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Abstract

A multidisciplinary approach, combining stable isotope analysis from bone proteins and

investigations on dental calculus using DNA analysis, light microscopy, and gas chromatog-

raphy coupled with mass spectrometry, was applied to reconstruct dietary and medicinal

habits of the individuals recovered in the cemetery of the Castle of Santa Severa (7th-15th

centuries CE; Rome, Italy). Stable isotope analysis was performed on 120 humans, 41 fau-

nal specimens and 8 charred seeds. Dental calculus analyses were carried out on 94 sam-

ples. Overall, isotope data indicated an omnivorous diet based on C3-terrestrial protein,

although some individuals possessed carbon values indicative of C4 plant consumption. In

terms of animal protein, the diet was probably based on cattle, sheep, pig and chicken prod-

ucts, as witnessed by the archaeozoological findings. Evidence from calculus suggested the

consumption of C3 cereals, Fabaceae, Fagaceae, milk and dairy products. Secondary

metabolites of herbs and wine were also detected. The detection of marine fish ancient

DNA, as well as ofω3 fatty acids in calculus, hypothesized the consumption of marine food-

stuffs for this coastal population, despite the lack of a clear marine isotopic signal and the

presence of polyunsaturated fatty acids in plant tissues. Moreover, the knowledge of ethno-

pharmacological tradition and the application of medicinal plants (e.g. Punica granatum L.,

Ephedra sp. L.) were also identified. The detection of artemisinin, known to have antimalar-

ial properties, led to hypothesize the presence of malaria in the area. Altogether, the com-

bined application of microscopy and biomolecular techniques provided an innovative

reconstruction of Medieval lifeways in Central Italy.
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Introduction

Changes in dietary habits have played a paramount role in most human evolutionary mile-

stones [1–2]. In particular, the significant socio-economic transformations that impacted on

both Italy and Europe throughout the Medieval period, extensively affected food demand and

dietary practice [3–8]. For example, the terrestrial-based subsistence typical of the earlier Mid-

dle Ages underwent important changes in the later Medieval period, during which an higher

consumption of fish was generally favoured by the Christianity-related abstinence from meat

in established periods of the year e.g. Fridays and during Lent [2–3, 7–18]. However, Medieval

Italian food habits were known to be highly variable and tended to relate both to the social

context and local environment of a particular population [7, 19–22].

The present investigation focuses on human remains found in the Medieval cemetery

located near the Castle of Santa Severa, on the Latium coast, 50 Km North of Rome (42˚

01031@N 11˚56054@E; Central Italy). The Medieval castle was built on the settlement of Pyrgi, an

Etruscan harbour of the city of Caere, today known as Cerveteri. Archaeological excavation

unearthed two cemetery areas, known as “Casa del Nostromo” and “Piazza della Rocca”, in use

from the 7th to the 15th century CE, as confirmed by radiocarbon analysis on four skeletal spec-

imens performed at the Centre for Diagnostic and Dating (CEDAD) of the University of Sale-

nto [23]. The skeletal collection has undergone osteological analysis and consists of 455

individuals, comprising 188 non-adults and 267 adults, which, overall, showed a high degree

of biomechanical stress related to daily activities [24]. Degenerative and infectious diseases

were also documented in some individuals. Regarding dental health status, low frequency of

abscesses, caries and ante-mortem tooth loss were documented. Based on the results of muscu-

loskeletal stress markers obtained by the osteological analysis, the economy of this community

was probably based on both farming and agricultural activities. The individuals were mainly

buried wrapped in shrouds into simple earthen graves or in sarcophagi made up of re-used

materials from pre-existing buildings. Grave goods were recovered only in some non-adult

burials. The only exception is represented by the individual NS SU 321 which was buried in a

sarcophagus where a cross and a stone cushion could be detected (see [24] for further details).

This research aims to provide an in-depth analysis of diet, lifeways and medicinal habits of

the Medieval population of Santa Severa, through the integration of isotopic analysis of bone

proteins and cut-edge archaeobotanical and molecular technologies on dental calculus, both

highly informative in palaeodiet reconstruction [e.g. 25–28]. Carbon isotopes are useful to dis-

tinguish the consumption of C3 versus C4 plants and the contribution of marine foods in the

diet [29–32]. The interpretation of the human data, is highly dependent on the local environ-

mental context and in that perspective, the analysis of coeval faunal and plant remains, repre-

sents a fundamental requisite as the isotopic composition of foodstuffs varies both

geographically and temporally [2, 17–18, 33].

Dental calculus, or mineralized oral plaque, is a dense mineral matrix that adheres to tooth

surfaces [27, 34–35]. This deposit develops from inorganic salts, deriving from saliva, which

trap organic molecules belonging to oral microbiota, foods, and non-dietary microremains

(e.g. pollen grains), accidentally or intentionally inhalated/ingested during everyday activities

(providing information on the surrounding environment) [27, 36]. Dental calculus tends to be

well preserved in archaeological contexts [34] and is increasingly recognised as a valuable

resource to investigate past human diet and phytotherapeutic practices [22, 37–43]. The analy-

sis of dental calculus was mainly performed by light microscopy (henceforth LM); only rarely

gas-chromatography-mass spectrometry (henceforth GC-MS) and occasionally genetic tech-

niques have been combined [20, 22]. This research used this combination of techniques to
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evaluate the role of plant species in phytotherapic practices and the extent of aquatic resources

consumed by the coastal population of Santa Severa.

Materials and methods

Ethics statement

Specimen numbers of the skeletal remains analysed in the present research are reported in

Tables 1–4 and in S1 Table. The archaeological collection is housed at Museo Civico di Santa

Marinella “Museo del Mare e della Navigazione Antica”, Castello di Santa Severa (Roma–Italia;

responsible Dr. Flavio Enei). No permits were required for the described study, which com-

plied with all relevant regulations. The responsible of the remains (Dr. Flavio Enei) is co-

author of the present research.

Protein extraction and isotope analysis

Adult individuals (n = 112), aged approximately 18 years and over, were selected for stable iso-

tope analysis on the basis of their good preservation and the possibility to determine age and

sex. Eight non-adults were also examined, for comparison between adult and non-adult diets.

To better interpret the human isotope data, 41 adult faunal bones (6 Bos sp., 1 Bubalus sp., 1

Equus sp., 6 Ovis sp., 2 Cervus sp., 4 Gallus sp., 5 Sus sp., 1 Sus scrofa, 2 Canis sp., 1 Felis sp. and

12 fish, including 6 unidentified species—Pisces, 1 Thunnus sp., 1 Galeorhinus sp., 2 specimens

of the Sparidae family, 1 Labrus sp. and 1 Sparus sp.; [44]) and 8 charred seeds (2 Triticum sp.

L., 3 Hordeum vulgare L., 2 Vicia sp. L. and 1 Vicia faba L.; [45]) were also analysed. For each

sample, fragments of bone (reported in Table 1) were cleaned by scraping, to remove potential

external contaminants, and pulverized using pestle and mortar. Protein extraction was carried

out as reported in Longin [46] with modifications [20, 47]. In brief, 0.5 g of powdered bones

were demineralised in 0.6 M HCl for 2 days at 4˚C on a horizontal mixer, replacing the HCl

every 24 hours. Once all minerals were dissolved, samples were rinsed three times with bi-dis-

tilled water, until the pH became neutral. Then, sample gelatinization was performed in pres-

ence of 1 mM HCl, at 70˚C, for 48 hours. The liquid fraction, containing gelatinized proteins,

was frozen at -80˚C for 4 hours and lyophilized. To evaluate the extraction efficiency, bone

proteins of a modern bovine (with a known isotopic composition) were used as reference con-

trol for all protein extractions. For the seeds, no pre-treatment was used [48], they were

homogenised using a pestle and mortar prior to analysis. In order to determine carbon (δ13C)

and nitrogen (δ15N) isotope ratios for each specimen, 0.8–1.2 mg of proteins or 2 mg of

homogenised grain were analysed, in duplicate, by continuous flow isotope ratio mass spec-

trometry (CF-IRMS) at the University of Reading (UK) or by EA/IRMS in a GSL analyser cou-

pled to a 20–22 mass spectrometer (Sercon, Crewe, UK) at the University of York (UK).

Samples were run alongside internal and international reference standards at both laboratories

(in-house Fish gelatine: δ13C -15.5 ± 0.1‰, δ15N 14.3 ± 0.2‰; Cane sugar IA-R006: δ13C

-11.8 ± 0.1‰; Caffeine IAEA 600: δ13C -27.8 ± 0.1‰, δ15N 0.8 ± 0.1‰; Ammonium Sulfate

IAEA N2: δ15N 20.4 ± 0.2‰). The accepted analytical error was�0.2‰, for both carbon and

nitrogen. To test reliability and exclude contamination events by exogenous carbon and nitro-

gen sources, the samples were assessed against established criteria [49–51]. Wilcoxon and

Kruskal-Wallis tests were performed to statistically evaluate the obtained isotopic results.

Average linkage cluster analysis was used to identify the presence of subgroups. Since variables

with large variance tend to have a larger effect on the resulting clusters, variables were stan-

dardised before performing the analysis. All analyses were undertaken using SAS version 9.4

(SAS Institute, Cary NC).

Diet of a Medieval coastal population of Latium

PLOS ONE | https://doi.org/10.1371/journal.pone.0227433 January 28, 2020 3 / 30

https://doi.org/10.1371/journal.pone.0227433


Table 1. Results of human and animal samples subjected to stable isotope analysis and quality indicators of protein extraction procedure were reported. For each

human sample, the examined bone and the biological information were provided. Faunal samples were classified at genus level (Sus scrofa: species; Pisces: not identified

fish; Sparidae: family level). The specimens excluded from the present study were highlighted in red. For sex assessment, M indicates males, F indicates females, ND was

used for not determined individuals (sex determination was impossible for the lack of diagnostic elements due to their poor state of preservation), while IND was applied

to indeterminate individuals (non-adults whose sex was impossible to determine because of their sexual immaturity). GAs (generic adults) were the individuals whose age

at death was impossible to determine for the lack of diagnostic elements due to their poor preservation state.

Human samples

Sample code Examined Sex Age at death δ13C, ‰ δ15N, ‰ %C %N C:N % Protein yield

bone

1 NS SU 14 Aa Rib F 18–30 -19.4 8.0 41.6 15.3 3.2 9

2 NS SU 89 Aa Rib M >50 -19.2 9.5 42.4 15.7 3.2 13

3 NS SU 89 Sc Metatarsal IND 13–17 -19.1 10.2 41.4 15.2 3.2 6

4 NS SU 93 Rib M 18–30 -19.2 9.8 42.2 15.3 3.2 5

5 NS SU 95 Aa Rib F 18–30 -19.2 10.3 53.3 19.1 3.3 7

6 NS SU 99 Rib F 18–30 -19.0 8.9 42.4 15.1 3.3 5

7 NS SU 104 Ab Radius M 31–40 -19.7 8.3 42.4 15.6 3.2 13

8 NS SU 104 Sa Rib IND 7–12 -19.4 9.3 43.6 16.0 3.2 11

9 NS SU 124 Aa Rib M 31–40 -16.8 10.4 42.1 15.4 3.2 6

10 NS SU 126 Rib M 31–40 -19.2 8.5 52.0 18.4 3.3 5

11 NS SU 135 Metacarpal M >50 -19.3 9.6 38.6 14.2 3.2 13

12 NS SU 137 Aa Humerus M 31–40 -19.5 8.1 43.8 16.0 3.2 13

13 NS SU 137 Ab Humerus M 18–30 -18.8 7.3 42.6 15.5 3.2 8

14 NS SU 138 Ab Rib F 41–50 -19.2 9.6 41.9 15.4 3.2 7

15 NS SU 139 Ab Rib M 18–30 -19.6 6.7 43.3 15.7 3.2 4

16 NS SU 140 Rib F 18–30 -19.1 9.6 46.8 17.0 3.2 6

17 NS SU 150 Rib M 18–30 -18.4 9.9 42.0 15.2 3.2 5

18 NS SU 151 Aa Rib M 18–30 -18.8 8.0 42.3 15.3 3.2 7

19 NS SU 155 Rib F 31–40 -19.0 10.5 45.1 16.6 3.2 17

20 NS SU 157 Aa Rib F 31–40 -19.0 9.4 42.4 15.6 3.2 10

21 NS SU 158 Aa Rib F 18–30 -18.9 7.7 43.1 15.6 3.2 6

22 NS SU 163 Aa Rib F 18–30 -18.3 9.1 42.3 15.3 3.2 5

23 NS SU 164 Aa Rib F 18–30 -18.0 9.1 42.4 15.4 3.2 7

24 NS SU 165 Rib M 18–30 -19.3 6.8 43.4 15.7 3.2 2

25 NS SU 171 Rib M GA -19.4 10.5 42.9 15.6 3.2 4

26 NS SU 192 Rib M 31–40 -18.8 10.3 42.7 15.5 3.2 9

27 NS SU 193 Aa Rib F 31–40 -19.0 9.4 43.8 15.8 3.2 8

28 NS SU 196 Aa Radius F 41–50 -19.1 9.2 43.9 15.9 3.2 7

29 NS SU 196 Ab Radius M 18–30 -19.8 10.3 42.1 15.2 3.2 6

30 NS SU 200 Aa Metatarsal M GA -19.0 10.1 42.0 15.5 3.2 10

31 NS SU 206 Rib M 18–30 -19.3 8.3 43.4 15.8 3.2 9

32 NS SU 207 Tibia M GA -19.3 9.7 43.9 16.0 3.2 7

33 NS SU 210 Rib M 18–30 -19.1 8.7 40.7 14.8 3.2 9

34 NS SU 215 Rib F 18–30 -19.7 6.7 43.2 15.5 3.2 6

35 NS SU 216 Femur M 31–40 -18.7 9.6 42.3 15.4 3.2 7

36 NS SU 217 Aa Rib M 18–30 -19.0 9.5 44.6 16.3 3.2 11

37 NS SU 224 Rib M 41–50 -19.2 10.8 42.0 15.3 3.2 6

38 NS SU 225 Sa Rib IND 13–17 -19.1 9.3 41.6 15.2 3.2 6

39 NS SU 227 Rib M 31–40 -18.9 9.7 41.4 15.2 3.2 5

40 NS SU 230 Rib IND 7–12 -19.0 10.1 43.9 16.1 3.2 8

41 NS SU 231 Humerus M 31–40 -18.9 10.4 43.1 15.4 3.3 2

(Continued)
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Table 1. (Continued)

42 NS SU 235 Rib M 18–30 -19.2 8.8 42.5 15.3 3.2 9

43 NS SU 237 Aa Tibia M 41–50 -19.1 8.5 43.4 15.8 3.2 11

44 NS SU 238 Aa Rib F 41–50 -19.3 8.8 41.9 15.4 3.2 4

45 NS SU 240 Aa Humerus M 18–30 -19.1 9.6 41.9 15.1 3.2 8

46 NS SU 240 Ab Humerus F GA -18.9 8.9 43.2 15.6 3.2 3

47 NS SU 241 Rib M 31–40 -18.9 9.0 42.3 15.5 3.2 10

48 NS SU 248 Rib M 18–30 -19.3 10.1 39.1 14.3 3.2 8

49 NS SU 285 Aa Femur F 31–40 -18.0 9.4 43.7 15.8 3.2 4

50 NS SU 286 Aa Rib M 41–50 -19.1 8.9 43.5 16.0 3.2 12

51 NS SU 287 Aa Rib M 31–40 -18.6 7.7 44.3 16.1 3.2 19

52 NS SU 289 Rib M 41–50 -18.8 10.8 43.2 15.8 3.2 8

53 NS SU 292 Aa Metatarsal M >50 -19.1 8.4 42.7 15.8 3.2 11

54 NS SU 293–306 Rib M 18–30 -19.5 9.6 42.9 15.6 3.2 13

55 NS SU 295 Aa Femur M 41–50 -19.7 7.6 42.8 15.6 3.2 12

56 NS SU 295 Ab Femur M GA -18.9 7.7 40.3 14.9 3.2 11

57 NS SU 299 Sa Rib IND 1–6 -19.3 10.1 44.7 16.4 3.2 14

58 NS SU 304 Ac Rib M 18–30 -18.5 10.3 42.0 15.5 3.2 43

59 NS SU 307 Rib F 31–40 -18.7 9.4 40.2 14.6 3.2 5

60 NS SU 308 Rib F 18–30 -19.4 7.7 43.9 16.0 3.2 21

61 NS SU 309 Aa Rib F 41–50 -18.3 10.5 43.0 15.8 3.2 9

62 NS SU 310 Aa Rib F 31–40 -18.8 8.6 43.5 15.6 3.3 10

63 NS SU 317 Aa Rib M >50 -18.8 10.1 43.7 15.9 3.2 14

64 NS SU 318 Aa Rib M 18–30 -19.2 9.2 41.9 15.4 3.2 5

65 NS SU 319 Rib F 18–30 -18.8 9.2 42.2 15.4 3.2 11

66 NS SU 321 Rib M >50 -18.1 11.3 43.5 15.6 3.2 4

67 NS SU 322 Rib F 31–40 -19.1 8.7 44.7 16.2 3.2 9

68 NS SU 326 Aa Rib F 31–40 -19.3 8.5 54.7 19.6 3.2 8

69 NS SU 327 Sa Rib F 13–17 -19.2 10.1 40.7 14.9 3.2 13

70 NS SU 331 Aa Rib M 31–40 -18.8 9.8 41.3 15.1 3.2 14

71 NS SU 336 Aa Rib M 31–40 -19.3 7.8 43.3 15.8 3.2 9

72 NS SU 341 Aa Rib M 18–30 -19.2 9.6 41.5 15.3 3.2 13

73 NS SU 346 Ab Femur F 41–50 -19.4 9.1 43.0 15.6 3.2 12

74 NS SU 347 Ab Rib ND 18–30 -18.7 9.4 44.7 16.4 3.2 10

75 NS SU 352 Aa Rib F 18–30 -19.3 9.7 43.7 15.9 3.2 7

76 NS SU 354 Aa Femur M GA -18.9 9.6 39.9 14.5 3.2 8

77 PR I SU 3 Rib F 18–30 -18.8 10.8 44.1 16.2 3.2 4

78 PR I SU 4 Aa Rib F 31–40 -18.7 9.7 44.6 16.5 3.2 3

79 PR I SU 5 Rib M 31–40 -18.8 8.1 42.2 15.4 3.2 5

80 PR I SU 6 Rib F 31–40 -18.7 10.7 49.3 18.1 3.2 4

81 PR I SU 7 Rib M 18–30 -19.0 9.1 56.3 20.8 3.2 4

82 PR I SU 16 Rib F 18–30 -19.1 10.4 52.8 19.5 3.2 4

83 PR I SU 17 Metatarsal M GA -19.3 10.1 43.4 15.8 3.2 7

84 PR I SU 20 Rib M 18–30 -18.8 9.6 43.6 15.9 3.2 5

85 PR I SU 37 Rib F 18–30 -18.8 9.7 46.9 17.2 3.2 5

86 PR I SU 57 Rib F 41–50 -19.2 8.6 48.4 17.6 3.2 4

87 PR I SU 58 Rib F 31–40 -18.5 7.8 46.5 17.1 3.2 3

88 PR II SU 60 Aa Rib F 41–50 -19.1 9.1 45.8 16.7 3.2 9

89 PR II SU 66 Metatarsal M GA -18.8 10.6 44.8 16.5 3.2 6

(Continued)
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Table 1. (Continued)

90 PR II SU 67 Metatarsal M GA -18.6 10.2 44.1 16.3 3.2 4

91 PR I SU 106 Metatarsal M GA -19.2 7.0 44.6 16.2 3.2 5

92 PR II SU 112 Skull M 41–50 -18.6 11.4 43.9 15.9 3.2 4

93 PR I SU 117 Metatarsal F GA -19.7 9.5 43.5 15.9 3.2 4

94 PR II SU 120 Rib ND 18–30 -18.7 7.2 42.1 15.3 3.2 5

95 PR I SU 122 Metatarsal M GA -17.9 7.8 44.5 16.4 3.2 4

96 PR I SU 123 Femur IND 13–17 -19.3 10.8 42.8 15.5 3.2 7

97 PR I SU 124 Aa Fibula M GA -19.5 8.7 41.2 14.9 3.2 6

98 PR I SU 124 Ab Fibula ND GA -19.2 10.0 42.7 15.6 3.2 12

99 PR I SU 125 Metatarsal M GA -19.0 10.5 44.8 16.4 3.2 6

100 PR I SU 126 Metatarsal F GA -19.3 9.3 44.5 16.4 3.2 4

101 PR I SU 128 Aa Metatarsal M GA -19.0 10.2 43.5 15.9 3.2 3

102 PR I SU 129 Aa Fibula F GA -18.5 9.0 43.8 16.2 3.2 7

103 PR I SU 130 Fibula M GA -19.4 10.0 44.7 16.3 3.2 7

104 PR II SU 133 Aa Metatarsal F GA -18.9 10.7 44.8 16.4 3.2 5

105 PR II SU 135 Metatarsal IND 13–17 -18.6 7.7 41.6 15.2 3.2 7

106 PR II SU 141 Metatarsal M GA -18.9 10.6 44.5 16.5 3.1 7

107 PR II SU 144 Aa Tibia F GA -17.7 8.1 42.9 15.7 3.2 9

108 PR II SU 144 Ab Tibia M GA -19.2 10.2 42.3 15.4 3.2 7

109 PR II SU 147 Metatarsal M GA -18.9 8.5 43.6 16.0 3.2 7

110 PR I SU 148 Aa Tibia F GA -19.0 7.2 42.6 15.8 3.2 16

111 PR I SU 151 Metatarsal M GA -17.8 8.0 43.6 16.0 3.2 7

112 PR I SU 152 Metatarsal F GA -18.8 10.7 43 15.8 3.2 4

113 PR II SU 173 Metatarsal ND 18–30 -19.3 9.3 41 15.0 3.2 6

114 PR III SU 236 Rib M 31–40 -19.3 9.0 46 16.7 3.2 4

115 PR III SU 247 Rib M 41–50 -18.4 10.8 45.7 16.5 3.2 3

116 PR III SU 257 Rib M 18–30 -19.1 9.3 42.5 15.3 3.2 4

117 PR II SU 262 Aa Tibia M GA -17.5 9.9 43.4 15.9 3.2 10

118 PR II SU 267 Aa Rib F GA -19.1 10.3 41.6 15.2 3.2 14

119 PR II SU 267 Sb Femur F 18–30 -19.2 8.8 43.7 16.0 3.2 10

120 PR IV SU 298 Tibia M GA -18.5 7.1 41.6 15.2 3.2 14

Faunal samples

Sample code Classification δ13C, ‰ δ15N, ‰ %C %N C:N % Protein yield

1 SS-BOS 1 Bos sp. -19.1 6.2 42.9 15.8 3.2 10

2 SS-BOS 2 Bos sp. -19.9 7.7 41.7 15.2 3.2 15

3 SS-BOS3 Bos sp. -20.2 7.7 50.7 18.4 3.2 8

4 SS-BOS 4 Bos sp. -18.8 6.9 41.4 15.0 3.2 10

5 SS-BOS 5 Bos sp. -20.9 5.1 44.3 16.3 3.2 4

6 NS SU 301 B Bos sp. -21.2 6.9 40.4 14.9 3.2 15

7 SS-BUFF Bubalus sp. -18.4 8.6 42.6 15.3 3.2 7

8 SS-HORSE Equus sp. -20.2 5.6 53.0 19.1 3.2 7

9 SS-OVIS 1 Ovis sp. -21.2 6.4 42.6 15.6 3.2 14

10 SS-OVIS 2 Ovis sp. -20.1 7.1 42.0 15.1 3.3 11

11 SS.OVIS 3 Ovis sp. -21.6 4.9 42.0 15.1 3.2 11

12 SS-OVIS 4 Ovis sp. -20.4 4.8 45.1 16.4 3.2 9

13 SS-OVIS 5 Ovis sp. -20.6 6.3 47.1 16.9 3.3 7

14 NS US 72 Ovis sp. -21.2 5.2 33.5 12.5 3.1 38

15 SS-CERVUS 1 Cervus sp. -21.2 4.4 42.0 15.3 3.2 18

(Continued)
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Molecular and archaeobotanical analyses on dental calculus

Sample collection and decontamination. Dental calculus flakes were collected from 94

individuals with an autoclaved dental pick, recovering the maximum amount of sample avail-

able per individual. Biological details of the individuals, calculus location and weight, and the

analysis performed per each sample are reported in S1 Table. Dental calculus was frequently

collected from multiple different teeth per individual, pooled and subsequently divided into

sub-samples to be investigated. The samples were placed in sterile microcentrifuge tubes and

preserved at the Department of Biology of the University of Rome ‘Tor Vergata’ (Italy).

According to Crowther et al. [52], Gismondi et al. [53] and Soto et al. [54], an intensive regime

of cleaning, using 5% sodium hypochlorite (NaClO), 5% sodium hydroxide (NaOH) and boil-

ing sterilized water, was applied on surfaces, instruments and floor of all workspaces. Horizon-

tal slide traps placed in several areas of the laboratories were monitored for the evaluation of

the contaminants (S2 Table). Decontamination and sterilization protocols were conducted on

the mineralised plaque, to eliminate soil particles still adhering to the external surface of the

samples by a sterile acupuncture needle under a stereomicroscope (Leica ZOOM 2000, at a

magnification of 30X). Each sample was treated with UV light for 10 min and immersed in 1

mL of 2% NaOH for 15 min. The pellet was then washed twice in sterile bidistilled water

(40˚C), rinsed in 50 μL of 100% ethanol, and left to evaporate, at 37˚C, under a sterile vertical

laminar flow hood (Heraeus HERAsafe HS12 Type). Before the application of the cleaning

procedure, ten random dental calculus samples were selected and washed by sterile water; the

Table 1. (Continued)

16 SS-CERVUS 2 Cervus sp. -20.8 4.3 42.8 15.6 3.2 9

17 SS-GALLUS 1 Gallus sp. -19.6 10.6 50.7 18.4 3.2 4

18 SS-GALLUS 2 Gallus sp. -19.7 9.1 69.8 25.1 3.2 11

19 SS-GALLUS 3 Gallus sp. -19.5 7.8 47.1 17.1 3.2 9

20 SS-GALLUS 4 Gallus sp. -19.6 8.7 47.4 17.3 3.2 7

21 SS-SUS 1 Sus sp. -20.5 5.2 41.9 15.2 3.2 15

22 SS-SUS 2 Sus sp. -19.9 8.1 41.8 15.3 3.2 16

23 SS-SUS 3 Sus sp. -20.8 6.7 48.9 17.7 3.2 10

24 SS-SUS 4 Sus sp. -19.9 6.1 44.4 16.2 3.2 8

25 SS-SUS 5 Sus sp. -20.9 6.0 61.6 22.8 3.2 10

26 SS-WBOAR Sus scrofa -19.8 8.2 43.0 15.6 3.2 9

27 SS-DOG 1 Canis sp. -19 9.1 41.5 14.9 3.3 3

28 SS-DOG 2 Canis sp. -17.8 9.9 44.5 16.3 3.2 8

29 SS-CAT Felis sp. -19.2 9.5 47.3 17.4 3.2 13

30 TVG-S-FISH 3 Pisces -7.9 9.8 49.7 18.6 3.1 10

31 TVG-S-FISH 5 Pisces -9.8 11.4 47.4 17.8 3.1 13

32 TVG-S-FISH 7 Pisces -9.6 11.5 50.2 18.7 3.1 10

33 TVG-SS-S FISH 8 Pisces -9.8 12.2 42.1 15.1 3.2 3

34 TVG-SS-S FISH 9 Pisces -9.8 11.2 44.5 16.4 3.2 8

35 TVG-S-TUNA Thunnus sp. -13.8 13.3 55.3 17.9 3.6 8

36 SSF1 Pisces -19.8 7.6 42.9 15.6 3.2 14

37 SSF2 Galeorhinus sp. -12.0 13.9 41.9 14.8 3.3 11

38 SSF3 Sparidae -8.8 10.7 43.9 16.5 3.2 8

39 SSF4 Sparidae -9.3 10.4 42.9 16.1 3.1 9

40 SSF5 Labrus sp. -10.3 10.1 43.1 15.3 3.2 5

41 SSF6 Sparus sp. -7.3 9.7 41.7 15.3 3.2 2

https://doi.org/10.1371/journal.pone.0227433.t001
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latter was examined by optic microscopy. The results of these observations are reported in S3

Table. To confirm the efficacy of the proposed decontamination method, the same samples,

after sterilization, were washed again by sterile water and subjected to microscopy analysis. No

microremains were detected in this second washing water.

DNA extraction, amplification and sequencing. Dental calculus was powdered using a

pestle and mortar. To minimize contamination, the aDNA analysis was carried out in the

aDNA Laboratory in the Departmental Center of Molecular Anthropology for Ancient DNA

Studies, University of Rome, “Tor Vergata”, in Villa Mondragone, Monte Porzio Catone,

Rome (http://www.bio.uniroma2.it/biologia/laboratori/lab-antropologia/DNAantico/DNA_

antico/Facilities.htm) [55]. At least two independent DNA extraction were performed on 52

samples, following the protocol modified from Warinner and collaborators [56], as a mini-

mum of 50 mg of tartar was necessary for this analysis. All criteria and precautions for ancient

DNA (aDNA) study were applied [55, 57–59]. Negative control extraction and amplifications

were performed. To each sample, 600 μL of extraction buffer (100 mM Tris/HCl pH 8, 100

mM NaCl, 10 mM EDTA pH 8 and 2% SDS) and 50 μl of proteinase K (20 mg/mL) were

added. Samples were kept at a temperature of 56˚C for 6 hours and 10 μL of proteinase K (20

mg/ml) were added every two hours. After that, they were kept at 37˚C overnight. After centri-

fugation at 13000 rpm for 5 minutes, 500 μL of phenol/chloroform/isoamyl alcohol (25:24:1)

were added to the liquid phase, followed by another centrifugation. The supernatant was then

purified using QIAquick PCR purification kit following the manufacturer’s procedure. Finally,

DNA was eluted in 50 μL of EB Buffer. For each investigated region (Ovis aries, Gallus gallus,
Bos taurus and Sus scrofa domesticus) at least two independent amplifications by PCR (Poly-

merase Chain Reaction) were carried out using species-specific primers and barcode primers

for marine fish [60]. For animals, amplified sequences represented portions of COXI or 12S/

16S rRNA genes of mitochondrial DNA (mtDNA) [61]. Before amplifying aDNA, a “Spike

PCR” was performed to verify the absence of polymerase inhibitors. PCR mix was prepared in

the following way: 3 μL of template DNA; 2.5 μL of PCR Buffer (10X); 2.5 μL of MgCl2 (25

mM); 2.5 μL of dNTPs (10 mM); 1 μL of forward Primer (1 μM); 1 μL of reverse Primer

(1 μM); 0.25 μL of BSA (10 mg/mL); 0.2 μL of Taq polymerase (5 U/μL); 12.05 μL of ddH2O;

for a total volume of 25 μL. The primers used for the “Spike PCR” and aDNA amplification are

specified in S4 Table. PCR products were evaluated on 1.5% agarose gel stained with GelStar

and, then, positive amplifications were purified using the ExoSAP method. After labelling with

fluorescent nucleotides (Big Dye Terminator chemistry) and purification by a standard ethanol

precipitation technique, samples were finally sequenced. The obtained sequences were com-

pared with reference genes registered in GenBank, using BLAST software (https://blast.ncbi.

nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=

blasthome).

Table 2. Stable isotope data of seed samples and relative weights and quality indicators.

Sample code Genus/Species Weight (mg) δ13C, ‰ δ15N, ‰ %C %N C:N

1 NS SU350 Hordeum vulgare 17.4 -23.3 6.7 49.9 2.5 23.4

2 NS SU 215 Hordeum vulgare 18.5 -23.6 4.8 44.3 2.0 26.0

3 NS SU 254 Hordeum vulgare 20.4 -23.5 5.4 46.9 1.4 38.6

4 NS SU 350 Triticum sp. 26.2 -22.2 4.1 45.1 2.4 22.1

5 NS SU 215 Triticum sp. 20.9 -22.7 4.5 42.5 2.6 18.7

6 NS SU 350 Vicia faba 66.0 -22.2 2.8 43.2 4.9 10.3

7 NS SU 299 Vicia sp. 18.0 -21.0 2.5 42.0 4.9 10.0

8 NS SU 350 Vicia sp. 12.3 -22.4 1.9 43.4 5.0 10.1

https://doi.org/10.1371/journal.pone.0227433.t002
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Table 3. Results of the DNA barcode analysis on dental calculus; the symbol “+” indicated positive PCR amplification.

Sample code Bovine Pig Ovine Chicken Fishes

1 NS SU 27 Ac +

2 NS SU 78 Aa + +

3 NS SU 82 + +

4 NS SU 95 Aa + +

5 NS SU 99 + +

6 NS SU 104 Ab +

7 NS SU 115 + + +

8 NS SU 124 Aa + +

9 NS SU 137 Ab + + +

10 NS SU 140

11 NS SU 150

12 NS SU 151 Aa +

13 NS SU 154 Aa + + +

14 NS SU 155 + + + + +

15 NS SU 157 Aa +

16 NS SU 158 Aa +

17 NS SU 164 Ab

18 NS SU 165 +

19 NS SU 168 +

20 NS SU 177 Ab +

21 NS SU 179 Aa + +

22 NS SU 190 Ad + +

23 NS SU 215 +

24 NS SU 217 Aa + + + +

25 NS SU 221 Aa + +

26 NS SU 231 + + + +

27 NS SU 235 + + +

28 NS SU 240 Aa + +

29 NS SU 241 + + + + +

30 NS SU 283 Aa +

31 NS SU 283 Ab +

32 NS SU 286 Aa + +

33 NS SU 287 Aa + + + + +

34 NS SU 287 Ac +

35 NS SU 290 + + + + +

36 NS SU 292 Aa +

37 NS SU 293–306 + + +

38 NS SU 302 Aa +

39 NS SU 307 + + + +

40 NS SU 309 Aa + + + +

41 NS SU 310 Aa + +

42 NS SU 311 Aa + +

43 NS SU 318 Aa + + +

44 NS SU 319 + + +

45 NS SU 321 + + + + +

46 NS SU 322 + +

47 NS SU 326 Aa +

(Continued)
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In order to detect the correct activity of the different reagents and to check their contamina-

tion amplification were also performed on positive and negative controls.

Light microscopy analysis (LM). In the laboratories of Botany, specifically reserved to the

analysis of ancient biomolecules, a decalcification procedure was employed to extrapolate

micro-remains from dental calculus. Twenty mg per each of the 94 specimen were degraded in

0.5 mL of 0.2 M hydrochloric acid (HCl), for 8 hours, and, after 3 washings with bidistilled

water, the pellet was resuspended in 100 μL of bidistilled water and glycerol (1:1), under a ster-

ile hood, and placed on glass slides to be analysed at OM (Axio Observer 7, ZEISS). The whole

sample volume was analysed and each micro-debris was measured and photographed using

ZEN imaging software. All microfossils were recognised on the basis of their morphology and

distinctive features by direct comparison with a modern experimental collection of starches

[62] and literature data [63–64].

Gas-Chromatography Mass-Spectrometry analysis (GC-MS). GC-MS analysis was car-

ried out for the individuals presenting a minimum of 10 mg of tartar (68 individuals). This

qualitative approach had already been successfully applied by the authors, both on ancient

dental calculus and Roman frescoes [22, 65]. Briefly, once dissolved in 0.5 mL of 3% HCl, sam-

ples were incubated with 0.5 mL di hexane and left in agitation for two hours. Then, the super-

natant fraction was recovered and dried out by a speed-vac system (Eppendorf AG 22331

Hamburg, Concentration Plus). After resuspension in 60 μL of hexane and derivatization by

40 μL of Methyl-8-Reagent (Thermo Scientific), 2 μL of extract was injected in a GC-MS

QP2010 system (Shimadzu, Japan), equipped with a DB-5 capillary column (Phenomenex;

length 30 m × diameter 0.25 mm × thickness 0.25μm), at the temperature of 280˚C (splitless

modality), in triplicate per each dental calculus. The carrier gas was helium (constant flow of 1

mL/min). Column temperature was initially set at 60˚C for 5 min (initial oven temperature)

and, then, increased at a rate 6˚C/min up to 150˚C for 5 min, then up to 250˚C for 5 min, and

to the final temperature of 330˚C for 25 min. An electron impact of 70 eV (scanning from 100

to 700 m/z) was used for the ionization (ion source temperature 230˚C, interface temperature

320˚C, solvent cut time 6 min). Each chemical compound was identified by comparison of its

mass spectrum with those registered in the NIST Library 14 loaded in the detection software

(similarity values higher than 85%). Specific plants and food categories, ingested at least once

in lifetime, were supposed combining the detected analytes with data from the literature and

scientific food databases[66–67]. No relevant differences among replicates were detected.

Results

Stable isotope analysis

Proteins were successfully extracted from all 120 human and 41 animal bones. All stable iso-

tope results, including the relative quality control indicators, are reported in Table 1.

Table 3. (Continued)

Sample code Bovine Pig Ovine Chicken Fishes

48 NS SU 327 Sa + +

49 NS SU 328 Ab +

50 NS SU 341 Aa + +

51 NS SU 347 Ab + + +

52 NS SU 356 +

Total 18 13 29 6 46

Percentage (%) 34.6 25 55.8 11.5 88.5

https://doi.org/10.1371/journal.pone.0227433.t003
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The protein samples extracted from human and faunal bones exhibited C:N atomic ratios

between 3.1 and 3.3 and between 3.1 and 3.6, respectively, and sufficient yield values (for

humans, ranging from 2 to 43%; for animals, ranging from 2 to 38%). Twelve humans and

seven animals were discarded for this study (specimens highlighted in red in Table 1), because

of the lack of consistency between replicate samples (standard deviation of over 0.2‰). The

isotopic results for the eight plant seeds from the site are indicated in Table 2.

The isotopic ratios obtained for the faunal samples exhibited high variability even for speci-

mens attributable to the same species (Fig 1).

Fig 1. Human, faunal and seed isotope analysis. Bivariate plot of the Santa Severa human, faunal and seed stable isotope data; where multiple

individuals of a single faunal or plant species were measured, the median and 25th and 75th percentile levels are shown.

https://doi.org/10.1371/journal.pone.0227433.g001

Fig 2. Human isotope analysis. Bivariate plot of average linkage cluster analysis for the human stable isotope data

from Santa Severa with five groups identified.

https://doi.org/10.1371/journal.pone.0227433.g002
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The specimens placed at the extremes of the plot, deer (Cervus sp.) and unidentified fishes

(Pisces), showing the lowest and the highest δ13C and δ15N values among all samples, were

considered as examples of herbivorous terrestrial and marine animals, respectively. For this

reason, they were used as reference values for the interpretation of the remaining animal and

human samples. Overall, herbivores demonstrated δ13C and δ15N mean values of -20.2‰ (S.D.

1.3‰) and 6.3‰ (S.D. 1.3‰), respectively. These values are characteristic of animals feeding

Fig 3. Plant microremains and starch granules at LM. Representative images of microdebris found in dental calculus samples: Oleaceae

pollen grain (A); Chenopodiaceae pollen grain (B); Poaceae phytolith (C); fragment of Asteraceae inflorescence perforation plate (D);

aggregate of Avena sp. starch granules and relative polarized image (E); Fabaceae starch granule and relative polarized image (F); Sorghum
sp. starch granules and relative polarized image (G); Triticeae starch granule and relative polarized image (H); Triticeae starch granules (I

and J); Fagaceae starch granule (K); Fabaceae starch granule (L). The scale bar indicates 30 μm.

https://doi.org/10.1371/journal.pone.0227433.g003
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on C3 plants. The cattle (Bos sp.), sheep (Ovis sp.), horse (Equus sp.), and buffalo (Bubalus sp.)

all possess δ13C and δ15N values enriched with respect to those observed for the deer (Cervus
sp.). A single cat represents the only obligate carnivore: its isotopic values (δ13C = -19.2‰, S.

D. 0.1‰, δ15N = 9.5‰, S.D. 0.2‰) are enriched by about +1‰ in δ13C and +3‰ in δ15N

compared to herbivores, and are coherent with its relative trophic position (Fig 1). Sus sp. sam-

ples, expected to possessed isotope values supporting an omnivorous diet, showed measured

ratios (mean δ13C = -20.4‰, S.D. 0.5‰, δ15N = 6.4‰, S.D. 1.1‰) very close to those observed

for sheep, cattle and horse, suggesting they had more likely a herbivorous diet, with the excep-

tion of the wild boar that showed values compatible with those observed for omnivores (Fig 1).

As anticipated, four chickens (Gallus sp.), and two dogs (Canis sp.) showed isotope values typi-

cal of omnivores, and the marine fishes (3 unidentified samples, 2 specimens of the Sparidae

family, 1 Labrus sp. and 1 Sparus sp.) were more enriched in 13C compared to terrestrial spe-

cies, as to be expected (δ13C = -9.3‰, S.D. 1‰; δ15N = 10.7‰, S.D. 0.7‰). Galeorhinus sp., a

shark genus widely distributed in subtropical areas, represented the consumer at the upper tro-

phic level (δ13C = -12.0‰; δ15N = 13.9‰).

Finally, the charred seeds revealed isotope values compatible with C3 photosynthesis and

with a basal trophic level. The δ15N value of Vicia (mean δ15N = 2.4‰, S.D. 0.4 ‰), a legume,

was low, as expected, since these plants are not dependent on soil for nitrogen uptake [68–70].

For humans (n = 108), δ13C values ranged between -19.8‰ to -16.8‰ (mean -19.0, S.D.

0.5‰), while δ15N values ranged from 6.7‰ to 11.4‰ (mean 9.3, S.D. 1.1‰), as reported in

Fig 1. In order to evaluate possible dietary variations between sexes and across 5 selected age

groups (0–17 years seven individuals; 18–30 years 33 individuals; 31–40 years 22 individuals;

41–50 years 12 individuals; >50 years 4 individuals) isotope data were statistically compared

by Wilcoxon and the Kruskal-Wallis tests. No significant differences were found between the

isotopic values for males (n = 62) and females (n = 37), for δ13C (Wilcoxon test: p-value =

0.6522) or δ15N (Wilcoxon test: p-value = 0.8203) ratios. Similar results were obtained on the

different age groups (for δ13C Kruskal-Wallis test: p-value = 0.4746, for δ15N Kruskal-Wallis

test: p-value = 0.2056). To differentiate between individuals with a similar diet, average linkage

cluster analysis was performed on the basis of isotope data. A total of five different groups of

samples were identified (Fig 2).

The first group (cluster 1) included 71 individuals; in this context, δ13C values ranged from

-18.7‰ to -19.8‰ (mean = -19.1‰, S.D. 0.2‰) and δ15N values from 8.3‰ to 10.8‰

(mean = 9.7‰ S.D. 0.7‰). Nitrogen isotope values measured for human specimens were

enriched by at least 2.0‰ compared to herbivores, showing a mean human-herbivore differ-

ence (Δ15N) of 3.4‰. The second group (cluster 2) was made up of 21 individuals; for these

samples, δ13C values ranged between -18.5‰ and -19.7‰ (mean = -19.1‰, S.D. 0.4‰) and

δ15N values were between 6.7‰ and 8.9‰ (mean = 7.6‰, S.D. 0.6‰). The mean human-her-

bivore difference (Δ15N) was 1.3‰. The third set (cluster 3) comprised 3 individuals with high

δ13C values; δ13C ranged between -17.9‰ to -17.7‰ (mean = -17.8‰, S.D. 0.1‰) and δ15N

from 7.8‰ to 8.1‰ (mean = 8.0‰, S.D. 0.2‰). The mean human-herbivore difference

(Δ15N) was 1.7‰. The forth cluster (cluster 4) counts 10 individuals, δ13C ranged from

-18.6‰ to -18.0‰ (mean = -18.4‰, S.D. 0.2‰) and δ15N from 9.0‰ to 11.4‰ (mean =

10.2‰ S.D. 0.8‰) with a mean human-herbivore difference (Δ15N) of 3.9‰. The last set (clus-

ter 5) includes 2 individuals with the highest δ13C values, where δ13C ranged between -16.8‰

to -17.5‰ (mean -17.2‰, S.D. 0.5‰) and δ15N from 9.9‰ to 10.4‰ (mean = 10.2‰ S.D.

0.4‰) with a mean human-herbivore difference (Δ15N) of 3.9‰.

To explore potential differences in diet linked with burial practice, individuals buried in

earthen graves were statistically compared to those interred in sarcophagi and no differences

were found for either δ13C or δ15N (Wilcoxon, δ13C: p-value = 0.5312, δ15N: p-value = 0.7830).
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Dental calculus analysis

Dental calculus was collected from 94 individuals. Ancient DNA was extracted from the dental

calculus of 52 individuals and specific barcode genes were amplified and sequenced, in order

to investigate the consumption of specific animal food sources: sheep, chicken, cattle, pig and

fish. The spike PCR control showed that no sample contained PCR inhibitors. For each indi-

vidual, positive amplicons were reported in Table 3.

Overall, animal aDNA was detected in a large number of samples, sheep was present in

55.8% of the analysed individuals, cattle in 34.6% and pig in 25%. Chicken genes were, how-

ever, detected only in 11.5% of the analysed sample. Marine fish aDNA was detected in 88.5%

of the specimens. These results did not show differences related to age, sex or social status of

the individuals inferred from the type of burial.

LM analysis of 94 individuals indicated the presence of plant micro-remains in 70 samples

(74.5%). This investigation revealed the presence of several types of micro-debris, as reported

in Table 4.

In total, 22 Poaceae phytoliths, 3 calcium oxalate crystals, 2 fragments of Asteraceae inflo-

rescence, 8 pollen grains (3 Oleaceae, 1 Chenopodiaceae, 1 Urticaceae, 3 not determined) and

390 starch granules were observed in the whole population. Only 327 starches could be taxo-

nomically identified and assigned to eight morphotypes, on the basis of morphological and

morphometric criteria using both our experimental collection [62] and the International Code

for Starch Nomenclature [71]. Each morphotype is described below.

Morphotype I (tot. 24 micro-remains) showed the typical features of Fabaceae granules.

They were reniform, oval to elongated in shape and ranged in size between 7–35 μm in length

and 3–30 μm in width. Hilum was not detectable (obscured). Clear concentric lamellae were

present and, in some granules, a longitudinal crack in the amorphous central area could be

observed. Some grains appeared ascribable to starches of Pisum L. and Vicia L. genera.

Morphotype II (tot. 29) consisted of starch granules elongated, drop or oblong-shaped

(dimensional range: 5–28 μm in length, 4–20 μm in width). They presented an invisible and

eccentric hilum, faintly visible lamellae and longitudinal fractures, which usually occur in sev-

eral species of Fagaceae, such as Quercus ilex L.

Morphotype III (tot. 102) was characterised by a bimodal distribution of disc-shaped grains,

typical of grasses of the Triticeae tribe. Among large diagnostic granules (size range: 6–35 μm

in length and 4–33 μm in width), 18 were reminiscent of Triticum sp. L. (e.g. T. durum Desf.,

T. aestivum L., T. dicoccon Schrank ex Schübl.), 13 of Hordeum sp. L. (e.g. H. vulgare L.) and 3

of Secale sp. L.

Morphotype IV (tot. 114) consisted of polyhedral-shape units from one side and dome

shaped on the other. Each unit showed a size ranging from 3–11 μm both in length and in

width, a centric-indistinct hilum and indistinct lamellae. Sometimes, they were found in aggre-

gates. These features were attributable to Avena sp. L.

Morphotype V (tot. 3) revealed a morphology which completely fitted with those of Daucus
carota L. grains. In detail, spherical shape, size range from 5–10 μm in length to 4–8 μm in

width, peculiar multiple radial fractures, slightly visible concentric lamellae and centric hilum
were detected in these granules.

Morphotype VI (tot. 40) was characterized by polyhedral-shape units with blunted edges

(size range: 2.5–5 μm both in length and in width). This distinctive trait, associated to a centric-

distinct hilum and indistinct lamellae, suggested that these starches belonged to Panicum sp. L.

Morphotype VII (tot. 2) showed polyhedral units (size range from 1 to 2.6 μm both in length

and in width) with concave faces, acute edges and typical bright boundaries. Hilum was cen-

tric, while lamellae appeared indistinct. All these features indicated Piper sp. L. starches.
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Morphotype VIII (tot. 13) consisted of ovoidal granules with some peculiar flattened sur-

faces. Their size ranged from 5–18 μm in length to 4–14 μm in width and radial fissures start-

ing from the centric hilum. These characteristics were consistent with Sorghum sp. Moench

starches.

Morphotypes III and IV (Poaceae starches) were identified in most of the individuals, fol-

lowed by morphotypes I and II (Fabaceae and Fagaceae starches). Particular attention was

paid to individual NS SU 321 whose tartar contained 21 starch granules mainly ascribable to

morphotype I and II. No difference was evidenced among individuals of different age at death

and sex. Representative images of microfossils found in tartar samples are reported in Fig 3.

GC-MS analysis was performed only on the samples who presented sufficient dental calcu-

lus (68 individuals). In S5 Table, the molecules identified by this approach are listed and clus-

tered in biochemical classes per individual. Food categories or specific plants were deduced by

associating the recognized compounds. All chromatographic profiles revealed a significant

presence of n-alkanes and n-alkenes (C6-C35). Generally, monounsaturated (e.g. docosenoic

and octadecenoic acids) and polyunsaturated (e.g. octadecadienoic and octadecatrienoic acids)

fatty acids, ω3-fats (e.g. eicosapentaenoic and docosahexaenoic acids) and lactose were the

most recurrent molecules detected in the population, followed by cholesterol and secondary

metabolites indicating aromatic herbs (e.g. anisole, alpha-cubebene, estragole, santolina triene,

beta-copaene, dehydroelsholtzia ketone). The identification of phytosterols (e.g. stigmasterol,

sitosterol, campesterol), vitamins (e.g ascorbic acid and tocopherol) and other classes of plant

markers (e.g. lactones, glucosinolates, phenolics) suggested the key role of vegetables and fruits

in the diet of the population. Moreover, the identification of tartaric and gallic acids, pyro-

cathecol, and pyrogallol hypothesized a possible consumption of wine. Evidence of alkaloids

(e.g., pseudopelletierine, ephedrine) and terpenic compounds (e.g. bisabolene, scoparone,

alpha-bisabolol, dihydroartemisinin, all ascribable to Asteraceae) supported the use of aro-

matic and medicinal plants. Finally, detection of ergosine and bovinocidin in two samples sug-

gested a fungal contamination of stored foods. No difference was evidenced among

individuals showing different age at death, social class and sex.

Discussion

Here we have applied a suite of scientific techniques to the skeletal remains of the Medieval

community of Santa Severa (7th-15th century CE) in order to highlight their culture and food

habits. This research integrates the available morphological data [24] with the results obtained

by the present original and innovative multidisciplinary approach, with the aim to reconstruct

the osteobiography of one of the largest Italian Medieval burial populations.

Faunal specimens showed high variability in their isotopic values. The differences observed

between the deer (Cervus sp.) specimen and the other herbivores (6 cattle Bos sp., 5 sheep Ovis
sp., 1 horse Equus sp., and 1 buffalo Bubalus sp.) could be attributable to the different environ-

ments in which these animals lived [31]. Deer tend to live in wooded environments, while

domestic animals would have lived in closer proximity to humans and would have been man-

aged by them. Therefore, the observed 15N enrichment in sheep and cattle could be ascribable

to both human activities and potentially proximity to the sea [31]. Some crop management

practices (e.g. manuring) could increase δ15N values in soil and plants, while plants might also

have absorbed nitrogen of marine origin, due to the “sea spray effect” [72–73]. Sus sp. samples

had dietary signals more similar to those observed for herbivores than omnivores, as in earlier

studies [74] although the wild boar (Sus scrofa) had significantly different values and presented

an omnivorous diet. In Medieval North-Western Europe, the diet of pigs was mainly based on

terrestrial plants and human refuse [17, 18, 75], although in some areas, including Latium, pigs
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were free to roam in the uncultivated land surrounding the city [17] where they could con-

sume acorns [15, 17].

The stable isotope data for humans indicated an omnivorous diet with a contribution of

both animal products and plants. The high variability observed in nitrogen isotopic values

(ranging from 6.7‰ to 11.4‰) seemed to witness a probable differential access to food sources

within the population.

The δ13C values for humans were compatible with a diet mainly based on consumption of

C3 plants; however, the highest δ13C values (δ13C> 18‰) observed in some specimens (cluster

3) could also suggest a contribution of C4 plants to the diet. This is not surprising as during the

Middle Ages, C4 crops such as sorghum and millets, were grown and consumed due to their

ease of cultivation and relatively high yields [15, 76–77]. These results are in line with the

archaeobotanical results from dental calculus described below.

Given the coastal location and late Medieval date, it is surprising that the isotope data do

not reflect a significant contribution of marine protein to the human diet. The identification of

a marine isotopic signal with typical enrichment in both 13C and 15N however, is problematic

in the Mediterranean context where the contribution of C4 terrestrial protein exists, as Medi-

terranean fish tend to have lower δ13C and δ15N values than those of the Atlantic [78–80]. Fish

consumption can not be totally excluded as marine fish aDNA and ω3-fatty acids were

detected in dental calculus, although the latter are also widely abundant in plants. Aside from

the issue of C4/marine diets, exhibiting similar values [78–80], it may also be possible that the

consumption of marine protein sources was not sufficient to induce a significant shift of isoto-

pic values [81].

Only three individuals (NS SU 124 Aa, PR SU 262 Aa and NS SU 321) possessed isotopic

values potentially compatible with fish consumption (δ13C -16.8‰, -17.5‰, -18.1‰ and δ15N

10.4‰, 9.9‰, 11.3‰ respectively). However, due to the presence of non-specific stress mark-

ers (e.g. cribra), as well as infections (e.g periostitis and osteomyelitis) in two of these speci-

mens (NS SU 124 Aa, NS SU 321) [24], the hypothesis of higher nitrogen values for these

individuals being affected by potential nutritional stress cannot be totally excluded [82]. It has

been documented that starvation may stimulate gluconeogenesis, and therefore the production

of glucose from non-carbohydrate sources [47, 83–87], causing 15N enrichment in body tissues

[83, 88]. The isotope values for NS SU 321 in particular, however, may be reflective of a high

status diet. This individual, atypically buried in a sarcophagus with a cross and a stone cushion

[23], presented the markers for all the tested food sources (bovine, swine, ovine, chicken and

fish: Table 3), according to genetic analysis of dental calculus. The consumption of high tro-

phic level protein (meat and to some extent fish) was affiliated with a high-status identity in

Medieval society [15]. Although no statistical difference was detected between sex and age at

death groupings, a probable internal division of the society was suggested by the average link-

age cluster analysis (Fig 2). The clusters differ on both carbon and nitrogen isotopic signatures.

In particular, as regard the former, three of them (cluster 1, cluster 2, and cluster 4) include

individuals possessing isotopic values compatible with a prevalent consumption of C3 plants

whereas carbon isotopic values of the other two clusters (cluster 3 and cluster 5) are compatible

with the intake of C4 species. Similarities in δ13C values, however do not square with nitrogen

isotopic ratios. The lowest nitrogen detected in clusters 2 and 3, both also therefore character-

ized by the lowest human-herbivore 15N enrichment (1.3‰ and 1.7‰, respectively) suggesting

a more vegetarian diet with a reduced animal protein intake.

Alternatively, a higher contribution of animal (mainly terrestrial) protein sources in diet is

indicated by the higher δ15N values observed for the individuals grouped into the other three

clusters that also posess higher human-herbivore differences (3.4‰, 3.9‰, and 3.9‰ respec-

tively). None of the clusters are defined by individuals showing clear isotopic signatures of fish
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consumption. The above mentioned three individuals for which fish consumption is most

likely are grouped in clusters 4 (NS SU 321) and 5 (NS SU 124 Aa, PR SU 262 Aa). These isoto-

pic clusters, however, are not correlated with the different typologies of burials identified in

the archaeological site (e.g. simple earthen graves and sarcophagi made of Etruscan and

Roman re-used tuff stones), as they are equally represented within the clusters. The variability

of nitrogen isotopic values detected in the population may instead be the result of the wide

time span that these burials represent (about 900 years, 7th-15th century CE). During the Early

Middle Ages (6th-10th century), the diet, in Italy, was typically associated with the consumption

of a large amount of animal protein (meat and fish), in association with plant foods [77, 89].

During the Late Medieval period (11th-15th century), the intake of appreciable amounts of ani-

mal protein became a privilege of the upper classes [15, 77]. A potential dietary transition

between the Early and Late Middle Ages may also be the result of ecclesiastic law requiring

abstinence from meat promoting, instead the consumption of fish during the later period [2,

7–18]. Unfortunately, we are unable to further explore the chronological element, as it has not

been possible to identify which burials derived from the early and later Medieval period.

The isotope data for published Medieval populations from Italy is generally very variable

(S6 Table). The highest δ13C values can be observed by North-Eastern sites, dating to the early

Medieval period (6th-11th centuries), like Romans d’Isonzo, Cividale Gallo, Cividale Santo Ste-

fano and Mainizza [90], as well as Cosa (11th-13th centuries; [86]) from Central Italy. The

observed enrichment in 13C of these samples, with respect to Santa Severa, is attributable to a

higher consumption of C4 plants (e.g. millet) [86, 90]. Indeed, North-Eastern Italy, experi-

enced an onward decline in bread consumption which was substituted by soups [90]. With

regard to nitrogen isotopes, the population from Santa Severa was more enriched in 15N than

several sites across Medieval Italy, namely Romans d’Isonzo and Mainizza in the North East

[90], Colonna (8th-10th centuries; [19]) in Central Italy, and Montella (13th-15th centuries;

[91]) in Southern Italy. The North-Eastern Medieval populations were characterized by a low

animal protein intake, (although freshwater fish intake has been suggested for some [90]),

whereas at Montella (Southern Italy), the analysed population was associated with a Franciscan

friary and so there is the potential that this monastic population followed a distinctive dietary

regime [91]. Although Colonna and Santa Severa are present in the same region of Italy, a dif-

ferential access to nutritional sources related to sex and age at death in this case, was detected

at Colonna [19]. In particular, at Colonna, adult male individuals demonstrated a greater

intake of animal protein with respect to females and juveniles, who followed a more vegetarian

diet [19].

When considering the results from dental calculus, it should be borne in mind that the

number of starch granules and molecules present in dental calculus of an individual is not nec-

essarily proportional to the amount of foods consumed in life. However, these data, considered

at population level, represent direct evidence of the substances that entered the oral cavity [92–

93]. LM analysis indicated the presence of C3 cereals (e.g. Avena sp. and Triticeae), Fabaceae

(e.g. Vicia sp., Pisum sp.) and Fagaceae (e.g. Quercus sp. L.) seeds, in more than half of the indi-

viduals. Moreover, for some specimens, we hypothesized the intake of C4 caryopses (e.g. Sor-
ghum sp. and Panicum sp.). In general, the finding of these types of starches is in keeping with

the carpological remains discovered in an oven of the same archaeological site [23], supporting

the use of these plant species as the main sources of carbohydrates. The presence of Fagaceae

starches is not surprising because acorns have been recognised as a nutritional resource con-

taining sugars, vitamins and proteins since the Roman period. After the removal of indigestive

tannins, acorns were powdered and used to ennoble cereal flours or prepare astringent and

anti-diarrheal decoctions [22, 93–96]. Similarly, legumes represented both an important food

that could be preserved for a long time after drying, and a source of nutraceutical compounds
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applied in dermatology [97–98]. Moreover, these species were also excellent feed crops, already

used in the Roman three-field rotation strategy (together with cereals and fallow), for their

ability to increase soil nitrogen [99–100]. The high number of starch grains that could not be

identified may be the result of cooking processes, grinding procedures or exposure to Ptialin

enzyme activity [101]. The finding of Oleaceae, Chenopodiaceae, Urticaceae pollen grains and

fragments of Asteraceae inflorescence testified the existence of these plant families in the stud-

ied area. The possible use of these species in dietary and/or ethnopharmacological traditions

cannot be excluded. For instance, Urtica dioica L. (nettle) and Parietaria officinalis L. (upright

pellitory) were widely employed for medicinal purposes, as diuretic, emollient and expectorant

[102].

The GC-MS analysis on dental calculus revealed a great variety of n-alkanes and n-alkenes,

probably deriving from degradation of both plant and animal food molecules or/and oral

microbiota [103–104]. The detection of mono/poly-unsaturated fatty acids, phytosterols and

plant vitamins suggested a diet based on plant foods, such as seeds (e.g. cereals, confirmed by

LM), vegetables (e.g. Brassicaceae, also supported by the presence of glucosinolates) and fruits

(e.g. of Rosaceae family due to the presence of lactones) [3, 105–107]. Moreover, ω3-fatty acids

could be associated with ingestion of plant and/or aquatic resources (e.g. dried fruits, sea-

weeds, molluscs, blue fishes) [108–109]. A great part of the community also had lactose present

in their dental calculus, the main sugar of milk and dairy products, confirming the fundamen-

tal role of these animal derivatives in the Medieval diet [110–111]. Some individuals presented

secondary metabolites of aromatic plants, such as Apiaceae (e.g. dill) and Lamiaceae (e.g.

sage), leading us to hypothesize that they employed these herbs as food preservatives and/or

taste regulators [112]. Our data confirmed the consumption of wine (Vitis vinifera L.) [113–

115]. The pseudopelletierine, an alkaloid found in NS SU 124 Aa sample, proved the ingestion

of Punica granatum L. bark [116]. Indeed, various portions of pomegranate were used in folk

medicine, including Egyptian one; flowers for treating diabetes; fruits for expelling parasites;

seeds and fruit peels for managing diarrhoea; bark and roots as coagulants and anti-ulcer rem-

edies [116–118]. Pedanius Dioscorides, a Greek physician (40–90 AD), and several Roman

documents report the recipes for the preparation of mouthwashes based on pomegranate rind

and bark [119–120]. Indeed, it has actually been recently scientifically demonstrated that the

extracts of this species prevent the dental plaque development [118, 121]. A typical marker of

Elsholtzia sp. Willd. (dehydroelsholtzia ketone) and a peculiar chemical compound of Ephedra
sp. L. (ephedrine) indicated a possible intake of decoctions based on these plants, probably to

treat respiratory and gastro-intestinal disorders [122–123].

In three individuals (NS SU 27 Ac, NS SU 115, NS SU 290) we found the artemisinin, a ses-

quiterpene lactone typically synthesized in Artemisia annua L. (Asteraceae family) and pre-

senting antimalarial properties [124]. As Santa Severa Castle was surrounded by marshy areas

during the Medieval period [125], a condition which favour the survival of the Plasmodium fal-
ciparum, our results might sustain the existence of malaria in Central Italy and its therapeutic

treatment by the use of this plant. Unfortunately, no distinctive signs on bone remains can

document and support the previous hypothesis. As extensively investigated by earlier studies

[126–127] malaria determines a haemolytic anaemia that may result in several modifications

on human bones even though it can be considered one of the possible causes of cribra orbitalia
[126–129]. Indeed, cribra orbitalia, represents one of the most frequently recorded alterations

in archeaeological skeletal collections; it pertains to the presence of small foramina in the orbit

vaults, due to the expansion of the diploe accompanied by the narrowing of the outer bone cor-

tex as a consequence of bone marrow hypertrophy [127, 130–132]. Cribra orbitalia has been

traditionally considered a clue of iron deficiency anaemia [127, 130–132], it is worth noting,

however, that defining the exact cause of anaemic conditions could be challenging as they
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could have been determined by several factors, such as iron or ascorbic acid depletion, other

nutritional deficiencies, infections, or even by a combination of these elements [47, 127, 133–

136]. Moreover, a similar bone morphology could be also determined by scurvy and chronic

infections [47, 127, 130–132]. As reported by Gowland and Western [127] malaria can be

directly diagnosed only by the detection of Plasmodium species DNA in human skeletal

remains [127], as successfully carried out in Egyptian mummies [127, 137–138] and in individ-

uals recovered in an infant cemetery in Umbria (Italy, 5th century CE; [139]) [127]. The use of

Asteraceae, as food or medicinal sources [140], in these individuals was also confirmed by the

detection of bisabolol (in NS SU 27 Ac), bisabolene (in NS SU 27 Ac and NS SU 115) and the

LM survey of fragments of capitulum inflorescence (in NS SU 115 and NS SU 290).

Lastly, the presence of two molecules, the bovinocidin (produced by food-contaminating

molds such as Aspergillus sp. P. Micheli ex Haller) [141] and the ergosine (an alkaloid synthe-

sized by Claviceps purpurea (Fr.) Tul., the fungal parasite of Poaceae) [142], could indicate the

use of inadequate practices in food conservation and the diffusion of Graminaceae phytopath-

ogens in that historical context.

Conclusions

In conclusion, the cutting-edge multidisciplinary approach applied in this work has enabled a

detailed reconstruction of the dietary habits of one of the largest Italian Medieval populations

analysed to date. The isotope analyses performed on human, faunal and seed samples, com-

bined with archeobotanical and molecular analysis of dental calculus, revealed that the popula-

tion generally adopted an omnivorous diet, in which plants and fruits played a prominent role.

With regard to animal protein intake, cattle, sheep and pig meat were consumed with a minor

contribution of chicken. Consumption of C4 plants (millet and/or sorghum) was also evi-

denced in a few individuals. Significantly, the application of multiple complementary method-

ologies revealed a potential intake of marine foodstuffs as dietary resource for this Medieval

population. The consumption of marine foods was not clearly detectable using stable isotope

evidence, highlighting the limitations of using this method alone in the Mediterranean context.

Archaeobotanical analysis further revealed the presence of artemisinin that may be an indica-

tion of the presence of malaria in the area of Santa Severa. The dietary (e.g. cereals, Brassica-

ceae) and medicinal (e.g. pomegranate, Ephedra sp.) uses of other plant species was also

hypothesised. This innovative archaeobotanical approach combined with the anthropological

data may provide interesting information about presence and diffusion of pathologies and dis-

eases in the past, beyond those are not directly detectable on skeletal remains.
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D’Agostino, Gundula Müldner, Alessandra Nardi, Flavio Enei, Michelle Alexander, Cris-

tina Martı́nez-Labarga.

Formal analysis: Angelo Gismondi, Marica Baldoni, Micaela Gnes, Gabriele Scorrano, Alessia

D’Agostino, Gabriele Di Marco, Giulietta Calabria, Michela Petrucci, Gundula Müldner,
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