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Oil Price Uncertainty and Movements in the US Government Bond Risk Premia# 

 

Abstract 

In this paper, we analyze the predictability of the movements of bond premia of US Treasury 

due to oil price uncertainty over the monthly period 1953:06 to 2016:12. For our purpose, we 

use a higher order nonparametric causality-in-quantiles framework, which in turn, allows us to 

test for predictability over the entire conditional distribution of not only bond returns, but also 

its volatility, by controlling for misspecification due to uncaptured nonlinearity and structural 

breaks, which we show to exist in our data. We find that oil uncertainty not only predicts 

(increases) US bond returns, but also its volatility, with the effect on the latter being stronger. 

In addition, oil uncertainty tends to have a stronger impact on the shortest and longest 

maturities (2- and 5-year), and relatively weaker impact on bonds with medium-term (3- and 

4-year) maturities. Our results are robust to alternative measures of oil market uncertainty and 

bond market volatility. 

 

Keywords: Oil Price Uncertainty, Bond Returns and Volatility; Higher-Order Nonparametric 

Causality-in-Quantiles Test 

JEL Codes: C22, G12, Q02  
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1. Introduction 

The theories of investment under uncertainty and real options predict that uncertainty about, 

for example, oil prices will induce optimizing firms to postpone investment decisions, thereby 

leading to a decline in aggregate output (Bernanke, 1983). Empirical evidence in favour of this 

line of reasoning for the economy of the United States (US) can be found in the works of Elder 

and Serletis (2010, 2011) (and also verified globally more recently by van Eyden et al., (2019)). 

Given that oil price uncertainty negatively affects macroeconomic variables (Bams et al., 

2017), shows that oil market uncertainty also predicts valuation of stocks in the US.1 

Against this backdrop, the objective of our study is to analyse the role of oil price uncertainty 

in predicting movements of risk premia (excess returns) of U.S. government bonds. This is an 

important question since accurate prediction of interest rate movements are important to bond 

investors and policymakers. While for central bankers, understanding the evolution of future 

interest rates help in the fine tuning of monetary policies, for bond market investors, correct 

prediction of interest rates is likely to result in higher bond returns performance. For our 

purpose, following Balcilar et al., (2018), we use the higher (k-th) order nonparametric 

causality-in-quantiles approach, which in turn, allows us to test for predictability over the entire 

conditional distributions of both bond returns and volatility simultaneously by controlling for 

misspecification due to uncaptured nonlinearity. Since we are dealing with uncertainty (in the 

oil market), we believe that it is likely to have not only an impact on the first-moment, but also 

the second moment of bond premia – a reasoning in line with recent studies (see for example, 

Buraschi et al., 2014; Balcilar et al., 2016; Chuliá et al., 2017), which depicts the impact of 

overall macroeconomic uncertainty on not only returns of financial (bonds, currencies and 

equities) markets, but also volatility. 

At this stage, it is important to discuss the channels through which oil market uncertainty is 

likely to affect excess bond returns and its volatility. As discussed above, oil price uncertainty 

tends to have a recessionary impact on the economy, and hence, agents in the economy would 

need to be compensated for holding bonds with longer maturities, which are riskier. In other 

words during phases of a weaker uncertain economy, premium on assets would increase (Pástor 

and Veronesi, 2012). Moreover, given the recent financialization of the commodity sector, the 

oil market is now also considered as a profitable alternative investment in the portfolio 

decisions (Bahloul, 2018), and hence portfolio reallocations are likely to have feedback from 

the oil market uncertainty to the bond market risk i.e., volatility (Tiwari et al., 2018). In other 

words, oil market uncertainty is likely to affect the first and second moment movements of 

bond markets (as well as other asset markets). 

There is of course a large number of studies on predicting risk premia of U.S. government 

bonds (e.g., Cochrane and Piazzesi (2005), Cooper and Priestly (2009), Ludvigson and Ng 

(2009, 2011), Laborda and Olmo (2014), Zhu (2015), Ghysels et al., (2018), Çepni et al., 

(2019a, b, forthcoming), Gargano et al., (2019)).2 But, these studies highlight the role of macro 

and financial (often extracted from large data sets), and behavioral factors in predicting 

(excess) bond returns, over and above the so-called “CP” factor of Cochrane and Piazzesi 

 
1 Earlier, Elyasiani et al., (2011) shows, using US sectoral data, that oil futures return volatility influences excess 

returns of oil user industries. In addition, the studies of Choi and Hammoudeh (2010), Kang et al., (2015a, b), and 

Salisu and Oloko (2015) indicate significant spillover from oil market volatility on US stock returns and volatility. 
2 Important earlier studies are Keim and Stambaugh (1986), Fama and Bliss (1987), Fama and French (1989), and 

Campbell and Shiller (1991). 
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(2005), which in turn is a linear combination of five forward spreads. To the best of our 

knowledge, this is the first paper that evaluates the predictive power of oil price uncertainty for 

US bond returns and volatility based on a nonparametric causality-in-quantiles framework over 

the monthly period of 1953:06 to 2016:12.  

 

At this juncture, it must be emphasized that the need to use the k-th order nonparametric 

causality-in-quantiles test emanates from the need to appropriately model the features in the 

data and hence, provide reliable inferences for not only the first, but also the second moment 

of excess bond returns (Nishiyama et al., 2011; Jeong et al., 2012; Balcilar et al., 2018). The 

causality-in-quantile approach has the following three novelties: Firstly, it is robust to 

misspecification errors as it detects the underlying dependence structure between the examined 

time series in a data-driven nonparametric manner, which could prove to be particularly 

important as it is well known that US bond (asset) markets display nonlinear dynamics 

(Guidolin et al., 2009) - a fact we show below as well. Secondly, via this methodology, we are 

able to test not only for causality-in-mean (1st moment), but also for causality that may exist 

in the tails of the joint distribution of the variables, which in turn, is important if the dependent 

variable has fat-tails – something we show below to hold for the bond premia of various 

maturities. Finally, we are also able to investigate causality-in-variance and, thus, study higher-

order dependency. Such an investigation is important because, during some periods, causality 

in the conditional-mean may not exist while, at the same time, higher-order interdependencies 

may turn out to be significant.   

 

The lack of studies analysing the impact of oil price movements on the US bond market is quite 

puzzling, given the well-established importance US Treasury securities as a global safe haven 

(Kopyl and Lee, 2016; Habib and Stracca, 2017; Hager, 2017), and also the fact that the bond 

market in 2018 was valued at more than $40 trillion US dollars, which in turn was $10 trillion 

US dollars more than the corresponding capitalization of the stock market (Bloomberg). While 

the existing international literature on the price, returns, and volatility relationship between oil 

and equity markets is huge to say the least (see for example, Degiannakis et al., (2018), and 

Smyth and Narayan (2018) for detailed reviews in this regard), in comparison, the number of 

studies examining the causal linkage between the bond and oil markets, is negligible.  

 

Concerning the sparse literature, Kang et al., (2014) utilized a structural vector autoregressive 

model to investigate how the demand and supply shocks driving the global crude oil market 

affect real bond returns of the US. They found that a positive oil market-specific demand shock 

is associated with significant decreases in real returns of an aggregate bond index for 8 months 

following the shock. Bouri et al., (2017, 2018, 2019) provided evidence of the impact of 

commodity and oil market uncertainty on volatility of sovereign risks of emerging and frontier 

countries, while Shahzad et al., (2017) did the same on the levels of sovereign credit default 

swap (CDS) spreads of GCC and oil-exporting countries. Gormus et al., (2018), while dealing 

with price transmission tests of high-yield bond market, which account for gradual structural 

shifts, suggested significant impact from oil and ethanol prices. Similarly, Apergis (2019) 

explored the potential impact of oil prices on high-yield corporate bond spreads for the case of 

European non-energy and energy corporate samples from 14 countries and spans the period 

from 2000–2016. The findings document the presence of a positive link between oil prices and 

the high-yield spreads in the case of non-energy firms and a negative link between oil prices 

and the high-yield spreads in the case of energy firms. Finally, based on volatility tests, they 

found uni-directional volatility transmission from energy markets to the high-yield bond 

market. In the context of investment bonds, Wan and Kao (2015) found that positive shocks in 

oil the spreads between the AAA and BAA rated bonds.  
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As can be seen from the above discussion, barring the somewhat related work of Kang et al., 

(2014) in terms of dealing with oil shocks and the US bond market, none of the existing studies 

have analyzed the US Treasuries. More importantly, no paper has so far dealt with the question 

of impact of oil price uncertainty on the excess returns and volatility of US government bonds 

of various maturities based on a nonparametric causality-in-quantiles test. The remainder of 

the paper is organized as follows: Section 2 outlines the methodology, while Section 3 

discusses the data and econometric results. Section 4 conducts several robustness checks, with 

Section 5 concluding the paper.  

 

2. Econometric Methodology 

 

In this section, we briefly describe the methodology for testing nonlinear causality via a hybrid 

approach used in Balcilar et al., (2018), which is based on the frameworks of Nishiyama et al., 

(2011) and Jeong et al., (2012). Let 𝑦𝑡  denote excess bond returns and 𝑥𝑡  the oil market 

uncertainty.  

 

𝑥𝑡 does not cause 𝑦𝑡  in the 𝜃-th quantile  with respect to {𝑦𝑡−1, … , 𝑦𝑡−𝑝, 𝑥𝑡−1, … , 𝑥𝑡−𝑝}  if  

 

        𝑄𝜃(𝑦𝑡|𝑦𝑡−1, … , 𝑦𝑡−𝑝, 𝑥𝑡−1, … , 𝑥𝑡−𝑝) = 𝑄𝜃(𝑦𝑡|𝑦𝑡−1, … , 𝑦𝑡−𝑝)                            (1) 

 

𝑥𝑡 is a prima facie cause of 𝑦𝑡 in the 𝜃-th quantile with respect to {𝑦𝑡−1, … , 𝑦𝑡−𝑝, 𝑥𝑡−1, … , 𝑥𝑡−𝑝} 

if  

 

      𝑄𝜃(𝑦𝑡|𝑦𝑡−1, … , 𝑦𝑡−𝑝, 𝑥𝑡−1, … , 𝑥𝑡−𝑝) ≠ 𝑄𝜃(𝑦𝑡|𝑦𝑡−1, … , 𝑦𝑡−𝑝)                           (2) 

 

where 𝑄𝜃(𝑦𝑡| ⋅) is the 𝜃-th conditional quantile of 𝑦𝑡 given ∙, which depends on t and 0 < 𝜃 <
0 . Define 𝑌𝑡−1 ≡ (𝑦𝑡−1, … , 𝑦𝑡−𝑝) , 𝑋𝑡−1 ≡ (𝑥𝑡−1, … , 𝑥𝑡−𝑝) , 𝑍𝑡 = (𝑋𝑡, 𝑌𝑡) , and 

𝐹𝑦𝑡|𝑍𝑡−1
(𝑦𝑡|𝑍𝑡−1)

 
and 𝐹𝑦𝑡|𝑌𝑡−1

(𝑦𝑡|𝑌𝑡−1) are the conditional distribution function of 𝑦𝑡  given 

𝑍𝑡−1and  𝑌𝑡−1, respectively.  

 

The conditional distribution 𝐹𝑦𝑡|𝑍𝑡−1
(𝑦𝑡|𝑍𝑡−1) is assumed to be absolutely continuous in 𝑦𝑡 for 

almost all 𝑍𝑡−1 . If we denote 𝑄𝜃(𝑍𝑡−1) ≡ 𝑄𝜃(𝑦𝑡|𝑍𝑡−1)  and 𝑄𝜃(𝑌𝑡−1) ≡ 𝑄𝜃(𝑦𝑡|𝑌𝑡−1) , we 

have, 𝐹𝑦𝑡|𝑍𝑡−1
{𝑄𝜃(𝑍𝑡−1)|𝑍𝑡−1} = 𝜃

 
w.p.1. Consequently, the hypothesis to be tested based on 

definitions (1) and (2) are 

 

         𝐻0 = 𝑃[𝐹𝑦𝑡|𝑍𝑡−1
(𝑄𝜃(𝑌𝑡−1)|𝑍𝑡−1) = 𝜃] = 1     a.s.      (3) 

         𝐻1 = 𝑃[𝐹𝑦𝑡|𝑍𝑡−1
(𝑄𝜃(𝑌𝑡−1)|𝑍𝑡−1) = 𝜃] < 1     a.s.      (4) 

  

Jeong et al., (2012) employs a distance the measure 𝐽 = [𝜀𝑡𝐸(𝜀𝑡|𝑍𝑡−1)𝑓𝑍(𝑍𝑡−1)] where 𝜀𝑡 is 

the regression error term and 𝑓𝑍(𝑍𝑡−1) is the marginal density function of 𝑍𝑡−1. The regression 

error 𝜀𝑡  arises from the fact that the null hypothesis in (3) can only be true if and only if  

𝐸(𝟏[𝑦𝑡 ≤ 𝑄𝜃(𝑌𝑡−1)|𝑍𝑡−1]) = 𝜃 or equivalently 𝟏[𝑦𝑡 ≤ 𝑄𝜃(𝑌𝑡−1)] = 𝜃 + 𝜀𝑡, where 𝟏[⋅] is the 

indicator function. Jeong et al., (2012) specify the distance function as 

 

      𝐽 = [𝜀𝑡𝐸(𝜀𝑡|𝑍𝑡−1)𝑓𝑍(𝑍𝑡−1)]                                       (5) 
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In equation (5), it is important to note that 𝐽 ≥ 0  and the equality holds if and only if the null 

hypothesis 𝐻0 in equation (3) is true, while 𝐽 > 0 holds under the alternative 𝐻1 in equation 

(4). Jeong et al., (2012) shows that the feasible kernel-based test statistic based on 𝐽 has the 

following form: 

 

   𝐽𝑇 =
1

𝑇(1 − 1)ℎ2𝑝
∑ ∑ 𝐾 (

𝑍𝑡−1 − 𝑍𝑠−1

ℎ
) 𝜀𝑡̂𝜀𝑠̂               

𝑇

𝑠=𝑝+1,𝑠≠𝑡

                                               (6)

𝑇

𝑡=𝑝+1

 

 

where 𝐾(⋅) is the kernel function with bandwidth ℎ  and 𝜀𝑡̂  is the estimate of the unknown 

regression error, which is estimated from 

 

      𝜀𝑡̂ = 𝟏[𝑦𝑡 ≤ 𝑄̂𝜃(𝑌𝑡−1)] − 𝜃
 
        (7) 

 

where 𝑄̂𝜃(𝑌𝑡−1) is an estimate of the  -th conditional quantile of 𝑦𝑡 given 𝑌𝑡−1. We estimate  

𝑄̂𝜃(𝑌𝑡−1) using the nonparametric kernel method as  

 

     𝑄̂𝜃(𝑌𝑡−1) = 𝐹̂𝑦𝑡|𝑌𝑡−1

−1 (𝜃|𝑌𝑡−1)                   (8) 

 

Here, 𝐹̂𝑦𝑡|𝑌𝑡−1
(𝑦𝑡|𝑌𝑡−1)is the Nadarya-Watson kernel estimator is given by 

 

           𝐹̂𝑦𝑡|𝑌𝑡−1
(𝑦𝑡|𝑌𝑡−1) =

∑ 𝐿 (
𝑌𝑡−1 − 𝑌𝑠−1

ℎ
) 𝟏(𝑦𝑠 ≤ 𝑦𝑡)𝑇

𝑠=𝑝+1,𝑠≠𝑡

∑ 𝐿 (
𝑌𝑡−1 − 𝑌𝑠−1

ℎ
)𝑇

𝑠=𝑝+1,𝑠≠𝑡

                                             (9) 

 

with the kernel function 𝐿(⋅)  and bandwidth ℎ.  

 

As an extension of Jeong et al.,’s (2012) framework, Balcilar et al., (2018) use a test for the 

second moment which allows us to test the causality between oil uncertainty and excess bond 

returns volatility. Causality in the m-th moment implies causality in the k-th moment for 𝑚 <
𝑘. To test for nonparametric Granger quantile causality in variance we employ the general 

nonparametric Granger quantile causality test by Nishiyama et al., (2011). Equation (10) is an 

illustration of the causality in higher order moments given as   

 

      𝑦𝑡 = 𝑔(𝑌𝑡−1) + 𝜎(𝑋𝑡−1)𝜀𝑡                                        (10) 

 

where 𝜀𝑡 is a white noise process, 𝑔(⋅)  and 𝜎(⋅) are unknown functions that satisfy certain 

conditions for stationarity. The specification in equation (10), does not allow Granger causality 

from 𝑥𝑡 to 𝑦𝑡, but certainly allows predictive power (in the Granger causality test) from 𝑋𝑡−1 

to 𝑦𝑡
2. 𝜎(⋅) is a general nonlinear function. A model like equation (10) has a null and alternative 

hypothesis for causality in variance given by 

 

             𝐻0 = 𝑃[𝐹𝑦𝑡
2|𝑍𝑡−1

(𝑄𝜃(𝑌𝑡−1)|𝑍𝑡−1) = 𝜃] = 1       (11) 

             𝐻1 = 𝑃[𝐹𝑦𝑡
2|𝑍𝑡−1

(𝑄𝜃(𝑌𝑡−1)|𝑍𝑡−1) = 𝜃] < 1       (12) 

 

To obtain the feasible test statistic for testing the null hypothesis 𝐻0 in equation (11) we replace 

𝑦𝑡 in equations (6)-(9) with 𝑦𝑡
2. To overcome the problem that causality in the conditional first 
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moment (mean) implies causality in the second moment (variance), we interpret quantile 

causality in higher order moments using the following model: 

 

      𝑦𝑡 = 𝑔(𝑋𝑡−1, 𝑌𝑡−1) + 𝜀𝑡                             (13) 

 

Higher order quantile causality for this model can be specified as  

 

  𝐻0 = 𝑃[𝐹𝑦𝑡
𝑘|𝑍𝑡−1

(𝑄𝜃(𝑌𝑡−1)|𝑍𝑡−1) = 𝜃] = 1       for 𝑘 = 1,2, … , 𝐾                                (14) 

   𝐻1 = 𝑃[𝐹𝑦𝑡
𝑘|𝑍𝑡−1

(𝑄𝜃(𝑌𝑡−1)|𝑍𝑡−1) = 𝜃] < 1       for 𝑘 = 1,2, … , 𝐾                                  (15) 

Following this definition, 𝑥𝑡  Granger causes 𝑦𝑡  in quantile 𝜃  up to K-th moment. The null 

specified in equation (11) is used to construct the test statistic in equation (6) for each k . It is 

difficult to combine the different statistics for each 𝑘 = 1,2, … , 𝐾 into one statistic for the joint 

null in equation (14) because the statistics are mutually correlated (Nishiyama et al., 2011). To 

address this problem, we follow the sequential testing approach in Nishiyama et al., (2011). 

This approach first tests for nonparametric Granger causality in the first moment (𝑘 = 1). 

Rejecting the null hypothesis of non-causality means that we can stop and interpret this result 

as a strong indication of possible quantiles-based Granger causality in variance. However, 

failure to reject the null for  𝑘 = 1, does not automatically translate to no causality in the second 

moment and, thus, we can still construct the tests for 𝑘 = 2. This approach allows us to test the 

existence of causality only in variance as well as the causality in the mean and variance 

successively. It follows from Jeong et al., (2013) that 𝑇ℎ𝑝𝐽𝑇 →𝐿 𝑁(0, 𝜎0
2) , where 𝜎0

2 =

2𝐸{𝜎𝜀
4(𝑍𝑡−1)𝑓(𝑍𝑡−1)}{∫ 𝐾2(𝑢)𝑑𝑢}  and 𝜎𝜀

4(𝑍𝑡−1) = 𝐸[𝜀𝑡
2|𝑍𝑡−1] = 𝜃(1 − 𝜃) . Thus, the 

rescaled statistics 𝑇ℎ𝑝𝐽𝑇/𝜎̂0  is asymptotically distributed as standard normal, where 𝜎̂0 =

√2𝜃(1 − 𝜃)√1/(𝑇(𝑇 − 1)ℎ2𝑝)√∑ 𝐾2((𝑊𝑡−1 − 𝑊𝑠−1)/ℎ𝑡≠𝑠 ). 

The empirical implementation of causality testing via quantiles entails specifying three key 

parameters: the bandwidth (h), the lag order (p), and the kernel types for 𝐾(∙) and 𝐿(∙). Our lag 

order is based on the Schwarz Information Criterion (SIC), with ℎ determined by the leave-

one-out least-squares cross validation (as suggested by Racine and Li (2004), and Li and Racine 

(2004)), and for 𝐾(∙) and  𝐿(∙), we use Gaussian kernels for both first and second-moments of 

the bond risk premium. 

  

 

3. Data and Results 

 Our analysis involves two variables namely, the excess bond returns and oil price uncertainty 

over the monthly period of 1953:06 to 2016:12, with the start- and end-dates being purely 

driven by data availability of the bond prices. rx(n) denote the continuously compounded excess 

returns on an n-year zero coupon bond, with n = 2, 3, 4 and 5.3 We obtain monthly US Treasury 

bond prices from the Fama and Bliss (1987) dataset, which is available at the Center for 

 
3 In line with Cochrane and Piazzesi (2005), we use the following notation for the (log) yield of an 𝑛-year bond: 

𝑦𝑡
(𝑛)

≡ −
1

𝑛
𝑝𝑡

(𝑛)
, where 𝑝𝑡

(𝑛)
= 𝑙𝑛𝑃𝑡

(𝑛)
 is the log-price of the 𝑛-year zero coupon bond at time 𝑡. A forward rate at 

time 𝑡 for loans between time 𝑡 + 𝑛 − 1 and 𝑡 + 𝑛 is defined as: 𝑓𝑡
(𝑛)

≡ 𝑝𝑡
(𝑛−1)

− 𝑝𝑡
(𝑛)

. The log holding period 

return from buying an 𝑛-year bond at time 𝑡 and selling it as an 𝑛 − 1 year bond at time 𝑡 + 1 is: 𝑟𝑡+1
(𝑛)

= 𝑝𝑡+1
(𝑛−1)

−

𝑝𝑡
(𝑛)

. The risk premium on an 𝑛-year discount bond over a short-term bond is the difference between the holding 

period returns of the 𝑛-year bond and the 1-period interest rate, 𝑟𝑥𝑡+1
(𝑛)

≡ 𝑟𝑡+1
(𝑛)

− 𝑦𝑡
(1)

. Alternatively, 𝑟𝑥𝑡
(𝑛)

≡

𝑟𝑡
(𝑛)

− 𝑦𝑡−1
(1)

. 
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Research in Security Prices (CRSP). This is undoubtedly the most widely-used database to 

compute US bond premia (Ludvigson and Ng, 2009, 2011), which in turn, is primarily because 

of the length of its coverage spanning over more than half a century. Using this data set, also 

allows us to place our paper in the existing literature on bond premia predictability. Of course 

an alternative would have been to use the bond yield of various maturities as developed by 

Gürkaynak et al., (2007), and then compute the bond premia using the Dynamic Nelson-Siegel 

model of Diebold and Li (2006). But this would have resulted in the dependent variable, to be 

model-specific, which we wanted to avoid, given that our oil uncertainty variable as discussed 

below, being latent, is also model-contingent.   

As far as oil price uncertainty (OILUNC1) is concerned, we use the fitted conditional variance 

derived from a Generalized Autoregressive Conditional Heteroskedasticity (GARCH(1,1)) 

model along the lines of Elder and Serletis (2010, 2011), and following Sadorsky (2006), Bos 

et al., (2018) and Gupta and Yoon (2018).4 In this regard, we use the West Texas Intermediate 

(WTI) oil price data derived from the Global Financial Database. 

The variables of interest, i.e., the bond risk premia with maturities of 2-, 3-, 4-, and 5-year, as 

well as the derived measure of oil price uncertainty have been plotted in Figure A1, with their 

basic statistics summarized in Table A1, both of which can be found in the Appendix of the 

paper. As can be seen from Table A1, the null hypothesis of normality is rejected for both 

variables (rx(n) and OILUNC1) of concern, and hence, provides motivation to rely on a 

quantiles-based analysis instead of a standard linear test of causality, due to the existence of 

heavy-tails. 

Before we discuss the findings from the causality-in-quantiles test, for the sake of completeness 

and comparability, we first provide the findings from the standard linear Granger causality test 

reported in Table A2 in the Appendix of the paper. As shown in Table A2, the null of no-

causality from OILUNC1 to rx(n), with n = 2, 3, 4 and 5,  cannot be rejected even at the 10% 

level of significance. In other words, a standard linear test of predictability fail to provide any 

evidence of significant oil uncertainty-related effects on excess bond returns.      

Given the insignificant results obtained from the linear causality tests, next we statistically 

examine the presence of nonlinearity and structural breaks in the relationship between excess 

bond returns and oil price uncertainty, motivated from the evidence provided by Gargano et 

al., (2017) on the instability in the relationship between bond premia and its predictors. For 

these purposes, we apply the Brock et al., (1996) (BDS) test of nonlinearity on the residuals 

recovered from excess bond returns equation of the Granger causality test, and the Bai and 

Perron (2003) tests of multiple structural breaks on the same excess returns equation. As can 

be seen from Table A3 in the Appendix of the paper, the null hypothesis of i.i.d. residuals at 

various embedded dimensions (m) is rejected at the highest significance level by the BDS test. 

In other words, the relationship between excess bond returns at the four maturities considered 

and the oil price uncertainty is in fact nonlinear. Further, based on the structural break test, we 

were able to detect one break each at 1981:12, 1981:11, 1981:07, and 1981:07 in the 

relationship between OILUNC1 with rx(2), rx(3), rx(4), and rx(5) respectively. These break dates 

seem to be in line with the findings of Smith and Taylor (2009) regarding a shift in the term-

structure, and is believed to be a result of Paul Volcker’s strong disinflationary policies to curb 

double digit inflation rates in the US (to some extent due to the second major oil-price shock 

 
4 Complete details of the estimation of the GARCH(1,1) model is available upon request from the authors. 
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in 1979). In sum, in the presence of nonlinearity and regime changes, the findings based on the 

linear Granger causality test cannot be deemed robust and reliable.5 Hence, we now turn our 

attention to the causality-in-quantiles test, which is robust to linear misspecification given its 

nonparametric (i.e., data-driven) estimation, besides its ability to study the entire conditional 

distribution of not only returns, but also volatility (squared returns) of the US bond market. 

In Figure 1, we present the results for the k-th order causality-in-quantiles test for excess bond 

returns and squared returns, i.e., volatility, emanating from OILUNC1 over the quantile range 

of 0.05 to 0.95. Note the test statistic, proposed by Balcilar et al., (2018), follows a standard 

normal distribution, and we evaluate the existence or non-existence of causality at a specific 

quantile (), if the test statistic is greater than or less than the conventional 5% critical value of 

1.96. We find that for rx(1) and its squared-value, the predictability holds over the entire 

conditional distribution, with stronger effects around the tails. A similar picture emerges for 

rx(5) though, there is no evidence of predictability around the quantile range of 0.4250 to 0.500 

for the bond returns.6 

Interestingly, the impact of OILUNC1 on rx(3) and rx(4) are also quite similar. For excess bond 

returns of maturities of 3 and 4-year, causality hold over the moderately high quantile range of 

0.700 to 0.850, and at  = 0.250 for the latter. In terms of squared returns, i.e., volatility of these 

two maturities, the coverage of causality over the conditional distributions is much broader and 

ranges between 0.100 to 0.800, and 0.100 to 0.700 for the 3- and 4-year squared bond premia 

respectively. 

[INSERT FIGURE 1] 

Although we can derive robust predictive inference based on the causality-in-quantiles test, it 

would also be interesting to estimate the direction of the effects of oil uncertainty on bond 

market movements at various quantiles. However, in a nonparametric framework, this is not 

straightforward, with us requiring to employ the first-order partial derivatives. Estimation of 

the partial derivatives for nonparametric models can experience complications because 

nonparametric methods exhibit slow convergence rates, which can depend on the 

dimensionality and smoothness of the underlying conditional expectation function. But one 

could look at a statistic that summarizes the overall effect or the global curvature (i.e., the 

global sign and magnitude), but not the entire derivative curve. In this regard, a natural measure 

of the global curvature is the average derivative (AD). We use the locally polynomial quantile 

kernel regression approach of Chaudhuri et al., (1997), to estimate the partial ADs. The 

confidence intervals for AD estimates are obtained using the bootstrap method of Cai et al., 

 
5 When we conducted the tests of slope equality and conditional symmetry, as developed by Koenker and Bassett 

(1982) and Newey and Powell (1987) respectively, on the equations used to test the linear Granger causality test, 

the corresponding null hypotheses were overwhelmingly rejected, suggesting the preference of a quantiles-based 

model over a conditional mean framework. Since these tests are applicable only on a linear model and not available 

for in a nonparametric context, we have discussed the tests in this footnote and have not presented them formally 

in the paper, but complete details are available upon request from the authors. 
6 As pointed out by an anonymous referee, an interesting observation is the volatility of the statistic at the lower 

conditional quantiles of the squared values of rx(5), though the causality still holds. It must be realized that, we use 

a nonparametric causality-in-quantiles test, which is purely data-driven, and hence the variability of the strength 

of the causal relationship is possibly an indication of the fluctuation in the available number of observations across 

the quantiles of the conditional distribution of the variance of rx(5). This line of reasoning is further corroborated 

by the fact that rx(5) has the highest positive skewness among all the bond premia considered (as reported in Table 

A1), and hence, has more data on the right tail rather than the left tail. 
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(2000). The sign of the impact of oil price uncertainty on excess bond returns and volatility is 

reported in Figure 2. As can be observed, the effect of OILUNC1 on the returns and variance 

of bond premia of the four maturities considered is generally positive and significant at the 5% 

level, corresponding to the quantiles for which predictability was detected based on the 

causality-in-quantiles test.  

[INSERT FIGURE 2] 

In sum, we can draw the following observations: (a) Impact of oil price uncertainty is stronger 

on bond volatility than returns across the four maturities considered, which is somewhat 

expected in the sense that uncertainty being itself capturing volatility (risk) in the oil market, 

is likely to have stronger higher-order impact on the bond market (see, Bonaccolto et al., (2018) 

for a detailed discussion in this regard); (b) Further, the effect of oil uncertainty on both returns 

and volatilities of the bonds with shortest and longest maturities is stronger relative to the 

corresponding metrics of the bonds with medium-term maturities. Intuitively, this result seems 

to be in line with the widespread observation that the two-ends of the term-structure tends to 

be affected by shocks relatively more compared to its other parts. For instance, the strong-

movement in the 2-year bond premium due to oil uncertainty is probably due to the 

(expansionary) response of monetary policy to oil market uncertainty (to curb the recessionary 

impact), given the findings of Bauer (2015) and Tillmann (forthcoming), that bonds with 

shorter maturities are tied more strongly with monetary policy decisions. At the same time, the 

stronger impact of oil uncertainty on the 5-year bond premium is due to the possibility of the 

longer maturities being tied more closely to economic activity and inflationary expectations 

(Ang et al., 2011) - both of which (output and inflation) are affected by oil volatility (Castillo 

et al., 2007; Lu et al., 2010), and; (c) Finally, oil market uncertainty is priced in the excess bond 

returns, and also increases variability of the associated risk, with the result being in line with 

observations made for equity markets in the wake of increased overall macroeconomic 

uncertainty (Pástor and Veronesi, 2013). Note that, risks due to recession and inflationary 

expectations results in higher bond premium for the longest maturity, as investors need to be 

compensated for holding these bonds. As far as the shortest maturity is concerned, 

expansionary monetary policy shocks would enhance consumption growth and lead to lower 

returns on risk-free assets. Thus, when consumption growth is expected to be high, a decrease 

in the bond’s payoff should make investors less willing to invest in shorter-term bonds and lead 

to a higher risk premium (Rudebusch and Swanson, 2012).  

In the Appendix B of the paper, we conduct robustness and additional analyses based on the 

causality-in-quantiles framework.7 The main results, discussed above, are found to be robust 

under alternative measures of oil market uncertainty and implied measures of bond volatility. 

In addition, oil uncertainty is also shown to impact the equity premium and excess returns on 

corporate bonds, as well as their respective volatilities.  

 

 
7 As with the bond premia, linear causality tests failed to detect any evidence of causality in the first moment of 

all the dependent variables considered below corresponding to various measures of oil price uncertainty, and the 

BDS test showed significant evidence of nonlinearity. Hence, we decided to rely on the causality-in-quantiles test. 

In addition, oil uncertainty was consistently observed to have positive impact on the first- and second-moments 

of the alternative variables of interest, as in the case of the bond premia. Complete details of these test results are 

available upon request from the authors. 
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4. Concluding Remarks 

In this paper, we test the predictability of the movements of excess returns on US Treasury 

bonds due to oil price uncertainty over the monthly period of 1953:06 to 2016:12. We first 

indicate that, the relationship between bond premia of maturities of 2-, 3-, 4- and 5-year with 

oil uncertainty is nonlinear and has undergone regime-changes, and hence, the evidence of no-

causality derived from the misspecified linear model cannot be relied upon. Given this, we use 

a k-th order nonparametric causality-in-quantiles framework, which in turn, allows us to test 

for predictability over the entire conditional distribution of not only bond returns, but also 

volatility, by controlling for misspecification due to uncaptured nonlinearity and structural 

breaks. Our results point out that oil uncertainty not only predicts US bond returns, but also 

volatility, with the effect on the latter being stronger. In addition, the impact is positive, i.e., 

oil uncertainty increases the bond premia and its volatility across maturities. In line with the 

theory of term-structure, our results also show that oil uncertainty tends to have a stronger 

impact on the shortest and longest maturities considered, and relatively weaker impact on 

bonds with medium-term maturities. These main results are found to be robust under alternative 

measures of oil market uncertainty and implied measures of bond volatility. Finally, oil 

uncertainty is also shown to impact the equity premium and excess returns on corporate bonds, 

as well as their respective volatilities. 

Our results have important implications for not only bond investors and policymakers, but also 

for academics in finance, who are all looking to predict interest rates movements accurately. 

The finding that oil uncertainty impact the evolution of future interest rates and its volatility 

can help policymakers in better design monetary policy, by accounting for oil price volatility. 

Bond investors can improve investment strategies by exploiting the role of the oil price 

uncertainty for interest-rate predictability. Finally, researchers may find our results useful for 

developing better asset-pricing models that appropriately use the information embedded in 

estimates of oil market uncertainty. 

As part of future research, it would be interesting to extend our analysis to a full-fledged 

forecasting exercise involving the bond market as in Ludvigson and Ng (2009, 2011), since in-

sample predictability does not guarantee the same over an out-of-sample period.    
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Figure 1. Causal Impact of GARCH (1,1) Model-Based Oil Uncertainty (OILUNC1) on 

Bond Premium and Volatility  
[Note: rx(2), rx(3), rx(4), rx(5): excess bond premium of maturities of 2-, 3-, 4-, and 5-year relative to 1-year bond 

returns; CV is 5% critical value of 1.96]. 
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Figure 2(a). Sign of the Impact of Oil Uncertainty (OILUNC1) on Bond Premia  
[Note: See Notes to Figure 1; LB and UB stands for lower and upper 95% confidence bands.] 

   

   
Figure 2(b). Sign of the Impact of Oil Uncertainty (OILUNC1) on Volatility of Bond Premium  

[Note: See Notes to Figure 1; See Notes to Figure 2(a)]  
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APPENDICES 

APPENDIX A: 

Table A1. Summary Statistics 

 Variable 

Statistic rx(2) rx(3) rx(4) rx(5) OILUNC1 

Mean 0.00 0.01 0.01 0.01 0.01 

S.D. 0.02 0.03 0.04 0.05 0.01 

Min -0.06 -0.10 -0.14 -0.18 0.00 

Max 0.06 0.10 0.14 0.17 0.10 

Skewness 0.13 0.03 0.06 0.05 3.80 

Kurtosis 0.92 1.02 0.92 0.83 17.87 

JB 29.46*** 34.01*** 28.26*** 22.77*** 12061.68*** 

Q(1) 660.79*** 665.25*** 665.13*** 652.67*** 593.72*** 

Q(4) 2084.67*** 2076.65*** 2080.87*** 2028.00*** 1547.27*** 

ARCH(1) 500.37*** 517.40*** 509.58*** 479.09*** 393.58*** 

ARCH(4) 503.00*** 527.94*** 518.78*** 482.64*** 409.02*** 

Observations 1953:06-2016:12 (763) 
Note: rx(i), i=2, 3, 4 and 5 represents the bond premium (relative to the 1-year bond) with maturities 2-, 3-, 4-, and 5-year; OILUNC1: is the GARCH(1,1) based estimate of oil 

price volatility, i.e., uncertainty; S.D.: Standard Deviation; JB: Jarque-Bera test of normality; *** indicates rejection of the null hypotheses of normality (JB), autocorrelation 

(Q-stat), and heteroskedasticity (ARCH) at 1% level of significance.
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Table A2. Linear Granger Causality Test Results 

 

Dependent Variable F-statistic p-value Lag(s) 

rx(2) 0.50 0.60 2 

rx(3) 0.52 0.60 2 

rx(4) 0.70 0.49 2 

rx(5) 0.94 0.33 1 
Note: See Notes to Table A1. The F-statistic has a null that OILUNC1 does not Granger causes rx(i), with i=2, 3, 

4, 5, with optimal lag lengths chosen by the Schwarz Information Criterion (SIC). 

 

 

 

Table A3. Brock et al. (1996, BDS) Test of Nonlinearity 

Dependent 

Variable 

Dimension (m) 

2 3 4 5 6 

rx(2) 8.42*** 12.12*** 17.86*** 26.06*** 40.40*** 

rx(3) 5.20*** 6.76*** 9.21*** 12.45*** 18.10*** 

rx(4) 5.50*** 6.95*** 8.82*** 12.28*** 18.42*** 

rx(5) 6.44*** 7.63*** 9.84*** 14.31*** 23.31*** 

Note: See Notes to Table A1. Entries correspond to the z-statistic of the BDS test which has the null of i.i.d. 

residuals, with the test applied to the residuals recovered from the excess bond returns (rx(i)) equation for i=2, 3, 

4, and 5, used in the Granger causality test due to OILUNC1 reported in Table A2; *** indicates rejection of the 

null hypothesis at 1% level of significance. 
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Figure A1. Data Plots 
Note: See Notes to Table A1. 
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APPENDIX B: 

Robustness and Additional Analyses: 

We start-off by analysing the causal impact of two alternative measures of oil price uncertainty. 

Then, we also test for predictability of the movements of equity premium and corporate bond 

premium based on our benchmark measure of uncertainty. Finally, we also test for predictability 

of our GARCH(1,1)-based measure of oil price uncertainty on bond market variance derived from 

indices of implied volatility of the US Treasury market. Below, we discuss the results of each of 

these robustness checks in detail derived: 

(i) We first derive two alternative measures of oil uncertainty, with OILUNC2 based on a 

time-varying parameter stochastic volatility (TVP-SV) model of Chan (2017),8 and 

OILUNC3 being a monthly measure of realized volatility, derived from sum of daily 

squared returns over a month as suggested in Andersen and Bollerslev (1998). In 

addition to these two measures of uncertainty, we also use the crude oil volatility index 

of the Chicago Board Options Exchange (CBOE), as the third alternative measure of 

oil market uncertainty (OILUNC4).9 Note that the analysis based on OILUNC2 ranges 

from 1953:06 to 2016:12, while given the availability of daily data (again sourced from 

the Global Financial Database), the causality-in-quantiles test with OILUNC3 covers 

1977:08 to 2016:12. As far as OILUNC4 corresponding to the oil VIX is concerned, the 

sample period is 2007:05 to 2016:12.10 As can be seen from Figure B1, our benchmark 

results reported in Figure 1 with OILUNC1, in general, continues to hold under the two 

alternative measures of oil price uncertainty, i.e., OILUNC2 and OILUNC3. 

Specifically, we continue to see stronger impact (in terms of the coverage of the 

conditional distributions over which causality holds) on bond premium volatility 

relative to the excess returns, and also that the predictability of bond market movements 

(mean and variance) for shortest (2-year) and longest (5-year) maturities is relatively 

more powerful than the medium-term maturities (3- and 4-year). When it comes to 

OILUNC4, the impact on bond premia and volatility across the various maturities are 

quite similar, with no evidence of predictability at the extreme ends. In addition, the 

causality tends to get more powerful in strength as the maturity lengthens. In other 

words, compared to OILUNC1, OILUNC2, OILUNC3, there are some differences in the 

nature of predictability under the CBOE implied volatility index, i.e., OILUNC4, but 

more importantly, this measure too contains predictive power for the first- and second-

moments of the bond market. Note that, when we look at OILUNC1 and OILUNC2, the 

results are quite similar. There are however, differences in terms of the pattern of 

 
8 Complete details of the parameters derived from a Bayesian estimation of this model is available upon request from 

the authors. 
9 The CBOE Crude Oil ETF Volatility Index ("Oil VIX") measures the market's expectation of 30-day volatility of 

crude oil prices by applying the VIX methodology (see, http://www.cboe.com/vix for details) to United States Oil 

Fund, LP options spanning a wide range of strike prices. The daily data is available for download from: 

http://www.cboe.com/products/vix-index-volatility/volatility-on-etfs/cboe-crude-oil-etf-volatility-index-ovx.  
10 We take averages of the daily data over a month to convert the Oil VIX to the corresponding monthly frequency of 

OILUNC4. Using the last day of the month to measure the corresponding monthly value of OILUNC4, yielded 

qualitatively and quantitatively similar results to those reported in the paper, which in turn are available upon request 

from the authors. 

http://www.cboe.com/vix
http://www.cboe.com/products/vix-index-volatility/volatility-on-etfs/cboe-crude-oil-etf-volatility-index-ovx
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causality, when we analyze at OILUNC3 and OILUNC4 relative to the results derived 

under OILUNC1 and OILUNC2. Recall the sample periods for OILUNC3 and 

OILUNC4 are shorter compared to that under OILUNC1 and OILUNC2. So in some 

sense, with the nonparametric causality-in-quantiles approach requiring more data to 

provide reliable inferences, the results for OILUNC1 and OILUNC2, are likely to be 

more robust, especially given that the results obtained under these two measures of 

uncertainties are also consistent with theoretical intuition. But, the important message 

that must be derived from the usage of these alternative measures of oil market 

uncertainties is the consistent fact that the effect is stronger for volatility than on excess 

bond returns; 

   

[INSERT FIGURE B1] 

 

(ii) To validate the results of Bams et al., (2017) of predictability of the stock market 

movements due to oil uncertainty (OILUNC1), we applied the causality-in-quantiles 

test on the equity premium (EP) and its squared value, i.e., volatility. The equity 

premium is obtained from the CRSP stock returns minus the risk free-rate,11 and cover 

the period of 1953:06 to 2016:12 to correspond to the same sample period of the bond 

market data. As can be seen from Figure B2, OILUNC1 fail to cause the extreme ends 

of the conditional distribution of excess returns, i.e.,  =0.050 to 0.100, and  =0.825 to 

0.950, and similar results are also obtained for stock market volatility, with no 

prediction over  =0.050 to 0.100, and at  =0.950. Hence, as with the bond premia, oil 

uncertainty does affect both stock returns and volatility, with the effect being relatively 

stronger (in terms of coverage of the conditional distribution where the null of no-

causality is rejected) for the latter; 

[INSERT FIGURE B2] 

 

(iii) As an additional analysis, we also conducted the causality-in-quantiles test from 

OILUNC1 on excess corporate bond premium (ECBP1), which is measured as long-

term high yield corporate bond returns minus the risk free-rate,12 over the sample period 

of 1953:06 to 2016:12. As can be seen from Figure B3, predictability holds over the 

entire respective conditional distributions of the corporate bond premium and its 

volatility, with the impact being stronger on volatility than the first moment of corporate 

premium (especially from the quantile () equal to 0.25 and above), just as in the case 

of the US Treasury bond premia;13 

 
11  Data on both these variables are available for download from the website of Professor Amit Goyal at: 

http://www.hec.unil.ch/agoyal/. 
12 Data on the long-term corporate bond returns, derived from Ibbotson’s Stocks, Bonds, Bills and Inflation Yearbook, 

is available for download from the website of Professor Amit Goyal at: http://www.hec.unil.ch/agoyal/, with. 
13 In addition, we also analyzed the predictability due to OILUNC1 of an alternative measure of excess corporate bond 

premium (ECBP2) as developed by Gilchrist and Zakrajšek (2012). The data on ECBP2 is available for download 

from: https://www.federalreserve.gov/econresdata/notes/feds-notes/2016/recession-risk-and-the-excess-bond-

premium-20160408.html. Based on the sample period of 1973:01 to 2016:12, we observe from Figure B4 in the 

Appendix, that ECBP2 is predictable from just below the median till moderately high quantiles (i.e.,  =0.475 to 0.850). 

The volatility of ECBP2, i.e., squared ECBP2 is caused by OILUNC1 over the moderately low quantiles of  = 0.225 

http://www.hec.unil.ch/agoyal/
http://www.hec.unil.ch/agoyal/
https://www.federalreserve.gov/econresdata/notes/feds-notes/2016/recession-risk-and-the-excess-bond-premium-20160408.html
https://www.federalreserve.gov/econresdata/notes/feds-notes/2016/recession-risk-and-the-excess-bond-premium-20160408.html
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[INSERT FIGURES B3 and B4] 

 

(iv) Finally in Figure B5, we also report the causality-in-quantiles test (for mean only) on 

the implied volatilities of US Treasuries with maturities of 5 (TIV5)-, 10 (TYVIX)- and 

30 (TIV30)-years, which were developed by Choi et al., (2017).14 The sample periods, 

based on data availability are: 1990:01-2012:09, 1985:05-2015:12, and 1982:10-

2012:09 for TIV5, TYVIX, and TIV30 respectively. Note that, the implied volatility 

measures are not available for bonds of any other maturity, and hence, our analysis was 

only restricted to TIV5, TYVIX, and TIV30. The decision to use these metrics were 

primarily to check, if an alternative measure of bond market volatility can be predicted 

by oil market uncertainty. OILUNC1 causes the entire conditional distribution of TIV30 

and TYVIX (at the 10% level of significance for quantile (=0.95), and also predicts 

TIV5, barring the ends of its conditional distribution, i.e., ( =0.050 to 0.225, and  

=0.850 to 0.950). These results tend to corroborate the earlier findings related to bond 

market volatility based on squared excess bond returns, i.e., of the strong impact of oil 

uncertainty on bond volatility especially at longer maturities.    

[INSERT FIGURE B5] 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
to 0.350. Unlike the case of US Treasury bonds and the long-term corporate bonds, the predictability due to oil 

uncertainty seems to be more stronger on the alternative measure of the excess corporate bond premium (ECBP2) than 

its volatility. Notwithstanding the differences in the sample period, the muted impact on ECBP2 compared to ECBP1 

from OILUNC1, could be due to the fact that the former is a component of corporate bond credit spreads that is not 

directly attributable to expected default risk (Gilchrist and Zakrajšek, 2012). But in general again, the role of oil market 

uncertainty in predicting movements of the corporate bond premium cannot be ignored.  
14 The data on the implied volatility of US Treasuries can be downloaded from the website of Professor Andrea Vedolin 

at: https://sites.google.com/site/andreavedolin/. 

https://sites.google.com/site/andreavedolin/
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Figure B1(a). Causal Impact of TVP-SV Model-Based Oil Uncertainty (OILUNC2) on Bond Premium and Volatility 

   

   
Figure B1(b). Causal Impact of RV-Based Oil Uncertainty (OILUNC3) on Bond Premium and Volatility. 
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Figure B1(c). Causal Impact of Oil VIX (OILUNC4) on Bond Premium and Volatility 
Note: See Notes to Figure 1. 

  

 
Figure B2. Causal Impact of GARCH (1,1) Model-Based Oil Uncertainty (OILUNC1) on Equity 

Premium (EP) and Volatility    
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Figure B3. Causal Impact of GARCH (1,1) Model-Based Oil Uncertainty (OILUNC1) on 

Corporate Bond Premium (ECBP) and Volatility 
 

 

 
Figure B4. Causal Impact of GARCH (1,1) Model-Based Oil Uncertainty (OILUN1) on an 

Alternative Measure of Corporate Bond Premium (ECBP2) and Volatility 

 

  

 
Figure B5. Causal Impact of GARCH (1,1) Model-Based Oil Uncertainty (OILUNC1) on 

Implied Volatility of US Treasury Bonds (TIV) 
Note: TIV5, TYVIX, TIV30 corresponds to maturities of 5-, 10-, and 30-year. 
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