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ON FREDHOLM PROPERTIES OF TOEPLITZ OPERATORS IN
BERGMAN SPACES

JARI TASKINEN AND JANI VIRTANEN

Abstract. We consider Toepliz operators with integrable symbols acting on
Bergman spaces Ap, 1 < p < ∞, of the open unit disc of the complex plane.
We combine some of the best known results on compactness of Toeplitz and Han-
kel operators in order to generalize the results on Fredholm properties of Toeplitz
operators. We pay special attention to some concrete examples.

1. Introduction and preliminaries.

The theory of Toeplitz operators in Bergman spaces have found applications in
areas like deformation quantization of theoretical physics, which relates to geometric
structures of classical mechanics their algebraic quantum counterparts, see [1], [2],
and to soliton theory, [3], [4], where these operator theoretic methods can be ap-
plied to relax the standard assumptions on initial conditions of the KdV-equation.
A Toeplitz operator Ta is determined by its symbol a, which is usually an integrable
function on the underlying analytic manifold Ω. However, even in the simplest case
when Ω is the unit disc D of the complex plane C, not all operator theoretic prop-
erties of Ta following from the properties of the symbol are adequately understood:
apparently, unnecessarily strong a priori assumptions on the regularity of a have
been needed for many existing resuls.

In this paper we concentrate on relaxing the conditions for the Fredholm property
of the operator Ta. Recall that a bounded operator T in a Banach space X is
Fredholm, if it has an inverse S modulo compact operators, i.e. the TS−I and ST−I
are compact in X. (We recall the details of the definitions and basic statements at
the end of this section.) As well known, the Fredholm property is crucial in the
theory of solutions of integral equations, which is in fact historically the starting
point to the study of this operator class.

Consider the Banach space Lp := (Lp(D, dA), ‖ · ‖p), where 1 < p < ∞ and
dA = π−1rdrdθ is the normalized area measure on D, and denote the Bergman
space by Ap, which is the closed subspace of Lp consisting of analytic functions.
The Bergman projection P is the orthogonal projection of L2 onto A2, and it has
the integral representation

Pf(z) =

∫
D

f(ζ)

(1− zζ̄)2
dA(ζ)
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2 JARI TASKINEN AND JANI VIRTANEN

for z ∈ D. It is also known to be a bounded projection of Lp onto Ap for every
1 < p <∞. We denote the complementary projection of P by Q := I − P , where I
is the identity operator.

For an integrable function a : D→ C and, say, bounded analytic functions f , the
Toeplitz operator Ta with symbol a is defined by

Taf(z) = P (af)(z) =

∫
D

a(ζ)f(ζ)

(1− zζ̄)2
dA(ζ)(1.1)

for z ∈ D. By posing suitable sufficient conditions on the symbol a, the operator
Ta extends as a bounded operator Ap → Ap, see e.g. [5], [6]. This is trivially true
for bounded a. The corresponding Hankel operator Ha : Ap → Lp is defined by
Ha = Ma − Ta, where Ma : Ap → Lp is the pointwise multiplier Ma : f 7→ af .
Hence, we have

Hbf(z) =

∫
D

(
b(z)− b(ζ)

)
f(ζ)

(1− zζ̄)2
dA(ζ)(1.2)

for z ∈ D.
In this paper we deal with the Fredholm properties of Toeplitz operators Ta : Ap →

Ap both theoretically and by means of concrete examples. In Theorem 2.2, which is
our main result, we give a sufficient condition for Ta to be Fredholm for a wide class
of symbols a in L1. While the proof is in a sense rather straightforward, the novelty
is to combine the most general known results on the compactness of Toeplitz and
Hankel operators with the standard Fredholm theory to obtain sufficient conditions
for Ta to be Fredholm.

For a given symbol a, the study of the compactness of the Hankel operator T1/a

is closely related with this analysis. We recall the following result of Luecking [7]
(see also Theorem 8.35 of [6]; see below for the unexplained notation).

Theorem 1.1. The following conditions are equivalent for all b ∈ L2.
(i) Hb : A2 → L2 is compact.

(ii) We have

‖f ◦ ϕa − P (f ◦ ϕa)‖2 → 0 as |a| → 1.

(iii) The function Fb defined by

Fb(z) = inf
h∈A2

Jb−h(z) = inf
h∈A2

1

|D(z, 1)|

∫
D(z,1)

|b− h|2dA

belongs to C0(D), that is, Fb(z)→ 0 as |z| → 1.

(iv) The function b can be decomposed as b = b1 + b2, where b1 ∈ C1(D) with

(1− |z|2)∂b1(z) ∈ C0(D),

and the function Jb2 belongs to C0(D).

For bounded symbols, a similar characterization of compact Hankel operators on
A2 was first given in [8, 9], which answered the question raised by Axler, [10]. This
was recently extended to all Bergman spaces Ap with 1 < p < ∞ in [11], where it
was also shown that compactness of Hankel operators with bounded symbols is in
fact independent of p. See [11] for further details about compact Hankel operators
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with bounded symbols. For other recent works on Hankel operators in Bergman
spaces we refer to [12] and [13].

In the next section, we will present a modification of the implication (iv) ⇒ (i)
of Theorem 1.1, which works for all Bergman spaces Ap and all symbols in L1. It is
worth noting that compactness criteria for H1/a often involve VMOδ-type conditions
(see Definition 1.4 below) and these are usually used to prove Fredholmness of Ta;
see, e.g. [14, 11, 15], which show that if a ∈ L∞∩VMO1

δ , then Ta is Fredholm on Ap

if and only if ã is bounded away from zero in some annulus {z : r < |z| < 1}, where
ã is the Berezin transform of a (see [6] for the definition of ã). As remarked very
recently in [16], Fredholmness of Ta can be characterized for a ∈ BMO1

δ provided
that ã ∈ L∞ ∩ V O by writing a = ã + (a− ã) and observing that Ta−ã is compact,
so that Ta is Fredholm if and only if Tã is Fredholm; then, one uses the results of
[17] on the Fredholm properties of the operator Tã.

This naturally leads to the question of describing the Fredholm properties of
Toeplitz operators with bounded symbols that are not in VMO1

δ . In view of the
weak condition for the compactness of Ta in [5], the requirement of a or 1/a to be
in VMOδ is certainly not necessary for Ta to be Fredholm. Finding a complete
description remains as a considerable challenge, but we think that Theorem 2.2 and
the examples we provide in Section 3 may well be useful for further studies.

The following notation will be used throughout the paper. By C,C ′, c etc. we
denote positive constants, the exact value of which may vary from place to place but
not in the same chain of inequalities. If the constant depends on some parameter or
function, say, n or g, this is denoted by Cn or Cg etc. All function spaces consist of
functions on the disc D, unless otherwise stated. In particular, the space of bounded
analytic functions on the disc is denoted by H∞. For clarity, we write Ck(D) for the
space of k times continuously differentiable functions in D, where k ∈ N∪{∞}. The
symbol Ck

0 (D) denotes the subspace consisting of functions with compact support
in D; k is omitted from the notation, if it equals 0. Given f ∈ C1(D), we denote the
Wirtinger symbols by ∂ = ∂x + i∂y, ∂ = ∂x − i∂y, where ∂x = ∂/∂x, ∂y = ∂/∂y for
z = x + iy. Also, we use ∂r = ∂/∂r and ∂θ = ∂/∂θ for the polar coordinates. We
denote the Möbius transform by

ϕa(z) =
a− z
1− āz

for a, z ∈ D.

For 0 < ρ < 1 we set Dρ := {z ∈ D : |z| ≤ ρ}. Given a ∈ L1, we denote by aρ
the function, which coincides with a on Dρ and equals 0 elsewhere.

We let D be a family of the sets D := D(r, θ) ⊂ D, where

D = {ρeiφ | r ≤ ρ ≤ 1− 1

2
(1− r) , θ ≤ φ ≤ θ + π(1− r)}(1.3)

for all 0 < r < 1, θ ∈ [0, 2π]. We denote |D| :=
∫
D
dA and, for ζ = ρeiφ ∈ D(r, θ),

âD(ζ) :=
1

|D|

ρ∫
r

φ∫
θ

a(%eiϕ)%dϕd%.

In the sequel we will consider functions a ∈ L1 such that there exists a constant
C > 0 such that

|âD(ζ)| ≤ C(1.4)
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for all D ∈ D and all ζ ∈ D. The following result is contained in Theorem 2.1 of
[18], and it contains the generalized definition of the Toeplitz operator, which we
use for symbols satisfying (1.4) and which coincides with the conventional defini-
tion whenever the integral (1.1) converges. This generalization of the definition of
Toeplitz operators is thus a most natural one, it coincides with the conventional
definition whenever the integral formula (1.1) makes sense, and it is considered from
many points of view in [18], [19].

Theorem 1.2. Let 1 < p <∞. If a symbol a ∈ L1 satisfies the condition (1.4), then
the limit

Taf = lim
ρ→1

Taρf , where Taρf(z) =

∫
Dρ

a(ζ)f(ζ)

(1− zζ̄)2
dA(ζ) , f ∈ Ap,(1.5)

converges in the strong operator topology and defines a bounded operator Ta : Ap →
Ap for all 1 < p <∞.

Moreover, the transposed operator T ∗a : Aq → Aq can be written as

T ∗a f(z) = lim
ρ→1

∫
Dρ

a(ζ)f(ζ)

(1− zζ̄)2
dA(ζ)(1.6)

for f ∈ Aq and this limit also converges in the strong operator topology.

Notice that for a fixed 0 < ρ < 1 the restriction of any f ∈ Ap to Dρ is a bounded
function and the operator Taρ is bounded in Ap. Formula (1.5) allows us to define the
Toeplitz operator even in many cases, where the defining integral of the conventional
formula (1.1) does not converge. In addition, condition (1.4) is also necessary for the
boundedness when a is positive. Whether our result gives a complete description of
bounded Toeplitz operators with general symbols remains an open problem.

As for the compactness of Toeplitz operators, we have the following result, which
is Theorem 2.6 of [5].

Theorem 1.3. Let p and a be as in Theorem 1.2, in particular, a satisfies (1.4). If
a has the property

lim
d(D)→0

sup
ζ∈D
|âD(ζ)| = 0,(1.7)

where
d(D) = dist(D, ∂D) = inf{|z − w| : z ∈ D, |w| = 1},

then Ta : Ap → Ap is compact.

We next recall the definition of the space VMOp
δ . Let us fix r for a moment. The

notion of the mean oscillation MOp
r(f) of a function f in Lp is defined by

(1.8) MOp
r(f)(z) =

( 1

|B(z, r)|

∫
B(z,r)

|f(ζ)− f̂r(z)|pdA(ζ)
)1/p

,

where B(z, r) is the disc with center z and radius r > 0 in the Bergman metric (see
[6], Section 8.1) and

f̂r(z) =
1

|B(z, r)|

∫
B(z,r)

f dA.(1.9)

We write B(z) = B(z, 1) and f̂ = f̂1 in the sequel.
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Definition 1.4. The space of bounded mean oscillation BMOp
r consists of all lo-

cally Lp-integrable functions for which supz∈DMOp
r(f)(z) < ∞. If, in addition,

MOp
r(f)(z)→ 0 as |z| → 1, we say that f is in VMOp

r .

The definition of the spaces is independent of r so that we write BMOp
∂ for

BMOp
r and VMOp

∂ for VMOp
r . Note that BMO∂

r ⊂ BMOq
∂ properly for q < p ,

and L∞ ∩ VMOp
δ = L∞ ∩ VMO1

δ for all p > 1.
We finish this section with a short account of Fredholm theory; for a full treatment,

see, e.g., Section 3.16 of [20]. A bounded linear operator T on a Banach space X is
said to be Fredholm if both its kernel and cokernel are finite dimensional. We note
that Fredholm operators have closed range. The index indT of T is defined to be
the difference of the two dimensions.

We need the following characterizations. A bounded linear operator S is called
a left parametrix (or a regularizer) of an operator T if ST = I + K1 and a right
parametrix if TS = I + K2 for some compact operators K1 and K2. It is well
known that a bounded linear operator T is Fredholm on X if and only if T has a
left and right parametrix. Another useful characterization is that T is Fredholm
if and only if the equivalence class T + K(X) is invertible in the Calkin algebra
B(X)/K(X), the quotient of the spaces of bounded and compact operators on X.
Also, we recall that the Fredholm index is stable under small perturbations; that
is, for each operator T ∈ B(X), there is an ε > 0 such that T + S is Fredholm
and ind(T + S) = indT , if S ∈ B(X) and the operator norm satisfies ‖S‖ < ε.
Regarding compact perturbations, if T is Fredholm, then T + K is Fredholm and
ind(T +K) = indT whenever K is compact. In particular, if T is invertible and K
is compact, then T +K is Fredholm of index zero.

2. Sufficient condition for Fredholmness.

We start by the following generalization of one of the statements of Theorem
1.1. The proof follows the original one, [7], [6], but we have to pay attention to a
number of details, because of the more general setting. We expose the details for
the convenience of the reader.

Lemma 2.1. Assume that b ∈ L1 ∩ C1(D) and that b satisfies the condition (1.4)
and

(1− |z|2)∂b(z) ∈ C0(D).(2.1)

Then, the Hankel operator Hb : Ap → Lp is compact for any 1 < p <∞.

The definition of the Hankel operator needs to be clarified, since the assumptions
do not imply that Mb maps Ap into Lp; notice that by assumption the Toeplitz
operator Tb is bounded in Ap at least in the sense of the generalized definition
of Theorem 1.2. However, the multiplier maps for example H∞ into L1. Thus,
arguments simpler than those in (2.3)–(2.5) and (2.11)–(2.16), below, can be used
to obtain the norm bound

‖Hbg‖p ≤ C‖g‖p(2.2)

for all g ∈ H∞ so that the Hankel operator can be defined in the standard way by
a bounded extension from the dense subspace H∞ of Ap.



6 JARI TASKINEN AND JANI VIRTANEN

Proof. We start by the remark that

〈Tbg, ∂h〉 = 0, hence, 〈Hbg, ∂h〉 = 〈bg − Tbg, ∂h〉 = 〈bg, ∂h〉(2.3)

for all g ∈ H∞, b as in the assumption of the lemma, and h ∈ C∞0 (D); note that
the duality bracket is certainly well defined since Tbg and bg belong to L1. Indeed,
following the proof of Havin’s lemma (Lemma 8.30 in [6]; see in particular the
formula above (8.8) there) we find that the Green theorem and the product rule
imply for all ϕ ∈ C1(D)∫

D

∂
(
ϕh
)
dA = 0, hence,

∫
D

ϕ∂h dA = −
∫
D

(∂ϕ)h dA.(2.4)

In particular, ∫
D

Tbg ∂h dA = −
∫
D

(∂Tbg)h dA(2.5)

This vanishes, since Tbg is analytic, and (2.3) thus holds true.
Second, we note that Havin’s lemma holds also in the non-Hilbert setting as

follows: we denote by X the closure of the subspace {∂ψ : ψ ∈ C∞0 (D)} in Lq,
where 1/q + 1/p = 1, and claim that

X = Q(Lq) = (I − P )(Lq).(2.6)

Indeed, we have for all f ∈ Lp, ψ ∈ C∞0 (D), by (2.4)

〈f, P∂ψ〉 = 〈Pf, ∂ψ〉 = 〈∂Pf, ψ〉 = 0 ⇒ P∂ψ = 0 ⇒ X ⊂ Q(Lq).(2.7)

On the other hand, if Q(Lq) \X 6= {0}, we fix a function f ∈ Q(Lq) \X, f 6= 0 and
apply the Hahn-Banach theorem in the dual pair of Lp and Lq to find a function
g ∈ Lp, g 6= 0, such that

〈g, f〉 6= 0 and 0 = 〈g, ∂ψ〉 = 〈∂g, ψ〉 ∀ ψ ∈ C∞0 .(2.8)

But these imply

〈Qg, f〉 = 〈g,Qf〉 = 〈g, f〉 6= 0

and, since X ⊂ Q(Lq),

〈∂(Qg), ψ〉 = 〈Qg, ∂ψ〉 = 〈g,Q(∂ψ)〉 = 〈g, ∂ψ〉 = 0 ∀ ψ ∈ C∞0 .

so that Qg 6= 0 and ∂(Qg) = 0, hence, Qg is a non-zero analytic function, which is
a contradiction. Thus (2.6) holds.

We will need the following consequence of (2.6): for all g ∈ Lp we obtain

‖Qg‖p = sup
h̃∈Lq ,
‖h̃‖q≤1

〈Qg, h̃〉 = sup
h̃∈Lq ,
‖h̃‖q≤1

〈Q2g, h̃〉 = sup
h̃∈Lq ,
‖h̃‖q≤1

〈Qg,Qh̃〉

≤ sup
f∈X
‖f‖q≤1

〈Qg, f〉 = sup
f̃∈Lq ,
‖∂f̃‖q≤1

〈Qg, ∂f̃〉,(2.9)

where we used the fact that ‖Qϕ‖q ≤ C‖ϕ‖q for all ϕ ∈ Lq, since Q is a bounded
projection.

We consider a sequence (gn)∞n=1 ⊂ Ap, which is bounded in the norm of Lp and
converges to 0 uniformly on compact subsets of D. It suffices to show that Hb maps
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this sequence into one converging to 0 in the norm of Lp. First, we choose for all n
a polynomial g̃n such that

‖gn − g̃n‖p ≤
1

n
.(2.10)

Since Tb is a bounded operator by assumption, Tbgn → 0 as n→∞ in Ap if and only
if Tbg̃n → 0 in Ap. Also, the polynomials g̃n converge to 0 uniformly on bounded sets
and certainly also form a bounded set, as a consequence of (2.10). Thus, we may
assume from the very beginning that the original sequence consists of polynomials,
which in particular are members of H∞ ⊂ A2.

Given an arbitrary ε > 0 we fix a compact set K such that

(1− |z|2)|∂b(z)| < ε for all z ∈ DrK(2.11)

and then N ∈ N such that

|gn(z)| ≤ ε

1 + supz∈K |∂b(z)|
for all z ∈ K, n ≥ N.(2.12)

We write for all h ∈ C∞0 , using (2.3) and (2.4),

〈Hbgn, ∂h〉 = 〈bgn, ∂h〉 =

∫
D

bgn ∂h dA

= −
∫
D

(
∂(bgn)

)
h dA = −

∫
D

(∂b)gnh dA.(2.13)

Hence, by the Hölder inequality with 1/p+ 1/q = 1

|〈Hbgn, ∂h〉|

≤
(∫

D

(1− |z|2)p|∂b(z)|p|gn(z)|pdA(z)

)1/p∥∥∥ h(z)

1− |z|2
∥∥∥
q

(2.14)

Here we recall that |∇h(z)|2 = 2
(
|∂h(z)|2 + |∂h(z)|2 for all z ∈ D and thus obtain

by Lemmas 8.31 (or its straightforward generalization) and 8.32 of [6]∥∥∥ h(z)

1− |z|2
∥∥∥
q
≤ C‖∂h‖q.(2.15)

Moreover, we divide the Lp-integration in (2.14) into integrals over K and its com-
plement, and obtain by (2.11), (2.12) for n ≥ N the bound∫

D

(1− |z|2)p|∂b(z)|p|gn(z)|pdA(z)

≤ sup
z∈K
|∂b(z)||gn(z)|+

∫
DrK

(
sup

w∈DrK
(1− |w|2)p|∂b(w)|p

)
|gn(z)|pdA(z)

≤ ε+ εp‖gn‖pp(2.16)

Combining this with (2.14), (2.15) and taking into account (2.9) yield ‖Hbgn‖p ≤ Cε,
which was to be proven. �

The following is our main result on the Fredholm properties of Toeplitz operators.
As for the calculation of the Fredholm index, we comment it only in the examples
in Section 3.
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Theorem 2.2. Assume that the symbol a ∈ L1 has property (1.4) and that there is
a function b ∈ L1 satisfying (1.4) such that
1◦. b and b satisfy (2.1),
2◦. there exists ϕ ∈ L1 with property (1.4) such that Tϕ is invertible in Ap and the
symbol ϕ− ab satisfies (1.7), and
3◦. the multipliers Mb and Mb are bounded from below as operators Ap → Lp.
Then, the operator Ta is Fredholm.

Proof. In order to show that TbT
−1
ϕ is a right parametrix for Ta we write

TaTb = Tϕ − Tϕ−ab − PMaHb.(2.17)

Here, the Toeplitz operator Tϕ−ab is compact by Theorem 1.3. By Lemma 2.1, the
Hankel operator Hb : Ap → Lp is compact. To prove that PMaHb is compact we
need to show that PMa is bounded in Hb(A

p); this does not automatically follow
from the boundedness of Ta since the domain of the operator is different from Ap.
Now, for all g ∈Mb(A

p) we take f ∈ Ap such that g = bf and write

‖PMag‖p = ‖PMabf‖p = ‖PMϕf − PMϕ−abf‖p
≤ ‖Tϕf‖p + ‖Tϕ−abf‖p ≤ C‖f‖p,(2.18)

by the assumption 2◦ and Theorem 1.3. Since Mb is bounded from below by the
assumption 3◦, we have C‖f‖p ≤ C ′‖g‖p so that in view of (2.18), PMa : Hb(A

p)→
Ap is bounded. Thus PMaHb is a compact operator and TbT

−1
ϕ is a right parametrix,

since

TaTbT
−1
ϕ = I − Tϕ−abT−1

ϕ − PMaHbT
−1
ϕ .(2.19)

where the last two terms are compact operators by what was proven above.
As for the left parametrix, we recall that the adjoint T ∗a : Aq → Aq of Ta coincides

with Ta, see Theorem 1.2 and [6], Proposition 7.1. By the assumptions of our
proposition and the proof above, we find that

Tϕ − TaTb : Aq → Aq(2.20)

is a compact operator, where 1/p + 1/q = 1. (Notice that a function satisfies
condition (1.7) if and only if its complex conjugate does.) Hence, by Schauder’s
theorem, also the operator(

Tϕ − TaTb
)∗

= T ∗ϕ − T ∗b T
∗
a = Tϕ − TbTa : Ap → Ap(2.21)

is compact so that T−1
ϕ Tb is a left parametrix. Thus, Ta is Fredholm. �

3. Examples.

Let us consider some examples Fredholm Toeplitz operators Ta. Since the Fred-
holm property is connected with the compactness of Hankel operators and the latter
is related with symbols belonging to the space VMOδ, it is of interest to consider
bounded symbols a /∈ VMOδ. We start by constructing concrete examples of such
symbols. Let us set

Θ(z) = sgn
(

sin(1/(1− r))
)
,(3.1)

where z = reiθ ∈ D and we denote for all real numbers s,

(3.2) sgn(s) =

{
1, if s ≥ 0
−1, if s < 0.
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The proof in Remark 2.4 of [5] shows that Θ satisfies property (1.7). We present
the details of this proof, since modifications of it will soon be needed. Let D =
D(1− 2δ, θ) be as in (1.3) for some θ ∈ [0, 2π) and small enough δ > 0 and consider
ζ = ρeiφ ∈ D. Using the change of variable y = 1/(1− %) we get

2|D||Θ̂D(ζ)| =
φ∫
θ

∣∣∣ ρ∫
1−2δ

sgn
(

sin(1/(1− %))
)
d%
∣∣∣ ≤ πδ

∣∣∣ 1/(1−ρ)∫
1/(2δ)

1

y2
sgn(sin y) dy

∣∣∣(3.3)

We divide the integration interval to the subintervals Jn := [2πn, 2π(n+ 1)], n ∈ N.
We have∣∣∣ ∫

Jn

1

y2
sgn(sin y)dy

∣∣∣ =
∣∣∣ 2πn+π∫

2πn

( 1

y2
− 1

(y + π)2

)
dy
∣∣∣ ≤ C

2πn+π∫
2πn

1

y3
dy ≤ C ′

1

n3

which yields

∣∣∣ 1/(1−ρ)∫
2δ

1

y2
sgn(sin y) dy

∣∣∣ ≤ C
∞∑

n=[1/(2δ)]

1

n3
≤ C ′δ2,(3.4)

where [s] denotes the largest integer not bigger than s ∈ R. We obtain (1.7) by
taking into account (3.3) and that |D| is of order δ2.

We show that Θ /∈ VMOδ. Indeed, fixing r > 0 a calculation similar to (3.3)–(3.4)

shows that the average Θ̂r of Θ over a set B(z, r) has the bound |Θ̂r| ≤ Cδ, where
δ = 1 − |z| for all z ∈ D. On the other hand, we have |Θ(z)| = 1 for all z ∈ D by
the definition, hence, the quantity (1.8) has, for all z close enough to the unit circle,
the lower bound

MOp
r(Θ)(z) ≥

( 1

|B(z, r)|

∫
B(z,r)

(|Θ(ζ)| − |Θ̂r|)pdA(ζ)
)1/p

≥ C ′
( 1

|B(z, r)|

∫
B(z,r)

(1− Cδ)pdA(ζ)
)1/p

≥ C ′′.

Thus, Θ belongs to BMOδ but not to VMOδ.

a) Consider the Toeplitz operator Ta with the bounded symbol

a = 1 + Θ.

By the argument above and Theorem 1.3, TΘ is compact in any space Ap so that Ta
is Fredholm although a /∈ VMOδ. Moreover, given any neighborhood U ⊂ D of the
boundary ∂D, the symbol a vanishes in a subset of U with positive area.

More generally, assume that a function f ∈ VMOδ satisfies (1.4) and in addition

|f̂D(ζ)| ≥ C > 0 for all D ∈ D and ζ ∈ D. (Trivial example: f is continuous,
real and bounded from below by a positive constant on the closed unit disc.) The
operator Ta with

a = f + Θ

is Fredholm, although a /∈ VMOδ. See Theorem 2.8 of [5]. The index of Ta is of
course the same as that of Tf .
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b) Obviously, the example a) can be modified by endlessly many ways. One could
make Θ a little more slowly oscillating by replacing in (3.1) the function 1/(1 − r)
by (1 − r)−α for any constant 0 < α < 1. It could also be made unbounded by
multiplying Θ with (1− r)−β, for any 0 < β < 1. Also, the symbol Θ of (3.1) is not
smooth, but it can be written as the sum

Θ = Θ1 + Θ2(3.5)

where Θ1 is an infinitely smooth bounded function, a mollification of Θ, and Θ2

induces a compact Toeplitz operator. Indeed, we set

Θ1(z) =

∫
C

Jz(w − z)Θ(w)dA(w),(3.6)

where Jz, z ∈ D, is for example the scaled mollifier

Jz(w) = ν(z)2J
(
ν(z)w

)
and ν(z) = e1/(1−|z|2) > 1

and J is the standard C∞-mollifier

J(w) =

{
Ce−1/(1−|w|2), w ∈ D,
0, w ∈ C, |w| ≥ 1

with a normalization factor C > 0 such that
∫
C JdA = 1. We have |Θ2(z)| ≤ 1 for

all z. The support of Θ2 is contained in the set

E =
{
z = reiθ ∈ D : |r − rn| ≤ 1/ν(rn) = e−πn for some n ∈ N

}
where rn = 1−1/(πn), n ∈ N, are the discontinuity points of the function sgn (sin(1/(1−
r)), see (3.1). Thus, for any D ∈ D, the area of a set E ∩D is ”small” in compari-
son with |D|, and one can use this to show that Θ2 satisfies (1.7). Hence, TΘ2 and
TΘ1 = TΘ − TΘ2 are compact and

T1−Θ1 and Tf−Θ1 ,

with f as in the example a), are Fredholm; also, Θ1 /∈ VMOδ. We leave it to the
reader to verify the details of these claims.

The next example is the most relevant as regards to Theorem 2.2.

c) Let the symbol Θ with property (1.7) be as above, and let f ∈ C1(D) be a real
function satisfying (2.1) such that

C ≤ f(z) ≤ C1(3.7)

for some constants C1 > C > 0 and all z ∈ D. In view of Theorem 2.2, the symbol

a = 1− fΘ(3.8)

induces a Fredholm Toeplitz operator, since for b = 1/f we have ab = 1/f −Θ and
all conditions of the proposition are satisfied; notice that ∂b = (∂f)/f 2.

Apparently, more general functions f and Θ could be used here, once Θ has
property (1.7) and the function b = 1/f satisfies 1◦ and 3◦ of Theorem 2.2 and the
operator T1/f is invertible. We do not know if fΘ has property (1.7) for all such f
and Θ. We refer to Proposition 2.2 of [19], where the product of a function with
property (1.4) and another function has been studied.
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d) Let us finally consider the symbol

a =
1

i+ Θ/2
,(3.9)

where Θ is as in (3.1). We indicate two ways to show that Ta : Ap → Ap is Fredholm
for all p, 1 < p < ∞. First, let us define b(z) = 5i/4 so that 1◦ of Theorem 2.2
trivially holds. Moreover, we have Θ(z)2 = 1/4 and thus

∞∑
n=0

ã(z)4n =
16

15

for all z ∈ D, hence

a(z)b(z) =
5

4

1

1− iΘ
=

5

4

∞∑
n=0

(iΘ)n =
5

4

( ∞∑
n=0

ã4n + iΘ4n+1 −Θ4n+2 − iΘ4n+3
)

=
5

4

(16

15
− 16

4 · 15

)
+

5i

4
Θ
( 16

2 · 15
− 16

8 · 15

)
= 1 + Θ

i

2
.(3.10)

As conclusion, property 2◦ holds, by what was remarked on the symbol Θ. As for
3◦, this trivially holds for Mb and Mb.

On the other hand one can also use a calculation similar to (3.10) to show directly
that the symbol a can be written as α + βΘ for some constants α, β ∈ C \ {0} so
that the Fredholm property follows in the same way as in the example a).

4. Conclusions.

In the main general Theorem 2.2 we have combined an existing ”weak” condition
on the compactness of Toeplitz operators with an improved result on the compact-
ness of Hankel operators, to get a new, weak condition for the Fredholm property
of a given Toeplitz operator Ta. According to the basic intuition, for a very regular
a, like a continuous one on the closed unit disc D, the symbol must be non-zero on
the boundary, in order to induce a Fredholm Toeplitz operator. Passing to more
general symbols a, it is a consequence of our main theorem that there are cases
where, for any neighborhood U of the boundary ∂D, a may vanish in a subset of U
with positive measure. This counterintuitive result is explained by the cancellation
phenomena, which according to the proof of the main theorem and the reference [5]
may lead to compact Toeplitz operators.

Our theorem also leads to many examples of Fredholm Toeplitz operators, where
the assumption on the VMOδ-property of the symbol can be relaxed, although this
condition often appears in the existing literature.
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