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Abstract

This thesis proposes new computational methods for detecting maritime objects in video

data and analyses their performance in the context of a counter-piracy surveillance system.

A key challenge in the maritime anti-piracy context is the wide range of possible envi-

ronments and objects which may be encountered. The focus of this work is therefore on

methods which do not make strong assumptions about the visual appearance of the scene

or targets. This has the additional benefit that they can be used in other applications and

domains.

Two novel approaches are investigated. The first is a saliency-based method which uses

a novel thresholding step and a scene depth map derived from the horizon to emphasise

local saliency and incorporate scene context, respectively. The second uses a deep se-

mantic segmentation network to separate ‘sea’, ‘sky’ and ‘other’ regions. Contextual scene

knowledge is then used to extract objects by applying rule-based reasoning. Evaluation

on publicly available maritime surveillance datasets shows that the proposed methods

address limitations of current approaches, particularly with regard to the detection of

small, distant targets.

The analysis also explores the key aspects of performance required to deploy an algo-

rithm ‘in the field’ as part of a larger system for detection, tracking, situation awareness and

threat detection. As well as the trade-off between real-time operation and performance,

results on data collected from a real-world surveillance system show that the relationship

between detection scores in images and tracking performance in the real-world is not

trivial.

Finally, contributions are made in the benchmarking and evaluation of image-based

maritime object detection methods, including a novel dataset for counter-piracy surveil-

lance, improvements to metrics for performance evaluation in the maritime domain, and

comparison of the proposed approaches with state of the art object detection methods

from other domains.
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Chapter 1

Introduction

1.1 Motivation

The use of automated video analytics is becoming commonplace in urban and indoor en-

vironments where they are used for detection and tracking of pedestrians and vehicles. In

the maritime domain, there is great potential for exploiting similar systems for monitoring

the sea for the purposes of safety and security. However, the use of automated vision-

based surveillance methods in maritime environments remains immature compared to

other domains.

Maritime surveillance is important for situational awareness in a range of applications

to ensure the safety and security of vessels, ports and other maritime infrastructure. Radar

is the de facto standard for object detection and tracking in the maritime domain and

is widely deployed on land and on vessels. AIS (Automatic Identification System) is also

widespread, as it is mandatory under international legislation [98] for vessels over 300

Gross Tonnage and all passenger ships. Under the system, ships report their identity,

position, speed and other characteristics over VHF in a standard message format. Radar

and AIS are often used together but the information is still limited compared to the rich

data offered by visual sensors.

In most cases, a human operator still represents the state of the art for gathering

visual information from a maritime scene, whether it’s from land or from on board a

vessel. Cameras are commonly installed in such locations, so automated video analytics

is an attractive option for extending maritime surveillance systems. On the other hand,

the maritime environment presents additional technical challenges for computer vision
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Fig. 1.1 Cameras of a prototype visual surveillance system for protecting ships against
piracy

methods and real-world systems, so this is perhaps why their use is less widespread than

in indoor and urban environments.

After a resurgence in 2011, maritime piracy continues to place a huge economic and

human cost on commercial shipping around the world [153]. The most effective protection

for ships is a proper lookout to maximise early warning of a potential attack, allowing

time for the crew to prepare accordingly [100]. Radar and crew members with binoculars

represent the state of the art available to commercial fleets1. However, the navigation

radar available on ships does not perform well with small, fast-moving objects [218] such

as the ‘skiffs’ used by pirates, and crew members become fatigued after maintaining a

lookout for a long period. Automated visual surveillance offers a new sensing modality for

ships which could operate continuously without human intervention and increase the

early detection of piracy threats.

Many of these difficulties can be addressed by using thermal cameras. Unfortunately,

the cost of thermal sensor hardware is prohibitive for many applications and the technol-

ogy is restricted for civilian use. Visible light cameras offer a more affordable alternative

which could provide surveillance coverage of a larger region and complement other

available sensors, such as radar. This motivates further research into improving their

performance for operation in maritime environments. Finally, if methods for detecting

objects in maritime environments using visual cameras can be perfected, there are many

1AIS is of no use in this case, as pirates do not tend to broadcast their position

2



1.2 Challenges

Fig. 1.2 A typical surveillance pipeline

applications where the capability would have value. Navigational safety is an on-going

concern for the maritime industry. Vessel traffic monitoring services in ports and harbours,

and crews on-board vessels would benefit greatly from enhanced situational awareness.

Autonomous ships are also on the horizon and visual detection and tracking systems are

likely to play a big role in obstacle avoidance and navigation [128].

1.2 Challenges

In the context of vision-based maritime surveillance, an ideal object detector:

• is able to process high quality video fast enough for real-time operations (for exam-

ple >15Hz)

• locates objects in the image accurately enough for higher-level tasks in the surveil-

lance pipeline to perform their function well, such as situational awareness and

threat detection (see Fig. 1.2)

• has a low false positive rate

• is performant over a wide range of viewpoints, object types and environmental

conditions

The technical challenges commonly associated with visual detection – varying illumi-

nation, object occlusion, and so on – are present in maritime surveillance applications

but the nature of environments on or near the sea can magnify them. A method that is

robust to small illumination changes in an indoor environment, for example, may not

perform well when faced with the diverse levels of scene illumination that can exist at

sea. To compound the problem further, the maritime environment presents additional

challenges which are unique to the sea.

Maritime scenes range from constrained, well-defined areas of water to open, uncon-

strained expanses of ocean. Constrained environments include ports, harbours and bays.

Unconstrained environments exist where there is nothing but water and sky in the field of
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view. This occurs when the platform is in the open sea (i.e. all land is beyond the visible

horizon), but also when looking out from the shore away from land (e.g. monitoring

coastal/littoral regions).

The choice of surveillance platform and location has a big influence on the appear-

ance of maritime scenes and objects within them. Viewpoints could range from cameras

mounted on a floating buoy a few feet above the surface of the water, to cameras carried

by aircraft or drones a few hundred metres in the air. In this research, the problem is con-

strained to cameras which are mounted on the shore (land-based), on airborne vehicles

(aerial), or on surface vessels (vessel-based). Remote sensing (satellite observation) is not

included because of the vastly different distance scales involved and because they operate

on images, rather than video. Detection is possible (and satellites are indeed used for this

purpose) but real-time surveillance is not practical, as the satellite must complete its orbit

before the same area of sea can be observed again, leading to a large time lag between

observations.

Maritime scenes have highly dynamic backgrounds, making it difficult to create reli-

able models for background subtraction. Waves create highly reflective surfaces which

move through the scene and the tops of waves often form white foamy cusps which appear

as small, high-contrast regions in the image. Waves and foam are also created in the wake

of boats. There is therefore a lot of clutter in the sea region of the scene, which poses a

challenge for false positives performance. The other major element of maritime images

is the sky. This may be completely empty or filled with clouds that constantly move and

change shape. These in turn create a constantly varying illumination of the scene so

algorithms must be robust to this.

The weather at sea is far more variable than on land, so environmental conditions

can change considerably on small timescales and tend to be more extreme. This intro-

duces significant variation in the appearance of both the background and the objects of

interest during system operation. Rain, haze and fog – unfortunately common at sea –

absorbs and disperses light reflected from objects, which reduces their contrast against

the background. Different wavelengths are also absorbed at different rates, which can

lead to colour variation.

The characteristics of targets in maritime scenes create further challenges. Their size

can range from that of a swimmer or jetski (a few metres) up to the length of a large

tanker or container ship (a few hundreds of metres). Compared to indoor and urban
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environments, where objects of interest are people and vehicles, the range in size is much

larger. Similarly, their speed can range from completely stationary (i.e. moored in harbour

or at anchor) up to 20 kn for a shipping vessel or 60 kn or more for a fast private yacht.

Because of the long distances that are observable at sea (due to an absence of buildings

or landscape features limiting the view), objects can appear in the field of view as close

as 10 m and as far as the horizon (around 11 km for an observer height of 10 m). These

factors mean that a small, close object could appear very similar to a large, distant object

from the camera’s point of view. Detection, tracking and classification systems must be

able to perform consistently across a large range of image scales.

The unconstrained nature of the sea also means that it is difficult to limit problems

to a subset of object types, as potentially any type of object could come into the field

of view (although reasonable assumptions are usually made about this). Not only that,

but because objects may be approaching from anywhere in the scene (including behind

the camera), the orientation of the target with respect to the camera could be anything

from 0° to 360°. This is particularly problematic with long vessels as their profile changes

considerably depending on whether they are viewed from the side or the end.

1.3 Objectives

Maritime surveillance is a broad problem which presents varied challenges. The focus

of this thesis will be on addressing the anti-piracy use case. The main objectives of this

research are to develop object detection methods which

• can detect small, fast-moving skiffs approaching the vessel as early as possible to

maximise warning for the crew

• provide high quality detections to the higher-level stages of an on-board piracy

surveillance system to support tracking, situational awareness and threat detection

• do not make strong assumptions about the appearance of the target or scene so that

they can be used in a wide range of contexts and applications

• are robust to camera motion, wake, reflections and environmental conditions

• can operate in real-time
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To support this, a further objective is to evaluate and compare the performance of the

proposed methods and others from the literature in the context of a real-world maritime

surveillance system using realistic data.

1.4 Contributions

The main contributions of this thesis are:

• Two novel class-agnostic object detection methods for maritime surveillance, one

using visual saliency and scene context, and the other using semantic scene seg-

mentation and rule-based reasoning

• Improved maritime-oriented performance evaluation metrics, building on work by

Prasad et al. [167], and analysis of their behaviour under different conditions

• Improvements to the Mean Absolute Error measure, commonly used in evaluating

saliency map quality, to reduce the dependence on object size

• Performance evaluation of object detection methods in the context of a real-world

maritime surveillance system for protection of ships against piracy

1.5 Related publications

The work in this thesis is linked to a number of co-authored publications. Chapter 4 and 5

incorporate and extend work from:

• T. Cane and J. Ferryman, “Saliency-based detection for maritime object tracking”,

Proceedings of the IEEE International Conference on Computer Vision and Pattern

Recognition Workshops, 2016

• T. Cane and J. Ferryman, “Evaluating deep semantic segmentation networks for

object detection in maritime surveillance”, Proceedings of the IEEE International

Conference on Advanced Video and Signal Based Surveillance (AVSS), 2018

At the start of this research, contributions were made to an algorithm already under

development. This algorithm is used as one of the baseline methods in the comparisons:
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Benchmarking

4. Visual Attention
and Saliency for
Object Detection

5. Semantic 
Segmentation for 
Object Detection

6. Real-World 
Performance 
Evaluation

7. Conclusions and 
Future Work

Fig. 1.3 Structure of this thesis

• C. Osborne, T. Cane, T. Nawaz and J. Ferryman, “Temporally-stable feature clusters

for maritime object tracking in visible and thermal imagery”, Proceedings of the IEEE

International Conference on Advanced Video and Signal Based Surveillance (AVSS),

2015

Several publications were made as part of the IPATCH project [102] relating to the dataset

and on-board system:

• L. Patino, T. Cane, A. Vallée and J. Ferryman, “PETS 2016: Dataset and challenge”,

Proceedings of the IEEE International Conference on Computer Vision and Pattern

Recognition (CVPR) Workshops, 2016

• L. Patino, T. Nawaz, T. Cane and J. Ferryman, “PETS 2017: Dataset and challenge”,

Proceedings of the IEEE International Conference on Computer Vision and Pattern

Recognition (CVPR) Workshops, 2017

• M. Andersson, R. Johansson, K-G. Stenborg, R. Forsgren, T. Cane, G. Taberski, L.

Patino and J. Ferryman, “The IPATCH System for Maritime Surveillance and Piracy

Threat Classification”, Proceedings of the 2016 European Intelligence and Security

Informatics Conference (EISIC), 2016

1.6 Outline of this thesis

The rest of this thesis is structured as follows (see also Fig. 1.3). Chapter 2 reviews

related work to provide background and context to the contributions. Chapter 3 reviews

evaluation and benchmarking practices for object detection and identifies issues when

applying these metrics in the maritime surveillance context. To address these, new metrics

are proposed which are tailored for evaluating maritime object detection. The datasets
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used for the experiments are introduced, and the evaluation methodology for the rest of

the chapters is laid out.

Chapter 4 and 5 represent the core contributions from this thesis, building on pub-

lished work [44, 45]. Chapter 4 takes inspiration from the human vision system and applies

the idea of visual attention and saliency to the maritime object detection task. Visual

attention and saliency methods from the literature are analysed on maritime data and the

most promising is adapted into an object detection mechanism. Horizon detection is also

introduced as a way of incorporating scene context into the object detection process.

Chapter 5 inverts the object detection approach by segmenting the whole scene into its

semantic classes – primarily sea and sky for the maritime case – and using this information

to find regions which are neither sea nor sky. Deep neural networks are used for the

semantic segmentation step. As training data for scene segmentation is severely limited in

the maritime domain, a related dataset is adapted for the purpose and various training

mechanisms are investigated to improve the ability of the networks to generalise to a a

different data domain.

In Chapter 4 and 5, the proposed object detection methods are evaluated using image-

based metrics and compared against baseline methods from the literature. In Chapter 6,

the proposed and baseline methods are evaluated in the context of a real-world piracy

surveillance system by feeding their object detections into a multi-target tracking mod-

ule. The quality of the tracks using each input is assessed and compared against tracks

from radar and thermal cameras. Finally, Chapter 7 consolidates the conclusions and

observations from all the chapters and proposes extensions and further research for the

future.

8



Chapter 2

Related Work

2.1 Introduction

This chapter reviews related work to provide background and context for the main contri-

butions. Object detection is a very broad field, so the first section focusses on approaches

which have been applied in the maritime domain. These are summarised under four main

categories.

The work in Chapter 4 draws on work in the related fields of saliency, visual attention

and salient object detection. These concepts are defined and the key methods are pre-

sented to explain why this approach was selected for further research in the maritime

context. Similarly, in Chapter 5, the proposed approach builds on previous research in

deep neural networks for semantic segmentation. The key advancements and architec-

tures from this area are discussed to justify the choice of these techniques for maritime

object detection.

A key objective of this work is to analyse the performance of detection methods. The

related work in benchmarking and performance evaluation is saved for Chapter 3, but

this chapter provides background on other real-world applications in the literature, and

commercial systems which report the use of vision-based detection. Finally, the IPATCH

project is introduced, as this forms the backdrop for the research and is the source of the

piracy dataset used in the experiments.
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2.2 Object detection in maritime surveillance

Generally, the methods deployed in maritime object detection are the same techniques

that are used for detecting objects in other contexts, such as pedestrians, faces and

vehicles. Historically, this has included milestone works such as classifier cascades [217],

histograms of oriented gradients (HOG) [57] and deformable parts models (DPM) [73].

The most recent step change has come from deep learning. A comprehensive review of

the evolution of object detection over the last 20 years has recently been published [249].

In the following sub-sections, the approaches that have been explored in the maritime

domain are summarised under several main categories.

2.2.1 Background subtraction

Background subtraction is commonly used in situations where the camera is fixed and

illumination changes are minimal or predictable. However, in maritime scenes, the

background is highly dynamic due to the motion of the sea and in many applications

the camera is also mobile (e.g. mounted on a vessel or buoy). With this in mind, it’s

somewhat surprising that background subtraction is such a popular choice in the maritime

domain. Approaches include frame differencing and averaging [181, 219, 221, 243, 244],

thresholding [35, 72, 142, 169, 170, 233], probabilistic models [1, 23, 60, 76, 110, 112, 192,

208], and spatiotemporal models [31, 48, 202, 203, 229]. A comprehensive review and

performance evaluation of maritime background subtraction methods was conducted

recently [164].

A notable method is work by Bloisi et al. on the Independent Multimodal Background

Subtraction (IMBS) algorithm [24, 28, 30]. This method states it is designed specifically to

address the challenges of dynamic maritime backgrounds. It is therefore selected as one

of the baseline methods for comparison in this study.

A key challenge with using background subtraction methods with a dynamic back-

ground is balancing the different time scales of motion in the scene. Maritime scenes

make this very difficult to achieve in practice. For mobile cameras, the sea causes motion

of the whole scene. The nature and magnitude of the motion depends on the sea condi-

tions and the size of platform on which the camera is mounted (for example, a small USV

has large, rapid motion, whereas a large tanker exhibits slower and smaller movements).

10



2.2 Object detection in maritime surveillance

Stationary and slow moving objects present another challenge for background sub-

traction methods. Care must be taken so that they are not ‘learned’ into the background.

Maritime surveillance applications must be able to detect stationary and slow moving

objects, as well as fast-moving ones. Also, because of the large viewing ranges, a distant

object can appear stationary or slow moving, even if it is actually moving quite quickly. In

addition, a common feature of maritime scenes is wake created by boats moving through

the water. This appears as a persistent change in the background, so a different form of

processing would be required to suppress it.

2.2.2 Foreground segmentation

There are a number of standard segmentation algorithms which have been applied to

maritime scenes for the object detection problem. These methods leverage image features

(colour, texture, etc.) to divide the image into groups of pixels with related properties

which represent higher-level structures in the scene. The fast graph-based segmentation

method [74] is used by Socek et al. [202] to segment images from a visual camera based on

colour. Bao et al. [15, 16] use the same approach and then label each segment as ‘water’

or ‘non-water’ using a SVM classifier trained offline. Villiers et al. [60] use a level set (with

Chan-Vese energy minimisation) to segment up to five objects in real time.

Segmentation methods can perform better than background subtraction because

they utilise information in the image such as gradients, edges and texture, in addition to

pixel colour or intensity. This also means they can exploit certain known properties of

objects and backgrounds to distinguish true targets and reduce false positives. However,

they rely on good contrast between objects and background regions in order to segment

objects accurately. In maritime environments, contrast is often reduced by atmospheric

conditions (haze, rain, fog, etc.) or by strong glare from the sun. This is especially the case

with distant objects, which makes them less suitable for early piracy detection. Conversely,

contrast between wake and sea is usually very high, so these regions are likely to be

segmented incorrectly as false positives.

2.2.3 Object models

Another popular approach is to train a classifier to respond to specific characteristics of

the objects of interest. Models can be colour-based [205, 206, 232], gradient-based [70–72],
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or use more complex features, such as SIFT features [43], Haar classifiers [25, 26, 29] or

HOG features [48, 141, 228].

This approach is more robust to dynamic background. However, it is very difficult

to design hand-crafted features which are discriminative enough for complex natural

images, and methods which learn features need sufficient training data, which can be

difficult to obtain in the maritime domain. Restricted training data leads to a limited

ability to generalise, both for new object classes and for the same objects viewed under

different conditions, viewing angles or scales. Maritime scenes contain diverse lighting

conditions, target viewing angles and distances, so this could be problematic. Models

which are specific to certain classes of object will not detect other types of object if they

happen to enter the scene. If class-agnostic detection is required then multiple detectors

must be used.

2.2.4 Deep learning

Deep learning has started to enter the maritime domain in recent years. Popular choices

of network are Fast R-CNN [36, 146], Faster R-CNN [50, 116, 210] and Mask R-CNN [149],

whilst Cruz et al. [53, 54] use DetectNet1. Networks are generally pre-trained on ImageNet

[188] and then fine-tuned on a much smaller domain and task-specific dataset. The use

of recurrent networks is not common yet in the maritme domain, but [55] is pioneering

the use of LSTMs.

Deep learning addresses the limitations of generalising across different scenes and

objects, but to do this requires significant amounts of training data. Whilst very large

datasets are now available for training deep networks [67, 126, 135, 188], they do not

necessarily contain sufficient images which are representative of maritime surveillance

scenes. The situation is worse when considering the piracy use case specifically. Fine-

tuning on additional data can address this, but labelled data in the public domain is very

limited and collecting new data at sea is expensive.

2.3 Saliency, visual attention and salient object detection

One reason why human lookouts remain the state of the art for maritime surveillance is

the far superior capabilities of the human visual system compared to cameras. Human

1https://devblogs.nvidia.com/detectnet-deep-neural-network-object-detection-digits
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eyes have a very large dynamic range and perceive a richer colour spectrum than it is

possible to capture with cameras. This gives us a superior ability to correct for lighting,

exposure and contrast. In addition, we do not have to have seen a certain type of object

before in order to perceive it. These are desirable properties to emulate in a system for

maritime object detection.

One of the fundamental properties that drives the human visual system to process a

scene is saliency. Saliency is the property of being noticeable or important. In images, the

saliency of a pixel or region is a combination of local and global uniqueness or contrast. It

is context-dependent; there is no absolute measure of saliency. Saliency has been explored

in the field of cognitive neuroscience, as well as computer vision. As a result, there are two

further terms to define:

• Visual attention is a process which directs cognitive resources to the most relevant

part of an image or scene. The visual attention mechanism is what guides saccades

(eye movements) to most efficiently acquire information. A large body of research

[42] has attempted to model or simulate the visual attention mechanism with the

aim of predicting how a human would look at an image, in terms of which points

would be attended to and in what order.

• Salient object detection has also been widely studied in the literature [32]. Here

the aim is to extract the salient objects witxh pixel-level accuracy. Salient object

detection methods therefore tend to be more data-driven and influenced by image

processing and probabilistic techniques from classical computer vision and, more

recently, deep learning.

2.3.1 Saliency and visual attention-based approaches in the maritime

domain

Outside the main body of saliency and visual attention literature, there are a number of

works which have adopted this approach specifically for the maritime object detection

task, motivated by the desirable properties described above. In Chapter 4, these saliency-

based methods are evaluated on maritime surveillance data to compare their performance

and select the most promising for further investigation.

In Table 2.1, the methods are summarised to compare and contrast the different

technical approaches used to achieve the visual attention concept. The efforts in this
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Fig. 2.1 Itti & Koch computational model (adapted from [105])

space can be divided into two main categories: those which have adopted biologically-

inspired methods [6, 7, 59, 136, 144, 145, 201] and those which use frequency domain

analysis techniques [175–177, 189, 212, 235].

The biologically-inspired approaches mostly follow the Itti and Koch model of visual

attention [104, 105] (Fig. 2.1). In this model, the input image is first decomposed into

feature maps in different feature channels, such as colour and orientation. A centre-

surround process emphasises where a region of the feature map contrasts with its local

neighbourhood. This process is performed on a pyramid of images to capture features

at different scales. The features are then normalised and combined across scales, and

then across channels, to produce a visual attention map which encodes the saliency of

each pixel. The methods can be distinguished by their choice of features, how the centre-

surround process is modelled, and how the different feature maps are combined. These

are summarised in the Saliency Steps column of Table 2.1.

Huang et al. [97] proposed a slightly different model called boolean map theory. Under

the boolean map model of visual attention, an observer can only access one feature

channel at a time in the form of a boolean map. Zhang & Sclaroff [240, 241] formulated the

theory into a saliency detection method (Fig. 2.2) called Boolean Map Saliency (BMS). The
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Fig. 2.2 Boolean map saliency block diagram (adapted from [241])

method uses the property of ‘surroundedness’ to identify regions which receive attention

in each boolean map. These are then combined into an overall saliency map.

The frequency domain analysis methods operate mainly in the frequency domain,

rather than the spatial domain, and typically stem from signal processing theory and

mathematics. These include Principal Components Analysis (PCA), Phase Fourier Trans-

form (PFT), spectral residual (SR) [94] and maximum symmetric surround saliency (MSSS)

[3]. The different techniques used are summarised in the Saliency Steps column of Table

2.1.

In order to detect objects, most approaches require additional methods to be used

in conjunction with the saliency step. This includes background subtraction using a

Mixture of Gaussians [144, 212] or learning a background classifier [7], learning weights

for combining features in the saliency map [136], and Robust Principal Components

Analysis (RPCA) to identify foreground and background from the separated sparse and

low-rank matrices [201]. Data-dependent steps are quite common, which means the

methods may not generalise well and are difficult to reproduce. The additional processing

and data-dependent steps are summarised in Table 2.1.

Table 2.1 Visual attention and saliency based methods in the maritime domain. Key: BI =
Biologically-inspired; FD = Frequency Domain Analysis

Approach Category Saliency Steps Additional Steps Data-dependent Steps

Albrecht [6, 7] BI Block-based density,

dissimilarity and surround

features (edges, colour,

right-angles, etc.)

- Naïve Bayes classifier

trained for sea / sky / others

based on colour and

gradient orientation

histograms; Feature

integration done through a

second Naïve Bayes

classifier
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Dawkins [59] BI Histogram-based colour

commonality (7 colour

spaces), high pass filtering

Temporal pixel intensity

variance and average

variance

Binary target / background

classifier, linear weights,

AdaBoost; Wake

suppression with separate

classifier

Liu [136] BI Local colour and edge

orientation histograms

comparison across 3 scales

- Feature integration by

learning linear weights for

each feature map as per

[103]

Makantasis

[144, 145]

BI Edges, horizontal / vertical

lines, frequency, colour,

entropy – local, global and

‘window’ levels

MOG background

subtraction

Feature integration through

SVM binary (target /

background) classifier using

attention maps and

background model features

Sobral [201] BI Boolean Map Saliency RPCA sparse and low rank

decomposition

background subtraction;

Median temporal

averaging on BMS

-

Ren 2011 [177] FD SVD of intensity channel to

get most dominant

components, then subtract

to leave salient components,

then saliency map is further

processed by SR and PFT

approaches

- -

Ren 2012 [177] FD Spectral residual + spatial

filtering on each LAB colour

channel

Temporal accumulation of

saliency over (e.g. 6)

frames

-

Ren 2016 [175] FD SVD decomposition of

amplitude spectrum on

each LAB colour channel,

then normalised and

combined

- -

Sadhu [189] FD Maximum Symmetric

Surround Saliency (MSSS)

Foreground/background

linear regression using

colour and texture (LBP,

entropy) features; Weighted

sum of feature regression +

MSSS maps

Tran 2016 [212] FD Spectral residual and MSSS,

2 maps fused through linear

combination with dynamic

weights

Background subtraction

(MOG, VIBE)

-
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2.4 Deep learning for semantic segmentation

Yao 2013 [235] FD Intensity image, several

scales (fixed image sizes) –

spectral residual, followed

by MSS on the SR saliency

map. Entropy used to select

best scale, which is then

resized and normalised

- -

2.3.2 Salient object detection approaches

Given the number of publications in this category, it is surprising that there are no exam-

ples which have been applied in the maritime context. There are various reasons why

this is perhaps the case. As they are designed for running offline on image sets, rather

than live video, they could be too slow for real-time applications. As they have been

tailored to compete in saliency benchmarks, they might be biased towards the properties

of the datasets used [32]. In particular, many images in saliency benchmarks [33] are

photographs where the photographer has pre-selected the salient objects and ensured

they are in focus, with balanced colours and lighting, etc. Methods which exploit these

factors would not fare well in the real world maritime environment.

For the analysis in Chapter 4, three recent representative methods have been selected

to compare against the maritime-specific approaches from Table 2.1. The top performing

method (in terms of PR and AUC) – DRFI [222, 223] – and the fastest method – HC [51] –

from a recent salient object detection benchmark [33] were selected, along with a more

recent method – DSS [92, 93] – which achieves state of the art performance on 5 saliency

benchmark datasets. DRFI [222, 223] is similar to the biologically-inspired methods,

in that it utilises different features from the image extracted from regions at different

scales. A random forest is used to predict the saliency value of each pixel in the image.

HC [51] is a histogram contrast-based method which measures saliency of a pixel using

colour separation from all other pixels in the image. DSS [92, 93] is a deep-learning based

approach which repurposes an earlier deep edge detection network [230] and makes a

number of architectural modifications to improve performance.

2.4 Deep learning for semantic segmentation

Semantic segmentation is the process of assigning a class label to every pixel in an image.

This is an important task in total scene understanding and is crucial to applications such
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as autonomous driving and augmented reality [41, 52, 79]. Deep learning approaches

now dominate the field [79]. Driven by the potential application in autonomous vehicle

navigation, recent architectures [147, 159] are also specifically designed with speed and

memory consumption in mind so that they can run in real time on low-power hardware.

Semantic segmentation has not been used widely in the maritime domain. Kristan

et al. [38, 119, 122] have developed a structurally-constrained graphical probabilistic

model for segmentation, and objects can be extracted by considering regions which do

not fit the model well. The method has been shown to work well, but it requires careful

tuning of priors so would need constantly updating for a real-world application. Deep

learning-based methods are not common either, as these require large amounts of training

data which is not currently available in the maritime domain. However, deep semantic

segmentation networks have been used for the purpose of horizon detection [106] and for

segmenting ships in remote sensing satellite imagery [224]. A very recent publication [37]

conducted similar analysis to that of [45] and Chapter 5 of this thesis but using different

networks and different data. Because of its limited use in the maritime domain, semantic

segmentation has been chosen as an approach to investigate in more detail.

In Chapter 5, recent semantic segmentation networks are evaluated as the basis for

an object detection system. The networks all follow the fully-convolutional encoder-

decoder architecture paradigm established by [12] and [140]. The encoder creates a

feature hierarchy whilst reducing the spatial resolution. The role of the decoder is then

to upsample the low-resolution representation created by the encoder and fine-tune the

details to create a pixel-level classification the same size as the original input image. Being

fully convolutional reduces the number of network parameters which improves inference

speed. It also means they can be applied to input images of any size, irrespective of the

size of the training images. This is useful for real-world applications, where the input data

may not be the same resolution as the training data.

The networks studied in Chapter 5 all use standard CNN concepts, such as convolution

and max-pooling, batch normalisation [101] for accelerating convergence, and dropout

[91] for regularisation. In addition, some of the more recent networks use residual con-

nections [90], dilated convolutions [237] and factorised / asymmetric convolutions [9] to

improve classification performance and inference speed. The distinctive characteristics

of the networks are summarised:
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UNet [184] The UNet architecture has a symmetrical encoder-decoder structure such

that the output of the first layer can be concatenated with the input to the last layer, the

second layer with the second to last, and so on. This is intended to allow the network to

make use of high-resolution information from the input when constructing its output.

SegNet [12, 13] SegNet uses the convolutional layers of the VGG16 network [199] as its

encoder, and a ‘mirror image’ of VGG16 as its decoder. The decoder uses pooling indices

from the corresponding max-pooling layer of the encoder to create sparsely upsampled

feature maps, which are then refined through trainable convolutional filters.

ENet [159] The ENet architecture is based on a ‘bottleneck’ module, inspired by the

residual blocks of ResNet [90]. Dilated convolutions are used in several bottleneck modules

to increase the effective receptive field without losing resolution. The decoder is smaller

than the encoder to reflect the fact that its main role is to upsample the features, whereas

the encoder must learn a good representation in feature space.

ESPNet [147] ESPNet is also based on a repeated module that exploits dilated convo-

lutions and residual connections. Within each ESP module, a spatial pyramid of convo-

lutions learns multi-scale representations simultaneously. Extra efficiency is gained by

sometimes using factorised convolutions in place of the normal versions.

ERFNet [182, 183] ERFNet uses a novel redesign of the residual layer in its ‘non-bottleneck’

configuration, using factorised convolutions to gain speed. Dilated convolutions are also

inserted at certain layers to increase the receptive field.

EDANet [139] EDANet is built around the EDA module which exploits asymmetric convo-

lutions for efficiency and dense connections [95] across layers for segmentation accuracy.

Like in ERFNet, dilated convolutions are used in some layers to capture more contextual

information.

ICNet [245] ICNet uses a cascaded feature fusion process to combine features from

different layers of the network and at different resolutions. The input is processed in

multiple network branches at different resolutions and the outputs are fused into the final
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segmentation. The network is deeply supervised (each branch has its own loss) and speed

gains are achieved because the high resolution branch is processed by fewer layers.

As research in this area has progressed, the network architectures have used more so-

phisticated structures to improve performance, whilst keeping the number of parameters

(and therefore inference time) as low as possible. Key advancements, such as the ‘bottle-

neck’ module and asymmetric convolutions, reduce computational cost and therefore

increase speed. Dilated convolutions are used to increase the effective receptive field of

the network, and techniques such as residual connections and combining feature maps

from multiple layers improve performance across scales.

From the maritime perspective, the deep semantic segmentation approach is inter-

esting, as the number of images required for training has been observed to be much less

(100s of images) [13] than is required for deep object detection networks (millions of

images). This makes them attractive for the maritime domain, where there is very little

training data available. Furthermore, deep semantic segmentation networks have not

been used for object detection in the maritime domain, so they represent an opportunity

to investigate a novel approach.

2.5 Maritime object detection in real-world systems

A number of research groups and commercial organisations are developing prototype

and operational systems where video analytics techniques are being applied to enhance

the surveillance of maritime scenes. Common use cases include vessel traffic monitoring

in ports and waterways [25, 168, 179, 195, 221], search and rescue [109, 205, 227, 244],

floating object detection [31, 226], collision avoidance [193, 200], and environmental

protection [209].

Schwering et al. [194] provide a good overview of what a complete littoral surveillance

system must do. They set out the requirements for a programme of research undertaken

by the Dutch Ministry of Defence covering requirements for sensors, adaptive sensor

management, signal conditioning, and algorithms for detection and classification. Trade-

offs are assessed and proposals for potential evaluation criteria are presented. Dijk et al.

[61] set out the challenges that are still present seven years later.
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In the USA, the US Coast Guard have sponsored a programme to develop the SeeCoast

system for monitoring ports and harbours [179, 195]. The objective is to reduce the

workload for operators monitoring port and harbour regions while maintaining situation

awareness. The system performs automated scene understanding with human-in-the-

loop control from low-level detection and tracking through to fusion with other sensors

(radar, AIS) and activity analysis for alarm generation. Learned normalcy and rule-based

anomaly detection are implemented to alert operators.

A slightly different application has been addressed by the Argos system which has been

put in place along the Grand Canal in Venice for monitoring waterway traffic. A network

of cameras along the length of the canal provides a fused situational picture to a central

control room. Bloisi et al. [23] report that the system has been running continuously

24 hours a day since 2007 and is able to track boats navigating the channel with good

accuracy in real-time.

There are a few companies which offer commercial products and services in this area.

Automatic Sea Vision2 (ASV) offer software solutions for automatic detection and tracking

of surface targets in a nautical environment [163, 192]. Information is displayed to users

in a central display which also allows them to interact with the cameras (e.g. to zoom

in or follow detected objects). The system is reported to be used on ships as well as in

harbours/ports and for protecting critical infrastructure. A Swedish company, Sjöland &

Thyselius, offer a range of services and products for an airborne maritime surveillance

system3 targeted at applications such as oil spill tracking, ship traffic control, search

and rescue, fishery surveillance and border control, as well as general surveillance for

protection of the Exclusive Economic Zone. The product is a mission management system

that presents all available information to the operator in a common situational picture.

An integrated ship image database is included in the latest model. The system can be

interfaced with visual and IR cameras, as well as radar, AIS and other communications

equipment.

The use of vision-based object detection in real world maritime surveillance systems

is not widespread, especially in commercial products. Systems and methods that address

piracy detection specifically are less common still. This area therefore represents a great

opportunity in which to advance the research around vision-based object detection

methods and maritime surveillance systems.

2www.asv.fr
3www.st.se/airborne-systems
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2.6 The IPATCH project

The IPATCH project [102] was a collaborative European research project funded by the

European 7th Framework Programme. The topic it addressed was “Non-military pro-

tection measures for merchant shipping against piracy”. The three main goals of the

IPATCH project were: 1) to perform an in-depth analysis of the legal, ethical, economic

and societal implications of existing counter-piracy measures; 2) to produce well-founded

recommendations to the shipping industry to support the use and further development

of countermeasures; and 3) to develop a prototype on-board automated surveillance and

decision support system which could provide early detection of piracy threats and support

the captain and crew in selecting the most appropriate countermeasures.

As part of the project, data collection campaigns were carried out in which cameras

were mounted on a vessel at sea and small speedboats acted out realistic piracy scenarios.

Four visual and three thermal cameras were used, and the video data was supplemented

by recordings of the data feeds from the ship’s radar, AIS and navigational systems. The

prototype system was also set up and trialled live on two occasions: once on a Naval

training vessel in France and once on a crude oil tanker in Greece. This allowed the system

to be tested under realistic conditions, as well as providing further opportunities to collect

data for algorithm development and performance evaluation.

The work in this thesis was carried out alongside the IPATCH project so it provides

background and context across the chapters. In Chapter 3, the IPATCH dataset is described

in more detail. In Chapter 4 and 5, the proposed object detection methods are evaluated

using video sequences recorded during the campaigns. Finally, in Chapter 6, the proposed

methods are evaluated by passing their detections to the IPATCH tracking system to be

combined with other recorded data.

2.7 Summary

The development of object detection methods in the maritime domain has followed a

similar course to that of the wider object detection field. Background detection approaches

are the most popular, despite being susceptible to the problems caused by dynamic

background and stationary / slow-moving targets, which are very common in maritime

surveillance. Other classical approaches have been explored, but there are still weaknesses

and limitations relating to the specific challenges of the maritime environment.
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2.7 Summary

The saliency-based approach has been identified by a number of authors as a good

alternative to pursue. Visual saliency is a promising approach for the maritime surveillance

case because it should be inherently robust to dynamic background and environmental

conditions. It is also class-agnostic, meaning that it can be used for any type of object and

in lots of different applications. In Chapter 4, this body of work is analysed thoroughly to

compare the methods and identify ways to improve the object detection performance.

The use of deep semantic segmentation networks is under-explored in the maritime

domain, so it is interesting to see how this approach performs as the basis for an object

detector. Although these networks can learn from smaller training sets, there is still a lack

of maritime training data which will need to be overcome through other means.

Finally, there is scope for more research into how vision-based detection methods

perform in the context of a wider system. The anti-piracy use case is a valuable case

study for this, as it is an important application of this research and has not been widely

investigated.
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Chapter 3

Evaluation and Benchmarking

3.1 Introduction

Performance evaluation of algorithms allows the objective and quantified comparison

of different methods, helps determine the effect of changing different parameters within

an algorithm, and can help select the most suitable methods for use in a particular

application or under certain conditions. When developing algorithms, benchmarking

performance against previous work can confirm that progress is being made in extending

the capabilities or addressing weaknesses.

In this chapter, the evaluation and benchmarking methodology that will be used in the

experiments of this thesis is laid out, and the baseline methods against which the proposed

methods will be compared are described. Related work on performance evaluation from

the wider object detection tracking community is summarised, but there are aspects of

the maritime surveillance task which require a more tailored approach. Recent maritime-

oriented metrics which aim to address this are analysed and further improvements are

proposed. Finally, improvements to the Mean Absolute Error metric are proposed to make

it invariant to object size when evaluating saliency maps.

3.2 Object detection and tracking

3.2.1 Datasets and challenges

In the wider object detection and tracking community, there have been many workshops,

campaigns and projects built around performance evaluation on a curated dataset, often
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accompanied by a challenge where participants compete for the best results. Some have

focussed on specific classes of object (e.g. pedestrians [63, 222, 225], cyclists [131], faces

[14, 190, 225], traffic signs [127] or license plates [231]), whereas others have focussed

on detecting or tracking objects in a specific context (e.g. security surveillance [215],

protection of mobile assets [161], crowds [75] and autonomous driving [80]). There are

also challenges which focus primarily on tracking, such as the Multi Object Tracking

(MOT) challenge1 [129, 148] and the Visual Object Tracking (VOT) challenge2 [120].

A number of very large datasets have been developed to meet the needs of object

detection methods which require large training sets. The PASCAL Visual Object Classes

(VOC)3 [67], ImageNet Large Scale Visual Recognition Challenge (ILSVRC)4 [188], Com-

mon Objects in Context (COCO)5 [135] and Google Open Images6 [126] datasets contain

millions of images covering thousands of classes and have become the de facto standard

for training and benchmarking performance.

In this thesis, the task of interest is object detection in maritime surveillance video

data. Whilst the above challenges and datasets offer a large amount of high quality data,

they do not cover the range of object characteristics and scenes which are representative

of the maritime domain. Whilst some of the larger datasets, such as ImageNet and COCO,

have potential for use in pre-training deep networks for object detection, they are not

suitable for evaluation of maritime surveillance tasks.

3.2.2 Performance evaluation

In this work, the groundtruth available is in the form of bounding boxes and the focus is on

metrics which use region overlap as the fundamental building block to align detections to

groundtruth. Other methods have been used, such as intercentroidal distance or ‘bound-

ing box distance’ [196], but region overlap measured with Intersection over Union (IoU)

now dominates. In addition, the proposed methods are class agnostic, so classification

performance is not evaluated.

True Positives (correctly detected objects), False Positives (detections which do not

correspond to a real object) and False Negatives (missed objects) are the primary perfor-

1https://motchallenge.net
2http://www.votchallenge.net
3http://host.robots.ox.ac.uk/pascal/VOC
4http://image-net.org/challenges/LSVRC
5http://cocodataset.org
6https://storage.googleapis.com/openimages/web/index.html

26

https://motchallenge.net
http://www.votchallenge.net
http://host.robots.ox.ac.uk/pascal/VOC
http://image-net.org/challenges/LSVRC
http://cocodataset.org
https://storage.googleapis.com/openimages/web/index.html


3.3 Maritime surveillance datasets

mance indices of interest and there is a range of measures derived from these basic counts

(such as F-Score, False Alarm Rate, True Positive Rate, etc.). These require a decision

on how to map a 2D bounding box location to a hit/miss binary classification. This is

commonly done by selecting an overlap threshold (e.g. 0.5 / 50%), or plotting a curve for a

range of thresholds (e.g. Precision-Recall curves). One disadvantage of these measures is

that they do not explicitly convey information about how well the object is localised, and

using a discrete binary score (hit/miss) for a continuous localisation measure (bounding

box position) does not seem a natural fit.

The CLassification of Events, Activities and Relationships (CLEAR) evaluation [19, 204]

and the Video Analysis and Content Extraction (VACE) program [114] were instrumental

in establishing a set of metrics for visual object detection and tracking which capture more

information about the performance. These have been adapted and built on in subsequent

work [47, 151] but the high-level ideas are the same. The core metrics are Multiple Object

Detection/Tracking Precision and Accuracy (MODA, MODP, MOTA and MOTP).

Since the PASCAL VOC challenge, the evaluation of object detection has been domi-

nated by Average Precision (AP). Average Precision is borrowed from information retrieval

[191] and is computed by taking the average of precision values measured at different

recall levels. It is initially computed per class and then averaged across all classes to give

an overall score called mean AP (mAP). Precision and recall were originally computed for

a single overlap threshold (0.5 in PASCAL VOC). Later, in the COCO challenge, AP was

computed at a range of values between 0.5 and 0.95 and the mean of these AP values was

taken (also called ‘mAP’). This was to reward methods which achieved larger overlap with

the groundtruth.

AP is not used in this work for two reasons. Firstly, it does not convey information

about the localisation accuracy [154] and secondly, the detector needs to output (per-

class) ranking to compute it and not all of the methods under consideration in this thesis

output scores / rankings.

3.3 Maritime surveillance datasets

Datasets collected from land using cameras on buildings or the shore are common as

they are easy to obtain. Data from cameras on small leisure craft is also quite common.

Datasets from on-board larger vessels are more difficult and expensive to obtain. Navies
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sometimes provide access to this kind of data to research groups, but it is rarely made

available in the public domain because of security issues. Aerial datasets are becoming

more common with the rise in use (and fall in cost) of UAVs and drones. The rest of this

section briefly summarises datasets which address the maritime surveillance task and

explains which ones are selected for experiments in this thesis.

3.3.1 Publicly available datasets

Imagery Library for Intelligent Detection Systems (i-LIDS)

Produced by UK Home Office, the i-LIDS dataset [215] is a rare example of a controlled

dataset by an agency that can provide independent evaluation and accreditation of al-

gorithm performance. The data concerns detection of people and vehicles for security

surveillance and there are a few sequences with a boat on water. Unfortunately, the dataset

and evaluation service was discontinued in March 2015.

Maritime Detection Classification and Tracking Database (MarDCT)

The Maritime Detection, Classification, and Tracking (MarDCT) dataset7 [27] contains

videos and images from multiple sources, including fixed, moving, and pan-tilt-zoom

cameras, covering various maritime scenarios. Groundtruth is provided for a selection

of the sequences, covering the tasks of detection, tracking and classification. Addi-

tional groundtruth has been contributed by Prasad et al. [168], including some horizon

groundtruth.

A large portion of the dataset is taken from CCTV cameras around the canals of Venice.

This data has been captured as part of the ARGOS project [23]. Based on the definition

of ‘maritime’ in this research (see Chapter 2), the Venice data is out of scope for use in

training or evaluation. The sequences are low resolution and many suffer from significant

compression and other artefacts. MarDCT sequences were therefore not used extensively

in this research.
7http://www.dis.uniroma1.it/~labrococo/MAR
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Fig. 3.1 Example MarDCT images

Maritime Object Detection Dataset (MODD)

MODD8 contains videos captured by an Unmanned Surface Vehicle (USV) so the data

is characterised by a low viewpoint and large camera motion. Version 1 of the dataset

[119] contains 12 sequences with groundtruth for objects on the surface of the water and

horizon line to evaluate segmentation of the sky, sea and shore regions. Version 2 [38] is

similar but provides stereo camera data. MODD is not used extensively in this thesis as it

is not representative of the piracy detection use case. However, it is useful for evaluating

the ability of the proposed methods to generalise to other applications.

Fig. 3.2 Example MODD images

MARVEL

MARVEL9 [11] is a very large dataset for training and evaluation of fine-grained classifica-

tion and instance recognition and image retrieval of vessels. It contains 2 million images

of vessels from the Shipspotting website10, where ship and boat enthusiasts are able to

upload pictures of vessels when they are spotted in ports and waterways around the world.

8https://www.vicos.si/Downloads/MODD
9https://github.com/avaapm/marveldataset2016

10http://www.shipspotting.com
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Data from ShipSpotting has been used previously by Albrecht et al. [6, 7] for testing a

saliency-based detection method.

MARVEL is not used in this work for several reasons. The images are labelled with the

vessel name, IMO number, type (e.g. bulk carrier, trawler) and other vessel particulars

but there is no groundtruth for object detection training or evaluation. The images only

contain large vessels, so are not suitable for testing detection of small craft like that ones

used by pirates. The images are also carefully taken photos where the object is in focus,

well framed, in good lighting conditions and so on. This is not representative of the visual

challenges which occur in a real-world surveillance system.

Fig. 3.3 Example MARVEL images

MAritime SATellite Imagery (MASATI)

MASATI11 is a recently published [77] remote sensing dataset which focusses specifi-

cally on ship detection. It provides over 7,000 image tiles taken from Bing maps with

accompanying bounding box annotations for vessels. This dataset is out of scope for this

work.

PETS 2005

The IEEE International Workshop on Performance Evaluation of Tracking and Surveillance

(PETS) has run since 2000, covering a range of themes, challenges and datasets. The theme

of the PETS 2005 workshop12 was target detection and tracking in wide area scenes. One

of the datasets made available that year consisted of a Zodiac boat approaching the shore

captured by a thermal camera. Fig. 3.5 shows some example frames.

11https://www.iuii.ua.es/datasets/masati/index.html
12http://www.cvg.reading.ac.uk/PETS2005
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Fig. 3.4 Example MASATI images

PETS 2005 is a challenging data set in several respects. In most sequences, the view is

not stationary but pans-tilts-zooms to new locations, the images are significantly com-

pressed and noisy, and the objects to be detected are often small and low-contrast. PETS

2005 has been used only a few times in the literature [133, 203, 229]. As there are no visual

sequences (only thermal), this dataset is not used in this study.

Fig. 3.5 Example PETS 2005 images

PETS IPATCH

As part of the IPATCH project [102], a large quantity of video data was collected on piracy

threat detection scenarios. The sequences consist of small speed boats (‘skiffs’) approach-

ing a vessel in a variety of patterns to represent different suspicious, threatening and non-

suspicious behaviours. The video data is accompanied by AIS and radar data from the host

vessel and GPS data from trackers on the skiffs to allow evaluation against groundtruth in

real-world coordinates.

Three data collection camapaigns took place during the project in April 2015, Septem-

ber 2016 and May 2017. A portion of the data was first publicly released as part of the PETS
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2016 challenge [160]. The following year, the data was re-used in the joint BMTT-PETS

workshop [162]. Data from all three campaigns forms the primary basis for evaluation in

this thesis and is explained in more detail in Chapter 6.

Fig. 3.6 Example IPATCH images from the 2015, 2016 and 2017 campaigns (left to right)

Singapore Maritime Dataset (SMD)

The Singapore Maritime Dataset (SMD)13 [168] provides a large set of video sequences

captured around Singapore waters from on shore and on board vessels using high resolu-

tion visual and NIR cameras. There are 36 sequences comprising more than 17,000 frames.

The number of objects per sequence ranges from 2 to 20 and there is a broad range of

target sizes due to the large viewing distance. It also provides some more challenging

sequences in low light and haze conditions. Groundtruth is provided for evaluation of

detection, tracking and horizon detection algorithms. Whilst it does not contain scenes

which are representative of the piracy use case, SMD is used in this study because of the

complementary challenges it provides alongside the IPATCH dataset.

Fig. 3.7 Example Singapore Maritime Dataset images

SEAGULL

The SEAGULL dataset14 [180] contains aerial surveillance sequences captured from the

point of view of a fixed wing unmanned aerial vehicle (UAV) flying over the sea. A range of

13https://sites.google.com/site/dilipprasad/home/singapore-maritime-dataset
14http://vislab.isr.ist.utl.pt/seagull-dataset
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sensors is used, including visible, NIR, thermal and hyperspectral. Because of the view-

point, challenges include small targets, significant camera motion and bright reflections.

Groundtruth is provided for object detection evaluation. Whilst aerial surveillance is out

of scope for evaluation in the IPATCH context, SEAGULL is included in the experiments in

this study to see how the proposed methods can generalise to different viewpoints.

Fig. 3.8 Example SEAGULL images

SeaShips

A new dataset designed for training and evaluating ship object detection algorithms has

recently been published called SeaShips [197]. The dataset consists of over 31,000 images,

covering six vessel types, acquired from the cameras in a coastal video surveillance system.

The data covers a range of object scales, hull parts, illumination, viewpoints, backgrounds,

and occlusions. Bounding box groundtruth is provided for all images.

Whilst the paper [197] discusses the importance and value of publicly available datasets

for benchmarking and performance evaluation, at the time of writing, the data is unfor-

tunately not yet available to download. However, a number of example videos showing

object detection results are available as supplementary downloadable material from

http://ieeexplore.ieee.org.
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Fig. 3.9 Example SeaShips images and detection results (from supplementary material
provided with [197])

VAIS

VAIS15 [242] is a set of images, acquired from thermal and visible cameras simultaneously

to support development of multi-modal, fine-grained classification algorithms. It has

1088 pairs of images for 264 unique ships, covering 15 fine-grained categories. The object

region is cropped, meaning that many of the images are very small (e.g. 60 × 40 pixels)

and would likely present significant challenges to algorithms due to the limited number

of features visible. As the focus of this work is object detection, VAIS is not used in the

experiments, but some examples of the larger images are shown in Fig. 3.10.

Fig. 3.10 Example VAIS images. Top row: visual camera images, bottom row: corresponding
thermal camera images

15http://vcipl-okstate.org/pbvs/bench
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3.3.2 Non-public datasets

Unfortunately, a lot of papers report results on datasets that are not in the public domain.

Often, this is because they have been collected in conjunction with the military (e.g. [146])

SMARTEX

The SMARTEX dataset was collected during the trials of the SMARTEX project in June

2012 in collaboration with the US Coastguard. It consists of sequences from 1 visual and

3 thermal shore-based cameras looking out to sea from a relatively low viewpoint. The

objects include fishing boats, sailing boats, cabin cruisers and other small vessels.

The data was kindly provided by colleagues at TNO16, who were part of the project.

The data has not been made public and the work has not been published in a paper,

however the authors have requested that a related paper is referenced instead [39, 40].

SMARTEX has not been used extensively in this thesis, as it is primarily thermal imagery

and the visual images are low resolution compared to other datasets.

Fig. 3.11 Example SMARTEX images

3.3.3 Synthetic datasets

There are some examples of synthetic data being used but is not common and no examples

have been released publicly. For example, [10] created 3D computer models of vessels at

different orientations to generate silhouettes. In [78], synthetic images were generated

by combining 100 real infrared background images and 80 targets in different locations

and sizes. In [102], some synthetic data was created to simulate different wavelengths in

thermal cameras (NIR, SWIR, MWIR and LWIR). This was performed using high fidelity

16https://www.tno.nl
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Table 3.1 Challenges present in maritime datasets

Category Code Challenge

- DB Dynamic Background (applicable to all
sequences)

Camera CM Camera Motion (Pan / Tilt)
CZ Camera Zoom
LF Loss of Focus
EM Ego Motion of platform

Targets ST/MT Single Target, Multiple Targets
OT Occluding / Overlapping Targets
DT Distant Targets
SC Scale Changes

Environment W Wake (caused by motion of object through
water))

S/R/W Sparkle / Reflections / Whitepeaks (caused by
natural motions of sea surface interacting with
light)

DS/G Direct Sunlight / Glare
H/R Haze / Rain
LL Low light (e.g. dusk)

Quality CA Compression Artefacts
RA Recording Artefacts
V Vibration

physics models which took high performance computers several days to compute a few

minutes of video.

The reason that synthetic data is not common in the literature could be because of

the difficulty in simulating the sea in a realistic way. Simulated data is not representative

enough of real data to be used for training or testing methods. With the advancements in

graphics technology and hardware in the video games industry, this could be addressed in

the near future.

3.3.4 Summary and technical challenges

Table 3.1 defines the technical challenges which are present in visual maritime surveillance

data. Examples of these are presented in Fig. 3.12. Table 3.2 summarises the dataset

properties and technical object detection challenges that are relevant for this research.
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(a) Wake in IPATCH (b) Loss of focus in SMD

(c) Large reflections in SEAGULL (d) Sparkle and distant targets in IPATCH

(e) Haze in SMD (f) Low light in IPATCH

Fig. 3.12 Technical challenges for visual detection in the maritime environment
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3.4 Metrics for maritime surveillance

The metrics described in Section 3.2.2 are agnostic to any scene context, which makes

them good for comparing performance across different tasks and domains but less good

for indicating performance in a task or domain-specific way. In visual surveillance, there

is usually some context to the object detection task. For example, cameras used in surveil-

lance are often mounted so that they observe the scene roughly horizontally and the

right way up. Through calibration, this can be used to convert image coordinates into

real-world coordinates. The orientation of the scene can also be used to infer things about

the objects, for example that the face of a pedestrian will be in the top half of the bounding

box.

In the maritime surveillance context, there are a number of features and trade-offs

which are not currently incorporated in standard image-based detection metrics:

• Most boats and vessels have a structure above the main hull which, when viewed

from the side, is smaller than the full length. This means that, for a lot of viewing

angles, there is a significant portion of empty space in the bounding box region.

Small errors in estimating the top of the object can lead to relatively large errors

in region overlap. Sailing boats and yachts are more challenging still, as the upper

portion consists of masts and ropes which are more difficult to detect, especially at

larger distances. Fig. 3.13 shows examples of these characteristics.

• For estimation of the location of an object in the real world (for collision avoidance,

piracy warning, etc.), accurate detection of the hull (i.e. the base of the object) is

more important that detection of the upper structure (see Fig. 3.14).

• On one hand, the impact of poor detection accuracy is greater at longer distances,

due to the non-linear image-depth relationship. On the other hand, there is more

time to re-detect and adjust for more distant objects, so closer objects should be

more accurately detected.

• For obstacle avoidance and navigation, it is preferable to underestimate distance to

the target (appears closer than reality) and overestimate the extent (appears wider

than reality).

The first point could be addressed by having multiple bounding boxes or by using

pixel-level masks for the groundtruth, but the former could be ambiguous to define and
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(a) SMD example image (b) MODD example image (c) IPATCH example image

Fig. 3.13 Characteristics of common maritime targets and issues with bounding box-based
evaluation. Groundtruth annotations are indicated by the white dotted boxes; many
object detectors would output a detection similar to the orange boxes. In (a) and (b), the
mast is more difficult to detect as it is narrow and lower contrast than the rest of the boat.
However, if it is not detected, a significant area of the region is missed causing a large
impact on score. In (c), the antennae on the very top of the vessel are also difficult to
detect, but a small inaccuracy in the top edge of the box causes a large error in the area
because of the width of the vessel.

evaluate for some objects and the latter is prohibitively time-consuming for the majority

of cases.

Instead, it would be better to develop metrics which emphasise the importance of

detecting the bottom edge of the bounding box and do not penalise detection of the

upper part so strictly. This should not be seen as wanting to design metrics which make

algorithms look better on challenging data. The goal is to design metrics which reflect what

is important in the task of maritime surveillance to better compare methods, emphasising

the relevant aspects for supporting higher level tasks and real-world localisation, not just

image-based criteria. With this in mind, the following design criteria are proposed for a

maritime-oriented metric:

1. Any portion of the detected region which is outside the groundtruth bounding box

should be penalised (includes wake).

2. Errors in width should be penalised equally on either side (symmetric in the x

dimension).

3. Errors of the bottom of the box should be penalised more heavily than errors of the

top (asymmetric in the y direction).

4. The level of penalisation should change with the size and/or closeness of the object.
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(a) (b)

(c) (d)

Fig. 3.14 Importance of detecting hull accurately, compared to upper structures. In the
two examples (a-b and c-d), both detections (green boxes) score 50% overlap with the
groundtruth (dotted white box). Using MODP or similar, the left cases are indistinguish-
able from the right cases. From an obstacle detection point of view, the detections in (a)
and (c) are preferable, as the location and extent of the vessel has been correctly captured
(see green arrows in (c)). In (d), there is a significant error in position and width estimation
(red arrow), which could be critical in an obstacle avoidance / navigation system.
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5. The metric should yield bounded, meaningful values. Intuitively, a score of zero

should indicate a completely missed / failed detection and a score of 1 should

indicate a perfect detection (i.e. 100% overlap with groundtruth).

The need for metrics which are more tailored to real-world maritime challenges has

also been noted recently by Prasad et al. [164, 167]. They have proposed two measures of

precision which emphasise the importance of the bottom edge of the bounding box (see

Fig. 3.15 for notation):

BEP1 = X1Y1 (3.1a)

X1 = xb

xa +xb +xc
(3.1b)

Y1 = 1− ∆yBE

min(yGT , yDO)
(3.1c)

BEP2 = X2Y2 (3.2a)

X2 = xb

xa +xb
(3.2b)

Y2 = 1− ∆yBE

yGT
(3.2c)

𝑎

𝑏

𝑐

𝐺𝑇 = 𝑎 + 𝑏
𝐷𝑂 = 𝑏 + 𝑐 𝑦+,

𝑦-.

∆𝑦,0

∆𝑦10

𝑦2

𝑥4 𝑥2 𝑥5

Fig. 3.15 Notation for the bottom-edge precision (BEP) metrics (adapted from [167]). GT =
groundtruth, DO = detected object.
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Analysis of Prasad metrics
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Fig. 3.16 Analysis of Prasad BEP metrics (values for BEP3 parameters are α= 2, β= 1 and
γ= 0.5)

Fig. 3.16 shows the response of the Prasad BEP metrics [164, 167] to changes in the

detected bounding box (solid line), relative to the groundtruth bounding box (dotted

line). Four key dimensions in which the detected box can vary from the groundtruth are

analysed: vertical position (y-shift), vertical extent (height), horizontal extent (width) and

position of the bottom edge.

BEP2 shows a linear and symmetric response for y-position and bottom edge dis-

crepancy. For horizontal extent, the score saturates when the full groundtruth width

is accounted for, regardless of how much it is overestimated. BEP1, on the other hand,

penalises overestimations of width, as well as underestimations. In the vertical direction,

it increases non-linearly from zero (zero occurs because the base of the detected box is

further away than its own height) for underestimates and then decreases linearly (as the

size of the groundtruth box is fixed). Like BEP2, BEP1 also has symmetric responses to

y-position errors.

43



Evaluation and Benchmarking

Rank: 4

A) BEP1 = 0.82, BEP3 = 0.84

Rank: 2

B) BEP1 = 0.82, BEP3 = 0.90

Rank: 3

C) BEP1 = 0.78, BEP3 = 0.85

Rank: 1

D) BEP1 = 0.82, BEP3 = 0.92

Fig. 3.17 Specific cases and how BEP1 and BEP3 compare to the intuitive ranking (example
for α= 2, β= 1, γ= 0.5)

Whilst these measures are a good step towards creating something more appropriate

for maritime, there are still features which are not desirable. The design criteria in [167]

relating to obstacle avoidance imply that the metric should be asymmetric in the y axis,

but in actual fact they are symmetric in both the x and y axes. In addition, the current BEP

metrics do not rank detections in the most intuitive order for the maritime case (see Fig.

3.17).

Proposed maritime-oriented metric

Out of the two BEP metrics, BEP1 has more useful properties. The following adaptations

to BEP1 are proposed to create BEP3:

BEP3 =

0 if X3 = 0 or Y3 = 0,

X3+Y3
2 otherwise

(3.3a)

X3 = X1 = xb

xa +xb +xc
(3.3b)

Y3 = yb

yb +
(
α∆yabove

BE +β∆ybelow
BE

)+γ∆yT E
(3.3c)

α and β are parameters which penalise bottom edge errors above and below the

groundtruth bottom edge, respectively. γ is a similar parameter for the top edge, but is

non-directional (errors above and below are penalised equally). Note that ∆yabove
BE and

∆ybelow
BE cannot both be non-zero, so α and β can be tuned independently.

When α = β = γ = 0, the metric does not care about vertical overlap at all and the

value (between 0.5 and 1) will only depend on horizontal overlap. When α=β= γ= 1, the

metric treats horizontal and vertical overlap equally. For practical applications, users can
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choose values which reflect the priorities of their application. In the maritime case, this

will typically follow α>β,γ=< 1 to reflect the fact that errors in the bottom edge are more

serious if they are above the groundtruth (α) than below (β), and errors in the top edge

are less important.

As per criteria 4, it would be useful to be able to take the size and distance of the object

into account. This can be done by varying α, β and γ according to some function of the

groundtruth size and vertical position in the image. This may be less relevant for aerial

surveillance where the viewing angle is very different, in which case the parameters can

be set to 1, as above. For all the experiments in this thesis, the values are set to α= 2,β= 1

and γ= 0.5.

Note that in BEP3, the X and Y components are averaged rather than multiplied

together. When multiplying, the lower of the two scores dominates (as both components

are less that 1). This emphasises the weakest of the two performance dimensions in the

combined score and means the metric tends to be concentrated in lower values (i.e. it is a

pessimistic metric). By taking the average, the combined score is more balanced and the

overall values are more distributed over the range 0 - 1.

Regardless of how the two scores are combined, some information will be lost. In

particular, it is difficult to tell the difference between a high and a low score, or two

medium scores. However, in this study, the balanced score is selected as it provides a

wider range of values, which makes comparison between methods more nuanced. The

two components of BEP3 (X3 and Y3) can be analysed individually, as demonstrated in Fig.

3.18 and 3.19.

In Fig. 3.16, the behaviour of the proposed BEP3 measure can be seen alongside IoU,

BEP1 and BEP2. BEP3 is now asymmetric with regard to y-position and bottom edge error,

with detections above the groundtruth being penalised more heavily. More importantly,

this means BEP3 ranks the detections in Fig. 3.17 in the expected order, based on the

design criteria for a maritime object detection metric.
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Fig. 3.18 Example showing the X and Y components of BEP3 plotted on a scatter graph
(α=β= γ= 1). The points are coloured with a heatmap to show point density within the
scatter graph. The IMBS method (left) tends to capture vertical position slightly better than
horizontal. This could be because the motion is predominantly horizontally aligned in
maritime sequences, so the left and right edges of the bounding box are where background
subtraction errors occur. The saliency method (right) has a broader spread of precisions
in both dimensions, which reflects the fact its performance is not dependent on motion
in the scene.
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Fig. 3.19 Example showing the X and Y components of BEP3 plotted against frame number
for part of the IPATCH-Sc2a_Tk1-CAM12 (α=β= γ= 1). By looking at the combined score
(top), the two methods seem to have similar performance. By looking at the X (middle)
and Y (bottom) components, it can be seen that the two methods have opposite strengths
(the saliency method is better at capturing the object horizontally but IMBS is better at
capturing it vertically). Depending on the application requirements, one method might
be preferred over another, which would not have been obvious from the combined BEP3
score.
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3.5 Evaluation methodology for maritime object detection

in this thesis

This thesis adopts the standard empirical methodology for evaluating computer vision

methods, namely comparison of the system output with manually-created groundtruth

annotations using a range of metrics. To ensure meaningful results, this methodology

requires a broad range of sequences with representative challenges. A set of metrics is used

to characterise and quantify different aspects of performance, and the proposed methods

are compared against each other and against baseline methods from the literature.

3.5.1 Selection of sequences and groundtruth for object detection

evaluation

Table 3.3 lists the sequences which have been selected for object detection performance

evaluation. The IPATCH sequences were chosen to represent a range of challenges for the

piracy detection use case, including very small/distant objects and appearance changes

of approaching targets. The challenge here is to detect the targets as early as possible. To

complement the IPATCH data and reflect the ability of the proposed methods to generalise

to other scenes and use cases, sequences from SMD and SEAGULL were selected. The

SMD sequences contain larger vessels from a stationary shore-based viewpoint and gives

the opportunity to test with more than two objects. Two sequences from the SEAGULL

dataset are selected to analyse performance on very small objects (10s of pixels) in an

aerial surveillance context. All sequences present challenges from the maritime domain,

such as wake, sparkle, bright reflections and dynamic background. Groundtruth was used

as published for MODD, SMD and SEAGULL, with a few corrections for obvious errors.

For IPATCH, groundtruth was created with the ViPER tool [62].

3.5.2 Evaluation metrics used in this thesis

In the literature, it can be ambiguous as to whether a proposed method is a pure detector,

a pure tracker, or some combination of both. In both cases, the system outputs an

estimated location for all targets in each frame of a video sequence (or image of a dataset).

For trackers, there must be a temporal dimension to the task (i.e. operating on a sequence

of video frames, compared to pure object detectors which operate on single images).
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However, detectors can also use temporal information to detect objects or refine their

estimates over time (e.g. background subtraction).

In the context of surveillance, both detection and tracking must be performed by

the system. What is needed is a definition of the fundamental tasks that a system must

perform as part of detection and tracking. These can then form the basis for evaluation

and appropriate measures can be found for them. For object detection, the key questions

are:

1. Did it find each object? How many objects did it not find?

2. How good was the spatial localisation (position and extent)?

3. How much was it confused by the background? How many objects did it detect that

weren’t really objects? (false positives)

Whilst it can be convenient to have a single score with which to compare methods, it is

often a better strategy (in terms of interpretation and analysis) to use a complementary set

of metrics which measure different aspects of performance. There are usually trade-offs

when designing algorithms and fusing all performance aspects into one score can hide

these trade-offs. Two algorithms with the same score may have very different precision

and accuracy capabilities, for example. It is therefore preferable to use simpler metrics

with a well-defined meaning and intuitive relation to the specific task at hand.

In this study, Detection Rate (DR), Multiple Object Detection Precision (MODP) [204]

and average False Alarms per Frame (FAF) [148] are selected to meet these criteria. A

modified version of MODP is proposed in this section to make it more tailored to the

maritime surveillance task, using the BEP3 bottom-edge precision score proposed in

Section 3.4. Assignment of detections to groundtruth is performed using the Hungarian

algorithm [124, 150].

Metrics are often aggregated over sequences (e.g. averaged over frames). This is

acceptable when the target objects do not vary significantly in difficulty (i.e. ‘detectability’)

within a sequence, but averaging can hide details of performance which are useful to

know. For example, an object approaching from a large distant will be initially difficult

to detect, so it might be informative to see how the detection capability of an algorithm

changes as the object gets closer. For this reason, the distributions of metrics are analysed,

as well as average (i.e. mean or median) values.

False positives can often be handled in a task-specific way. This means that, when

evaluating a detector in relation to a wide range of environments and tasks, the false
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3.5 Evaluation methodology for maritime object detection in this thesis

positive performance is not the primary concern. When looking at the target use case

(piracy), the false positives (quantity and nature) can be analysed in context.

Detection Rate (DR)

Detection rate (also known to as true positive rate, sensitivity or recall) is the proportion

of groundtruth targets which were successfully detected:

T P

T P +F N
(3.4)

To avoid a single, arbitrary definition of true positive (e.g. 50% IoU) it was decided to

compute the value at a range of IoU thresholds and report the results as a curve (see Fig.

3.22 for examples). With low density sequences, such as those in most maritime datasets,

the detection rate will take a limited range of values (e.g. 0, 0.5 and 1) for each frame. It

is therefore more informative to look at the sequence score (over all frames) rather than

frame by frame. The Detection Rate metric as used in this thesis is therefore defined as

D̂R(τ) =
∑

t TPt (τ)∑
t N t

GT

, (3.5)

where TPt is the number of detections in frame t which exceed an IoU threshold of τ. N t
GT

is the number of groundtruth targets in frame t .

Multiple Object Detection Precision (MODP)

The definition of Multiple Object Detection Precision (MODP) from [204] is:

MODP(t ) =
∑N t

mapped

i=1

∣∣D t
i ∩G t

i

∣∣∣∣D t
i ∪G t

i

∣∣
N t

mapped

, (3.6)

where ∣∣D t
i ∩G t

i

∣∣∣∣D t
i ∪G t

i

∣∣ (3.7)

represents the Intersection over Union overlap ratio between detection Di and groundtruth

Gi in frame t , and N t
mapped is the number of detections which were successfully matched

(i.e. IoU > 0) to detections in frame t .
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A modified version of MODP is proposed which normalises over the number of

groundtruth targets in the frame, rather than the number of mapped targets. This is

referred to as MODP-GT:

MODP-GT(t ) =
∑N t

GT
i=1

∣∣D t
i ∩G t

i

∣∣∣∣D t
i ∪G t

i

∣∣
N t

GT

(3.8)

With N t
mapped as the normalisation quantity, MODP tells you, out of the successful

detections, what proportion of the target regions was recovered (on average). With N t
GT as

the normalising factor, MODP-GT tells you what proportion of the total possible combined

target region was recovered (on average). It was felt that this interpretation was more

intuitive for comparing methods when the number of objects was relatively low, as in the

maritime sequences.

The value of MODP-GT is explicitly undefined when there are no groundtruth targets

in the frame. This is similar to the original definition of MODP, which states that it should

be forced to a value of zero when there are no mapped targets, but this does not allow to

distinguish between the case when there are no groundtruth tagets to match and the case

where all targets are missed. In the proposed formulation, the former case is undefined

and the latter case is zero.

The formulation of MODP makes it easy to incorporate the maritime-specific measures

discussed earlier in this chapter. For example, MODP-GTBEP1 and MODP-GTBEP3 can be

created which incorporate the BEP1 and BEP3 precision measures instead of the overlap

measure:

MODP-GTBEP1(t ) =
∑N t

GT
i=1 BEP1

N t
GT

(3.9)

MODP-GTBEP3(t ) =
∑N t

GT
i=1 BEP3

N t
GT

(3.10)

Fig. 3.20 shows how using these maritime-oriented overlap measures can improve the

interpretability of MODP scores, compared to using the standard IoU measure. In particu-

lar, Fig. 3.20 shows that MODP-GTBEP3 (which uses the proposed BEP3 measure) creates

more discriminative results than both MODP-GT (based on IoU) and MODP-GTBEP1

(which uses BEP1 [164, 167]).
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Fig. 3.20 Example showing effect of BEP3 version compared to MODP (both normalised by
total number of groundtruth targets). Two artificial detection outputs were created for the
IPATCH-Sc3_Tk2-CAM14 sequence by randomly perturbing the groundtruth bounding
box up or down (groundtruth-up and groundtruth-down, respectively). With MODP (top),
it is difficult to discriminate between the two outputs. MODP-BEP1 (middle) has the
effect of increasing the performance score – which may be misleading – but does not
improve the discrimination. The difference becomes clearer with MODP-BEP3 (bottom).
Because above-edge errors are penalised more, the groundtruth-down detections get a
better MODP-BEP3 score (coefficients used in BEP3: α= 2, β= 1, γ= 0.5)
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As mentioned, the distribution of the MODP-based scores will be analysed, rather than

just the mean over a sequence. The scores will be plotted against frame number to show

temporal trends and by using boxplots to show distribution characteristics. Examples of

this can be seen in Fig. 3.23 and Fig. 3.24. The mean and median values are shown on the

boxplots as blue and red bars, respectively. For brevity, MODP-GTBEP3 will be referred to

as MODP-BEP3 throughout the rest of this thesis.

False Alarms per Frame (FAF)

False Alarms per Frame (FAF), also known as False Positives Per Image (FPPI) [63], is simply

the average number of false positive detections per frame in a sequence:

F̂AF =
∑

t FPt

N f r ames
(3.11)

where FPt is the number of false positives in frame t and N f r ames is the number of frames

in the sequence. A false positive is defined as any non-matched detection after assignment.

FAF is preferable to False Alarm Rate (FAR) (= F P
F P+T N ) as it is potentially dominated by

the FP term, especially in sequences with only small numbers of objects. Also, when there

are no groundtruth targets in a frame, it cannot discriminate between a method which

outputs 1 FP and one which outputs 1000 (both = 1), whereas FAF is independent of the

number of objects.

3.5.3 Practical upper bound on performance

Bounding box annotations are a good compromise between speed and ease of annotation,

and useful results. They are also the most widely used annotation so can be used for

comparing with other work. However, when used with metrics that are based on the

Intersection over Union / overlap ratio, small differences in bounding box placement can

lead to large changes in score. The smaller the object, the bigger the impact this has.

Uncertainty in bounding box placement comes from ambiguity of where the boundary

of an object lies. This is more pronounced when target-background contrast is low (e.g.

at larger distances or in poor lighting conditions – see Fig. 3.21). There is also naturally

some variation in the way different people annotate the same object. In other challenges

[114, 121], this variance has been estimated by asking several annotators to annotate

the same images and then computing the spread. Only one annotator per sequence
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Fig. 3.21 Examples of challenging objects to annotate

was available in this study, so the tolerance of the metrics to small perturbations in the

bounding box locations has been estimated in a different way.

For the object detection sequences, the edges of the bounding boxes were randomly

perturbed by 1 pixel in every frame and the metrics were computed. The results are

shown in Fig. 3.22 to 3.24. This creates a practical upper bound for performance on each

sequence, beyond which it is not meaningful to say whether one algorithm is better than

another. The 1-pixel perturbation is indicative of the uncertainty introduced by pixel

quantisation. The uncertainty created by human annotators may be larger, as differences

of more than 1 pixel between annotators are common.

The upper bound depends on the distribution of bounding box sizes in the sequence; a

sequence with lots of small boxes will be more influenced by errors. The effect of bounding

box size can be seen in Fig. 3.24. At the beginning of the sequence, the targets are very

far away and the bounding boxes are very small, so a 1-pixel error causes a larger drop in

performance. As the targets approach the camera, the bounding boxes get bigger and the

performance improves back to a near-perfect score.

One way of using this information would be to estimate the biggest or average drop

in performance for a sequence. This could then be used as a threshold for comparing

algorithms on that sequence. If two algorithms have scores within this threshold, they

could be considered to have equal performance for that sequence.
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Fig. 3.22 Tolerance of DR curve to 1px perturbations for 4 IPATCH sequences with increas-
ing numbers of small object frames
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Fig. 3.23 Tolerance of MODP-GT to 1px perturbations for 4 IPATCH sequences with in-
creasing numbers of small object frames
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Fig. 3.24 Tolerance of MODP-GT to perturbations with increasing object size within a
sequence
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3.6 Baseline methods and performance

In order to root the results of this research in existing work, the performance of the

proposed object detection methods will be compared against recent maritime-specific

methods and current state of the art general object detection approaches. These will be

collectively referred to as the ‘baselines’ and are introduced briefly in this section.

3.6.1 Methods

Independent Multimodal Background Subtraction (IMBS)

There are many background subtraction-based methods in the literature on maritime

object detection (see Chapter 2). Independent Multimodal Background Subtraction

(IMBS) [24, 28, 30] is chosen as a representative background subtraction method as it is

explicitly designed for real-world (and real-time) maritime applications. It uses samples

from frames to approximate a discrete distribution for each pixel in the image using online

clustering, without assuming a distribution model in advance.

One of the characteristic features of IMBS is a background initialisation phase which

is performed in an online, incremental manner to deal with image sequences where no

‘clean’ frames are available at the beginning of the sequence. However, in the experiments,

the online background initialisation process produced many (100,000s) of false positive

detections which made evaluation impractical. Therefore, evaluation is not performed on

the first 100 frames of each sequence for IMBS to allow time for the background model to

establish.

The author’s code for the multi-threaded version is used17. The sampling period P

is set to 160ms and number of samples N is set to 26. This has the effect of triggering a

background model refresh every 100 frames. The foreground threshold is set to 50 and

all other parameters are kept to the values as reported in [30]. Connected components

analysis is used to extract bounding boxes from the binary foreground mask.

Temporally Stable Feature Clusters (TSFC)

The Temporally Stable Feature Cluster (TSFC) method [156] is built on the premise that

objects appear as stable structures in the scene, compared to the unstable dynamic

17http://users.diag.uniroma1.it/bloisi/sw/imbs-mt.html
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background (sea). By tracking features over short periods, the stable features can be

extracted. The assumption is that most stable features will be produced by objects, so

their locations will be clustered around objects. By clustering the features based on

motion and proximity, the bounding boxes of objects can be inferred, whilst transient,

uncorrelated motion from the background is suppressed.

The algorithm was implemented in C++ based on the authors’ original code with some

updates to improve efficiency. The parameters are set as Dmax = 0.3, α= 5 and Wl i nk = 10,

with other parameters kept as reported in [156].

Mask R-CNN

Mask R-CNN [89] builds on a family of region proposal networks (R-CNN [83], Fast R-CNN

[82] and Faster R-CNN [178]) which exploits a region proposal step to output an arbitrary

number of classified bounding boxes per image from a single CNN. Mask R-CNN goes

further and uses additional network heads to output instance segmentation masks and

person keypoints (left shoulder, right elbow, etc.). For this study, only the bounding box

outputs are used. Mask R-CNN is among the current top performing networks in object

detection benchmarks, as well as reporting runtime speeds that make it a candidate for

use in real-world applications.

The author’s code and pre-trained models are used18. The models which achieve the

fastest processing speed and highest AP score are selected from the 12_2017_baselines

(produced December 2017): mask_rcnn_R-50-FPN_2x_e2e (referred to as ‘Mask R-CNN

R50’) and mask_rcnn_X-101-64x4d-FPN_1x_e2e (referred to as ‘Mask R-CNN X101’). Fine-

tuning on maritime data was not performed in order to assess how well the network and

model perform ‘out of the box’.

YOLO

YOLO [172–174] falls under the category of ‘single shot’ object detection in which a fixed

number of classified bounding boxes are output per image based on a grid cell structure.

Single shot methods tend to be faster [96] as there is no region proposal step, and YOLO is

one of the fastest object detection networks currently available [174]. However, it does not

score as highly in AP as other state of the art networks on benchmark datasets.

18https://github.com/facebookresearch/Detectron
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The author’s code and pre-trained models are used19. As with Mask R-CNN, the models

with fastest inference speed and highest AP score are selected: YOLO v2-608x608 (referred

to as ‘YOLO v2’) and YOLO v3-608x608 (referred to as ‘YOLO v3’). The YOLO v3-tiny model

is also included as its speed is an order of magnitude faster than the others. Its AP score is

much lower, but it would be interesting to see if this trade-off is worth it. As with Mask

R-CNN, fine-tuning was not performed on the YOLO pre-trained models.

3.6.2 Selection and configuration of deep object detection network

variants

Table 3.4 Baseline deep object detection variants and reported performance on the COCO
dataset [135] (values for Mask R-CNN variants reported in [68], values for YOLO variants
reported [174, 171])

Network Backbone AP FPS

Mask R-CNN R50 ResNet-50 37.7 9.9
Mask R-CNN X101 ResNeXt-101 41.3 3.3
YOLO v2 DarkNet-19 21.6 40
YOLO v3 DarkNet-53 33.0 19.6
YOLO v3-tiny Darknet Reference Model - 220

The network variants for Mask R-CNN and YOLO are summarised in Table 3.4. For all

variants, the backbone network has been pre-trained on the ImageNet 1k dataset [188]

and the full network was trained on the COCO 2017 training set [135].

Object detection networks output bounding boxes with a predicted class label and

confidence score. As the focus of this study is on class-agnostic object detection, all

detections output by the network are used, regardless of their predicted class. The vast

majority of detections are predicted as ‘boat’, but other classes such as ‘person’ and

‘surfboard’ are predicted occasionally. This is caused by structures on the targets looking

similar to these classes.

Deep object detector networks typically output many bounding boxes clustered

around an object location. False detections are removed by setting a minimum con-

fidence score threshold and applying Non-Maximum Suppression (NMS) [73]. This raises

the question of which confidence threshold and NMS threshold to select for a given task.

19https://github.com/pjreddie/darknet

59

https://github.com/pjreddie/darknet


Evaluation and Benchmarking

In challenges such as PASCAL VOC [67], ILSVRC [188] and COCO [135], detectors are

evaluated by aggregating their precision scores over a range of recall thresholds to produce

the Average Precision (AP) score. This can be further averaged over classes to produce

mean Average Precision (mAP). As mentioned previously, AP is not a suitable metric to use

for comparison in this work, as the other detection methods do not generate a confidence

score or class for each detection.

The ‘optimum’ confidence and NMS thresholds were therefore derived for each net-

work by minimising an error metric over all the evaluation sequences. This provides a

good overall set of parameters for each network which are then used as the baseline for

comparison.

Multiple Extended-target Tracking Error (METE) [151] is selected as the metric to

optimise as it conveniently combines precision and cardinality errors into a single score.

Whilst this might be undesirable in other contexts (c.f. Section 3.5.2), a single value is

much easier to optimise. Although METE is defined in the context of tracking, it provides

a frame-level measure of performance which is independent of track information (such as

track ID), so can be used to evaluate frame-by-frame detection in a video sequence, as is

the case here.

METE is computed for each frame, t , and mean METE (àMETE) is computed over all

frames:

METE(t ) = At +Ct

max(ut , vt )

At = min
π∈Πmax(ut ,vt )

mi n(ut ,vt )∑
i=1

(1−O(Āt ,i , At ,π(i )))

Ct = |ut − vt |

(3.12)

àMETE = 1

N

∑
t

METE(t ) (3.13)

where ut and vt are the number of estimated and groundtruth targets, respectively, O(.)

is the overlap ratio (IoU), and π is the permutation in the set of permutations Π that

maximises the summation term (i.e. the optimal assignment between the estimated

targets Āt ,i , and the groundtruth, At ,π(i )). A and C represent the accuracy and cardinality

errors, respectively.
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A set of threshold values (0.0,0.1, . . . ,0.9) is selected for confidence20 and NMS and the

network output is evaluated for every combination of these thresholds for each sequence.

The METE scores for every frame are computed and averaged over all frames and all

sequences. The results are plotted in Figs. 3.26 - 3.28.

Fig. 3.26 shows that, overall, the state of the art deep learning-based object detectors

do not achieve particularly good METE scores on the maritime data, regardless of the

thresholds used (lower METE is better, as it is an error metric). For the 3 YOLO variants, the

choice of NMS threshold makes very little difference as it does not output many detections,

even for lower confidence scores.

The nature of the data, in particular the appearance of the objects, plays a big role here.

In Fig. 3.27 and 3.28, the same process is repeated, but only taking METE scores from the

3 SMD or 6 IPATCH sequences, respectively. The two datasets contain very different type

of object (Fig. 3.25): SMD is primarily large vessels, such as tankers and ferries, whereas

IPATCH focusses on small speedboats, similar to those that might be used by pirates.

(a) IPATCH (b) SMD

Fig. 3.25 Examples showing the contrast in the type of target objects from the IPATCH and
SMD datasets

The performance of all network variants is much better on the SMD sequences than

on the IPATCH ones. It’s likely that the boats in the datasets used to train Mask R-CNN

and YOLO appear more similar to those in the SMD data than in the IPATCH data. The

choice of confidence and NMS threshold has a bigger effect on SMD as the networks are

producing more object detections.

In order to compare the Mask R-CNN and YOLO baselines against IMBS, TSFC and

the proposed methods, the confidence and NMS thresholds are fixed based on the per-

formance over all sequences. Reading from Fig. 3.26, the smallest (= best) METE score

20In practice, the lowest confidence used is 0.05 because the networks output thousands of boxes for any
non-zero confidence threshold
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is achieved for a confidence threshold of 0.05 and a NMS threshold of 0.1 for both Mask

R-CNN variants. For the YOLO variants, the optimal confidence threshold is 0 again, with

NMS thresholds of 0.1 for YOLO v2, 0.3 for YOLO v3 and 0.3 for YOLO v3-tiny.
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Fig. 3.26 Mean METE for different confidence and NMS thresholds across all sequences
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The network variants were evaluated on the maritime sequences list in Section 3.5.1

according to the methodology outlined in Section 3.5. This was carried out to select the

best baseline for each architecture to use in the rest of the experiments. A summary of the

MODP-BEP3 results is presented in Table 3.5.

Despite being a more sophisticated architecture, the X101 variant does not perform

quite as well as the R50 variant. It is unclear why this is the case. Often, small objects

can be missed due to the level of downsampling that occurs within a network. However,

looking at the architectures, the level of downsampling is the same in both variants. The

two key differences between the R50 (ResNet-50) and X101 (ResNeXt-101) architectures

are the additional blocks in the conv4 layer (6 for R50 vs. 23 for X101) and the structure of

each block: ResNet-50 uses standard ResNet bottleneck blocks with a single main path

with 64 feature channels, whereas ResNeXt-101 uses blocks with 64 parallel paths of 4

channels each).

Both of these give the X101 architecture has a larger model capacity. This could

mean that it is able to learn features which are more specific to each class (it is able to

learn more features overall, so it can afford to tailor them more to specific classes). The

maritime datasets are generally lower quality than COCO [135], due to low resolution and

compression artefacts. Speculating, the highly tuned features that have been learned by

the X101 architecture are not ‘firing’ because of the difference in image characteristics

compared to the training data.

Looking at the training documentation and logs21, the R50 variant was trained for

twice as long and with twice the base learning rate as X101 (0.02 vs. 0.01). It’s possible that

the different training schedules have also contributed to the slightly better performance

of the R50 variant. As the R50 variant is also faster than X101 (Fig. 3.29), it is an obvious

choice as the Mask R-CNN baseline for further comparisons.

Out of the YOLO variants, YOLO v3 is the only one that is comparable in performance

to Mask R-CNN. YOLO v2 struggles with small objects and indeed this was one of the

weaknesses addressed in the design of for v3 [174]. YOLO v3 is slightly slower than v2, but

this trade-off is worth it. The ‘tiny’ version of YOLO (yolo-v3-tiny) is very fast, but loses a

lot of performance and generates a lot of false positives. The YOLO-v3 network is therefore

selected as the YOLO baseline for further comparisons. From this point forward, the two

deep network baselines are simply referred to as ‘Mask R-CNN’ and ‘YOLO’ for brevity.

21https://github.com/facebookresearch/Detectron/blob/master/MODEL_ZOO.md

66

https://github.com/facebookresearch/Detectron/blob/master/MODEL_ZOO.md


3.6 Baseline methods and performance

Ta
b

le
3.

5
B

as
el

in
e

m
ea

n
an

d
m

ed
ia

n
M

O
D

P
-B

E
P

3
re

su
lt

s
fo

r
th

e
M

as
k

R
-C

N
N

an
d

Y
O

L
O

va
ri

an
ts

(K
ey

:M
=

M
as

k
R

-C
N

N
,Y

=
YO

LO
,b

es
tf

o
r

ea
ch

se
q

u
en

ce
h

ig
h

lig
h

te
d

in
gr

ee
n

,s
ec

o
n

d
b

es
th

ig
h

li
gh

te
d

in
b

lu
e)

M
ed

ia
n

M
O

D
P-

B
E

P
3

M
ea

n
M

O
D

P-
B

E
P

3

Se
q

u
en

ce
M

-R
50

M
-X

10
1

Y-
v2

Y-
v3

Y-
v3

-t
in

y
M

-R
50

M
-X

10
1

Y-
v2

Y-
v3

Y-
v3

-t
in

y

IP
AT

C
H

-2
01

5-
Sc

2a
_T

k1
-C

A
M

11
0.

77
2

0.
77

8
0.

51
7

0.
74

3
0.

32
0

0.
73

0
0.

74
5

0.
44

3
0.

66
8

0.
31

3
IP

AT
C

H
-2

01
5-

Sc
2a

_T
k1

-C
A

M
12

0.
58

5
0.

74
7

0.
23

8
0.

48
5

0.
19

7
0.

56
0

0.
59

5
0.

25
3

0.
47

3
0.

21
1

IP
AT

C
H

-2
01

5-
Sc

3_
T

k2
-C

A
M

14
0.

75
6

0.
68

7
0.

00
0

0.
31

0
0.

00
0

0.
64

6
0.

55
9

0.
08

2
0.

34
5

0.
01

2
IP

AT
C

H
-2

01
6-

Sc
1_

T
k5

-C
A

M
11

0.
62

4
0.

58
1

0.
00

0
0.

00
0

0.
00

0
0.

60
0

0.
55

4
0.

10
1

0.
14

4
0.

03
6

IP
AT

C
H

-2
01

7-
Sc

3a
-C

A
M

12
0.

10
2

0.
11

4
0.

03
5

0.
17

2
0.

00
0

0.
19

0
0.

24
5

0.
10

0
0.

18
0

0.
02

7
IP

AT
C

H
-2

01
7-

Sc
6b

-C
A

M
10

0.
32

6
0.

32
5

0.
00

0
0.

00
0

0.
00

0
0.

30
5

0.
27

0
0.

10
2

0.
19

5
0.

05
3

SM
D

-O
n

sh
o

re
-1

61
0

0.
75

8
0.

76
4

0.
58

0
0.

79
4

0.
28

1
0.

74
8

0.
76

1
0.

57
9

0.
77

2
0.

28
2

SM
D

-O
n

sh
o

re
-1

61
5

0.
77

0
0.

68
2

0.
67

2
0.

73
8

0.
33

0
0.

74
6

0.
68

8
0.

66
3

0.
72

6
0.

33
6

SM
D

-O
n

sh
o

re
-1

61
9

0.
80

8
0.

77
5

0.
74

0
0.

76
2

0.
47

3
0.

80
4

0.
76

1
0.

71
4

0.
75

9
0.

46
9

SE
A

G
U

LL
-b

ig
Sh

ip
H

ig
h

A
lt

_c
li

p
1

0.
65

7
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

47
3

0.
00

6
0.

00
0

0.
13

2
0.

00
0

SE
A

G
U

LL
-b

ig
Sh

ip
H

ig
h

A
lt

_c
li

p
2

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

18
9

0.
05

9
0.

01
5

0.
03

0
0.

00
0

67



Evaluation and Benchmarking
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Fig. 3.29 Average processing speed per frame for the deep network variants (benchmarked
on an Alienware laptop with an 8-core 2.6GHz Intel® CoreTM i7 CPU and 16GB RAM, with
an externally connected NVIDIA® GeForce® GTXTM Titan X GPU with 12GB memory)
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3.6.3 Performance evaluation

IMBS and TSFC were evaluated on the same sequences as Mask R-CNN R-50 and YOLO

v3 and the combined results for the 4 baseline methods are presented in Figs. 3.29 - 3.31

and Table 3.6. This section briefly discusses performance of the baselines, which will be

compared against the proposed methods in more detail in subsequent chapters.

Mask R-CNN R-50 has the best overall performance but some sequences challenge its

capabilities, in particular IPATCH 2017-Sc3a-CAM12 and SEAGULL bigShipHighAlt_clip2.

These sequences both contain distant targets with significant reflections and wake which

saturate the white channel. Very distant (i.e. small) targets could be lost in the down-

sampling stages of the Mask R-CNN architecture. At the same time, the appearance of

the boats is very different to examples seen in the training data. At its best (e.g. SMD-

1619-Onshore, Fig. 3.30a), it is able to produce well-localised bounding boxes for every

object.

YOLO generally achieves similar performance to Mask R-CNN R-50 but it struggles

more with small objects (e.g. IPATCH 2016-Sc1_Tk5-CAM11 and the SEAGULL sequences).

This is perhaps due to the fixed-size grid cells which are used to generate the fixed set of

bounding box anchors in single-shot detectors, compared to the region proposal networks

like Mask R-CNN, where region proposals are generated in a data-driven manner.

A key observation of both the deep learning-based approaches is that they have very

low false positive rates (Table 3.6). They tend to either detect an object successfully or

output nothing at all. For sequences where they score lower DR and MODP scores, it is

because they do not detect some or all of the objects at all, rather than detecting most

of the objects with poor localisation. Conversely, because TSFC and IMBS are based on

lower-level image features, partial object detections are much more common.

IMBS is often able to locate the targets with good precision but produces a very large

number of false positives (Table 3.6). Some could be filtered out based on size, but

this would run the risk of accidentally filtering the real targets if they were small (like in

IPATCH 2015-Sc3_Tk2 and IPATCH 2016-Sc1_Tk5). More sophisticated filtering (e.g. using

classification) could be used but a real system would likely be overwhelmed with so many

false positive detections to process. IMBS does particularly well when the sea surface is

calm (e.g. IPATCH 2016-Sc1_Tk6) but does not reliably detect stationary objects because

they are learned into the background (Fig. 3.30d).
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TSFC struggles to detect very small, distant targets (e.g. IPATCH-2015-Sc3_Tk2 and

IPATCH-2016-Sc1_Tk5) because it is not able to find enough stable features to form a

cluster. It also has a tendency to merge objects which are moving together, such as in

IPATCH 2015-Sc2a_Tk1-CAM12 (Fig. 3.30e). Another issue with TSFC is its speed. The

processing time grows with the number of features that are being matched from frame

to frame, so varies greatly throughout the sequence. A more efficient feature matching

mechanism would be needed to make this method suitable for real-time applications.

Finally, wake presents a challenge to all the methods (Fig. 3.30g - 3.30i). TSFC is able

to suppress glint and sparkle because their motions are random, but wake contains more

stable, structured motion which is incorrectly detected (Fig. 3.30g). IMBS detects wake

because it is a significant change to the background distribution of those regions. If wake

persists for long enough, it can become part of the new background model. For Mask

R-CNN and YOLO, wake is a distractor which creates object-like (specifically, boat-like)

features which the network misinterprets as a real object (albeit with low confidence).

Table 3.6 Baseline method FAF

Sequence Mask R-CNN YOLO IMBS TSFC

IPATCH-2015-Sc2a_Tk1-CAM11 0.06 0.65 99.99 1.63
IPATCH-2015-Sc2a_Tk1-CAM12 0.76 0.28 48.09 5.84
IPATCH-2015-Sc3_Tk2-CAM14 0.15 0.08 118.20 0.55
IPATCH-2016-Sc1_Tk5-CAM11 0.32 0.17 48.89 1.13
IPATCH-2017-Sc3a-CAM12 0.02 0.07 168.05 6.05
IPATCH-2017-Sc6b-CAM10 0.09 0.02 10.64 4.55
SMD-Onshore-1610 1.81 1.10 33.50 0.15
SMD-Onshore-1615 2.56 1.40 47.13 3.17
SMD-Onshore-1619 0.41 0.23 5.70 1.42
SEAGULL-bigShipHighAlt_clip1 0.00 0.00 5.05 1.43
SEAGULL-bigShipHighAlt_clip2 0.02 0.00 71.15 7.20
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(a) Mask R-CNN R-50, SMD-1619-
Onshore

(b) YOLO v3, IPATCH 2015-
Sc2a_Tk1-CAM11

(c) YOLO v3, SMD-1610-Onshore

(d) IMBS, SMD-1610-Onshore (e) TSFC, IPATCH 2015-Sc2a_Tk1-
CAM12

(f) Mask R-CNN R-50, SEAGULL
bigShipHighAlt_clip2

(g) TSFC, IPATCH 2017-Sc3a-
CAM12

(h) IMBS, IPATCH 2017-Sc6b-
CAM10

(i) YOLO v3, IPATCH 2016-
Sc1_Tk5-CAM11

Fig. 3.30 Qualitative results for the baseline methods

71



Evaluation and Benchmarking

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

D
et

ec
tio

n 
R

at
e

IPATCH-2015-Sc2a_Tk1-CAM11

maskrcnn-R50
yolov3
IMBS-default
TSFC-default

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

D
et

ec
tio

n 
R

at
e

IPATCH-2015-Sc2a_Tk1-CAM12

maskrcnn-R50
yolov3
IMBS-default
TSFC-default

(b)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

D
et

ec
tio

n 
R

at
e

IPATCH-2015-Sc3_Tk2-CAM14

maskrcnn-R50
yolov3
IMBS-default
TSFC-default

(c)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

D
et

ec
tio

n 
R

at
e

IPATCH-2016-Sc1_Tk5-CAM11

maskrcnn-R50
yolov3
IMBS-default
TSFC-default

(d)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

D
et

ec
tio

n 
R

at
e

IPATCH-2017-Sc3a-CAM12

maskrcnn-R50
yolov3
IMBS-default
TSFC-default

(e)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

D
et

ec
tio

n 
R

at
e

IPATCH-2017-Sc6b-CAM10

maskrcnn-R50
yolov3
IMBS-default
TSFC-default

(f)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

D
et

ec
tio

n 
R

at
e

SMD-Onshore-1610

maskrcnn-R50
yolov3
IMBS-default
TSFC-default

(g)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

D
et

ec
tio

n 
R

at
e

SMD-Onshore-1615

maskrcnn-R50
yolov3
IMBS-default
TSFC-default

(h)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

D
et

ec
tio

n 
R

at
e

SMD-Onshore-1619

maskrcnn-R50
yolov3
IMBS-default
TSFC-default

(i)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

D
et

ec
tio

n 
R

at
e

SEAGULL-bigShipHighAlt_clip1

maskrcnn-R50
yolov3
IMBS-default
TSFC-default

(j)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

D
et

ec
tio

n 
R

at
e

SEAGULL-bigShipHighAlt_clip2

maskrcnn-R50
yolov3
IMBS-default
TSFC-default

(k)

Fig. 3.31 Detection rate curves for the baseline methods
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Fig. 3.32 MODP-BEP3 results for the baseline methods on IPATCH sequences
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Fig. 3.33 MODP-BEP3 results for the baseline methods on SMD sequences
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Fig. 3.34 MODP-BEP3 results for the baseline methods on SEAGULL sequences
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Fig. 3.36 Effect of using MODP-BEP3 instead of MODP for evaluation

3.6.4 MODP vs. MODP-GTBEP3

In Section 3.5.2, MODP-GTBEP3 was proposed as a more appropriate metric for evaluation

maritime object detection. In Fig. 3.36, an example is presented to compare the two

metrics side by side. Using MODP (Fig. 3.36a), the median scores are all 0 and the

distributions are very similar so it is difficult to compare performance across the methods.

With MODP-GTBEP3 (Fig. 3.36b), the distributions cover a wider range and features are

revealed which were not visible with MODP. For example, the range of MODP-GTBEP3

values achieved by the IMBS method does not extend as far as zero in Fig. 3.36b, whereas

the other methods do. This detail is lost in Fig. 3.36a where all the MODP values are

compressed into a small range.
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3.7 Improved Mean Absolute Error for evaluating saliency

maps

In Chapter 4, an object detection method is proposed which uses visual saliency. An

analysis of different saliency methods is performed to determine which would be the

most promising for use in this way. A metric called Mean Absolute Error is used as part of

this analysis. This section identifies a possible weakness of this metric and proposes an

improved version which will be used in Chapter 4.

3.7.1 Mean Absolute Error (MAE)

Mean Absolute Error (MAE) measures the average deviation between a saliency map and

the groundtruth object regions. It is therefore an indication of how well the saliency map

models the saliency of the scene. The MAE score for frame n is computed as the average

absolute pixel-wise difference between the saliency map, S, and the binary groundtruth

mask, G , both scaled to the range [0,1]

MAEn = 1

W ×H

W∑
i=1

H∑
j=1

∣∣Sn(i , j )−Gn(i , j )
∣∣ , (3.14)

where Sn(i , j ) and Gn(i , j ) are the saliency and groundtruth values of pixel (i , j ) in frame

n, and W and H are the image width and height. In addition, the mean MAE score, �MAE,

is calculated for a sequence by averaging over all frames.

�MAE = 1

N

N∑
n=1

MAEn , (3.15)

where N is the number of frames in the sequence.

3.7.2 Shortcomings

It is proposed that a weakness of MAE is that it is dependent on object size within the image.

There is an implicit assumption that positive and negative classes in the groundtruth map

are approximately equally likely. However, if the object area is small, saliency maps which

predict generally low saliency values will score well, even if they do not locate the true

salient pixels particularly well. The case is reversed for large salient objects.
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For example, consider the case of an object that is 10 × 10 pixels inside a 100 × 100

pixel image. A saliency method that predicts maximum saliency (= 1) everywhere in the

map (‘all white’) will get an MAE of 0.01:

(1×100)+ (0×9,900)

10,000
= 0.01 (3.16)

A saliency method that predicts minimum saliency (= 0) everywhere in the map (‘all

black’) will get an MAE of 0.99:

(0×100)+ (1×9,900)

10,000
= 0.99 (3.17)

The ‘all black’ approach achieves a near perfect score, even though it detects none of

the salient object pixels.

This effect can be seen if the MAE scores are plotted for 4 different cases: ‘all black’

(saliency map is 0 everywhere), ‘all white’ (saliency map is 1 everywhere), ‘random’

(saliency map sampled from U (0,1)) and ‘groundtruth’ (i.e. the groundtruth compared

with itself). See Fig. 3.37.
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Fig. 3.37 MAE behaviour for different strategies as a function of object size

As expected, the ‘random’ approach produces an MAE of 0.5 and ‘groundtruth’ achieves

a perfect score of 0 for all object sizes. However, the success of the ‘all white’ and ‘all black’

strategies are dependent on the proportion of positive examples in the groundtruth map.

The MAE score favours methods which output saliency maps with certain distributions.
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This bias in the MAE metric has not been described in the recent salient object de-

tection literature. It’s possible that with current saliency benchmarks [33], the bias does

not have a significant impact because there is a range of object sizes. However, in the

maritime surveillance data used in this work, the objects are all very small compared to

the image size, so the imbalance has more of an impact.

3.7.3 Proposed improvements

The new version of the metric should have the following properties:

1. Be bounded (i.e. have a defined range)

2. Yield values with a natural interpretation

3. Be invariant to object size within the image

4. Represent the performance of a saliency method in terms of both false positives and

false negatives

A new, balanced version of MAE is proposed which does not suffer from the bias

described above. The balanced metric is made up of two components:

MAE+ = 1

N+
∑

i

∑
j

∣∣S+(i , j )−G+(i , j )
∣∣ (3.18)

MAE− = 1

N−
∑

i

∑
j

∣∣S−(i , j )−G−(i , j )
∣∣ (3.19)

where G+ and G− represents the positive and negative regions of the groundtruth map,

respectively. S+ and S− are the regions of the saliency map corresponding to the positive

and negative regions of the groundtruth map. N+ and N− are the number of pixels in the

positive and negative groundtruth regions. In other words, MAE+ and MAE− are the MAE

scores calculated separately for the positive and negative regions of the groundtruth map.

These two components can be combined to give a single error score which balances

the two components fairly and also takes into account empty groundtruth maps. The new

metric is named “Balanced Mean Absolute Error” or BMAE:

BMAE =αmin(N−,1)MAE++ (1−α)min(N+,1) MAE− (3.20)
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3.7 Improved Mean Absolute Error for evaluating saliency maps

Theαmin(N ,1) structure is a mechanism to handle the edge cases when the groundtruth

map is either all zero (no salient objects) or all one. The latter case is very unlikely

to happen in maritime surveillance (and most other) scenarios, but the former is very

common. The metric can be interpreted as follows:

• A value of 0 indicates a perfect score – the groundtruth has been matched exactly

• A value of 1 is the worst case – the saliency map has predicted the exact opposite of

the groundtruth

• Random guessing (e.g. uniformly distributed noise) equates to a score of 0.5

• Most saliency methods will achieve a score between 0 and 0.5, i.e. should be better

than random guessing but unlikely to be perfect

Fig. 3.38 shows how the balanced version of MAE is invariant to object size under

different strategies.
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Fig. 3.38 Behaviour of the proposed Balanced MAE metric under different strategies

The balanced version of MAE proposed in this chapter is used in Chapter 4 to compare

the performance of various saliency methods on maritime surveillance data. This is

particularly important because maritime surveillance sequences contain small targets

(10s of pixels). By using the proposed MAE, algorithms which generally predict higher

saliency values are not disproportionately penalised.
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3.8 Summary

In this chapter, the evaluation methodology that will be used in the subsequent chapters

for analysing the performance of the different object detection methods has been pre-

sented. As part of that methodology, a new maritime-oriented metric (MODP-GTBEP3)

was proposed, based on previous work in [167], which emphasises the importance of

the bottom edge of the bounding box. This makes the metric more informative when

evaluating methods for use in real-world surveillance systems. In addition, to support the

analysis in Chapter 4, improvements were proposed to Mean Absolute Error to make it

independent of the size of objects in the image when evaluating saliency maps.

The next two chapters investigate two further class-agnostic approaches to maritime

object detection. The basis for evaluation will be the sequences listed in Table 3.3 in this

chapter. After that, in Chapter 6, all the methods are evaluated and compared in the

context of a multi-sensor surveillance system for piracy detection. Here, the focus for

evaluation will be on the IPATCH sequences from Table 3.3, plus additional IPATCH data.
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Chapter 4

Visual Attention and Saliency for Object

Detection

4.1 Introduction

The work in this chapter takes inspiration from the power of the human visual system to

develop an object detection mechanism for maritime scenes which:

1. can detect objects with no prior expectation of what they are

2. works with different object scales

3. can operate in a range of viewpoints and environmental conditions

This approach is based on the assumption that objects in a maritime surveillance

context appear salient compared to their background. Recent Visual Attention, Saliency

and Salient Object Detection methods are evaluated to understand which approaches

would be the most promising method to form the basis for a maritime object detector.

The saliency-based object detection concept is depicted in Fig. 4.1.

The proposed object detection method also incorporates scene context by using

horizon detection to infer depth in the scene. This is used to modify the global saliency

map so that distant objects can be detected. Finally, temporal filtering is reduce transient

salient detections, mirroring the way the human visual system integrates stimuli over

time.
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Fig. 4.1 Block diagram showing the saliency-based object detection concept

4.2 Evaluation on maritime surveillance data

Experiments were carried out to analyse the efficacy and utility of the visual attention

and saliency methods described in Section 2.3 to see which is the most promising, and to

see where improvements could be made. A specific aim was to assess how they perform

on the maritime surveillance data that is of interest in this study, and to compare the

strengths and weaknesses of the biologically inspired and spectrum analysis approaches.

4.2.1 Experimental set-up

The visual attention and saliency methods from the literature (Table 2.1) were evaluated

on a range of maritime surveillance sequences from different publicly available datasets

to compare their performance as the basis of an object detection system.

Sequences

A sub-sequence of 500 frames was extracted from selected sequences from a range of

datasets. The sequences were chosen to span the range of maritime environments and

viewpoints. Some sequences form part of the set chosen for object detection (Table 3.3)

but additional sequences were included so as not to bias the selection of saliency method

towards specific sequences. Each sub-sequence was chosen so that it included as much

variation in object size and appearance as possible, as well as ‘empty’ frames (frames with
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4.2 Evaluation on maritime surveillance data

(a) MarDCT wakes-2 (b) MODD 01 (c) SMARTEX Thu-24A-Hitachi

(d) IPATCH 2015-Sc3_Tk2-CAM14 (e) SEAGULL lanchaArgos_clip3

(f) SMD 0797_VIS_OB (g) SMD 1469_VIS

Fig. 4.2 Example images from the sub-sequences for evaluating saliency performance

no objects present) in order to assess false positives. The sub-sequences are described in

Table 4.1 and some example images are shown in Fig. 4.2.

Groundtruth

Pixel-level groundtruth saliency maps were created for every image in the sub-sequences.

Groundtruth saliency maps are binary maps in which salient objects are labelled as 1 and

everywhere else is labelled as 0. Initial maps were created by using the bounding box

groundtruth for the sequences to initialise a GrabCut process [185]. The saliency maps

were then refined to pixel level accuracy by hand.
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4.2 Evaluation on maritime surveillance data

(a) SMD 0797_VIS_OB (b) MODD 01 (c) IPATCH 2015-Sc3_Tk2-
CAM14

Fig. 4.3 Examples of groundtruth saliency maps created for the sub-sequences in Table 4.1

Evaluation metrics

For quantitative evaluation of the saliency map output, three metrics were selected from

the salient object detection literature to evaluate key areas of performance: Mean Absolute

Error (MAE), Precision-Recall (PR) curve, and Receiver Operating Characteristic (ROC)

curve [32]. Using both PR and ROC curves is important when dealing with highly skewed

datasets [58, 69] such as the PETS IPATCH sequences. The PR and ROC curves for all

frames are averaged to create a single curve for the sequence. The area under the curves is

also calculated for numerical comparison. In the following definitions, S is the saliency

map output by the system and G is the groundtruth saliency map, both in the range [0,1].

Mean Absolute Error (MAE): based on the work in Chapter 3, the proposed balanced

version of MAE is used, which is defined as

BMAE =αmin(N−,1)MAE++ (1−α)min(N+,1) MAE−, (4.1)

where

MAE+ = 1

N+
∑

i

∑
j

∣∣S+(i , j )−G+(i , j )
∣∣ (4.2)

and

MAE− = 1

N−
∑

i

∑
j

∣∣S−(i , j )−G−(i , j )
∣∣ (4.3)
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To a give a sequence-level score, the BMAE values are averaged over all frames of the

sequence:

àBMAE =
N f r ames∑

n=1
BMAE(n) (4.4)

Use of the proposed BMAE version is important for this work because the objects

occupy a very small portion of the image. α is set to 0.5 to weight false positive and false

negative errors equally.

Precision-Recall (PR) curves: The Precision-Recall curve plots the fraction of the salient

pixels that correspond to salient object regions (Precision) against the fraction of the

salient object pixels that were correctly identified in the saliency map (Recall). S is binary

thresholded at a range of values, τ, to create a set of binary maps, {S̄τ}1
τ=0. For each S̄τ,

Precision and Recall are calculated as

Precision(τ) = |S̄τ∩G|
|S̄τ|

(4.5)

Recall(τ) = |S̄τ∩G|
|G| (4.6)

where |.| is the set cardinality operator which denotes the number of pixels in the map

equal to 1.

Receiver Operating Characteristic (ROC) curves: The ROC curve, which plots True Pos-

itive Rate (TPR) against False Positive Rate (FPR), is calculated in a similar manner using

the same set of threshold values.

TPR(τ) = |S̄τ∩G|
|G| (4.7)

FPR(τ) = |S̄τ∩G|
|S̄τ∩G|+ |¬S̄τ∩¬G| (4.8)

where ¬ denotes the inverse of the binary map. Classifiers with points to the left of the

ROC curve can be considered more “conservative”, whilst those with points to the right

can be considered more “liberal” [69].
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4.2 Evaluation on maritime surveillance data

Implementation

To isolate the role of the saliency method, additional post-processing and data-specific

steps (such as using trained classifier features, or learning weights for combining features)

were not applied. The exception to this was that background subtraction steps were

included for the two papers that use them [189, 212]:

• Tran et al. [212] use a dynamic weighted fusion scheme to combine the saliency map

(from MSS saliency [3]) with a foreground mask. The background subtraction step

is included in order to compare with Sadhu et al. [189] which uses exactly the same

saliency method (MSSS) but with a linear classifier (which could not be recreated).

• Makantasis et al. [144] use an SVM classifier to combine the feature maps and a

background subtraction map. However, part of their system is a “Refined Visual

Attention Map” which takes the average of the 15 feature maps and multiplies it by

the foreground mask from the background subtraction output. This is taken as the

saliency map for analysis.

In both works, the background subtraction step dominates the output. This is because

they are using static cameras and relatively calm backgrounds. The background subtrac-

tion is included in this analysis to see how this approach copes with a wider range of

maritime surveillance scenes which involve moving cameras and both static and moving

objects to detect.

The original author implementations were used where available and the experiments

were run on a 2014 MacBook Pro with 2.6GHz Intel® CoreTM i7 processor and 16GB RAM.

The DSS method was run on an Alienware laptop with an 8-core 2.6GHz Intel Core i7-

6700HQ CPU and 16GB RAM, with an externally connected NVIDIA GeForce GTX Titan X

GPU with 12GB memory. Table 4.2 summarises the implementations used.

1http://cs-people.bu.edu/jmzhang/BMS/BMS.html
2https://github.com/kmakantasis/Poseidon-Features
3https://people.cs.umass.edu/~hzjiang/drfi
4https://github.com/MingMingCheng/SalBenchmark
5https://github.com/Andrew-Qibin/DSS
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Table 4.2 Summary of saliency method implementations

Category Method ID Software

Feature
Integration

Albrecht [7] ALB Own, Python
Sobral [201] BMS BMS Author’s [240], C++1

Dawkins [59] DAW Own, Python
Liu [136] LIU Own, Python/C
Makantasis [145] MAK Author’s, Python2

Spectrum
Analysis

Ren 2011 [177] R11 Own, Python
Ren 2012 [176] R12 Own, Python
Ren 2016 [175] R16 Own, Python
Sadhu [189] SAD Own, Python
Tran [212] TRA Own, Python
Yao [235] YAO Own, Python

Deep
Learning

DRFI [222] DRFI Author’s, C++3

HC [51] HC Author’s, C++4

DSS [93] DSS Author’s, Python/Caffe5
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4.2.2 Results and analysis

The numerical results of the saliency method analysis are presented in Figs. 4.7 - 4.12, and

Table 4.3 and Table 4.4. Visual comparison of the saliency maps can be made in Fig. 4.4,

4.5 and 4.6.

Table 4.3 àBMAE, AUC PR and AUC ROC results for all methods (best and second best
highlighted in green and blue, respectively)

(a) àBMAE

Sub-sequence ALB BMS DAW LIU MAK MSS R11 R12 R16 TRA YAO DRFI HC DSS

IPATCH_2015-Sc3_Tk2-CAM14 0.4468 0.3777 0.4396 0.3644 0.2242 0.4027 0.4544 0.4298 0.4856 0.1688 0.1978 0.3887 0.4539 0.1439
MODD_01 0.4127 0.3756 0.4317 0.3854 0.3063 0.4060 0.4511 0.4392 0.4879 0.2590 0.3488 0.2896 0.5299 0.2812
MarDCT_wakes-2 0.2122 0.0804 0.2237 0.2998 0.0926 0.2269 0.1080 0.1775 0.1834 0.1863 0.0764 0.1978 0.4092 0.1722
SEAGULL_lanchaArgos-clip3 0.3447 0.2386 0.3412 0.3615 0.1519 0.2460 0.4025 0.3224 0.3879 0.1959 0.1933 0.3530 0.2911 0.0936
SMARTEX_Thu-24A-Hitachi 0.3253 0.1999 0.3875 0.3912 0.1479 0.4388 0.3549 0.4116 0.4538 0.2922 0.2211 0.1264 0.4396 0.2743
SMD_MVI_0797_VIS_OB 0.4611 0.4111 0.4844 0.5058 0.3751 0.3339 0.4903 0.4946 0.4969 0.3733 0.4302 0.4479 0.3671 0.2647
SMD_MVI_1469_VIS 0.4149 0.4338 0.4735 0.3686 0.4714 0.4133 0.4800 0.4673 0.4926 0.4344 0.3840 0.2643 0.3251 0.1943

(b) AUC PR

Sub-sequence ALB BMS DAW LIU MAK MSS R11 R12 R16 TRA YAO DRFI HC DSS

IPATCH_2015-Sc3_Tk2-CAM14 0.0203 0.1688 0.0481 0.1260 0.2733 0.0622 0.0040 0.0458 0.0318 0.0182 0.2556 0.1417 0.0034 0.1742
MODD_01 0.4204 0.4770 0.4441 0.3852 0.4836 0.6260 0.1751 0.4613 0.1781 0.5558 0.6698 0.5274 0.0349 0.6648
MarDCT_wakes-2 0.0289 0.3224 0.1091 0.0104 0.1846 0.0138 0.2878 0.1043 0.1599 0.0517 0.2869 0.1277 0.0006 0.4170
SEAGULL_lanchaArgos-clip3 0.0764 0.4892 0.1012 0.0686 0.1820 0.3276 0.0062 0.0888 0.0849 0.1462 0.2619 0.2639 0.0090 0.6963
SMARTEX_Thu-24A-Hitachi 0.1997 0.3315 0.2286 0.1120 0.5272 0.3192 0.1537 0.2186 0.1978 0.1247 0.4945 0.4493 0.0068 0.7294
SMD_MVI_0797_VIS_OB 0.0775 0.5643 0.0600 0.0524 0.2471 0.7104 0.0842 0.0348 0.0397 0.1593 0.2663 0.3758 0.0899 0.7752
SMD_MVI_1469_VIS 0.6892 0.8280 0.2898 0.5381 0.1527 0.8059 0.2795 0.5579 0.2825 0.3771 0.4524 0.8486 0.3034 0.8324

(c) AUC ROC

Sub-sequence ALB BMS DAW LIU MAK MSS R11 R12 R16 TRA YAO DRFI HC DSS

IPATCH_2015-Sc3_Tk2-CAM14 0.8782 0.9845 0.9519 0.9333 0.9411 0.9674 0.5777 0.9318 0.6977 0.8088 0.9927 0.9289 0.6889 0.9887
MODD_01 0.8606 0.9239 0.8855 0.8159 0.7796 0.9371 0.8088 0.8318 0.6988 0.7285 0.9228 0.8512 0.5625 0.8577
MarDCT_wakes-2 0.9829 0.9993 0.9919 0.9733 0.8703 0.9313 0.9988 0.9973 0.9924 0.6344 0.9992 0.9913 0.6890 0.8893
SEAGULL_lanchaArgos-clip3 0.9711 0.9978 0.9829 0.9631 0.9896 0.9932 0.6165 0.9808 0.8923 0.8339 0.9938 0.9519 0.8578 0.9889
SMARTEX_Thu-24A-Hitachi 0.9637 0.9958 0.9322 0.9600 0.8641 0.9292 0.8346 0.9919 0.9278 0.6538 0.9880 0.9900 0.8039 0.9414
SMD_MVI_0797_VIS_OB 0.7911 0.9092 0.7656 0.6529 0.8052 0.9501 0.6569 0.6755 0.6300 0.6520 0.7275 0.6663 0.7878 0.8880
SMD_MVI_1469_VIS 0.9471 0.9703 0.8229 0.9194 0.5371 0.9650 0.8005 0.9071 0.7575 0.5663 0.9429 0.9433 0.7533 0.9291

Results for biologically-inspired methods (Figs. 4.7 and 4.11): MAK performs the best

over all sequences, followed closely by BMS, when considering the BMAE score (lower

is better). However, on the PR and ROC curves, BMS gets slightly better scores than

MAK. The background subtraction step used in MAK has a noticeable effect in some

sequences. In the SMARTEX_Thurs_24A_Hitachi sequence, there is a significant decrease

in performance (increase in BMAE) corresponding to a large camera movement around

frame 900. In contrast, BMS (and other methods) are robust to this. Similarly, in the

SMD_1469 sequence, MAK achieves a poor ROC curve due to it learning the static ships

into the background model. No method performs particularly well on the SMD_1469
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sequence; there are many, larger objects competing for saliency so their regions are not

fully localised, meaning that the MAE+ error is high.

Results for frequency analysis methods (Figs. 4.8 and 4.12): YAO performs best overall

in BMAE, PR and ROC, with TRA also performing well. However, TRA is affected by camera

motion (e.g. SEAGULL and SMD_0797 sequences) due to the background subtraction step.

The background subtraction step also means that TRA has similar PR and ROC characteris-

tics to MAK, in that the curves contain jumps caused by the large number of zeros present

in the saliency map. Whilst MSS does not achieve good BMAE scores, it suddenly becomes

competitive under PR and ROC curve analysis. Similar to the biologically-inspired meth-

ods, all the frequency analysis methods struggle with the SMD_1469 sequence. Here, the

low performance is due to the assumption of high frequency noise in the image and the

mismatch with object size.

Results for salient object detection methods (Figs. 4.9 and 4.13): Looking at the BMAE

scores, it can be seen that DRFI over-estimates (predicts false positives) empty, or nearly

empty, scenes (e.g. start of IPATCH, parts of SEAGULL). This is because it has been trained

on images where there is always at least one salient object present. DRFI and DSS make

errors when the object is near the edge of the frame. Again, this is due to the training data

used, in which objects do not often appear at the edges of the images (the so-called ‘centre

bias’). Whilst HC is a faster method, it does not perform as well as DSS and DRFI in terms

of PR or ROC curves. It is not robust to colour / contrast changes in the image (e.g. the

‘wave’ pattern in SMD_0797 is due to image brightness (colour) changes caused by camera

motion). DSS is the best method overall.

Comparison of the top performing methods (Figs. 4.10 and 4.14): Under BMAE, DSS is

best overall, but it should be noted that it is not universally better (i.e. for some sequences

and under some conditions, other methods have lower error). DSS gets better PR curves

overall, with BMS a close second. However, BMS gets better ROC curves. The area under

the curve (AUC) of an ROC curve (see Table 4.4 (c)) is equivalent to the probability that the

classifier will rank a randomly chosen positive instance higher than a randomly chosen

negative instance [69]. The discrimination power between salient and non-salient regions

is therefore higher under BMS.
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Fig. 4.4 Example saliency maps from biologically-inspired methods

91



Visual Attention and Saliency for Object Detection
Im

ag
e

M
SS

R
11

R
12

R
16

T
R

A
YA

O

(a) MODD 01 (b) SEAGULL lanchaArgos (c) SMD MVI_1469_VIS

Fig. 4.5 Example saliency maps from frequency analysis methods
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Fig. 4.6 Example saliency maps from salient object detection methods
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Other observations: The sharp transition in some of the ROC curves (e.g. for the SMAR-

TEX sequence in Fig. 4.14) are caused when a method outputs a large number of 0 values

in its saliency map. Because of the thresholding process used to create these curves, a

value of 0 goes from a false positive to either a true negative or false negative at the lowest

threshold point. This creates a large drop in the number of false positives, which creates

a jump in the false positive rate / recall value. This is especially the case in the MAK

method (due to the background subtraction masking step which sets many values to 0)

and the DSS method (which correctly predicts a lot of low saliency values). Methods with

a smoother distribution have smoother PR and ROC curves.

Conclusion: Due to its high performance in recent salient object detection [33] and

gaze fixation benchmarks [42, 34], its real-time speed, and its performance in the above

evaluation on maritime surveillance data, BMS is selected as the most promising basis

on which to build a maritime object detector. BMS is also attractive as it does not involve

decisions about how to combine the maps (e.g. selecting or learning weights) — it is a

complete solution in that sense. In the following sections, modifications to the baseline

BMS approach are explored to tailor it for the task of maritime object detection.
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Fig. 4.7 àBMAE vs. frame number for biologically-inspired approaches
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Fig. 4.8 àBMAE vs. frame number for spectrum analysis approaches
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Fig. 4.9 àBMAE vs. frame number for salient object detection approaches
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Fig. 4.10 àBMAE vs. frame number for the best approaches from each category
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Fig. 4.11 PR and ROC curves for biologically-
inspired approaches
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Fig. 4.12 PR and ROC curves for spectrum
analysis approaches
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Fig. 4.13 PR and ROC curves for salient ob-
ject detection approaches
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Fig. 4.14 PR and ROC curves for the best
approaches from each category
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4.2 Evaluation on maritime surveillance data

Table 4.4 àBMAE, AUC PR and AUC ROC results for the top performing methods from each
category (best and second best highlighted in green and blue, respectively)

(a) àBMAE

Sub-sequence BMS MAK TRA YAO DSS

IPATCH_2015-Sc3_Tk2-CAM14 0.3777 0.2242 0.1688 0.1978 0.1439
MODD_01 0.3756 0.3063 0.2590 0.3488 0.2812
MarDCT_wakes-2 0.0804 0.0926 0.1863 0.0764 0.1722
SEAGULL_lanchaArgos-clip3 0.2386 0.1519 0.1959 0.1933 0.0936
SMARTEX_Thu-24A-Hitachi 0.1999 0.1479 0.2922 0.2211 0.2743
SMD_MVI_0797_VIS_OB 0.4111 0.3751 0.3733 0.4302 0.2647
SMD_MVI_1469_VIS 0.4338 0.4714 0.4344 0.3840 0.1943

(b) AUC PR

Sub-sequence BMS MAK TRA YAO DSS

IPATCH_2015-Sc3_Tk2-CAM14 0.1688 0.2733 0.0182 0.2556 0.1742
MODD_01 0.4770 0.4836 0.5558 0.6698 0.6648
MarDCT_wakes-2 0.3224 0.1846 0.0517 0.2869 0.4170
SEAGULL_lanchaArgos-clip3 0.4892 0.1820 0.1462 0.2619 0.6963
SMARTEX_Thu-24A-Hitachi 0.3315 0.5272 0.1247 0.4945 0.7294
SMD_MVI_0797_VIS_OB 0.5643 0.2471 0.1593 0.2663 0.7752
SMD_MVI_1469_VIS 0.8280 0.1527 0.3771 0.4524 0.8324

(c) AUC ROC

Sub-sequence BMS MAK TRA YAO DSS

IPATCH_2015-Sc3_Tk2-CAM14 0.9845 0.9411 0.8088 0.9927 0.9887
MODD_01 0.9239 0.7796 0.7285 0.9228 0.8577
MarDCT_wakes-2 0.9993 0.8703 0.6344 0.9992 0.8893
SEAGULL_lanchaArgos-clip3 0.9978 0.9896 0.8339 0.9938 0.9889
SMARTEX_Thu-24A-Hitachi 0.9958 0.8641 0.6538 0.9880 0.9414
SMD_MVI_0797_VIS_OB 0.9092 0.8052 0.6520 0.7275 0.8880
SMD_MVI_1469_VIS 0.9703 0.5371 0.5663 0.9429 0.9291
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4.3 Creating an object detector for maritime surveillance

The proposed object detection system (Fig. 4.15) creates a saliency map for each frame

using the BMS method. Thresholding is performed on the saliency map to locate the

salient regions corresponding to potential objects. The list of candidate objects is filtered

over a short period of time to remove transient detections and smooth the estimates of

object location and size.

Visual
Attention
(BMS)

Candidate
Region
Extraction

Saliency
Map Temporal

Filtering

Candidate
Detections Object

DetectionsImage

Fig. 4.15 Block diagram presenting the different stages of the proposed algorithm.

4.3.1 Boolean Map Saliency

The Boolean Map Saliency (BMS) method [241] (Fig. 4.16) exploits the visual property of

‘surroundedness’ whereby objects in an image are more salient, the more surrounded they

are by background regions in a given feature space. In principle, any feature channels

can be used (colour, orientation, motion, etc.), but the method in [241] found the CIELAB

colour channels to be the best for natural images.

First, the image is transformed into the CIELAB colourspace and the colourspace is

rectified using a whitening step:

x̄ = 1

n

∑
i

xi (4.9)

Q = 1

n

∑
i

xi xT
i − x̄x̄T (4.10)

yi = (Q+λI)−
1
2 ·xi (4.11)

This maps each of the L, A, B channels to their normalised and decorrelated counterparts,

L′, A′ and B′. Each of the channels, L′, A′ and B′, are then normalised to the range [0,255]

and median filtered6. The channels are then binary thresholded at intervals with a step

size of δ, yielding a set of N binary images (Boolean maps), {Bi }N
i=1.

6The median filtering step is not mentioned in either paper [240, 241] but was found in the author’s
published code.
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LAB

T = δ T = nδ…
T = δ T = nδ…

T = δ T = nδ…

image

A A…
A A…

A A…

"̅ "̅…
"̅ "̅…
"̅ "̅…

transform 
and whiten 
colourspace

activate surrounded 
regions

BOOLEAN MAPS

ACTIVATION MAPS

NORMALISED ACTIVATION MAPS

normalise

combine

dilate and smooth

SALIENCY MAP

M S

A+
i = Ai ^ Bi

A�
i = Ai ^ ¬Bi

<latexit sha1_base64="mDonoawOjNZ0XPhGbyfzYJtfCO0=">AAACJnicbVDLTgIxFO3gC/GFunTTSDQmRjLjI7ohAdy4xETQhEHSKRdo6HQmbUdDJnyNG3/FjQuMMe78FDvAQoGTND0559y093ghZ0rb9reVWlhcWl5Jr2bW1jc2t7LbOzUVRJJClQY8kA8eUcCZgKpmmsNDKIH4Hod7r3ed+PdPIBULxJ3uh9DwSUewNqNEG6mZLZQe4+NBk+FDXMAlc7vP0OoALifUzRj3ZI7rCugkkWY2Z+ftEfAscSYkhyaoNLNDtxXQyAehKSdK1R071I2YSM0oh0HGjRSEhPZIB+qGCuKDasSjNQf4wCgt3A6kOULjkfp3Iia+Un3fM0mf6K6a9hJxnlePdPuqETMRRhoEHT/UjjjWAU46wy0mgWreN4RQycxfMe0SSag2zWZMCc70yrOkdpp3zvIXt+e5YnlSRxrtoX10hBx0iYroBlVQFVH0gt7QEH1Yr9a79Wl9jaMpazKzi/7B+vkF1Qihvg==</latexit>

Āi =
A+

i � KD1

||A+
i ||2

+
A�

i � KD1

||A�
i ||2

<latexit sha1_base64="z+7HF+gjb/V7Y7OD1yll+L1NMZ4="></latexit>

M =
1

N

NX

i=1

Āi

<latexit sha1_base64="IEdlMg6bEPnUV6pkZX4SJsfKNu8=">AAACHXicbVDLSsNAFJ3UV62vqEs3g0VxVRKt6EaounGjVLAPaGqYTCft0JkkzEyEEvIjbvwVNy4UceFG/BunaRbaeuDC4Zx7ufceL2JUKsv6Ngpz8wuLS8Xl0srq2vqGubnVlGEsMGngkIWi7SFJGA1IQ1HFSDsSBHGPkZY3vBz7rQciJA2DOzWKSJejfkB9ipHSkmtWr+E+PINOzxcIJ3aa3KTQkTF3GOVUSTeh2rXT+0z3kEjOU5e6ZtmqWBngLLFzUgY56q756fRCHHMSKMyQlB3bilQ3QUJRzEhacmJJIoSHqE86mgaIE9lNsu9SuKeVHvRDoStQMFN/TySISzninu7kSA3ktDcW//M6sfJPuwkNoliRAE8W+TGDKoTjqGCPCoIVG2mCsKD6VogHSOekdKAlHYI9/fIsaR5W7KPK8W21XLvI4yiCHbALDoANTkANXIE6aAAMHsEzeAVvxpPxYrwbH5PWgpHPbIM/ML5+AKkuoRg=</latexit>

S = G� ⇤ (M � KD2)
<latexit sha1_base64="AuSVDjkGDuGSiGyoj2zemQ4++GM=">AAACEHicbVDJSgNBEO2JW4xb1KOXwqDGS5iJil6EoIKCCBHNApkw9HR6kiY9C909QhjyCV78FS8eFPHq0Zt/Y2c5aOKDgsd7VVTVcyPOpDLNbyM1Mzs3v5BezCwtr6yuZdc3qjKMBaEVEvJQ1F0sKWcBrSimOK1HgmLf5bTmds8Hfu2BCsnC4F71Itr0cTtgHiNYacnJ7t3BLpzCpWNL1vYx2FgqyMMN2GHEYwnXTnJR7MO+k82ZBXMImCbWmOTQGGUn+2W3QhL7NFCEYykblhmpZoKFYoTTfsaOJY0w6eI2bWgaYJ/KZjJ8qA87WmmBFwpdgYKh+nsiwb6UPd/VnT5WHTnpDcT/vEasvJNmwoIoVjQgo0VezEGFMEgHWkxQonhPE0wE07cC6WCBidIZZnQI1uTL06RaLFgHhaPbw1zpbBxHGm2hbZRHFjpGJXSFyqiCCHpEz+gVvRlPxovxbnyMWlPGeGYT/YHx+QPx65oK</latexit>

threshold 
channels

Fig. 4.16 Stages of the BMS pipeline
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An activation map is then created for each Boolean map by identifying the surrounded

regions. A black region is surrounded in Bi if it is enclosed by a white region and vice versa.

The activation map, Ai , is created by setting pixels to 1 if the corresponding pixel is in

a surrounded region of Bi , and setting 0 elsewhere. The set of activation maps, {Ai }N
i=1,

is then normalised in order to emphasise maps with small activated regions. First, each

activation map is split into two sub-activation maps, A+
i and A−

i , according to

A+
i = Ai ∧Bi , (4.12)

A−
i = Ai ∧¬Bi , (4.13)

where ∧ represents pixel-wise logical AND between two binary maps and ¬Bi is the nega-

tion (logical NOT) of Bi . Both sub-activation maps are dilated with a square kernel KD1

of size D1 and divided by their L2-norm. This serves to emphasise clumps of small acti-

vated regions whilst reducing the importance of small, scattered regions. The normalised

activation map, Āi , is therefore calculated as

Āi =
A+

i ⊕KD1

||A+
i ||2

+ A−
i ⊕KD1

||A−
i ||2

, (4.14)

where ⊕ represents the morphological dilation operation. The final saliency map, S, is

found by taking the average of all the normalised activation maps and performing a second

dilation operation followed by Gaussian smoothing:

M = 1

N

N∑
i=1

Āi , (4.15)

S =Gσ∗ (M ⊕KD2), (4.16)

where KD2 is a square dilation kernel of size D2 and Gσ is a Gaussian kernel with standard

deviation σ. The results of the different stages of the BMS pipeline are shown in Fig. 4.17.

The algorithm parameters are set to the values used by the author [241] (δ= 8, D1 = 7,

D2 = 9 and σ= 9). These have been determined empirically and tests showed that other

values did not significantly improve performance in the maritime case. The exception is

the value of δ, which has an impact on speed. This is examined further in the experiments

in this chapter.
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4.3 Creating an object detector for maritime surveillance

(a) Bi (b) ¬Bi (c) A+
i (d) A−

i (e) Āi

(f) M (g) S

Fig. 4.17 Example maps from each stage of the BMS pipeline

4.3.2 Candidate region extraction

The most common way to extract object regions from a saliency map is binary thresholding

followed by connected components analysis. Obviously, a single, fixed threshold value

would not generalise well across different images or datasets, so most approaches adopt

an adaptive method, in which the threshold value changes according to global or local

image properties (i.e. driven by the data itself).

The threshold level is often tied to a multiple of the mean saliency value [2, 94, 108],

most commonly two times the mean [125]. There is no principled reason behind these

choices; most likely they are values which give good results on the benchmark datasets.

Setting the threshold as an arbitrary multiple of the mean value really just displaces the

problem of selecting a fixed threshold to a problem of how to choose the best multiple

instead.

The choice of a multiple of the mean is inherently linked to the shape of the distri-

bution of the saliency map. Fig. 4.18 shows example distributions from a salient object

detection benchmark dataset image and a maritime surveillance image. In the salient

object benchmarks, objects occupy a reasonable proportion of the image (see Fig. 4.19),

so the assumption that the mean will be a good discriminator is valid. However, looking

at the distribution of the saliency map from the maritime image, it can be seen that the

distribution is more heavily weighted to the lower end of values. This is because maritime

objects are sparse and much smaller compared to the background class.
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Methods such as Otsu [157] and triangle [238] thresholding use the distribution of

saliency values to split into two classes. These methods were tried on the maritime se-

quences in this work, but their performance was not satisfactory. The implicit assumption

that the image contains saliency values drawn from two modes of a distribution of roughly

the same size does not hold.
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Fig. 4.18 Example images, BMS saliency maps and saliency value distributions for a salient
object detection benchmark image from [107] and a maritime surveillance image from
IPATCH.

An ideal saliency map output for a scene with few small salient objects would have

a very large number of 0s and a very small number of 1s. As an example, an object of

10,000 pixels in a 1920 × 1080 image would occupy < 1%. This means that the mean value

is very close to zero (in practice, it is often zero because of numerical precision). The

proposed approach therefore uses thresholding based on the top percentiles of saliency

values, rather than the mean.

The threshold is set to a high percentile (e.g. 99th) of the saliency map. This captures

the most salient points in the image, but is likely to miss true object regions which were
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Fig. 4.19 Distributions of object size (represented as proportion of total image) for the
MSRA-B dataset [107] and the maritime surveillance sub-sequences (Table 4.1). In salient
object detection datasets, there is a wider spread of object sizes covering a reasonable
proportion of the image. In maritime surveillance datasets, objects tend to occupy a very
small proportion of the image.

still highly salient but not in the top 1%. However, a lower threshold is likely to introduce

more false detections.

Hysteresis thresholding is a common way to address this and is used here for this

purpose, as it has been in other recent maritime works [117, 142]. Two thresholds are set;

an upper and a lower. The saliency map is binary thresholded at the upper value and the

flood-fill algorithm is then used to grow regions to add connected pixels which are above

the lower threshold.

Although the upper and lower percentile values must be fixed by the user, the approach

can still be regarded as adaptive, as the distribution of the data determines the threshold

value in each image. The proposed thresholding method is named adaptive hysteresis

thresholding.

Note that using a percentile-based threshold assumes that there will be a minimum

number of salient pixels in the image. Clearly, it would be overly optimistic to assume that

some salient object will always be present. The assumption being made here is that, if

salient pixels in the image are coherently grouped over a number of frames, then they are

likely to be an object. In scenes where there are no objects of interest, the assumption is

that the salient pixels will be dispersed in small, transient regions caused by reflections

and other sea motion. These can be filtered out in a secondary step, which is explained in

Section 4.3.4.
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4.3.3 Mitigating saliency of wake through horizontal and vertical

thresholding

With adaptive hysteresis thresholding applied to the whole image, the system can detect

boat objects but also the connected wake regions, leading to large bounding boxes which

fully contain the true target but overestimate its size. Fundamentally, wake is very salient

in maritime images as it presents a bright, white region surrounded by a contrasting

background of the sea. However, boats are often white or light in colour, so suppressing

white regions in the image as done in [28] is not a good approach in all situations.

A modification to the thresholding step is proposed to reduce detection of wake by

exploiting the fact that the boat is locally salient, relative to the wake (see Fig. 4.20). By

looking at limited regions of the image one at a time – in this case horizontal and vertical

strips – different parts of the image will appear in the percentile range for the hysteresis

thresholding step than if the whole image is taken into account. Large wake regions

dominate the upper part of the saliency distribution globally, but considering smaller

regions forces the wake to compete with itself. This has the effect of fragmenting the wake.

By only extracting regions which are salient in more than one axis, a lot of the fragments

are filtered out. In this study, a width of 100 pixels is used to create the strips.

4.3.4 Reducing false positives through temporal filtering

Temporal averaging of the saliency map was tested, but it did not have a significant impact

on performance. As with background subtraction methods, it is difficult to choose the

size of the time window appropriately for all sequences. A bigger problem was that it

enhances non-object regions and transient/noisy detections in the saliency map, rather

than suppressing them. Saliency maps do not exhibit the same properties as intensity

images, so transient salient points can dominate the average and accumulate over time,

swamping the true target regions. Temporal filtering of detections was found to work

better. This approach favours regions which are persistently above the detection threshold

(rather than a pixel-level average of saliency values, which does not reflect global saliency).

A simple frame-to-frame tracking framework was implemented to filter out transient

detections. In each frame, new detections are assigned to tracked detections from the

previous frame using the Hungarian algorithm [124, 150]. The cost matrix is completed

by calculating the overlap error (= 1− IoU) between each pair of bounding boxes. Gating
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(a) Saliency map analysed in
horizontal and vertical strips

(b) Result of thresholding in
horizontal strips

(c) Result of thresholding in ver-
tical strips

(d) Global hysteresis thresholding (e) Horizontal-vertical hysteresis thresholding

(f) Salient regions using global hysteresis thresh-
olding

(g) Salient regions using horizontal-vertical hys-
teresis thresholding

Fig. 4.20 Visualisation of horizontal-vertical thresholding. With a global thresholding
approach (d, f), the large wake region dominates the upper part of the distribution of
saliency values. By considering limited regions of the image through horizontal and
vertical strips (e, g), the wake can be suppressed. In (f), the regions of the image extracted
by thresholding are overlaid in red. In (g), the regions of the image extracted by horizontal
and vertical thresholding are overlaid in magenta and cyan, respectively.
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is implemented by introducing a maximum cost threshold for assignment, dmax , such

that matches are discarded if the overlap error is greater than dmax . Matches between

detections in two consecutive frames triggers the creation of a new track which is managed

by a standard nearly-constant-velocity Kalman filter [111] with the following state space

and process models:

x =
[

xc yc ẋc ẏc w h ẇ ḣ
]T

(4.17)

xk = Fxk−1 +vk (4.18)

zk = Hxk +wk (4.19)

vk ∼N (0,Q) (4.20)

wk ∼N (0,R) (4.21)

where (xc , yc ) and (ẋc , ẏc ) are the position and velocity of the bounding box centroid, and

w , h, ẇ and ḣ are the width and height of the bounding box and their respective rates of

change. The transition and observation matrices, F and H, are taken as

F =



1 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



H =


1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

 (4.22)

Observation noise is assumed to be 1 pixel, which may seem low for a visual detection

method. However, the quantity being measured is the underlying saliency map, rather

than the object in the image domain. When it is constructed, the saliency map undergoes

discretisation (boolean maps) and filtering (dilation and Gaussian smoothing), so it is less

susceptible to noise than pixels in the image domain. It is assumed that the height and

width of the salient region are uncorrelated with position in the image.
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The process is modelled as small, nearly-constant-velocity motions from frame to

frame (i.e. acceleration is not zero, but it is noisy). Process noise covariance is therefore

assumed to be small. The observation noise covariance, R, was initialised with the identity

matrix and the process noise covariance, Q, was tuned empirically. These values can

undoubtedly be optimised further under different conditions. However, the focus of this

work is detection and the filtering step is targeted at very short-term tracking to filter

out false positives. The resulting detections will then be passed to a more sophisticated

tracking stage in Chapter 6.

When new detections are assigned to existing tracks, the track is updated by estimating

the state using the new observation. Tracks above a minimum length L are output as

stable detections. If a track is not assigned a new detection in the frame, the new bounding

box is predicted by the Kalman filter. The filter is allowed to predict up to T frames without

a new matched detection before the track is terminated. In these experiments, dmax was

set to 0.2, L = 3 and T = 2.
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4.4 Incorporating scene context through horizon detection

A common feature of maritime surveillance imagery is that the horizon is visible. In this

thesis, ‘horizon’ refers to the true horizon, a theoretical circle defined by the tangential

intersection of an observer’s line of sight with the surface of the Earth.

In open sea, the horizon corresponds to the boundary where the sea meets the sky

(sometimes referred to as the ‘sea-sky line’). Land and other features may appear on

this boundary, but at large distances they are negligible. When facing the shore or in

constrained environments, such as a harbour, the water edge is interrupted by many

features in the background (boats, jetties, headlands, etc.) so the true horizon is more

difficult to estimate.

Both the horizon line and water edge provide information about the scene which

can be further exploited in the object detection process by introducing strong cues /

constraints on the size and location of targets. For example, the position of the water edge

and/or horizon line can be used to:

• estimate the range of the object, and thereby its horizontal position and size

• discard false positive detections based on their size and location in the image

• infer the instantaneous orientation of the camera, which is needed for projecting

detections to real-world coordinates

• stabilise images to compensate for camera roll and pitch

• build a more structured scene model for background subtraction or other methods

4.4.1 Horizon detection

The horizon appears as a straight line in an observer’s field of vision or image, provided

there are no optical distortions (e.g. caused by camera lenses, observer wearing eye-

glasses, windows causing refraction, etc.). At high altitudes (greater that 20,000 feet),

it is possible to observe the curvature of the horizon, provided the horizontal field of

view is sufficiently large [143]. In this work, the observation heights are well below this

threshold so the straight line model is appropriate. However, due to imaging optics, the

horizon does often appear as a curve, especially if it is near the top edge of the image. This

must be corrected through calibration of the camera and rectification of the image before

processing. Horizon detection presents a number of challenges:
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• The horizon may not be clearly visible due to low contrast, lighting, weather condi-

tions, etc.

• The horizon may not be visible at all in an image (e.g. because the camera is angled

too far down or up)

• Occlusion of sections of the horizon by ships or land

• False positives from: edges of ships or land, edges generated by wake (especially if

objects are travelling across the field of view), and boundaries created by bands of

different coloured water regions

There are many efforts which have addressed the horizon detection problem in air

[64–66, 86, 155], land [5, 56, 134, 152] and sea [8, 35, 72, 81, 119, 165, 166, 207, 220]. They

can be divided into the following broad categories:

• Edge-based: edges are extracted from the image using Canny or similar edge detec-

tor and then a procedure is used to extract the longest, straightest, continuous line

(which is taken as the horizon) [8, 35, 56, 64, 86, 207].

• Gradient-based: the vertical intensity gradient is analysed and a straight line is fitted

(e.g. using RANSAC) to the salient gradient points in each column [81, 119, 134, 220].

• Region-based: some criteria is used to find the straight line which maximally sepa-

rates the regions above and below the horizon in terms of their visual appearance

[65, 66, 72, 152, 155].

Outside of these categories, there are hybrid methods using both edges and gradients

[165, 166] and machine learning methods which use a pixel-wise horizon classifier [5, 106].

The separation score method was trialled but was not found to be a reliable way of

discriminating the regions. In many scenes, the optimisation found a line which did not

represent the horizon, even when the initial estimate is close to the true position. This

occurred with hazy scenes where there is not much contrast between sea and sky regions,

and when objects and wake were present in the sea region (see Fig. 4.21). With HD images,

the method is also too slow to be used in a real-time system.

However, it would be useful to know if a horizon estimated from a faster method was

accurate. This could be done by monitoring the region separation score to see if there is

a significant deviation, indicating a possible false detection. However, it was found that

this is not possible in practice, as the separation score is affected by objects in the scene.
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Fig. 4.21 Examples of horizon detection failure using the region separation method. The
white line indicates the initial horizon line guess and the green line is the optimal line
found by the algorithm.

In Fig. 4.22, it can be seen that, as the boats approach the camera, the separation score

decreases. This is not because the horizon line is incorrect, but because the properties

(mean and covariance) of the lower region have changed dramatically due to the presence

of the boats and their wake.

Horizon detection datasets

The majority of papers use their own dataset. Four datasets are available in the maritime

domain which provide horizon groundtruth: Buoy [72], MarDCT [27], MODD [119] and

SMD [168]. These have been used in the literature [72, 165, 166, 198, 207] for evaluating

and comparing horizon detection methods. Other horizon detection works use their own

datasets which have unfortunately not been made public.

Horizon detection evaluation

Many papers only provide qualitative evaluation on the public datasets. Some papers

provide results (e.g. ‘99% accuracy’) but do not report the criteria used to determine true

positives. The most common evaluation measure looks at the statistics of absolute errors

in horizon position and orientation (e.g. median, quartiles and histogram) [81, 165, 166,

207]. Other evaluation measures include a pixel-wise accuracy score which measures

how correctly the image has been divided in two by the horizon [72] and a true positive

evaluation based on whether the horizon position and orientation lie within defined error

thresholds [207].

In [165], scores are computed over all sequences aggregated together for each dataset

and sub-dataset (SMD is broken down into on-board, on-shore and NIR sub-sets). There
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Fig. 4.22 Behaviour of region separation score based on horizons detected by the Park
method [158]. From approximately frame 1800 onwards, the boats approach the vessel
from a large distance. As they get closer (up to frame 2500), the separation score drops,
even though the horizon is correct. The boats exit the scene towards the end of the
sequence, causing the horizon score to return to its original level.

115



Visual Attention and Saliency for Object Detection

is no sequence-level evaluation available. In [166] and [198], sequence level scores are

provided, but the sequences are not identified (they are referred to by a number rather

than the name of the sequence video file in the dataset). This makes comparison with

these results difficult.

The aggregation approach is therefore selected. However, it should also be noted

that different numbers of sequences and different frames per sequence are reported

than are actually present in the dataset and it is not possible to know which ones were

used. Therefore, this comparison is not ideal, but the overall statistics should give some

indication of whether performance is similar or not.

The MODD dataset provides groundtruth for the water edge, but not the horizon, as

the purpose is to evaluate segmentation of the sea, shore and sky regions. The groundtruth

is provided in multiple discontinuous sections due to the occluding objects and land in

the scene. As explained earlier, this makes it unsuitable for use as a horizon to evaluate

position and orientation errors. Additionally, there are no numerical results reported in

the literature for the MODD water edge detection (other than in the original work [119]),

although some qualitative results are reported in [207]. For these reasons, the MODD

horizon data is not included in this analysis.

Selected method

Local
Variance

Map
Log

Transformation
Vertical
Gradient

Horizontal
Averaging

Candidate
Selection Line Fitting Horizon

LineImage

Fig. 4.23 Selected horizon line detection method from Park et al. [158]

The vertical gradient-based method from Park et al. [158] (Fig. 4.23) is adopted as

the horizon detector, based on its simplicity, speed and performance. The method first

creates a local variance map, V , and log-transforms it (L) to enhance regions of smaller

change.

V (x, y) =
m×m∑

i

(
pi − p̄(x, y)

)2 (4.23)

where pi is a pixel in the m ×m neighbourhood centered on p(x, y), and p̄(x, y) is the

neighbourhood mean.

L(x, y) = log
(
V (x, y)+1

)
(4.24)
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(a) (b) (c)

Fig. 4.24 Example horizon detection results on IPATCH sequences: (a) Detection is possible
even with low contrast horizons; (b) False detections still occur but can be mitigated
through smoothing over time; (c) The presence of a strong edge from land can cause
incorrect detections.

The 1 is added to avoid log(0). A vertical gradient map, G , is computed through simple

differencing in the vertical direction and averaging is performed per row within vertical

segments to form an image of bars, B .

G(x, y) = ∣∣L(x, y)−L(x, y −1)
∣∣ (4.25)

B(k, y) = 1

P

(k+1)P−1∑
x=kP

G(x, y), for k = 0,1, . . . ,K −1 (4.26)

where P is the width of the column segment and K is the number of column segments.

Finally, the parameters of the horizon line are estimated by fitting a straight line to the

coordinates of the centre of each bar in B using linear least squares regression.

Evaluation

The selected horizon detector method was implemented and compared against results

reported for other methods from the literature (Tables 4.5a, 4.5a and 4.6, and Fig. 4.24).

In addition to varying the size of the column segments, downsampling of the image was

applied to increase speed. Three parameter sets are used:

1. Downsample factor: 1, columns: 120 (‘Park-d1-c120’)

2. Downsample factor: 2, columns: 120 (‘Park-d2-c120’)

3. Downsample factor: 4, columns: 60 (‘Park-d4-c60’)
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Table 4.5 Results for horizon detection methods on different datasets (best and second
best highlighted in green and blue, respectively). Values for the Park methods obtained in
this work; other values as reported in [165, 166, 168, 207].

(a) Median absolute position error (lower is better)

Method Buoy Mar-DCT Onboard Onshore

ENIW [65, 66] 1.93 37.43 117.81 115.25
FGSL [72] 1.59 198.58 118.14 115.25
GWR [8] 2.1 223.41 436.88 42.24
Hough [81] 1.92 198.15 221.02 206.40
IntG [81] 11.97 271.91 340.20 5.00
IntGF [81] 6.00 122.59 351.53 178.29
MSCM-LiFe [166] - - 3.2 - 6.5 1.9 - 8.9
MuSCoWERT [165] 1.44 1.33 1.49 2.63
MuSMF [35] 3.98 162.43 279.74 66.48
Radon [84, 168] - - 362 359

Park-d1-c120 1.08 2.46 2.33 4.24
Park-d2-c120 1.88 4.11 1.91 3.81
Park-d4-60 3.83 6.61 4.11 5.60

(b) Median absolute angle deviation (lower is better)

Method Buoy Mar-DCT Onboard Onshore

ENIW [65, 66] 0.24 0.26 0.47 0.18
FGSL [72] 0.20 0.64 0.49 0.18
GWR [8] 0.29 0.57 2.00 0.18
Hough [81] 0.19 0.64 0.64 0.19
IntG [81] 1.50 0.64 1.03 0.14
IntGF [81] 0.39 2.07 1.04 1.24
MSCM-LiFe [166] - - 0.5 - 0.7 0.3 - 0.7
MuSCoWERT [165] 0.27 0.36 0.25 0.21
MuSMF [35] 0.32 0.99 1.08 0.73
Radon [84, 168] - - 3.4 0.4

Park-d1-c120 0.22 0.55 0.25 0.13
Park-d2-c120 0.30 0.56 0.19 0.24
Park-d4-60 0.54 1.13 0.31 0.41
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Table 4.6 Processing speed (mean ms/frame) for horizon methods (values reported in
[165, 166, 168, 207])

Buoy Mar-DCT SMD Sun et al. [207]
800 × 600 various 1920 × 1080 640 × 800

CFS [207] - - - 94
ENIW [65, 66] ~minutes ~hours ~hours -
FGSL [72] 3,700 9,400 12,800 -
GWR [8] 100 200 400 -
Hough [81] 50 100 300 -
IntGF [81] 30 60 90 -
IntG [81] 20 50 70 -
MSCM-LiFe [166] - - - 231
MuSMF [35] 500 700 900 -
MuSCoWERT [165] 5,800 7,000 9,500 -
Radon [84, 168] - - 2,700 -
SSM [119] - - - 27
Wang [220] - - - 57

Park-d1-c120 10 7 42 -
Park-d2-c120 5 5 14 -
Park-d4-60 3 3 6 -
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Summary of results

Table 4.5a and 4.5a show that the selected method is among the top performing methods

across all datasets. Its speed, however, is far superior to other methods (Table 4.6) so

is a good choice for a real-time application. Fig. 4.24 shows some example detections

from the Park method on IPATCH sequences. Some false detections still occur but these

can be mitigated through averaging over frames. Further improvements could be gained

by restricting the horizon search window so that false detections from other regions are

reduced. The results also indicate that downsampling improves speed without harming

performance and in some cases, actually improves it. The Park-d2-c120 is therefore

adopted throughout the rest of this chapter and in Chapter 6 as the horizon detection

method.

4.4.2 Depth-weighted activation maps in BMS

Because of the large viewing range in maritime scenes, distant objects and regions of

the scene are mapped to a small number of pixels. This has the effect of blurring pixel

intensity values. This is further compounded by atmospheric haze, which causes colour

definition to be reduced, and image compression, which exploits low contrast regions to

discard information.

Small objects are still locally salient under the BMS surroundedness framework, but

they are not globally salient compared to closer objects which benefit from sharp resolu-

tion and contrast in the image. Applying a global saliency threshold as per the previous

section tends to over-detect sparkle and glint which is close to the camera, but under-

detect distant objects of similar size.

Another problem is in the formulation of BMS itself. In order to promote activation

maps with a few, small regions over those with large regions, L2 normalisation is used

(Eqn. 4.14). Because activation maps are binary, this is equivalent to

wi = 1

no. of non-zero pixels
(4.27)

meaning that each map gets a weight which is inversely proportional to the number of

activated pixels.

This is fine, but the weight is applied equally to every pixel in the map without taking

into account its context. If a small, distant target is activated in the same map as lots
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of other small regions caused by noise or glint, it will get a lower weight than if it was

activated on its own. This makes it difficult to detect small distant objects under the

current BMS implementation.

The proposed solution to this is to modify the BMS method using a map which encodes

depth of the scene. Instead of weighting each activation map using L2 normalisation,

the proposed solution weights each activation map in a way that is location dependent.

This means that surrounded regions near the horizon are given more emphasis than

those nearer the vessel. The idea of modifying an image using horizon regions has been

used in a similar way in [118] for infrared images and small targets. The activation map

normalisation step in BMS (Eqn. 4.14) is modified as follows:

Āi = wd (x, y)
(
N

[
A+

i ⊕KD1
]+N

[
A−

i ⊕KD1
])

(4.28)

where wd (x, y) is a pixel-wise weight map based on inferred depth in the scene and

N [.] is a normalisation function which maps to the range [0,1]. As a further filtering step,

detected salient regions can be excluded if they are wholly7 above the horizon to reduce

false positives. Fig. 4.25 shows the effect of weighting the activation maps in BMS.

4.4.3 Creating a depth map from the horizon

The weighting map could be manually ‘hard coded’ but in this work, the position of the

horizon is used to create a map which represents depth in the scene and can change as

the viewpoint moves. The theoretical distance to the horizon (Fig. 4.26a), H0, depends

only on the observer’s height:

H0 =
√

2Rh +h2 (4.29)

where R is the radius of the Earth and h is the height of the observer above the Earth’s

surface. This model assumes a perfectly spherical Earth with R = 6,371km taken as the

average radius. It also assumes no refraction from the atmosphere, which can extend the

apparent distance to the horizon.

Following [130], if the position of the horizon is visible to the observer, the relative dis-

tance to a point on the surface of the sea can be derived from the vertical angle subtended

between the horizon and that point. Fig. 4.26b and 4.26c shows this set-up.

7Note that objects can overlap the horizon, so the system can only confidently exclude objects which are
entirely above the horizon
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(a) Original image (b) Sub-activation map A−
9 in the L′ channel

(c) Normalised activation map Ā9 in the L′

channel (Eqn. 4.14)
(d) Depth-weighted normalised activation map
Ā9 in the L′ channel (Eqn. 4.28)

(e) Saliency map S using L2-normalised activa-
tion maps

(f) Saliency map S using depth-weighted acti-
vation maps

Fig. 4.25 Effect of using scene depth to weight the activation maps in BMS. Blue circle high-
lights position of distant boats, red circle shows sparkle close to vessel. The surrounded
regions of the boats and sparkle are of similar size in the sub-activation map (b). Using L2
normalisation (c), the boats and sparkle are given equal weight in each activation map and
sparkle becomes more salient overall (e). Using the proposed depth weighting approach
(d), more distant surrounded regions are given more weight and remain prominent in the
final saliency map whilst nearby sparkle is suppressed (f).
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(a)

(b)

(c)

Fig. 4.26 Horizon geometry
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To calculate the distance from the observer to the target T , the angle β must be

calculated:

β= π

2
−α−θ (4.30)

Angle α is the angular drop from the horizontal to the horizon and θ is the angle

subtended between the horizon and the target:

α= tan−1
(

H0

R

)
(4.31)

θ = tan−1
(

yH − yT

fy

)
(4.32)

where yH and yT are the y-coordinates of the horizon and target in the image (Fig. 4.26c),

and fy is the focal length of the camera in the y-axis.

Finally, the distance from the base of the observer to a target point can be computed

using Equation 4.33:

D = (R +h)cosβ−
√

(R +h)2 cos2β− (
2Rh +h2

)
(4.33)

In addition, the angle of camera pitch (βc ) and roll (αc ) can be determined from the

position and orientation of the horizon, respectively:

βc = δ−α

δ= tan−1
(

yH− H
2

fy

) (4.34)

αc = tan
(−φ)

(4.35)

where H is the image height in pixels, δ represents the angle subtended between the

horizon line and the midline of the image and φ is the orientation of the horizon line

(measured from the x-axis). These values can be useful for estimating or validating the

orientation of the camera (and hence vessel) in each frame.

Note that knowledge of the camera – its height h and focal length fy – is required

to compute the depth map. Fig. 4.27b shows that the depth map is not very sensitive

to small changes in observer height, so this can be estimated if precise measurements

are not possible. This is useful for the case when the system is mounted on a ship, as

motion of the waves causes changes in the height of the camera. The depth map is more
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Fig. 4.27 Horizon-based depth map functions
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Fig. 4.28 Example depth map cross section

sensitive to focal length (Fig. 4.27c), particularly at lower values, so care should be taken

when calibrating this parameter. The cameras in the IPATCH system were calibrated and

found to have a focal length of around 1300. Small calibration errors at this range are not

significant.

The depth weighting map is calculated as a function of pixel distance in the image

perpendicular to the horizon to account for roll of the camera. In the region below the

horizon, the depth formula, D (4.33), is used. To manage uncertainty around the horizon,

a fixed width bar is established with maximum weight (= 1.0) spanning from w2 above

the horizon to w3 below. Above the horizon, linear decay is applied for a fixed width (w1),

above which the map weight is set to 0. Mathematically, the depth map is constructed in

four different sections, as follows:

wi =



0 if 0 ≤ y < yH −w2 −w1,

1− yH−y−w2
w1

if yH −w2 −w1 ≤ y < yH −w2,

1 if yH −w2 ≤ y < yH +w3,

N
[
log

(
D

(
y
))]

otherwise.

(4.36)

where N [.] is a normalisation function which maps to the range [0,1]. The log transfor-

mation is used to compress the large distance range and represent relative distance (Fig.

4.27a). Fig. 4.28 shows the cross section of an example depth map with yH = 300, w1 = 150,

w2 = 50 and w3 = 50.
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4.5 Evaluation and comparison against baselines

4.5.1 Experimental set-up

Sequences and metrics

The sequences used for evaluation are listed in Table 3.3. The horizon is not visible in

the SEAGULL sequences and the camera calibration is not known for the SMD data, so

the horizon depth map step is only evaluated on the IPATCH sequences. This will be

further exploited in the on-board system testing in Chapter 6. The MODP-BEP3, Detection

Rate and FAF metrics are used for quantitative analysis, as described in Chapter 3. In

addition, to assess real-time performance, the processing speed of the proposed method

is measured for each frame.

Implementation and configurations

The BMS algorithm parameters were set to the values reported in [241] (δ= 8, D1 = 7, D2 =
9 and σ= 9). Thresholds at the 99.5th and 99th percentiles are taken as the baseline. The

size of horizontal and vertical strips are set to 100 pixels. Temporal filtering is configured

as described in Section 4.3.4. For the IPATCH sequences, horizon detection was performed

in the rectified image and the generated horizon map was ‘unrectified’ back to the original

image space for alignment with the saliency map (Fig. 4.29a). This was necessary as the

image groundtruth has been prepared in the unrectified image. In the Chapter 6, the

real-world surveillance system needs detections from the rectified image so this step is

unnecessary (Fig. 4.29b).

The saliency and horizon detection methods were implemented in C++ and run on a

MacBook Pro with 2.6GHz Intel® CoreTM i7 processor and 16GB RAM. Table 4.7 summarises

the variants of the saliency method which were used in the experiments.
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(a) This chapter

Rectification
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Horizon Detection
Horizon Map 

Saliency Map

Saliency 
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Detections for MTT 

Detection 

(b) Chapter 6

Fig. 4.29 Integration of horizon detection in the saliency method. Horizon detection is
performed in the rectified image. In this chapter, the horizon map is ‘unrectified’ back to
the original image space because evaluation is performed using groundtruth annotations
which were created in the original images. In Chapter 6, the multi-target tracker (MTT)
needs detections from the rectified image so this process is not necessary.

Table 4.7 Key to saliency method variants

Variant Name δ T1, T2 Threshold Horizon Downsample

saliency-995-99-d8 8 99.5, 99 Global - -
saliency-99-98-d8 8 99, 98 Global - -
saliency-99-95-d8 8 99, 95 Global - -
saliency-995-99-d8-hv 8 99.5, 99 Hori. Vert. - -
saliency-995-99-d8-depth 8 99.5, 99 - ✓ -
saliency-995-99-d8-hv-depth 8 99.5, 99 Hori. Vert. ✓ -
saliency-995-99-d16 16 99.5, 99 Global - ✓
saliency-995-99-d8-ds 8 99.5, 99 Global - ✓
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4.5.2 Results and analysis

Effect of thresholding values

With larger objects, lower percentile thresholds more successfully capture the whole object.

SMD-1615 is a good example of this. With the high thresholds (99.5 and 99), the objects

are fragmented (Fig. 4.30a). With lower thresholds (in particular the lower hysteresis

threshold), the whole object region is recovered (Fig. 4.30b and 4.31). However, with

small objects, lower threshold values are likely to capture more background, especially if

the background is highly-salient wake. This is the case in IPATCH-Sc2a_Tk1-CAM11 (Fig.

4.31c), leading to a decrease in performance for lower thresholds.

The same applies for scenes with large numbers of objects (i.e. a greater total target

area). The percentile-based approach assumes that the objects only occupy a certain

proportion of the image. With larger objects or denser scenes, this assumption breaks

down and the thresholds must be lowered accordingly. Conversely, scenes where only one

very small object is expected actually benefits from higher thresholds. This is the case for

the two SEAGULL sequences (Fig. 4.32a).

Effectiveness of horizontal vertical thresholding vs. global thresholding

Fig. 4.32b and 4.33 show the effect of horizontal-vertical thresholding. Compared to

the global thresholding, the horizontal-vertical thresholding approach is able to more

accurately extract targets from wake regions, although it can also create additional false

detections. Another benefit of the horizontal-vertical thresholding is the enhanced ability

to detect distant targets such as those in the IPATCH sequences. However, with larger

targets (such as in the SMD sequences), the horizontal-vertical thresholding only captures

a small salient point on the object, leading to lower MODP scores.

In contrast to the feature map-based methods, the BMS method does not explicitly

consider scale. Introducing scale into the method (e.g. through scale space representation)

could be a way to reduce the effects observed in Fig. 4.33. Scale space analysis would

allow detections to be extracted at multiple scales. Further processing could then be used

to select the most appropriate scale to detect objects based on the scene context. How-

ever, computing the BMS method over multiple image scales would be computationally

expensive.
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(a) T1 = 99.5, T2 = 99 (image cropped) (b) T1 = 99, T2 = 95 (image cropped)

(c) T1 = 99.5, T2 = 99 (d) T1 = 99, T2 = 95

Fig. 4.30 Effect of different thresholding values on the SMD-1615 (a-b) and IPATCH 2015-
Sc2a_Tk1-CAM11 (c-d) sequences. With a lower and wider threshold range (b and d),
more of the image is extracted. This is beneficial for larger objects in SMD, but leads to
overestimation of the target in IPATCH.

130



4.5 Evaluation and comparison against baselines

saliency-995-99-d8

saliency-99-98-d8

saliency-99-95-d8

0.0

0.2

0.4

0.6

0.8

1.0

M
O

D
P

B
E

P
3

0.095 0.147 0.25

SMD-Onshore-1615

(a)

saliency-995-99-d8

saliency-99-98-d8

saliency-99-95-d8

0.0

0.2

0.4

0.6

0.8

1.0

M
O

D
P

B
E

P
3

0.337 0.582 0.624

SMD-Onshore-1619

(b)

saliency-995-99-d8

saliency-99-98-d8

saliency-99-95-d8

0.0

0.2

0.4

0.6

0.8

1.0

M
O

D
P

B
E

P
3

0.561 0.554 0.363

IPATCH-2015-Sc2a_Tk1-CAM11

(c)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

D
et

ec
tio

n 
R

at
e

SMD-Onshore-1615

saliency-995-99-d8
saliency-99-98-d8
saliency-99-95-d8

(d)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

D
et

ec
tio

n 
R

at
e

SMD-Onshore-1619

saliency-995-99-d8
saliency-99-98-d8
saliency-99-95-d8

(e)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

D
et

ec
tio

n 
R

at
e

IPATCH-2015-Sc2a_Tk1-CAM11

saliency-995-99-d8
saliency-99-98-d8
saliency-99-95-d8

(f)

Fig. 4.31 Effect of different thresholding values on MODP-BEP3 for the SMD-1615 and
IPATCH 2015-Sc2a_Tk1-CAM11 sequences
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Fig. 4.32 Effect of horizontal-vertical thresholding on SMD and IPATCH sequences
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(a) (b)

(c) (d)

Fig. 4.33 Effect of horizontal-vertical thresholding on wake and reflections

Effectiveness of depth map weighting

Fig. 4.34 looks at the effect of depth map weighting applied to an IPATCH sequence

from each of the 3 campaigns in which the skiffs approach the vessel from the distance.

Without horizontal-vertical thresholding or depth map weighting, the saliency method

only detects the targets when they get close/large enough (blue lines in Fig. 4.34). With

horizontal-vertical thresholding and/or depth map weighting applied, the distant targets

can be detected much earlier. However, objects closer to the camera can be detected

less well as a result, for example in Fig. 4.34a and 4.34c the blue line overtakes the others

towards the end of the sequence as the objects get closer. Note the cyclical patterns that

occur in Fig. 4.34a and 4.34b due to the motion of the vessel.

Temporal filtering and false positives

Looking at the same three IPATCH sequences, Fig. 4.35a shows that the proposed horizontal-

vertical thresholding and depth map weighting steps reduce the number of false positives

compared to the baseline, although the level is sequence dependent. The temporal fil-

tering step is having the desired effect of reducing the number of false positives for all
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Fig. 4.34 MODP-BEP3 vs. frame number for IPATCH sequences where targets approach
from a large distance (MODP-BEP3 values are smoothed to reduce noise and show trends
more clearly).
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configurations and all sequences without adversely affecting the distribution of MODP-

BEP3 scores (Fig. 4.35b). In fact, in most cases, the filtering process improves localisation

accuracy.

Trading off speed and performance

Whilst the BMS method is fast on salient object detection benchmarks, its speed on larger

images (such as those in the IPATCH data) is not sufficient for real-time operations. The

authors of BMS report in [240] that they did not see a significant drop in performance

(AUC score) when they increased the sampling step size (δ) to create fewer Boolean maps

per image. This was tested to see if it would be the case also for the IPATCH data by setting

δ= 16. Performance and speed were also tested on downsampled versions of the images

(factor 2) for comparison (Fig. 4.36). Changing the step size δ gave a small gain in speed

with a small drop in performance. Downsampling the image gave a more significant

increase in speed but a much bigger drop in performance.

Limitations

For real-time systems, a key weakness of the proposed saliency-based approach is the

time required to process all the different maps in the BMS step. Some speed could be

gained from optimising the code implementation (e.g. parallelisation) and using larger

values of δ. Downsampling the image is the most effective way to increase speed but this

means that distant targets will not be detected. Another limitation is the tendency to

merge two objects if they are close or overlapping. This is caused by the post-processing

step in BMS which applies blurring to reduce noise in the final saliency map. This step

can be turned off, but this leads to a lot of false detections and fragmentation of objects.

The saliency approach is based on an assumption that the objects of interest will be the

most salient things in the scene. If this is not the case, for example if there is land or many

other objects in the scene, this assumption breaks down. This leads to objects being missed

or fragmented (if threshold are set high) or objects being over-detected (if thresholds are

set low). Finally, wake and reflections continue to create false positives, although these

are mitigated to some extent by the proposed horizontal-vertical thresholding, depth map

weighting and temporal filtering steps. The human visual system, whilst initially drawn

to these features and regions, performs additional (top-down) processing to distinguish

135



Visual Attention and Saliency for Object Detection

2015-Sc3_Tk2-CAM14 2016-Sc1_Tk5-CAM11 2017-Sc3a-CAM12
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

FA
F

saliency-995-99-d8
saliency-995-99-d8-filtered
saliency-995-99-d8-hv
saliency-995-99-d8-hv-filtered
saliency-995-99-d8-depth
saliency-995-99-d8-depth-filtered
saliency-995-99-d8-hv-depth
saliency-995-99-d8-hv-depth-filtered

(a)

saliency-995-99-d8

saliency-995-99-d8-filt
ered

saliency-995-99-d8-hv

saliency-995-99-d8-hv-filt
ered

saliency-995-99-d8-depth

saliency-995-99-d8-depth-filt
ered

saliency-995-99-d8-hv-depth

saliency-995-99-d8-hv-depth-filt
ered

0.0

0.2

0.4

0.6

0.8

1.0

M
O

D
P

B
E

P
3

0.0 0.0 0.196 0.323 0.072 0.268 0.186 0.469

IPATCH-2015-Sc3_Tk2-CAM14

saliency-995-99-d8

saliency-995-99-d8-filt
ered

saliency-995-99-d8-hv

saliency-995-99-d8-hv-filt
ered

saliency-995-99-d8-depth

saliency-995-99-d8-depth-filt
ered

saliency-995-99-d8-hv-depth

saliency-995-99-d8-hv-depth-filt
ered

0.0

0.2

0.4

0.6

0.8

1.0

M
O

D
P

B
E

P
3

0.0 0.021 0.227 0.374 0.069 0.251 0.155 0.432

IPATCH-2016-Sc1_Tk5-CAM11

saliency-995-99-d8

saliency-995-99-d8-filt
ered

saliency-995-99-d8-hv

saliency-995-99-d8-hv-filt
ered

saliency-995-99-d8-depth

saliency-995-99-d8-depth-filt
ered

saliency-995-99-d8-hv-depth

saliency-995-99-d8-hv-depth-filt
ered

0.0

0.2

0.4

0.6

0.8

1.0

M
O

D
P

B
E

P
3

0.115 0.063 0.255 0.235 0.168 0.164 0.215 0.197

IPATCH-2017-Sc3a-CAM12

(b)

Fig. 4.35 Effect of temporal filtering on false positives (a) and MODP-BEP3 performance
(b) for IPATCH sequences where targets approach from a large distance.
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Fig. 4.36 Speed vs. performance trade-off

between the different objects (wake, boat, etc.). The addition of top-down processing

could improve this further.

Comparison against baselines

Higher thresholds and the proposed thresholding and depth map weighting steps favour

sparse scenes with smaller, distant targets over busy scenes with larger objects. As the

former is more representative of the piracy detection case (detecting as early as possible),

the ‘saliency-995-99-d8-hv-depth’ is selected as the most appropriate for addressing the

challenge of detecting pirate skiffs approaching from a distance. See Fig. 4.37 for results on

representative IPATCH sequences. Looking at the MODP-BEP3 distributions, the proposed

saliency method achieves moderate performance on all the sequences but is less sequence-

dependent (i.e. it is more consistent over the sequences). For early detection of piracy

threats, a key factor is detection rate, regardless of localisation accuracy (as location can

be refined as the objects get closer). The proposed saliency method has high detection

rate curves at lower thresholds across all sequences which is good for initial detection.

The detection rate falls quite sharply compared to other methods, indicating that it is not

such a good choice for accurately localising the object in the image.
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Fig. 4.37 Comparison of the proposed saliency-based object detection method with base-
line methods from the literature.
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4.6 Summary

In this chapter, the concept of using visual saliency as a basis for object detection was

investigated. Evaluation of a range of visual attention and saliency methods on maritime

surveillance data indicated that BMS [240] was a good candidate. To perform object

detection, an adaptive hysteresis thresholding method was proposed, however a lot of

wake was still detected and distant objects were often missed.

To address the first issue, a horizontal-vertical thresholding step was proposed which

emphasises local saliency, rather than global. The second issue was addressed by incorpo-

rating scene context into the saliency step by weighting activation maps in BMS with a

map that encodes depth in the scene. The map was generated by detecting the horizon

and estimating a depth function through knowledge of the camera height and focal length.

The Park horizon detection method [158] was selected from the literature as it was an

efficient method, as well as being among the top performing. Finally, temporal filtering

was used to smooth the positions of the detections over time and filter out transient

salient regions. Not only did this reduce the number of false positives, but it improved the

localisation accuracy in most sequences.

The proposed approach exploits the fact that maritime objects are relatively rare in

most surveillance contexts (compared to real-world general object detection). This is valid

for the piracy detection case but does not hold for the busy port vessel traffic monitoring

case. One advantage of saliency-based approaches is that they do not make any assump-

tions about object size or appearance and generalise to scenes with different viewpoints,

backgrounds and conditions. However, the system is deprived of key information which

could be used to improve performance, namely the fact that the system operates over

maritime scenes which have certain characteristics. In the next chapter, machine learning

is applied to create a model of the elements that make up maritime scenes to perform

more context-specific reasoning about the presence and location of objects.
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Chapter 5

Semantic Segmentation for Object

Detection

5.1 Introduction

The state of the art in object detection is represented by deep convolutional neural net-

works which output bounding boxes and associated class labels. However, as shown in

Chapter 3, when applied directly to maritime surveillance data, their performance is more

variable. This is because there is a significant gap between the training and runtime (test)

data domains. An obvious solution to this would be to train on images which are more

specific to the maritime surveillance domain. Unfortunately, labelled training data in this

area is limited and expensive to produce.

In another area of research, deep networks are achieving high performance in seman-

tic segmentation and scene parsing tasks such as autonomous driving and augmented

reality [41, 52, 79]. Here, the number of images required for training has been observed

to be much less (100s of images) [13], which makes it attractive for the maritime domain.

However, maritime scene segmentation data is practically non-existent and even more

expensive to produce. Driven by the potential application in autonomous vehicle navi-

gation, many of the architectures [147, 159] are also designed with speed and memory

consumption in mind so that they can run in real time on low-power hardware, making

them suitable for real-world, real-time applications.

The idea explored in this chapter is, rather than learning to find maritime objects,

instead learn to segment the whole scene into the most common components of maritime
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Fig. 5.1 The semantic segmentation-based object detection concept. A semantic seg-
mentation network predicts the class of each pixel as ‘Sea’ (blue), ‘Sky’ (grey) or ‘Other’.
Contextual reasoning is then used to distinguish target objects (red) from other features
(yellow), such as land.

environments – sea, sky and (in some cases) land. The object detection problem can

then be reframed as the task of finding things which are “not sea or sky”. Of course, some

training data is still required, so publicly available scene segmentation datasets are used.

These are still quite a long way from the test data domain, so the key research questions in

this chapter are:

1. Does the “inverse object detection” approach work in principle?

2. What are the limitations?

3. How can the training data mismatch be overcome through data augmentation and

other training techniques?

What this chapter will not do is investigate the small details of network architecture

and optimisation aspects of training (learning rates, etc.). One can spend hours fine-

tuning these hyperparameters to eke out a few percentage points of performance for a

specific dataset, but this is not the aim of this study. It is assumed that most published

networks have already gone through this process and it is likely that little value will be

gained from fiddling with parameters when training and testing on very different domains

anyway.

The proposed object detection concept is shown in Fig. 5.1. The system takes 3-

channel RGB images as input and processes them through a semantic segmentation
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network to generate a class probability distribution for each pixel. The probability dis-

tributions are then processed to create a segmentation of the scene based on contextual

knowledge of maritime scenes. Object detections are then extracted from this scene

model.

5.2 Semantic segmentation networks

5.2.1 Selected networks

Semantic segmentation networks were selected from recent literature which have been

designed to be efficient, motivated by use in real-time applications such as autonomous

driving. The criteria for selection were:

• Good performance on benchmark datasets

• Fast inference speed (for real-time applications)

The networks are fully convolutional and do not rely on post-processing of the network

output (e.g. using CRF refinement [79]) to obtain high accuracy. Both of these features are

important for reducing the number of network parameters and keeping inference speed

fast. Being fully convolutional also means they can be applied to input images of any size,

irrespective of the size of the training images. This is useful for real-world applications,

where the input data may not be the same resolution as the training data.

Seven networks were selected for the initial round of evaluation (see Table 5.1). The

networks obtain a range of accuracy performances on benchmark datasets such as CamVid

[41] and CityScapes [52]. No results for UNet could be found for the Cityscapes dataset

but it is included because it has performed well in the medical imaging domain [216].

5.2.2 Baseline performance on CamVid dataset

The results from the literature (Table 5.1) indicate that these networks are interesting for

this study. However, it is difficult to make meaningful comparisons between networks

using values which are reported in different sources, as the implementation details are

not fully known and runtime speeds are affected by computing platforms and frameworks.

To further refine the selection, the networks were implemented in the same framework

and evaluated on the same computing platform on a common dataset.
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Table 5.1 Semantic segmentation networks shortlist. Number of parameters and FPS for
the CityScapes [52] dataset (*values from implementation in this thesis, †values reported
in [139], ‡values reported in [183], **values reported in [245])

Network Year Params* FPS mIoU
1024×512 2048×1024

UNet [184] 2015 31.0M - - -
SegNet [12, 13] 2015 24.9M 1.6‡ - 57.0‡

ENet [159] 2016 0.37M 76.9† 20.4‡ 58.3‡

ERFNet [182, 183] 2017 2.07M 41.7† 11.2‡ 69.7‡

ESPNet [147] 2018 0.35M 112.9† - 60.3†

EDANet [139] 2018 0.67M 81.3† - 67.3†

ICNet [245] 2018 6.70M - 30.3** 70.6**

Training data

To get results which would indicate suitability for the task of learning from limited data, the

CamVid dataset [41] was selected to benchmark the performance of the networks under

the conditions of limited training data, but high correlation between training and test data.

The training, validation and test splits were taken from the authors’ online repository1.

The number of train, validation and test images are 367, 101 and 233, respectively, which

corresponds to approximately 53%, 14% and 33% (a 60% / 10% / 30% split is commonly

used). The dataset has 11 classes (plus a 12th ‘void’ class, which is ignored in calculation of

the loss) and a resolution of 480 × 360. This dataset is particularly suitable for preliminary

investigations as it is of similar size to the amount of maritime training data that can be

obtained from other sources (see Section 5.3). Fig. 5.2 shows some example images and

their segmentation labels from the CamVid dataset.

Implementation and training

For fair comparison of performance (particularly speed), all the models were implemented

in the PyTorch framework based on the author’s published code, using the original source

code where possible. The network implementations were taken from the following sources:

1https://github.com/alexgkendall/SegNet-Tutorial/tree/master/CamVid
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5.2 Semantic segmentation networks

Fig. 5.2 Example CamVid [41] images and groundtruth labels

UNet2 SegNet3, ENet4, ERFNet5, ESPNet6, EDANet7. The ICNet source code is not publicly

available so this was implemented from scratch following the paper. The hyperparameters,

class balancing scheme and training protocol used for training are the ones described in

each of the original papers (see Table 5.2).

Training was performed on an Alienware laptop with an 8-core 2.6GHz Intel® CoreTM

i7 CPU and 16GB RAM, with an externally connected NVIDIA® GeForce® GTXTM Titan X

GPU with 12GB memory. The networks were all trained end-to-end with a multi-class

cross entropy loss using a batch size of 8, apart from SegNet and UNet, which were trained

with batch sizes of 4 and 2, respectively, due to GPU memory limitations. The images were

presented to the networks at 3 different sizes: 480 × 360 (original size), 352 × 288 (0.75×)

and 608 × 448 (1.25×). Random horizontal flips were used as basic data augmentation.

Class balancing was used to mitigate the effects of unbalanced datasets on training. This is

especially important in semantic segmentation where there might be hundreds of millions

of pixels of some classes and only thousands of pixels of others. The networks use two

methods for class balancing: median frequency and a custom method first proposed in

the ENet paper [159]:

2https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net
3https://github.com/alexgkendall/SegNet-Tutorial
4https://github.com/TimoSaemann/ENet
5https://github.com/Eromera/erfnet
6https://github.com/sacmehta/ESPNet
7https://github.com/shaoyuanlo/EDANet
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Table 5.2 Semantic segmentation network training setup

Network Class Balancing Optimisation

UNet [184]
Median

Frequency
SGD; momentum: 0.99;
l r : 0.0001; step, γ: 0.1; L2 reg.: none

SegNet [13]
Median

Frequency
SGD; momentum: 0.9;
l r : 0.001; L2 reg.: 0.0005

ENet [159]
ENet custom

c = 1.02
ADAM; βs: 0.9, 0.999;
l r : 0.005, step γ: 0.1; L2 reg.: 0.0002

ESPNet [147]
ENet custom

c = 1.10
ADAM; βs: 0.9, 0.999;
l r : 0.0005, step, γ: 0.5; L2 reg.: 0.0005

ERFNet [183]
ENet custom

c = 1.10
ADAM; βs: 0.9, 0.999;
l r : 0.0005, poly, γ: 0.9; L2 reg.: 0.0001

EDANet [139]
ENet custom

c = 1.12
ADAM; βs: 0.9, 0.999;
l r : 0.0005, poly, γ: 0.9; L2 reg.: 0.0001

ICNet [245]
ENet custom

c = 1.10
ADAM; βs: 0.9, 0.999;
l r : 0.01, poly, γ: 0.9; L2 reg.: 0.0001

Median frequency

wi = med. freq.

fi
(5.1)

where fi is the frequency of class i , med. freq. is the median of all class frequencies, and

wi is the weight applied to class i .

ENet custom

wi = 1

ln
(
c +pi

) (5.2)

where pi is the probability of class i , c is a hyperparameter which restricts the range of

class weights, and wi is the weight applied to class i .

Evaluation metrics

For quantitative evaluation of the semantic segmentation output, accuracy and Intersec-

tion over Union (IoU) are used, as defined in [140]. Accuracy is the proportion of pixels in

the image which were correctly classified and is computed per class and globally. IoU is

the ratio of overlap between the predicted and groundtruth segmentation and their total

area. This is also computed per class and an average over classes is taken to give the mean

146



5.2 Semantic segmentation networks

IoU (mIoU). In the following, ni j is the number of pixels of class i predicted to belong to

class j , there are ncl different classes, and ti =∑
j ni j is the total number of pixels of class

i .

Per-class accuracy = ni i

ti
(5.3)

Global accuracy =
∑

i ni i∑
i ti

(5.4)

Per-class IoU = ni i

ti +∑
j n j i −ni i

(5.5)

Mean IoU =
(

1

ncl

)∑
i

ni i

ti +∑
j n j i −ni i

(5.6)

Results and analysis

Fig. 5.3 shows the loss and accuracy for training and validation. All the networks converge

relatively quickly (within ~150 epochs). UNet converges more slowly, and to a higher loss

and lower accuracy. ICNet converges at a similar rate to the others, but also does not reach

the same loss or accuracy. The convergence of UNet can be explained by the fact that it

has a very large number of parameters. SegNet is also a large architecture, but the max

unpooling connections are effective in routing the loss signal to the lower layers so that

they train faster.

Table 5.3 compares the results achieved in this experiment against those reported in

the literature. In this test, no effort was made to optimise the training regime so the results

are lower than those reported, as expected. An interesting observation is that the more

recent networks typically report better mIoU scores, but in this test that was not the case.

For example, the most recent network, ICNet, ranked 6th out of 7, falling behind one of the

oldest networks, SegNet. Possible reasons for this are discussed at the end of this section.

Fig. 5.4 compares the different properties and performance of the networks. As ex-

pected, the networks with fewer parameters are also the fastest to train and run (Fig. 5.4e

and 5.4f). ENet and ERFNet are slightly slower compared to others of similar size (EDANet

and ICNet) resulting from differences in architectural structures. For example, dilated

convolutions can have the same number of parameters as standard convolutions, but

fewer strides are needed to cover the same input volume. Network operations can be
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Fig. 5.3 CamVid baseline training and validation curves

Table 5.3 Reported vs. achieved results for CamVid baseline test

Network
Reported

mIoU
Achieved

mIoU Rank
Achieved FPS

480 × 360 No. params.

UNet [184] - 40.4 7 25.5 31.0M
SegNet [12, 13] 55.6 45.8 5 37 24.9M
ENet [159] 51.3 48.8 4 73 0.37M
ESPNet [147] 55.64 51.8 2 112 0.35M
ERFNet [182, 183] - 52.0 1 83 2.07M
EDANet [139] 62.6 49.3 3 116 0.67M
ICNet [245] 67.1 44.6 6 95.2 6.70M
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optimised differently by the software library and GPU which could also lead to differences

in speed. ERFNet achieves higher mIoU and accuracy than the other networks so although

it is slightly larger and slower, it is using its parameters more effectively. Generally, the

smaller networks achieve the best accuracy and mIoU scores. This is due to the recent

developments in architectural structures which make more efficient use of parameters.

When comparing speed with mIoU (Fig. 5.4c), there is more variability in the perfor-

mance of the networks so selecting the best network for a real-time application is not

straightforward.

The segmentation performance is broken down by class in Fig. 5.5. UNet is the lowest

scoring across the classes, but its accuracy score can be higher (e.g. for Pole and Sign in

Fig. 5.5a). The accuracy metric has a bias towards the negative case (i.e. how often the

class is not present) which can give misleading results for rarer classes. The mIoU scores

(Fig. 5.5b) do not have this bias and here it is clear that UNet does particularly badly with

the rarer classes (Pole, Sign, Fence, Pedestrian and Bicyclist), hence it has a low mIoU.

The results for the other networks do not vary significantly from class to class and are

consistent with the overall accuracy and mIoU performance discussed above.

To analyse the runtime inference speed in more detail, the networks were also run on

larger images, as the CamVid data is lower resolution (480 × 360) than the target IPATCH

data (1920 × 1080). Fig. 5.6 shows speed in terms of processing time per frame and

FPS for different image sizes. The general trend is as expected (i.e. that larger images

take longer to process) but it is interesting that networks decrease at different rates and

sometimes switch order (this is more noticeable with FPS in the right-hand side of Fig.

5.6). For example, EDANet is faster than ICNet with the 480 × 360 images but ICNet is

faster with the larger images. This is likely due to how the software library and GPU are

able to optimise different network operations with different amounts of data. The main

conclusion from Fig. 5.6 is that real-time performance on the IPATCH data will not be

achievable with all the networks in the shortlist.
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Fig. 5.4 Semantic segmentation network properties based on CamVid baseline experi-
ments
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Fig. 5.5 CamVid baseline validation per-class accuracies and IoUs
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Fig. 5.6 Inference speeds for the networks on different image sizes. The horizontal line in
the right-hand plot marks 15 FPS, which could be considered a target minimum speed for
real-time applications.
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(a) Image (b) UNet (c) SegNet

(d) ENet (e) ESPNet (f) ERFNet

(g) EDANet (h) ICNet (i) Groundtruth

Fig. 5.7 Qualitative results for the networks on CamVid in the baseline experiment.
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Downselection of networks

Based on the CamVid baseline results above, it is clear that UNet and SegNet do not really

compete with the more recent and efficient networks. The output of UNet in particular is

visually not as good as the other networks (Fig. 5.7). As they are bigger architectures, they

take longer to train and run but do not give good enough segmentation performance to

compensate.

The performance achieved by ICNet is unexpected. Its segmentation output is visually

not well-defined (see Fig. 5.7h), and the scores achieved are much lower than those

reported in [245]. The scores are also low compared to some of the less sophisticated and

older networks, which is surprising.

ICNet is one of the networks that can make use of a pre-trained encoder from other

work (PSPNet [246]). It’s possible that, without pre-training on e.g. ImageNet, it is not able

to learn good enough features on a small training set when trained end to end. However,

other networks did not have this problem in this baseline test.

Another reason could be due to the weights used in the multi-scale cross-entropy loss.

The image is input to the network in low, medium and high resolution branches. Deep

supervision is implemented by computing cross-entropy losses for each branch which are

combined into an overall loss using different weights. The weight values were determined

empirically, so they may not generalise well to new datasets or may not be suitable for end

to end training.

Further investigation of pre-training and the multi-scale loss weights in ICNet is left

for future work. Based on the preliminary tests in this section, UNet, SegNet and ICNet

are not included in further experiments.
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5.3 Training on data from the ADE20k dataset

5.3.1 Training data

The ADE20k dataset [248] was selected because it is the largest available scene (rather than

object) semantic segmentation dataset that contains the classes of interest (sea, boat, etc.).

It is not ideally suited to the maritime surveillance task, but it is the only dataset currently

available which covers the relevant classes with sufficient pixel-level groundtruth for

training semantic segmentation networks. However, it also contains many other classes

which are not relevant to maritime surveillance.

A subset of the data was therefore created for training by manually extracting images

which primarily contain classes from maritime surveillance (i.e. sea, sky, boats, buoys,

etc.). Some images were further excluded because they are not suitable: for example, an

image that contains a painting of a boat on a wall in a room rather than a real boat scene,

or images where sky is only visible through a window. This process resulted in 434 images

with median dimensions of 300×256 pixels (note that this is significantly smaller than the

target domain of 1920×1080 images). All the classes in the 434 images are then mapped to

a new, smaller set of classes which are relevant for the task at hand (correcting the labels

manually, where necessary).

Initially, all classes were mapped to one of Sea, Sky, and Other (maintaining the

‘void’ class wherever present). Two other mappings were also investigated – one which

distinguishes Object separately from Other, and one with Object, Land and Other as

distinct classes – to see if this makes it easier or harder for the network to distinguish

objects of interest from the rest of the scene. Note that the Object class refers to maritime

objects, i.e. those that are found on the surface of the sea and make up the targets for

detection in maritime surveillance. This includes large ships, speedboats, sailing boats,

buoys, and so on. Any other objects (e.g. birds, vehicles on land) are mapped to the Other

class. Examples of images in the subset for training can be seen in Fig. 5.8.

The three versions of the subset were split into train, validation and test sets for the

experiments using a standard split of approximately 60% / 10% / 30%. The split process

applied random stratified sampling based on image size and scene category to minimise

the difference in distributions between the splits. Scene category is provided in the ADE20k

annotation data and image size was approximated by using K-Means clustering to group
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(a) Images (b) 3-plus-1 labels (c) 4-plus-1 labels (d) 5-plus-1 labels

Fig. 5.8 Example training images and class mappings from the 434-image maritime subset
of ADE20k [248].
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the images into ‘small’, ‘medium’ and ‘large’. The properties of the data for the 3 class

mappings can be found in Tables 5.4a to 5.4c.

Table 5.4 Dataset properties for the 3 class mappings of the maritime subset of ADE20k

(a) 3-plus-1 class mapping

Sea Sky Other Void

No. Image Occurrences 430 403 423 433
Total proportion (all images) 32.6% 30.1% 35.7% 1.6%
Mean proportion (per image) 34.5% 33.2% 30.4% 1.9%

(b) 4-plus-1 class mapping

Sea Sky Object Other Void

No. Image Occurrences 430 403 180 421 433
Total proportion (all images) 32.5% 30.1% 6.2% 29.6% 1.6%
Mean proportion (per image) 34.5% 33.2% 3.9% 26.5% 1.9%

(c) 5-plus-1 class mapping

Sea Sky Object Land Other Void

No. Image Occurrences 430 403 180 392 233 433
Total proportion (all images) 32.5% 30.1% 6.2% 19.8% 9.8% 1.6%
Mean proportion (per image) 34.5% 33.2% 3.9% 19.6% 6.9% 1.9%

5.3.2 Implementation and training

The implementations and hyperparameters for the networks are the same as those de-

scribed in Sec. 5.2.2. ESPNet was modified to allow fewer than K output classes, where K

is a hyperparameter of the network set to 5. K controls the number of parallel branches in

the ESP block. The final ESP block in the network projects its input volume to the number

of output classes, C . Each of the K parallel branches must produce an output of at least 1

channel. When these are concatenated, the number of output channels is 5, hence will

be greater than C when there are fewer than 5 classes. The ESP module was therefore

modified to automatically adjust to use fewer parallel branches if the number of output

channels was less than K .
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All networks were trained end-to-end with batches of 8 images, scaled to 4 different

sizes to capture information at different scales: 672 × 512, 512 × 384, 416 × 320 and 320

× 256 (keeping aspect ratio by randomly cropping, if necessary). These sizes are based

on the fact that the image is downsampled up to 5 times in some networks, so values

were selected that are multiples of 25 with approximately the same aspect ratio. For the

baseline, only random horizontal flips are applied as data augmentations. Training was

performed on the same computing platform as before (Sec. 5.2.2).

K-fold cross-validation

Ultimately, the aim is to use all available data for training, especially as the amount of

training data is limited. However, the hyperparameters and training regime need to be

checked to make sure the network is learning well on the data (i.e. loss is decreasing)

and will not overfit. The latter is particularly important for small datasets. A k-fold cross-

validation approach was adopted to address this. This is a way to ensure that the initial

selection of the train, validation and test splits was not, by chance, particularly good or

bad for training. It gives confidence that the splits are, in fact, representative, and that

conclusions on one split will also be valid on other splits. The process also tests if the

hyperparameters are appropriate and reveals how long the network takes to converge.

When training with the full data, where there is no validation set to test for over- or

under-fitting, one can be confident that the network has converged at around the same

point.

Each network was trained on k = 5 different splits of the ADE20k subset. The accuracy

and mIoU curves from training are shown in Fig. 5.9. The mean scores over the 5 different

splits are plotted with error bars showing the standard deviation. All the networks reached

convergence by 500 epochs, and there is small variation between the splits. Some variation

is expected, due to the small number of images. This exercise validates the hyperparam-

eters for each network and means that overfitting will not occur when training for 500

epochs on the full ADE20k subset (434 images).

Maritime surveillance test data (‘MarSemSeg’)

In this work, two key aspects of the approach are a) to use as much training data as

possible and b) test how well the trained models will generalise to maritime surveillance

data. The first point means there is no data left over to evaluate on and the second
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Fig. 5.9 k-fold cross-validation training for 3-plus-1 mapping

point arises because the ADE20k images are not very representative of the kind of scenes

in the maritime surveillance domain (even though they contain the right classes, they

are qualitatively different). For this reason, a small test set was created by producing

semantic segmentation groundtruth for images taken from the maritime datasets. The

sequences from Chapter 4 were used, as saliency groundtruth had already been created,

and this could be used to ‘bootstrap’ the creation of the semantic segmentation labels.

the maritime semantic segmentation test set – or ‘MarSemSeg’ for short – consists of 70

images sampled from the 7 sequences in Chapter 4 (10 images sampled uniformly through

each sequence to minimise similarity of images and capture a range of object sizes and

scene features). In the rest of this chapter, the networks were trained using the full set of

434 images. The k-fold cross-validation process gives confidence that the networks would

not overfit within 500 epochs. The MarSemSeg test is then used to measure performance

and the ability to generalise to the maritime surveillance domain. Fig. 5.10 shows some

examples from the MarSemSeg dataset and Table 5.5 lists the properties of the 3 class

mappings.
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(a) Images (b) 3-plus-1 labels (c) 4-plus-1 labels (d) 5-plus-1 labels

Fig. 5.10 Examples of MarSemSeg images and groundtruth labels
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Table 5.5 Dataset properties for the 3 class mappings of MarSemSeg

(a) 3-plus-1 class mapping

Sea Sky Other Void

No. Image Occurrences 70 68 65 30
Total proportion (all images) 71.2% 26.4% 1.4% 1.0%
Mean proportion (per image) 70.22% 27.0% 1.3% 1.5%

(b) 4-plus-1 class mapping

Sea Sky Object Other Void

No. Image Occurrences 70 68 65 12 30
Total proportion (all images) 71.2% 26.4% 1.4% 0.03% 0.97%
Mean proportion (per image) 70.2% 27.0% 1.15% 0.11% 1.55%

(c) 5-plus-1 class mapping

Sea Sky Object Land Other Void

No. Image Occurrences 70 68 65 2 12 30
Total proportion (all images) 71.2% 26.4% 1.38% 0.0% 0.02% 0.97%
Mean proportion (per image) 70.2% 27.0% 1.17% 0.01% 0.1% 1.55%
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5.4 Experiments

In this section, a number of factors are investigated to see which approaches will improve

the ability of a semantic segmentation networks to learn from non-ideal data (434 images

selected from the ADE20k scene parsing dataset) and be applied to maritime surveillance

data (MarSemSeg). The evaluation metrics for semantic segmentation are the same as

those described in Section 5.2.2.

5.4.1 Number of classes

The three sub-set mappings (3, 4 and 5 classes) were used to investigate the performance

of each of the remaining networks, and to see if training on more or fewer classes leads to

learning better features. Intuitively, learning fewer classes should be easier, but forcing the

networks to distinguish between more classes might lead to more discriminative features

which generalise better to new data.

Looking at the results for the 4 and 5 class sub-sets (Fig. 5.11), it can be seen that

IoU for the classes which are not sea or sky drops dramatically. All networks struggle to

distinguish between Objects, Land and Other because of the small amount of training

data. Looking at the confusion matrices (Fig. 5.13), the Object and Other classes are

most confused, suggesting that there is insufficient inter-class variance and/or too much

intra-class variance for the networks to learn discriminating features. The segmentation

examples in Fig. 5.14 show how all of the networks tend to detect objects as mixtures of

multiple classes (column (b) and (c)) which would make object detection more difficult.

Based on these results, the decision was made to proceed with the 3 class subset for the

rest of the experiments, where Objects, Land and Other are aggregated in the Other class.

In terms of individual network performance, ERFNet performs best overall, with

EDANet sometimes performing better and often being second best. The qualitative

results in Fig. 5.14 support the quantitative analysis. On the 3-class subset, EDANet

does better than ENet and ESPNet in overall mIoU, and gets higher IoU on the Other

class. It is slightly surprising that ESPNet achieved the lowest scores overall. It’s possible

that the modifications to the ESP module to handle fewer than 5 classes have adversely

impacted ESPNet’s performance. On the basis of these results, EDANet is selected for

further experiments. Whilst it does not achieve quite as high mIoU score as ERFNet, it
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Fig. 5.11 Results of the 4 networks on MarSemSeg test set, trained on full ADE20k maritime
subset
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Fig. 5.13 Confusion matrices for the 4 networks on MarSemSeg test set, trained on full
ADE20k maritime subset
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Fig. 5.14 Example segmentation output for the networks on MarSemSeg
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has a faster inference time (see Fig. 5.12), which makes it more attractive to real-time

applications.

5.4.2 Data augmentation

Data augmentation is the process of applying transformations to a dataset to create

modified versions of the original images, thereby expanding the total number of different

images that the network sees during training. It is especially important when working

with small datasets, such as the ADE20k subset used in this study.

Data augmentation tries to bridge the gap between training data and test data by

using expert knowledge to make the training distribution closer to the test distribution. It

teaches a network about invariances in the data domain so that the learned model is also

invariant to these features, thereby improving its performance on unseen data. One thing

that it cannot do, though, is provide more examples of objects of different types or from

different viewpoints. For example, if there is no image of boat taken from the stern in the

dataset, this cannot be simulated through data augmentation.

In the baseline experiments above, only very basic augmentation transforms were

used: random horizontal flips and resizing to four different predetermined input sizes.

These can be considered “standard” augmentations that are done with even very large

datasets [82, 90, 123]. This section investigates the effectiveness and importance of more

extensive data augmentation strategies in the task of adapting networks trained on general

scene parsing data to use on maritime surveillance data. The data augmentations are

grouped into three categories:

1. Photometric: e.g. saturation, brightness, contrast, colour balance – these are de-

signed to simulate the effects of different camera sensors and lighting conditions

2. Geometric: e.g. rotation, shear, perspective transforms, warp/distortion – these are

designed to simulate different camera optics and viewpoints

3. Noise: e.g. blur, additive Gaussian noise, pixel dropout, compression – these are

designed to simulate imaging artefacts of real-world systems

To teach the network about invariances which are relevant for the maritime surveil-

lance domain, seven augmentations were implemented (see Appendix A for full details),

in addition to horizontal flips and multiple input sizes:
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• Brightness (1), contrast (2) and colour (3) variations can simulate the changes in

appearance under different lighting conditions, in particular when there is bright

sun glare present, or when lighting is low (cloudy day or evening sequences).

• Rotation (4) of images around the centre can simulate the change in viewpoint due

to the motion (roll and pitch) of vessels at sea.

• Blur (5) is common in real systems if the camera is not properly focused.

• Image noise (6) can appear in cameras under real-world conditions (e.g. due to

electromagnetic interference, video decoding errors, or low-light conditions).

• Compression artefacts (7) are common due to the need to transmit high-resolution

video over limited bandwidth.

An ablation study was conducted to assess the importance of each of these augmen-

tations. First, the network was trained with the baseline augmentations only and then

with all 7 augmentations applied. The network was then run 7 more times, each time

removing one of the augmentations to see how performance was affected. The results of

this process are show in Fig. 5.15.

Applying all the augmentations together (full-aug) showed an increase in performance.

Removing some augmentations (e.g. colour and blur) decreased performance compared

to the full set, indicating that they are providing value. In comparison, the removal of some

augmentations (e.g. rotation, noise and compression artefacts) actually increased per-

formance, indicating that they might be hindering generalisation, rather than improving

it.

An ‘optimal’ set was created where these augmentations (rotation, noise and compres-

sion artefacts) were removed. Although performance was better compared to the baseline,

it did not reach as high as when all the augmentations were applied. The conclusion is

that the interaction of augmentations is not trivial or additive. Some augmentations may

increase the accuracy on some classes, but decrease on others. This can be seen in the

per-class IoU scores in Fig. 5.15c. Augmentations may also interact with each other in a

non-predictable way on different classes.

It is clear that augmentation is beneficial, but it cannot categorically be said that some

augmentations are better or ‘best’ – there is no optimal set. It is highly dependent on

both the training data and eventual application domain (test) data. In the next section,

a different approach is investigated, whereby the network is trained on a different but

related task which encourages it to use spatial information in the scene.
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Fig. 5.15 Ablation study results showing (a) global accuracy, (b) mean IoU over classes
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change compared to the full set of augmentations.
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Fig. 5.16 Implementation of multi-task learning by adding an extra output channel to the
network and applying separate losses.

5.4.3 Multi-task learning

Multi-task learning is where a network is trained to perform two or more tasks simulta-

neously, i.e. its loss function consists of an element for each task. The network receives

training signals from all the tasks and it must learn features which help it perform all tasks

well. By doing this, the network is able generalise better on the original task [46, 187].

In this thesis, multi-task learning is proposed as a mechanism for introducing domain-

specific knowledge into the learning. As already mentioned in Chapter 4, the horizon

is a key feature of the maritime landscape and could provide useful information, for

example, that sea regions should be below the horizon line and sky regions above. One

of the challenges of semantic segmentation is to achieve precise boundaries between

neighbouring semantic regions, especially when there is low visual distinction between

them. As noted in previous chapters, this is often the case with maritime objects (e.g. low

contrast targets in the distance, or light-coloured objects causing wake). Two multi-task

set-ups were therefore investigated: one where the network must predict the horizon, as

well as the class segmentation, and one where it must predict the boundaries between

semantic regions.

The EDANet architecture was modified to produce predictions for the secondary task.

No new convolutional layers were added so that the number of features being learned was
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the same for comparison with previous experiments. The objective is to test if the network

learns better features, not more of them. The modifications were therefore restricted to

the minimum that would allow the multi-task loss to be applied to the outputs.

The additional tasks were modelled as an additional channel in the output tensor,

such that the new number of output channels for C classes was C +1. This is implemented

as an additional channel in the final projection layer (1 × 1 convolutions) before the

final upsampling step. During training, the additional output channel was separated

and the cross-entropy classification loss and secondary task regression loss were applied

separately. This is shown in Fig. 5.16.

Predicting distance to horizon

In this task, the network is trained to predict the vertical distance to the horizon line for

each pixel. That is, the network must produce a distance map where each pixel value

represents the distance (in normalised image coordinates) from the horizon, above or

below it. The pixel values are therefore in the range (+1,−1), where positive values indicate

that the pixel is above the horizon, and negative values are below. This approach was

inspired by recent work in the field of instance segmentation [49, 132, 214], where each

pixel predicts its offset from object instance centres, as well as its class. The choice

of predicting a distance map instead of predicting line parameters is to encourage the

network to learn more about the relative position of classes in the scene (e.g. that sea

should be below the horizon, sky should be above, etc.).

For training and evaluation, horizon groundtruth was created for the ADE20k maritime

subset and MarSemSeg images. The horizon line was drawn on by hand and the line

parameters were saved to a file. At training time, the line parameters are used to generate

a horizon map ‘on the fly’. Some images did not contain the horizon (e.g. those from

downward-looking aerial viewpoints) so these were marked as ‘void’ and are ignored

during calculation of the horizon prediction loss. Fig. 5.18 shows an example horizon

map. The horizon line can be easily recovered by binarising the map into regions greater

and less than zero.

Predicting location of region boundaries

Semantic region boundaries are different to edges, as edges can occur within a semantic

class, as well as between them. The choice of predicting semantic boundaries is to
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Fig. 5.17 Example horizon map examples.

encourage the network to learn features which make the boundaries between different

classes clear, even if there is not a strong edge (e.g. due to low contrast). This approach

has been taken by [87, 88, 138, 234, 236] to improve boundary accuracy and instance

segmentation. In this task, the network is trained to output a binary map for the semantic

region boundaries, where 1 indicates that the pixel is on the boundary and 0 means it

is not. L2 regression loss was chosen instead of a binary classification loss so that the

network outputs a wider range of values between 0 and 1 (rather than encouraging it to

predict a polarised bimodal distribution). As semantic boundaries might be ambiguous,

a wider range of values could be used as a kind of edge probability map in subsequent

processing steps to give more nuanced information about region boundaries.

For training and evaluation, boundary groundtruth was created for the ADE20k mar-

itime subset and MarSemSeg images. This was done automatically by finding the points

on the edge of each region in the class label images and saving a boundary label image

which is loaded by the network during training. Fig. 5.18 shows an example boundary

map.

(a) Image (b) Segmentation (c) Boundary map

Fig. 5.18 Example boundary map.

170



5.4 Experiments

Multi-task loss function

The loss is made up of two parts: a pixel-wise cross-entropy loss for the segmentation task

(Lseg) and a pixel-wise L2 regression loss for the secondary task (Lreg):

Lseg =−
C∑
i

ŷi log
(
σs

(
y
)

i

)
(5.7)

Lreg =
∣∣∣∣ŷ−y

∣∣∣∣2 (5.8)

where y is the network outputs, ŷ is the groundtruth labels, C is the number of classes,

and σs
(
y
)

is the Softmax function applied to the network output such that:

σs
(
y
)

i =
e yi∑C
j e y j

(5.9)

One of the challenges in the multi-task learning is how to combine the components of

the loss into a single function. A common approach is to take a weighted sum of each loss:

L =ω1L1 +ω2L2 +·· ·+ωnLn (5.10)

where the values of ω are manually specified weights for each component of the loss. The

weights are tuned empirically to achieve good performance. A more principled approach

was proposed by Kendall et al. [115] which weights each loss component according to

the uncertainty of its task. This is the approach adopted in these experiments so the

multi-task loss function is:

L = 1

σ2
seg

Lseg + logσseg + 1

2σ2
reg

Lreg + logσreg (5.11)

where Lreg is used for both the horizon prediction and boundary prediction loss.

The formulation is based on likelihood maximisation using a softmax likelihood and

a Gaussian likelihood to model the classification and regression tasks, respectively. This

creates a loss function which is also dependent on the noise parameters for each task, σseg

and σreg. During training, the network learns the relative weights of the losses by learning

values for σseg and σreg which minimise the loss. As the noise in one of the tasks increases,

its weight decreases, and vice versa. At the same time, the logσ terms act as regularisation

to stop the noise from increasing too much.
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Fig. 5.19 CoordConv concept [137]

In the implementation, the trained variable in the loss function is actually s = logσ2

such that the noise parameters (standard deviations) are σ= (e s)
1
2 and the loss weights

are 1
σ2 = e−s . This is done to avoid potential division by zero and to ensure valid standard

deviation values are obtained.

5.4.4 Incorporating global spatial information

By design, convolutional networks are translation-invariant, allowing them to recognise

features anywhere in an image. However, not all objects and features are equally likely to

occur in every location in an image. This is even more the case in images from a domain

such as maritime surveillance where the real world scene makes certain objects and

features much more or less likely in different locations.

CoordConv [137] is a way of providing the network with extra information about the

global location of a pixel within the image, allowing the network to learn different amounts

of translation invariance in its features. It works by providing the network with the (x,

y) coordinate of each pixel in the image (in normalised image coordinates). In practice,

this is achieved by two extra channels in the input image tensor: one which encodes the

x-coordinate and one for the y-coordinate (see Fig. 5.19).

Liu et al. [137] note that the spatial information does not bring much benefit to image

classification tasks, as the precise location of features within the image is not important

for determining the overall class. However, they have shown it to be useful in object

detection (where knowing the location of objects within the image is important) and

reinforcement learning (where knowing the global layout of a game can improve strategy
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Table 5.6 Key to semantic segmentation method variants (all use the EDANet network)

Variant Name Augmentation Multi-task CoordConv

baseline - - -
aug ✓ - -
coordconv - - ✓
aug-coordconv ✓ - ✓

horizon - Horizon -
horizon-aug ✓ Horizon -
horizon-coordconv - Horizon ✓
horizon-aug-coordconv ✓ Horizon ✓

boundary - Boundary -
boundary-aug ✓ Boundary -
boundary-coordconv - Boundary ✓
boundary-aug-coordconv ✓ Boundary ✓

and performance). To the best of the author’s knowledge, CoordConv has only been

applied to the task of semantic segmentation in one other area – seismic depth image

analysis [113] – and so a contribution of this thesis is the first time it has been explored in

the context of real-world scenes and maritime surveillance.

5.4.5 Results and analysis

In total, 12 different configurations of EDANet were trained. Details are listed in Table 5.6.

For all configurations, the training data and scene parsing step are kept the same, and the

training hyperparameters are set as per the original EDANet paper [139]. Training and

evaluation are run on the same computer platform as before.

Effect on training

Adding large amounts of data augmentation causes the network to train more slowly and

the loss/mIoU doesn’t reach as low/high a value (Fig. 5.20). This is as expected, as the

network never sees exactly the same image twice. Looking at the curves for the multi-task

cases (Fig. 5.21), train mIoU reaches a slightly flatter plateau which could indicate earlier

convergence. Applying CoordConv on its own or in combination with any of the other

methods does not have an impact on loss or mIoU.
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Fig. 5.20 Training loss and mIoU for the baseline variants
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Fig. 5.21 Training loss and mIoU for the multi-task variants

For the multi-task variants, the combined training loss (Fig. 5.21a) seems to be better

for the horizon prediction task than the boundary prediction task. However, analysis of

the component losses in Fig. 5.22 shows that the semantic segmentation loss is lower with

boundary prediction. The boundary task also leads to higher training mIoU in Fig. 5.21b

and is the only case where it is higher than the baseline. This suggests that, of the two

tasks, boundary prediction is adding the most benefit. Note, the negative losses in the

multi-task cases are a result of the log operations in Eqn. 5.11.

Finally, an interesting observation is that data augmentation increases the loss for hori-

zon prediction, but decreases it for boundary prediction (Fig. 5.22b and 5.22d). A possible

explanation for this is that the invariances learned from the different augmentations are

all helpful for the classification task (e.g. invariances to colour and lighting variations) but

some of them make the horizon prediction task more difficult (e.g. rotation).
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(c) Semantic segmentation loss, Lseg
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(d) Boundary prediction loss, Lbound

Fig. 5.22 Training curves for horizon prediction (a-b) and boundary prediction (c-d) multi-
task training.
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Fig. 5.23 Global accuracy and mIoU results for the semantic segmentation network variants
on MarSemSeg

Effect on segmentation performance

The global accuracy and mIoU results in Fig. 5.23 confirm that boundary prediction is

adding the most benefit out of the two secondary tasks. A notable observation is that

data augmentation on its own is comparable to or outperforms the other configurations.

Additionally, augmentation does not have the same impact when combined with horizon

or boundary prediction; in fact, there is a slight decrease in score when augmentation

is applied. CoordConv also has an inconsistent effect. In the horizon prediction task, it

has a positive impact, whilst in the boundary prediction task, it decreases performance

(however, boundary prediction with CoordConv is still better than the baseline).

Looking at the per-class scores in Fig. 5.24, the patterns for Sea and Sky are very similar,

specifically that augmentation tends to increase performance whilst CoordConv tends to

reduce it. However, with the Other class, CoordConv can be observed to have a positive

effect. This is an important result, as the Other class is critical for reliably detecting objects.

Qualitative results

Figs. 5.25 - 5.28 show some example outputs from the different network variants. Augmen-

tation visibly improves the output, reducing false positives and producing cleaner object

segmentations (Fig. 5.25). As discussed above, CoordConv often has a negative impact. An

example of this can be seen in Fig. 5.26. The baseline method creates a good segmentation

176



5.4 Experiments

Sea Sky Other
0.2

0.4

0.6

0.8

1.0

P
er

-c
la

ss
 A

cc
ur

ac
y

baseline
baseline-aug
baseline-coordconv
baseline-aug-coordconv
horizon
horizon-aug
horizon-coordconv
horizon-aug-coordconv
boundary
boundary-aug
boundary-coordconv
boundary-aug-coordconv

Sea Sky Other
0.2

0.4

0.6

0.8

1.0

P
er

-c
la

ss
 Io

U

Fig. 5.24 Per-class accuracy and IoU results for the semantic segmentation network vari-
ants on MarSemSeg
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(a) Image (b) baseline (c) aug (d) Groundtruth

Fig. 5.25 Qualitative results showing effect of data augmentation

(a) Image (b) baseline (c) coordconv (d) Groundtruth

Fig. 5.26 Qualitative results showing effect of CoordConv

of an easy scene but CoordConv introduces artefacts. It is suspected that this is because

the network did not see many images of empty sea and is therefore expecting to see the

Other class present at the bottom of the image.

The effect of horizon and boundary prediction is shown in Fig. 5.27 using an example

image from an aerial viewpoint. The baseline method incorrectly detects a large sky region

in the lower part of the image. With horizon prediction, there is still a false detection but

the class is Other, suggesting that the network is aware of relative positions of classes in

the image (i.e. that the Other class is much more likely to be found lower in the image than

Sky). With boundary prediction, the falsely detected region is eradicated. The boundary

map shows that the network is aware that there is no separate region in that part of the

image.

Boundary prediction also allows the network to capture more of difficult objects, such

as those in Fig. 5.28. The tall, thin mast has been captured well in the boundary map and

this has been reflected in the segmentation. With CoordConv applied as well, the result is

better still, suggesting that it supports capture of more complete boundaries.
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(a) Image (b) Groundtruth

(c) baseline (d) horizon (e) boundary

(f) Horizon map (g) Boundary map

Fig. 5.27 Qualitative results showing effect of the horizon prediction and boundary predic-
tion tasks

(a) Image (b) boundary (c) boundary-coordcov (d) Groundtruth

(e) baseline (f) boundary (g) boundary-coordconv (h) Groundtruth

Fig. 5.28 Qualitative results showing effect of the boundary prediction task and CoordConv
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5.5 Creating an object detector for maritime surveillance

In this chapter, object detection is framed as the task of finding regions of the scene which

are “not sea or sky”. The role of the semantic segmentation network is to map out the sea

and sky regions as accurately as possible and identify regions which do not fall into one of

these classes. The next step in the proposed approach is a reasoning process which uses

constraints relating to maritime scenes to parse the network output and identify maritime

objects. A diagram of the proposed approach is shown in Fig. 5.29.

Image

Final
segmentation

Sea regions

Class
probabilities

Semantic 
segmentation 

network

Extract regions 
(connected 

components)

Select largest and 
fill holes

argmax

Binary
class maps

Builld scene 
model

Class predictions

Other regions

Create binary 
class maps

Sky regions

Rule-based 
reasoning

Sea-sky line

Scene model

Main Sky
region

Main Sea
region

Extract object 
regions

Detected
objects

Class
predictions Sea and Sky regions

Fig. 5.29 The proposed semantic segmentation-based object detection method. The parts
in black show the ‘naïve’ approach; the parts in blue show the extended approach which
applies domain knowledge to extract objects more effectively.

The image is passed through the semantic segmentation network to generate a proba-

bility distribution over classes (Sea, Sky and Other) for each pixel. The maximum probabil-

ity determines the network’s predicted class for each pixel. A naïve way to extract objects

at this point would be to simply output all the Other regions as object detections. However,

this would not account for false positives and would not be able to distinguish between
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objects and land. Instead, the class predictions are first used to create a binary map for

each class from which regions can be extracted by analysing connected components.

The largest regions for sea and sky are identified and holes are filled. These are then

combined to form a model of the scene which consists of sea, sky and some unknown

regions. The sea-sky line is also computed by finding the set of points where the sea

and sky region meet. A set of simple rules and constraints is then used to process the

remaining Sea and Sky regions, along with the Other regions from the previous step. The

reasoning process (depicted in Fig. 5.30) compares the predicted class of a region with its

own class and neighbouring classes in the scene model to determine if it is an object, land

or a false positive. If it is a false positive, the reasoner tries to resolve what the true class is

to reduce false detections. The sea-sky line is also used as part of this process.

The output of the reasoning step is a revised class segmentation which distinguishes

Objects as well as the 3 original classes of Sea, Sky and Other (see Fig. 5.31 for examples).

Detections are output in the form of bounding boxes, based on the regions in the segmen-

tation. Depending on the requirements, it could be useful to output Land bounding boxes

too, but in this work, only Object bounding boxes are output from the detection module.
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Fig. 5.30 Scene reasoning decision process. In the Initial Checks (a), the predicted class of
a region is compared against its own class from the scene model. If this does not resolve
the output class, Further Checks (b) are performed which use neighbouring classes in the
scene model and the horizon to resolve the output class.

182



5.5 Creating an object detector for maritime surveillance

(a) IPATCH 2015 Sc2a_Tk1-
CAM12

(b) Segmentation from argmax (c) Segmentation after reason-
ing

(d) IPATCH 2017 Sc3a-CAM12 (e) Segmentation from argmax (f) Segmentation after reason-
ing

Fig. 5.31 Output of the scene reasoning decision process compared to argmax class predic-
tions. Compared to (b) and (e), (c) and (f) distinguish the boats as Objects and the land in
the distance as Other. Falsely classified regions in the sky are also corrected.
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5.6 Evaluation and comparison against baselines

5.6.1 Experimental set-up

Sequences and metrics

The sequences used for evaluation are listed in Table 3.3. The MODP-BEP3, Detection

Rate and FAF metrics are used for quantitative analysis, as described in Chapter 3. In

addition, to assess real-time performance, the processing speed of the proposed method

is measured for each frame.

Implementation and configurations

The proposed object detection system is implemented in Python to integrate easily with

the trained models in the PyTorch framework. Twelve different object detection config-

urations are evaluated based on the twelve different trained models listed in Table 5.6.

Training and object detection are run on the same Alienware laptop with an 8-core 2.6GHz

Intel® CoreTM i7 CPU and 16GB RAM, with an externally connected NVIDIA® GeForce®

GTXTM Titan X GPU with 12GB memory.

5.6.2 Results and analysis

It would be expected for the object detection performance to correlate with segmentation

performance. To test this, the mean MODP-BEP3 scores for each sequence in Table 3.3 are

plotted against the mIoU scores achieved on MarSemSeg for each network variant. This

is shown in Fig. 5.32. There is a slight correlation for both MODP-BEP3 and FAF (higher

MODP-BEP3 is better, lower FAF is better), but it is not significant. For a given trained

model, there is still large variation in object detection performance across the sequences

(see Fig. 5.33 - 5.35). However, even with very limited training data, the ability to generalise

to different viewpoints, environmental conditions and object types is promising.

Effect of multi-task learning

In general, the boundary prediction task supports the task of object detection more than

training with horizon prediction or just training for segmentation on its own. A possible

explanation for this is that there is a lot of variation in where the Other class occurs in

the training images, so knowing the relative position of the horizon does not provide a
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Fig. 5.32 Relationship between segmentation performance and object detection perfor-
mance.

lot of information. On the other hand, discerning boundaries well is an important part of

segmentation, so additional training signals from the boundary error helps the network

maximise its IoU score which is also beneficial for object detection.

In the SMD sequences (Fig. 5.34), there is much less variability of performance across

the sequences and methods (all distributed around ~0.6 MODP-BEP3) compared to

IPATCH (Fig. 5.33) and SEAGULL (Fig. 5.35). This is partly due to SMD containing

shorter sequences with stationary objects so the detection challenges do not vary much.

The best method across all SMD sequences is baseline-aug (only data augmentation used).

This could suggest that the SMD sequences are the closest to the training data and that

adding extra tasks like horizon and boundary prediction weakens the classification ability

of the features that the network learns.

Effect of augmentation and CoordConv

Neither augmentation nor CoordConv have a consistently positive or negative effect over

configurations and sequences. At the same time, their impact is not negligible; in some

cases, adding augmentation or CoordConv can dramatically change the performance. For

example, adding augmentation has a large negative effect in IPATCH 2017-Sc6b-CAM10

but a positive effect in IPATCH 2016-Sc1_Tk5-CAM11 (see Fig. 5.33). CoordConv tends to

have a positive effect on most IPATCH sequences when used on its own, but the impact is

reduced (or becomes negative) when augmentation is applied at the same time. It is not

clear why augmentation and CoordConv interact with performance in such unpredictable

ways. It’s possible that these mechanisms are causing the network to overfit on the training
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data in ways which were not apparent during training, rather than helping to generalise,

leading to highly data-dependent results.

Qualitative results and limitations

The proposed semantic segmentation-based approach is able to detect challenging targets

in some sequences with some of the trained models. For example, in IPATCH 2016-

Sc1_Tk5-CAM11 (Fig. 5.36), the baseline-coordconv variant detects the two small targets

consistently throughout the sequence and with very few false positives. In the SMD

sequences, the baseline-aug model correctly detects even smaller and fainter targets (Fig.

5.37a and 5.37b), however it does not detect a much larger object (albeit a low contrast

one) in Fig. 5.37c. It also suffers from the same problem as the saliency-based approach

of merging targets if they are overlapping (Fig. 5.37d).

In other sequences and with other variants, many more false positives are detected

and the localisation is not as precise (Fig. 5.38). Reflections and glare remain a challenge

and wake is detected. Detecting wake can assist detection for distant targets (e.g. Figs.

5.38a and 5.38d) but degrades performance when the objects are closer (e.g. Figs. 5.38b,

c, e and f). The training data did not contain many images of boats in motion so there

was likely not sufficient representation of wake in the training data. Augmentation and

multi-task learning are not able to compensate for this.

In Fig. 5.38b, the baseline model detects large regions of wake in the IPATCH 2015-

Sc2a_Tk1-CAM12 sequence. When CoordConv is applied (Fig. 5.38e), the boat regions

are more precisely localised. However, the same is not true in IPATCH 2017-Sc3a-CAM12

(Figs. 5.38c and 5.38f). The wake regions are more fragmented, but the targets are not

necessarily better detected. This is likely due to the white boats in the 2017 sequence

appearing very similar to the wake regions.
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Fig. 5.33 MODP-BEP3 results for the semantic segmentation-based object detection
method on the IPATCH sequences. 187
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Fig. 5.34 MODP-BEP3 results for the semantic segmentation-based object detection
method on the SMD sequences.
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Fig. 5.35 MODP-BEP3 results for the semantic segmentation-based object detection
method on the SEAGULL sequences.

(a) Frame 1600 (b) Frame 2200 (c) Frame 2500

Fig. 5.36 Example of consistent good performance on challenging targets (baseline-
coordconv on IPATCH 2016-Sc1_Tk5-CAM11)
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(a) Challenging targets detected in SMD-1610 (b) Zoomed view of frame in (a)

(c) Less challenging targets missed in SMD-
Onshore-1619

(d) Merging of overlapping objects in SMD-
Onshore-1615

Fig. 5.37 Examples of good performance and limitations on SMD sequences.

(a) (b) (c)

(d) (e) (f)

Fig. 5.38 Examples comparing horizon and boundary prediction (a, d) and CoordConv (b,
c, e, f) on IPATCH sequences.
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5.6 Evaluation and comparison against baselines

Table 5.7 False positive results (FAF) for the proposed and baseline methods on represen-
tative IPATCH sequences.

Sequence m
as

kr
cn

n
-R

50

yo
lo

v3

T
SF

C

sa
lie

n
cy

se
m

an
ti

c

IPATCH-2015-Sc3_Tk2-CAM14 0.15 0.08 0.55 10.43 41.05
IPATCH-2016-Sc1_Tk5-CAM11 0.32 0.17 1.13 4.83 2.57
IPATCH-2017-Sc3a-CAM12 0.02 0.07 6.05 9.67 18.27

Comparison against baselines

The boundary-coordconv variant is chosen to compare against the baselines and saliency

method as it achieves high MODP-BEP3 scores over all the IPATCH sequences. The same

three sequences are used as in the previous chapter, as they represent the key challenge in

the piracy use case to detect small/distant targets as early as possible. Fig. 5.39 presents

the results. Looking at the MODP-BEP3 distributions, the semantic segmentation-based

method proposed in this chapter achieves competitive performance compared to the

other methods. Its detection rate at low thresholds is also high, which is important for

detecting potential threats early, even if the objects are not precisely localised. Unlike

the proposed saliency method, the detection rate is maintained over higher thresholds,

suggesting that as targets get closer/bigger, localisation accuracy improves. The semantic

segmentation method does not perform as well in terms of false positives (see Table 5.7),

especially compared to the other deep learning methods (Mask R-CNN and YOLO).
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Fig. 5.39 Comparison of the proposed semantic segmentation-based object detection
method with the saliency-based method from Chapter 4 and baseline methods from the
literature.
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5.7 Summary

5.7 Summary

In this chapter, the concept of using deep semantic segmentation networks for object

detection was investigated. Based on an initial evaluation of 7 semantic segmentation

networks from the literature using the CamVid [41] urban driving benchmark dataset,

4 networks were chosen for further experiments. For training, a subset of the ADE20k

[248] scene segmentation dataset was created which contained 434 images containing

maritime classes (Sea, Sky, Object, Land and Other). Preliminary tests showed that using 3

classes (Sea, Sky and Other) would be most useful for detecting objects. The preliminary

tests also indicated that EDANet [139] was a good balance of accuracy and speed and was

therefore selected for more detailed experiments.

To maximise the available training data and test the ability to generalise to the maritime

surveillance domain, a new semantic segmentation dataset (MarSemSeg) was created

using images from maritime surveillance sequences (see Table. 4.1). MarSemSeg was

used to evaluate the performance of EDANet after training with different configurations.

Data augmentation was used to provide domain expertise to teach the network about

invariances and an ablation study was conducted to analyse the effect of different aug-

mentations. Multi-task learning of horizon and semantic boundary prediction was used

to provide the network with additional signals during training. Global spatial information

was provided to the network by using the CoordConv approach [137].

To extract objects from the class probabilities output by the semantic segmentation

network, a novel rule-based scene reasoning process was proposed. This compares the

predicted class of regions with its neighbouring regions and applies spatial relationship

rules to resolve misclassified regions and reduce false positives. The proposed method

was shown to be competitive against the saliency-based method from Chapter 4 and

the baseline methods described in Chapter 3. In the next chapter, the two proposed

approaches are compared against the baseline methods from the literature in the context

of a real-world piracy surveillance system. Object detections from the methods will be fed

into a multi-target tracking module to evaluate how well each method supports the rest of

the surveillance pipeline.
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Chapter 6

Real-World Performance Evaluation

6.1 Introduction

This chapter investigates the performance of six object detection methods in the context

of a complete maritime surveillance system using data collected in the field. The case

study is a piracy detection system which was developed as part of the EU-funded research

project, ‘IPATCH’1. The methods under analysis are those from the three publications on

which this thesis is based: Temporally-Stable Feature Clusters [156], the saliency-based

method from Chapter 4 [44] and the semantic segmentation-based method from Chapter

5 [45]. These are also compared against the baseline methods from the literature: IMBS

[30], YOLO [174] and Mask R-CNN [89].

In Chapter 3, 4 and 5, the methods were evaluated using 2D image-based performance

metrics. In this chapter, the tracking performance of the system as a whole is evaluated

in the real world 3D coordinate system. This gives an assessment of performance which

is more relevant to the end users of a maritime surveillance system. The objective is to

investigate how different image-based performance characteristics of object detection

methods relate to how useful their detections are to the later stages of the surveillance

pipeline (tracking, situational awareness, threat recognition, etc.). For example, can false

positive detections be eliminated through the tracking process, provided that targets are

detected accurately?

First, the on-board surveillance system is described to explain how detections from the

object detection methods get processed by other modules of the system. The Multi-Target

1IPATCH: Intelligent Piracy Avoidance using Threat detection and Countermeasure Heuristics, www.
ipatchproject.eu
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Tracking module is explained in more detail, as this is the key process for converting

image-based detections into tracks in the real world which can be analysed for suspicious

behaviours or threats. The real-world set-up is then described to explain how data was

collected during several trials in the IPATCH project on-board real vessels at sea. For

the experiments in this thesis, data was used from the trials but the analysis took place

offline. The experimental set-up that was used is explained, along with the performance

evaluation procedure and metrics. Finally, the results are presented and analysed.

This chapter is based on collaborative work, so individual contribution is clarified where

necessary and appropriate reference is made where software or algorithmic components

from others have been used.

6.2 On-board surveillance system

6.2.1 Overview

The IPATCH project [102] developed a prototype for an on-board surveillance system

to provide situational awareness and alert crews in case of potential piracy threats. The

system was designed as a set of modules, each of which fulfilled a role in the surveillance

pipeline (Fig. 1.2). Fig. 6.1 shows the high-level architecture of the on-board system.

Vessel bridge systems are already equipped with several sensors which can be exploited

by the IPATCH system. Under maritime regulations, ships must be equipped with radar,

AIS, GPS and an inertial measurement unit (IMU) which measures roll, pitch and heading

(yaw), as well as sway, surge and heave. Visual and thermal cameras were added to the

vessel to enhance the surveillance capabilities.

The Early Detection Module processes data from all available sensors and produces a

set of tracks for all detected objects. The Behaviour Analysis Module analyses the tracks

and enhances them with extra features, such as ‘turning’, ‘accelerating’, ‘group splitting’.

The Situation Assessment Module analyses the tracks and features in the context of

environmental information, such as weather, details of the vessel, nearby countries, time

of year, and so on. This information comes from a series of databases and data feeds.

Based on the current situation and detected tracks, the Threat Detection Module assesses

the threat of pirate attacks or other suspicious behaviour. If the level of threat is high, the

crew are alerted through the User Interface. If a piracy incident is imminent or in progress,

the crew can use the User Interface to access knowledge on countermeasures. The most
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6.2 On-board surveillance system

Fig. 6.1 High-level architecture of the IPATCH on-board surveillance system. Key to
sensors: IMU = navigational (GPS and intertial measurement unit), AIS = Automatic
Identification System, RAD = Radar, V = Visual cameras, T = Thermal cameras)

relevant information and guidance is organised by the Decision Support System. Finally,

the Integration Platform provides the communications infrastructure to pass data and

messages between the various modules of the system.

6.2.2 Early Detection Module

The focus of this thesis is on object detection in visual cameras. This process takes place

inside the Early Detection Module. Fig. 6.2 shows the components of the Early Detection

Module in more detail. A Bridge Sensor Manager was developed to connect to the vessel

bridge system to collect navigational, AIS and radar data and convert it to a format which

can be processed by the rest of the system. Similarly, Camera Sensor Managers were

developed to ingest raw video feeds from the visual and thermal cameras. The video

streams are processed by object detection and tracking methods which operate in image

space. The detections are passed to the Multi-Target Tracking module which fuses and

filters them to produce a consolidated set of tracks which are distributed to other modules

for higher-level processing.
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Fig. 6.2 High-level architecture of the Early Detection Module

6.2.3 Multi-target tracking module

The multi-sensor multi-target tracking (MTT) module [4] (see Fig. 6.3) receives detections

from the different detection modules. It converts them to ship-centred coordinates, fuses

and filters them, and outputs tracks for each estimated target. It receives detections in

an asynchronous manner (due to the different processing times and frequencies of each

object detection module), so it must first sort and synchronise the inputs over a time

window. This introduces a slight delay to allow detections from all modules to arrive

before performing fusion and tracking. This delay is adaptive (up to a limit) to adjust for

different processing speeds.

The MTT is based on the classical single-hypothesis multi-target tracker from the

literature [17, 20]. The position of each track is predicted and filtered using an Extended

Kalman Filter and projected into sensor coordinates. A global nearest neighbour algorithm

is used to associate detections and tracks and gating is applied so that detections and

predictions are only associated if they are close enough. The tracks are then updated with

an associated detection or the prediction. Each track is categorised as ‘possible’, ‘active’

or ‘lost’, depending on a number of tunable parameters. For example, if a new track has

been detected a certain number of times within a certain time frame, it transitions from

‘possible’ to ‘active’. The reverse happens if the track has not been detected for a certain

amount of time, or it may go to ‘lost’ if longer. Only active tracks are output by the MTT.

The object detection modules produce detections in the form
[

x y w h
]T

, where

x and y are the coordinates of the centre of the base of the bounding box, and w and h
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Fig. 6.3 Screenshot of the multi-target tracker (MTT) [4]

Fig. 6.4 Ship-centred coordinates (SCC)
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are the width and height. These are measured in pixels in rectified image coordinates.

The MTT performs tracking in ship-centred coordinates (SCC). This is a moving frame of

reference aligned with the ship’s major axes (Fig. 6.4) such that the origin is at the ship’s

GPS lat-long coordinate.

Because the images are rectified, the MTT can assume a pure perspective projection

using a pinhole camera model. The projection from SCC to image coordinates is:

P = K
[
Rαβγ |−pc

]
(6.1)

where pc is the position of the camera in SCC, Rαβγ is a rotation matrix which rotates from

camera coordinates to SCC and K is the intrinsic camera matrix

K =


f s · f sx−1

2

0 a · f
sy−1

2

0 0 1

 (6.2)

where f is the focal length

f = sx

2tan
(ax

2

) (6.3)

In order to project between the two coordinate systems, the MTT must therefore know

certain parameters for each camera:

• Position in SCC: pc =
[

px py pz

]T

SCC

• Orientation: α (roll), β (pitch/tilt) and γ (yaw/pan)

• Image resolution: sx and sy in pixels

• Horizontal and vertical field of view: ax and ay in radians

These parameters were established for each camera during the set-up and calibration

steps at each of the trials.

6.3 Real-world set-up and data collection

6.3.1 System deployment

Data collection and trials of the IPATCH system took place 3 times during the course of

the project. In 2015 and 2016, a vessel called the VN Partisan was used to collect data and
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(a) Region of the 2015 and 2016 IPATCH trials (b) VN Partisan

Fig. 6.5 Region and vessel used in the 2015 and 2016 campaigns

test the system in France. At the end of the project in 2017, the system was trialled on

a tanker vessel called the Kamari in Greece. This section describes how the system was

configured for each of the vessels.

VN Partisan

The 2015 and 2016 campaigns took place off the coast of France around the port of Brest

and the Crozon region (Fig. 6.5a). The VN Partisan (Fig. 6.5b) is a multi-purpose offshore

vessel used for training by the French Navy. It is approximately 79m long and 15m wide,

and is conveniently equipped with training areas which include a fake bridge and cabins

with space for the IPATCH system.

Cameras were installed on the roof of the training module with their fields of view

covering approximately 180 degrees. In 2015, the cameras covered the area behind and

starboard of the vessel; in 2016 the coverage was directly astern. These orientations were

selected because most piracy attacks occur from behind or slightly to one side of the vessel.

Fig. 6.6 shows the visual camera positions for 2015 and 2016 and a photo of the camera

mountings.

Two fast RHIBs were used to represent pirate skiffs, approximately 7m in length with

maximum speeds of 25 and 50 knots. A fishing boat with maximum speed 8 knots was

used to represent other non-pirate vessels, such as fishing boats and other transport craft.

See Fig. 6.7 for pictures of the target vessels.

Kamari

In 2017, a final demonstration of the system took place near Corinth in Greece on board

the Kamari crude oil tanker. The Kamari is approximately 270m long and 45m wide and

enabled the testing of the IPATCH system in a realistic context. Tankers are frequently
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(a) 2015 campaign

(b) 2016 campaign

(c) Camera installation

Fig. 6.6 Camera installations on the VN Partisan

(a) Bourre-pif (b) Black Bull (c) Fishing Boat

Fig. 6.7 Target skiffs from the 2015 and 2016 trials
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(a) Region of the 2017 campaign (b) Kamari

Fig. 6.8 Region and vessel used in the 2017 campaign

targeted by pirates and using the Kamari allowed the project to collect data with the

representative distance scale and motion of a very large vessel. The Kamari transports

oil around the world and often sails through high-risk piracy areas. Due to maritime

regulations, the Kamari had to remain at anchor throughout the trials. However, attacks

at anchorage are common in the real world, as this is when the vessel is most vulnerable.

One of the lessons learned from the 2015 and 2016 trials was the difficulty of attaching

cameras to the vessel and reliably calibrating their positions and orientations. A special-

purpose camera mounting frame was therefore designed and manufactured for the 2017

trials to hold four visual and three thermal cameras at fixed angles, so that appropriate

field-of-view overlaps were guaranteed. An additional benefit of this was that the entire

mounting frame could pre-assembled and calibrated before the trials and then easily

attached to the ship on the day. Fig. 6.9 shows the mounting frame and its position on the

Kamari. From this position, the cameras covered approximately 200 degrees to the stern

and starboard side.

Three speed boats, similar to the size and speed of those used in 2015 and 2016, were

used to represent pirate skiffs. These targets were different in appearance to those used

previously. Whilst this was beneficial from the perspective of testing the algorithms with

object appearances, the targets are all quite similar to each other. Fig. 6.10 shows pictures

of the target skiffs from 2017.

6.3.2 Calibration and synchronisation

Good calibration and synchronisation of all the components of the system is important

for reducing errors. However, accurate calibration and synchronisation on a large vessel

at sea with limited time is difficult in practice. The intrinsic parameters of the cameras
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(a) Camera installation location

(b) Camera installation on bridge wing

(c) Camera mounting frame

Fig. 6.9 Camera installation on the Kamari

(a) Skiff 1 (b) Skiff 2 (c) Skiff 3

Fig. 6.10 Target skiffs from the 2017 trials
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were calibrated using a standard chessboard calibration procedure [213, 247]. This was

done to produce a rectified image by reversing any spherical or tangential distortion

components which are introduced by the camera lenses. The rectified images are used

for object detection so that the MTT can assume a pure perspecitve projection model, as

described in the previous section.

All the IPATCH system modules run on different computers. They are networked

together in order to exchange information and one computer provided a time server with

which all other computers could synchronise themselves. The cameras also connected

to the same network, so their frame timestamps were also synchronised. However, the

data from the vessel bridge systems and GPS tracking devices on the skiffs could only be

synchronised approximately. Analysis after the trials showed that synchronisation was

accurate to within 1 second for everything apart from the GPS trackers in the 2017 trials.

An offset of approximately 5 seconds was found empirically by manual analysis of the

data. This has been corrected for in the experiments in this chapter.

Measurement of the locations of the cameras on the vessel was approximate. Later

testing with the data showed that that the projection of image detections to real-world

tracks is not sensitive to camera height, other than at very low values (see also Section

4.4.3 and Fig. 4.27b). Given the positional accuracy of the projected positions, especially

at long distances, the precise x and y location of the camera is also not important.

The most sensitive parameters were found to be the camera roll and pitch, and field

of view angle. The on-site measurements of roll and pitch were crude and subsequently

found to be a large source of error. Following the trials, the values were manually refined by

replaying the data and aligning the projected image detections with the GPS groundtruth

tracks. The situation was slightly better in 2017 due to the camera mounting frame.

6.4 Experiments

6.4.1 Implementation

During the IPATCH project, a multi-sensor multi-target tracking module was created [4].

A copy of the software was provided for use in this research. The system was run live

during the trials in the project, but for these experiments, the system was run offline in

the lab using recorded data. This provides more control over the experiments and allows

to repeat things with different parameters. Also, the proposed object detection methods
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Fig. 6.11 Relationship of work in this thesis to the IPATCH system

in this thesis were not complete during the live testing of the system. The relationship of

the work in this thesis to the IPATCH system is depicted in Fig. 6.11.

The Multi-Target Tracker module (MTT) receives detections from the detection mod-

ules in the form of Protobuf2 messages sent through the 0MQ messaging library3. In these

experiments, the object detection was performed offline and the detections were stored. A

script was written to play back the stored detections and other recorded sensor data (IMU,

radar, etc.) to the MTT through the 0MQ Protobuf interface, as if they were running live

(i.e. the timestamps were used to simulate real-time operation).

As described in Section 6.2.3, the MTT needs to know certain parameters for each

camera in order to translate between image coordinates and ship-centred coordinates. In

the implementation of the MTT, this is achieved by each object detection module sending

the parameters inside its Protobuf messages. For the position of the camera (pc ), field

of view angles (ax , ay ) and image resolution (sx , sy ), the values are fixed and were read

from a configuration file by the replayer script. The camera orientation values, however,

depend on the motion of the vessel.

Originally, the navigational data provided by the bridge systems was intended to be

used to update the camera orientation as the ship moves. However, the orientation of the

camera with respect to the vessel was not measured sufficiently accurately. As explained

in Section 6.3.2, the projection into SCC is unfortunately very sensitive to roll and pitch of

2https://developers.google.com/protocol-buffers
3http://zeromq.org
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Fig. 6.12 Effect of smoothing on roll and pitch estimation from horizon detection (Scenario
2016-Sc1_Tk5-CAM11)

the camera. Horizon detection was therefore used instead to estimate the instantaneous

roll and pitch of the camera in each frame.

The horizon detection method presented in Chapter 4 was applied to all sequences.

However, there is still some noise in the detected horizon lines. To reduce this, the horizon

line values (y-position and rotation angle) were smoothed using the following expression

with smoothing weight ω= 0.9:

x ′
t =ωx ′

t−1 + (1−ω)xt (6.4)

where x ′
t is the smoothed value of x at timestep t . Fig. 6.12 shows some example results of

this process.

6.4.2 Sequences

The experiments focus on three scenarios which represent common piracy attack patterns:

• In 2015-Sc3_Tk2, the skiffs are loitering at a distance from the vessel. They move

slightly towards the vessel, but then suddenly approach the vessel at high speed.
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• In 2016-Sc1_Tk5, a skiff stays close a fishing boat (trying to masquerade as a normal

fishing boat). The skiff then peels off from the fishing boat and starts to follow /

approach the vessel from the stern.

• In 2017-Sc3a, 3 skiffs appear from the distance and rapidly approach the vessel from

different positions in a coordinated attack.

The sequences from cameras which capture all or most of the scenario action are

selected to generate the object detections. These are also some of the sequences where

image groundtruth is available and on which the proposed object detection methods were

compared against the baselines in Chapters 4 and 5. This enables comparison between

the image-based object detection performance and real-world tracking performance.

The data from the scenarios is plotted in Fig. 6.13 along with an example image from

the camera sequence. In 2015-Sc3_Tk2 (Fig. 6.13a), the radar is only able to produce very

noisy detections which are not well aligned with the skiffs. In 2016-Sc1_Tk5 (Fig. 6.13b),

radar tracking very good for the larger fishing vessel (orange track) but only detects the

skiff when it is very close (blue track). In 2017-Sc3a (Fig. 6.13c), the radar system was not

able to acquire targets for the skiff by itself. Targets were manually acquired by a crew

member on the bridge, but they were soon lost, hence they only appear as a small cluster

of points near the start of the tracks. Fig. 6.14 shows the three skiffs appearing on the radar

screen on-board the Kamari.

6.4.3 Evaluation procedure

The detections from the various modules are projected into the world coordinate system

as points. The assumption is made that all objects will be on the surface of the sea, thus

their z-coordinate is 0. The task under evaluation is therefore modelled as a 2D point-

target tracking task. Extending the notation used in [85], the set of groundtruth tracks

which exist at each timestep k is

G (k) = {G1(k),G2(k), . . . ,GM(k)(k)}

Gm(k) = {tk , x̂k }
(6.5)

where M(k) is the number of groundtruth tracks in timestep k ∈ 1,2, . . . ,K , and x is the

target state, represented by the position on the sea surface in ship-centered coordinates

(SCC):
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(a) 2015-Sc3_Tk2 (CAM14) (b) 2016-Sc1_Tk5 (CAM11) (c) 2017-Sc3a (CAM12)

Fig. 6.13 Plots of the three scenarios used to evaluate the object detection methods in a
real-world context. Top row: tracks from radar (crosses), GPS groundtruth (lines) and the
host vessel (black dots) in lat-long coordinates. Middle row: GPS groundtruth mapped to
ship-centred coordinates (in metres), host vessel shown as pink rectangle to scale, field
of view of camera shown as blue shaded region. Bottom row: frame from the sequence
showing camera view, skiffs highlighted for clarity
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Fig. 6.14 Skiffs in 2017-Sc3a appearing on the radar screen on-board the Kamari. The
radar system was not able to acquire the targets automatically so a crew member used the
manual target acquisition function. However, the system was only able to track the skiffs
for a short period of time.

x =
[

X

Y

]
SCC

(6.6)

Similarly, the set of all tracks output by the MTT at each timestamp t is

T (t ) = {T1(t ),T2(t ), . . . ,TN (t )(t )}

Tn(t ) = {t ,xt }
(6.7)

and N (t ) is the number of tracks output by the MTT at each timestamp t . The timestamp

of each timestep is represented by tk and is measured in milliseconds since the Epoch4

in UTC5. The reason for having both timesteps and timestamps is explained in the next

section.
400:00:00 on 1st January, 1970
5Coordinated Universal Time timezone
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Aligning MTT output with groundtruth

The groundtruth tracks of the target skiffs were captured using GPS devices which logged

the positions every second, to the nearest second, producing a synchronous 1Hz stream.

The MTT module estimates the number of targets and their states in an asynchronous

manner in order to accommodate detections from multiple modules operating at dif-

ferent (and variable) frequencies. The timestamps in the MTT output are linked to the

timestamps of the raw sensor data (e.g. each video frame) which were fused to produce

them. The first challenge is therefore to match up the asynchronous MTT output with the

groundtruth (GT) tracks.

First, the MTT and GT track points are filtered to excluded timestamps which lie out-

side the evaluation time range for the scenario and points which lie outside the camera’s

field of view. Then, each GT track is linearly interpolated for each timestamp in the set of

timestamps from the MTT tracks. This creates a new set of GT tracks G ′(t ) in which each

GT track G ′
m(t ) has a point for every timestamp in the MTT output:

G ′(t ) = {G ′
1(t ),G ′

2(t ), . . . ,G ′
M(t )(k)} (6.8)

where

G ′
m(t ) = {t , x̂t }, for t ∈

N (t )⋃
n=1

Tn(t ) (6.9)

The data is then grouped into timesteps by binning the GT and MTT points into scans

of 1 second such that the centres of the bins are the timestamps from the original GPS

groundtruth, tk . The sets of groundtruth and MTT points that fall within timestep k are

denoted

G ′
k = {G ′(t )} and Tk = {T (t )}, where tk −500ms ≤ t < tk +500ms. (6.10)

Some timesteps will be empty if there are no groundtruth targets visible in the scene

and no MTT track points. False positive detections can be identified by timesteps with

MTT track points but no groundtruth targets, and missed detections are the reverse.

Timesteps which contain both MTT and groundtruth track points can be evaluated for

localisation accuracy and other metrics, and the above process guarantees that there

is a groundtruth point in every track for each MTT track point. Fig. 6.15 illustrates the

timestep binning concept.
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Fig. 6.15 Illustration of the timestep binning and alignment concept. The GT track is
initially a synchronous 1Hz stream and is linearly interpolated for the timestamps from
the MTT output (red tickmarks). The track points are binned into timesteps which enable
alignment and evaluation between the synchronous groundtruth and asynchronous MTT
streams.

Point set assignment is performed for each timestamp within a timestep using the

Hungarian algorithm [124, 150] and the Euclidean distance between points as the cost

function. Gating is used such that points are unassigned if their distance exceeds a

threshold, dg . Due to the high sensitivity of position estimation caused by the projection,

a value of 100m is used for dg .

A record is kept of how many times each MTT track was assigned to each GT track

within the timestep. A second Hungarian optimisation is then performed to determine

which MTT track is assigned to which GT track (if any) for that timestep. In most cases, this

equates to the MTT track with the highest number of assignments for that GT track, but

the Hungarian assignment is needed to resolve edge cases where tracks could be assigned

twice.

Based on the track-to-track assignment, the number of true positives (TP), missed

tracks (MT) and false tracks (FT) can be determined for each timestep. The IDs of the

MTT tracks which were assigned to each GT track are also logged for analysing ID changes.

The results of this process are then used to compute the performance evaluation metrics.

Metrics

The object detection and tracking stage needs to provide high-quality tracks to the later

stages of the pipeline (situational awareness, threat recognition). Properties of a tracker

which are considered important by operators of military systems include accuracy, com-

pleteness, continuity, ambiguity and timeliness [21, 22, 85, 186]. Many metrics can be
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defined under these categories. In these experiments, the focus is on performance aspects

which are important in the piracy detection task:

• Positional accuracy – how closely does the estimated position of the tracked targets

match the true positions. Good position accuracy is important for estimating how

far away the pirates are and what speed they are travelling, and therefore how

quickly they will intercept the vessel. Knowing the location is also important for

situational awareness of other non-threatening vessels and in other applications,

such as collision avoidance.

• Tracking completeness / missed tracks – what proportion of the target’s trajectory

is tracked. This is important, as location cannot be estimated while the target is not

being tracked.

• False tracks – in the piracy context, it is clearly important not to miss any targets,

but false alarms distract the crew on the bridge and a high false alarm rate could

lead to the system being mistrusted or ignored completely.

• Continuity / fragmentation – how often the track changes ID (i.e. appears as a

new target). This is important for higher levels of processing, which may not work

properly if they think new targets are appearing/disappearing or there is a sudden

change of course due to an ID swap.

• Detection distance / time to detect – how quickly a target is acquired by the tracking

system and at what distance. This is key to achieving good early warning capabilities

to give the crew as much time as possible to respond to a potential threat. There is

a strong dependence on the detection module capabilities, as the tracker cannot

know about targets which are not detected, but detections must also be of sufficient

quality for the tracker to initialise and output a track.

True Positives, Missed Tracks and False Tracks After MTT tracks have been assigned to

GT tracks, the number of correctly tracked targets (True Positives, T P ) in timestep k is:

T P (k) = |Sk | (6.11)

where Sk = {(G ′(t),T (t))} is the set of matched tracks for timestep k and |.| is the cardi-

nality operator. Any GT tracks and MTT tracks which did not get assigned are classified as

213



Real-World Performance Evaluation

Missed Tracks (MT ) and False Tracks (F T ), respectively:

MT (k) = |{G ′(t ) ∈G ′
k | G ′(t ) ∈Sk }| (6.12)

F T (k) = |{T (t ) ∈Tk | T (t ) ∉Sk }| (6.13)

For sequence-level evaluation, the mean number of false tracks is computed across all

timesteps:

F̂ T = 1

K

K∑
k=1

F T (k) (6.14)

Completeness and Precision Track completeness is the proportion of the track which

was correctly tracked, i.e. the number of times a target was tracked divided by the total

track length up to timestep k. The Completeness score (C p) is calculated across all tracks

in the groundtruth. This is equivalent to the True Positive Rate. Precision (Pr ) measures

the proportion of tracks output by the MTT that were matched to groundtruth tracks.

C p(k) =
∑k

k ′=1 T P (k ′)∑k
k ′=1 M(k ′)

(6.15)

Pr (k) =
∑k

k ′=1 T P (k ′)∑k
k ′=1 N (k ′)

(6.16)

Positional error Absolute positional error pabs is calculated using the Euclidean dis-

tance between points. The mean error is calculated for all matched tracks at each times-

tamp t and over all timestamps in the timestep, tk :

pabs(k) = 1

|tk |
∑

t∈tk

(
1

|St |
∑

i∈St

||x(i )
t − x̂(i )

t ||
)

(6.17)

Because of the large errors introduced by the camera calibration and other factors

described in the previous section, the relative error pr el is also computed:

pr el (k) = 1

|tk |
∑

t∈tk

(
1

|St |
∑

i∈St

||x(i )
t − x̂(i )

t ||
||x̂(i )

t ||

)
(6.18)
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To give a sequence-level score, absolute and relative error are averaged across all

timesteps, assigning pabs = dg and pr el = 1 for timesteps where no assignments were

made:

�pabs =
1

K

K∑
k=1

pabs(k) (6.19)

p̂r el =
1

K

K∑
k=1

pr el (k) (6.20)

Continuity The continuity or fragmentation of the tracks can be measured by counting

the number of times the assigned MTT track ID changes. A groundtruth track has low

continuity / high fragmentation if it is frequently assigned MTT tracks with different IDs.

Although it was designed for image-based tracking evaluation, Normalised ID changes

(NIDC) [151] is adopted because it normalises for different track lengths. The NIDC score

for groundtruth track i at timestep k is calculated as

NIDCi (k) = IDCi (k)

IDCmax
i (k)

(6.21)

where IDCmax
i (k) is the maximum possible number of ID changes for the track at timestep

k:

IDCmax
i (k) = ∣∣G ′

i (k)
∣∣−1 (6.22)

The NIDC score is computed as an average over all groundtruth tracks:

NIDC(k) = 1

M(k)

M(k)∑
i=1

NIDCi (k) (6.23)

6.4.4 Sources of error

As discussed in previous sections, there are some sources of significant error which are

independent of the object detection methods under evaluation:

• Calibration of camera intrinsics and distortion parameters

• Calibration of camera focal length / horizontal field of view

• Camera roll and tilt estimated from the horizon line
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In addition, discrete image coordinates (pixels) create an error which gets worse with

distance. Even with perfect camera calibration and pose estimation, location estimation

is extremely sensitive to small changes in image position. A difference of 1 pixel can

correspond to a 40m error at 1km, and 462m at 4km.

For this reason, two additional ‘detection’ sources are processed through the MTT:

the GPS groundtruth tracks (which are ingested as if they were radar detections) and the

image groundtruth annotations (which are rectified and then ingested as bounding boxes

in the same way as the object detection methods under analysis). The idea is to assess the

scale of the “system error” (i.e. how much the camera calibration, horizon detection and

tracking process contributes to positional error and other performance metrics) to put

the results from the object detection methods in context.

6.4.5 Summary of MTT inputs

Object detections from a number of different sources are fed into the MTT to compare

performance. The GPS and bounding box groundtruth inputs as described above will

show how the system responds under ideal conditions (perfect detections). The proposed

object detection methods from Chapters 4 and 5 and three baseline methods as described

in Chapter 3 (TSFC [156], Mask R-CNN [89] and YOLO [174]) will be compared to see how

the characteristics of their output impacts on tracking performance. Note that IMBS is not

included as the number of false positive detections was so high, the MTT was overloaded.

Finally, input from radar and thermal cameras recorded in the trials is used to show the

comparison with the visual detection methods. The inputs are summarised in Table 6.1.
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Table 6.1 Summary of detection sources processed by the MTT

Name Description

gps Groundtruth tracks from GPS trackers

boxes Image groundtruth bounding boxes

rad Recorded radar data from the trials

thermal Recorded object detections from thermal cameras from the trials
using the method in [18]

maskrcnn Mask R-CNN [89] R-50 variant

YOLO YOLO v3 variant [174]

TSFC Temporally stable feature clusters [156]

saliency Proposed method from Chapter 4 (saliency-995-99-d8-hv-depth)

semantic Proposed method from Chapter 5 (EDANet_boundary-coordconv)
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6.5 Results and analysis

6.5.1 System error

Fig. 6.16 shows examples of absolute and relative positional errors for two sequences when

the GPS and image groundtruth is fed into the MTT. The MTT tracking process introduces

less than 5m of positional error. As the skiffs get closer, the relative error increases but is

still small. Much larger errors (up to 80m) are observed when the image groundtruth is

used. These are caused by discrete pixel locations of the bounding boxes and variation

in their placement by the human annotator. These small errors are multiplied in the

projection process by errors in the roll and pitch estimation caused by imperfect horizon

detection. The relative error reflects the fact that a small difference in bounding box

position creates larger errors at larger differences. The large errors show that a gating

distance of 100m was not unreasonable.
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Fig. 6.16 Absolute (left) and relative (right) errors for GPS and bounding box inputs

6.5.2 Performance using object detection methods

Tables 6.2a, 6.2b and 6.2c show the sequence level results for the visual object detection

inputs in terms of absolute and relative error, tracking completeness and precision, mean

false positives and normalised ID changes. Figs. 6.17, 6.18 and 6.19 display the actual

tracks produced by the MTT based on the inputs from the object detection methods.
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Positional error is highest overall in 2015-Sc3_Tk2, even though the tracks look well-

aligned visually (Fig. 6.17). This is also the case for the bounding box input, which suggests

that roll and pitch estimation using horizon detection is a significant source of error. The

saliency and semantic methods detect glare and reflections to the left of the field of view

which are persistent enough to be tracked by the MTT, leading to higher numbers of false

tracks. This can also be seen visually in Fig. 6.17. Nevertheless, saliency achieves the best

positional accuracy.

An unexpected result is the perfect score achieved by TSFC for precision, false tracks

and NIDC. Inspection of the tracking output in Fig. 6.17 reveals that very little of the target

trajectories was actually tracked. The scores appear artificially high because of the low

number of detections overall (for example, if there are no detections, there cannot be any

false positives either). The situation is the same in the 2016-Sc1_Tk5 sequence.

The 2016-Sc1_Tk5 scenario was the most challenging for all methods, resulting in

lower precision, and higher false tracks and ID changes. The motion of the vessel in

this sequence is significant which leads to large variation of position for distant targets.

This can be seen in Fig. 6.18. Despite the chaotic appearance of the plots, the methods

achieve relatively good positional errors on average over the sequence, with the semantic

approach out-performing what was achieved using the bounding boxes (although this is

probably more a reflection of the difficulty in placing bounding boxes for this sequence).

In 2017-Sc3a, the maskrcnn, YOLO and saliency inputs produce good positional ac-

curacy and precision again. Tracking completeness is particularly good for saliency and

YOLO. As with the other sequences, the saliency and semantic inputs produce a lot of false

positives, however their tracks are more continuous (lower NIDC) than the other methods.

Compared to the other sequences, the TSFC method is able to find more stable features

resulting in more track output. Its false positive and precision scores are still low (due to

the number of tracks still being small) but there is more fragmentation in the tracking,

indicated by a higher NIDC score.

As described previously, the critical performance criterion for piracy early warning is

how quickly the detection and tracking system can identify an object. The time until the

first detection was measured for each method by recording the timestep of the first true

positive track point. Table 6.3 shows the results. The proposed saliency method was the

first method to output a detection for the 2017 sequence, and joint first with the semantic
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(f) Groundtruth tracks

Fig. 6.17 MTT outputs for scenario 2015-Sc3_Tk2. Grey tracks are GPS groundtruth,
coloured tracks are MTT output.

method for the 2016 sequence. However, over all the sequences, maskrcnn and YOLO

consistently detected the targets early on.

6.5.3 Comparison with radar

Fig. 6.20 shows the tracks produced by the MTT when radar is used. Visually, it can be

seen that the radar tracks do not align well with the groundtruth and most of the tracks

are not detected. In 2015 and 2016, the radar used was a more advanced system with

built-in tracking capabilities. In 2016-Sc1_Tk5 (Fig. 6.20b), the stationary target (a fishing

boat) is tracked quite well (blue track) but the smaller, moving skiff is only tracked when

it gets close to the vessel (green track). In 2015, neither skiff is detected consistently and

there is a lot of noise from the environment. In 2017, the radar was a much more basic

navigational radar. As described in Section 6.4.2, the radar system was not able to acquire

targets for the skiff by itself. Targets were manually acquired by a crew member on the
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Table 6.2 Sequence-level results for the visual object detection methods: mean absolute
positional error (�pabs), mean relative positional error (p̂r el ), completeness (C p), precision
(Pr ), mean false tracks (F̂ T ) and NIDC. For positional errors, mean false tracks and NIDC,
lower is better. Best and second best highlighted in green and blue, respectively (boxes
not included when computing best).

(a) 2015-Sc3_Tk2

Method �pabs p̂r el C p Pr F̂ T N I DC

boxes 56.3 0.411 0.668 0.667 0.7 0.030
maskrcnn 68.1 0.679 0.220 0.531 0.4 0.042
YOLO 66.8 0.570 0.441 0.423 1.2 0.122
TSFC 94.3 0.959 0.033 1.000 0.0 0.000
saliency 64.3 0.452 0.456 0.173 4.3 0.070
semantic 75.0 0.733 0.208 0.027 15.1 0.103

(b) 2016-Sc1_Tk5

Method �pabs p̂r el C p Pr F̂ T N I DC

boxes 35.6 0.117 0.943 0.198 7.4 0.113
maskrcnn 38.5 0.132 0.862 0.130 11.1 0.277
YOLO 51.6 0.307 0.654 0.132 8.3 0.112
TSFC 78.0 0.794 0.127 0.278 0.7 0.041
saliency 39.7 0.236 0.709 0.138 8.6 0.193
semantic 35.5 0.173 0.704 0.090 13.6 0.221

(c) 2017-Sc3a

Method �pabs p̂r el C p Pr F̂ T N I DC

boxes 23.9 0.078 1.000 0.925 0.2 0.005
maskrcnn 29.0 0.156 0.841 0.535 2.0 0.151
YOLO 31.5 0.177 0.839 0.415 3.3 0.121
TSFC 39.4 0.357 0.488 0.527 1.2 0.165
saliency 32.1 0.197 0.534 0.240 4.8 0.099
semantic 45.1 0.425 0.437 0.211 4.6 0.092
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(f) Groundtruth tracks

Fig. 6.18 MTT outputs for scenario 2016-Sc1_Tk5. Grey tracks are GPS groundtruth,
coloured tracks are MTT output.

Table 6.3 Time to detection, measured as the first timestep with a True Positive track
detection.

Sequence maskrcnn YOLO TSFC saliency semantic

2015-Sc3_Tk2-CAM14 16 17 192 40 72
2016-Sc1_Tk5-CAM11 3 11 110 1 1
2017-Sc3a-CAM12 3 6 21 2 27
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Fig. 6.19 MTT outputs for scenario 2017-Sc3a. Grey tracks are GPS groundtruth, coloured
tracks are MTT output.
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Fig. 6.20 Tracks using the radar detections as input to the MTT. Grey tracks are GPS
groundtruth, coloured tracks are MTT output.

bridge at the start of the scenario (see Fig. 6.14) but Fig. 6.20c shows that they were not

tracked for long.

Table 6.4 compares the quantitative results from the visual camera object detection

inputs with results from radar input. Despite poor visual performance, radar scores well in

terms of false tracks, precision and NIDC. This is due to the very low number of detections

overall. In 2016-Sc1_Tk5, the positional accuracy is good (low error) due to the fishing

vessel being tracked well. However, track completeness is not as good, as the other skiff is

not tracked at all until near the end of the sequence. Completeness and accuracy are both

poor in 2017-Sc3a which reflects the situation discussed above.
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Table 6.4 Sequence-level results comparing radar against the visual object detection
methods: mean absolute positional error (�pabs), mean relative positional error (p̂r el ),
completeness (C p), precision (Pr ), mean false tracks (F̂ T ) and NIDC. For positional
errors, mean false tracks and NIDC, lower is better. Best and second best highlighted in
green and blue, respectively.

(a) 2015-Sc3_Tk2

Method �pabs p̂r el C p Pr F̂ T N I DC

rad 65.8 0.563 0.343 0.211 2.6 0.059
maskrcnn 68.1 0.679 0.220 0.531 0.4 0.042
YOLO 66.8 0.570 0.441 0.423 1.2 0.122
saliency 64.3 0.452 0.456 0.173 4.3 0.070
semantic 75.0 0.733 0.208 0.027 15.1 0.103

(b) 2016-Sc1_Tk2

Method �pabs p̂r el C p Pr F̂ T N I DC

rad 14.1 0.064 0.581 0.942 0.1 0.003
maskrcnn 38.5 0.132 0.862 0.130 11.1 0.277
YOLO 51.6 0.307 0.654 0.132 8.3 0.112
saliency 39.7 0.236 0.709 0.138 8.6 0.193
semantic 35.5 0.173 0.704 0.090 13.6 0.221

(c) 2017-Sc3a

Method �pabs p̂r el C p Pr F̂ T N I DC

rad 81.0 0.750 0.167 1.000 0.0 0.000
maskrcnn 29.0 0.156 0.841 0.535 2.0 0.151
YOLO 31.5 0.177 0.839 0.415 3.3 0.121
saliency 32.1 0.197 0.534 0.240 4.8 0.099
semantic 45.1 0.425 0.437 0.211 4.6 0.092

225



Real-World Performance Evaluation

10008006004002000200
YSCC

1000

800

600

400

200

0

200

X S
CC

Fig. 6.21 Tracks from the thermal cameras for 2017-Sc3a

6.5.4 Comparison with thermal cameras

Detections from the thermal cameras were only available for one sequence but it is clear

that their detection performance is superior to any of the visual camera methods (see

Table 6.5 and Fig. 6.21). They are also superior to the results achieved using the image

bounding box annotations. This highlights the issues with human error in bounding box

placement, as discussed in Chapter 3.

The thermal detection method used is based on simple background subtraction plus a

more sophisticated tracking process in image space [18]. The likely reasons for the high

performance are:

• High contrast between the targets and sea, and reduced clutter from dynamic

background in the thermal spectrum

• Tracking in image space before outputting detections

• Smaller field of view angle of the thermal cameras

The first factor means that background subtraction is an effective detection method

with high localisation accuracy and minimal false positives. The second factor reliably
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6.5 Results and analysis

Table 6.5 Comparison of visual object detection methods with object detections from
thermal cameras

Method �pabs p̂r el C p Pr F̂ T N I DC

boxes 23.9 0.078 1.000 0.925 0.2 0.005
maskrcnn 29.0 0.156 0.841 0.535 2.0 0.151
YOLO 31.5 0.177 0.839 0.415 3.3 0.121
TSFC 39.4 0.357 0.488 0.527 1.2 0.165
saliency 32.1 0.197 0.534 0.240 4.8 0.099
semantic 45.1 0.425 0.437 0.211 4.6 0.092
thermal 14.1 0.031 0.904 1.000 0.0 0.000

fills any missed detections, improves the estimation of position over time, and removes

most (if not all) false positives. The third factor relates to size of the targets in the image.

The horizontal field of view (FoV) determines the pixel footprint in the real world. The

thermal cameras used in the IPATCH trials had a FoV of 25 degrees, which corresponds to

a pixel footprint of 1m at a distance of 2.9km. The visual cameras had FoV values up to

100 degrees, which corresponds to 1.4km for a 1m footprint. At a given distance, a target

will therefore appear larger (more pixels) in the thermal cameras than in the visual ones.
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6.6 Summary

This chapter investigated the performance of six object detection methods in the context

of a complete maritime surveillance system using data collected in the field as part

of the IPATCH project. The objective was to analyse how different characteristics of

object detection methods affect how useful their detections are to the later stages of the

surveillance pipeline (tracking, situational awareness, threat recognition, etc.).

The on-board surveillance system was described to explain how detections from the

object detection methods get processed by other modules of the system. The Multi-Target

Tracking (MTT) module was presented in more detail, as this performs the important

process of converting image-based detections into tracks in the real world. The sources of

error in this process were discussed, as they play an important role in the performance

analysis of the tracking output. The real-world set-up of the two trials in France and

Greece were described to explain how data was collected on-board real vessels at sea.

The offline experimental set-up was explained, along with the performance evaluation

procedure and metrics. The objective was to give an assessment of performance which is

relevant to the end users of a maritime piracy surveillance system.

In general, results were consistent with those from previous chapters, namely that

the deep learning-based methods (Mask R-CNN R50 and YOLO v3) perform well ‘out

of the box’. When detections are made, they are typically well-localised on the true

target, and the number of false positives are very low. The exception to this is very small,

distant targets which are missed by Mask R-CNN and YOLO, but can be detected by the

proposed saliency and semantic segmentation-based methods. The saliency and semantic

segmentation-based methods generate a lot of false tracks (caused by reflections, glare

and other distractors which are not transient enough to be filtered out). Position errors

for these methods are not as good as the Mask R-CNN and YOLO values, but they are still

within reasonable ranges for detection distances of 100s of metres. Track continuity is

often better, due to the larger number of detections overall.

In the final chapter, conclusions from all chapters are consolidated and the main

contributions of this research are summarised. Future work is also proposed to extend the

experiments and analysis.
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Chapter 7

Conclusions and Future Work

7.1 Findings and limitations

The empirical analysis has shown that the proposed methods are feasible, but further work

is required to improve their performance. It is also likely that additional effort spent on

optimising the implementation could bring their processing speeds closer to the real-time

goal for an operational system.

7.1.1 Saliency-based object detection

The saliency method relied on the assumption that objects would be salient compared

to the background. Under these conditions, detection was quite reliable, even with very

small distant targets, although the spreading effect of the saliency map post-processing

step often caused bounding boxes to be overestimated, or merged if two objects were

close together. In the open sea, the assumption will hold in many cases. In the piracy

attack scenario, for example, there will only be a few skiffs and the background will be

open sea and sky. However, the assumption breaks down in a number of cases:

• The presence of land in the background creates a salient region which may either

be detected as a false positive, or increase the overall level of saliency, thereby mak-

ing the true targets less salient by comparison (under the percentile thresholding

mechanism).

• Scenes containing many objects create a similar problem, as objects are forced

to compete with each other. This is similar to what happens in the human visual
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system. There, higher-level processing takes over to either suppress some regions or

visit regions in turn.

• Wake and bright reflections from the water are, by definition, salient. Whilst the

horizontal-vertical thresholding and scene depth map weighting steps mitigated this

to a certain extent, there is still work to be done in eliminating these false detections

completely.

7.1.2 Semantic segmentation-based object detection

The idea behind the semantic segmentation-based approach was to invert the object

detection problem and instead analyse the main regions of the scene. In the maritime

case, this only consists of a few classes, as the majority of the background is either sea or

sky. Object detection is framed as the problem of finding things which do not look like one

of these two classes. Even with very limited training data from a different domain, EDANet

[139] was able to detect objects through this method, including some quite challenging

targets. The main observations were:

• A lot of false positive detections were created. The relatively simple rule-based

reasoning can filter out some obvious cases, but more sophisticated reasoning or

some secondary process would be needed to tell the difference between real objects

and ‘regions which are not classified as sea or sky’.

• A fundamental limitation of semantic segmentation is the inability to distinguish

between very close or overlapping objects. This has been known for a long time and

instance segmentation is now an active area of research which could be explored to

resolve this (Mask R-CNN [89] is an example).

• CoordConv and multi-task learning had very inconsistent effects across the datasets

and sequences, despite seeming very promising at first. The results indicate that

boundary prediction improves performance, which reflects what is reported else-

where in the literature, but further experiments would be required using richer

training and evaluation data.
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7.1.3 Visual object detection in the real world

As is the case across a wide range of applications nowadays, the deep learning approaches

proved to be superior. However, their performance in maritime surveillance is noticeably

less than that in more classical object detection domains. There is scope for further

research to adapt deep neural networks for maritime surveillance. At the same time,

there is still a role for more classical methods, as shown with the detection of very small

and distant objects. Ideally, multiple approaches should be used together in a system to

balance their strengths and weaknesses.

The trade-off between missed detections and false positives is still a challenge. The

background subtraction approach (IMBS [30]) revealed an extreme case where the rest

of the surveillance system was overloaded by the number of false detections. In contrast,

the TSFC [156] approach produced very few false positives but struggled to detect objects

consistently enough for them to be tracked at all.

The main limitation of the system as a whole was the estimation of the camera pose

(roll and pitch). Whether done through online horizon detection or by using data from the

ship’s IMU sensor, small errors in angle create very large positional errors. The system is

also very sensitive to the bounding box positions of points near the horizon: a difference

of 1 pixel can correspond to a 40m error at 1km, and 462m at 4km.

Finally, this work has highlighted the importance of evaluating academic methods

in realistic scenarios and under real-world conditions, as well as on carefully curated

benchmark datasets. This would drive development of algorithms and implementations

which can be more readily deployed in real-life applications or developed into products.

7.2 Outcomes against objectives

The main objective of this research was to develop object detection methods which had

the following important properties for use in maritime surveillance and piracy detection:

• Can detect small, fast-moving skiffs approaching the vessel as early as possible to

maximise warning for the crew.

• Provide high quality detections to the higher-level stages of an on-board piracy

surveillance system to support tracking, situational awareness and threat detection.
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• Do not make strong assumptions about the appearance of the target or scene so

that they can be used in a wide range of contexts and applications.

• Are robust to camera motion, wake, reflections and environmental conditions.

• Can operate in real-time.

Whilst further evaluation should be carried out, the results showed that the proposed

saliency and semantic segmentation methods can detect small targets and exhibit perfor-

mance which improves on previous work. The more recent deep learning-based object

detectors were generally superior, but the proposed methods provide sufficient detection

accuracy and consistency to support tracking in the surveillance system.

The proposed methods make very few assumptions about the scene and potential

objects. This means they can, in principle, detect any object which appears in the scene

(i.e. they are class-agnostic). It also means the methods can be used in other contexts,

such as vessel traffic monitoring or search and rescue, without significant modifications.

This was demonstrated through evaluation on publicly available maritime surveillance

datasets with a range of viewpoints, from low in the water (MODD) to high above the sea

(SEAGULL).

The image sequences used for evaluation also contained a range of visual challenges

related to the maritime domain. The results showed that the proposed methods are

robust to camera motion and the dynamic background of the sea. Whilst techniques were

developed to mitigate the effects of wake and bright reflections, there is still room for

improvement which should be addressed in future work.

The proposed methods were implemented on moderate computing platforms and

without extensive optimisation. Full real-time performance (>25Hz) was not reached, but

the results obtained indicate that real-time performance is achievable with further effort

to optimise the implementations.

A further objective of this work was to evaluate and compare the performance of the

proposed methods and others from the literature in the context of a real-world maritime

surveillance system using realistic data. Realistic data was obtained through the IPATCH

project, which organised the collection of a new maritime sensor dataset based on scenar-

ios developed by experts on pirate behaviour. Evaluation in the context of a real-world

system was the focus of Chapter 6. The data collected in the IPATCH trials was used to

simulate the real system, which provided insight into how the visual object detection

methods supported the higher-level tasks in surveillance.
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7.3 Future work

In addition to further experiments and improvements to the proposed algorithms, the

investigations in this study have raised many new questions and ideas which would be

interesting to explore further:

• Scene context was shown to be a useful enabler for object detection. What other

contextual cues can be exploited, in addition to horizon detection and simple rules?

• How can the saliency method incorporate top-down processing in a task-specific

way to extract targets more accurately and when the scene is more crowded?

• How can the temporal dimension be incorporated in the saliency approach, beyond

basic frame-to-frame tracking?

• How can the network architecture be adapted to better support the horizon and

boundary prediction tasks? In this study, the network architectures were left un-

changed to isolate the impact of learning multiple tasks but creating separate output

branches with additional convolutional layers for each task is common [89, 115].

• Can semi-supervised or unsupervised learning be implemented as an alternative

way of addressing the lack of maritime training data?

• New approaches to data augmentation were recently proposed: Mixup [239], sample

pairs [99] and between-class learning [211]. They train the model on weighted

combinations of two images with the idea that the network can learn smoother class

boundary transitions, thus being able to generalise better. This idea would be a

logical extension to the work in Chapter 5.

• The predicted horizon and boundary maps contain information which is not cur-

rently used. Further research should investigate if this can be exploited in the object

detection stage.

To support future work, the MarSemSeg dataset used in Chapter 5 will be made avail-

able online. Work on the whole system evaluation presented in Chapter 6 is on-going

and a journal paper is under preparation. Synchronising and labelling the data is a time

consuming process, but it is hoped that the processed data will be published as part of

the journal publication for use by the community and to support future work in this area.
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It is also the intention to publish the code for replaying the sensor data to allow other

researchers to work with the data more easily and simulate the real conditions on-board.

Finally, there is still a lot of work to be done to finish annotating and documenting the

complete IPATCH dataset across all three campaigns. This task is left for the next set of

PhD students researching visual maritime surveillance...
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Appendix A

Data Augmentations

Below, the implementations of the seven data augmentations used in Section 5.4.2 are

described. In the following definitions, [x]b
a denotes that the value of x is clamped between

a and b, and ⌊x⌉ denotes integer rounding.

Brightness: Brightness changes are implemented by scaling the lightness channel of the

image in HLS colourspace. The image is converted from RGB to HLS and the lightness

channel, L, is scaled with a scale factor f b :

L′ =
[

f bL
]255

0
(A.1)

where f b is drawn from a uniform distribution f b ∼U
(

f b
min, f b

max

)
. In this work, f b

min and

f b
max were set to 0.8 and 1.2, respectively. The H, L′ and S channels are then converted back

to RGB colourspace.

Contrast: Contrast changes are implemented by scaling each channel of the image by a

scale factor f c :

C ′ = [
f cC

]255
0 (A.2)

where f c is drawn from a uniform distribution f c ∼U
(

f c
min, f c

max

)
. The same scale factor

is applied to all channels. In this work, f c
min and f c

max were set to 0.8 and 1.2, respectively.
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Data Augmentations

Colour: Colour variations are implemented by applying gamma adjustment to a ran-

domly selected subset, S, of the RGB channels:

C ′ = 255

(
C

255

)γ
, for C ∈ S, where S ⊆ {R,G ,B} (A.3)

where γ is drawn from a uniform distribution γ∼U
(
γmin,γmax

)
. In this work, γmin and

γmax were set to 0.8 and 1.2, respectively.

Rotation: Rotation is implemented by applying an affine transformation, A, to the image

which rotates around the image centre (xc , yc ):

A =
[

cosθ sinθ (1−cosθ)xc − sinθyc

−sinθ cosθ sinθxc + (1−cosθ)yc

]
(A.4)

where θ is drawn from a discrete uniform distribution θ ∼ U {θmin,θmax}. In this work,

θmin and θmax were set to -5 and 5 degrees, respectively. Undefined pixels in the image

are set to black and corresponding pixels in the class label image are filled with the ‘Void’

class.

Blur: Gaussian blur is applied to the image with standard deviation, σb , drawn from a

uniform distribution σb ∼U
(
σb

min,σb
max

)
. In this work, σb

min and σb
max were set to 0 and

1.3, respectively. The size of the Gaussian kernel, k, is set according to:

k = max

(
2

⌊
3.3σb

2
−0.5

⌉
,3

)
(A.5)

Noise: Noise is implemented as additive Gaussian noise by adding random values to

each pixel in each image channel:

C ′ = [C +ϵ]255
0 (A.6)

where ϵ∼N
(
0,(σn)2) and σn is drawn from a uniform distribution σn ∼U

(
σn

min,σn
max

)
.

In this work, σn
min and σn

max were set to 0 and 3, respectively.

Compression artefacts: Compression artefacts are created by applying JPEG compres-

sion to the image with randomly selected strengths. Higher strengths remove more high
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spatial frequency components leading to lower image quality. In the implementation, the

images are saved as JPEG files with different compression strengths, p, and then reloaded

‘on the fly’. p is expressed as a percentage, and is drawn from a uniform distribution

p ∼U
(
pmin, pmax

)
. In this work, pmin and pmax were set to 0 and 40, respectively.
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