 1:1 and 3:1.

Materials and methods
Materials
Wheat arabinoxylan (P-WAXYM) and barley β-glucan 
preparations (P-BGBH) were purchased from Megazyme 
(Bray, co. Wicklow, Ireland).

In‑vitro fermentation
100 mL sterile batch fermentation vessels (50 mL work-
ing volume) were aseptically filled with 45 mL of sterile 
basal medium and sparged with O2-free N2 overnight 
to establish anaerobic conditions. The medium con-
tained per litre: 2  g of peptone water (Oxoid Ltd., Bas-
ingstoke, United Kingdom), 2 g of yeast extract (Oxoid), 

0.1 g of NaCl, 0.04 g of K2HPO4, 0.01 g of MgSO4·7H2O, 
0.01 g of CaCl2·6H2O, 2 g of NaHCO3, 0.005 g of hemein 
(Sigma), 0.5 g of l-cysteine HCl (Sigma), 0.5 g of bile salts 
(Oxoid), 2 mL of Tween 80, 10 µL of vitamin K (Sigma). 
Polysaccharide samples were added (1% w/v) to the basal 
medium. Each vessel was inoculated with 10% (v/v) of 
faecal slurry, which was prepared by homogenizing fresh 
human faeces (10%, w/w) in phosphate-buffered saline 
(PBS; 8  g/L NaCl, 0.2  g/L KCl, 1.15  g/L Na2HPO4, and 
0.2  g/L KH2HPO4), pH 7.3 (Oxoid), using a stomacher 
(Stomacher 400, Seward). Three individual faecal donors 
were used per experiment and samples were not pooled, 
donors were two female and one male, between 23 and 
59 years of age and on a normal diet without any special 
dietary requirements and that had not taken antibiotics, 
prebiotic or probiotics in the previous 3  months. Ves-
sels were incubated at 37 °C with a water jacket for up to 
48 h and the pH was controlled between 6.7 and 6.9 with 
0.5 M HCl and 0.5 M NaOH using an automated pH con-
troller (Fermac 260, Electrolab, Tewkesbury, UK). Sam-
ples were collected at 0, 4, 8, 24 h for analysis.

SCFA analysis using HPLC
Samples were centrifuged at 13,000×g for 5  min to 
remove particulate matter and filtered using 0.2  μM 
nitrocellulose filter. 20  μL was injected on to a Phe-
nomenex Rezex ROA Organic Acid H+ (8%) HPLC col-
umn (Watford, UK) at 50 °C on a Shimadzu HPLC with 
0.0025  M H2SO4 eluent at a flow rate of 0.6  mL/min. 
SCFA (lactate, formate, acetate, propionate and butyrate) 
were quantified using standard calibration curves from 1 
to 100 mM.

Enumeration of bacteria by flow‑FISH
Samples were centrifuged at 10,000×g for 3  min and 
supernatant discarded. Pelleted sample was fixed for 4 h 
at 4 °C with 4% (w/v) filtered paraformaldehyde (pH 7.2) 
in a ratio of 1:3 (v/v). Samples were washed twice with 
filtered PBS and resuspended in 600  μL of a mixture of 
PBS/ethanol (1:1, v/v) and then stored at − 20 °C for up 
to 3 months. Hybridisation was carried out as described 
in Rycroft et al. (2001a, b) using genus and group specific 
16S rRNA-targeted oligonucleotide probes (MWG Bio-
tech, Ebersberg, Germany).

The sample probes used were Bif164 (Langendijk 
et  al. 1995), Bac303 (Manz et  al. 1996), Lab158 (Harm-
sen et  al. 2000), Ato2913, Prop853 (Walker et  al. 2005), 
Erec482 (Franks et  al. 1998), Rrec584 (Walker et  al. 
2005), Fprau655 (Hold et al. 2003), Chis150 (Franks et al. 
1998), shown in Additional file 1: Table S1. Samples were 
screened using a flow cytometer (Accuri C6, BD Bio-
sciences, USA) with Accuri CFlow software.
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Statistical analysis
Statistical analyses were performed using SPSS for Win-
dows, version 21. Univariate analysis of variance and 
Tukey’s post hoc test was used to determine significant 
changes between treatments in the microbiota popula-
tions and SCFA concentrations. Differences were consid-
ered significant when P < 0.05.

Results
Production of SCFA
Figure  1 and Additional file  1: Table  S2 show the con-
centrations of SCFAs and lactate in samples incubated 
with: AX alone, AX: β-glucan (3:1, w/w), AX: β-glucan 
(1:1, w/w), AX: β-glucan (1:3, w/w), β-glucan alone and 
FOS after 24  h’ fermentation. Fermentation of the sam-
ples containing AX, AX: β-glucan (3:1), AX: β-glucan 
(1:1), and FOS had significantly higher concentrations of 
total SCFAs (P > 0.95) compared to the negative control, 
mainly due to production of acetate. The greatest increase 
in acetate concentration was observed with AX and AX: 
β-glucan (3:1) from 8 to 24 h, and with AX: β-glucan (1:1) 
at 8  h. By contrast, the acetate concentrations were not 

significantly increased compared to the control sample 
with AX: β-glucan (1:3) or β-glucan alone. While the 
mean butyrate concentration was increased after 24  h 
fermentation with FOS, AX, AX: β-glucan (3:1), and AX: 
β-glucan (1:1), these increases were not statistically sig-
nificant due to large variation between donors.

Table  1 shows the percentages of individual SCFAs 
produced after 24  h fermentation. The proportions of 
SCFAs differ between substrates, with those comprising 
high proportions of AX producing greater proportions 
of acetate and those containing greater levels of β-glucan 
producing greater proportions of propionate. The pro-
portion of butyrate produced did not differ.

Bacterial populations
The populations of the dominant types of human colonic 
bacteria after in  vitro fermentation with AX alone, AX: 
β-glucan (3:1), AX: β-glucan (1:1), AX: β-glucan (1:3), 
β-glucan alone and FOS are shown in Additional file  1: 
Table  S3, while the populations which changed signifi-
cantly compared with the negative control (Total bacte-
ria, Bifidobacterium, Clostridium coccoides/Eubacterium 
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Fig. 1  SCFA analysed by HPLC in batch cultures containing different substrates: Error bars indicate SEM (n = 3). Significant differences between 
substrates at the same time point are indicated with *P < 0.05. One-way ANOVA with Tukey’s post hoc tests were used for statistical analysis
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rectale and Roseburia) are shown in Fig.  2. AX, AX: 
β-glucan (3:1) and AX: β-glucan (1:1) had significant 
(P < 0.05) bifidogenic effects between 8 and 24 h while the 
same three substrates gave significant increases Clostrid-
ium coccoides/Eubacteium rectale compared to the 
negative control (P < 0.05) after 24 h. The populations of 
Roseburia populations also increased significantly com-
pared to the negative control (P < 0.05) with fermentation 

of AX and AX: β-glucan (3:1) after 24 h. Total bacterial 
populations included genera that were not specifically 
targeted with fluorescent probes, AX and AX: β-glucan 
(1:1) showed significant (P < 0.05) increases in total bacte-
ria after 24 h, however AX: β-glucan (3:1) demonstrated 
earlier increases between 8 and 24 h.

Discussion
This study aimed to determine the prebiotic activity of 
AX and β-glucan in combination and in different ratios in 
order to determine the optimal ratio of AX: β-glucan for 
the highest prebiotic activity.

A prebiotic is defined as a substrate that is selectively 
utilized by host microorganisms conferring a health 
benefit (Gibson et  al. 2017) and the two major types of 
dietary fibre present in cereal grains have been shown to 
have prebiotic activity: wheat AX (Grootaert et al. 2009; 
Hughes et al. 2007; Van Craeyveld et al. 2008) and barley 
β-glucan (Hughes et al. 2008; Wang et al. 2016).

Short-chain fatty acids (SCFA) are volatile fatty acids 
consisting of a straight-chain aliphatic tail of fewer than 
six carbon atoms and are produced by oligosaccharide 
fermentation concomitant with increase in beneficial 
bacteria including Bifidobacterium. Their production 
is therefore used to measure prebiotic activity together 

Table 1  % SCFA produced in in vitro colonic fermentation 
vessels at  24  h containing AX and  β-glucan alone 
and combined in different ratios

FOS is the positive control, and no added polysaccharide (no treatment) is the 
negative control, n = 3

SCFA (%)

Acetate Propionate Butyrate

No treatment 47.2 (± 13.5) 37.0 (± 7.8) 15.7 (± 4.1)

FOS 70.0 (± 8.0) 15.4 (± 4.3) 14.6 (± 4.6)

AX 73.5 (± 16.1) 15.4 (± 3.6) 11.1 (± 4.3)

AX 3:1 β-glucan 74.9 (± 10.6) 15.5 (± 4.7) 9.6 (± 2.8)

AX 1:1 β-glucan 72.0 (± 25.3) 12.0 (± 3.7) 15.9 (± 5.4)

AX 1:3 β-glucan 63.0 (± 16.5) 19.3 (± 5.7) 17.7 (± 4.5)

β-Glucan 45.3 (± 10.3) 44.9 (± 17.5) 9.7 (± 1.3)
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Fig. 2  Bacterial populations analysed by Flow-FISH in batch cultures containing different substrates: Error bars indicate SEM (n = 3). Significant 
differences between substrates at the same time point are indicated with *P < 0.05. One-way ANOVA with Tukey’s post hoc tests were used for 
statistical analysis
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with beneficial changes in the microbiota. The principal 
SCFAs produced are acetate, propionate and butyrate 
(comprising 95% of the total) (Cummings et al. 1987) and 
are metabolized by the colonic epithelium (butyrate), 
liver (propionate) and muscle (acetate) (Cummings and 
Macfarlane 1997). Relatively little is known about the 
role of formate in the gut, however it has been linked to 
methanogenesis and appears to be elevated in inflam-
matory conditions (Bereswill et al. 2011; Vanderhaeghen 
et al. 2015). SCFAs have been shown to provide multiple 
beneficial effects for the host, for example, providing die-
tary energy and suppressing the growth of pathogens by 
decreasing the pH of the intestinal lumen (Blaut 2002). 
The concentration of SCFAs in this study was used to 
measure the rate of fermentation of the substrates, with 
significant increases particularly apparent in the predom-
inant SCFA, acetate, which is often utilised to produce 
other SCFAs, butyrate and propionate.

Acetate was the highest contributor of total SCFA for 
all samples. The addition of larger amounts of AX appears 
to drive the concentration towards greater acetate pro-
duction (Table  1), whereas greater β-glucan appears to 
favour propionate production. The highest proportion 
of propionate is seen with the β-glucan sample alone at 
44.9% (although this is at a significantly lower concentra-
tion than acetate). Previous studies have shown fermen-
tation of β-glucan to favour production of propionate and 
fermentation of AX to encourage acetate and butyrate 
(Hughes et al. 2007, 2008) and these results corroborate 
these previous findings.

The bacterial genus Bifidobacterium is most often 
targeted by prebiotics, as it is associated with multiple 
health benefits, including reducing the proliferation of 
colorectal cancer and the concentration of circulating 
cholesterol (Singh 1997; Zanotti et  al. 2015). Increases 
in Bifidobacterium populations were observed with the 
samples AX, AX: β-glucan (3:1), AX: β-glucan (1:1) and 
FOS (the positive control). Only FOS and the samples 
containing AX at a concentration of least 50% showed an 
increase in bifidobacteria, demonstrating a bifidogenic 
effect for AX but not β-glucan and supporting previous 
studies which showed that fermentation of oat and bar-
ley β-glucans had no effect on Bifidobacterium popula-
tions, whilst AX fermentation resulted in increases in 
Bifidobacterium populations (Hughes et  al. 2007, 2008; 
Kim and White 2009). Concomitant increases in acetate 
were observed in all samples, which is consistent with the 
established role of bifidobacteria in acetate production 
(Bindels et al. 2015; Fukuda et al. 2011).

The structures of fermentable carbohydrates, including 
the degree of polymerisation (DP) and molecular weight, 
have previously been shown to affect the rate of fermen-
tation (Hughes et  al. 2007) and FOS is thought to be 

rapidly fermented due to its low DP (Stewart et al. 2008). 
In this study, the molecular masses of the AX (323 kDa) 
and β-glucan (491 kDa) were much greater than that of 
FOS (DP 2–8). The longer polysaccharides in AX and 
β-glucan contain fewer non-reducing ends per unit mass 
than FOS, providing less substrate for hydrolysis by bac-
terial enzymes. However, a slower rate of fermentation 
could be beneficial slow-fermenting prebiotic may be 
able to reach the more distal regions of the colon, where 
the fermentable carbohydrate levels are much lower, and 
fermentation of proteins is more prevalent, and therefore 
have a greater impact on colonic health (Govers et  al. 
1999; Grootaert et al. 2009). The increase in total bacte-
ria in samples with greater proportions of AX [AX, AX: 
β-glucan (3:1), AX: β-glucan (1:1)] were more sustained 
than with FOS, peaking at 24 h compared to 8 h with FOS 
and demonstrating greater persistence. The AX: β-glucan 
(3:1) sample showed significant increases from the nega-
tive control after 8 h and continued until 24 h, therefore 
demonstrating the most sustained fermentation.

The increases in bifidobacteria were sustained between 
8 and 24 h with AX and AX: β-glucan (3:1). The popula-
tions of Clostridium coccoides/Eubacterium rectales were 
also highest in both the AX and AX: β-glucan (3:1) sam-
ples at 24 h. The increased populations of these bacterial 
groups at later fermentation times therefore demon-
strates longer fermentation of samples containing higher 
levels of AX.

Similar increases in Bifidobacterium, Clostridium coc-
coides/Eubacterium rectales and Roseburia populations 
resulted from fermentation of AX alone and a 3:1 combi-
nation of AX and β-glucan, as well as similar production 
of SCFAs. However, samples with AX: β-glucan (1:3) and 
β-glucan singly did not cause increases in beneficial bac-
terial groups of SCFAs It has been proposed that three 
colonic Bacteroides species: Bacteroides thetaiotaiomi-
cron, Bacteroides distasonis and Bacteroides fragilis are 
responsible for the majority of β-d-(1 → 3)-glucanase 
activity required for β-glucan hydrolysis (Salyers et  al. 
1997), however no significant increases were observed in 
the Bacteroides group with any combination of substrates. 
These results may be explained by a low prevalence of 
these particular Bacteroides species in the samples, and 
therefore a low level of β-glucan fermentation.

Butyrate is produced by a range of bacteria includ-
ing the Clostridium, Roseburia and Eubacterium genera 
(Barcenilla et  al. 2000; Gibson 1999; Pryde et  al. 2002). 
Despite the increase in these butyrogenic bacterial popu-
lations with AX and AX and β-glucan (3:1), and a large 
rise in mean butyrate concentration, there were no sig-
nificant concomitant increase in butyrate. However, 
closer inspection of the data shows that donors 1 and 3 
responded to fermentation of all samples containing AX 
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with production of butyrate, whilst butyrate produc-
tion with donor 2 only responded to fermentation of 
FOS. Hence, the failure to observe significant increases 
in butyrate resulted in  differences between individual 
donors.

The greatest increases in total bacterial numbers were 
observed with both the AX alone and the AX: β-glucan 
(3:1) sample, while no increase in bacterial numbers 
occurred when β-glucan alone was used, suggesting that 
AX is more readily used as a substrate for growth by 
bacteria than β-glucan. As the ratio of AX: β-glucan is 
greater in wheat (3:1) than barley (1:3), these data sup-
ports a previous study which showed that a wheat-based 
diet in pigs resulted in a greater increase in gut bacteria 
than a barley-based diet (Garry et al. 2007).

Thus, it appears that AX is readily used as a substrate 
for fermentation, at a greater rate than β-glucan, as pre-
viously described (Hughes et  al. 2007, 2008) and that 
total bacterial numbers, and the Bifidobacterium, Rose-
buria and Clostridium coccoides–Eubacterium rectale 
bacterial groups show preferential growth with AX as a 
substrate. However, AX supplemented with β-glucan in 
a ratio of 3:1 showed similar increases in these bacterial 
populations and slightly greater SCFA concentrations as 
well as greater increases in total bacteria compared to 
AX alone, indicating that replacing 25% AX as a ferment-
able substrate with 25% β-glucan can potentially increase 
prebiotic activity. Any greater replacement of AX was 
shown to result in decreases in bacterial populations and 
SCFA. Wheat has been widely consumed by humankind 
for thousands of years, we therefore hypothesised that 
the human gut microbiota may have co-evolved to fer-
ment the ratio of DF polysaccharides present in wheat 
more efficiently than other ratios of polysaccharides. The 
results reported here provide support for this hypothesis, 
as beneficial bacteria were shown to preferentially fer-
ment AX compared to β-glucan with the preferred ratio 
of AX: β-glucan being that present in wheat (3:1).
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