
Configuration and hindcast quality 
assessment of a brazilian global sub‐
seasonal prediction system 
Article 

Accepted Version 

Guimarães, B. S., Coelho, C. A. S., Woolnough, S., J. ORCID: 
https://orcid.org/0000-0003-0500-8514, Kubota, P. Y., Bastarz, 
C. F., Figueroa, S. N., Bonatti, J. P. and Souza, D. C. (2020) 
Configuration and hindcast quality assessment of a brazilian 
global sub seasonal prediction system. Quarterly Journal of ‐
the Royal Meteorological Society, 146 (728). pp. 1067-1084. 
ISSN 0035-9009 doi: 10.1002/qj.3725 Available at 
https://centaur.reading.ac.uk/88559/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1002/qj.3725 

Publisher: Wiley 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://centaur.reading.ac.uk/licence


www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online

http://www.reading.ac.uk/centaur


1 

 

CONFIGURATION AND HINDCAST QUALITY ASSESSMENT OF A 

BRAZILIAN GLOBAL SUB-SEASONAL PREDICTION SYSTEM 

Bruno S. Guimarães1,2, Caio A. S. Coelho1, Steve J. Woolnough2, Paulo Y. Kubota1,  

Carlos F. Bastarz1, Silvio N. Figueroa1, José P. Bonatti1 and Dayana C. de Souza1 

1- Center for Weather Forecast and Climate Studies,  

National Institute for Space Research, Cachoeira Paulista, SP, Brazil; 

2- National Centre for Atmospheric Science, Department of Meteorology, 

University of Reading, UK. 



2 

 

ABSTRACT 1 

This paper presents the Center for Weather Forecast and Climate Studies (CPTEC) 2 

developments for configuring a global sub-seasonal prediction system and assessing 3 

its ability in producing retrospective predictions (hindcasts) for meteorological 4 

conditions of the following 4 weeks. Six Brazilian Global Atmospheric Model 5 

version 1.2 (BAM-1.2) configurations were tested in terms of vertical resolution, 6 

deep convection and boundary layer parameterizations, as well as soil moisture 7 

initialization. The aim was to identify the configuration with best performance when 8 

predicting weekly accumulate precipitation, weekly mean 2-meter temperature 9 

(T2M) and the Madden and Julian Oscillation (MJO) daily evolution. Hindcasts 10 

assessment was performed for 12 extended austral summers (November to March - 11 

1999/2000 to 2010/2011) with two start dates for each month for the six 12 

configurations and two ensemble approaches. The first approach, referred to as 13 

Multiple Configurations Ensemble (MCEN), was formed of one ensemble member 14 

from each of the six configurations. The second, referred to as Initial Condition 15 

Ensemble (ICEN), was composed of six ensemble members produced with the 16 

chosen configuration as the best using an Empirical Orthogonal Function (EOF) 17 

perturbation methodology. The chosen configuration presented high correlation and 18 

low root mean squared error (RMSE) for precipitation and T2M anomaly 19 

predictions at the first week and these indices degraded as lead time increased, 20 

maintaining moderate performance up to week 4 over the tropical Pacific and 21 

northern South America. For MJO predictions, this configuration crossed the 0.5 22 

bivariate correlation threshold in 18 days. The ensemble approaches improved the 23 
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correlation and RMSE of precipitation and T2M anomalies. ICEN improved 24 

precipitation and T2M predictions performance over eastern South America at week 25 

3 and over northern South America at week 4. Improvements were also noticed for 26 

MJO predictions. The time to cross the above mentioned threshold increased to 21 27 

days for MCEN and to 20 days for ICEN. 28 

Keywords: MJO, Intraseasonal Variability, Forecast Verification. 29 

1. INTRODUCTION 30 

Forecasting for the time scale between two weeks and two months is known as sub-31 

seasonal prediction (Vitart et al., 2017). This type of forecast is a major challenge 32 

because the predictability contribution from the atmospheric initial conditions is 33 

reduced compared to shorter (weather) timescales, and the predictability from slowly 34 

varying boundary conditions is small for 1-2 week averages, typically the focus of sub-35 

seasonal prediction, compared to seasonal timescales (Kumar et al., 2011; Lin et al., 36 

2016). The main source of predictability for sub-seasonal forecasting is the Madden - 37 

Julian Oscillation (MJO) (Zhang, 2013). However, General Circulation Models (GCMs) 38 

still show limitations in simulating this oscillation (Green et al., 2017; Wang et al., 39 

2018) even with important improvements achieved in recent years (Saha et al., 2014; 40 

Vitart, 2014). As a consequence of these limitations, the predictive ability of GCMs in 41 

the sub-seasonal scale is lower than in the weather and seasonal scales (Zhu et al., 42 

2014). For example, de Andrade et al. (2019) showed the limited predictive ability of 43 

GCM for sub-seasonal precipitation predictions for lead times beyond 15 days. In 44 

general, the GCMs show modest performance in specific areas such as the equatorial 45 

https://journals.ametsoc.org/keyword/Forecast+Verification%2Fskill
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regions of the Atlantic and Pacific oceans and over a few regions in South America at 46 

this lead time. 47 

In spite of these results, a tendency towards improvements in GCMs for sub-seasonal 48 

predictions is seen and several meteorological centres currently operationally produce 49 

this type of forecasts (Vitart, 2004; Hudson et al., 2011; Mastrangelo et al., 2012; Liu et 50 

al., 2017; Weber and Mass, 2017; Liang and Lin, 2018). The Center for Weather 51 

Forecast and Climate Studies [Centro de Previsão de Tempo e Estudos Climáticos 52 

(CPTEC)], which plays a leading role in South America with respect to weather and 53 

seasonal forecasts, is now following the trend of these meteorological centres and 54 

started to develop a sub-seasonal prediction system. This is motivated by the fact that, 55 

as in seasonal forecasting, South America is located in a privileged region for sub-56 

seasonal prediction, with GCMs showing better predictive ability in this region when 57 

compared to other continental regions (Li and Robson, 2015; de Andrade et al., 2019). 58 

The identified evolution in sub-seasonal predictions is mainly due to improvements in 59 

the representation of the MJO in GCMs. For example, The European Centre for 60 

Medium-Range Weather Forecasts (ECMWF) showed a mean gain of one day in MJO 61 

prediction performance per year (Vitart, 2014). This indicates that in addition to 62 

improvements in predictive ability for a phenomenon that manifests in the tropical 63 

region, there is also associated improvement in the extratropics due to teleconnections 64 

generated by the MJO (Vitart, 2017). 65 

These findings are documented, in large part, thanks to the effort generated by Sub-66 

seasonal to Seasonal (S2S) Prediction Project. This project was launched jointly by the 67 
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World Weather Research Program (WWRP) and the World Climate Research Program 68 

(WCRP) of the World Meteorological Organization (WMO) and aims to improve 69 

forecast skill and understanding on the sub-seasonal to seasonal time scales and also to 70 

promote its uptake by operational centres and by the applications community. Currently, 71 

the S2S Prediction Project stores and disseminates near-real-time forecasts and 72 

hindcasts of eleven operational and research centres for research purposes (Vitart et al., 73 

2017). 74 

The Brazilian Global Atmospheric model [BAM (Figueroa et al., 2016)] is the current 75 

CPTEC global atmospheric model for weather forecasting. The performance of this 76 

model for sub-seasonal predictions has not been documented yet. Therefore, this study 77 

presents the first outcomes of this model for sub-seasonal predictions and aims to 78 

determine which model configuration presents the best performance for this time scale. 79 

Special attention is given to characteristics such as vertical resolution, deep convection 80 

and boundary layer parameterizations and as well as initialization of the soil moisture 81 

because they have an important influence on the MJO and sub-seasonal predictions. A 82 

similar approach was taken by Green et al (2017) in order to identify a model 83 

configuration with best performance when producing MJO predictions. Green et al 84 

(2017) evaluated the MJO predictive ability in multiphysics and multimodel global 85 

ensembles, by performing two sets of hindcasts in order to test the impact of using the 86 

Grell–Freitas (2014) versus the revised simplified Arakawa–Schubert (Han and Pan, 87 

2011) deep convection parameterization. They revealed that the Grell–Freitas (2014) 88 

convection parameterization showed better MJO prediction performance than the 89 

revised simplified Arakawa–Schubert scheme. 90 
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 The paper is organized as follows. Section 2 presents the model description, datasets 91 

used for model initialization and hindcast quality assessment, the definition of the 92 

experiments, ensemble approaches and the metrics used for evaluation. The 93 

retrospective performance of the produced precipitation, 2-meter temperature (T2M) 94 

and MJO predictions with different BAM configuration experiments, including two 95 

ensemble approaches, is shown in section 3. The final section is intended for the 96 

conclusion. 97 

2. MODEL DESCRIPTION, DATASETS AND EXPERIMENTAL 98 

CONFIGURATIONS, EVALUATION METRICS AND ENSEMBLE 99 

APPROACHES 100 

2.1. Model description 101 

The model version used in this study is the current operational CPTEC global spectral 102 

atmospheric model developed for numerical weather forecasting, which is known as 103 

BAM version 1.2 (BAM-1.2). This model version has different options for dynamical 104 

and physics parameterizations. The Eulerian advection scheme option with a two-time-105 

level Semi-Lagrangian scheme for moisture transport and microphysics prognostic 106 

variables is used in this study. The physical processes of this recent operational version 107 

are similar to the previous version (BAM-1.0) and are described in Figueroa et al. 108 

(2016), which are: microphysics from Morrison et al. (2009), the IBIS-CPTEC surface 109 

model (Kubota, 2012), the long-wave radiation scheme developed by Chou et al. (2001) 110 

(CLIRAD-LW), the short-wave radiation scheme developed by Chou and Suarez (1999) 111 

(CLIRAD-SW), the latter modified by Tarasova and Fomin (2000), the modified 112 

Mellor-Yamada diffusion scheme for the planetary boundary layer (PBL), which is 113 
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based on Mellor-Yamada (1982) and is referred to as dry-PBL, and the modified Grell-114 

Dévényi deep convection scheme, which is based on Grell-Dévényi (2002). The two 115 

new BAM-1.2 components are Bretherton-Park moist diffusion scheme (Bretherton and 116 

Park, 2009) for the PBL, which is referred to as moist-PBL, and the revised version of 117 

the simplified Arakawa-Shubert deep convection scheme (Han and Pan. 2011), which 118 

were recently implemented. Following  Yu et al. (2006) aerosol optical depth in the first 119 

2 km of the atmosphere is specified as 0.22 over the continents and as 0.14 over the 120 

oceans. The horizontal resolution used in this study is triangular truncation at 126 waves 121 

(TQ126, corresponding to a grid of approximately 1.0° in latitude and longitude) and 122 

two vertical resolutions are examined: 42 (L42) and 64 (L64) sigma vertical levels. 123 

One of the objectives of this study is to investigate the performance of the two PBL and 124 

deep convection schemes mentioned above for sub-seasonal predictions. The main 125 

difference of the newly implemented moist-PBL Bretherton-Park scheme compared to 126 

the dry-PBL modified Mellor-Yamada diffusion scheme is the use of moist-conserved 127 

variables and an explicit entrainment closure for convective layers. Regarding the 128 

convection schemes, the revised simplified Arakawa-Shubert and the previously 129 

implemented modified Grell-Dévényi deep convection parameterization schemes were 130 

both derived from Grell (1993), in which the cloud spectrum of the original Arakawa-131 

Schubert (1974) scheme is reduced to a single cloud using a single mass flux closure. 132 

The main differences between these convection schemes implemented in BAM-1.2 are 133 

the fractional entrainment rate and convection trigger formulations [see Han and Pan 134 

(2011) and Figueroa et al., (2016) for additional information]. 135 

2.2. Datasets and experimental configurations 136 
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Sub-seasonal hindcasts were performed over the period defined as the extended austral 137 

summer (from November to March) over the 1999/2000-2010/2011 period. Two 138 

hindcasts for two selected start dates were produced for each month of a given year. 139 

Starts dates vary from one month to the next and are presented in Table 1. Each hindcast 140 

was run for the following 35 days after the start date (35 days of lead time). For the 141 

production of these hindcasts, BAM-1.2 was not coupled with an ocean model. Instead, 142 

the total Sea Surface Temperature (SST) field (not the anomaly) of each start date was 143 

kept constant during the 35 days of integration (persisted SST). It is worth highlighting 144 

that coupled ocean-atmosphere processes are recognized as being important on these 145 

timescales (Reichler and Roads, 2005; Chen et al., 2010, Kumar et al., 2011; Shelly et 146 

al., 2014), but a number of centres contributing to the S2S database [e.g., Japan 147 

Meteorological Agency (JMA) and Environment and Climate Change Canada (ECCC)] 148 

produce operational sub-seasonal forecasts using un-coupled systems (Vitart et al., 149 

2017). The CPTEC couple ocean-atmosphere model version which uses BAM-1.2 as 150 

atmospheric component is under development. The sub-seasonal hindcast quality 151 

assessment of this coupled model version will be reported in future work. 152 

ERA-Interim reanalyses (Dee et al., 2011) produced by ECMWF were used in two 153 

ways. Firstly, the reanalyses were used as atmospheric initial conditions for the 154 

hindcasts produced with BAM-1.2. The variables required for initialization are zonal 155 

and meridional wind, specific humidity, virtual temperature and ozone in 35 vertical 156 

levels between 1000 hPa and 50 hPa, surface pressure and SST. The horizontal 157 

resolution chosen for initialization was 1.5° x 1.5° degrees in latitude and longitude, 158 

which was interpolated to the model spectral resolution (TQ126L42, ~100km). 159 
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Secondly, ERA-Interim data were used as reference to assess the quality of the 160 

produced hindcasts. The variables selected for this assessment are T2M and zonal and 161 

meridional winds at 850 hPa and 200 hPa. 162 

To assess precipitation hindcasts quality, daily data from the Global Precipitation 163 

Climatology Project (GPCP) were used (Huffman, 2001). GPCP is a product derived 164 

from observed rainfall data and precipitation estimates by geostationary and polar-165 

orbiting satellites. The spatial resolution of GPCP is 1° x 1° degrees in latitude and 166 

longitude. Additionally, estimates of Outgoing Longwave Radiation (OLR) from 167 

National Oceanic and Atmospheric Administration (NOAA), with a spatial resolution of 168 

2.5° x 2.5° degrees in latitude and longitude, were used for assessing the model ability 169 

to represent the MJO in conjunction with zonal wind at 850 and 200 hPa from ERA-170 

Interim. This OLR estimation is generated through interpolations in time of polar-171 

orbiting satellite data (for additional information, see Liebmann and Smith, 1996). 172 

Six BAM-1.2 configurations for sub-seasonal prediction have been defined for 173 

evaluation. Characteristics such as vertical resolution, convection and boundary layer 174 

parameterizations were evaluated as well as the impact of soil moisture initialization. 175 

Single member hindcasts over the 1999/2000 – 2010/2011 extended austral summer 176 

period were produced for each configuration. Five of the configurations were defined by 177 

combining two convection schemes, the revised simplified Arakawa Shubert and the 178 

modified Grell-Dévényi, and two vertical diffusion schemes for the PBL, the moist-PBL 179 

Bretherton-Park scheme and the dry-PBL modified Mellor-Yamada, and two vertical 180 

resolutions, 42 and 64 sigma levels. These physical processes and vertical resolutions of 181 
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the model were selected because they have an important influence on the predictive 182 

ability of the MJO (Vitart, 2014; Boyle et al., 2015; Wang and Chen, 2017) and 183 

consequently in the sub-seasonal precipitation and T2M predictions. It is important to 184 

highlight that other aspects such as horizontal resolution, radiation and microphysics 185 

parameterizations are also important for the good representation of the MJO (Zhang, 186 

2005; Vitart, 2014; Wang et al., 2018). However, such characteristics were not 187 

evaluated in the present work. 188 

The sixth configuration evaluates the impact of soil moisture. This characteristic is a 189 

source of predictability for the sub-seasonal timescale and has a positive impact on 190 

GCM predictive ability, especially in longer lead times such as when predicting weeks 3 191 

and 4 (Koster et al., 2010). In this part of the study, the mean soil moisture from the 192 

previous month of the start date of each hindcast from the Global Land Data 193 

Assimilation System (GLDAS) version 2 product (Rui and Beaudoing, 2017) was used 194 

to initialize the soil moisture rather than using the monthly climatological soil moisture 195 

estimate in order to assess whether a more realistic soil moisture condition has an 196 

impact on the predictive ability of BAM-1.2. The monthly climatological soil moisture 197 

data estimates used in this study were obtained from the balance analyses of Willmott et 198 

al. (1985). Both GLDAS and climatological soil moisture data estimates were 199 

interpolated to the model Gaussian grid and converted to soil moisture fraction for 200 

hindcasts initialization. 201 

The six examined configurations are defined in Table 2 and are summarized below: 202 
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 42ABC: BAM-1.2 with 42 vertical levels, revised simplified Arakawa-Schubert 203 

deep convection parameterization, moist Bretherton-Park boundary layer 204 

parameterization, and climatological soil moisture initialization; 205 

 64ABC: BAM-1.2 with 64 vertical levels, revised simplified Arakawa-Schubert 206 

deep convection parameterization, moist Bretherton-Park boundary layer 207 

parameterization, and climatological soil moisture initialization; 208 

 42ABG: BAM-1.2 with 42 vertical levels, revised simplified Arakawa-Schubert 209 

deep convection parameterization, moist Bretherton-Park boundary layer 210 

parameterization, and soil moisture initialized through the GLDAS version 2 211 

product; 212 

 42GBC: BAM-1.2 with 42 vertical levels, modified Grell-Dévényi deep 213 

convection parameterization, moist Bretherton-Park boundary layer 214 

parameterization, and climatological soil moisture initialization; 215 

 64GBC: BAM-1.2 with 64 vertical levels, modified Grell-Dévényi deep 216 

convection parameterization, moist Bretherton-Park boundary layer 217 

parameterization, and climatological soil moisture initialization; 218 

 42AMC: BAM-1.2 with 42 vertical levels, revised simplified Arakawa-Schubert 219 

deep convection parameterization, dry modified Mellor-Yamada boundary layer 220 

parameterization, and climatological soil moisture initialization. 221 

 222 

2.3. Evaluation metrics and ensemble approaches 223 

We assessed the ability of the six BAM-1.2 configurations to predict precipitation, T2M 224 

and the MJO. For precipitation and T2M, the deterministic assessment consists of 225 
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computing the Pearson correlation and Root-Mean-Square Error (RMSE) between the 226 

prediction and observed anomalies. Each metric was calculated for each grid point and 227 

for four lead times: days 1-7 (week-1), 8-14 (week-2), 15-21 (week-3) and 22-28 (week-228 

4). The results were evaluated in the form of weekly averages because the model is 229 

expected to have a greater ability to predict weekly anomalies than daily values when 230 

producing sub-seasonal predictions (Vitart, 2014). 231 

The performance of MJO prediction was evaluated using the Real-time Multivariate 232 

MJO indices (RMMs) (Wheeler and Hendon, 2004). Reference RMMs were calculated 233 

using the meridional wind at 850 and 200 hPa from the ERA-Interim reanalyses and 234 

satellite observed OLR. RMMs for hindcasts were calculated as proposed by Rashid et 235 

al. (2011). The metrics used for the MJO prediction quality assessment were bivariate 236 

correlation and RMSE (Lin et al., 2008) with lead times in days. 237 

In addition to the single member deterministic prediction assessment, we evaluated the 238 

ability of the Multiple Configurations Ensemble (MCEN) mean prediction formed by 239 

the six here investigated BAM-1.2 configurations with each configuration representing 240 

one ensemble member. This was compared to an Initial Condition Ensemble (ICEN) 241 

produced with an Empirical Orthogonal Function (EOF) perturbation methodology 242 

(Mendonça and Bonatti, 2009), using the configuration that showed the best 243 

performance among the six evaluated configurations for producing six ensemble 244 

members. The EOF-based perturbation methodology is in operation at CPTEC for 245 

extended range forecasts up to 15 days. The methodology produces optimally perturbed 246 

analyses by applying the EOFs to n time series formed by the differences between a 247 
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model run initialized with a control initial condition and n model runs initialized with 248 

randomly perturbed initial conditions. The initial random perturbations are drawn from 249 

a Gaussian distribution with zero mean and standard deviation comparable to the model 250 

short length forecast error [e.g., 3 ms−1 for the horizontal wind field components, 0.6 K 251 

for the air temperature field, 1 hPa for the surface pressure field and a vertical standard 252 

deviation profile for the specific humidity derived from the ECMWF background error 253 

covariance matrix (Derber and Boutier, 1999)]. The EOF analysis is performed over the 254 

Northern and Southern Hemispheres, over the tropical domain and also regionally over 255 

southern and northern South America. The EOF perturbations are the ones associated 256 

with the fast growth coefficients. To be used as optimal perturbations, these fast growth 257 

modes are rescaled in order to have a standard deviation of the same order of magnitude 258 

as the initial perturbations. Finally, the optimal perturbation is added and subtracted 259 

to/from the control analysis and an ensemble of 2n initial perturbed states is produced. 260 

A more detailed revision of the EOF-based perturbation methodology used at CPTEC 261 

can be found in Cunningham et al. (2015). 262 

The above mentioned deterministic metrics for precipitation and T2M anomaly 263 

hindcasts, as well as for the hindcast MJO indices, were calculated for the ensemble 264 

mean of the two equal size (six members) ensemble (MCEN and ICEN) to assess and 265 

compare the value of utilizing multiple sub-seasonal predictions using two approaches. 266 

In order to have an assessment of the differences in the obtained scores for the 267 

investigated model configurations and the two ensemble mean approaches, 95% 268 

confidence intervals were computed for the mean correlation and RMSE (for 269 
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precipitation and T2M anomalies), globally averaged between 60° N and 60° S, and for 270 

the bivariate correlation and RMSE (for the MJO) using a bootstrap resampling 271 

procedure with replacement with 1000 samples. 272 

3. HINDCAST QUALITY ASSESSMENT 273 

3.1. Deterministic evaluation of the six investigated BAM-1.2 configurations 274 

Figure 1 shows the correlation between predicted and observed (GPCP) precipitation 275 

anomalies for the six BAM-1.2 configurations (first 6 rows) and four lead times (four 276 

columns representing week-1, week-2, week-3 and week-4). The 10 hindcasts per 277 

extended austral summer (5 months times 2 start dates) over 12 austral summers 278 

produce a sample with a total of 120 hindcasts. Applying a two-side Student’s t test, the 279 

correlation value of 0.2 is statistically significant, different from zero at the 5% level. 280 

For the six configurations, in general, the correlation is high during the first week in 281 

most regions and drops rapidly as lead time increases. This fall is more pronounced 282 

between the first and second week for all six configurations as the forecasts extend 283 

beyond the deterministic limit of predictability for many scales and we are considering 284 

only a single member for this initial analysis. It is noted that all configurations show 285 

greater correlation over the North Hemisphere than the South Hemisphere during week-286 

1 and week-2. This is because GCMs are more likely to predict winter baroclinic 287 

weather systems and associated fronts (Zhu et al., 2014). As of the third week, BAM-288 

1.2 correlation values are smaller than 0.2 in practically all extratropical regions. This 289 

illustrates that the predictive ability of BAM-1.2 over mid-latitudes beyond 15 days is 290 

limited for single member hindcasts. For weeks 3 and 4, significant correlation values 291 
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are only seen in the Tropical Pacific Ocean, over a few areas in northern South America 292 

and in the equatorial Atlantic Ocean. The high correlation values in the first two lead 293 

times, especially at week-1, are associated to the predictability provided by the initial 294 

conditions, and the high correlation values observed in the last two lead times over the 295 

equatorial Pacific Ocean are mainly associated to the predictability provided by the El 296 

Nino-Southern Oscillation (ENSO) and the MJO (Li and Robertson, 2015; de Andrade 297 

et al., 2019). All six configurations show negligible correlation values near the 298 

Subtropical Highs and desert regions from week-1. These characteristics are also 299 

noticed in other GCMs configured for sub-seasonal predictions (Zhu et al, 2014; Li and 300 

Robertson, 2015; Wheeler et al., 2017; de Andrade et al., 2019) and are associated with 301 

the low capacity of GCMs to simulate small precipitation rates in these regions. 302 

The spatial correlation pattern is similar for the four weeks of each of the six BAM-1.2 303 

configurations. However, this pattern for the configurations with revised simplified 304 

Arakawa-Schubert (deep convection) and moist Bretherton-Park (boundary layer) 305 

parameterizations shows slightly larger values in the first two weeks than for the other 306 

configurations (Figure 1, first two columns of configurations 42ABC, 64ABC and 307 

42ABG vs. first two columns of configurations 42GBC, 64GBC and 42AMC). In the 308 

week-3 and week-4 (last two columns of Figure 1), correlation levels are similar in 309 

terms of both spatial pattern and intensity for the six configurations. Increasing the 310 

vertical resolution shows very little change in the precipitation correlation levels at any 311 

lead time. For example, the 42 vertical level configuration, 42ABC (first row of Figure 312 

1), and the 64 vertical level configuration, 64ABC (second row of Figure 1), have 313 

nearly identical correlation values for most regions. The same is noticed for 314 
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configurations 42GBC (fourth row of Figure 1) and 64GBC (fifth row of Figure 1). 315 

Initialization of the soil moisture also shows no increase in the correlation values for all 316 

four investigated weeks. Hindcasts initialised with climatological soil moisture 317 

(42ABC, first row of Figure 1) have the same correlation levels as 42ABG (third row of 318 

Figure 1) hindcasts, which were initialized with GLDAS soil moisture. 319 

Figure 2 shows the precipitation anomaly RMSE spatial features for the six BAM-1.2 320 

configurations. Highest RMSE values are found over the Intertropical Convergence 321 

Zone (ITCZ), Indian Ocean, Maritime Continent, South Pacific Convergence Zone 322 

(SPCZ) and South American Convergence Zone (SACZ), which are regions of strong 323 

sub-seasonal variability (Liu et al., 2014). The errors grow as lead time increases. As for 324 

the correlation assessment, the errors grow more between week-1 and week-2 than from 325 

weeks 2 to 3. Again, configurations with revised simplified Arakawa-Shubert and moist 326 

Bretherton-Park parameterizations have the fewest errors and do not differ greatly from 327 

each other (rows 42ABC, 64ABC and 42ABG in Figure 2). Configurations with 328 

modified Grell-Dévényi parameterizations (rows 42GBC and 64GBC in Figure 2) also 329 

do not differ much from each other and have larger errors when compared to 330 

configurations with revised simplified Arakawa-Shubert parameterizations. That is, the 331 

revised simplified Arakawa-Shubert parameterization seems to be better than the 332 

modified Grell-Dévényi parameterization and increase of the vertical resolution and soil 333 

moisture initialization do not reduce the errors of the hindcasts in any lead time. 334 

To better note the differences between the six configurations, the mean global 335 

correlation between 60°N and 60°S was calculated as a function of lead time (Figure 336 

3a). Vertical bars represent bootstrap 95% confidence intervals. The six configurations 337 
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show a near-exponential drop in correlation as a function of lead time.  The 338 

configurations with the revised simplified Arakawa-Shubert and moist Bretherton-Park 339 

parameterizations (black, orange and blue lines) have the largest correlation values 340 

when compared to the other configurations in the week-1 and week-2. Important 341 

improvements are noticed when comparing the configurations with revised simplified 342 

Arakawa-Shubert and modified Grell-Dévényi deep convection parameterizations at the 343 

first two lead times For example, 42ABC (black line) has a global mean correlation 344 

equals to 0.45 at week-1 and drops to 0.18 at week-2, whereas 42GBC (yellow line) has 345 

a global mean correlation values equals to 0.40 at week-1 and drops to 0.14 at week-2. 346 

The 95% confidence intervals for the 42ABC (black vertical bars on top of solid black 347 

line) do not overlap the 95% confidence intervals for the 42GBC (yellow vertical bars 348 

on top of solid yellow line), illustrating the superiority of 42ABC over 42GBC.  349 

However, the six configurations show similar correlation levels at week-4. As noted in 350 

the previous figures, the increase of vertical resolution does not result in an increase in 351 

the correlation values. This feature is noticed when we compare the 42ABC (black line) 352 

and 64ABC (orange line) configurations or the 42GBC (yellow line) and 64GBC (green 353 

line) configurations, which show practically the same behaviour, with the differences 354 

between configurations smaller than the 95% confidence intervals (vertical bars). This is 355 

also noticed for soil moisture initialization, where the 42ABG configuration (blue line) 356 

shows similar correlation levels to the 42ABC configuration (black line). 357 

The global RMSE mean between 60°N and 60°S (Figure 3b) further emphasizes the 358 

differences between the revised simplified Arakawa-Shubert and modified Grell-359 

Dévényi deep convection parameterizations. The modified Grell-Dévényi 360 
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parameterization (green and yellow lines) produces larger errors than the revised 361 

simplified Arakawa-Shubert parameterization (other lines) at all lead times. The 362 

differences between the errors of these two parameterizations are much larger than the 363 

95% confidence intervals (vertical bars) shown in Figure 3b, illustrating the superiority 364 

of the revised simplified Arakawa-Shubert over the modified Grell-Dévényi 365 

parameterization. The configurations 42ABC (black line) and 64ABC (orange line) 366 

show very similar values at the four lead times, with overlapping 95% confidence 367 

intervals. This is also noticed with the 42GBC (yellow line) and 64GBC (green line) 368 

configurations. These results suggest that increasing the vertical resolution does not 369 

decrease the RMSE. The initialization of soil moisture also does not contribute to the 370 

reduction of error (black vs. blue lines). An interesting aspect is that the configuration 371 

with dry modified Mellor-Yamada boundary layer parameterization (red line) has the 372 

smallest error in the last two lead times. 373 

Figure 4 shows the correlation between predicted and reanalyses (ERA-Interim) T2M 374 

anomalies for the six configurations and four lead times. The six BAM-1.2 375 

configurations show better prediction performance for T2M anomalies than 376 

precipitation anomalies (see Figures 1 and 4). The correlation values decrease with lead 377 

time. The highest correlation values are seen over cloud free oceanic regions (e.g., 378 

42ABC row in Figure 4). However, significant sub-seasonal correlation values exist 379 

over a large portion of the global land domain. Over extratropical continental regions, 380 

strong correlation values are observed in restricted regions at week 3 and 4, for 381 

example, over the southeast of the United States and some regions over Asia. Over 382 
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tropical regions, correlation values are low in regions with high convective activity 383 

(e.g., over the Maritime Continent). 384 

The spatial correlation pattern is similar for the four weeks of the six BAM-1.2 385 

configurations. The difference in performance between configurations with revised 386 

simplified Arakawa-Shubert and modified Grell-Dévényi deep convection 387 

parameterizations is not observed for T2M (e.g., row 42ABC vs. row 42GBC in Figure 388 

4). Configurations with these two parameterizations have the same performance level 389 

for the four weeks of lead time. There are differences when comparing the two 390 

boundary layer parameterizations. The configuration with the dry modified Mellor-391 

Yamada parameterization (row 42AMC in Figure 4) shows reduced performance than 392 

the other five configurations at all lead times, which were configured with the moist 393 

Bretherton-Park boundary layer parameterization. Increasing vertical resolution from 42 394 

(rows 42ABC and 42GBC in Figure 4) to 64 (rows 64ABC and 64GBC in Figure 4) 395 

levels seems to slightly reduced prediction performance of extratropical T2M anomalies 396 

in the first two weeks of lead times. Predictions with the initialisation of soil moisture 397 

(row 42ABG in Figure 4) rather than the climatology soil moisture (row 42ABC in 398 

Figure 4), show a slight improvement in correlation in the continental regions 399 

(Australia, South and North Americas and Africa) at week 2 and 3 lead time. 400 

Figure 5 shows the T2M anomaly RMSE spatial features for the six BAM-1.2 401 

configurations. In all configurations, RMSE values grow with the lead time and are 402 

generally lower over oceanic regions than over continental regions for all 4 lead times. 403 

The highest RMSE values are noticed over Northern Hemisphere regions where there 404 

are interactions between mid-latitude baroclinic system, and tropical convective 405 
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anomalies, which are usually associated with the MJO and circulation teleconnections 406 

through Rossby waves (Stan et al., 2017; Hu et al., 2019). Over northern Asia, high 407 

RMSE values are also noticed. The RMSE values are lower over the Southern 408 

Hemisphere because there are fewer continental regions than over the Northern 409 

Hemisphere, and baroclinic instability is lower at this time of the year in the Southern 410 

Hemisphere. The latter makes the interaction between the convective anomalies over 411 

tropical regions and circulation over mid-latitudes regions less pronounced. As a result, 412 

the sub-seasonal variability over the Southern Hemisphere extratropical regions is also 413 

reduced during the austral summer. 414 

Configurations with the revised simplified Arakawa-Shubert and modified Grell-415 

Dévényi deep convection parameterizations present similar RMSE patterns (Figure 5). 416 

Some differences are found in specific regions. For example, the 42GBC configuration 417 

shows slightly lower RMSE values over southern South America than the 42ABC 418 

configuration at week 3. The opposite is noticed over the Iberian Peninsula. Similar 419 

features are noticed for the increase in vertical resolution. Concerning the initialization 420 

of soil moisture, subtle differences are noticed between 42ABC and 42ABG, with slight 421 

improvements over continental regions such as Australia, South America, southern 422 

Africa and North America with initialized soil moisture (42ABG). Large differences are 423 

found when comparing configurations with moist Bretherton-Park and dry modified 424 

Mellor-Yamada boundary layer parameterizations. For example, the RMSE values are 425 

lower in high latitude regions over North America and Asia for the 42AMC 426 

configuration when compared to the 42ABC configuration. The opposite is over tropical 427 

and medium latitudes regions. 428 
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Figure 6 shows the global mean T2M anomaly correlation (Figure 6a) and RMSE 429 

(Figure 6b) averaged between 60°N and 60°S as a function of lead time with 95% 430 

confidence intervals (vertical bars). The six configurations show a similar drop (rise) in 431 

correlation (RMSE) as a function of lead time. The increase of vertical resolution from 432 

42 to 64 levels, change of deep convection scheme and soil moisture initialization do 433 

not influence the levels of correlation and error values for T2M anomalies predictions 434 

for the global perspective. This feature is noticed by the proximity or overlap of 435 

correlation and RMSE lines of most investigated configurations shown in Figure 6, with 436 

overlapping 95% confidence intervals. Differences in performance levels are noticed 437 

when comparing moist Bretherton-Park and dry modified Mellor-Yamada boundary 438 

layer parameterizations. The dry modified Mellor-Yamada parameterization (red line) 439 

produces smaller correlation values and larger errors than the other five configurations 440 

at all lead times, with the differences between these configurations and the others larger 441 

than the 95% confidence intervals (vertical bars) illustrating the superiority of the other 442 

configurations. 443 

Figures 7a and 7b show MJO bivariate correlation and bivariate RMSE of all six BAM-444 

1.2 configurations, respectively. Vertical bars represent bootstrap 95% confidence 445 

intervals. The MJO predictive ability is determined when the bivariate correlation is 446 

lower than 0.5 and the bivariate RMSE grows to √2. The lead times for these two 447 

thresholds to be reached are usually found to be close (Rashid et al., 2011). The 448 

bivariate correlation decreases with the increase in lead time and crosses the threshold 449 

of 0.5 in 18-19 days for all configurations, except for the 42AMC configuration (red 450 

line), which uses the dry modified Mellor-Yamada boundary layer parameterization and 451 
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has a much reduced performance, with the bivariate correlation reaching the 0.5 452 

threshold in 12 days. The bivariate RMSEs (Figure 7b) increase with lead time and each 453 

configuration reaches the bivariate RMSE value of √2 at approximately the same lead 454 

time as the bivariate correlation. The 42AMC configuration crosses the threshold value 455 

of √2 in 11 days, whereas the other five configurations cross the threshold value of √2 456 

in around 18 to 19 days. The overlap of the 95% confidence intervals (vertical bars) for 457 

most configurations (expect 42AMC) illustrates their similarity in MJO predictive 458 

ability. 459 

3.2.Deterministic assessment of two investigated ensemble approaches 460 

With the precipitation anomalies, T2M anomalies and MJO hindcast evaluation of the 461 

six configurations shown in the previous section, a preferred BAM-1.2 configuration 462 

was determined for defining an ensemble sub-seasonal forecasting system for CPTEC. 463 

The increase of the vertical resolution from 42 levels to 64 levels did not result in 464 

increase in predictive ability, therefore a vertical resolution of 42 levels was selected. 465 

The moist Bretherton-Park boundary layer parameterization was selected because it 466 

contributed to a better performance than the dry modified Mellor-Yamada boundary 467 

layer parameterization, especially for T2M anomalies and MJO predictions. The revised 468 

simplified Arakawa-Shubert and modified Grell-Dévényi deep convection 469 

parameterizations showed similar ability for T2M anomalies and MJO prediction with a 470 

slight advantage to the modified Grell-Dévényi parameterization for MJO prediction. 471 

On the other hand, the revised simplified Arakawa-Shubert parameterization showed a 472 

large advantage for sub-seasonal precipitation, with higher correlation and smaller 473 

errors values than the modified Grell-Dévényi parameterization. Based on this 474 
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assessment, the revised simplified Arakawa-Shubert deep convection parameterization 475 

was chosen. Soil moisture initialization instead of the climatology led to subtle 476 

improvements in T2M anomalies predictions in specific regions (e.g., Australia). 477 

However, these improvements were lower than expected and given limitations in the 478 

availability of accurate real-time soil moisture data, the use of climatological soil 479 

moisture was selected for the BAM-1.2 system. Therefore, the chosen BAM-1.2 version 480 

for ensemble sub-seasonal forecasting was the 42ABC configuration. 481 

The possible physical reasons why the selected configuration (42ABC) performed better 482 

than the other investigated configurations, particularly in terms of the tested boundary 483 

layer and deep convections parameterizations are as follows. The use of the moist 484 

Bretherton-Park boundary layer parameterization resulted in better MJO and T2M 485 

predictions performance than the use of the dry modified Mellor-Yamada boundary 486 

layer parameterization. This is because the moist Bretherton-Park has several 487 

advantages compared to the dry modified Mellor-Yamada parameterization. The main 488 

contribution of the moist Bretherton-Park parameterization is to improve the 489 

representation of the stable night boundary layer, where the predominant physical 490 

process in flat areas such as the oceans is the surface radiative cooling. The evolution of 491 

the stable nocturnal boundary layer depends on the radiative cooling rate, and therefore 492 

the presence of clouds is essential for reducing radiative loss. At sunrise, the state of the 493 

stable boundary layer will be important for the evolution of vertical instability and the 494 

mixing boundary layer. Therefore, the higher or lower the energy released during the 495 

evolution of the stable boundary layer this energy surplus or deficit will contribute to 496 

the formation of shallow and deep clouds, and consequently impacts the daytime 497 
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temperature and precipitation cycle. The energy scales produced by these processes 498 

directly or indirectly impact the atmospheric conditions on the sub-seasonal time scale. 499 

As for the comparative performance of sub-seasonal precipitation predictions, important 500 

differences were noted when changing the deep convection parameterizations. The 501 

revised simplified Arakawa-Shubert parameterization showed better performance than 502 

the modified Grell-Dévényi parameterization. This is likely due to the revision made by 503 

Han and Pan (2011) in the simplified Arakawa-Shubert parameterization to suppress 504 

unrealistic grid point storms due to remaining instability in the atmospheric column.We 505 

next further assess BAM-1.2 sub-seasonal hindcast quality through a deterministic 506 

evaluation of ensemble mean predictions. Two ensemble types are evaluated and 507 

presented here. The first ensemble consists of one ensemble member from each of the 508 

six configurations previously presented, which was denominated Multiple 509 

Configurations Ensemble (MCEN). The second ensemble was denominated Initial 510 

Condition Ensemble (ICEN) and is composed of six members produced with the chosen 511 

42ABC configuration consisting of a control member and five perturbed members 512 

produced with an EOF method (Mendonça and Bonatti, 2009; Cunningham et al., 513 

2015). 514 

The assessment of the ensemble mean of the two ensemble types (MCEN and ICEN) 515 

revealed important increase in global mean performance at four lead times for 516 

precipitation anomalies predictions when compared to the single member assessment of 517 

the six investigated BAM-1.2 configurations (Figure 3), with the increase in 518 

performance larger than the 95% confidence intervals (vertical bars). The two ensemble 519 

mean approaches show similar correlation levels (dashed lines in Figure 3a) and 520 
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overlapping 95% confidence intervals (vertical grey and black bars on top of dashed 521 

lines). This shows that BAM-1.2 performance increases when more (six) members are 522 

used to form an ensemble with the 42ABC configuration or when using the six 523 

configurations as an ensemble. The predictive ability of GCMs increases as the number 524 

of members increases because the ensemble mean acts as a filter for decreasing the 525 

uncertainties of the initial conditions used to run the model (Cheung, 2001). This is 526 

noticed over several regions in the four investigated lead times (e.g., Figure 1). For 527 

example, over extratropical regions at week 2, over eastern South America at week 3 528 

and over northern South America at week 4. Precipitation anomaly hindcasts also show 529 

lower RMSE values for both ICEN and MCEN at all four lead times (dashed lines in 530 

Figure 3b), with the reduction of error much larger than the 95% confidence intervals 531 

(vertical bars). Improvements are noticed primarily over the ITCZ, Indian Ocean, 532 

Maritime Continent, SPCZ and SACZ regions (last two rows in Figure 2). This suggests 533 

that the ensemble mean helps BAM-1.2 to better represent the sub-seasonal variability 534 

in these regions. The same feature is noticed for the T2M hindcasts ensemble means. 535 

The two ensemble means show improved T2M anomalies performance when compared 536 

to the single member performance with increased correlation values and decreased error 537 

(see last two rows in Figure 4 and 5 and dashed lines in Figures 6). Improvements in 538 

MJO forecast performance are also noticed when using the two ensemble approaches. 539 

The prediction ability limits are around lead times 18 and 19 days for the single member 540 

configurations, except for the 42AMC which is much reduced (solid lines in Figures 7). 541 

For the MCEN this limit increases to 21 days (dashed grey line in Figures 7a-b) and to 542 

20 days (dashed black line in Figures 7a-b) for the ICEN. However, these improvements 543 



26 

 

are less prominent than those identified for precipitation and T2M, because the 95% 544 

confidence intervals of the two ensemble approaches largely encompass the 95% 545 

confidence intervals of the single members of the individual investigated configurations. 546 

4. CONCLUSIONS 547 

Vertical resolution and physical parameterizations (deep convection and boundary 548 

layer) were changed in BAM-1.2 to form five model configurations to determine the 549 

model configuration with greater performance for sub-seasonal predictions. These 550 

components were selected because these parameters have an important impact on 551 

GCMs simulated MJO (Zhang, 2005; Wang and Chen, 2017; Wang et al., 2018). Given 552 

the soil moisture initialization potential to increase the sub-seasonal predictions 553 

performance (Koster et al., 2010; Koster et al., 2011; Guo et al., 2012), a further 554 

configuration initialized with monthly soil moisture from the previous month, rather 555 

than the climatological mean soil moisture, was formed to investigate the impact of soil 556 

moisture initialization on BAM-1.2 predictive ability. The configuration with the best 557 

result was selected to form an initial condition ensemble (ICEN) with six members, one 558 

control member and five perturbed members produced using an EOF-based 559 

methodology. The six configurations, individually evaluated in the first part of this 560 

work, were also used to form another ensemble (multiple configurations ensemble-561 

MCEN) to compare the improvements inherent in the ensemble mean between ICEN 562 

and MCEN. 563 

All six BAM-1.2 configurations produced high precipitation and T2M anomalies 564 

correlation levels for the first week and decreased correlation levels for weeks 2-4. For 565 

weeks 3-4, moderate precipitation anomaly correlation levels were restricted to the 566 
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Equatorial Pacific Ocean region. This feature was also noticed in other models (e.g., Li 567 

and Robertson, 2015; de Andrade et al., 2019). Precipitation anomaly RMSE increased 568 

with lead time and the highest RMSE values were found over regions with strong sub-569 

seasonal variability, for example, over the ITCZ, Indian Ocean, Maritime Continent, 570 

SPCZ and SACZ (Liu et al., 2013). For T2M, this characteristic was identified over the 571 

Northern Hemisphere where interaction between anomalous convection and mid-572 

latitudes circulation anomalies are noticed (Hu et al., 2019). The six BAM-1.2 573 

configurations showed better prediction performance for T2M anomalies than for 574 

precipitation anomalies. 575 

The increase of the vertical resolution from 42 levels to 64 levels did not result in an 576 

increase in predictive ability. Comparing 42ABC with 64ABC (revised simplified 577 

Arakawa-Shubert deep convection configurations with 42 and 64 levels, respectively) 578 

and 42GBC with 64GBC (modified Grell-Dévényi deep convection configurations with 579 

42 and 64 levels, respectively), it was noticed that the correlation and RMSE showed 580 

nearly identical levels for all lead times for precipitation anomalies, T2M anomalies and 581 

MJO predictions. These results may sound contradictory since other studies have shown 582 

that the increase in vertical resolution contributes to improvements in predictive ability 583 

in the sub-seasonal timescale (Zhang, 2005; Vitart, 2014). Other factors might be 584 

contributing to this finding. For example, the use of initial conditions with only 37 585 

vertical levels, which had to be interpolated to cover 42 and 64 levels. 586 

BAM-1.2 configurations with revised simplified Arakawa-Shubert deep convection 587 

parameterization showed better performance than BAM-1.2 configurations with 588 

modified Grell-Dévényi deep convection parameterization for sub-seasonal 589 



28 

 

precipitation prediction, with the largest correlation levels found in the first two weeks 590 

and the smallest RMSE in the four lead times. However, these two parameterizations 591 

showed practically the same performance for T2M anomalies and MJO, with the 592 

commonly used performance thresholds reached at 18/19 days of lead time. The fact 593 

that the BAM-1.2 model presents increased ability for sub-seasonal precipitation 594 

forecast with the revised simplified Arakawa-Shubert deep convection parameterization 595 

compared to modified Grell-Dévényi and very similar ability for T2M and MJO is 596 

intriguing. Han and Pan (2011) provided a revision of the simplified Arakawa-Shubert 597 

deep convection in the National Centers for Environmental Prediction’s (NCEP) global 598 

forecast system. This revision aimed to suppress unrealistic gridpoint storms due to 599 

remaining instability in the atmospheric column. This might be a possible reason for the 600 

better BAM-1.2 performance in sub-seasonal precipitation anomaly forecasting with 601 

revised simplified Arakawa-Shubert deep convection parameterization. 602 

The moist Bretherton-Park boundary layer parameterization produced better 603 

performance for precipitation anomalies, T2M anomalies and MJO predictions than the 604 

dry modified Mellor-Yamada boundary layer parameterization. The greatest differences 605 

were noticed for MJO predictions, where the bivariate correlation decreased more 606 

sharply as a function of lead time with the configuration using the dry modified Mellor-607 

Yamada parameterization (42AMC) than for the other configurations. For this, the 608 

42AMC has correlation below 0.5 and RMSE above √2 around the 11th day of lead 609 

time. Large discrepancies were also noticed for T2M anomalies predictions when 610 

comparing 42AMC with the other configurations. 611 
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We did not find important impacts of soil moisture initialization when compared to 612 

climatological initialization on the predictive ability of precipitation anomalies in the 613 

four investigated lead times. Slight improvements were seen for T2M anomaly 614 

predictions in some continental regions. These improvements were smaller than those 615 

found in Koster et al. (2010), Koster et al. (2011), Guo et al. (2012) and Van den Hurk 616 

and et al. (2012), and might be related to differences in the investigated seasons, time 617 

window, experiments or/and even to low BAM-1.2 sensitivity to soil moisture 618 

initialization. 619 

With the evaluation of the six configurations, it was possible to determine a 620 

configuration for use as CPTEC sub-seasonal ensemble system. For this, the determined 621 

configuration was the 42ABC. This configuration consists of a model version at TQ126 622 

spatial resolution, 42 vertical sigma levels, revised simplified Arakawa-Shubert deep 623 

convection parameterization, moist Bretherton-Park boundary layer scheme, 624 

initialization with climatological soil moisture, CLIRAD-LW, CLIRAD-SW, Morrison 625 

microphysics and the IBIS-2.6-CPTEC surface model. 626 

The deterministic evaluation of ensembles (MCEN and ICEN), through the computation 627 

of the ensemble means, presented considerable improvements when compared to the 628 

single (control) member evaluation (42ABC). For precipitation and T2M anomalies 629 

predictions, this improvement was noticed mainly in extratropical continental regions. 630 

For MJO predictions, the ensemble means extended in two days the MJO prediction 631 

ability limit (e.g., up to 20 days). It is interesting to note that the MCEN mean, formed 632 

from the six configurations, showed very similar level of improvements to ICEN when 633 

compared to the control member. 634 



30 

 

This work focused on determining a global CPTEC model configuration for sub-635 

seasonal prediction through a deterministic assessment using a limited number of 636 

ensemble members (six). The results presented in this paper suggest that BAM-1.2 has 637 

competitive performance to other S2S models (Vitart et al., 2017; Lim et al., 2018; de 638 

Andrade et al. 2019). In a forthcoming paper, we plan to perform a probabilistic 639 

assessment of the defined configuration with an increased number of ensemble 640 

members and a more detailed comparison of BAM-1.2 with other S2S models. It is 641 

worth mentioning that although the extended austral summer is a fundamental season 642 

for Brazil (particularly in terms of precipitation) further work is needed in order to 643 

evaluate the performance of the Brazilian model during other seasons for identifying 644 

regions where best to trust the model for issuing operational sub-seasonal predictions. 645 
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 822 

Figure 1: Correlation between the predicted and observed (GPCP) precipitation 823 

anomalies for the six BAM-1.2 configurations (42ABC, 64ABC, 42ABG, 42GBC, 824 

64GBC and 42AMC) and two ensemble means (MCEN and ICEN) (rows) for week-1, 825 

week-2, week-3 and week-4 (columns). The hindcasts were initialized within the 826 
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extended austral summer period (from November to March 1999/2000 – 2010/2011) on 827 

the dates shown in Table 1. 828 

 829 

Figure 2: Six configurations (42ABC, 64ABC, 42ABG, 42GBC, 64GBC and 42AMC) 830 

and two ensemble means (MCEN and ICEN) (rows) RMSE precipitation anomaly 831 

(units are mm day-1) for week-1, week-2, week-3 and week-4 (columns). The hindcasts 832 
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were initialized within the extended austral summer period (from November to March 833 

1999/2000 – 2010/2011) on the dates shown in Table 1. 834 

 835 

Figure 1: Global mean correlation between predicted and observed precipitation 836 

anomalies (a) and RMSE (b) for six BAM-1.2 configurations (42ABC, 64ABC, 837 

42ABG, 42GBC, 64GBC and 42AMC) and two ensemble approaches (MCEN and 838 

ICEN) assessed against GPCP averaged over the latitudinal band 60°N-60°S for four 839 

lead times (weeks 1 to 4). The hindcasts were initialized within the extended austral 840 

summer period (from November to March 1999/2000 – 2010/2011) on the dates shown 841 

in Table 1. The vertical bars plotted around the four lead times represent 95% 842 

confidence intervals produced using a bootstrap resampling procedure with replacement 843 

with 1000 samples. These vertical bars are slightly displaced from the exact lead time 844 

location in the horizontal axis to facilitate visualization. 845 
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 846 

Figure 4: Same as Figure 1, except for T2M anomaly. 847 
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 848 

Figure 5: Same as Figure 2, except for T2M anomaly (units are °C). 849 
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 850 

Figure 6: Same as Figure 3, except for T2M anomaly. 851 

 852 

Figure 2: Bivariate correlation (a) and bivariate RMSE (b) for six BAM-1.2 configurations 853 
(42ABC, 64ABC, 42ABG, 42GBC, 64GBC and 42AMC) and the two ensemble approaches 854 
(MCEN and ICEN) as a function of forecast lead time (in days). The hindcasts were initialized 855 
within the extended austral summer period (from November to March 1999/2000 – 2010/2011) 856 
on the dates shown in Table 1. The vertical bars around lead times 1 to 30 days plotted every 5 857 
days represent 95% confidence intervals produced using a bootstrap resampling procedure with 858 
replacement with 1000 samples. These vertical bars are slightly displaced from the exact lead 859 
time location in the horizontal axis to facilitate visualization. Note that two black vertical bars 860 
are plotted every 5 days, with the first of these bars corresponding to 42ABC and the second 861 
corresponding to ICEN. 862 

 863 


