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Abstract: 

Background: Wireless Capsule Endoscopy (WCE) is a highly promising technology for gastrointestinal (GI) tract abnormality 

diagnosis. However, low image resolution and low frame rates are challenging issues in WCE. In addition, the relevant frames 

containing the features of interest for accurate diagnosis only constitute 1% of the complete video information. For these reasons, 

analyzing the WCE videos is still a time consuming and laborious examination for the gastroenterologists, which reduces WCE 

system usability. This leads to the emergent need to speed-up and automates the WCE video process for GI tract examinations. 

Objective: Consequently, the present work introduced the concept of WCE technology, including the structure of WCE systems, with 

a focus on the medical endoscopy video capturing process using image sensors. It discussed also the significant characteristics of the 

different GI tract for effective feature extraction. Furthermore, video approaches for bleeding and lesion detection in the WCE video 

were reported with computer-aided diagnosis systems in different applications to support the gastroenterologist in the WCE video 

analysis. Conclusion: In image enhancement, WCE video review time reduction is also discussed, while reporting the challenges and 

future perspectives, including the new trend to employ the deep learning models for feature Learning, polyp recognition, and 

classification, as a new opportunity for researchers to develop future WCE video analysis techniques. 

 

Keywords: Endoscopy capsule, video analysis, bleeding detection, reviewing time reduction, wireless video gastrointestinal (GI) 

endoscopy capsule, computer- aided diagnosis. 

 

1. INTRODUCTION 

 Colon cancers and gastrointestinal (GI) 
inflammation/disorders are amongst the most chronic 
gastrointestinal tract system problems. Early-stage detection 
of most GI cancers can contribute to surviving such serious 
diseases. Several generic analysis methods, including 
double-contrast barium enema and Computed Tomography 
(CT) can be used for detecting the GI tract disease. 
Conversely, the traditional endoscopy facilitates accurate 
diagnosis, founded on biopsy samples and real video 
analysis [1]. This directs the researchers’ efforts toward 
improving the endoscope, leading to the noninvasive realistic 
Wireless Capsule Endoscopy (WCE), which has 

revolutionized diagnostic technology by detecting the whole 
GI tract [2, 3]. The WCE was developed to monitor the 
whole GI tract, particularly, the small bowel to impact the 
diagnostic methodology for several diseases, including celiac 
and Crohn’s diseases, bleeding, polyps and cancers, and 
other lesions [3]. 

Commonly, the WCE travels forward into the sink (i.e. the 
end of the GI tract); however, sometimes it may travel 
backward. In addition, the transit time of the WCE is 
variable and can extend to 8 hours. The WCE can speedily 
gain recognition within the GI tract due to its two key 
advantages, namely i) it offers the entire small intestine inner 
visualization, and ii) it acquires the images in a non-invasive 
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way to decrease the patient’s examination time. During the 
WCE path through the GI tract, it records video which 
consequently requires time-consuming photographic 
assessment [4]. The assessment encompasses the video 
frame inspection, which requires WCE footage analysis to 
reduce the diagnosis time and the procedure cost by using a 
computer-aided diagnosis (CAD) system.  

Additionally, the WCE procedure has several limitations [5], 
such as i) the huge required analysis time for the whole 
video, where the WCE releases, images at a rate of two 
frames/second terminated after about eight hours resulting in 
about 57,600 images for a patient, ii) the WCE has no 
therapeutic ability, thus if any injury is exposed, other extra 
tests will be essential, and iii) the complexity to discern the 
precise visualized lesion location. Unfortunately, the WCE 
has limited operating time, low image resolution and low 
frame rate compared with the wired endoscopy, which is 
considered the WCE bottleneck. Thus, the WCE video 
analysis automation has a dramatic effect on the capsule 
importance and the diagnosis cost/ accuracy along with 
increasing the image contrast. Such analysis requires image 
processing and computer vision processes, including i) the 
WCE video segmentation into significant parts, namely the 
mouth, oesophagus, stomach, small intestine and colon, ii) 
features extraction from the captured images in the video 
based on texture, color and shape and bleeding detection, and 
iii) classification into several target classes, such as normal, 
polyps, lesions and cancer. The main task of such image 
processing techniques is to visualize and to support the WCE 
video. Several software tools have been developed to 
interface and to analyze the WCE data. Consequently, the 
present work outlines the WCE technology progress along 
with the development tendencies of the required video 
analysis to acquire high frame rate, a high image resolution, 
and less operational time. 

The organization of the following sections is as follows, the 
technology of the WCE is introduced in section 2 followed 
by the feature extraction process from WCE images and 
WCE video segmentation and classification in sections 3 and 
4, respectively. Section 5 highlights the WCE video 
visualization and compaction followed by WCE video 
processing in section 6. In section 7, the WCE based 
computer-aided diagnosis systems were introduced. In 
section 8, research directions and challenges are reported 
followed by the conclusion in section 9. 

 

2. WIRELESS CAPSULE ENDOSCOPY VIDEO 
TECHNOLOGY 

     In recent years, WCE becomes an adopted clinical routine 
in the medical domain due to the development of CAD 
systems [6]. Compared to conventional endoscopy, WCE has 
a wider flexible range of view to inspect larger areas of the 
intestine as illustrated in Fig. 1.  
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Fig. 1. (a) Conventional endoscopic imaging, (b) WCE  

The WCE systems were deliberated for abnormality 
detection and/or classification to provide accurate medical 
diagnosis [7]. This non-invasive clinical technique allows the 
entire GI tract to be inspected using a small encapsulated 
CMOS (Complementary Metal-Oxide Semiconductor) 
camera. This system was established in 2000 [8] leading to 
the first marketable system ‘M2A’ from Given Imaging Ltd. 
that followed the American Food and Drug Administration 
(FDA) clearance. The ‘M2A’ system is represented as 
‘PillCam SB’, which includes a small (11 mm × 26 mm) 
capsule that is linked with a data-recorder belt. During the 
investigation process, the capsule is swallowed and driven 
down the GI tract by peristalsis before being naturally 
expelled. For illumination, one end of the capsule has a 
transparent optical dome containing six LEDs (Light 
Emitting Diodes). The LED array surrounds the camera used 
to capture two-color images per second. The images are 
JPEG (Joint Photographic Experts Group) compressed and 
transferred using radiotelemetry to the worn data recorder on 
the patient’s belt. Afterward, the received Radio Frequency 
(RF) signal by the fixed antenna array on the body of the 
patient is analyzed using software tools in order to determine 
the capsule location and trajectory [9].  

In 2004, a second version called ‘PillCam ESO’ was released 
by Given Imaging, which included two CMOS cameras 
functioning at a higher frame rate designed to target 
oesophageal disease. In 2006, another ‘PillCam COLON’ 
capsule was created for colon inspection. Later in 2005, the 
‘EndoCapsule’ system was launched by Olympus using a 
CCD (Charged Coupled Device) camera system 
accompanied by ABC (Automatic Brightness Control) for 



providing programmed illumination adjustment to guarantee 
images of higher resolution with consistent quality. This was 
followed by the ‘PillCam SB2’ capsule in 2007. 

2.1. Endoscopy capsule video capturing using image 
sensors 

Recently, endoscopes have combined minute video cameras 
to deliver maximum flexibility. The small diameter 
endoscope probe tip defines the light source, space shared by 
the camera, a biopsy/suction channel and the air/ water 
nozzle. Using a CMOS fabrication process, such as Forza 
Silicon, produces highly-miniaturized image sensors, where 
Forza is able to create designs that meet the increasing 
surgical demands, such as higher resolution. Imaging 
abilities, including the illumination as well as the sensor 
characteristics are considered the most significant features in 
designing WCE systems [10]. Typically, the temporal 
resolution defines the information covered by the capsule 
through its path in the patient’s body. Additionally, the 
spatial resolution defines the diagnostic quality that can be 
attained for site analysis. The position of the sensor/ lens 
determines the region imaged by the WCE. Most of the 
image sensors are attached to the capsule. Lenticular lens 
arrays or microlens arrays are established in laparoscopic 
surgery to deliver a multi-view image by a single sensor. 
Generally, the capsules should offer a widespread Field of 
View (FoV) to detect an adequate tissue wall image [11]. 
The image quality is intrinsically directed by the sensor 
abilities and illumination of the WCE. Several illumination 
strategies can be engaged to conserve power. The brightness 
of the overall image can be further modified to preserve the 
image quality to aid investigation. The most known signal 
modality for exploration by the physicians in WCE imaging 
is the white light.  

The Autofluorescence capsule [11] may be used for disease 
detection without an on-board camera. Data transmission and 
reception is a prevalent issue in WCE equipment. In order to 
enable high-resolution imaging, a high data rate scheme is 
indispensable. In the capsule design, the telemetry subsystem 
forms a bottleneck due to the size constraint limitations of 
the wireless communication system. Furthermore, video-
based motion tracking is a critical issue, where at least one 
camera is used to equip the WCE to offer visual inspection 
of the GI tract and to track the capsule movement. 
Inconsistent with Shannon’s information entropy, the more 
correlation two images have more mutual information. Thus, 
the iterative change of the scaling and rotation coefficients 
can be used to acquire the rotation and displacement angle. 

2.2. Wireless capsule endoscopy system 

The wireless video GI endoscopy capsule is considered as a 
micro-device that empowers the invasive investigation of the 
human body. Generally, the GI tract examination has the 
following procedure. Initially, the WCE is swallowed by the 
patient and starts capturing images through its movement in 
the GI tract. The WCE transmits compressed images to be 
received outside the body. One or two miniature cameras are 
attached to the WCE to capture thousands of images through 
the capsule path in the GI tract. The capture rate is currently 
about two frames/ second through its movement in the GI 
tract, including the stomach, esophagus, and small/large 
intestines. The captured still images from a pseudo video 
sequence [12]. Finally, the WCE is reflexively ejected from 

the human body. However, this effective method suffers 
from relatively high power consumption of the camera and 
RF components, which leads to a limited 8-12 hours WCE 
lifetime to examine the small intestine and large intestine. 
Increasing functionality is a critical requirement for 
endoscopic system platforms, which are considered High-
Definition (HD) systems. The image sensor and processing 
interpolation/engine systems are significant to achieve 
effective resolution. The WCE system has some features, 
including multiple camera feeds, side-by-side, viewing, 
picture-in-picture, and multiple image viewing [9]. 
Radiographic and archived images may be presented 
alongside with the endoscopic video feed for comparison. 
Video transport to the video monitors requires support for 
innumerable interface standards, including CameraLink, 
DisplayPort, GigE Vision, HDMI, SDI and HD-SDI. 
However, further enhancements are required to guarantee 
effective surgical room usage with shorter set-up time, 
increased optical zoom capabilities, depth of focus, light 
intensity, and better digital zoom. Typically, the WCE 
system equipment necessitates increased processing 
performance, where image sensor technology develops 
higher resolution streams [13]. The physical endoscopy 
system equipment is demonstrated in Figure 2. 

 

 

 

 

 

 

Fig. 2. Endoscopic system diagram 

The endoscopic system contains several components, 
including hand controls that enclose the light path, lens, 
water/gas outlets and other tools. The endoscope head is 
connected to a light source through fiber optics to control 
high-intensity illumination. A camera head containing the 
image sensor (single or three-chip arrays) as well as video 
pre-processing electronics and a video recorder is also 
connected to the endoscope. Finally, insulators for injecting 
CO2 into the body cavities also exist in the endoscope to 
preserve the pressure level in the body in order to view the 
tissues and organs within the body. The endoscopic system 
has enabled physicians to diagnose the GI pathologies in the 
colon, duodenum, and stomach. However, the examination 
of the small intestine using the traditional endoscopy has 
been limited. 

 

3. WCE IMAGE FEATURES EXTRACTION 

Once the WCE images are received, they are available to be 
analyzed and processed by the CAD to convert the visible 
information into different features based on the tackled 
problem. During the WCE operation, monotonic/slow 
movement and low resolution due to the passive force of the 
camera via the intestine triggered by the peristalsis 
characterize the captured data. Due to the WCE data nature, 
spatio-temporal features are a promising concept. With the 
intention of extracting these features, shape fitting, edge 
detection, or segmentation algorithms are carried out [14]. 



These features include color-based features using the color 
histogram, textural features, such as Local Binary Pattern 
(LBP) [15], bag-of-visual-words features using SIFT (Scale-
invariant feature transform) [16], gradient-based features 
using Histogram of Gradients (HoG) [17], and blob detectors 
using Laplacian of Gaussian (LoG) as well as using higher-
level features in certain situations to define the image.  

Generally, in the WCE video, each part of the digestive 
system has its significant color, such as the mouth color is 
unsaturated, the stomach color is pink; the small intestine 
and the colon have pink to yellow colors, while due to faecal 
contamination, the colon also may often be blocked by 
varying yellow to green colors. Furthermore, different color 
signatures can be signified dissimilar pathologies, such as 
yellow color can refer to ulcerations and white colors 
enclosed by excessively reddish refers to bleeding or 
inflammation. Thus, for object recognition and image 
analysis in the WCE real colored video, the color distribution 
plays a significant role, which is represented using the color 
histogram approach. This approach is considered invariant to 
rotation/translation about the viewing axis, partial occlusion 
and image scale changes. Typically, the WCE video frames 
are transmitted and deposited as RGB (Red-Green-Blue) 
triplets for further color feature extraction. However, Berens 
et al. [18], Berens and Fisher [19], Gong et al. [20] and 
Manjunath et al. [21] all established that using the HSI (Hue, 
Saturation, Intensity) color space produced a superior 
classification compared to RGB. Moreover, the variation in 
the distance between the intestinal surface and the capsule 
leads to the intensity dissimilarity in the WCE images, thus, 
the HS histograms have been applied [19]. Moreover, Seguí 
et al. [22] recommended and implemented a deep learning 
model for extracting generic feature descriptor from the 
WCE images. 

Furthermore, texture features have an imperative role in the 
segmentation of WCE video. The different parts of the 
digestive system can be distinguished using the ‘villi’ texture 
pattern, which are small finger-like projections responsible 
for food absorption. These patterns exist in the small 
intestine, but do not exist in the colon and stomach 
neighboring regions. The 3D-LBP operator has been 
introduced [23], which independently has been shown to 
calculate 1D-LBP histograms for RGB color channels. 
Moreover, air bubbles, strong shadows, and other artifacts, 
including the bile, mucus, food, and faeces can obscure 
WCE images, which lead to visual contamination affecting 
the histogram analysis. This problem can be overcome by 
extracting only the image parts that contain non-occluded 
tissues [24]. 

 

4. WCE VIDEO SEGMENTATION AND 
CLASSIFICATION  

The GI tract in the digestive system includes several parts, 
namely the rectum, colon, ileum, jejunum, duodenum, 
stomach, oesophagus, and mouth. Each part is considered a 
Region of Interest (ROI) during the video analysis process, 
which requires segmentation processing to identify and to 
localize each part accurately. In addition to detecting the 
blood and the bleeding regions within the GI tract, if they 
exist, for further diagnosis. 

 

4.1. Topographic video detection 

Determining the capsule path using WCE video 
segmentation is considered to be a video segmentation 
process to segment the capsule video into evocative GI tract 
parts. This requires the proper selection of the significant 
related features of the part under concern. The starting point 
of the capsule journey takes limited time to pass via the 
oesophagus before entering the stomach, where it typically 
remains from 15 minutes to several hours, until it passes out 
through the pylorus valve. Typically, the pylorus localization 
in a video is a time consuming and complex process, where 
the tissues of the stomach are near to the pyloric and the 
small intestine has similar visualization. Afterwards, in order 
to reach the colon, the WCE takes about four hours to transit 
the small intestine. In addition, the colon entry is difficult 
because of the ileocaecal valve, as the tissue is often 
obscured by faecal material. 

The most popular GI tract actual videos segmented 
distinctive anatomical regions include the oesophagus; 
mouth; small intestine; stomach and colon. Lee et al. [25] 
segmented the WCE video into the digestive organs based on 
their different intestinal contraction patterns. Frequency 
functions analysis related to these patterns has been carried 
out to determine the boundaries of the consecutive organ 
entrance. 

4.2. Detection of bleeding, lesion and GI tract organs  

Blood and bleeding detection in the GI tract is considered a 
significant issue in WCE that has been considered by several 
studies. Detection of the WCE GI bleeding is essential for 
examination as it is considered the most common GI tract 
abnormality as well as it is an imperative 
syndrome/symptom of other GI pathologies including 
polyps, ulcers, tumors and Crohn’s disease. The primary 
effort in WCE-CAD systems have been directed to bleeding 
and lesion detection. There are two main categories for GI 
bleeding, namely the active bleeding and the inactive 
bleeding that may occur anywhere throughout the GI tract 
[26]. For clarifying the WCE video’s results of the review 
procedure for bleeding detection, the following types of 
features and processes are considered in the image 
processing techniques. These features include i) texture-
based features that consider the spatial associations between 
pixels, ii) the colour-based methods that handle the image as 
sets of the individual values are applied, and iii) contour-
based methods that focus on contour and edge detection. 
Finally, a decision can be taken after interpreting the regions 
of interest for decision about the bleeding presence. 

Usually, bleeding is detected by the color analysis 
commonly in HSI space. After segmentation, feature 
extraction and the bleeding detection process are performed 
for further classification process using different algorithms, 
such as the neural network [27-30], support vector machines 
(SVM) [31] and conventional neural networks [32]. 
Consequently, to collect the training, validation and testing 
sets for WCE, researchers have been attempting to resolve 
the associated intrinsic shortcomings of the video screening 
phase, namely the required long visualization time. 

For bleeding detection, it has been established that color 
information can be adequate; however, some descriptors 
ought to be employed for lesion detection. Several 
approaches have been offered for polyp detection, such as 



curvature information to obtain polyp segments [33], Gabor 
filters based segmentation improved using an edge detector 
[34], and texture information and integrate color using LBP 
[35]. New approaches, namely Bayesian Information 
Criterion (BIC) and Expectation Maximization (EM) 
clustering have been presented to detect the bleeding areas in 
the WCE video [36]. Through this approach, the images 
have been segmented into non- bleeding and bleeding 
regions for further modeling of these regions’ color 
distribution by applying Gaussian mixtures in RGB color 
space, finally calculating the bleeding region areas. In order 
to evaluate this parametric bleeding color distribution model, 
15,222 WCE images of which 1,731 contained bleeding 
regions have been tested from three different videos. The 
results reported sensitivity and specificity of 92.55% and 
98.10 %, respectively. Moreover, Jung et al. [37] detected 
the bleeding regions in WCE frames using a color spectrum 
transformation with threshold. Lately, the chromaticity 
moments constructed from the Tchebichef polynomials have 
been used by Li and Meng [38] to detect ulceration and 
bleeding. WCE images have been divided into thirty-six 
non-overlapping grids of 30×30 pixel blocks to calculate six 
chromaticity moments. Afterwards, from ten patients’ video 
sequences containing 1800 normal-, 1800 ulceration- and 
1800 bleeding- image’s cases, image blocks were selected 
from 300 non-consecutive WCE images. The blocks were 
randomized and classified using a Multi-Layer Perceptron 
(MLP) neural network.  

Furthermore, wavelet based LBP have been used to detect 
tumors [39]. In order to detect ulcers, the Bag-of-Words 
(BoW) method based on SIFT features and LBP has been 
proposed [40]. Furthermore, for polyp detection in WCE 
images, a stacked sparse autoencoder with image manifold 
constraint based deep feature learning technique has been 
implemented [41]. Moreover, in order to detect Crohn's 
disease, the MPEG-7 descriptors for texture, color, and edge 
have been used [42]. Several studies have been conducted to 
classify the bleeding cases. Li and Meng [38] proposed the 
chromaticity moment along with a NN classifier. 
Additionally, in WCE images, Sekuboyinaet al. [43] 
designed a convolutional neural network (CNN) model for 
abnormality detection, where the images were split into 
different patches for further features extraction to each block 
using the proposed CNN. 

Another direction of classification based CAD systems is 
focused on classifying the diverse intestinal tract organs, 
such as the duodenum, esophagus, jejunum-ileum, stomach 
and cecum. Igual et al. [44] used the color change pattern to 
detect the unlike organs in the GI tract. Cunha et al. [45] 
estimated the locations of the ileo-cecal valve, pylorus and 
the esogastric junction using MPEG-7 visual descriptors. 
Recently, Zou et al. classified the digestive organs in the 
WCE images using a deep convolutional neural network 
[44]. Generally, for supporting the WCE video processing 
during the WCE classification process to develop a CAD 
system, training sets in WCE become essential. Several 
studies have been carried out on intestinal content, lesions, 
or event detection using visually ground-truth data sets 
recognized by clinical experts [38]. The WCE data collection 
is considered a challenging task, where the training and 
testing of the dataset size is rather small. This has 
complicated the development of advanced CAD systems for 
WCE applications due to such a small amount of available 

data. As reported by Vilariño et al. [46], the majority of 
WCE studies have used less than ten video cases to 
accomplish the performance of the proposed algorithms. 

 

5. WCE VIDEO VISUALIZATION AND 
COMPACTION 

Recently, researchers are motivated to develop video 
compression techniques for the WCE video visualization to 
eliminate/ compact similar frames and to apply variable 
sampling rates at the acquisition step [47]. In order to reduce 
the scanning process and, hence, the required time for video 
visualization, the compaction process essential to eliminate 
the WCE video frames at which the capsule and the intestine 
are paralyzed. 

In order to estimate the capsule and the intestine motion 
between two successive frames, a deformable ring model 
was proposed by Szczypiński et al. [48]. Automatic controls 
of the WCE display rates have been performed to estimate 
the color distribution change between two consecutive 
frames. Non-informative frame detection has been addressed 
to detect the intestinal content in several studies. In order to 
detect the intestinal content, the color histograms along with 
the SVM classifier has been used [49]. The intestinal juices’ 
bubble-like shape has been detected by Vilariño et al. [50] 
based on Gabor filters. A three-stage cascaded technique has 
been proposed [51] to detect informative frames, where i) the 
color information is used to distinguish the turbid by 
applying color moments and histogram with SVM classifier, 
ii) texture segmentation using Gauss Laguerre Transform has 
been applied to illustrate the bubbles, and iii) a final 
threshold on the segmented regions has been used to detect 
the informative frames. In WCE videos of small intestine, 
Wang et al. [52] proposed a color-saliency region detection 
technique to extract the saliency region of interest for 
protruding lesion detection.  

Other interesting directions for the WCE video visualization, 
focus on the intestinal motility characterization and detection 
at specific occasions, such as the wrinkles and contractions 
detection [53]. A consecutive process has been proposed 
[48] based on i) the gray level image co-occurrence matrix 
and the LBP for textural features, ii) the mean lumen color 
for color feature extraction and iii) the LoG filter to extract 
the blob features. The extracted features information is 
mined for nine consecutive frames for further classification 
using the SVM classifier. In Vu et al. [54], a three-stage 
process was proposed for the WCE video using the 
following stages, i) an edge detector has been applied to find 
the WCE video sequences with possible contractions, ii) the 
match between the frames' light-intensity histograms has 
been assessed to remove the non-contractions and, finally, 
iii) the existence of wrinkle-like pattern, that has been 
designated using the edge direction histogram, in the 
sequence’s central frames has been used to detect the real 
contractions. 
The motility evaluation of the WCE images have been 
estimated [55]. From the WCE videos, several motility 
descriptors have been extracted, where each descriptor 
signifies a specific intestinal event, such as the video 
coverage with intestinal content and the number of 
contractions. Afterwards, for each video, the extracted 
characteristics have been combined in a feature vector to 



finally conclude the motility of the small intestine using a 
non-linear two class SVM classifier.  
Other research has been interested in the detection of wrinkle 
frames. For instance, a structure tensor matrix has been 
employed to originate an image descriptor [56]. An 
alternative scheme has been considered [57] using a tonic 
contractions detector based on wrinkle information, where 
general linear radial patterns have been used as features. The 
WCE frame has been divided into four different quadrants 
located according to the lumen center [56, 57]. The features 
have been calculated for each quadrant and classified with 
the SVM. Other researchers have studied the static sequences 
and tunnel detection in WCE videos. Typically, the static 
sequences in the WCE video are described by the color 
distribution change between successive frames. Tunnel 
detection can be performed by exploring the lumen change in 
a successive frame sequence. 
 
6. WCE VIDEO PROCESSING  

High image contrast/resolution, high frame rate and less 
operational time are the main challenges of WCE video 
processing technology.  

6.1. Image quality enhancement 

Video quality enhancement of WCE captured raw images are 
an application area of image processing that is mainly 
concerned with noise reduction and image visualization 
enhancement for spotting the relevant regions more easily. 
The commercial hardware limitations of the WCE platforms 
result in quality deterioration of the acquired video. 
Consequently, several images/ video processing algorithms 
have been proposed to overcome these limitations [58]. The 
Olympus EndoView is considered to be the first commercial 
viewing software that uses texture and contrast enhancement 
procedures before exhibiting the captured images [59]. 

The inadequate illumination of the mucosal in the GI tract 
results in dark regions in the WCE images, thus, contrast 
enhancement should be non-uniform. Since for abnormalities 
assessment, color is considered the most relevant feature, 
contrast enhancement becomes indispensable to reserve the 
WCE images’ color tones [60]. Likewise, contrast 
enhancement is essential to avoid the resulting amplification 
of noise from the wireless transmission system of WCE and 
the image sensor. Consequently, image filtering procedures 
that are reliant on manual adjustment of the parameters, such 
as homomorphic [61] and anisotropic [62] can be applied 
efficiently. In addition, noise suppression can be performed 
by applying common filtering approaches [63]. Moreover, 
due to the intestinal content interfering with the camera or 
the WCE abrupt motion, blurring may be occurring. Thus, 
image-restoration algorithms are vital to cope with the WCE 
image de-blurring [63].  
Artificially, low and limited WCE video sequence frame-
rates can be increased by using algorithms that introduce 
more frames with predicted content through an interpolation 
process [64]. Besides, each video frame resolution can be 
increased using super-resolution algorithms [65]. These 
algorithms increase the video frame-rate by combining 
redundant information in the consecutive video frames 
leading to increased resolution in new frames.  
 
 
 

6.2. Time reduction in the WCE video process  

Abnormality detection can be considered an indirect 
methodology to reduce the review time, while one of the 
computer vision techniques in the WCE video analysis is to 
reduce the required overall time directly for reviewing the 
data through alerting physicians to the significant video 
frames. This adaptive viewing speed enhancement can also 
be achieved by automatic segmentation of the video into 
significant parts, event detection, or by modifying the 
number of displayed frames/second (replay speed). Hai et al. 
[66] discussed the automatic adjustment of the video frame 
rate instead of requiring manual adjustment of the frame rate. 
The proposed approach runs the video at high speed in stable 
areas and at slower speeds at the substantial variations 
between frames occur to signify the pathologies possibility.  

Commercially, effective and simple software can provide 
multiple consecutive frames’ visualization by simultaneously 
enabling multiple frame evaluation concurrently to achieve 
potential time reduction [67]. Nevertheless, this prospective 
is limited by the physician’s perception abilities. Thus, 
another technique is based on epitomes which are created 
from consecutive frames set [68]. Another method for 
reviewing time reduction is the panoramic visualization at 
which the panoramic images are generated automatically 
from multiple successive video frames by stitching or 
comparing together successive WCE frames at their 
matching points [69]. This procedure is repeated for 
successive frames’ clusters to produce new video containing 
fewer panoramic frames. This new video contains a smaller 
frame number compared to the original video and provides a 
wider FoV. 

 

7. WCE BASED COMPUTER-AIDED DIAGNOSIS 
SYSTEMS 

CAD and decision support systems provide physicians with 
accurate and fast diagnoses along with increased tolerance to 
handle incomplete/missing data. Developing intelligent 
diagnostic systems for the WCE image analysis has 
emerged. WCE constitutes an interesting technology in 
which the patients swallow a capsule with its embedded 
micro-camera. Consequently, in capsule image analysis, 
computer vision has a significant role, which has four stages. 
These are i) the WCE video topographic segmentation into 
expressive parts, namely the stomach, oesophagus, mouth, 
colon and small intestine, ii) the significant videos of the 
clinical events detection, such as normal and abnormal cases 
detection, detection of the intestinal fluids, intestinal 
contractions, physical abnormality, the capsule retention and 
the bleeding areas, iii) video analysis regarding successive 
frame changes to adjust the video viewing speed adaptively 
and to reduce the visualization time and iv) the quality 
enhancement of the captured raw images by the WCE using 
image processing. These categories were discussed in detail 
in section 6; consequently, this current section introduces the 
application of the CAD systems, which include the different 
image/video processing stages of the WCE data.  

Bleeding is considered to be one of the most perilous GI 
tract abnormalities, which is primarily detected by the 
physicians checking the entire WCE video sequence. 
However, this manual process is time consuming and 
extremely laborious. Consequently, the advance of CAD 



systems for automatic GI bleeding detection is highly 
anticipated. In WCE videos, computerized methods for GI 
bleeding detection have attracted much attention for 
relieving the physicians’ workload. Jia and Meng [70] 
developed a CAD system for GI automatic bleeding 
discovery in WCE image videos using the deep 
convolutional neural network. The proposed method has 
been evaluated by a dataset of 10,000 WCE images. The 
results depicted an increase of around 2% in the F1-score of 
up to 0.9955 values. Thus the proposed technique 
outperformed the state-of-the-art methods in WCE bleeding 
detection.  

For ulcer screening, Li and Meng [71] combined the merits 
of LBP and the Discrete Curvelet Transform (DCT) as a new 
texture feature. This led to superior texture descriptions with 
multi-directional characteristic. Charisis et al. [72] processed 
the entire WCE images with a color rotation operation 
followed by uniform rotation invariant LBP to extract the 
features for ulcer. Furthermore, several CAD systems have 
been designed for intestinal fluid detection. Typically, the 
intestinal fluids appear as yellow to brown semi-opaque 
turbid liquids that contain artifacts and air-bubbles. Vilariño 
et al. [50] proposed an approach based on texture analysis 
using Gabor filters, where the most relevant features in 
intestinal fluids of different sized small bubbles as well as 
quasi-circular shapes were detected. Frames containing 
detected bubbles were more than 50% have been considered 
invalid for clinician analysis. Ten WCE videos have been 
conducted to evaluate the proposed method in which the 
number of frames has been reduced from 12 to 46%.  

For abnormality detection in the WCE images, Boulougoura 
et al. [73] designed an intelligent system for discerning 
between abnormal and normal tissues using fifty-four feature 
vector components combining nine statistical measurements, 
namely the kurtosis, skew, variance, standard deviation, 
energy, entropy, covariance and inverse difference moment 
that were calculated from six channel histograms (H,S,V and 
R,G,B). Afterwards, the images were classified using neural 
networks, leading to 100% detection accuracy when 
evaluated by 73 images from the WCE video. In order to 
detect the intestinal contractions in a WCE video, 
Spyridonos et al. [74] employed classifiers based on thirty-
four low-level image features from nine successive frames. 
Furthermore, a two-stage contraction detection approach was 
also introduced based on the SVM classifier, where the 
intestinal motility patterns have been encoded using 
morphological and textural features. 

 

8. RESEARCH DIRECTIONS AND CHALLENGES 

WCE has several advantages compared to traditional wired-
based endoscopy which includes less invasiveness and 
suitability with efficient imaging capabilities. WCE 
technology has progressed promptly resulting in several 
commercial video analysis techniques. WCE technology has 
progressed promptly resulting in several commercial video 
analysis techniques. The WCE video accessibility made a 
substantial influence on the medical imaging community. 
The passive WCE technology can be considered the first 
generation as it was characterized by a relatively low frame 
rate, low image resolution and limited battery life due to the 
long reviewing time. In contrast, the second generation WCE 

devices include electromagnetic (EM) field impulsion with 
remote power source that allow higher frame rates and 
higher resolutions with extra functions including drug 
delivery, biopsy, and telemetry measurement abilities. 
However, the WCE procedure is still slow due to the low 
frame rate and the long reviewing time for the physician to 
review and report the patient’s videos. Adaptive reviewing 
speed control of the WCE video is a promising research area 
to consider the video summarization and the possible 
automated tools for reporting the WCE video.  

These challenges led to develop new WCE video analysis 
procedures that used color and texture features. Different 
illumination correction methods such as those reported in 
[75] can be used as a preprocessing step before any further 
detection, features extraction or classification processes in 
the WCE images/ videos. Several classifiers can be tested 
using both feature sets [20]; however, most of the studies 
reported the superiority of the SVM classifier. Providing 
adequate annotated training data during the classification 
process is considered one of the foremost WCE research 
challenges. Novel computational techniques are required to 
support the clinical experience by developing generic 
approaches for image feature extraction for accurate lesions 
or bleeding detection. The development of new software is 
considered one of the procedural challenges for VCE, which 
requires the expansion of increased sensitivity approaches to 
very small size abnormalities. In addition, it is indispensable 
to implement detecting methods for a wide spectrum of 
pathologies as well as methods to diminish the review time 
with preserving the clinical significant information to avoid 
missing the detection of abnormalities. Several studies 
proposed discarding the redundant, uninformative or an 
unrepresentative large number of video frames from the 
WCE videos [76]. Presently, lossy compression procedures, 
including MPEG compression are desired because of the 
increased storage compression rates; while using developed 
lossless compression procedures in the future can achieve 
reduced error rates. Thus, another research direction is to 
preserve the quality of image/video compression for further 
efficient WCE video analysis.  

Almost all WCE video processing researchers to date have 
been dedicated to the early capsules nominated for small 
intestine investigation. The modern technologies provide 
more exhaustive colon and oesophagus investigations, which 
requires developing advanced computer vision techniques. In 
addition, there are several complications that face the WCE 
video processing researchers, such as the capsule video data 
nature is mainly troublesome during the detection of the 
abnormality or bleeding, where usually there are only few 
significant abnormal cases in the video that contains about 
thousands of images. Accordingly, it is challenging to 
provide sufficient trained models from an even large number 
of video due to the less number of the abnormality cases in 
the same video, as well as due to the lack of public WCE 
video databases, which are essential for evaluating the 
performance of the video processing algorithms. The most 
common limitations of the WCE technology are camera’s 
battery life, capsule size, tracking issues, image quality, 
existence of artifacts that affects image quality, motion-
based problems along with challenges of incomplete WCE 
investigation and incomplete diagnostic and healing abilities 
[77]. From the preceding reported studies, some future 
directions can be suggested as follows. 



● Considering the different GI tract tissue types to 
explore new superior video features using context 
features, such as the capsule location in the 3-
directional view, temperature and the pH factor.  

● Exploring the different abnormalities for efficient 
bleeding detection using WCE. 

● Developing new computer vision research tools to 
detect other pathological events.  

● Using an adaptive framework integrating both 
region/neighborhood and pixel based classifiers to 
detect huge number of abnormalities, which are 
characterized by "reddish" color.  

● Adapting the WCE video play rate is another 
computer vision research domain. Moreover, video 
viewing time reduction is a challenging issue.  

● Designing intelligent systems for accurate lesion 
recognition, abnormality localization and, 
potentially interactive data transmission. Such 
intelligent systems can empower therapeutic and 
actuation abilities leading to the next WCE 
generation. Generally, it is established that WCE 
systems development is a growing and active 
research area that requires further exploration based 
on advancements in video analysis. New image/ 
video processing stages can be developed based on 
efficient segmentation methods that proved their 
efficiency in other medical segmentation and 
detection problems, such as the work done in [78- 
80]. 

● Using cloud computing and big data technologies as 
essential tools with the increased WCE data volume 
for effective data management. video processing 
can be used during the actual localization of the 
WCE in the body [9]. 

● Developing a WCE that avoids complication of 
using the video capsule endoscopy with Crohn’s 
disease patients is recommended. However, video 
capsule endoscopy for imagining small bowel is 
considered as a safe routine. Capsule retention is the 
dominant complication of the video capsule 
endoscopy which causes life-threatening bowel 
block. Toth et al. [81] studied a capsule retention 
case in a colonic stent with patients suffer from 
Crohn’s disease, where a video capsule endoscopy 
was used for disease’s activity assessment. 
Furthermore, a surgery was conducted leading to 
patient’s recovery. This work highlighted the risk of 
examining patients with gastrointestinal stents 
suffering from Crohn’s disease using capsule 
endoscopy. 

● Improving the WCE functionality and 
implementation to solve support biopsy, where the 
system of WCE is completely diagnostic and is not 
used in biopsy or treatment of any conditions.   
 

9. CONCLUSIONS 

WCE has the potential to become the prominent screening 
device for the entire GI tract. Computational approaches can 
be realized in software to enrich the diagnostic procedure for 
efficient and high diagnostic accuracy of the WCE screening. 
Recent development in the endoscopic bleeding detection 
procedures establishes numerous image processing methods 
realizing high efficiency rates. Several studies applied 

multiple cutting-edge image processing procedures. Most of 
these studies employed the images’ color features that 
powerfully recognize the bleeding existence by the nature of 
the characteristic bleedings' appearance. A new research 
direction is to develop application recognition techniques for 
the initial bleeding level based on the basic features of the 
bleeding, rather than directly detect the bleeding presence. A 
shift to expert systems and cognitive methods are considered 
to solve such objective. Furthermore, the analysis of the 
visual features of the physicians can be considered as a new 
research trend for bleeding detection.  

Computerized methodologies for detecting GI bleeding, 

lesions, abnormalities and the different parts of the GI tract 

in WCE image videos have attracted much attention with the 

aim to relieve physicians’ workload. Low resolution, poor 

contrast, low frame rate and long reviewing time are 

considered the most challenging issues in the WCE 

technology. In order to resolve these limitations, various 

CAD systems have been developed based on WCE video 

analysis and computer vision along with the exploration of 

novel techniques and clinical pathways. 

State-of-the-art procedures include potential clinically 
feasible intelligent software schemes that are proficient for 
decreasing the diagnostic effort, time and diagnosis errors 
while localizing abnormalities and evaluating intestinal 
motility. Such software should provide boosted video quality 
to improve the content perception.  
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