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Background: Flavonoids have been characterized as a prominent class of compounds to
treat thrombotic diseases through the inhibition of thiol isomerases. Syzygium cumini is a
flavonoid-rich medicinal plant that contains myricetin and gallic acid. Little is known about
the potential antiplatelet properties of S. cumini and its constituent flavonoids.

Objective: To evaluate the antiplatelet effects and mechanism of action of a polyphenol-
rich extract (PESc) from S. cumini leaf and its most prevalent polyphenols, myricetin and
gallic acid.

Methods: PESc, myricetin, and gallic acid were incubated with platelet-rich plasma and
washed platelets to assess platelet aggregation and activation. In vitro platelet adhesion
and thrombus formation as well as in vivo bleeding time were performed. Finally, myricetin
was incubated with recombinant thiol isomerases to assess its potential to bind and inhibit
these, while molecular docking studies predicted possible binding sites.

Results: PESc decreased platelet activation and aggregation induced by different
agonists. Myricetin exerted potent antiplatelet effects, whereas gallic acid did not.
Myricetin reduced the ability of platelets to spread on collagen, form thrombi in vitro
without affecting hemostasis in vivo. Fluorescence quenching studies suggested myricetin
binds to different thiol isomerases with similar affinity, despite inhibiting only protein
disulfide isomerase (PDI) and ERp5 reductase activities. Finally, molecular docking
studies suggested myricetin formed non-covalent bonds with PDI and ERp5.

Conclusions: PESc and its most abundant flavonoid myricetin strongly inhibit platelet
function. Additionally, myricetin is a novel inhibitor of ERp5 and PDI, unveiling a new
therapeutic perspective for the treatment of thrombotic disorders.

Keywords: Syzygium cumini, antithrombotic agents, platelet, oxidation-reduction, platelet aggregation inhibitors
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INTRODUCTION

Cardiovascular diseases are the leading cause of death worldwide,
a scenario where thrombosis and its associated outcomes
account for one in four deaths (Wendelboe and Raskob, 2016).
Platelets play a key role in arterial thrombosis, due to platelet
aggregation triggered by multiple agonists, such as adenosine
diphosphate (ADP), thrombin, and collagen. These signaling
pathways will inevitably culminate in the activation of the
platelet surface integrin aIIbb3 (Banno and Ginsberg, 2008;
Ghoshal and Bhattacharyya, 2014), which becomes activated
after the isomerization of critical disulfide bonds on its
extracellular b domain. This process is thought to be mediated
by protein disulfide isomerase (PDIA1, herein referred to as PDI)
and sibling proteins (Essex, 2008). Therefore, PDI has been
proposed as a new target to treat and prevent thrombotic
diseases (Jasuja et al., 2012).

PDI is the leading member of its family, a set of thioredoxin-like
thiol isomerases originally described in the endoplasmic reticulum
(ER), but later found in virtually all cell compartments, including
the platelet surface (Essex et al., 1995). In platelets, PDI has been
shown to regulate integrins aIIbb3 and a2b1, the latter being a
collagen receptor important for platelet adhesion (Lahav et al., 2003;
Essex, 2008). Besides PDI, at least three other members—ERp5
(PDIA6), ERp57 (PDIA3), and ERp72 (PDIA4)—have been
demonstrated to support thrombosis (Essex and Wu, 2018).
Particularly, ERp5 has been implicated in integrin aIIbb3
activation and shown to become physically associated with
integrin b3 upon platelet activation (Jordan et al., 2005).
Therefore, there has been a surge of novel PDI inhibitors being
described, both synthetic (Sousa et al., 2017) and natural, such as the
flavonoid quercetin and its derivatives (Lin et al., 2015).
Accordingly, flavonoids and related compounds have been
described as potent antiplatelet compounds, acting through
diverse mechanisms (Jasuja et al., 2012; Giamogante et al., 2018).

Syzygium cumini (L.) Skeels (Myrtaceae) is a worldwide
cultivated medicinal plant, popularly known as jamun, black
plum, jambolan, or jambolão (Ayyanar and Subash-Babu, 2012).
S. cumini has been proposed as a prominent source of bioactive
compounds against cardiometabolic disorders (Chagas et al.,
2015), in accordance with its usage in the Unani medicine to
“enrich blood” (Ayyanar and Subash-Babu, 2012). Indeed, S.
cumini has been shown to inhibit the hyperactivation of platelets
from diabetic patients (De Bona et al., 2010; Raffaelli et al., 2015).
Recently, we characterized a polyphenol-rich extract from S.
cumini (PESc) leaf, which consisted of gallic acid, quercetin,
myricetin, and its derivatives myricetin-3-a-arabinopyranoside
and myricetin deoxyhexoside (Chagas et al., 2018). Of the
flavonoids identified, myricetin was the most abundant,
constituting roughly 20% of PESc weight (Chagas et al., 2018).
Abbreviations: CRP, collagen-related peptide; GAPDH, glyceraldehyde 3-
phosphate dehydrogenase; PAR, protease-activated receptor; PDI, protein
disulfide isomerase; PESc, polyphenol-rich extract of S. cumini leaf; PKC,
protein kinase c; PMA, phorbol-12-myristate-13-acetate; PRP, platelet-rich
plasma; S. cumini, Syzygium cumini (L.) Skeels; TxA2, thromboxane A2; TPR,
thromboxane A2 receptor; TRAP-6, thrombin receptor activator peptide 6; VASP,
vasodilator-stimulated phospho-protein; WP, washed platelets.
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Interestingly, this extract has been shown to reduce oxidative
stress and prevent the development of diabetes induced by
alloxan treatment (Chagas et al., 2018). Despite this, there is
scarce literature on the antiplatelet properties of S. cumini and its
most abundant polyphenols, myricetin and gallic acid.

Therefore, in the present study, we hypothesized that PESc
presents potential antiplatelet properties and that myricetin and
gallic acid, as the most prevalent compounds, would be its bioactive
phytochemicals. Moreover, given the structural similarity between
myricetin and quercetin, we also tested for a possible inhibition of
thiol isomerases. Data herein presented endorse our hypothesis
through the demonstration of PESc inhibitory effects on both
platelet activation and aggregation. Assessment of gallic acid and
myricetin bioactivity showed that only myricetin exerted
physiologically relevant antiplatelet properties. Myricetin was then
shown to be a novel inhibitor of thiol isomerases PDI and ERp5,
unveiling a new therapeutic perspective for the treatment and
prevention of thrombotic diseases.
MATERIALS AND METHODS

Reagents
Myricetin, gallic acid, ADP, thrombin, phorbol-12-myristate-13-
acetate (PMA), Thrombin Receptor Activator Peptide 6 (TRAP-
6), human fibrinogen, and 1,4-Dithiothreitol (DTT) and 3,3′-
Dihexyloxacarbocyanine iodide (DIOC6) were purchased from
Sigma-aldrich (Dorset, UK). PAPA-NONOate was purchased
from Tocris (Abingdon, UK). PE/Cy5 anti human CD62P and
PAC-1 FITC antibodies were purchased from BD Biosciences
(Wokingham, UK). FITC-conjugated fibrinogen was purchased
from Agilent (Stockport, UK). Collagen was purchased from
Nycomed (Munich, Germany) whereas Collagen-Related
Peptide (CRP) was obtained from Prof Richard Farndale
(University of Cambridge, Cambridge, UK). Anti-phospho-
vasodilator-stimulated phospho-protein (VASP) (Ser239) was
purchased from Cell Signalling (Hitchin, UK), anti-
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) from
Proteintech (Manchester, UK), and Alexa-488 conjugated
phalloidin secondary antibody was bought from Life
Technologies (Paisley, UK)

Botanical Material
S. cumini leaves were collected from different trees at the campus
(2°33´11.7´´S 44°18´22.7´´W) of the Federal University of
Maranhão (UFMA) in São Luís, Maranhão, Brazil. Samples
were identified and catalogued at the Herbarium MAR of the
Department of Biology of the same institution, where a voucher
specimen was deposited under n° 4573.

Extract Preparation
The extract was prepared according to Sharma et al. (2008), with
modifications. Fresh leaves were dried at 38°C in an air-flow
oven, pulverized into powdered dry leaves (150 g), and
macerated in 70% ethanol (1:6 w/v) under constant stirring for
3 days at 25°C. The supernatant was concentrated in a rotary
January 2020 | Volume 10 | Article 1678
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evaporator to obtain the crude hydroalcoholic extract (HE). HE
was partitioned with chloroform (1:1 v/v, 3x) and the organic
phase was washed with ethyl acetate (1:1 v/v, 3x). The ethyl
acetate fraction was concentrated under vacuum (38°C) and
lyophilized, yielding the polyphenol-rich extract (PESc). For
experimental procedures, PESc samples were resuspended in
water, at desired concentrations, immediately before use.

Confirmation of Polyphenolic Composition
of PESc
As we have previously characterized the phytochemical
composition of PESc (Chagas et al., 2018), confirmatory
assessment was performed by both HPLC-UV/Vis detection
and LC-MS/MS to validate the lot of PESc used in this study.
Methods employed were exactly as previously described (Chagas
et al., 2018).

Platelet-Rich Plasma and Washed
Platelets Preparation
Healthy volunteers who did not use antiplatelet drugs and had
previously provided informed consent had their blood samples
collected in tubes containing 1:5 v/v acid citrate dextrose (ACD:
2.5% sodium citrate, 2% D-glucose, and 1.5% citric acid) or 3.8%
(w/v) sodium citrate for platelet aggregation experiments using
platelet-rich plasma (PRP). Whole blood was centrifuged at 250 ×
g for 10 min at 22°C to obtain PRP. To obtain washed platelets
(WP), PRP was centrifuged twice (1,000 × g, 10 min, 20°C) in the
presence of 1.25 mg/ml prostacyclin. The final platelet pellet was
resuspended in modified Tyrode’s-HEPES buffer, (20 mM N-2-
hydroxyethylpiperazine-N′-2-ethanesulfonic acid, 5 mM glucose,
134 mM NaCl, 0.34 mM Na2HPO4, 2.9 mM KCl, 12 mM
NaHCO3, and 1 mM MgCl2, pH 7.3) and rested for 30 min at
30°C before experiments. All protocols using human blood
samples were approved by the Research Ethics Committees of
the Federal University of Maranhão and the University
of Reading.

Platelet Aggregation
PRP andWP aggregation assays were performed in a four-channel
aggregometer (Helena Biosciences, Gateshead, England). PRP
samples (2–3 × 108 platelets/ml) were incubated for 25 min at
37°C with 10, 100, or 1,000 mg/ml of PESc prior to the addition of
ADP (2.5 or 5 μM), thrombin (0.01 or 0.02 U/ml), or PMA (100
nM). For experiments using myricetin and gallic acid, these were
incubated in PRP (10, 30, or 100 μM for myricetin and 100, 300, or
1,000 μM for gallic acid) or WP (7.5, 15, or 30 μM for myricetin
and 75, 150, or 300 μM for gallic acid) for 10 min at 37°C followed
by the addition of agonists collagen (1 μg/ml) or TRAP-6 (10 μM).
Aggregation traces from at least three different donors were
recorded for 5 min.

Flow Cytometry
WP (2–3 × 108 platelets/ml) were incubated with PESc at the
same concentrations and conditions used for platelet aggregation
experiments. ThenWP were incubated for 10 min with thrombin
(0.02 U/ml). FITC-conjugated PAC-1 antibody was added for 10
Frontiers in Pharmacology | www.frontiersin.org 3
min in the dark and fluorescence read using a flow cytometer
FACS Calibur (BD Biosciences, Franklin Lakes, USA). For
experiments using myricetin and gallic acid, these were
incubated with WP for 10 min at 37°C followed by the
addition of agonists CRP (1 μg/ml) or TRAP-6 (10 μM). FITC-
conjugated fibrinogen and PE/Cy5-conjugated anti-human
CD62P were incubated for 30 min, then platelets were read
after a 25-fold dilution with Tyrodes-HEPES buffer.

Platelet Spreading
WP (2 × 107 platelets/ml) were incubated in absence or
presence of myricetin (7.5, 15, and 30 μM) for 10 min at
37°C, then 300 μl of the solution was dispensed onto a
fibrinogen or collagen (100 μg/ml)-coated coverslip for 45
min at 37°C. Non-adhered platelets were removed and the
coverslip washed three times with PBS. Adhered platelets were
fixed using 0.2% paraformaldehyde for 10 min. This solution
was then removed and coverslips washed three times with PBS
before the addition of 0.1% (v/v) Triton-X to permeabilize the
cells. After removal of Triton-X and further washes using PBS,
platelets were stained with Alexa Fluor 488 or 647-conjugated
phalloidin (1:1,000 v/v) for 1 h in the dark at room
temperature. Coverslips were mounted onto microscope glass
slides and imaged using a 100× oil immersion lens on a Nikon
A1-R Confocal microscope.

Thrombus Formation Under Flow
Whole blood was pre-incubated with DIOC6 (5 μM) for 30 min
at 30°C, whilst Vena8 bio-chips (Cellix Ltd, Dublin, Ireland)
were coated with collagen (100 μg/ml) for 60 min at 37°C. Prior
to experiments, blood was pre-treated with myricetin (30 μM) or
vehicle control for 10 min at 37°C and Vena8 bio-chips were
washed with Tyrode’s-HEPES buffer. Whole blood was then
perfused at a shear rate of 45 dyn/cm2 and images recorded every
4 s for 10 min using a 20× air lens on a Nikon A1-R Confocal
microscope exciting at 488 nm and detecting emission at 500 to
520 nm. Fluorescence intensity was calculated using NIS
Elements Software (Nikon, Tokyo, Japan).

Tail Bleeding Assay
Healthy female Swiss mice (mus musculus) with 10–12 weeks of
age and 30–35 grams were acquired from the Animal Facility
House of the Federal University of Maranhão (UFMA), São
Luís–MA. Animals were kept under a 12 h light cycle, controlled
temperature (22–24°C) and food and water ad libitum. Mice
were given myricetin at 25 mg/kg or 50 mg/kg or vehicle control
for three consecutive days through oral gavage. One hour after
the last dose, animals were anesthetized with ketamine (100 mg/
kg) and xylazine (10 mg/kg) and 5 mm of the tail was amputated
using sharp scissors. The bleeding tail was then placed in filtered
PBS buffer at 37°C and time to cessation of bleeding recorded for
up to 20 min, after which mice were terminated. All procedures
were performed in alignment with the National Council for the
Control of Animal Experimentation (CONCEA, Brazil) and
approved by the local Animal Care and Welfare Committee of
UFMA, under ruling number 23115.018725/2017-19.
January 2020 | Volume 10 | Article 1678
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Generation of Full-Length Recombinant
Erp5, Erp57, Erp72, and PDI
The generation of recombinant thiol isomerases was performed
as previously described (Holbrook et al., 2018). Briefly, cDNA for
ERp5, ERp57, ERp72, and PDI were subcloned into pGEX6P1
expression vector in Escherichia coli to generate a glutathione s-
transferase (GST)-tagged fusion protein. The fusion protein was
then purified by affinity chromatography using glutathione
agarose and the GST cleaved using PreScision protease as per
manufacturer instructions (GE Healthcare, Amersham, UK).
Finally, the proteins were submitted to a gel filtration on
Superdex 75 purification resin (GE Healthcare, Amersham,
UK) to remove contaminants.

Protein Quenching Analysis
and Biochemical Equations
Myricetin (0.01–10 μM) or vehicle (1:400 v/v DMSO : PBS) were
incubated with recombinant ERp5, ERp57, ERp72, or PDI (2
μM) in PBS buffer containing ethylenediaminetetracetic acid
(EDTA, 0.2 mM) for 10 min at 25°C in a black 96-well plate.
Fluorescence intensity was read using a Flexstation 3 fluorimeter
(Molecular Devices, Wokingham, UK), with 280 nm excitation
and emission scanned from 300 to 420 nm in 5 nm slits, at a
speed of 0.17 s per well. Appropriate blanks in which no protein
was added were also acquired to establish that myricetin had no
autofluorescence at the specified excitation/emission
wavelengths. Data obtained are the means of at least three
independent experiments run at least in duplicate.

To calculate the Stern-Volmer quenching constant (KSV),
peak fluorescence intensity at 330 nm was used and constant
determined from the following equation:

F0
F

= 1 + KSV L½ � (1)

where F0 is the fluorescence of protein alone, F is the fluorescence
in the presence of increasing concentrations of myricetin, and L
is the concentration of myricetin used. KSV was then calculated as
the slope from the linear regression of F0/F versus [L]. Data is
shown as log [L]. The quencher rate coefficient Kq was
determined from the formula:

Kq =
KSV

t0
(2)

where t0 is the average lifetime of the emissive excited state of the
protein in the absence of the inhibitor. Previous reports have
determined the typical value of t0 to be in the order of 10-8 s
(Lakowicz and Weber, 1973), which was also adopted for the
values herein presented.

The apparent binding constant (Kb) was determined
according to the equation of Bi et al. (2005):

log
F0 − F
F

� �
=   nlogKb − nlog

1
L½ � − n F0 − Fð Þ P½ �=F0

� �
(3)

In which F0 is the fluorescence of protein alone, F is the
fluorescence in the presence of increasing concentrations of
Frontiers in Pharmacology | www.frontiersin.org 4
myricetin, [L] is the ligand concentration, and [P] is the
protein concentration in M. First, the linear regression of log
[(F0 − F)/F] versus log [1/([L] − n (F0 − F)[P]/F0)] was plotted
and n determined as the slope of the regression, as described by
Bi et al. (2005). Then, n was substituted back into the equation
and Kb determined for the highest concentration tested. Finally,
the dissociation constant (Kd) was calculated as Kd = 1/Kb.

Reductase Activity
The reductase activity of the thiol isomerases was determined
through the fluorescent probe dieosin glutathione disulfide (Di-
E-GssG, excitation: 510 nm, emission: 545 nm). Di-E-GssG was
synthesized and used as previously described (Raturi and Mutus,
2007). Myricetin (0.01–10 μM) was incubated for 10 min with
recombinant proteins (2 μM) diluted in PBS and EDTA (2 mM)
buffer in a 96-wells black plate. Then, DTT (5 μM) and Di-E-
GssG (200 nM) were added and fluorescence intensity acquired
on a Flexstation 3 fluorimeter (Molecular Devices, Wokingham,
UK). Fluorescence intensity was acquired every 30 s for 30 min.
Data presented are the means of at least three independent
experiments run at least in duplicate.

Molecular Docking
The predicted poses of interaction between myricetin and
different thiol isomerases were assessed using AutoDock 4.2
package, similar to previously described (Wang et al., 2018).
The 3D structures of proteins were obtained from the PDB
database (PDB ID: 4EL1 for PDIA1 and PDB ID: 4GWR for
PDIA6/ERp5). The grid box of analysis was set as a perfect cube
of 20 × 20 × 20 points with 1.00 Å spacing centered at the
tryptophan residue near the active site of each thiol isomerase
and the exhaustiveness of the runs set to 128. The 20 predicted
poses with the best binding affinity were generated for each
protein and each pose was studied individually to assess if
chemically sound using Pymol software (Schrodinger,
Cambridge, UK).

Immunoblotting
WP (4 × 108 platelets/ml), were incubated with myricetin (7.5,
15, and 30 μM) or the nitric oxide donor PAPA-NONOate (100
μM), lysed in reducing Laemmli sample buffer [12% (w/v)
Sodium Dodecyl Sulphate (SDS), 30% (v/v) glycerol, 0.15 M
Tris-HCl (pH 6.8), 0.001% (w/v) Brilliant Blue R, 30% (v/v) b-
mercaptoethanol] and heated for 5 min. Samples were loaded
into a 10% Mini-PROTEAN TGX precast protein gel submerged
in 1X Tris/Glycine/SDS buffer (25 mM Tris, 192 mM glycine,
0.1% SDS, pH 8.3), then submitted to vertical transfer in a tetra
vertical electrophoresis cell (Bio-Rad, CA, USA) using constant
voltage of 150V for 45 min. After protein separation, semi-dry
transfer was performed at 15V for 2 h using a BioRad Trans-blot
semidry blotter. Membranes were blocked with 5% bovine serum
albumin (BSA) for 1 h and incubated with primary antibodies
against VASP (Ser239) or GAPDH at 1:1,000 v/v dilution
overnight. After washing the primary antibody off, Alexa-488
conjugated phalloidin secondary antibody was incubated for 1 h
at room temperature at 1:4,000 v/v dilution. Membranes were
January 2020 | Volume 10 | Article 1678
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visualized using a Typhoon imaging system (GE Healthcare,
Hatfield, UK).

Statistical Analysis
Statistical analyses were obtained from GraphPad Prism 6.0
software (GraphPad Software, San Diego, USA). Quantitative
results were expressed as mean ± SEM and individual points for
all bar graphs, in order to improve transparency on the
variability of data. Sample size varied from three to six
independent repeats. Statistical analysis was performed through
paired one-way ANOVA and Tukey as post-test with level of
significance of 5%.
RESULTS

PESc Inhibited Platelet Activation
and Aggregation Induced by Different
Agonists
The initial approach focused on whether PESc would inhibit
platelet aggregation. Therefore, different concentrations of PESc
were incubated with PRP and platelets were activated with
various agonists. The composition of the batch of PESc used in
this study is consistent with previously reported (Chagas et al.,
2018) (Supplementary Figure 1). Figure 1 displays the
inhibitory activity of PESc in ADP-, thrombin-, and PMA-
induced platelet aggregation—the strongest inhibition was seen
when using ADP, in which PESc promoted a 60% decrease in
platelet aggregation. Increased agonist concentration partially
overcame the inhibition seen in ADP- and thrombin-induced
platelet aggregation (Supplementary Figure 2). This persuaded
us to use the non-biological agonist PMA, a direct activator of
protein kinase C (PKC), as a way to avoid the initial signaling
processes triggered by these agonists. Interestingly,
concentrations as low as 10 mg/ml of PESc were able to
mitigate platelet aggregation induced by PMA by 20%.

Given that PESc inhibited platelet aggregation induced by
different agonists, we hypothesized that this extract would also
affect integrin aIIbb3 activation. Therefore, we incubated WP
with PESc at different concentrations and used PAC-1 antibody
to detect active integrin aIIbb3 by flow cytometry. Upon
stimulation with thrombin, a six-fold increase in PAC-1
binding was observed and the percentage of positive events
increased from 20 to 82% (Figures 1G, H). Interestingly, PESc
was able to decrease PAC-1 median fluorescence intensity
compared to vehicle at concentrations as low as 10 mg/ml
(~20% inhibition), reaching 65% inhibition at 1,000 mg/ml
(Figure 1H). Overall, our data reinforce the strong antiplatelet
effects of PESc, due to the significant inhibition observed at
concentrations as low as 10 mg/ml, possibly through reacting
with molecules that orchestrate integrin aIIbb3 activation.

Myricetin Was More Potent Than Gallic
Acid in Inhibiting Platelet Aggregation
After establishing the antiplatelet potential of PESc and
identifying its main components, we investigated the effects of
Frontiers in Pharmacology | www.frontiersin.org 5
myricetin (most abundant compound) and gallic acid (second
most abundant compound) on platelet aggregation. Both PRP
(Supplementary Figure 3) and WP (Figure 2) were incubated
with different concentrations of either myricetin or gallic acid
and platelets were stimulated with collagen or the thrombin
receptor agonist TRAP-6. Myricetin at the highest concentration
tested (30 mM) was able to substantially inhibit platelet
aggregation induced by both agonists (~80% inhibition for
collagen and ~60% inhibition for TRAP-6; Figures 2B, F).
Gallic acid was unable to inhibit platelet aggregation, except at
the higher concentration used (300 mM) in TRAP-6 activated
platelets (Figure 2H)—an effect that is likely due to cytotoxicity
of such high concentration. In fact, gallic acid has been shown to
be cytotoxic to different cell lines at concentrations above 50 mM
(Park et al., 2008). The effect of myricetin and gallic acid on
platelet aggregation should not be compared with data on PESc
as different agonists were used. Altogether, these data indicate
that myricetin is a potent inhibitor of platelet aggregation at
physiologically relevant concentrations, whereas gallic acid yields
no inhibitory effect.

Myricetin Inhibited Platelet Activation
and Alpha-Granule Secretion Induced by
Different Agonists
Further studies were conducted to assess the effect of both
myricetin and gallic acid in platelet function through flow
cytometry. Results in Figure 3 show that myricetin at 15 mM
was able to abolish fibrinogen binding and alpha-granule
secretion induced by CRP (Figures 3A, B). In contrast, gallic
acid was only able to reduce fibrinogen binding when incubated
at 150 mM, consistent with the limited potency of this phenolic
compound to inhibit platelet aggregation (Figures 3C, D). When
TRAP-6 was used as an agonist, myricetin still inhibited
fibrinogen binding, whereas no effect was seen for P-selectin
exposure (Figures 3E, F). Overall, data herein described suggest
myricetin is a flavonoid with potent antiplatelet effects, whereas
gallic acid only had an effect at 10× higher concentrations.
Therefore, focus was given to myricetin in order to further
explore its antiplatelet effects and elucidate possible
mechanisms of action.

Myricetin Inhibits Platelet Adhesion
to Collagen and Thrombus Formation
Under Flow
Upon vascular injury, platelets start to adhere to components of
the sub-endothelium, such as collagen and fibrinogen (Ghoshal
and Bhattacharyya, 2014). In order to assess the effect of
myricetin on platelet adhesion, WP were left to adhere to
collagen or fibrinogen-coated coverslips in the presence or
absence of different concentrations of myricetin. The area of
platelets spread and representative images of the assay are shown
in Figure 4. It was clear that myricetin decreased platelet
spreading to collagen (~25% inhibition at 30 mM, Figure 4B),
whereas no effect was seen on platelet spreading to fibrinogen
(Figure 4C). This is similar to a previous report using PDI-
deficient murine platelets (Chang et al., 2012).
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Given the antiplatelet effects and inhibition of adhesion to
collagen exerted by myricetin, we hypothesized this flavonoid could
impact thrombus formation. Therefore, blood was perfused under
physiological arterial shear rate into collagen-coated Vena8 biochips
Frontiers in Pharmacology | www.frontiersin.org 6
as shown in Figures 4E, F. It was evident that myricetin treatment
decreased thrombus formation (measured as an increase in
fluorescence intensity) within the first 100 s, persisting throughout
the 10-min assay. These data are consistent with the platelet
FIGURE 1 | PESc inhibits platelet aggregation and integrin aIIbb3 activation. Platelet-rich plasma was pretreated with PESc (10, 100, or 1,000 mg/ml) for 25 min and
stimulated with ADP (A), thrombin (THB, C), or PMA (E). Quantified data is shown next to representative curves for ADP (B), thrombin (D), and PMA (F) stimulated
platelet aggregation. Washed platelets were pre-treated with PESc under the same conditions, stimulated with thrombin, and incubated with PAC-1 antibody to
measure integrin activation. (G) Percentage of PAC-1 positive events. (H) Mean fluorescence intensity (MFI) of events. a p < 0.05 vs first column of graph. b p < 0.05
vs second column of graph. c p < 0.05 vs third column of graph, d p < 0.05 vs fourth column of graph. Data analyzed by paired one-way ANOVA and Tukey as
post-test. All bar graphs represent mean ± SEM and individual data points of at least three independent experiments. Arrows indicate when agonists were added.
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FIGURE 2 | Myricetin inhibits platelet aggregation more potently than gallic acid. Washed platelets (WP) were pre-treated with myricetin (Myr) or gallic acid (GA) for
10 min and stimulated with collagen or TRAP-6. (A, B) WP treated with Myr and stimulated with collagen. (C, D) WP treated with GA and stimulated with collagen.
(E, F) WP treated with Myr and stimulated with TRAP-6. (G, H) WP treated with GA and stimulated with TRAP-6. Quantified data is shown right next to
representative curves. a p < 0.05 vs first column of graph. b p < 0.05 vs second column of graph. c p < 0.05 vs third column of graph. Data analyzed by paired
one-way ANOVA and Tukey as post-test. All bar graphs represent mean ± SEM and individual data points of at least three independent experiments. Arrows indicate
when agonists were added.
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FIGURE 3 | Platelet activation and alpha-granule secretion is inhibited by myricetin but not by gallic acid. Washed platelets (WP) were pre-treated with myricetin or
GA for 10 min, stimulated with agonists, and incubated with FITC-coupled fibrinogen and PE/PerCP anti-P-selectin antibodies. Fibrinogen binding (A) and P-selectin
exposure (B) of CRP-activated platelets treated with myricetin. Fibrinogen binding (C) or Pselectin exposure (D) of CRP-activated platelets treated with GA.
Fibrinogen binding (E) and P-selectin exposure (F) of TRAP-6-activated platelets treated with myricetin. Fibrinogen binding (G) and P-selectin exposure (H) of TRAP-
6-activated platelets treated with GA. a p < 0.05 vs first column of graph. b p < 0.05 vs second column of graph. c p < 0.05 vs third column of graph. Data analyzed
by paired one-way ANOVA and Tukey as post-test. All bar graphs represent mean ± SEM as well as individual data points of at least three independent experiments.
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inhibition herein described for myricetin and expands the
importance of this flavonoid to modulate thrombus formation.

Myricetin Does Not Affect Hemostasis
In Vivo
After establishing antiplatelet and anti-thrombotic properties for
myricetin, we then tested its impact on hemostasis. Healthy mice
(10–12 weeks of age) were givenmyricetin (25 or 50mg/kg) orally for
3 consecutive days, upon which bleeding time was measured after tail
tip removal. Results are shown in Figure 5. Mice treated with
myricetin displayed similar bleeding time when compared to
vehicle control. Notably Kim et al. (2013) have reported that
genetic deletion of PDI in platelets is tolerated and bleeding time,
similarly unaffected. Of note, myricetin did not induce VASP
phosphorylation (Supplementary Figure 4).

Therefore, considering that 1) myricetin inhibited platelet
aggregation induced by different agonists, 2) that PDI is a key
modulator of integrin aIIbb3 function located at the end of the
platelet activation pathway, 3) that myricetin inhibited platelet
spreading on collagen but not on fibrinogen, similar to a PDI
knockout model (Kim et al., 2013) 4) that myricetin showed no
effect on hemostasis, also comparable to a platelet-specific PDI
knockout model (Kim et al., 2013), and 5) that some flavonoids
have been described as PDI inhibitors (Jasuja et al., 2012; Giamogante
Frontiers in Pharmacology | www.frontiersin.org 9
et al., 2018), we decided to investigate the biochemical effects of
myricetin on PDI and other thiol isomerases important for
platelet function.
FIGURE 5 | Myricetin does not affect hemostasis in vivo. Myricetin at 25 mg/
kg or 50 mg/kg as well as vehicle control were administered to healthy mice
by oral gavage for three consecutive days. Tail bleeding was measured after
tail tip amputation. Data expressed as mean ± SEM as well as individual
points. There was no statistical difference between groups.
FIGURE 4 | Myricetin inhibits adhesion to collagen and thrombus formation in vitro. Washed platelets (WP) were pre-treated with myricetin (7.5, 15, and 30 mM) for
10 min and left to adhere to coverslips coated with 100 mg/ml of collagen (A, B) or fibrinogen (C, D) for 45 min. Platelets were stained with Alexa Fluor 488 or 647-
conjugated phalloidin for visualization. DioC6-labeled whole blood was pre-treated with myricetin (30 mM) or vehicle control and blood perfused through collagen-
coated Vena8 biochip channels at a shear rate of 45 dyn/cm2 for 10 min. (E) Representative image of thrombus formation assay. (F) Quantification of fluorescence
normalized by vehicle control. a p < 0.05 vs Vehicle. ****p < 0.001 vs Vehicle. ns, non significative. For adhesion assay, bar graphs (B, D) represent mean ± SEM
and individual data points of four independent experiments. For thrombus formation assay, line graph (F) represent mean ± SEM of three independent experiments.
January 2020 | Volume 10 | Article 1678

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Gaspar et al. Myricetin, a Novel Inhibitor of PDI and ERp5
Myricetin Binds Close to the Active Redox
Sites of PDI, ERp5, ERp57, and ERp72
The possible interaction between myricetin and PDI, ERp5,
ERp57, and ERp72 was initially assessed through quenching of
the fluorescence emitted by tryptophan residues exposed near
the redox active site WCGHC, as described for ERp57 (Trnkova
et al., 2013). Table 1 shows the values for the Stern-Volmer
constant KSV, the quencher coefficient Kq, the binding constant
Kb, and the dissociation constant Kd for each protein studied.
Values for KSV and Kq were within the same order of magnitude
for all of the thiol isomerases tested, indicating a similar binding
Frontiers in Pharmacology | www.frontiersin.org 10
affinity between these proteins and myricetin (Table 1).
Representative quenching curves for each protein and Stern-
Volmer plot are shown in Supplementary Figure 5.
Notwithstanding, it is possible for a compound to bind to thiol
isomerases without affecting their function, as previously
described for the interaction between ellagic acid and ERp57
(Giamogante et al., 2018). Therefore, the ability of myricetin to
inhibit the reductase activity of these thiol isomerases
was explored.

Myricetin Inhibits the Reductase Activity
of PDI and Erp5
The highly sensitive fluorescent probe Di-E-GssG was used to assess
the reductase activity of thiol isomerase in the presence or absence
of myricetin. Results shown in Figure 6 demonstrate the ability of
myricetin to inhibit both PDI and ERp5, being more potent against
PDI (Figures 6A, B). On the other hand, myricetin was unable to
inhibit the reductase activity of ERp57 or ERp72 at the
concentrations tested (Figures 6C, D). Therefore, we proceeded
to investigate possible binding mechanisms between myricetin and
PDI and ERp5 using a molecular docking approach.
TABLE 1 | Constants calculations based on protein quenching studies.

KSV(M
-1) Kq (M-1s-1) Kb (M-1) Kd (M)

ERp5 48,750 ± 9,554 4.87 · 1012 5.72 · 105 1.74 · 10-6

ERp72 27,515 ± 5,675 2.75 · 1012 3.94 · 105 2.53 · 10-6

ERp57 29,777 ± 5,966 2.97 · 1012 5.44 · 105 1.83 · 10-6

PDI 21,207 ± 0,877 2.12 · 1012 2.34 · 105 4.26 · 10-6
KSV: Stern-Volmer constant. Kq: Quenching rate constant. Kb: Binding constant.
Kd: Dissociation constant. Data presented as Mean ± SEM.
FIGURE 6 | Myricetin inhibits reductase activity of PDI and ERp5. Recombinant proteins were incubated with myricetin (0.01 to 10 mM) in a black 96-wells plate for
10 min followed by addition of DTT (5 mM) and Di-E-GssG (200 nM). Fluorescence was read every 30 s for 30 min. Final point fluorescence at 30 min is shown for
ERp5 (A, B), PDI (C, D), ERp72 (E, F), and ERp57 (G, H). Data represent at least three independent experiments run at least in duplicate and error bars indicate
SEM. a p < 0.05 vs first column of graph. b p < 0.05 vs second column of graph. c p < 0.05 vs third column of graph.
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Myricetin Is Predicted to Form
Non-Covalent Bonds Close to the Active
Redox Sites of PDI and ERp5
To assess the nature of the interaction between myricetin and thiol
isomerases ERp5 and PDI, in silico experiments using molecular
docking were conducted. Since the protein quenching studies
suggested an interaction between myricetin and the Trp residues
of the thiol isomerases, the grid box of analysis for molecular
docking was centered at Trp189 for ERp5 and Trp52 for PDI, which
are near the active site of each protein. Results shown in Figure 7
provide an overview of the interactions found for the pose of highest
affinity between ligand and protein, whereas the full description of
interactions can be accessed on Supplementary Tables 1 and 2. It is
notable that myricetin displayed similar affinity to both PDI and
ERp5 (Figure 7), which corroborates in vitro findings (Table 1).
Likewise, all of the interactions herein described are non-covalent
bonds, with hydrogen bonding constituting the vast majority of
these, even though it is possible for myricetin to form adducts with
thiols through carbons 2’ and 6’ on ring B (Masuda et al., 2013).
DISCUSSION

This study expands the applicability of PESc and myricetin, a
flavonoid of widespread occurrence among plants and the most
abundant in PESc, on platelet function and thrombus formation.
Additionally, it offers a novel mechanism by which this flavonoid
may inhibit platelets and thrombus formation. Mechanistically, it
was shown that myricetin was able to bind to thiol isomerases
Frontiers in Pharmacology | www.frontiersin.org 11
and inhibit the reductase activity of PDI and ERp5 possibly due
to non-covalent bonds between the compound and amino acids
adjacent to the redox active site of these proteins.

We first showed that PESc was able to inhibit platelet function.
PESc also inhibited platelet aggregation induced by PKC activator
PMA (a phorbol ester that directly activates PKC), which suggests
some compounds were able to cross the platelet cell membrane,
probably targeting PKC or downstreammolecules, i.e. signaling that
occurs at the end of the platelet activation pathway. Moreover, the
inhibition of platelet function herein described for PESc is in
accordance with reports showing that a green tea flavonoid-rich
extract reduced platelet aggregation and integrin aIIbb3 activation
upon stimulus with ADP, thrombin, or collagen (Kang et al., 2001).
Given that myricetin and gallic acid were the two most abundant
polyphenols found within PESc, we then proceeded to test these
compounds individually.

Myricetin inhibited platelet aggregation and activation
induced by agonists of the collagen and thrombin pathways,
whereas gallic acid showed little to no effect even at 10× higher
concentrations. This is in agreement with previous reports
showing that myricetin strongly inhibited collagen- (Dutta-Roy
et al., 1999) and arachidonic acid-evoked platelet aggregation
(Lescano et al., 2018). Interestingly this latter work reported that
myricetin does not inhibit cyclooxygenase activity in platelets
(Lescano et al., 2018). It has been described that gallic acid is able
to inhibit platelet aggregation only at exceedingly high
concentrations (Chang et al., 2012) which is corroborated by
our data showing no effect below 300 mM. In addition, (Dang
et al., 2014) showed that myricetin was able to reach a peak
FIGURE 7 | Feasible interactions for Myricetin with PDI and ERp5 predicted through molecular docking. The predicted poses of interaction between myricetin and
different thiol isomerases were assessed using AutoDock 4.2 package as described in Methods. (A) Pose of highest affinity for PDI and detailed intermolecular
interactions. (B) Pose of highest affinity for ERp5 and detailed intermolecular interactions. Additional information on interactions and other possible poses are
described in Supplementary Tables 1 and 2.
January 2020 | Volume 10 | Article 1678

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Gaspar et al. Myricetin, a Novel Inhibitor of PDI and ERp5
plasma concentration of 10 mM upon a single oral dose of 100
mg/kg in rats, corroborating that the concentrations tested in our
study could be achievable in vivo.

The effect of myricetin on platelet activation is also compatible
with that previously shown for quercetin, a flavonoid of similar
structure. Navarro-Nuñez et al. (2009) reported that quercetin was
able to inhibit platelet aggregation and signaling induced by
thrombin and specific agonists of the thrombin receptors
protease-activated receptor 1 (PAR1) and 4 (PAR4). The ability of
myricetin to inhibit platelet aggregation and activation induced by
different agonists suggests this flavonoid may act on molecules
common to each pathway. The lack of effect of gallic acid on platelet
function, coupled with the strong inhibition exerted by myricetin
prompted us to focus on myricetin to further assess its mechanisms
of action.

Some flavonoids, such as nobiletin, have been shown to
increase VASP phosphorylation (Jayakumar et al., 2017),
which is a key inhibitory molecule in platelets. Myricetin did
not induce the phosphorylation of VASP at Ser239
(Supplementary Figure 4), suggesting this is probably not the
target for this flavonoid. Likewise, quercetin has been shown to
bind to the Thromboxane A2 (TxA2) receptor (TPR) and this
could also be a potential mechanism of action for myricetin.
However, previous literature has shown that SQ-29548, a specific
TPR inhibitor, displayed little effect on CRP-induced platelet
activation (Taylor et al., 2014) and that platelet aggregation
induced by CRP was independent of TxA2 (Jarvis et al., 2002).
In addition, TRAP-induced aggregation was found to be aspirin-
insensitive, suggesting a minor role for TxA2 (Chung et al.,
2002). Therefore, although the effects of Myricetin on TxA2

pathway cannot be excluded, we argue that this is likely not the
main target of this flavonoid, since it was able to potently inhibit
platelet aggregation and activation induced by CRP and TRAP-6.

Platelets express two principal membrane receptors that are
able to bind collagen: GPVI and integrin a2b1. Despite GPVI
being considered the primary collagen receptor involved in
platelet aggregation and activation (Kehrel et al., 1998),
integrin a2b1 was shown to be the main platelet adhesive
receptor to collagen (Inoue et al., 2003). Moreover, it was
recently shown that GPVI could also bind and contribute to
platelet adhesion and spreading to immobilized fibrinogen
(Mangin et al., 2018), suggesting GPVI is unlikely to be a
target for myricetin since this flavonoid did not inhibit platelet
spreading to fibrinogen (Figure 4C). Interestingly, it was
demonstrated that integrin a2b1 is in close proximity and is
regulated by PDI (Lahav et al., 2003). In fact, platelet-specific
PDI-deficient mice were unable to form proper thrombi on
collagen-coated surfaces, even though their platelets spread
normally on fibrinogen (Kim et al., 2013), similar to myricetin
(Figure 4). This same report described no changes in bleeding
time between wildtype and platelet-PDI deficient mice, also in
accordance with data herein described for myricetin. Therefore,
we decided to assess the interaction between myricetin and
thiol isomerases.

Initially, thiol isomerases were incubated with myricetin and
changes in tryptophan fluorescence were measured. Protein
Frontiers in Pharmacology | www.frontiersin.org 12
quenching studies showed that myricetin was able to bind to
all of the thiol isomerases tested. Values of the dissociation
constant Kq greater than 2.0 × 1010 M-1s-1 support the
formation of complexes between quencher and protein (Ware,
1962), suggesting myricetin forms a complex or complexes with
the thiol isomerases tested. Interestingly, the Kq herein reported
for myricetin is one order of magnitude lower than that
described for other flavonoids binding to ERp57 (Giamogante
et al., 2016). Considering that the dissociation constant is
inversely related to binding affinity, these results suggest
myricetin has a high binding affinity to thiol isomerases, at the
mM range. These results, however, do not allow the conclusion of
whether the interaction between myricetin and thiol isomerases
is due to static or dynamic binding.

Despite being able to bind to PDI, ERp5, ERp57, and ERp72,
myricetin was only able to inhibit the reductase activity of PDI and
ERp5 at concentrations able to be biologically reached. Quercetin, a
structurally similar flavonoid was reported to be a weak inhibitor of
PDI (Jasuja et al., 2012), whereas quercetin derivatives, such as
isoquercetin (Stopa et al., 2017) and rutin (Jasuja et al., 2012), were
shown to be potent inhibitors of PDI reductase activity. It is
important to note that we used the fluorescent EGSH method
whereas these reports used insulin turbidimetry to assess reductase
activity. Thus, differing results would be anticipated since the
fluorescent EGSH method is considered to be more sensitive than
insulin turbidimetry (Raturi and Mutus, 2007). This is corroborated
by a recent report showing distinct behavior of a new class of PDI
inhibitors tested in both assays (Bekendam et al., 2016).
Nonetheless, the inhibition exerted by myricetin is comparable to
that of the flavonoid punicalagin, a non-competitive inhibitor of
ERp57 (Giamogante et al., 2018).

Molecular docking studies predicted interactions between
myricetin and amino acids adjacent to the tryptophan residues
near the redox active sites in each thiol isomerase. This indicates
that the possible quenching mechanism is unlikely to be a direct
complex between ligand and tryptophan. One possibility is that the
binding of myricetin to adjacent amino acids such as Tyr99 of PDI
or His192 of ERp5, may induce excited-state proton or electron
transfer from these amino acids to the Trp nearby, which would
quench its fluorescence, as previously described (Chen and Barkley,
1998). The lack of covalent bonds predicted for myricetin and thiol
isomerases suggest a weak and reversible interaction, similar to that
described for rutin and PDI (Wang et al., 2018), which makes it
more difficult to assess such interaction in vitro. Since myricetin was
predicted to bind close to the redox CGHC site of PDI and ERp5, it
is also hypothesized that myricetin inhibits the reductase activity
through an allosteric effect, similar to what described for rutin
(Wang et al., 2018). Future studies are needed to confirm
these findings.

In conclusion, this study expands the applicability of PESc as
an extract, and describes myricetin as a novel inhibitor of thiol
isomerases ERp5 and PDI with potent antiplatelet and anti-
thrombotic properties. Moreover, myricetin was shown to have
no effect on hemostasis, initially suggesting lower chances of
bleeding upon myricetin treatment. Nevertheless, future studies
with longer treatment regimens are needed to further assess the
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safety and efficacy of this flavonoid, as well as the interaction of
myricetin with other proteins, such as thioredoxin reductase (Lu
et al., 2006) and kinases (Navarro-Nunez et al., 2009). Therefore,
this study may offer new insights into the complementary use of
myricetin for the treatment of thrombosis, corroborating the
promising use of flavonoids to treat cardiovascular diseases with
thrombotic outcomes.
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SUPPLEMENTARY FIGURE 1 | Chromatographic fingerprint of PESc and
flavonoid standards. UV detection of standards for gallic acid, myricetin and
quercetin (A) or a sample of PESc (B) were analysed through LC-MS/MS as
described in Methods. In addition, each fraction was purified and their identity
confirmed by HPLC-MS/MS studies. Peak 1 corresponded to gallic acid, peaks 2
and 3 to myricetin glycoside derivatives, peak 4 to myricetin and peak 5 to
quercetin. Structures of the identified compounds are shown in (C).

SUPPLEMENTARY FIGURE 2 | Increased agonist concentration partially
overcome anti-platelet effect of PESc. Platelet-rich plasma was pre-treated with
PESc (10, 100 or 1000 mg/mL) for 25 minutes and stimulated with ADP (A-D) or
thrombin (THB, E-H). Representative traces for 2.5 mM ADP (A) and 5 mM ADP (C).
Representative traces for 0.01 U/mL THB (E) and 0.02 U/mL THB (G). Quantified
data is shown next to representative curves. a p<0.05 vs first column of graph. b
p<0.05 vs second column of graph. c p<0.05 vs third column of graph. Data
analysed by paired one-way ANOVA and Tukey as post-test. All bar graphs
represent mean ± SEM and individual data points of at least 3 independent
experiments. Arrows indicate when agonists were added.

SUPPLEMENTARY FIGURE 3 | Decreased effect of Myricetin in platelet-rich
plasma. Platelet-rich plasma (PRP) was pre-treated with myricetin (Myr) or gallic
acid (GA) for 10 minutes and stimulated with collagen or TRAP-6. (A) PRP treated
with Myr and stimulated with collagen. (C) PRP treated with GA and stimulated with
collagen. (E) PRP treated with Myr and stimulated with TRAP-6. (G) PRP treated
with GA and stimulated with TRAP-6. Quantified data is shown right next to
representative curves. a p<0.05 vs first column of graph. b p<0.05 vs second
column of graph. c p<0.05 vs third column of graph. Data analysed by paired one-
way ANOVA and Tukey as post-test. All bar graphs represent mean ± SEM and
individual data points of at least 3 independent experiments. Arrows indicate when
agonists were added.

SUPPLEMENTARY FIGURE 4 | Myricetin does not induce VASP
phosphorylation. Resting WP were incubated with myricetin (7.5, 15 and 30 mM) or
PAPA-NONOate (100 mM, positive control) for 10 minutes and lysed in laemmli
buffer supplemented with reducing agent. Lysed cells were processed as described
in Material and Methods and probed for VASPs239 and GAPDH as loading control.
Bar graph represent present the mean of four independent experiments run and
error bars indicate SEM. Data compared using One-way ANOVA followed by Tukey
post-test. There were no statistical differences between groups.

SUPPLEMENTARY FIGURE 5 | Myricetin quenches fluorescence of ERp5,
ERp57, ERp72 and PDI. Recombinant proteins were incubated with myricetin (0.01
to 10 mM) in a black 96-wells plate for 10 minutes and fluorescence spectra
acquired in a fluorimeter using excitation set at 280 nm. Representative
fluorescence spectra shown for ERp5 (A), ERp57 (B), ERp72 (C) and PDI (D). (E)
Stern-volmer plot of quenching data is shown as the linear regression between F0/F
and log of myricetin concentration in mMwhere F0 is the fluorescence of vehicle and
F is the fluorescence in the presence of increasing concentrations of myricetin. Data
represent at least three independent experiments run at least in duplicate and error
bars indicate SEM.
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