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Abstract
Future heat stress under six future globalwarming (ΔTGW) scenarios (IPCCRCP8.5) in anAsianmegacity
(Osaka) is estimatedusing a regional climatemodelwith anurbancanopy and air-conditioning (AC). An
urbanheat ‘stress’ island is projected in all six scenarios (ΔTGW=+0.5 to+3.0 °C in0.5 °Csteps). Under
ΔTGW=+3.0 °Cconditions, people outdoors experience ‘extreme’heat stress,which could result in
dangerouslyhigh increases inhumanbody core temperature.AC-induced feedback increases heat stress
roughly linearly asΔTGW increases, reaching0.6 °C (or 12%of theheat stress increase). As this increase is
similar to current possible heat islandmitigation techniques, this feedbackneeds tobe considered inurban
climateprojections, especiallywhereACuse is large.

Abbreviations and notation used

AC Air-conditioning

AC→FB Simulationwith AC feedback (FB)

AC≠FB Simulationwithout ACFB (no-QF, AC)

BEP+BEM Building effect parameterisation and building energymodel

C Commercial and office

Cg Sensible heatflux from the globe surface (Wm−2)

cp Specific heat at constant pressure (J K−1 kg−1)

CM-BEM Urban canopymodel and building energymodel

CMIP Climatemodel intercomparison project

COP Coefficient of performance

COST Cooperation in science and technical development

D Diameter of the globe (m)

FB Feedback

GCM Global climatemodel

GHG Greenhouse gas

GIAJ Geospatial InformationAuthority of Japan

GIS Geospatial information system

IPCC Intergovernmental Panel for Climate Change
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JMA JapanMeteorological Agency

LULC Land use and land cover

MGDSST Merged satellite and in site global daily sea surface temperature

MYJ Mellor-Yamada-Janjic

NCEP-NCAR National Center for Environmental Prediction—National Center for Atmospheric Research

PGW Pseudo global warming

QF Anthropogenic heatflux (Wm−2)

QF, AC QF fromACuse (Wm−2)

RCM Regional climatemodel

RCP Representative concentration pathway

Re Reynolds number (−)

Rg Longwave radiation emitted froma globe surface averaged by surface area (Wm−2)

Rr Residential area with predominantly concrete fireproof apartments

RRTMG Updated rapid radiation transfermodel

Rw Residential area with predominantly detachedwooden dwellings

S0 Incoming shortwave radiation (Wm−2)

SLUCM Single-layer UCM

SOLWEIG Solar and longwave environmental irradiance geometry-model

Tg Black globe temperature (°C)

TEB+BEM Town energy balance and building energymodel

Tmrt Mean radiant temperature (°C)

U Wind speed (ms−1)

UCM Urban canopymodel

UCLEM Urban climate and energymodel

UTCI universal thermal climate index

v Kinematic viscosity of air (m2 s−1)

WBGT Wet-bulb globe temperature

WRF Weather research and forecasting

WSM3 WRF single-moment three-class

γ Viscosity coefficient of air (Pa s−1)

ΔTGW Global warming (°C)

ΔUTCIAC→FB UTCI difference between the current and future climate for AC→FB

ΔUTCIAC≠FB UTCI difference between the current and future climate for AC≠FB

δUTCIAC→FB UTCI difference between theAC→FB and the AC≠FB

εg Emissivity of the globe thermometer (−)

εh Emissivity of human clothing (−)

λ Thermal conductivity of air (Wm−1 K−1)

1. Introduction

In 2018, Japan had the second hottest July on record (since 1883, JapanMeteorological Agency (JMA) official
home page: https://www.data.jma.go.jp), with ameanmonthly temperature inOsaka 1.63 °Chigher than the
11 year (July 2000–2010)mean. These elevated temperatures resulted in the highest on record hospitalisations
(54,220) and heat stroke deaths (133) (Ministry of Internal Affairs andCommunications, Japan 2018). This
periodwas designated a ‘heat wave natural disaster’ (Nikkei 2018), similar to disasters from typhoons, heavy
rainfall and snowfall, and floods.

Heat waves are expected to becomemore common andmore intensewith greenhouse gas (GHG)–induced
global warming (e.g. IPCC 2013), exacerbated in cities by the urban heat island effect (e.g. IPCC2014).With
cities being home tomore than 66%of the population by 2050 (UnitedNations 2014), the impact of urban
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climate on public health and energy supply/demand is critical. Already 30%of theworld’s population are
exposed to deadly heat thresholds on at least 20 days per year, and thismay increase to∼74%by 2100 if GHG
emissions increase (Mora et al 2017).

To prepare for future heat waves, it is critical to understand howurban heat stress will change and to identify
potential feedbacks fromGHG-induced global warming and human activities. Although future urban air
temperatures have been explored both globally and locally (e.g.Adachi et al 2012, Kusaka et al 2012, Kusaka et al
2016,Hamdi et al 2014, Grossman-Clarke et al 2016, Conlon et al 2016, Krayenhoff et al 2018, Tewari et al 2019,
Darmanto et al 2019, Takane et al 2019, Lipson et al 2019), few studies have examined the impact on human heat
stress in cities. As global climatemodel (GCM) simulations (e.g. Delworth et al 1999,Willett and
Sherwood 2012, Coffel et al 2018) still do not resolvemost cities, it is difficult to predict urban heat stress.

AGCM (1°horizontal resolution)with anUrbanCanopyModel (UCM) calculated thewet-bulb globe
temperature (WBGT) heat stressmetric (Fischer et al 2012), but this is too coarse forwithin-city variations. High
resolution simulations using dynamical downscalingwith a regional climatemodel (RCM) have allowed heat
stress studies at 20 km (e.g.MediterraneanDiffenbaugh et al 2007) and 3 km resolution (e.g. JapanKusaka et al
2012). Higher-resolution (a few kilometres) heat stress studies have addressed cities in Asia (Takane et al 2015,
Suzuki-Parker andKusaka 2015, 2016, Yang et al 2016, Kikumoto et al 2016, Doan et al 2016,Doan and
Kusaka 2018, Yamamoto et al 2018), Europe (Altinsoy andYildirim 2014), NorthAmerica (Oleson et al 2015),
andOceania (Argüeso et al 2015).

In Japan,WBGT is the official thermal stress index (since 2006,Ministry of the Environment, http://www.
wbgt.env.go.jp/en/). Although it is correlatedwith both the number of heatstroke patients (heat disorder risk)
(Ohashi et al 2014, Yamamoto et al 2018) and excess deaths (Takaya et al 2014), it does not have a clear
relationshipwith human physiological responses (Yaglou andMinard 1957). However, theUniversal Thermal
Climate Index (UTCI) (Fiala et al 2012, Błażejczyk et al 2013) is derived fromhumanphysiology experiments
(Bröde et al 2012a), physiologicalmodelling,meteorology, and climatology (Błażejczyk et al 2013). It has been
applied in a range of climate conditions (Błażejczyk et al 2012, Schreier et al 2013, Błażejczyk et al 2014) and
applications (Fiala et al 2010, 2012). Heat stress also depends onmicro-scale variations in urbanmorphology
(e.g. shading) and differences in individuals (e.g. age, size,movement, activity). Hence, local-scale grid globe
temperatures do not capturemicro-scale variability or range of values from shading, but rather themean for the
area (section 2.3). However, gridmean heat stress can indicate themost dangerous conditions that outdoor
workers will be exposed to, helping risk assessments for humanhealth.

Japan’smanymegacities have high population densities (e.g. Tokyo andOsaka)where people are exposed to
both high temperature and humidity. Hence, there is high risk of both heat stress and heatstroke during heat
waves. Additionally, Japanese cities already use air-conditioning (AC) extensively with the associated release of
anthropogenic heat (QF, i.e.QF, AC).Withwarmer temperatures,QF, AC can increase causing a positive feedback
leading to additional urbanwarming and energy consumption (e.g. Ashie et al 1999, Kikegawa et al 2003,
Sailor 2011, Li et al 2014, Kikegawa et al 2014, Salamanca et al 2014, Takane et al 2017, Ginzhurg and
Demchenko 2019, Takane et al 2019). InOsaka, this positive feedback is predicted to cause 0.6 °C additional
warming in earlymorningAugust temperatures (based on a four-GCMensemble for+3.0 °C (cf to current)
global warming scenario,∼2070 s). Given this is a similar size to differences or uncertainties withinGHG
emission scenarios, RCMs, and urban planning scenarios, this feedback need to be considered (Takane et al
2019).

Our objectives are to predict the impacts on heat stress from future climate at 1-kmhorizontal resolution,
considering the feedbacks fromQF, AC.We focus onOsaka, the second largest city in Japan (figure 1), as it has
experienced the hottestmean summer temperatures in Japan in the past 30 years (Takane et al 2013). Osaka’s
humid climate results in greater daytime urban heat island intensities than cities with drier climates (Zhao et al
2014).MoreoverOsaka, already amajor tourist destination, will host the 2025World Expo, thus thermal stress is
of concern to both local citizens and global visitors.

2.Methods

In this studywe indicate differences between the current and future climate asΔ (e.g.,ΔT); andwith (→) and
without (≠) air-conditioning (AC) feedback (FB) as δ (e.g., δUTCI is theUTCI difference betweenAC→FB
andAC≠FB).

Feedback fromACuse (δUTCIAC→FB) on future urban climates under future global warming scenarios
(ΔTGW) and changes in δUTCIAC→FB related toΔTGW are estimated. Allmethods (numericalmodel,model
setup, and climate projections) are as in Takane et al (2019), except for theUTCI andWBGT calculations. The
latter are describedwithin the SupplementalMaterials.
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2.1.Model settings
FollowingTakane et al (2017, 2019) dynamic downscaling is undertaken using the AdvancedResearchWRF
model (ver. 3.5.1) (Skamarock et al 2008)withmodel parameters as indicated in table S1 (Supplemental
Material) and the following physics schemes: updated Rapid Radiation TransferModel (RRTMG) short-wave
and longwave radiation (Iacono et al 2008);WRF single-moment three-class (WSM3) cloudmicrophysics
(Dudhia 1989,Hong et al 2004);Mellor–Yamada–Janjic (MYJ) atmospheric boundary-layer (Mellor and
Yamada 1982, Janjic 1994, 2002); Noah land surfacemodel (Chen andDudhia 2001); and BEP+BEMurban
canopy parameterisation (Martilli et al 2002, Salamanca andMartilli 2010, Salamanca et al 2010). At each time
step,QF, AC is calculated from electricity consumption using BEP+BEM for each 1 kmgrid. Summertime near
surface air temperature andAC electricity consumption skill have been assessed forOsaka considering diurnal
and spatial variations (Takane et al 2017, 2019).

Twomodel domains (d01 and d02,figure 1(a))have 126×126 grid points (x, y) at 5- and 1-km resolution,
respectively. Vertically, the 35 sigma levels go up to 50 hPa. Land use, land cover (LULC) and topography data
are from theGeospatial InformationAuthority of Japan (GIAJ). In d02, theGIAJ LULC andOsaka geographical
information system (GIS) building footprint (polygon) data (figures 1(c), (d)) are used to classify the urban grids
into (i) commercial and business (C); and residential with predominantly (ii) concrete fireproof apartments (Rr)
or (iii) detachedwooden dwellings (Rw). In d01, all urban areas are assumed to be Rw.

Initial and boundary conditions useNCEP–NCAR (National Centers for Environmental Prediction–
National for Atmospheric Research) reanalysis (Kalnay et al 1996) andmerged satellite - in situ global daily sea
surface temperature (MGDSST) (Kurihara et al 2006)data. As 11Augusts are sufficient for climatological
impacts and effects to be considered (Takane et al 2017, 2019), the time integration for each year is from00:00
UTC July 27 to September 1, withmodel spin-up. The 2000–2010 period is treated as the control simulation
(case AC→FB) (figure 2, red arrow).

The no-QF, AC (feedback) simulation (case AC≠FB) differs from the control simulation asQF, AC is assumed
to be 0Wm−2 (figure 2, blue arrow); i.e. the larger difference inUTCI betweenAC≠FB andAC→FB is the
QF, AC feedback effect (δUTCIAC→FB). Additionally, six future climates are simulated (section 2.2).We estimate
δUTCIAC→FB fromΔUTCIAC→FB−ΔUTCIAC≠FB (figure 2), with δUTCIAC→FB for the current climate being
0 °Caswe assume no long-term climate change (decades) (i.e., no increase in forcing temperature, and

Figure 1.The study area. (a) domains (d01, d02), (b) topography (contour 150 m), and land use in (c) theOsaka Plain (d02) and (d)
Osakawith reference areas for urban land-use categories, including commercial and office buildings (C, blue circle), concretefireproof
apartments (Rr, blue square), and detachedwooden dwellings (Rw, blue triangle). Locations of the JMAAutomatedMeteorological
Data Acquisition System (AMeDAS) sites inOsaka (star), Nara (diamond), andKyoto (circle).
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ΔUTCIAC→FB andΔUTCIAC≠FB are 0 °C). To determine δUTCIAC→FB, we assume that all conditions (e.g. urban
structures and human activities) remain constant except for background climate change. Although unrealistic,
this allows the specific impact of interest to be investigated.

2.2. Climate projection
Six future climates with background temperature increases (global warmingwithΔTGW=+0.5,+1.0,+1.5,
+2.0,+2.5, and+3.0 °C) relative to the current climate are simulated. The ensemblemean from four global
climatemodels (GCMs) that participated in theClimateModel Intercomparison Project (CMIP5) (Taylor et al
2012): CCSM4 (Gent et al 2011), CESM1 (CAM5) (Meehl et al 2013), GFDL-CM3 (Donner et al 2011), and
INM-CM4 (Volodin et al 2010); simulations for the representative concentration pathway [RCP] 8.5 are used.
These are the highest Intergovernmental Panel onClimate Change (IPCC) greenhouse gas emissions scenario.

The climate variables (i.e. wind components, geopotential height, and temperature) differences between the
current and future scenarios are estimated (figure 3). For eachΔTGW case, the climate difference for each
variable is added to theNCEP–NCAR andMGDSST data (figure 3) butwith the relative humidity kept the same
as the current climate. Advantages of this regional climate projection (so-called pseudo-global warming (PGW))
method (Kimura andKitoh 2007, Sato et al 2007) is that it bias-corrected (e.g. Xu andYang 2012, Bruyère et al
2014, 2015), widely used (e.g. Hara et al 2008, Kawase et al 2009, Rasmussen et al 2011, Kusaka et al 2012, 2016,
Doan andKusaka 2018, Takane et al 2019), and a verified (Kawase et al 2008, 2009, Yoshikane et al 2012)
method.

2.3. UTCI calculation
The hourlyUTCI is calculated for 11 years for each climate scenario using the Fiala et al (2012) human
physiology polynomial parameterisation (Bröde et al 2012a, Błażejczyk et al 2013) as it is computational efficient
(e.g.Bröde et al 2012b, Błażejczyk et al 2013, Provençal et al 2016,Ohashi et al 2018). It is forcedwith the near
surface air temperature (2-m simulations or 1.5-mobservations), relative humidity, black globe temperature
(Tg), andwind speed (within the urban canopy layer) (figure 3). Themean radiant temperature (Tmrt) is
estimated fromTg, air temperature, andwind speed (Kinouchi 2001):

e s + = +T C R273.15 1h mrt g g
4( ) ( )

e s= +R T 273.15 2g g g
4( ) ( )

whereCg is the sensible heatflux from the globe surface (Wm−2),Rg is the longwave radiation emitted from the
globe surface averaged for the surface area (Wm−2), and εg and εh are the emissivities of the globe thermometer
(assumed to be 1.0) and human clothing (0.98), respectively.Cg is a function of globe temperature and air

Figure 2.Numerical experiments. Control (AC→FB) and no-QF, AC (feedback) (AC≠FB) for current and future climates. Trends
(arrows) caused by global warming (ΔTGW) (grey); UTCI increase calculated byAC→FB (ΔUTCIAC→FB) (red) andAC≠FB
(ΔUTCIAC≠FB) (blue) andUTCI increase ifQF, AC orQF in the future is the same as in the current climate (ΔUTCIconst.QF) (black).
UTCI changeswith ACuse (orange), anthropogenic heat emitted byACusewithout feedback (purple), and additional impact ofQF,

AC on theUTCI (δUTCIAC→FB), which are affected by the additional UTCI difference betweenAC→FB andAC≠FB (ΔUTCIAC→FB

andΔUTCIAC≠FB) (green). Simulations for elevenAugusts under seven climates withAC→FB (red circles) andAC≠FB (blue circles).
Inset: feedback process caused by the interaction between urbanwarming from climate change and air-conditioning (AC) use.
Modified fromTakane et al (2019).

5

Environ. Res. Commun. 2 (2020) 015004 YTakane et al



temperature (Yuge 1960):

= -C h T T 3g cg g a( ) ( )
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whereRe is the Reynolds number (UD/ν),U is thewind speed,D the diameter of the globe (=0.15 m), ν is the
kinematic viscosity of air (m2 s−1), γ is the viscosity coefficient of air (Pa s),λ is the thermal conductivity of air
(Wm−1 K−1), and cp is the specific heat at constant pressure (J K

−1 kg−1).
Tg is estimated using the (Okada andKusaka 2013,Okada et al 2013) improvement:

=
-

+ +
+T

S

S U
T

38.5

0.0217 4.35 23.5
6g a

0

0

( )
( )

( )

where S0 is the incoming shortwave radiation (Wm−2). Okada et al (2013) determined the equation (6)
parameters fromhourly observations (June-August 2006–2012, all weather conditions) at aOsaka site
surrounded by office buildings (RMSE (rootmean square error)=2.15 °C).

The grid averageUTCI andWBGT calculated provide information on exposure for outdoorworkers
allowing risk assessment for human health.Heat stressmetrics for within shadow conditions (e.g. Ohashi et al
2014) can reduceUTCI by∼8 °C (WBGTby∼1.5 °C) in summer daytime in Tokyo (Honjo et al 2018).
However,most regional scale heat stress studies usemean radiative conditions (aswe do) they allow the regional
scale distribution of heat stress or the heat ‘stress’ island (section 3.1) to be identified, and its changewith climate
change to be assessed. Regional scale values provide useful initial and/or boundary conditions for higher
resolution building resolvingmodels with street level shade and flows around building and trees.

2.4. Verification
Themodel setup (this section) verificiation is presented in Supplementarymaterial (S1). As the urban
charactistics ofOsaka (figure 1(d)) do not produce a large difference between the two types of residential area
(wooden detached dwellings and fireproof apartments), we only present the results for the area of wooden
detached dwellings (hereafter residential) and the commercial and office buildings (commercial).

Figure 3.Calculation flowchart for heat stressmetrics under current and future climates.
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3. Results

TheΔTGW changes the temperature, wind, humidity, and radiation inWRF. In the results, wind speed andTmrt

increase a small amountwithΔTGW at night but do not change during the day.Hence, theirΔTGW impact on
theUTCI could be small. Relative humidity changes a little from the temperature and specific humidity
increases.

3.1. UTCI increase (ΔUTCI)with global warming (ΔTGW)
TheUTCI is greater inOsaka than in the surrounding land areas at 05:00 under all seven climates (current and
six future scenarios, figures 4(a)–(g)), we refer to these as urban heat ‘stress’ islands. In the current climate, Osaka
(white line,figure 4(a))hasmoderate heat stress butwith greater urbanwarming (ΔTGW), this area expands to
cover the entire plainwhenΔTGW=+1.5 °C (figure 4(d)), and extends to the low-mountain area (figure 4(g))
with additional warming. People outdoors in thismoderate heat stress areawill sweat (sweat rate>100 g h−1)
and experience wet skin (Bröde et al 2012a). The relatively higher heat stress area is in the coastal parts of Osaka
andKobe (black line, figure 4(g)).

At 12:00, UTCI increases withΔTGW, and feedback effects of AC are projected (figures 4(h)–(n)), but with
inland values expected to be higher than those in the coastal area. Under current climate conditions, the entire
area, except the highmountains, experiences very strong heat stress (figure 4(h)).WhenΔTGW=+1.5 °C, the
mountain area is included in that description (figure 4(k)). Under such conditions, the human body core
temperature of people outdoors for 30 min can increase (Bröde et al 2012a).WhenΔTGW=+2.0 °C, an extreme
heat stress area is projected inland fromOsaka, covering Kyoto andNara (black lines, figure 4(l)).When

Figure 4.Eleven-year (2000–2010)meanUTCI for August at (a)–(g) 05:00 and (h)–(n) 12:00 under different climates: (a), (h) current
andΔTGW (b), (i)+0.5 °C; (c), (j)+1.0 °C; (d), (k)+1.5 °C; (e), (l)+2.0 °C; (f), (m)+2.5 °C; and (g), (n)+3.0 °C.All times are local
(UTC+9 h); Japan does not use daylight saving time. ForWBGT see supplementalmaterial.
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ΔTGW=+3.0 °C, it coversmost of the plain (figure 4(n)). Under these conditions, people will sweat atmore
than 650 g h−1, show large increases in their core temperature, and have a lower net heat loss (Bröde et al 2012a).

The changes in the diurnal range of UTCI projected for the current and six future temperature scenarios are
similar, but the individualmean values ofUTCI differ (figure 5(a)). In the current climate, there is 1 hwith no
thermal stress (∼05:00), but this disappears with only a small amount of warming (afterΔTGW=+0.5 °C)
(yellow, figure 5(b)). Themidnight-to-morning period ofmoderate heat stress remains almost constant with
ΔTGW, unlike the evening-to-midnight period, which decreases withΔTGW from (orange, figure 5(b)). Notably,
the latter becomes a strong heat stress (red, figure 5(b)) period onceΔTGW=+2.0 °C.UnderΔTGW

=+3.0 °C, the period is projected to persist untilmidnight. The very strong heat stress daytime period increases
withΔTGW (dark red, figure 5(b)). UnderΔTGW=+2.5 °C, extreme heat stress conditions are expected by
12:00, persisting longer withΔTGW (black infigure 5(b)).

3.2. Impact of AC induced feedback onUTCI (δUTCIAC→FB)
The feedback effects of air-conditioning onUTCI (δUTCIAC→FB) aremuch greater at night than during the day
in residential areas (figure 6(b)), with changing climate expected to have greater influence in the earlymorning.
The size of this feedback increases roughly linearly with the global temperature increases (figures 6(d), (e)). At
05:00, δUTCIAC→FB increases withΔTGW (figures 7(a)–(f)) but is smaller in the centre ofOsaka (figures 7(b)–
(f)). However, at 12:00, δUTCIAC→FB does not changewithΔTGW (figures 6(b), (e)). These differences are
probably caused by the difference inmixed layer depth, as Takane et al (2019) proposed. In themiddle of the day,
QF, AC is large, but the deepermixed layer reduces its impact onUTCI. At night, althoughQF, AC is smaller, the
mixed layer ismuch smaller. Consequently,QF, AC enhances themixed depth, and there is a greater impact
onUTCI.

Increased temperature from the nocturnal feedback causes an increase inTmrtwhich could contribute to an
UTCI increase. The contribution of δUTCIAC→FB toΔUTCIAC→FB (figure 6(c)) is influenced by the
δUTCIAC→FB diurnal pattern (figure 6(b)), with the contribution for the night-to-morning period being larger
than that in the daytime. The earlymorning contribution is about 12%whenΔTGW=+3.0 °C. These results
suggest that one reason for the relatively higherΔUTCIAC→FB at night (figure 6(a)) is the feedback process. The
spatial distribution of the contribution of δUTCIAC→FB toΔUTCIAC→FB (figures 7(g)–(i)) is similar to that of
δUTCIAC→FB (figures 7(a)–(f)).

Figure 5.Diurnal variation in the (a)UTCIAC→FB and (b)UTCIAC→FB categories calculated fromAC→FB (red) simulations for the
current and six future climates simulatedwithΔTGW for residential areas (figure 1d). ForWBGT see supplementalmaterial.
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4.Discussion

4.1.Hot and cold summers: consideration of heatwaves
Differences inUTCI diurnal pattern are expected in awarmer summer climate. From the 11 current summers,
we identify a hot (2010,figure 8(a)) and cold (2003,figure 8(c)) summer to compare to themean (figure 8(b)).
The hot and cold summer temperatures are 30.5 °C and 28.3 °C, respectively, or 1.52 °Cwarmer and 0.68 °C
cooler than the 11-yearmean. TheAugust 2010 temperature roughly corresponds to the conditions expected
whenΔTGW=+1.5 °C (i.e. above the summermean). These individual summers were selected for each of the
future climates for comparison (figure 8).

The patterns of the hot summer (figure 8(a)) diurnal UTCI classes whenΔTGW=0.0 to+2.0 °Care similar
to themean forΔTGW=+1.0 to+3.0 °C (figure 8(b), solid blue rectangle). Similarly, the cold summer
(figure 8(c))UTCI patterns forΔTGW=+0.5 to+3.0 °Care similar to themean forΔTGW=0.0 to+2.5 °C
(figure 8(b), solid green rectangle). Therefore, the hot summerUTCI patterns forΔTGW=+2.5 and+3.0 °C
provide some insight intomore extrememean climate (e.g.ΔTGW=+3.5 and+4.0 °C, dashed blue rectangle).
Similarly, the cold summerUTCI pattern atΔTGW=0.0 °C reflects the impact of an urban heat island
mitigation of about 0.5 °Cusing current techniques for the current climate (ΔTGW=0.0 °C, dashed green
rectangle). Comparing these, the need to respond to ormodify the futureUTCI pattern caused by global
warming and urban heat islandmitigation techniques can be considered, in addition to the inter-annual
summer variability withinΔTGW.

TheAugust 2013 and July 2018 Japanese heat waves hadmonthlymean temperatures inOsaka of 30.0 °C
(0.99 °Cwarmer than the 11-year Augustmean (2000–2010)) and 29.5 °C (0.45 °Cwarmer), roughly
corresponding toΔTGW=1.0 and 0.5 °C, respectively (figure 8(b), dashed pink rectangle). The observed
diurnal UTCI class patterns for the twoheat waves (figure 8(d)) are similar to those ofΔTGW=1.0 and 0.5 °C
(figure 8(b), dashed pink rectangle).

This approach provides a rough estimate of the future climateUTCI for specific heat and coldwaves using
past hot and cold summers for comparison.

4.2.Heat stressmetrics
Twoheat-related physiological responses, sweat production and human body core temperature, increase non-
linearly onceUTCI exceeds 40 °C (very strong and extreme heat stresses), whereas human thermal sensation
does not (Bröde et al 2012a). InOsaka, daytimeUTCI is projected to exceed 40 °Cduring current and future
climates (figure 5(b), table S2). The impact of the feedback on core temperature is estimated to be less than
0.05 °C (not shown) and is regarded as not significant in terms of heat stroke vulnerability.

As human thermal sensation does not continue to changewith an increase inUTCI, there is the danger that
people will not feel the increasing heat stroke vulnerability. The critical UTCI range is 30 °C–36 °C (moderate to

Figure 6. Impact of feedback processes onUTCI (δUTCIAC→FB) for residential areas inAugust. Diurnal variation in (a)ΔUTCIAC→FB,
(b) δUTCIAC→FB, and (c) contribution of δUTCIAC→FB toΔUTCIAC→FB for the seven climates (current=0 °Cand six future)
simulated usingΔTGW. (d)–(f)Relations betweenΔTGW andΔUTCI (δUTCIAC→FB, green) calculated from theAC→FB (red) and
AC≠FB (blue) simulations. At (d) 05:00mean, (e) 12:00mean, and (f) 24 hmean air temperatures. Regression lines (dotted). For
WBGT see supplementalmaterial.

9

Environ. Res. Commun. 2 (2020) 015004 YTakane et al



strong, Bröde et al 2012a), suggesting that awareness of the changes from early evening tomorning (figure 5(b),
table S2) is critical for heat stroke prevention.

The diurnal variation and spatial patterns ofUTCI inOsaka (figures 4–7) are similar toWBGT
(Supplementarymaterial), as others have noted (Zare et al 2018). This suggests thewidely availableWBGTmaps
can be roughly used to infer probableUTCI spatial patterns.

As the grid average heat stressmetrics calculated in this study do not capture the intra-grid variability (e.g.
from shade), the values aremore applicable to outdoor workers than to individuals who can seek shade outdoors
or go indoors to AC areas.

4.3. Relative impact of theAC feedback and thermalmitigation to heat stressmetrics
The impact of the AC feedback (δUTCIAC→FB) simulatedwhenΔTGW=+3.0 °C reached 0.6 °C forUTCI and
0.4 °C forWBGT (SupplementaryMaterial)with 24-hmeans 0.23 and 0.15 °C, respectively. These are of similar
size to some proposed thermalmitigation strategies. For example, the estimated decreases inUTCIwith

Figure 7. Impact of ACuse inOsaka on the Augustmonthlymean (11 years) at 05:00 (a–g) δUTCIAC→FB and (h–n) contribution of
δUTCIAC→FB toΔUTCIAC→FB for increases of (a, g)+0.5 °C, (b, h)+1.0 °C, (c, i)+1.5 °C, (d, j)+2.0 °C, (e, k)+2.5 °C, and (f, l)
+3.0 °C. ForWBGT see supplementalmaterial.
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different strategies for residential Lyon in summer include 0.2 °C–0.4 °C fromwater aspersion and 0.4 °C–
0.7 °C from vegetation (Morille andMusy 2017). Similarly, facade greening (roofs andwalls) are estimated to be
able decrease theAugust daytimemaximumWBGTby 0.02 °C–0.03 °C, and the relocation of ACheat release
fromwalls to roofs by 0.03 °C–0.06 °C for the 23wards of Tokyo (Ohashi et al 2016). However, our estimated
feedbackswould negate themitigation benefits from these techniques in future climates, especially where ACuse
is high.

4.4. Futurework
Our results the impact of ACon future temperatures suggest is of sufficient importance that futurework is
warranted:

(1) Here heat stress metrics are calculated at 1 km scale but more detailed micro-scale variations (e.g.
accounting for shadowpatterns frombuilding and vegetation such as by SOLWEIGLindberg et al 2008)
would allowhuman behaviour (e.g.movement) to be considered (e.g. Honjo et al 2018).

(2) Our estimates of the feedback on heat stress metrics may be low as a constant coefficient of performance
(COP) is assumed. A variable COPwould bemore realistic and should be considered in future studies (e.g.
CM-BEMKikegawa et al 2014; TEB+BEMBueno et al 2012;UCLEMLipson et al 2018, 2019).

(3) Our focus has been on building energy emissions fromACbutQF sources from traffic, cooling towers, non-
work day energy use variation, and electric and gas AC in office areas should all be considered.

(4) Analysis of other regions using the same methods to generalise the feedback impact, as the impacts may
depend on climate, building type/materials, ACperformance and humanbehaviours (e.g. howAC is used).

(5) TheUTCI heat stress and physiological response is based on Europeans. Other regions and conditions need
to be studied: e.g. Asian city residents.

5. Conclusions

Effects of GHG-induced global warming on heat stress are considered by analysing RCM (with urban canopy
and building energymodels) dynamically downscaled simulatons for current and six future climate scenarios
(global warming:ΔTGW). For the latter, CMIP5 global climatemodel (GCM) simulationswith the highest IPCC
greenhouse gas emissions scenario (RCP8.5) are used. Twoheat stress indices are calculated forOsaka during
August, when air conditioning (AC) use (hence energy consumption) is greatest. From this we conclude:

(i) Heat stress (e.g. UTCI) increases withΔTGW andwith AC feedback. At night, an urban heat stress island (i.e.
higherUTCI in the urban area comparedwith the surroundings) is simulated inOsaka for the current and
six future climates. In the current climate, only 1 h of no thermal stress occurs near 05:00, but this disappears
withΔTGW=+0.5 °Candwarmer climates.Moderate heat stress extends across the entireOsaka plain

Figure 8.Diurnal variation inUTCIAC→FB class between (a) hot (August 2010), (b)mean (elevenAugust 2000-2010, i.e. Figure 4b),
and (c) cold (August 2003) summers for residential areas, and theAugust 2013 and July 2018 heat waves (observation) forOsaka
(figure 1d, black star). ForWBGT see supplementalmaterial.
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whenΔTGW=+1.5 °C. People outside under these conditions begin to sweat, and their skinwetness
increases.

(ii) Daytime UTCI tends to be greater inland than in coastal areas. An extreme heat stress area appears when
ΔTGW=+2.0 °C inland, affecting Kyoto andNara. This extends overmost of the plainwhenΔTGW
=+3.0 °C.These are dangerous conditions for people outdoors, as theymay experience large increases in
sweating and human body core temperature, and lose the ability to shed heat unless they seek opportunities
to reduce heat stress (e.g. shade outdoors, AC indoors).

(iii) The impact of AC-induced feedback on UTCI increases (δUTCIAC→FB) roughly linearly with ΔTGW. At
ΔTGW=+3.0 °C, this reaches 0.6 °C (12%ofUTCI increase). This size is comparable to the suggested
benefits of thermalmitigation techniques reported in the literature. Hence, the feedback is significant and
could potentially cancel othermitigation benefits in the future, especially where ACuse is large. This
feedbackmust not be neglected in future urban climate projections.

(iv) UTCI andWBGT, two independent heat stress metrics, have similar diurnal variation and spatial patterns.
As the latter is the official Japanesemetric, itmay be possible to roughly estimate diurnal variations inUTCI
from existingmaps ofWBGT.
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