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Abstract

Data assimilation combines information from observations of a dynamical system with
a previous forecast, with each term weighted by its respective uncertainty. An
important recent area of research has been the introduction of correlated observation
error covariance (OEC) matrices in numerical weather prediction systems. The
benefits of correlated OEC matrices are multiple: they permit the use of high density
observation networks, allow the capture of small scale processes and help make best
use of available data. However, their use is often associated with convergence
problems for iterative methods. In this thesis we study the theoretical impact of
introducing correlated OEC matrices on the conditioning of variational data
assimilation problems. We develop new bounds on the condition number of the
Hessian for two data assimilation formulations and illustrate our findings with
numerical examples in an idealised framework. The minimum eigenvalue of the OEC
matrix is a key term for both problems, which motivates the use of reconditioning
methods to reduce the condition number of correlation matrices. We develop theory
for two reconditioning methods: ridge regression and the minimum eigenvalue
method. We show for the first time that standard deviations are increased by both
methods. Ridge regression reduces absolute correlations, whereas the minimum
eigenvalue method makes smaller changes to correlations and variances. We then
present the first in-depth study of the ridge regression method for an operational data
assimilation system, using the Met Office 1D-Var system. Reconditioning improves
convergence, but alters the quality control procedure, which is used to select
appropriate observations for further assimilation. The results in this thesis provide
guidance on how to include correlation information in general variational data
assimilation problems while ensuring computational efficiency.
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Chapter 1

Introduction

Weather forecasts are important for individuals, businesses, non-governmental
organisations and governments [Kalnay, 2002, Bauer et al., 2015]. In order to initialise
a forecast, information from recent observations is combined with a previous forecast,
referred to as the background or prior, via a process known as data assimilation
[Daley, 1991]. In order to find the most likely initial condition, or analysis, data
assimilation methods weight the contribution of background and observation
information by their respective uncertainties via error covariance matrices. Combining
these two sources of information can be difficult, as observations may be at different
locations, times, or of different quantities to meteorological forecast variables.
Numerical weather prediction (NWP) is a high-dimensional and time-sensitive
problem, meaning it is computationally and theoretically challenging [Bauer et al.,
2015, Carrassi et al., 2018]. Therefore data assimilation methods need to be
computationally efficient and able to cope with large volumes of data.

In this thesis we will study the impact of using correlated observation error covariance
matrices in the variational data assimilation problem. In variational data assimilation,
the analysis is found by minimising a nonlinear least squares objective function. In
the linear setting the conjugate gradient method is often used to find the solution to
the linear system associated with the variational problem. The unpreconditioned
variational objective function consists of two terms which measure the misfit between
the background and the observations, respectively. In the preconditioned formulation,
a variable transform is used to decorrelate the background variables in the first term
of the objective function.

The existence of correlated observation errors for satellite instruments in particular is
well established [Stewart, 2010]. It has been shown that failing to account for
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correlated observation errors limits forecast skill [Rainwater et al., 2015] and that even
accounting for approximate error statistics is better than not accounting for error
correlations at all [Stewart et al., 2008b, Stewart, 2010, Stewart et al., 2013, 2014].
Another motivation for using correlated observation error covariance matrices is the
increasing importance of high resolution forecasts e.g. for the prediction of hazardous
weather such as flash flooding due to intense convective rainfall [Dance et al., 2019].
However, the presence of correlated observation errors prevented the operational use
of highly spatially dense observations until recently for computational reasons
[Simonin et al., 2019]. Observation error covariance matrices can be hard to estimate
and can be expensive to implement [Stewart et al., 2008b]. In order to avoid using
correlated observation error covariance matrices in the case that spatial error
correlations are known to exist, observation information is often thinned [Simonin
et al., 2019], limiting skill at high resolution. This results in large numbers of
observations not being used: for example in the Metéo France convection-permitting
forecast model, radar observations are thinned by a factor of 64 and infra-red satellite
observations by a factor of 400 [Michel, 2018].

In recent years, there has been a growing interest in implementing correlated
observation error covariance matrices in operational data assimilation routines at
NWP centres (e.g. Weston [2011], Weston et al. [2014], Bormann et al. [2016],
Campbell et al. [2017]). Many of these studies make use of the diagnostic of
Desroziers et al. [2005] (henceforth referred to as DBCP) to estimate observation error
covariance matrices. The DBCP approach makes use of samples, and can result in
estimated correlation matrices that are rank deficient [Pourahmadi, 2013], or are not
symmetric [Ménard, 2016]. This means that in order to use the correlated observation
error information in practice, the matrices must be modified in some way.
‘Reconditioning’ methods which reduce the condition number of estimated covariance
matrices are often used (e.g. Weston [2011], Weston et al. [2014], Bormann et al.
[2015], Campbell et al. [2017]). In this thesis we study two commonly used methods of
reconditioning theoretically for the first time: ridge regression and the minimum
eigenvalue method. We compare both reconditioning methods with multiplicative
variance inflation, which multiplies the estimated covariance matrix by a constant
inflation factor. This method cannot change the condition number of the matrix, and
is hence not a method of reconditioning, but is often used at NWP centres to mitigate
for missing correlation information.

2
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1.1 Research questions

In this thesis, we wish to understand how the introduction of correlated observation
errors affects a general data assimilation problem in terms of convergence of the
minimisation of the objective function. We will consider a number of research
questions, which will allow us to focus on different aspects of the topic.

RQ 1: How does introducing correlated observation error affect the
conditioning of the Hessian of the variational data assimilation
problem?
Building on the work of Haben [2011], we will develop theoretical bounds on the
condition number of the Hessian to understand the impact of the observation
error covariance matrix. How are these bounds affected by changes to the
observation error covariance matrix? How tight are these bounds for an
idealised numerical framework? How well does the behaviour of the condition
number of the Hessian represent convergence of the conjugate gradient method
numerically?

RQ 2: What is the difference between the preconditioned and
unpreconditioned data assimilation problem?
The control variable transform [Bannister, 2008], is used to precondition and
decorrelate the background term of the variational data assimilation objective
function. How does the importance of background and observation terms differ
from the unpreconditioned case? Does the behaviour of the condition number of
the Hessian represent convergence of the conjugate gradient method well for
numerical experiments?

RQ 3: How do reconditioning methods alter covariance matrices?
Reconditioning methods have been used to mitigate problems with
ill-conditioned estimated covariance matrices by increasing small eigenvalues of
a sample covariance matrix. How do reconditioning methods alter correlations
and standard deviations associated with the covariance matrix? How is the
variational objective function changed by the use of reconditioning methods?
How do two commonly-used reconditioning methods compare to multiplicative
variance inflation?

RQ 4: What is the impact of using the ridge regression method of
reconditioning on an operational data assimilation problem?
We present a case study using the operational Met Office 1D-Var system. How
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do the qualitative theoretical conclusions from the linear case apply in a
nonlinear, realistic setting? How are the quality control process and retrieved
values affected by the introduction of correlated observation error and the use of
reconditioning methods?

1.2 Outline

The thesis is structured as follows.

In Chapter 2 we introduce the variational data assimilation problem. We define
three-dimensional variational data assimilation (3D-Var) and four-dimensional
variational data assimilation (4D-Var), and describe the control variable transform
(CVT) that is typically used at numerical weather prediction (NWP) centres. The
Hessian of the objective function is defined for each formulation of the problem. We
also discuss the importance of correctly specifying observation error statistics, and
introduce the diagnostic of Desroziers et al. [2005] which is commonly-used to
estimate correlated observation error covariances. In Chapter 3 we present theoretical
results that will be used to develop bounds on the Hessian of the objective function.
We introduce the concept of the condition number, and discuss results on the
eigenvalues of matrix sums and products. We define the conjugate gradient method,
and show that the condition number can be used to bound convergence of this
algorithm. Finally we introduce specific matrix structures that will be used both
theoretically and in numerical experiments in the rest of the thesis. In Chapter 4 we
discuss previous work on the condition number of the Hessian as a proxy for
convergence of the variational data assimilation problem. Of particular interest is the
work of Haben et al. [2011a,b] and Haben [2011] who developed bounds on the
condition number of the Hessian in terms of individual matrices in the case of
uncorrelated observation errors. In this thesis we will extend these results to study
the impact of using correlated observation error covariance matrices. We discuss
numerical issues with the use of correlated observation errors at NWP centres,
including convergence problems associated with ill-conditioned estimated covariance
matrices. This motivates the study of reconditioning methods later in the thesis.

In Chapter 5 we address RQ 1. We develop new bounds on the condition number of
the Hessian of the unpreconditioned 3D-Var objective function in terms of its
constituent matrices, using similar techniques to those of Haben et al. [2011a,b] and
Haben [2011]. We explicitly consider the case of correlated observation error
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covariance matrices for the first time numerically. These theoretical results are general
and apply to any choice of covariance matrices with a linear observation operator. We
study how these bounds differ from those of Haben [2011] with the introduction of
correlated observation error covariance matrices. We test these bounds in a linear
numerical framework, and compare how the bounds, the condition number and the
convergence of the associated minimisation problem behave for different parameter
choices. We demonstrate that the minimum eigenvalue of the observation error
covariance matrix is an important term in both upper and lower bounds, and we show
that relative importance of the background and observation error covariances is
strongly dependent on the observation network. This chapter is based on the paper
Tabeart et al. [2018].

In Chapter 6 we address RQ 2. We develop new bounds on the condition number of
the Hessian of the preconditioned 4D-Var data assimilation problem. The minimum
eigenvalue of the observation error covariance matrix appears in both upper and lower
bounds. Numerical experiments reveal that reducing the condition number of either
error covariance matrix does not guarantee a reduction in the condition number of the
Hessian. The choice of observation operator is important in determining whether
altering the background or observation error terms dominates the condition number of
the Hessian. We also find that for an idealised spatial correlation problem the choice
of background and observation parameters determines whether the condition number
of the Hessian is a suitable proxy for convergence of a conjugate gradient problem.

In Chapter 7 we address RQ 3. We develop novel theory on reconditioning methods.
Motivated by the importance of the minimium eigenvalue of the observation error
covariance matrix we formalise two methods that are used in practice to increase
small eigenvalues for a general correlation matrix: ridge regression and the minimum
eigenvalue method. We compare theoretically how using both methods changes the
standard deviations and correlations of a general covariance matrix, as well as the
impact on the variational objective function. We find that ridge regression results in
larger increases to standard deviations than the minimum eigenvalue method, and
decreases the absolute value of all off-diagonal correlations. We contrast the two
reconditioning methods with multiplicative variance inflation, which is frequently used
at NWP centres to mitigate for missing correlation information. We implement both
methods of reconditioning and multiplicative variance for two examples: a spatial
covariance matrix, and an interchannel covariance matrix arising from a satellite
based instrument. In the spatial setting, we find that the minimum eigenvalue method
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introduces spurious correlations at large distances. For the interchannel example the
minimum eigenvalue method results in smaller changes to entries of the correlation
matrix that the ridge regression method. An idealised data assimilation example
reveals that both methods of reconditioning are able to change small scales of the
analysis, whereas multiplicative variance inflation cannot reduce sample error on
smaller scales. We provide guidance on which method of reconditioning is most
suitable for different situations, and discuss aspects of the system that could be used
to chose the reconditioning parameter. This chapter is based on the paper Tabeart
et al. [2019a].

In Chapter 8 we address RQ 4. We study the impact of using the ridge regression
method of reconditioning in a realistic operational system, using the Met Office
one-dimensional variational data assimilation (1D-Var) system. This is the first time
multiple levels of reconditioning have been compared systematically in an operational
system. We investigate how the qualitative conclusions from Chapter 5 apply for a
nonlinear problem. We consider how reconditioning affects the convergence of the
minimisation routine, as well as changes to quality control, and the estimation of
variables of meteorological interest. We find that increased use of reconditioning leads
to improved convergence of the 1D-Var routine and reduces the differences between
retrieved variables compared to the control. However, using correlated observation
error covariance matrices increases the number of observations that pass the quality
control step, emphasising that the quality control routine must be tuned when
altering the data assimilation system. This chapter is based on a paper that is under
review as Tabeart et al. [2019b].

Finally in Chapter 9 we present our main conclusions. We will summarise the key
results that answer the research questions presented in Section 1.1. We consider the
implications of our findings for the wider data assimilation community. The new
bounds developed in this thesis provide users with guidance on how changes to their
data assimilation system are likely to affect convergence. This will be useful when
considering changes to the system, such as the introduction of a new observation type
or improved estimate of the observation error covariance matrix. Combining this
knowledge with the theoretical understanding of reconditioning methods presented in
this thesis will ensure the use of an appropriate method for a given problem. Finally
we suggest future work that could be undertaken to extend the conclusions of this
thesis.
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Chapter 2

Data assimilation

In this thesis we study how variational data assimilation problems are affected by the
introduction of correlated observation error covariance matrices. In this chapter we
derive the variational data assimilation problem, starting with Bayes’ theorem in
Section 2.1. We discuss the key variables of interest and introduce much of the
notation that will be used for the remainder of this work. In particular, we introduce
several formulations of the variational data assimilation problem including 4D-Var
(Section 2.2), the incremental formulation (Section 2.2.1) and the control variable
transform (Section 2.2.2). We discuss the sources and types of observation errors in
Section 2.3. In Section 2.4 we introduce the diagnostic of Desroziers et al. [2005],
which is used to estimate correlated observation error matrices at NWP centres.

2.1 Derivation of 3D-variational data assimilation
methods from Bayes’ Theorem

The aim of data assimilation is to find the most probable initial state of a dynamical
system given a prior estimate, or background, and observations of the system. The
background is given by a forecast from a previous time [Rawlins et al., 2007]. There
are different types of data assimilation algorithms, which allow users to make best use
of available resources. Alternative formulations often impose additional assumptions
on the generic problem of interest. One common method of data assimilation in
numerical weather prediction is variational data assimilation [Daley, 1991, Kalnay,
2002]. This makes use of a least squares objective function comprised of two terms:
the background term and observation term, which measure the discrepancy from the
background and observations respectively. Each term is weighted by its respective
uncertainties. The objective function is then minimised to find the most probable
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initial state. This allows the analysis (most likely initial state) to pull close to the
background in the absence of observations, or where observation values are uncertain,
and to take advantage of ‘good’ observational information to improve on the prior.

We begin by presenting Bayes’ Theorem. This result will then be used to derive the
variational formulation of data assimilation.

Theorem 2.1.1 (Bayes’ Theorem [Lewis et al., 2006]). The probability density
function of x given y

P (x|y) = P (y|x)P (x)
P (y) . (2.1)

If x denotes the unknown state and y denotes observations of our system, then Bayes’
theorem tells us that we can calculate the posterior density of the state conditioned
on the observations, P (x|y), as the product of the likelihood of the observations
conditioned on the model state, P (y|x), and the prior probability density function
(pdf) of the model state, P (x). This product is then normalised by the marginal
density of the observations, P (y). We note that, as this term is independent of the
state x, it is simply a normalising constant. As the aim of variational assimilation is
to find the state that maximises P (x|y), called the maximum a posteriori (MAP)
estimate, in this setting the normalising constant is typically neglected.

In the variational formulation with Gaussian errors, we can write each of the terms in
Theorem 2.1.1 explicitly. The assumption of Gaussian errors is key for the variational
data assimilation method, however it does not hold for all variables. In the case that
model state variables and observations are normally distributed, and that our
observation operator is linear, we have equivalence of the minimum variance estimate
and maximum a posteriori (MAP) estimate as the mean and mode of a normal
distribution are equal [Lewis et al., 2006].

Under these assumptions, the pdf of the prior is given by

P (x) ∝ exp{−1
2(x− xb)TB−1(x− xb)}, (2.2)

[Lewis et al., 2006] where xb ∈ RN is the background, or prior, state and B ∈ RN×N is
the background error covariance matrix. The conditional probability of the
observations given the state can then be written as

P (y|x) ∝ exp{−1
2(y− h(x))TR−1(y− h(x))}, (2.3)
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[Lewis et al., 2006] where y ∈ Rp is the vector of observations, R ∈ Rp×p is the
observation error covariance matrix, and h : RN → Rp is the observation operator.
The observation operator maps from state space into observation space in order to
compare state variables with observations, and can be nonlinear (for example for
satellite based instruments which measure top of the atmosphere radiances [Eyre,
1989]).

Under the additional assumption that observation errors are independent of
background errors, and using the result of Theorem 2.1.1, we can combine (2.2) and
(2.3) to obtain the posterior pdf of the state

P (x|y) ∝ exp{−1
2(x− xb)TB−1(x− xb)−

1
2(y− h(x))TR−1(y− h(x))}. (2.4)

As P (y) is independent of the model state we can neglect it when computing the
analysis, or most likely initial state, xa. The assumption that background and
observation errors are independent does not always hold. For example, sometimes
background fields are used for quality control purposes, such as cloud detection, to
reject observations that are not permitted in the assimilation system. In this case,
errors in the background and the observation will be correlated artificially by the
quality control process [Bathmann, 2018]. However, in this thesis we will assume that
observation and background errors are independent.

We wish to compute the analysis, that is the state xa ∈ Rn with MAP probability
estimate given the observations and prior. We can reframe a maximisation problem as
a minimisation problem by finding the state x that minimises the objective function

J(x) = 1
2(x− xb)TB−1(x− xb) + 1

2(y− h(x))TR−1(y− h(x)). (2.5)

The analysis, xa ∈ Rn, minimises (2.5) and is the state that maximises (2.4); hence xa
is the most likely state given the observations and prior information. The function
(2.5) is referred to as the cost function or objective function.

In order to study how the convergence of an iterative method used to solve the
minimisation problem is affected by changes to the data assimilation system, we can
consider the impact of those changes on the conditioning of the Hessian (matrix of
second derivatives) of the objective function (2.5). The condition number will be
defined formally in Section 3.1, but it can be used to study the sensitivity of the
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solution to small changes to background or observation data [Golub and Van Loan,
1996, Sec. 2.7]. The Hessian of the linearised objective function (2.5) is given by

S = B−1 + HTR−1H, (2.6)

where H ∈ Rp×N is the Jacobian of the observation operator h linearised about the
current best estimate of the optimal solution of (2.5). In this thesis we will use the
conditioning of (2.6) to study the sensitivity of the variational assimilation problem to
changes to the observation error covariance matrix, R.

2.2 Four-dimensional variational data assimilation

The variational objective function (2.5) has no time variable, and all observations are
assumed to have been made at the same time. This formulation corresponds to
3D-Var [Lorenc et al., 2000]. The objective function is minimised over the relevant
time window, with the assumption that all observations are made at the same time
(typically halfway through the window). In reality, observations are made throughout
the time window and allowing them to be fitted at the correct time is important to
improve forecasts. For example, multiple observations could be made at the same
location over one time window. The 4D-Var formulation permits the inclusion of all of
these observations in the objective function and hence can account for dynamic
evolution of the system over the time window. Many NWP centres now use 4D-Var,
even for limited area models (e.g. Rawlins et al. [2007]). At some centres, 3D-Var
with first guess at appropriate time (3D-Var FGAT), which we will also discuss briefly
in this section, has replaced standard 3D-Var [Fisher and Andersson, 2001, Simonin
et al., 2019].

2.2.1 Incremental 4D-Var

For a given time window [t0, tn] let xb be the background state and B0 ∈ RN×N be the
background error covariance at the initial time t0. Let yi be observations taken at
times tk, k = 0, 1, 2, . . . , n, with corresponding observation error covariance matrix
Rk ∈ Rp×p, and let hk be the, possibly nonlinear, observation operator that maps
background state xk at time tk to the observation space at time tk. Then, the full
4D-Var objective function for this system is given by

J(x0) = 1
2(x0 − xb)TB−1

0 (x0 − xb) + 1
2

n∑
k=0

(yk − hk[xk])TR−1
k (yk − hk[xk]) (2.7)
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subject to the nonlinear forecast model

xk =M(tk−1, tk; xk−1). (2.8)

The primal variational 4D-Var problem is typically solved in an incremental form.
This general framework is used at both the Met Office and the European Centre for
Medium-Range Weather Forecasts (ECMWF) [Rabier et al., 1998, Rawlins et al.,
2007], where the nonlinear objective function (??) is solved via a series of inner and
outer loops. This framework has been shown to be equivalent to a quasi-Newton
method [Gratton et al., 2007, Lawless et al., 2005a]. A small number of outer loops
solve the full nonlinear problem, and a larger number of inner loops solve the
linearised problem. At the Met Office this inner loop is solved using the conjugate
gradient method [Haben et al., 2011b]. The conjugate gradient method will be defined
formally in Section 3.2.

The use of 4D-Var results in additional algorithmic complexities. The main
computational difficulty is the need to run a dynamic model over the assimilation
window in order to calculate the objective function. Tangent linear and adjoint
models are formed to calculate the model trajectory and gradient of the objective
function in the inner loop, and the full nonlinear model is used in the outer loop. Due
to the high dimension and complexity of the state and observations, line-by-line
adjoints are used at NWP centres [Errico and Raeder, 1999]. This means that any
change to the model requires that the adjoint code be updated, making maintenance
of adjoint codes costly.

Let xbi =M(ti−1, ti; xbi−1). Define δxi = xi − xbi . We then consider the Taylor
expansion of M(ti−1, ti; xi−1) about xbi(t)

xbi + δxi =M(ti−1, ti; xbi−1) + Miδxi−1 + higher order terms (2.9)
δxi ≈Miδxi−1 (2.10)

where Mi ∈ RN×N is the linearised model operator at time ti, linearised about xbi .
Similarly, expanding hi[xi] about xbi we obtain

hi[xi] ≈ hi[xbi ] + HiMiδxi (2.11)

where Hi ∈ RN×pi is the linearised observation operator at time ti linearised around
xbi .
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We then write the linearised objective function in terms of δx0

J(x0) = 1
2δx

T
0 B−1δx0 + 1

2

n∑
i=0

(di −HiMiδx0)TR−1
i (di −HiMiδx0) (2.12)

where di = yi − hi[xbi ] are the innovation vectors. These measure the misfit between
the observations and the linearisation state, using the full nonlinear observation
operator.

The 3D-Var first guess at appropriate time (3D-FGAT) algorithm can be obtained
from (2.12) with Mk = I in (2.9) [Fisher and Andersson, 2001, Lorenc and Rawlins,
2005]. 3D-FGAT propagates the background field forward to the time of the
observations, but does not propagate the increment δxk, and is hence computationally
cheaper than 4D-Var.

2.2.2 The control variable transform

One practical problem with implementing incremental 4D-Var is the cost of either
explicitly forming the background error covariance B, or evaluating matrix-vector
products. This is partly due to the large size of this matrix; the number of state
variables can be of the order of 109 [Carrassi et al., 2018]. This motivates the use of
the control variable transform (CVT) to model the background error covariance
matrix. The CVT uses the matrix square root of B to perform a variable
transformation.

In order to simplyfy the notation in what follows, define the generalised observation
operator as

Ĥ =
[
HT

0 , (H1M̂1)T , . . . , (HnM̂n)T
]T
, (2.13)

where the linearised forward model from time t0 to time ti is given by

M̂i(δxi) = M(ti, t0; δxi−1) = Mi . . .M1. (2.14)

Similarly, we define
d̂
T =

[
dTo ,dT1 , . . . ,dTn

]
(2.15)

is a vector made up of the innovation vectors.
Finally let R̂ ∈ RQ×Q denote the block diagonal matrix with the ith block consisting
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of Ri:
δxi = M(ti−1, ti; xi−1)δxi−1 ≡Miδxi−1. (2.16)

The control variable transform (CVT) is then applied to the incremental form of the
variational problem (6.6), via the change of variable δz0 = B−1/2δx0. The new
variables δz0 are hence uncorrelated, with unit variances. This simplifies the
background term in the updated objective function

J(δz0) = 1
2δz

T
0 δz0 + 1

2
(
d̂− ĤB1/2δz0

)T
R̂−1

(
d̂− ĤB1/2δz0

)
. (2.17)

where z0 = B−1/2x0, zb = B−1/2xb.
It can be shown [Haben et al., 2011b] that use of the CVT is equivalent to pre- and
post-multiplying the Hessian of the unpreconditioned data assimilation problem (6.10)
by B1/2 (the uniquely defined, symmetric square root of B). This yields a
preconditioned Hessian for 4D-Var given by

Ŝ = IN + B1/2ĤT R̂−1ĤB1/2. (2.18)

We note that with the additional assumption that B and R are strictly positive
definite, then Ŝ is symmetric positive definite.

In this thesis, we will study the conditioning of the preconditioned incremental
4D-Var data assimilation problem (2.17) separately from the 3D-Var data assimilation
problem (2.5). It can be shown [Haben et al., 2011b] that use of the CVT is
equivalent to pre- and post-multiplying the Hessian of the unpreconditioned data
assimilation problem by B1/2 (the uniquely defined, symmetric square root of B).
This yields a preconditioned Hessian for the 4D-Var problem (2.17) given by

Ŝ = IN + B1/2HTR−1HB1/2, (2.19)

where IN is the N ×N identity matrix. We will consider the conditioning of (2.19) in
Chapter 6.

2.3 Observation errors

In this thesis we study how the use of correlated observation errors will alter the
variational data assimilation problems (2.5) and (??). In this section, we motivate our
interest in correlated observation errors from a theoretical and practical perspective,
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and consider examples of instruments where errors between observations are likely to
be related.

2.3.1 Definition of observation error

We begin by considering what is typically meant by ‘observation error’. The
observation error covariance matrix, R, accounts for uncertainty in the observations
as well as uncertainty in the observation operator. In this way the error covariance
matrix, R, can be thought of as accounting for the statistics of all error associated
with the observation term in (2.5) [Waller et al., 2014b]. For 4D-Var, model error also
contributes to errors in the observation term of (2.7), but this term can be separated
from observation errors (see Moodey et al. [2013], Howes et al. [2017]). We will not
consider model error in this thesis.

A review of the different kinds of statistics of the errors that are included in the
observation error covariance matrix is given by Janjić et al. [2018].We now describe
some of the components that are included in the observation error term and whether
they are likely to be correlated or uncorrelated.

• Error due to unresolved scales describes the difference between a perfect
observation and a perfect observation of the scales resolved by the model.
Depending on the synoptic situation, this type of error can be correlated
between different observations [Janjić et al., 2018].

• Observation operator error arises due to the use of an approximate observation
operator, rather than the true infinite-dimensional observation operator. In
practical applications, observation operator error is increased as approximate
observation operators are used to minimise computational cost (e.g. Waller
et al. [2016c], Gauthier et al. [2018]). This can be correlated between different
observations [Janjić et al., 2018].

• Preprocessing error may be correlated between different observations; one
example is height assignment errors for atmospheric motion vectors [Bormann
et al., 2003, Cordoba et al., 2017].

• Measurement error, also known as instrument noise. In the case of stochastic
noise, measurement errors are uncorrelated between different observations.
However, there are some instruments where this may not be the case, for
example due to apodisation effects [Gambacorta and Barnet, 2013]. Typically
instrument noise levels are well estimated by instrument manufacturers.
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2.3.2 Treatment of observations and their uncertainties

In Chapter 8 we will present a case study using observations from a satellite-based
instruments. Much previous research has considered the impact of correlated
observation errors for hyperspectral instruments [Weston, 2011, Weston et al., 2014,
Stewart et al., 2014, Campbell et al., 2017, Bormann et al., 2016]. Hyperspectral
instruments are situated on satellites and measure top of the atmosphere radiances in
the infrared, visible and microwave spectrum. Radiative transfer equations are used to
compare measurements of brightness temperature with the meteorological variables of
interest in the state vector. Although the radiative transfer equations can be solved
very accurately using a line-by-line model, the need for timely forecasts mean that
implementations such as RTTOV, which is used at the Met Office and ECMWF
[Eyre, 1989, Matricardi et al., 2004], have to balance accuracy with speed in order to
produce a fast solver.

For each instrument the relevant part of the electromagnetic spectrum is split into
bands, with each band corresponding to a different ‘channel’. Instruments such as the
Infrared Atmospheric Sounding Interferometer (IASI) can return measurements for
8461 channels across its spectral range [Collard, 2007]. As the channels are very
narrow for hyperspectral instruments, it is can be difficult to ensure that channels are
spectrally independent [Stewart et al., 2014]. In order to minimise the amount of
duplicated information that is passed to the data assimilation system, NWP centres
typically select a subset of around 300 channels [Stewart, 2010, Chalon et al., 2001]
that provide independent information, and maximise the information content of the
selected channels [Collard, 2007, Rabier et al., 2002, Fowler, 2017]. However, there is
still overlap between weighting functions, which contain information about the
sensitivity of a single channel to different pressure levels in the atmosphere [Stewart,
2010]. Overlapping weighting functions will lead to correlated observations, but not
necessarily correlated observation errors. However, systematic errors, for example in
the radiative transfer equation, may lead to correlated errors between different
channels with overlapping weighting functions. Errors due to unresolved scales may
also occur, as the instrument can measure on spatial scales which are too small to be
represented well by the model. Therefore, for spectrally close channels, with similar
weighting functions, the same feature might be misrepresented in a similar way,
leading to correlated observation errors between channels [Stewart et al., 2014].

Although it was known that correlated observation errors existed, prior to the last
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decade, uncorrelated observation errors were assumed for all instruments. Partly this
is due to the difficulty of estimating observation error statistics. Additionally, using
non-diagonal correlation matrices increases the computational expense of inverting the
observation error covariance matrix. For spatial correlations, thinning is one technique
that can allow users to neglect correlated observation errors. For some instruments
estimated correlation lengthscales are shorter than typical thinning distances [Bennitt
et al., 2017], meaning that thinning can be a valid technique. However, for other
instruments the correlation lengthscales have been found to be much longer than
reasonable thinning distances [Waller et al., 2016a,c, Cordoba et al., 2017], meaning
that correlations must be taken into account. The use of thinning results in a large
number of observations being discarded: in the Metéo France convection-permitting
limited area model radar observations are horizontally thinned by a factor of 64 and
infrared satellite observations are horizontally thinned by a factor of 400 [Michel,
2018]. Thinning may also be necessary due to the large size of observation datasets,
which can cause difficulties with storage and computational resource. However,
alternative data compression methods, such as using a Fourier transform to retain
only the largest modes of observation information, may allow a larger amount of
information to be retained, whilst reducing the computational burden [Fowler, 2019].

The inclusion of correlated observation error information is crucial, particularly with
the increasing desire for high resolution forecasts. In order to produce beneficial local
forecasts, we need to exploit existing high density observation networks [Dance et al.,
2019]. This means correlated observation errors must be taken into account in order
to reduce observation thinning. Failing to account for correlated observation error
information where it is present has been found to artificially cap forecast skill [Stewart
et al., 2008b, 2013, Rainwater et al., 2015]. Work by Stewart [2010] and Healy and
White [2005] found that including some correlation information is better than none,
so that even approximate observation error statistics bring theoretical benefit to data
assimilation systems.

The first study to estimate correlated observation error covariance matrices was
carried out using the Met Office system for the IASI instrument [Stewart et al., 2008a].
Correlated observation error matrices were subsequently implemented operationally at
the Met Office for IASI and the Atmospheric Infrared Sounder (AIRS) [Weston, 2011,
Weston et al., 2014, Stewart et al., 2014]. Observation error covariance matrices were
estimated separately for the 1D-Var and 4D-Var systems, and correlations were found
to be much larger for the 4D-Var assimilation system. This is consistent with the fact
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that for 1D-Var error correlations arise from forward model and adjacent channel
errors, whereas for 4D-Var errors of representativity are expected to dominate.

Observations from IASI are sensitive to different parts of the atmosphere and a
variety of meteorological variables, including temperature and humidity. The largest
correlations occur for channels that are sensitive to water vapour. The findings of
other centres for IASI are very similar [Bormann et al., 2015, 2016, Campbell et al.,
2017]. Large correlations for humidity sensitive channels have also been found for
other infrared and microwave instruments (e.g. Waller et al. [2016a], Wang et al.
[2018]).

Many of the early operational implementations of correlated observation error focused
on interchannel errors. Parallelisation of code makes the use of spatial correlations
potentially expensive: if two observations are correlated and assigned to different
processors, then expensive communication will be required. However, placing all
observations whose errors are correlated on one processor prevents full exploitation of
a large number of processors. Michel [2018] proposed a Lanczos-based method which
combines a reduced rank approximation to the observation error covariance matrix
with regularisation to ensure matrix inversion could be performed by a sequence of
linear operators rather than direct inversion. This method eliminates the need for
global communication and could hence be parallelised. Alternatively, parameters for a
specified correlation function or operator can be estimated in place of the full error
covariance matrix. This is done by Guillet et al. [2019] using an implementation of a
finite element method that is computationally efficient to invert. Simonin et al. [2019]
proposed an alternative parallelisation scheme which groups observations with
mutually correlated errors together for processing.

2.4 The diagnostic of Desroziers et al. [2005]

In the last decade, the use of correlated observation error covariance matrices in data
assimilation has grown enormously. In Section 2.3, we discussed the benefits of
including observation error correlations, such as the improved use of existing
high-density observations, and the desire to move towards higher resolution forecasts.
In this section we discuss one of the most popular methods that is used to estimate
error correlations for NWP systems. We define the method and discuss some of its
limitations.
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The diagnostic of Desroziers et al. [2005] (henceforth referred to as DBCP) was
originally designed to check whether the choice of background and observation error
covariance matrices are consistent with the data assimilation system of interest.
However, it was suggested that if users know that their error covariance matrices
should be correlated, but are using diagonal matrices, the DBCP diagnostic could be
used as a method to estimate the missing correlation information. We now provide a
brief overview of the method.

Let Rt, Bt be the ‘true’ error covariance matrices and R, B be the assumed error
statistics that are used in the variational data assimilation problem (2.5). We write
the analysis, which minimises (2.5), as an update to the background, xb,

xa = xb + Kdob, (2.20)

where
K = BHT (HBHT + R)−1 (2.21)

is the Kalman gain, and the innovation, or background residual, is given by

dob = y− h(xb). (2.22)

Let the analysis residual be given by

doa = y− h(xa). (2.23)

Desroziers et al. [2005] showed that

E[doadobT ] = R(HBHT + R)−1(HBtHT + Rt) = Re, (2.24)

i.e. that calculating the expectation of the analysis and background residuals provides
an updated estimate for the observation error covariance matrix. In the case that the
assumed error covariances are the exact error covariance matrices, i.e. B = Bt and
R = Rt, then (2.24) simplifies to

E[doadobT ] = Rt. (2.25)

In Desroziers et al. [2005], other update equations, similar to (2.24), are presented for
the background error covariance matrix in observation space, HBHT , and the sum of
the background and observation error covariance matrices in observation space. The
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method can either be performed as a single step, or the updated estimates can be
used to run a new data assimilation procedure before repeating the algorithm above.
This yields the iterative formulation.

Although practical implementations of the method fail to satisfy the assumptions of
the original diagnostic, it is possible to obtain useful updated matrices Re even if the
input background and observation error covariance matrices are imperfect (e.g. Waller
et al. [2016a,c]). Theoretical studies have considered how realistic implementations of
the DBCP diagnostic are likely to perform in practice. In the case that both
background and observation errors are homogeneous, Waller et al. [2016b] found that
if the two error covariance matrices are structurally similar, the iterative method fails,
but reasonable estimates may be obtained from a single iteration.

Bathmann [2018] found that convergence of the iterative version of the diagnostic
depends on the input background error covariance matrix, with divergence occurring
when B is overestimated. This is due to the fact that the updated observation error
covariance matrix becomes rank deficient [Ménard, 2016]. Additionally convergence
speed depends on the eigenvalues of both the background and observation error
covariance matrix, as well as the distance between the input and true observation
error covariance matrix [Ménard, 2016]. Although the iterative method may yield
improved results compared to the single step iteration, it is extremely
computationally expensive. Most NWP centres use the single step version of the
diagnostic; a single iteration was performed in the U.S. Naval Research Laboratory
(NRL) system and changes to the estimate of R were small [Campbell et al., 2017].

As well as providing improved estimates for observation error covariance matrices, the
DBCP diagnostic can also be used to identify errors in the data assimilation and
quality control routines. In Waller et al. [2016a] spatial variation in error statistics
revealed that the quality control process was failing to remove mixed land-sea pixels.
In Waller et al. [2016c], investigations into correlated observation error using the
DBCP diagnostic led to the development of an improved observation operator.

For many instruments it can be difficult to validate the results of the DBCP
diagnostic. However, expert knowledge of the instrument and observing system can
provide insight into whether estimated OEC matrices are reasonable. For example
standard deviation values can be compared against instrument noise information
provided by the manufacturer, and in the case of spatially correlated observation
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errors correlation lengthscale can be compared against the previous best estimate.
Consistency across different NWP centres using the same instruments but different
assimilation systems can provide some confidence in the estimated correlation
structure [Waller et al., 2019]. There has been recent work developing error
inventories for specific instruments [Merchant et al., 2014] and metrologically derived
uncertainties, so it may be possible to compare estimates from the DBCP diagnostic
with alternative derivations of error in the future. In most previous work a single
error covariance matrix is estimated and used globally. With moves towards all-sky
assimilation of satellite observations [Geer, 2019] and increasing use of correlated
observation errors, it is likely that situation dependent observation error matrices will
be more common in the future.

2.5 Summary

In this chapter we defined the unpreconditoned and preconditioned variational data
assimilation problems, and introduced the notation that will be used throughout this
thesis. We discussed sources of observation error and why the inclusion of correlated
observation error information is important for NWP centres. We presented the
diagnostic of Desroziers et al. [2005], and discussed some of the challenges and benefits
associated with its use in operational systems. In the next chapter we introduce the
concept of conditioning, and some key results from numerical linear algebra.
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Chapter 3

Results from numerical linear
algebra

In this chapter we introduce key definitions and results from numerical linear algebra.
In Section 3.1 we introduce the concept of matrix and vector norms and formally
define what is meant by the condition number. We introduce the conjugate gradient
method in Section 3.2 and discuss the relationship between convergence of this
method and the condition number. In Section 3.3 we present results which allow us to
write the eigenvalues of products and sums as products or sums of eigenvalues of
individual matrices. In Section 3.4 we present a variety of matrix structures of
interest to the data assimilation problem. These results will be used to develop theory
on the conditioning of the variational data assimilation problem, and for numerical
experiments in subsequent chapters. We begin by introducing a convention on the
ordering of eigenvalues that will be used throughout this thesis.

Definition 3.0.1. For A ∈ Rn×n let the eigenvalues of A be given by

λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A). (3.1)

3.1 Vector and matrix norms and the condition
number

In order to define the condition number, we must first introduce the concepts of
vector and matrix norms, which we do in this section. We also present matrix
structures that will be used in a particular characterisation of the condition number.
We begin by defining the concept of a vector norm.
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Definition 3.1.1 (Golub and Van Loan [1996]). A vector norm on Rn is a function
f : Rn → R that satisfies the following properties:

f(x) ≥ 0, x ∈ Rn (f(x) = 0 ⇐⇒ x = 0) (3.2)
f(x + y) ≤ f(x) + f(y), x,y ∈ Rn (3.3)
f(αx) = |α|f(x), α ∈ R,x ∈ Rn. (3.4)

We now define a special and important class of vector norms: the p−norm.

Definition 3.1.2. For p ≥ 1 the p−norm on Rn is defined as

‖x‖p = (|x1|p + |x2|2 + · · ·+ |xn|p)1/p (3.5)

where xi denotes the ith component of x.

The most commonly used p−norms are given by p = 1, 2,∞.

We now introduce the definitions of symmetric matrices and positive definite matrices.

Definition 3.1.3. A square matrix, A ∈ Rn×n is symmetric if AT = A, that is if
aij = aji∀i, j = 1, 2, 3, . . . , n.

Lemma 3.1.4. The sum of two symmetric matrices of the same size is symmetric

Proof. Let A,B ∈ Rn×n be symmetric matrices. We consider their sum

(A + B)T = AT + BT = A + B. (3.6)

Therefore the sum of two conformable symmetric matrices is symmetric.

Definition 3.1.5. A symmetric matrix A ∈ Rn×n is called positive definite if for any
non-zero vector x ∈ Rn

xTAx > 0. (3.7)

We denote the quadratic form xTAx as ‖x‖2
A.

We now introduce characterisations of positive definite and positive semi-definite
matrices in terms of their eigenvalues.

Theorem 3.1.6. A symmetrix matrix A ∈ Rn×n is positive definite if and only if all
of its eigenvalues are strictly positive.

Proof. See Gentle [2007, Sec 3.8.8]
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Definition 3.1.7. A symmetric matrix A ∈ Rn×n is called positive semidefinite if for
any non-zero vector x ∈ Rn, the quadratic form is non-negative i.e.

xTAx ≥ 0. (3.8)

Theorem 3.1.8. A symmetric matrix A ∈ Rn×n is positive semidefinite if its
eigenvalues are non-negative.

Proof. See Gentle [2007, Sec 3.8.8]

Symmetric positive definite (SPD) matrices have useful properties in terms of their
eigendecomposition. We will show in Section 3.4 that correlation matrices are
symmetric positive semi-definite (SPSD). In practice we often restrict ourselves to the
case of strictly SPD matrices, so many of the properties presented in this section will
apply directly. We now introduce some key properties of SPD matrices.

Lemma 3.1.9. The sum of any two positive definite matrices of the same size is
positive definite.

Proof. Let A,B ∈ Rn×n be positive definite matrices. We consider the quadratic form
of the sum A + B:

xT (A + B)x = xTAx + xTBx > 0. (3.9)

For a non-zero choice of x, both components of (3.9) are strictly positive as A,B are
positive definite matrices. Therefore the quadratic form of A + B is strictly positive
and the sum of two positive definite matrices is positive definite.

Combining the results of Lemmas 3.1.4 and 3.1.9 we conclude that the sum of two
SPD matrices is SPD. Similarly, we can prove that the sum of a positive definite
matrix and a positive semi-definite matrix is positive definite.

Lemma 3.1.10. The sum of a positive definite matrix and a positive semi-definite
matrix is positive definite.

Proof. Let A ∈ Rn×n be positive definite and B ∈ Rn×n be positive semi-definite.
Then, for any x ∈ Rn, consider xT (A + B)x = xTAx + xTBx > 0. The first term is
strictly greater than zero and the second term is greater than or equal to zero for any
choice of x by definition.

The results of Lemmas 3.1.4 and 3.1.10 guarantee that if the background error
covariance matrix is strictly positive definite, the Hessians (2.6) and (2.19) are
symmetric positive definite. We now briefly outline the proof: (2.6) and (2.19) are the
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sum of a SPD matrix and a SPSD matrix. Hence by the result of Lemma 3.1.10 the
Hessians (2.6) and (2.19) are strictly positive definite. The result of Lemma 3.1.4
proves that both Hessians are symmetric, and hence (2.6) and (2.19) are SPD.
Therefore the properties of SPD matrices presented in this section apply directly to
the Hessian for both unpreconditioned and preconditioned formulations.

We now present some properties of general SPD matrices, beginning by characterising
the eigendecomposition of a symmetric matrix.

Theorem 3.1.11. Let A ∈ Rn×n be a symmetric matrix. Then we can decompose A
as

A = VΛVT (3.10)

where Λ ∈ Rn×n is a diagonal matrix of eigenvalues and V ∈ Rn×n is the
corresponding orthogonal matrix of eigenvectors of A, i.e. VTV = In.

Proof. See Gentle [2007, Sec 3.8.7]

Using Theorem 3.1.11 we prove that the inverse of a SPD matrix is itself SPD.

Lemma 3.1.12. The inverse of a symmetrix positive definite matrix is symmetric
positive definite.

Proof. Writing A ∈ Rn×n as in (3.10) we obtain A = VΛVT . We note that all the
elements of Λ are positive by the result of Definition 3.1.5. We calculate the inverse of
A

A−1 = (VΛVT )−1 = VΛ−1VT . (3.11)

As the entries of Λ are all positive, so are the entries of Λ−1. Hence, all of the
eigenvalues of A−1 are strictly positive and A is positive definite. We note that A−1 is
symmetric by definition, and hence A−1 is symmetric positive definite.

Lemma 3.1.13. For B ∈ Rn×n positive definite and A ∈ Rn×m of rank m, the
product ATBA is positive definite.

Proof. [Gentle, 2007, p89]

We now define the concept of a matrix norm.

24



Section 3.1 Page 25

Definition 3.1.14. ‖ · ‖ : Rm×n → R is a matrix norm for all A,B ∈ Rm×n,
C ∈ Rn×p, c ∈ R if the following properties are satisfied

‖A‖ ≥ 0 with equality if and only if A = 0, (3.12)
‖cA‖ = |c|‖A‖, (3.13)
‖A + B‖ ≤ ‖A‖+ ‖B‖, (3.14)
‖AC‖ ≤ ‖A‖‖C‖. (3.15)

We now introduce some norms that will be used later in the thesis.

An important family of matrix norms are those that arise from vector norms. These
are called induced, subordinate, or operator norms and are defined by the original
vector p−norm that was introduced in Definition 3.1.2.

Definition 3.1.15. For 1 ≤ p ≤ ∞ the p-norm is defined as

‖A‖p = sup
x 6=0

‖Ax‖p
‖x‖p

(3.16)

Commonly used induced norms, defined for A ∈ Rm×n, are:

• The 2-norm: ‖A‖2 = σmax(A), where σmax(A) represents the largest singular
value of the matrix A. In the case that A is SPD the 2-norm of A is given by
its largest eigenvalue.

• The 1-norm: ‖A‖1 = max1≤j≤n
∑m
i=1 |ai,j| i.e. the maximum absolute column

sum of A.

• The ∞-norm: ‖A‖∞ = max1≤i≤m
∑n
j=1 |ai,j|, i.e. the maximum absolute row

sum of A.

We note that for symmetric matrices the 1-norm and ∞-norm are equal.

Other matrix norms exist that do not arise from vector norms and are defined
explicitly for matrices. Examples of these are the Frobenius norm and the Ky Fan
norm, both of which will be used in this thesis.

Definition 3.1.16. The Frobenius norm of a matrix A ∈ Rm×n is given by

‖A‖F =
√√√√ m∑
i=1

n∑
j=1
|aij|2 (3.17)
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Definition 3.1.17. The Ky Fan p-k norm of A ∈ Cm×n is defined as:

‖A‖p,k =
(

k∑
i=1

γi(A)p
)1/p

, (3.18)

where γi(A) denotes the i-th largest singular value of A, p ≥ 1 and
k ∈ {1, . . . ,min{m,n}}.

Definition 3.1.18. For a square matrix A ∈ Rn×n we define the condition number of
A in the α-norm to be

κα(A) = ‖A‖α‖A−1‖α. (3.19)

By convention we take κα(A) =∞ for a singular matrix A.

Corollary 3.1.19. Any condition number is bounded below by one [Golub and
Van Loan, 1996].

We can interpret the condition number as a measure of how sensitive solutions of a
linear equation Ax = b are to perturbations in the data b. A ‘well-conditioned
problem’ will result in small perturbations to the solution with small changes to b,
whereas for an ‘ill-conditioned problem’, small perturbations to b can result in large
changes to the solution. Whether a problem is well-conditioned or ill-conditioned is
partly dependent on the application - for some problems a condition number of 100
will be acceptable, whereas for other problems this will be very large. The condition
number can also provide an indication of how many digits of accuracy will be lost
during computations [Gill et al., 1986, Cheney, 2005]. Similarly the condition number
is a measure of the amplification of errors when inverting a matrix [Golub and
Van Loan, 1996]. We will discuss further interpretations of the condition number in
the next section when we introduce the conjugate gradient method.

For the remainder of this work we will focus on the condition number in the 2-norm
given by

κ(A) ≡ κ2(A) = ‖A‖2‖A−1‖2. (3.20)

Theorem 3.1.20. If A ∈ Rn×n is a symmetric positive definite matrix with
eigenvalues defined as in Definition 3.0.1 we can write the condition number in the
2−norm as

κ(A) = λ1(A)
λn(A) . (3.21)

Proof. See [Golub and Van Loan, 1996, Sec. 2.7.2].
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Many of the matrices that we consider in this thesis are SPD and hence the
characterisation of the condition number given by Theorem 3.1.20 will be used
throughout.

3.2 The conjugate gradient method

Suppose we want to solve the problem

Ax = b (3.22)

for some symmetric, positive definite matrix A ∈ Rn×n, data b ∈ Rn and x ∈ Rn

unknown. The conjugate gradient method is a Krylov subspace method that can be
used to iteratively solve the system of linear equations given by the problem (3.22). It
makes use of gradient information in order to take optimal steps towards the
minimum of a quadratic function. At each stage, the algorithm finds the direction
that is orthogonal with respect to A to previous search directions. This means that
convergence occurs in a maximum of n iterations in exact arithmetic, where n is the
dimension of the problem [Gill et al., 1986]. We note however, that for computational
implementations search directions may not be perfectly conjugate, and therefore more
than n iterations may be required to reach a desired tolerance [Gill et al., 1986].
Convergence speed is affected by the eigenvalue structure of A. For applications,
typical values of n are large (e.g. 109 for NWP [Carrassi et al., 2018]), meaning that
the permitted number of iterations must be much smaller than n for a tractable
problem.

We can consider the linearised variational objective function as a problem of the form
(3.22), where the Hessian of the linearised objective function (2.6), (2.5) replaces A in
(3.22). This formulation is derived explicitly in [Haben, 2011, Sec 3.2], and will be
used for experiments studying convergence of a conjugate gradient method in
Chapters 5, 6 and 7.

We now define the conjugate gradient method.

Definition 3.2.1 (Conjugate gradient method). [Trefethen and Bau, 1997] To apply
the conjugate gradient method to the system (3.22) for a given tolerance, τ , we define
the residual as rk = Axk − b, and the search direction as pk for step k. For k = 0 let
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x0 = 0, r0 = b and p0 = r0. While ‖rk‖ > τ :

αk+1 = ‖rk‖2
2

pTkApk
xk+1 = xk + αk+1pk
rk+1 = rk − αk+1Apk

βk+1 = ‖rk+1‖2
2

‖rk‖2
2

pk+1 = βk+1pk + rk+1

k = k + 1.

(3.23)

The procedure given by Definition 3.2.1 enforces A−conjugacy between search
directions pk, which ensures rapid convergence of this method compared to other
gradient descent methods. We can provide bounds on the convergence of the
conjugate gradient method in terms of the condition number of A.

Theorem 3.2.2. Let A be a SPD matrix with condition number κ. Let e0 = Ax0 − b
denote the initial error, and ek denote the error at iteration k of the conjugate
gradient method given by Definition 3.2.1. Then the A-norms of the error satisfy

‖ek‖A

‖e0‖A
≤ 2/

(√κ+ 1√
κ− 1

)k
+
(√

κ+ 1√
κ− 1

)−k ≤ 2
(√

κ− 1√
κ+ 1

)k
. (3.24)

Proof. [Trefethen and Bau, 1997, Theorem 38.5]

The bounds given by Theorem 3.2.2 are not tight. In particular, there are well known
cases where convergence is much faster than the upper bound given by the condition
number. These depend on other properties of eigenvalues that are not ‘measured’ by
condition number e.g. repeated eigenvalues and eigenvalues that are closely grouped
together.

We can obtain tighter bounds on the convergence of the conjugate gradient method.
However, these typically require knowledge of the entire spectrum of A and are often
harder to compute. An example of a sharp bound is given by the following theorem.

Theorem 3.2.3. Let Pk be the set of polynomials of degree k with p(0) = 1. If the
conjugate gradient algorithm given by Definition 3.2.1 with e0 = Ax0 − b has not
converged before step k, then the problem

min
pk∈Pk

||pk(A)e0|| (3.25)
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has a unique solution, and the iterate xk has error ek = pk(A)e0 for this same
polynomial pk. Consequently we have

‖ek‖A

‖e0‖A
= inf

p∈Pk

‖p(A)e0‖A

‖e0‖A
≤ inf

p∈Pk

max
λ∈Λ(A)

|p(λ)|, (3.26)

where Λ(A) denotes the spectrum of A.

Proof. Trefethen and Bau [1997, Theorem 38.3]

From this result, we see that in the case of clustered eigenvalues, we obtain much
faster convergence that might be predicted by the condition number alone given by
the result of Theorem 3.2.2. The intuition behind this result is that for a matrix with
eigenvalues that occur in r clusters we can construct a polynomial Pr−1 such that
(1 + λPr−1(λ)) has zeroes inside each cluster. For repeated eigenvalues the polynomial
will vanish, but for clustered eigenvalues the value of the polynomial will be small and
hence the upper bound of (3.26) will be small for values of k ≥ r − 1 [Axelsson, 1996].

Theorem 3.2.4. If A has only n distinct eigenvalues, then the CG iteration
converges in at most n steps in exact arithmetic.

Proof. Gill et al. [1986, Theorem 38.4]

This is a special case of Theorem 3.2.3.

3.3 Results on eigenvalues

In Chapters 5 and 6 we will develop bounds on the condition number of the Hessian of
the variational cost function, separating the contribution of each of the constituent
matrices. In order to simplify these bounds, we will exploit properties of the
covariance matrices, B and R. In Section 3.4 we will show that correlation matrices
are symmetric positive semi-definite. For the theoretical and numerical results that
follow we will restrict our attention to strictly positive definite covariance matrices.
This allows us to use the formulation of the condition number given by Theorem
3.1.20, in terms of the eigenvalues of the matrix. It is therefore of interest to consider
results which allow us to write the eigenvalues of products and sums of matrices in
terms of the eigenvalues of the individual matrices.

We begin by presenting a result on the eigenvalues of the inverse of a matrix, A. This
result will be used to express the eigenvalues of inverse error covariance matrices in
terms of the eigenvalues of the original error covariance matrices.
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Theorem 3.3.1 (Eigenvalues of the matrix inverse). Let A ∈ Rn×n have eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λn. If A is non-singular then the eigenvalues of A−1 are given by
1/λi for i = 1, 2, 3, . . . , n. In particular

λn(A−1) = 1
λ1(A) (3.27)

λ1(A−1) = 1
λn(A) . (3.28)

Proof. [Bernstein, 2009, Fact 5.11.14]

The next result shows that if two matrices are conformable, exchanging the order of
multiplication preserves the values of the non-zero eigenvalues.

Theorem 3.3.2 (Eigenvalues of product). If B ∈ Rm×n and A ∈ Rn×m then AB and
BA have the same non-zero eigenvalues.

Proof. See [Harville, 1997, Theorem 21.10.1].

We now present bounds on the eigenvalues of the sum of two symmetric matrices in
terms of the eigenvalues of the individual matrices. This result allows us to separate
the contribution of the observation and background terms when bounding the
condition numbers of (2.6) and (2.19).

Theorem 3.3.3. Consider two symmetric matrices S1, S2 ∈ RN×N . The kth

eigenvalue of the matrix sum S1 + S2 satisfies the following:

λk(S1) + λN(S2) ≤ λk(S1 + S2) ≤ λk(S1) + λ1(S2). (3.29)

Proof. See [Wilkinson, 1965, Ch. 2 Thm 44].

We note that in the case that S2 is rank-deficient, as is the case for the second terms
of (2.6) and (2.19), the lower bound of (3.29) will simplify to λk(S1).

The following theorem bounds the eigenvalues of a matrix product above in terms of
the eigenvalues of the constituent matrices. This result will be used to separate the
contribution of the observation error covariance matrix from the observation operator
in the second term of (2.6).

Theorem 3.3.4. If F,G ∈ CN×N are positive semi-definite Hermitian matrices, then

k∏
i=1

λi(FG) ≤
k∏
i=1

λi(F)λi(G), k = 1, . . . , N − 1. (3.30)
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Proof. See [Marshall et al., 2011, Sec. 9 H.1.a.].

Two similar results allows us to bound the eigenvalues of a matrix product below in
terms of products of the eigenvalues of the individual matrices.

Theorem 3.3.5. If F,G ∈ CN×N are positive semi-definite Hermitian and
1 ≤ i1 < · · · < ik ≤ N , then

k∏
t=1

λt(FG) ≥
k∏
t=1

λit(F)λN−it+1(G), (3.31)

with equality for k = N .

Proof. See Wang and Zhang [1992, Theorem 2].

Theorem 3.3.6. If F,G ∈ CN×N are positive semi-definite Hermitian and
1 ≤ i1 < · · · < ik ≤ N , then

k∑
t=1

λit(FG) ≥
k∑
t=1

λit(F)λN−t+1(G). (3.32)

Proof. See Wang and Zhang [1992, Theorem 4].

Finally we introduce the Rayleigh quotient, which can be used to estimate the
eigenvalues of any symmetric matrix.

Definition 3.3.7. For a symmetric matrix A ∈ Rn×n the Rayleigh quotient is given by

RS(x) = x†Ax
x†x

, (3.33)

for x ∈ Cn, where x† denotes the conjugate transpose of x.

An important property of the Rayleigh quotient (3.33) is the fact that it is bounded
by the eigenvalues of A.

Theorem 3.3.8. Let A ∈ RN×N be a symmetric matrix. For any value of x ∈ CN ,
the Rayleigh quotient is bounded by

λN(A) ≤ RS(x) ≤ λ1(A). (3.34)

Proof. [Süli and Mayer, 2003, Sec 5.9]
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We can see that the lower and upper bounds are achieved when x is chosen in (3.33)
such that it is the eigenvector corresponding to the smallest and largest eigenvalue of
A respectively. This property will be used to develop tighter bounds for specific
observation networks in Chapter 5.

3.4 Matrix structures

The theoretical results presented in later chapters will exploit the special properties of
some matrix structures that are of particular interest for the variational data
assimilation problem. We now introduce some of these structures and their properties.
We begin by formally defining covariance matrices, which are the backbone of this
thesis. For a given random vector the covariance matrix is defined probabilistically in
Schott [2016, Sec 1.13]. The covariance matrix contains information about variances
and correlations between different random variables.

Definition 3.4.1. A covariance matrix, R ∈ Rp×p, is a symmetric positive
semi-definite matrix.

Although a covariance matrix can be semi-definite, for practical applications we
restrict our attention to strictly positive definite matrices. In the variational data
assimilation problems (2.5) and (2.7), inverse error covariance matrices are used as
weighting matrices. This means that the matrix must be strictly positive definite in
order for its inverse to be well-defined.

We often wish to consider covariance information in terms of variances and
correlations separately. These can be calculated from the original covariance matrix
via the following formulae.

Definition 3.4.2. Given a covariance matrix, the entries of the corresponding matrix
of standard deviations are given by

Σ(i, i) =
√

(R(i, i)). (3.35)

Variances are given by the square of standard deviations.

This definition implicitly requires that variances are non-negative.

Definition 3.4.3. Given a covariance matrix, the entries of the corresponding
correlation matrix are given by

C(i, j)R(i, j)
=

√
R(i, i)

√
R(j, j). (3.36)
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By this definition the diagonal entries of any correlation matrix must be units. This
means that any symmetric, positive semi-definite matrix with units on the diagonal is
a correlation matrix [Higham, 2002].

In the case that correlations are homogeneous and isotropic (i.e. only the distance
between two points determines the correlation between them) circulant matrices arise
naturally. These have a special structure where the matrix is fully determined by its
first row. Each subsequent row is a cyclic permutation of the first row. Circulant
matrices arise as correlation matrices for spatial statistics on an equally spaced
periodic domain, and will be used in Chapter 5 to construct the covariance matrices
for the numerical experiments.

Definition 3.4.4 (Davis [1979]). A circulant matrix D ∈ RN×N is a matrix of the
form

D =



d0 d1 d2 · · · dN−2 dN−1

dN−1 d0 d1 · · · dN−3 dN−2

dN−2 dN−1 d0 · · · dN−4 dN−3
... ... ... . . . ... ...
d2 d3 d4 · · · d0 d1

d1 d2 d3 · · · dN−1 d0


.

Circulant matrices have various properties which are useful for applications and
numerical experiments. Firstly, both eigenvalues and eigenvectors can be calculated
via a discrete Fourier transform [Gray, 2006]. In practice, this means we can calculate
the eigenvalues of D directly via the following formula using a fast Fourier transform.

Theorem 3.4.5. The eigenvalues of a circulant matrix D ∈ RN×N , as given by
Definition 3.4.4, are given by

γm =
N−1∑
k=0

dkω
mk, (3.37)

with corresponding eigenvectors

vm = 1√
N

(1, ωm, · · · , ωm(N−1)), (3.38)

where ω = e−2πi/N is an N−th root of unity.

Proof. See Gray [2006] for full derivation.

To avoid confusion, for the remainder of this thesis the eigenvalues of a circulant
matrix calculated using (3.37) will be denoted by γj rather than λj. This distinction
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is made as the ordering of eigenvalues given by (3.37) is given by wavenumber rather
than size. We can see from (3.38) that the eigenvectors only depend on N , the
dimension of the circulant matrix. Therefore any two circulant matrices of the same
dimension will have the same set of eigenvectors.

Theorem 3.4.6. The transpose, inverses, products and sums of circulant matrices
are themselves circulant.

Proof. Davis [1979, Thm 3.1.1, Thm 3.2.3, Thm 3.2.4]

Circulant correlation matrices can be constructed using known correlation functions.
One such function that will be used in this thesis is the second-order auto-regressive
(SOAR) correlation function [Daley, 1991]. This is a homogeneous and isotropic
function and naturally extends to a circulant form when we have equally spaced
observations on a periodic domain, such as a latitude circle on the Earth. The long
tails of this correlation function are suitable for estimating horizontal spatial
correlations, and make SOAR a popular choice at NWP centres [Thiebaux, 1976,
Stewart et al., 2013, Simonin et al., 2014, Waller et al., 2016c, Fowler et al., 2018,
Tabeart et al., 2018].

We begin by defining the SOAR correlation function for two points on a real line
separated by a distance, r.

Definition 3.4.7. The second-order auto-regressive correlation function is given by

ρS(r) =
(

1 + |r|
L

)
exp

(
−|r|
L

)
, (3.39)

where r ∈ R is the distance between two points, and L > 0 is the correlation
lengthscale.

This correlation function on the real line can then be transformed into an error
correlation matrix on the circle. In particular we consider a 1D model with variables
given by equally spaced gridpoints on the circle with radius r = a. In order to obtain
a valid correlation model on the circle, we follow the procedure described in Haben
[2011] and Waller et al. [2016b]. This substitutes a chordal distance for a ‘great circle
distance’; as discussed in Gaspari and Cohn [1999] and Jeong and Jun [2015]. This
substitution is necessary to ensure the resulting covariance matrix is positive definite.
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Definition 3.4.8. The SOAR error correlation matrix on the finite domain is given
by

D(i, j) =
1 +

∣∣∣∣2a sin
(
θi,j

2

)∣∣∣∣
L

 exp
−

∣∣∣∣2a sin
(
θi,j

2

)∣∣∣∣
L

, (3.40)

where L > 0 is the correlation lengthscale, θi,j denotes the angle between grid points i
and j, and a is the radius of the domain. The chordal distance between adjacent grid
points is given by

∆x = 2a sin
(
θ

2

)
= 2a sin

(
π

N

)
, (3.41)

where N is the number of gridpoints and θ = 2π
N

is the angle between adjacent
gridpoints.

The same procedure can be used to transform other correlation functions on the
straight line into valid covariance models on circular domains.

3.5 Summary

In this chapter we introduced the concept of conditioning and the characterisation of
the condition number in the case of symmetric positive definite matrices. We also
presented a variety of results on the eigenvalues of products and sums of matrices.
These results permit separation in terms of the eigenvalues of the constituent
matrices, and will be used in the Chapters 5 and 6 to understand how each
constituent matrix influences the conditioning of the Hessians (2.6) and (2.19). We
introduced the conjugate gradient method, and showed how the condition number can
be used to develop simple bounds on convergence. Finally we described key matrix
structures that will be exploited in the numerical experiments that follow (see
Chapters 5, 6 and 7). In the next chapter, we describe how the conditioning of the
Hessian of the objective function can be used as a proxy to study convergence of the
minimisation problem.
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Chapter 4

The study of conditioning and
introduction of correlated
observation error

In this chapter we discuss how the conditioning of the Hessian of the data assimilation
objective function can be studied as a proxy for convergence of its minimisation
(Section 4.1). In Section 4.2 we present previous work on the conditioning of the
Hessian in the case of uncorrelated observation error covariance matrices and describe
how these results will be extended to consider the case of correlated observation error
covariance matrices in subsequent chapters. In Chapter 2 we motivated the
importance of including correlated observation error covariance matrices at NWP
centres. In Section 4.3 we discuss computational issues related to convergence of the
minimisation problem that have occurred when correlated observation errors have
been introduced at operational NWP centres.

4.1 Using conditioning as a proxy for convergence

In operational systems, it is vital to ensure that convergence of the minimisation of
the variational data assimilation problem is fast enough to ensure timely forecasts. At
many meteorological centres, new forecasts are produced multiple times per day
[Rawlins et al., 2007], with a very small proportion of the computing time being
allocated to the data assimilation procedure. For example the first implementation of
4D-Var at the Met Office required 12 minutes to complete the global data assimilation
routine [Rawlins et al., 2007], and a more recent implementation of 3D-Var with
FGAT took around 4.5 minutes to complete for the UKV limited-area model [Simonin
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et al., 2019]. In applications, timeliness of forecasts is paramount, meaning that
although improvements to data assimilation algorithms and the associated
improvements to initial conditions are desirable, they are not prioritised over
computational efficiency [Isaksen, 2012]. It is therefore of interest to study how
changes to data assimilation algorithms are likely to alter convergence of the
minimisation procedure, to ensure that proposed improvements will not result in
slower convergence.

Studying convergence directly is difficult, because it is expensive to run a full data
assimilation procedure multiple times. Additionally, complicated systems can make it
difficult to isolate the impacts of changing a single component. In order to get a
better understanding of the likely effects of broad changes to an algorithm, it
therefore makes sense to consider simplified systems, and to develop theory that can
be applied or extended to a specific system of interest. This motivates our use of the
condition number of the Hessian of the variational data assimilation objective
function as a proxy for convergence of the minimisation problem. In Chapter 3 we
defined the condition number, and described how it can be used to bound the
convergence of a conjugate gradient problem, as well as to understand how sensitive a
system of interest is to perturbations of the initial condition. We also discussed the
limitations of these bounds on convergence, particularly in the case of repeated or
clustered eigenvalues. However, if the eigenvalues of the Hessian are available then the
condition number is cheap to compute. Studying how the conditioning of the Hessian
changes with alterations to the data assimilation system can provide insight into how
convergence is likely to be affected.

4.2 Previous bounds on the condition number of
the Hessian for variational data assimilation
problems

Haben [2011], Haben et al. [2011a,b] studied the conditioning of the Hessian of the
variational objective function as proxy for convergence of the minimisation problem.
Haben [2011] developed bounds on the condition number of the Hessian of the 3D-Var
and 4D-Var objective functions which separated the contribution of the background
and observation error covariance matrices. Separate bounds were developed for the
unpreconditioned and preconditioned problems, but similar techniques were used for

37



Section 4.2 Page 38

both cases. General bounds which apply to any choice of background and observation
error covariance matrix, and any linear observation operator were given, but not
studied numerically. Tighter bounds were established and studied numerically for
uncorrelated observation error covariances and direct observations.

We now present a bound on the condition number of the unpreconditioned 3D-Var
Hessian (2.6) that was given in Haben et al. [2011a], Haben [2011]. This bound
applies to the case of direct observations and uncorrelated observation errors, so will
not apply to a general data assimilation problem. Further bounds on the condition
number of the Hessian proven by Haben [2011] are presented in Chapters 5 and 6 for
the unpreconditioned 3D-Var problem and the general preconditioned 3D-Var problem
respectively.

Theorem 4.2.1. Let B = σ2
bC ∈ RN×N and R = σ2

oIp where C is a symmetric
positive-definite circulant matrix, Ip ∈ Rp×p is the identity matrix and σ2

b and σ2
o are

positive scalars. In addition let HTH be a diagonal matrix with p < N units on the
diagonal and the remaining elements zero. Defining S = B−1 + HTR−1H, the
following bounds on the condition number hold

 1 + p
N

σ2
b

σ2
o
λmin(C)

1 + p
N

σ2
b

σ2
o
λmax(C)

κ(C) ≤ κ(S) ≤
(

1 +
(
σ2
b

σ2
o

)
λmin(C)

)
κ(C) (4.1)

where λmax and λmin are the largest and smallest eigenvalues respectively of the matrix
C.

Proof. [Haben, 2011, Theorem 6.1.2]

The behaviour of (4.1) was studied numerically in Haben [2011]. Experimental study
of these bounds provided insight into how convergence is likely to change with
alterations to the data assimilation system. In particular the impact of changing
background error lengthscales, and the number and distribution of observations on
(4.1) were considered. The key findings of Haben [2011] were that in the
unpreconditioned data assimilation case:

• Increasing the lengthscale of the background error correlations increases the
condition number of the Hessian.

Numerical experiments also revealed that in the preconditioned setting:

• Increasing the accuracy of observations increases the condition number of the
Hessian.

38



Section 4.2 Page 39

• Increasing the number of observations increases the condition number of the
Hessian.

• Increasing the density of observations increases the condition number of the
Hessian.

Additionally, Haben [2011] studied the impact of changing the data assimilation
system on convergence of the conjugate gradient method. Changes which increased
the condition number of the Hessian also resulted in worse convergence of the
conjugate gradient method. Therefore, in this specific setting studying the condition
number of the Hessian is a good proxy for the qualitative changes to convergence of
the associated minimisation with changes to the data assimilation system.

However, there are limitations to the results presented in Haben [2011], Haben et al.
[2011a,b]. The bounds that were studied numerically exploited the particular
structures of the specific experimental framework, meaning that they are no longer
general. Some of these assumptions are not realistic for applications. In particular:

• Observation errors were assumed to be uncorrelated. We discussed why the use
of correlated observation error covariance matrices is important for NWP
applications in Section 2.3.

• The observation operator was restricted to direct observations only. Indirect
observations occur frequently: observations of a meteorological variable of
interest can be made at a different location to the state variables, and for
satellite instruments there is a nonlinear relationship between measurements of
brightness temperature and meteorological variables in state space.

• The background error covariance matrix was assumed to be circulant. This
assumption holds for uniform spatial correlations on a uniform grid, which is
often the case for horizontal background error covariances, but will not be true
in the case of non uniform grids, such as for vertical correlations.

The numerical experiments presented in Chapters 5 and 6 will make use of circulant
background error covariances matrices. Observation error covariance matrices will be
assumed to be correlated, and our experiments will consider a range of observation
operators which correspond to direct and indirect observations.

The numerical and theoretical investigation of Haben [2011] also focussed on spatially
correlated background errors. While background errors are often spatially correlated
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in practice, observation error covariances can have spatial, temporal and interchannel
correlations depending on the instrument. In this thesis we will consider both spatial
and interchannel observation error covariances theoretically and numerically. We will
develop explicit bounds for the case of correlated observation error covariance
matrices, using similar techniques to those introduced in Haben [2011] to separate the
contribution of observation and background error terms in (2.6) and (2.19) (see
Chapters 5 and 6 respectively).

4.3 Convergence issues when using correlated
OEC matrices at NWP centres

In Section 2.4 we discussed some of the known computational issues with estimates
obtained using the DBCP diagnostic. Many of these issues are due to the fact that as
a sampling method, it can fail to sample the full eigenspace of the true correlation
matrix. Errors due to undersampling can manifest as very small eigenvalues, resulting
in estimated covariance matrices that are numerically close to singular and hence very
ill-conditioned [Higham et al., 2016]. Additionally, sampling methods recover matrices
that do not satisfy the properties of covariance matrices, i.e. are not symmetric or
positive definite [Ledoit and Wolf, 2004]. This has been show to occur for the DBCP
diagnostic [Stewart et al., 2008a], and makes it difficult to use the iterative method in
some situations [Ménard, 2016]. Thus, in order to use these sample-based estimates in
the data assimilation system, they must be transformed by symmetrising and ensuring
that all eigenvalues are strictly positive.

Typically users symmetrise the estimated observation error covariance matrix via
(R + RT )/2. To solve the problem of negative eigenvalues, Weston [2011] proposed
making all small negative or zero eigenvalues small and positive. Other studies had
similar problems, with Gauthier et al. [2018] finding negative variance values, and
Bennitt et al. [2017] estimating correlation values larger than one. In the case of
Gauthier et al. [2018] this motivated the use of the iterative diagnostic rather than
performing a single step of the DBCP diagnostic. Bennitt et al. [2017] proposed
comparing the results of the DBCP estimate with those from alternative diagnostic
techniques, or using estimates to provide insight into error statistics rather than
directly using the resulting covariance matrices in data assimilation systems.

Even matrices which are symmetric and positive definite, and hence are valid
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covariance matrices, can cause computational difficulties. Weston [2011] proposed two
methods of ‘reconditioning’ to increase small eigenvalues, and mitigate the slow
convergence associated with ill-conditioned sample covariance matrices. This reduces
the condition number of an OEC matrix, and improves the convergence of a data
assimilation procedure. Two potential methods of reconditioning were considered
[Weston, 2011, Weston et al., 2014]. The first of these methods, which will be referred
to as the ridge regression method in this thesis, applies additive inflation to the
diagonal of the OEC matrix. The second method, which will be referred to as the
minimum eigenvalue method, alters eigenvalues that are below a given threshold.
Both of these methods will be studied theoretically for the first time in Chapter 7.
Other methods of reconditioning that will not be considered in this work include
thresholding [Bickel and Levina, 2008], localisation [Horn, 1991, Ménétrier et al.,
2015, Smith et al., 2018] linear shrinkage [Ledoit and Wolf, 2004] and regularisation
methods such as the Lasso penalty technique [Pourahmadi, 2013]. Many other centres
have needed to adapt the results of the DBCP diagnostic prior to their use in
operational data assimilation systems, (e.g. Bormann et al. [2015, 2016], Campbell
et al. [2017]). This will be discussed further in Chapter 7.

To date, many of the studies of correlated OEC matrices in NWP systems have been
empirical. This especially applies to the adjustment of estimated covariance matrices
that is required when using the DBCP diagnostic [Weston, 2011, Weston et al., 2014,
Bormann et al., 2015]. Often reconditioning methods have only been compared in
terms of changes to convergence of the data assimilation algorithm, rather than the
theoretical impact on the covariance matrices themselves. In Chapter 7 we will
theoretically prove how standard deviations and correlations are changed by two
commonly used methods of reconditioning, as well as comparing them against variance
inflation, which is commonly used to account for missing correlation information.

4.4 Summary

In this chapter we described how the condition number of the Hessian can be used to
study the convergence of a data assimilation problem. We discussed previous work
where bounds on the condition number of the Hessian in terms of its constituent
components were used to make qualitative conclusions about the effect of altering the
data assimilation system. However many of these results considered the case of
uncorrelated OEC matrices. In recent years the use of correlated observation errors at
meteorological centres has expanded, with the popularisation of the DBCP diagnostic.
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However, this diagnostic has theoretical and practical limitations. We wish to
understand how the use of correlated OEC matrices alters the conclusions of Haben
[2011], and whether theory can provide insights into methods that can be used to
include correlated OEC matrices in data assimilation systems without negatively
impacting convergence speed. In the next chapter we apply similar methods to those
of Haben [2011] to develop new bounds on the condition number of the Hessian of the
unpreconditioned variational data assimilation objective function in the case of
correlated observation error covariance matrices.

42



Chapter 5

The conditioning of least squares
problems in variational data
assimilation

In this chapter we answer RQ 1 from Chapter 1 and consider how the introduction of
correlated observation error affects the conditioning of the Hessian of the
unpreconditioned variational data assimilation problem. We develop theoretical
bounds on the condition number of the Hessian to understand the impact of changing
the observation error covariance matrix. We wish to know

• How are these bounds affected by changes to the observation error covariance
matrix? ?

• How tight are the new bounds for an idealised numerical framework?

• How well does the behaviour of the condition number of the Hessian represent
convergence of the conjugate gradient method numerically?

The remainder of this chapter, excluding the chapter summary (Section 5.10) is
strongly based on the paper: Tabeart J. M., Dance S. L., Haben S. A., Lawless A. S.,
Nichols N. K., Waller J. A. The conditioning of least-squares problems in variational
data assimilation. Numerical Linear Algebra with Applications. 2018;25:e2165.
https://doi.org/10.1002/nla.2165.

5.1 Abstract

In variational data assimilation a least squares objective function is minimised to
obtain the most likely state of a dynamical system. This objective function combines
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observation and prior (or background) data weighted by their respective error
statistics. In numerical weather prediction (NWP), data assimilation is used to
estimate the current atmospheric state, which then serves as an initial condition for a
forecast. New developments in the treatment of observation uncertainties have
recently been shown to cause convergence problems for this least squares
minimization. This is important for operational NWP centres due to the time
constraints of producing regular forecasts. The condition number of the Hessian of the
objective function can be used as a proxy to investigate the speed of convergence of
the least squares minimisation. In this chapter we develop novel theoretical bounds on
the condition number of the Hessian. These new bounds depend on the minimum
eigenvalue of the observation error covariance matrix, and the ratio of background
error variance to observation error variance. Numerical tests in a linear setting show
that the location of observation measurements has an important effect on the
condition number of the Hessian. We identify that the conditioning of the problem is
related to the complex interactions between observation error covariance and
background error covariance matrices. Increased understanding of the role of each
constituent matrix in the conditioning of the Hessian will prove useful for informing
the choice of correlated observation error covariance matrix and observation location,
particularly for practical applications.

5.2 Introduction

Data assimilation combines output from a numerical model of a dynamical system,
the background or prior, with observations of the system to yield an accurate
description of the current dynamical state (analysis). Contributions from observations
and the background are weighted according to their relative uncertainty via error
covariance matrices, meaning that assessing and quantifying observation error is
crucial in order to obtain an accurate analysis sufficiently quickly [Buehner, 2010,
Janjić et al., 2018]. One of the most well known applications of data assimilation is to
numerical weather prediction (NWP), where observations of the atmosphere and
ocean are combined with a prior model state of the atmosphere in order to produce
the initial conditions for a weather forecast. Until recently, diagonal observation error
covariance matrices have been used operationally at all major NWP centres [Weston,
2011], a choice that is only valid in the case that observation errors are uncorrelated.
It has been shown that implementing diagonal error covariance matrices
inappropriately, i.e. when error correlations are non-zero, may lead to suboptimal
results [Rainwater et al., 2015, Stewart et al., 2008b, Stewart, 2010, Stewart et al.,
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2013, Waller et al., 2014a]. However, using diagnosed full observation error covariance
matrices directly in the assimilation has been shown to cause problems with the speed
of convergence of the assimilation scheme [Weston et al., 2014].

Variational assimilation, a popular data assimilation method [Haben et al., 2011b,
Rawlins et al., 2007, Clayton et al., 2013], finds the analysis by minimising a nonlinear
least squares objective function. This objective function, which is dependent on both
observations and the background field, is minimised by an iterative method, such as
the Gauss-Newton method [Lawless et al., 2005a, Gratton et al., 2007]. This consists
of an outer loop that solves the full non-linear problem, and an inner loop that solves
the linearised problem, often via a conjugate gradient method [Lawless et al., 2005b].
The conditioning of the Hessian matrix of the objective function provides a bound on
the rate of convergence of the conjugate gradient minimization [Haben, 2011, Gill
et al., 1986, Golub and Van Loan, 1996]. Hence it can be used as a rough estimate for
the number of iterations needed to solve the inner loop problem. We note however,
that this worst case bound on convergence can be improved on significantly in the
case of clustered eigenvalues [Gill et al., 1986, Nocedal, 2006]. The magnitude of the
condition number also provides an indication of the sensitivity of the system to
perturbations in the data [Haben et al., 2011b]. Speed of convergence is critical in
practice due to the need to provide timely forecasts. In this work we investigate how
introducing correlated observation errors affects the condition number of the Hessian
and examine the associated speed of convergence of a conjugate gradient method.

Correlated observation error statistics have been diagnosed for certain observation
types e.g. Waller et al. [2016c], Bormann et al. [2016], Campbell et al. [2017], Waller
et al. [2016a], Bormann et al. [2003, 2011], Stewart et al. [2014], Cordoba et al. [2017],
although there are problems associated with their use. In particular, the methods
used to diagnose observation error covariance matrices are imperfect, and the quality
of these estimates is unclear. Due to unknown observation error statistics and in order
to reduce the computational cost of operational assimilation, in practice the majority
of observation errors are assumed uncorrelated. However, empirical evidence from
simple model experiments indicate that even approximate correlation structures give
significant benefit in terms of analysis accuracy [Stewart et al., 2013, Healy and
White, 2005]. Similar conclusions can be drawn for practical implementations
[Rainwater et al., 2015].

In Stewart [2010] and Stewart et al. [2014] it was shown that there were problems
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with the use of diagonal observation error covariance matrices in the variational data
assimilation for certain instruments. Motivated by this work, in 2011 the UK Met
Office first trialled the use of correlated observation errors in their operational system
[Weston, 2011]. However, there were problems with the convergence of the
minimisation algorithm which necessitated ‘reconditioning’ of observation error
covariance matrices (by altering their eigenvalues), prior to their use in the system. In
Weston [2011] and Weston et al. [2014] it was suggested that slow convergence was
caused by the very small minimum eigenvalues of the diagnosed observation error
covariance matrix. This work provides motivation to investigate further the role of the
minimum eigenvalue of the observation error covariance matrix on the conditioning of
the variational data assimilation problem; in turn, developing this crucial
understanding will permit optimal use of correlated observation errors in data
assimilation systems.

Even in the case of uncorrelated observation errors, the minimisation problem for any
large system is very ill-conditioned. Preconditioning, where the original problem is
transformed into an equivalent but less ill-conditioned problem, is used operationally
to mitigate against slow convergence of the minimisation [Brown et al., 2016]. In data
assimilation the most common method of preconditioning is the Control Variable
Transform (CVT) [Haben, 2011, Bannister, 2008], where the preconditioner is based
on the background error covariance matrix. The optimal choice of preconditioning
depends on the formulation of the data assimilation problem [Dollar et al., 2010], and
practical constraints may require the use of a less computationally intensive
preconditioner [Pestana and Wathen, 2015]. In this work an unpreconditioned
framework will be used, as it is unknown whether the introduction of correlated
observation errors will alter the optimal choice of preconditioner. This framework also
has practical relevance, as the UK Met Office uses an unpreconditioned 1D-Var
routine, where each observation is assimilated individually, for quality control
purposes. Hence, the bounds and conclusions presented here will apply directly to
that case.

In this article we develop new theory for bounding the condition number of the
Hessian of the least squares objective function. This theory applies to both
uncorrelated and correlated choices of observation error. We investigate the impact of
introducing these correlations via small-scale numerical tests which illustrate the
influence of observation correlations associated with a physical lengthscale. We begin
in Section 5.3 by defining notation common to data assimilation and the condition
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number. We explain why the conditioning of the system and the rate of convergence
of the minimisation are linked and present results from linear algebra that will be
used to construct the bounds discussed in Section 5.4. Three new sets of bounds will
be introduced in Section 5.4; these will have a varying number of additional
constraints on the constituent matrices. Bounds which separate the contribution of
each of the constituent terms have been developed for both general matrices and
matrices with additional assumptions on observation location and observation error
correlations. In Section 5.5 we discuss our numerical framework for the experiments of
Section 5.6. The results of these numerical tests support the theoretical conclusions
presented in Section 5.4. In particular we see that the minimum eigenvalue of the
observation error covariance matrix and the ratio of background variance to
observation variance are important terms for controlling the conditioning of the
variational problem for both the bounds in Section 5.4 and the numerical results from
Section 5.6. We conclude in Section 5.7 that even in a simple linear setting, the choice
of observation operator has a significant effect on the conditioning. The theoretical
conclusions indicate how correlated error statistics in the observation and background
can be expected to interact, as well as highlighting areas where reconditioning and
similar techniques could be used to reduce the increased computational cost
associated with using correlated observation errors operationally. Although the
primary motivation for the investigation of the impact of correlated observation errors
arises from their application in meteorology, the theory and conclusions presented
here are very general and apply to any other application of variational data
assimilation such as neuroscience [Nakamura and Potthast, 2015, Schiff, 2011] and
ecology [Pinnington et al., 2016, 2017].

5.3 Variational assimilation and Condition number

5.3.1 Notation

In data assimilation, information from observations, y ∈ Rp, is combined with
information from a background, or ‘prior’, field, xb ∈ RN . The analysis, xa ∈ RN , or
posterior, is found by weighting each of the two components using their respective
error statistics. It is assumed that observation errors and background errors are
unbiased and mutually uncorrelated. The background and observation error
covariance matrices are denoted by the symmetric positive semi-definite matrices
B ∈ RN×N and R ∈ Rp×p respectively (although in practice we assume B and R are
positive definite matrices). Usually there are far fewer observations than state
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variables, i.e. p� N . Observation and background information may describe different
variables or be situated at different locations in space. The observation operator
h : RN → Rp, which may be nonlinear, is used to map from state space to observation
space to allow comparison of observations with the background; in particular y will be
compared to h[x].

For variational assimilation methods, the analysis is found by minimising an objective
function. In this work we focus on 3D-Var, a particular variational assimilation
method, which assimilates variables at a single fixed time in the assimilation window
over the entire spatial domain [Apte et al., 2008]. In the case of 3D-Var the objective
function is given by:

J(x) = 1
2(x− xb)TB−1(x− xb) + 1

2(y− h[x])TR−1(y− h[x]). (5.1)

The state vector xa that minimises this objective function is then used as the initial
condition to produce a forecast. When h is linear this equation has an analytic
solution [Haben, 2011, eq 2.4], but (5.1) is too expensive to be solved explicitly on an
operational scale. In NWP, where observation operators can be nonlinear as well as
high-dimensional, a gradient descent algorithm, such as the Gauss-Newton method, is
used to solve a sequence of linearised problems, in order to converge iteratively to the
solution, xa [Haben et al., 2011b]. We note that xa corresponds to the maximum a
posteriori estimate under the assumption that all probability distributions are
Gaussian [Cotter et al., 2012, Rodgers, 2000].

5.3.2 Condition Number

In practice, to solve the nonlinear problem, the Gauss Newton method is used to solve
a sequence of linearised problems, often via a conjugate gradient method [Brown
et al., 2016]. We will now consider the linearised problem, where the nonlinear
problem given by (5.1) is linearised about xa, the optimal solution.

As the linearisation of (5.1) is a quadratic function [Apte et al., 2008], finding xa is
equivalent to solving a linear system of the form

Sw = b, (5.2)

where w ∈ RN and b ∈ RN is given by (3.10) of [Haben, 2011, Sec 3.2]. (This
formulation will be used in numerical experiments in Section 5.6). Here S ∈ RN×N is
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the Hessian of the linearisation of the objective function (5.1) given by

S = B−1 + HTR−1H, (5.3)

where H ∈ Rp×N is the Jacobian of the observation operator h linearised about the
optimal state. The Hessian can be used to study the sensitivity of the solution to
small changes in observation or background data, by considering its condition number
[Golub and Van Loan, 1996, Sec 2.7]. As B and R are symmetric positive definite, S
is also symmetric positive definite and hence the L2 condition number of S can be
represented in terms of its eigenvalues.

5.3.3 Eigenvalue theory

For the remainder of the chapter the following ordering of eigenvalues of matrix D
will be used: For a matrix D ∈ RN×N , let

λmax(D) = λ1(D) ≥ λ2(D) ≥ · · · ≥ λN(D) = λmin(D). (5.4)

Theorem 5.3.1. If S ∈ RN×N is a symmetric and positive definite matrix then we
can write the condition number in the L2 norm as

κ2(S) = λ1(S)
λN(S) , (5.5)

where λ1(S) and λN(S) correspond to the largest and smallest eigenvalues of S
respectively.

Proof. Golub and Van Loan [1996, Sec. 2.7.2]

Henceforth κ2(S) will be referred to as the condition number of S, and will be denoted
κ(S).
In order to determine bounds on the condition number of the Hessian we make use of
the following result from linear algebra.

Theorem 5.3.2. Consider two symmetric matrices S1, S2 ∈ RN×N . The kth

eigenvalue of the matrix sum S1 + S2 satisfies the following:

λk(S1) + λN(S2) ≤ λk(S1 + S2) ≤ λk(S1) + λ1(S2). (5.6)

Proof. See Wilkinson [1965, Ch. 2 Thm 44].
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This result allows us to separate the contributions of B−1 and HTR−1H when
bounding the condition number of S given by (5.3) and is discussed in Section 5.4.
A result bounding the eigenvalues of matrix products in terms of the eigenvalues of
the constituent matrices is given by

Theorem 5.3.3. If F,G ∈ CN×N are positive semi-definite Hermitian matrices, then

k∏
i=1

λi(FG) ≤
k∏
i=1

λi(F)λi(G), k = 1, . . . , N − 1. (5.7)

Proof. See Marshall et al. [2011, Sec. 9 H.1.a.].

Theorem 5.3.4. If F,G ∈ CN×N are positive semi-definite Hermitian and
1 ≤ i1 < · · · < ik ≤ N , then

k∏
t=1

λt(FG) ≥
k∏
t=1

λit(F)λN−it+1(G), (5.8)

with equality for k = N .

Proof. See Wang and Zhang [1992].

5.4 Theoretical Results

We now present new bounds on the condition number of the Hessian given by (5.3).
We begin in Section 5.4.1 by considering the general case: namely B and R are
general covariance matrices, and H is any linear observation operator. In Section 5.4.2
we then introduce further assumptions that constrain H to only observe state
variables. Finally in Section 5.4.3 we restrict the form of B and R to have a
particular structure.

5.4.1 General bounds on the condition number

We begin by introducing bounds on the eigenvalues of S in terms of the eigenvalues of
B, R and H,

Lemma 5.4.1. For S = B−1 + HTR−1H where B ∈ RN×N , R ∈ Rp×p are symmetric
positive definite covariance matrices, and H ∈ Rp×N with p < N , we can bound the
eigenvalues of S below by

λk(S) ≥ max{λk(B−1), λN(B−1) + λk(HTR−1H)}, (5.9)
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and above by

λk(S) ≤ min{λk(B−1) + λ1(HTR−1H), λ1(B−1) + λk(HTR−1H)}, (5.10)

where λk(S) is the kth eigenvalue of S.

Proof. The bounds follow immediately from the result of Theorem 5.3.2 by
exchanging the order of addition. Note that HTR−1H is not full rank, meaning that
λN(HTR−1H) = 0.

As we wish to bound the condition number of S, we are primarily interested in
bounding λ1(S) and λN(S). In this case, the bounds given by (5.9) and (5.10) then
simplify to

λN(B−1) ≤ λN(S) ≤ min
{
λN(B−1) + λ1(HTR−1H), λ1(B−1)

}
, (5.11)

and

max
{
λ1(B−1), λN(B−1) + λ1(HTR−1H)

}
≤ λ1(S) ≤ λ1(B−1) + λ1(HTR−1H)

(5.12)
We note that this applies to any choice of correlation matrices B and R and for any
linear choice of observation operator H. This suggests that we expect the eigenvalues,
and hence condition number, of S to vary based on the interactions between B and R.
We now introduce a new bound on the condition number of (5.3) for 3D-Var for the
most general choice of B, R and H:

Theorem 5.4.2. Let the background and observation error covariance matrices,
B ∈ RN×N and R ∈ Rp×p respectively, be symmetric positive definite covariance
matrices, with p < N . Additionally, let H ∈ Rp×N be the observation operator. Then
the following bounds are satisfied by the condition number of the Hessian (given by
(5.3)),

max
{1 + λ1(B)λ1(HTR−1H)

κ(B) ,
κ(B)

1 + λ1(B)λ1(HTR−1H)

}
≤ κ(S)

≤
(
1 + λN(B)λ1(HTR−1H)

)
κ(B). (5.13)

(This is a slightly modified form of Haben [2011, (6.1.1)].)

Proof. To obtain an upper bound for the condition number of (5.3) we take the upper
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bound for λ1(S) in (5.12) and the lower bound (5.11) for λN(S).

κ(S) ≤
(
1 + λN(B)λ1(HTR−1H)

)
κ(B), (5.14)

using the fact that (λ1(B−1))−1 = λN(B). We can obtain a lower bound for the
condition number similarly by taking the lower bound for λ1(S) in (5.12) and the
upper bound for λN(S) in (5.11). This gives two possible bounds for κ(S) depending
on which of the two terms is larger, giving

κ(S) ≥ max{κ(B)
(
1 + λ1(B)λ1(HTR−1H)

)−1
, (κ(B))−1

(
1 + λ1(B)λ1(HTR−1H)

)
}

(5.15)
using the fact that (λ1(B))−1 = λN(B−1). Combining these inequalities completes the
proof.

We note that the two terms in (5.15) are reciprocals. This means that the lower
bound will always be greater than or equal to one. Any condition number is bounded
below by one [Golub and Van Loan, 1996].

We now extend this result to write it in a form that explicitly separates the role of the
observation error covariance matrices and the observation operator. This makes it
easier to investigate how changes in R, B and H affect the condition number of the
Hessian.

Corollary 5.4.3. Let B ∈ RN×N and R ∈ Rp×p, with p < N , be the background and
observation error covariance matrices respectively. Additionally, let H ∈ Rp×N be the
observation operator. Then the following bounds are satisfied by the condition number
of the Hessian (given by (5.3))

max
1 + λ1(B)

λp(R)λp(HHT )
κ(B) ,

1 + λ1(B)
λ1(R)λ1(HHT )
κ(B) ,

κ(B)
1 + λ1(B)

λp(R)λ1(HHT )

 ≤ κ(S)

≤
(

1 + λN(B)
λp(R) λ1(HHT )

)
κ(B). (5.16)

Proof. Using Theorem 21.10.1 of Harville [1997], we see that HTR−1H has precisely
the same non-zero eigenvalues as R−1HHT . Applying the same result, HTR−1H also
has the same non-zero eigenvalues as HHTR−1. Therefore
λ1(HTR−1H) = λ1(R−1HHT ) = λ1(HHTR−1). Applying Theorem 5.3.3 for k = 1
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and i1 = 1 yields the following bound:

λ1(R−1HHT ) ≤ λ1(R−1)λ1(HHT ) = λ1(HHT )
λN(R) , (5.17)

as λ1(R−1) = 1/λN(R). To bound λ1(R−1HHT ) below, we apply Theorem 5.3.4 for
k = 1 and i1 = 1 to obtain two lower bounds:

λ1(R−1HHT ) ≥ max{λ1(R−1)λp(HHT ), λp(R−1)λ1(HHT )} (5.18)

λ1(R−1HHT ) ≥ max{λ1(HHT )
λ1(R) ,

λp(HHT )
λp(R) } (5.19)

Substituting (5.17) and (5.18) into the upper and lower bounds of Theorem 5.4.2 gives
the desired result.

We note that the upper bound in (5.16) increases as λN(R) decreases. It is not
immediately clear how the lower bound will change with R. This will be discussed in
Section 5.5.3, which provides a summary of how the bounds given by (5.16) vary with
R and B for the numerical framework tested in Section 5.6.

5.4.2 Bounds on the condition number with additional
restrictions on the choice of observation operator

We now develop a further bound which applies in the case that additional
assumptions are made regarding the choice of observation operator. In particular we
restrict the observation operator to direct observations of a single state variable. We
note that if observations are restricted to direct observations of a single state variable
then HTH is diagonal with (HTH)i,i = 1 if variable i is observed and zero otherwise
as shown by Haben et al. [2009]. Under this stricter assumption, we show that the
value of λ1(HHT ) is the same irrespective of the choice of observations.

Lemma 5.4.4. If HTH ∈ RN×N is a diagonal matrix with p < N units on the
diagonal and the remaining elements zero, then HHT is the p× p identity matrix.

Proof. As HTH is diagonal, we can calculate its eigenvalues directly; they are simply
its diagonal elements. Hence HTH has p unit eigenvalues and N − p zero eigenvalues.
By Theorem 21.10.1 of Harville [1997], HHT has the same non-zero eigenvalues as
HTH, i.e. p units.

As HHT is symmetric, these eigenvalues correspond to p linearly independent
eigenvectors. We now write HHT in terms of its eigendecomposition. Let
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Λ = diag(λ1, ..., λN) ∈ Rp×p, be the matrix of eigenvalues of HHT , and V ∈ Rp×p be
the corresponding matrix of eigenvectors of HHT . As the eigenvalues of HHT are all
units, Λ = Ip, the p× p identity. Then

HHT = VΛV−1 = VIpV−1 = VV−1 = Ip. (5.20)

Hence under the assumptions on HTH, HHT is the p× p identity matrix.

Hence if observations are restricted to single state variables then HHT = Ip.
Eliminating the H and HT terms from the bound given by Corollary 5.4.3 reduces the
number of matrix multiplications required for evaluation. This result is now used to
obtain a bound for the case where observation and background error covariances are
correlated and observations are limited to model grid points. We additionally assume
that observation variance, σ2

o and background variance, σ2
b are uniform variances, and

hence the covariance matrices can be written as a scalar variance multiplied by a
correlation matrix.

Corollary 5.4.5. Let B = σ2
bC ∈ RN×N and R = σ2

oD ∈ Rp×p where C and D are
symmetric positive-definite correlation matrices, and σ2

b and σ2
o are positive scalars

denoting the background and observation variances respectively. In addition let HTH
be a diagonal matrix with p < N units on the diagonal and the remaining elements
zero. Then the following bound on the condition number of S (given by (5.3)) holds:

max
1 + σ2

b

σ2
o

λ1(C)
λN (D)

κ(C) ,
κ(C)

1 + σ2
b

σ2
o

λ1(C)
λN (D)

 ≤ κ(S) ≤
1 + σ2

b

σ2
o

λN(C)
λN(D)

κ(C). (5.21)

Proof. Using (5.16) with the definitions of B and R in the theorem statement along
with the result of Lemma 5.4.4 yields the desired result immediately.

The bounds given by (5.21) are equal to those given by (5.16) for the case of direct
observations, so the comments concerning how the bounds change with R and B
following Corollary 5.4.3 also apply here. In general, it is not possible to comment on
how the lower bound given by (5.21) will behave with changing B and R. In Section
5.6, we provide an overview for how the terms in (5.21) change for some specific
choices of B, R and H.

We note that the ratio σ2
b

σ2
o

appears in both bounds, meaning that as the observations
get more accurate, and the variance σ2

o decreases, we will see an increased upper
bound. The effect of changing σ2

o on the lower bound depends on which term is the
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largest. For λ1(B) < λN(B) + λ1(R) the first term in the lower bound of (5.21) is
largest, meaning that decreasing σ2

o will increase the value of this term. For
λ1(B) > λN(B) + λ1(R), the second term is largest, leading to an increased lower
bound for decreasing values of σ2

o . This was also observed theoretically and
numerically in Haben [2011] for the case that R is uncorrelated. Both of these results
assume the same variance for all observations, which is not true in general. However,
they indicate the general behaviour we would expect for an increase in accuracy
across a wide range of observing systems.

5.4.3 Bounds on the condition number for circulant error
covariance matrices

In this section we present a lower bound that is tighter than those of (5.16) for a
given matrix framework. Improved bounds are obtained for this specific case by
exploiting the eigenvalue and eigenvector properties of a particular matrix structure.
It is feasible that for other matrix structures, similar properties could be used to
compute tighter bounds for other classes of matrices. However, as the results from
Section 5.4.1 are general and apply to any choice of covariance matrices, we do not
consider other specialised bounds in this work.

It is often desirable for error correlations to be homogeneous and isotropic, meaning
that the correlation between two points is determined solely by the distance between
them [Haben et al., 2011a]. This makes circulant matrices a natural choice for
correlation matrices on a one-dimensional periodic domain. For the numerical tests
discussed in Section 5.6, both B and R will be chosen to be circulant matrices,
although the bounds given by Theorem 5.4.2, Corollary 5.4.3 and Corollary 5.4.5
apply for any valid choice of correlation matrix.

Definition 5.4.6 (Davis [1979]). A circulant matrix D ∈ RN×N is a matrix of the
form

D =



d0 d1 d2 · · · dN−2 dN−1

dN−1 d0 d1 · · · dN−3 dN−2

dN−2 dN−1 d0 · · · dN−4 dN−3
... ... ... . . . ... ...
d2 d3s d4 · · · d0 d1

d1 d2 d3 · · · dN−1 d0


.

As described in Gray [2006], the structure of a circulant matrix of the form given by
Definition 5.4.6 permits rapid calculation of eigenvalues and eigenvectors via a
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discrete Fourier transform. In practice, this means we can calculate the eigenvalues of
D directly via the following formula.

Theorem 5.4.7. The eigenvalues of a circulant matrix D, as given by
Definition 5.4.6, are given by

γm =
N−1∑
k=0

dkω
mk, (5.22)

with corresponding eigenvectors

vm = 1√
N

(1, ωm, · · · , ωm(N−1)), (5.23)

where ω = e−2πi/N is an N−th root of unity.

Proof. See Gray [2006] for full derivation.

To avoid confusion, the eigenvalues of a circulant matrix calculated using (5.22) will
be denoted by γj rather than λj as they are ordered in terms of wavenumber rather
than size. We can see from (5.23) that the eigenvectors only depend on N , the
dimension of the circulant matrix. Therefore any N ×N circulant matrix will have
the same set of eigenvectors.

We now use this matrix structure to consider a further restriction to the case that
observation error is assumed to be uncorrelated, and the background error covariance
matrix is required to be circulant. In particular in the following theorem, R is taken
to be a scalar multiple of the identity. We note that Theorem 5.4.8 was presented in
Haben et al. [2011a] without proof.

Theorem 5.4.8. Let B = σ2
bC ∈ RN×N where C is a symmetric positive-definite

circulant matrix, and R = σ2
oIp where Ip ∈ Rp×p is the identity matrix. Both σ2

b and
σ2
o are positive scalars. In addition let HTH be a diagonal matrix with p < N units on

the diagonal and the remaining elements zero. Then the following bounds on the
condition number of S (given by (5.3)) hold

1 + p
N

σ2
b

σ2
o
λN(C)

1 + p
N

σ2
b

σ2
o
λ1(C)

κ(C) ≤ κ(S) ≤
(

1 +
(
σ2
b

σ2
o

)
λN(C)

)
κ(C) (5.24)

where λ1(C) and λN(C) are the largest and smallest eigenvalues of the matrix C
respectively.

Proof. By the assumptions on the matrices in the theorem we can write
HTR−1H = σ−2

o HTH and therefore λ1(HTR−1H) = σ−2
o . Additionally, we have
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λN(B) = σ2
bλN(C). If we substitute these into the upper bound of (5.13) we obtain

κ(S) ≤
(

1 + σ2
b

σ2
o

λN(C)
)
κ(C), (5.25)

which establishes the upper bound. Rather then repeat this procedure with the lower
bound we produce an improved estimate by applying the Rayleigh quotient,
RS(x),x ∈ CN (defined in [Süli and Mayer, 2003, Sec 5.9]). Let v1 ∈ CN be the
eigenvector corresponding to the largest eigenvalue of C−1. Since C−1 is circulant
then all the components of the eigenvectors of C−1 lie on the unit circle in C (see
(5.23)). In particular this implies that for an eigenvector, vm, of C−1

v†mHTHvm = 1
N

∑
k∈K

e−2πikm/Ne−2πikm/N = 1
N

∑
k∈K

e2πikm/Ne−2πikm/N = p

N
, (5.26)

where K are the positions of the non-zero diagonal elements of HTH and v† denotes
the conjugate transpose of v. The maximum value obtained by the Rayleigh quotient
of S occurs at the eigenvector corresponding to the largest eigenvalue of S [Süli and
Mayer, 2003, Sec 5.9]. Hence,

λ1(S) = max
v∈CN

(RS(v)) ≥ v†1(B−1 + σ−2
o HTH)v1 = σ−2

b λ1(C−1) + σ−2
o

p

N
. (5.27)

Similarly the minimum value of the Rayleigh quotient occurs at the eigenvector
corresponding to the smallest eigenvalue of S. Let vN be the eigenvector
corresponding to the smallest eigenvalue of C−1. Then again using the Rayleigh
quotient we find

λN(S) = min
v∈CN

(RS(v)) ≤ v†N(B−1 + σ−2
o HTH)vN = σ−2

b λN(C−1) + σ−2
o

p

N
. (5.28)

Combining (5.27) and (5.28) we find

κ(S) ≥
σ−2
b λ1(C−1) + σ−2

o
p
N

σ−2
b λN(C−1) + σ−2

o
p
N

= κ(C)

1 + σ2
b

σ2
o

p
N
λN(C)

1 + σ2
b

σ2
o

p
N
λ1(C)

 , (5.29)

giving the lower bound on the condition number. This completes the proof.

We note that the lower bound presented here is tighter than the others introduced in
this section. This comes from the restriction on the form of S when additional
assumptions are made on R and H, and does not generalise to the other results
presented in this work. We also observe that the lower bound (5.24) has an explicit
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dependence on the number of observations, p. As p increases, the lower bound of
(5.24) decreases. Additionally, the ratio σ2

b

σ2
o

appears in both bounds, meaning that the
discussion following the result of Corollary 5.4.5 also applies to the result of
Theorem 5.4.8.

We now have bounds that separate the contributions of B, R and H. In the following
section we will test these bounds numerically and discuss the impact of changing each
of the constituent matrices in turn.

5.5 Numerical Framework

We now outline the experimental framework that will be used in Section 5.6 to
numerically investigate the bounds presented in Section 5.4. In particular, in Section
5.5.1 we introduce specific matrix structures that will be used to generate covariance
matrices. We note that these correlation structures illustrate the case where there is a
physical lengthscale associated with our observation and background error
correlations, as in the case of horizontal correlations. Different choices of observation
operator will then be presented in Section 5.5.2. Finally, in Section 5.5.3 we define the
experiments that will be studied in Section 5.6 and discuss the choice of parameters to
be used in these tests in detail.

5.5.1 Correlation and SOAR Matrices

This work will make use of the second-order auto-regressive correlation (SOAR)
function, which is used by the Met Office as a horizontal correlation function, as
detailed in Simonin et al. [2014]. It is also commonly used to model background error
correlations [Stewart et al., 2013] as its relatively long tails coincide well with
estimates of correlation structure. Additionally these longer tails ensure that SOAR
matrices are better conditioned for inversion than Gaussian matrices [Haben et al.,
2011b, Haben, 2011].

The SOAR function, defined in Daley [1991], is homogeneous and isotropic and
naturally extends to a circulant form when we have equally spaced observations on a
periodic domain, such as a latitude circle on the Earth. We define the SOAR error
correlation matrix for a 1D model with state variables (respectively observations)
given by equally spaced gridpoints on a fixed domain on a unit circle (radius a = 1)
following the procedure given in Haben [2011] and Waller et al. [2016b]. This makes
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Figure 5.1: Eigenvalues of SOAR error correlation matrix given by (5.30) for N = 20
and a = 1.

use of a substitution of a chordal distance for a ‘great circle distance’ to ensure that
we obtain a valid correlation model on the circle, as discussed in Gaspari and Cohn
[1999] and Jeong and Jun [2015].

Definition 5.5.1. The SOAR error correlation matrix on the finite domain is given
by

D(i, j) =
1 +

∣∣∣∣2a sin
(
θi,j

2

)∣∣∣∣
L

 exp
−

∣∣∣∣2a sin
(
θi,j

2

)∣∣∣∣
L

, (5.30)

where L > 0 is the correlation lengthscale, θi,j denotes the angle between grid points i
and j, and a is the radius of the domain. The chordal distance between adjacent grid
points is given by

∆x = 2a sin
(
θ

2

)
= 2a sin

(
π

N

)
, (5.31)

where N is the number of gridpoints and θ = π
2N is the angle between adjacent

gridpoints.

As SOAR matrices are circulant by construction, we can calculate their eigenvalues
directly using Equation (5.22). The distribution of eigenvalues is symmetric, and as
shown in Figure 5.1, decreases monotonically towards the central value. This means
that only two eigenvalues need to be calculated in order to obtain the maximum and
minimum eigenvalues of any SOAR matrix; γ1 and γN/2 (if N is even) or γ(N+1)/2 (if
N is odd) respectively. The circulant structure can hence be exploited to reduce the
number of computations required for computing the bounds given by (5.16) and
(5.21) for the condition number of the Hessian.
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For the numerical experiments we alter the lengthscales of the SOAR matrices
corresponding to background and observation error. Figures will be plotted in terms of
the maximum eigenvalues of B−1 and R−1 (recalling that for any matrix D ∈ Rm×m,
λ1(D−1) = 1/λN(D)). We note that this also means that λ1(D−1) = γN/2(D−1) for N
even (or λ1(D−1) = γ(N+1)/2(D−1) for N odd), using the notation established in
Theorem 5.4.7. The relationship between increasing lengthscale and the spectrum of a
SOAR matrix is shown in Figure 5.1 - namely that as the lengthscale, L, increases,
the minimum eigenvalue of the SOAR matrix decreases and the maximum eigenvalue
increases. This means that the maximum eigenvalue of the inverse of a SOAR matrix
increases with lengthscale, and its minimum eigenvalue decreases.

Having described the choice of correlation matrices that will be used in the numerical
tests in Section 5.6, in the next section we discuss the different choices of observation
operator that will be tested in our experiments.

5.5.2 Choice of Observation Operator

Most previous research into the impact of correlated observation errors on the
variational assimilation problem does not investigate the impact of using different
observation operators systematically. Either the operational observation operator is
used e.g. Weston et al. [2014], Bormann et al. [2016], or experiments are carried out
in a simple linear case where H is taken to be a variant of the identity, as in Stewart
et al. [2008b, 2013], Waller et al. [2014a], Ménard [2016]. In this chapter we compare
how the condition number of the Hessian is affected by different choices of linear
observation operator in order to gain some theoretical insight into the role played by
this operator. We define three choices of observation operator that will be investigated
in detail numerically. We are particularly interested in how important our choice of H
is in determining both the true condition number of S and the value of the bounds
given by (5.16). Firstly we note that all bounds presented in this work require the
assumption that the observation operator, H, is linear, and the bounds given by (5.21)
and (5.24) have the restriction that observations are only of single state variables. All
the choices of H that are tested in the numerical experiments presented in this work
are linear, and two correspond to direct observations of single model variables.

Definition 5.5.2. The observation operators H1, H2, H3 ∈ Rp×N , for N = 2p, are
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Figure 5.2: Visualisation of the observation operators described in Definition 5.5.2 for
the case p = 10 and N = 20. Shading indicates the value of the entry in the matrix; in
the case of H1 and H2 all non-zero entries are 1, and for H3 all non-zero entries are 1

5 .

defined as follows:

H1(i, j) =

1, j = i for i = 1, . . . , p

0, otherwise.
(5.32)

H2(i, j) =

1, j = 2i for i = 1, . . . , p

0, otherwise.
(5.33)

H3(i, j) =


1
5 , j ∈ {2i− 2, 2i− 1, 2i, 2i+ 1, 2i+ 2 (mod N)} for i = 1, . . . , p

0, otherwise.
(5.34)

The choice of H = H1 corresponds to observing the first p state variables, and making
no observations in the second half of the state space. Choosing H = H2 corresponds
to making observations at alternate state variables over the entire model domain. The
observation operator H = H3 is a smoothed version of H2; state variables at alternate
grid points are smoothed over 5 adjacent points in state space with equal weighting.
This can be thought of as a simplified version of a satellite weighting function,
[Stewart, 2010, Sec. 2.4.1] [Rodgers, 2000, Sec 2.1.3.], which measures average
radiation over several model levels of the atmosphere. In Figure 5.2 these observation
operators are depicted for a small scale example when p = 10 and N = 20.

The choice of H1 was made as a check to allow comparison with preliminary
numerical tests with those from Chapter 6 of Haben [2011]. The bounds given by
Corollary 5.4.5 in Section 5.4 require that HTH be a diagonal matrix with p units on
the diagonal. The observation operator H1 satisfies this requirement, as does H2,
meaning that we can apply the bounds of Corollary 5.4.5 for these two cases.
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Additionally, by Lemma 5.4.4, H1HT
1 = H2HT

2 . This means that for fixed choices of B
and R, both H = H1 and H = H2 will yield the same upper and lower bounds. We
wish to see whether there will be a significant difference in the true condition number
of S for H = H1 and H = H2.

As H = H3 does not satisfy the condition in the statement of Corollary 5.4.5, we must
apply the more general bound given by (5.16) in Corollary 5.4.3. We would like to be
able to use the same bounds to compare each of the three choices of observation
operator. A short calculation reveals that we have equality of the bounds given by
Corollaries 5.4.3 and 5.4.5 when observations are restricted to model grid points for
the framework described here. Hence, for what follows we will be comparing the
bounds given by (5.16) irrespective of the observation network chosen.

5.5.3 Experimental Design

We now discuss the experimental framework which will be used for the numerical
tests presented in Section 5.6. In particular we motivate the range of parameters that
will be investigated.

We fix the ratio between p, the number of observations, and N , the number of state
variables, to be N = 2p for all the experiments discussed below. The same ratio was
used for numerical testing in Haben [2011] and is not representative of what is used in
practice, where observations are much less dense. Unless stated otherwise, the values
N = 200 and p = 100 were used for all the plots presented here. Other choices of p
and N were studied in detail; as qualitative results were similar for all cases
considered they will not be shown here. Both background error covariance matrix,
B ∈ RN×N , and observation error covariance matrix, R ∈ Rp×p, are chosen to be
SOAR correlation matrices (see Section 5.5.1) with fixed variances σ2

b = σ2
o = 1.

The domain for the tests is the unit circle (a = 1). In the experiments that follow we
will vary LR, the correlation lengthscale of the SOAR matrix defining R, and LB, the
correlation lengthscale of the the SOAR matrix defining B, over a regular grid.In
addition to studying the impact of changing the lengthscale of B and R for both sets
of experiments, we also consider the effect of using the different choices of H
presented in Section 5.5.2.
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Table 5.1: Summary of how terms that appear in (5.16) change with the lengthscale
LR for R ∈ R100×100.

Lengthscale LR
0.1 0.33 0.66 0.99 1

λN(R) 1.92× 10−2 5.74× 10−4 7.21× 10−5 2.14× 10−5 2.08× 10−5

λ1(R) 6.40× 100 2.26× 101 4.67× 101 6.36× 101 6.40× 101

Table 5.2: Summary of how terms that appear in (5.16) change with the lengthscale
LB for B ∈ R200×200.

Lengthscale LB
0.1 0.33 0.66 0.99 1

λN(B) 2.54× 10−3 7.19× 10−5 8.99× 10−6 2.67× 10−6 2.59× 10−6

λ1(B) 1.28× 101 4.51× 101 9.35× 101 1.27× 102 1.28× 102

κ(B) 5.05× 103 6.28× 105 1.40× 107 4.77× 107 4.95× 107

5.5.3.1 Condition number testing

In the numerical tests we consider how the condition number of S (calculated using
the Matlab 2016b function cond) and the bounds given by (5.16) change as the
minimum eigenvalues of both error covariance matrices change. Of particular interest
is the interaction between changes to both B and R. For the results presented in this
chapter the lengthscales of both B and R were varied between 0.1 and 1. The
equivalent eigenvalues of R and B for these parameters are given in Tables 5.1 and
5.2 respectively.

Tables 5.1 and 5.2 presents values of the terms that appear in (5.16) and depend on
the background and observation error matrices for typical experimental values of LB
and LR respectively. We observe that:

• As LR increases λN(R) decreases; hence the first term in the lower bound of
(5.16) will increase with increasing LR, and the third term in the lower bound of
(5.16) will decrease with increasing LR. It is therefore not possible in general to
determine how the lower bound will change with increasing LR.

• As LR increases, λ1(R) increases, meaning that the second term in the lower
bound of (5.16) will decrease with increasing LR.

• As LB increases, the difference between its minimum and maximum eigenvalues
increases, meaning that the condition number of B increases with LB.

• In this setting, the upper bound of (5.16) will increase as LR or LB increases, as
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λ1(B) and κ(B) increase with LB and 1
λN (R) increases with LR.

• As LB increases, the ratio κ(B)
λ1(B) = 1

λN (B) increases, meaning that for fixed LR the
first and second terms of the lower bound of (5.16) will decrease and the third
term will increase.

Therefore increasing LB for fixed LR will cause both bounds to increase. It is not
possible at this stage to say whether the upper and lower bound will move closer
together or further apart as LB increases. It is also not clear which term in the lower
bound of (5.16) will be largest for a general choice of B, R and H. This means that
we cannot say how the lower bound of (5.16) will change with LR. We will investigate
how the bounds change numerically with B and R in Section 5.6. Although we
understand the effect of changing LB and LR on the bounds of the condition number,
we now want to investigate their influence on the actual value of κ(S).

5.5.3.2 Convergence of a conjugate gradient routine

In addition to studying how the condition number of the Hessian changes with B, R
and H, it is of interest to determine the effect of these same changes on the rate of
convergence of the minimisation of the objective function. In order to do this we
consider the convergence rate of a conjugate gradient method applied to the linear
system (5.2) associated with the 3D-Var cost function (5.1).

To do this, we follow the same method that is used in Chapter 6 of Haben [2011]; we
construct a vector w that has small and large scale features, calculate b = Sw and
then recover w by applying a linear solver, in this case the conjugate gradient
method, to Sw = b. In this case we used the Matlab conjugate gradient routine,
pcg.m MATLAB [2016], to investigate the change in the number of iterations to
convergence. In exact arithmetic the conjugate gradient method should converge to
the true solution in exactly n iterations for an n-dimensional problem [Gill et al.,
1986]. We note that in finite precision, convergence in n iterations may not occur as
the search directions lose conjugacy due to round-off errors [Bardesley et al., 2013].
Operationally however, even n iterations is too many in order to obtain a solution in
reasonable computational time. This problem is usually solved by preconditioning,
but for this chapter we are interested in the unpreconditioned problem as discussed in
Section 5.2. We use a tolerance of 1× 10−6 on the relative residual for all results
presented in the next section.
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We expect that the impact of changing B and R on the condition number of the
Hessian will be similar for both sets of experiments (condition number and conjugate
gradient convergence) due to the theoretical link between the condition number and
convergence of the conjugate gradient method [Nocedal, 2006, Golub and Van Loan,
1996]. As well as investigating the impact of changing lengthscale on the convergence
of 3D-Var, we are interested in how the choice of observation operators introduced in
Section 5.5.2 influences 3D-Var in terms of both the condition number and
convergence of the conjugate gradient method.

5.6 Numerical Testing

Our experiments focus on how κ(S) changes with both LR (for R correlated) and LB

for each of the choices of observation operator introduced in Section 5.5.2 (recalling
that for any matrix D ∈ RN×N , λ1(D−1) = 1/λN(D)). This extends the experiments
of Haben [2011] where the effect of the lengthscale of B on the conditioning of the
Hessian was considered for uncorrelated R. We also investigate how correlations in B
and in R interact in terms of both the bounds and the true conditioning of the
Hessian. We then test our conclusions in terms of a minimisation problem, to assess
the impact of changing correlation lengthscales on the number of iterations required
for convergence of a conjugate gradient routine. We present and discuss the results for
H = H1, H2 and H3 separately before comparing the different cases.

5.6.1 Investigating changing lengthscales: observing the first
p variables (H = H1)

In Figure 5.3a we plot the condition number of S (colour) with LB shown along the
x-axis, and LR shown on the y-axis, for the case H = H1. Both axes and the colour
values are shown with a logarithmic scale. We recall that as lengthscale increases,
λ1(B−1) and λ1(R−1) both increase.

We observe that:

• For a fixed value of LR, increasing LB results in an increased value of κ(S). This
behaviour is also seen in Haben [2011] for an uncorrelated choice of R. The
effect of this increase depends on the size of LR - larger values of LR) lead to
smaller gradients in the contours of κ(S). The inclusion of correlated
observation errors therefore results in a more complex dependence of κ(S) on B.

65



Section 5.6 Page 66

Figure 5.3: Impact of different choices of observation operator H on κ(S) (a, c, e) and
convergence of the conjugate gradient algorithm (b, d, f) for: (a, b) H = H1, (c, d)
H = H2 and (e, f) H = H3. The matrices B and R are SOAR matrices (5.30) for
N = 200 and p = 100. The x-axis denotes LB. For (a, c, e) the y-axis shows LR and the
linestyle denotes log10(κ(S)). Ten equally spaced contours (solid lines), and horizontal
lines (corresponding to the lines plotted in Figures (b, d and f)) are also shown. The
solid, dotted and dash-dotted lines represent LR = 0.33, 0.66 and 0.99 respectively.
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• For a small fixed value of LB, increasing LR results in an increased value of
κ(S), whereas for a large fixed value of LB increasing LR has minimal impact on
the value of κ(S).

• In general the impact of changing LB on κ(S) is larger than that of changing LR.

We hence note that interactions of LB and LR have an important effect on the
condition number of S. This agrees with the results of Corollary 5.4.1 which showed
that depending on the relationship between the largest eigenvalues of B−1 and
HTR−1H, there are two distinct bounds on the eigenvalues of S, one in terms of
λ1(B−1) and one in terms of λ1(HTR−1H).

In Figure 5.3b we see the number of iterations required for the conjugate gradient
method to solve the problem described in Section 5.5.3. The values of LR plotted in
Figure 5.3b are shown on Figure 5.3a as horizontal lines for 80 values of LB. We note
that the number of iterations required for convergence is extremely high, and in fact
larger than the dimension of the problem. Although the conjugate gradient method
converges in N iterations in exact arithmetic, iterates past iteration count N continue
to approach the true solution for this problem. In particular, a large number of
iterations of the conjugate gradient method applied to (5.2) are required in order to
recover the large scale structure of w. For applications, computational resource
typically demands that much fewer than N iterations are used.

Firstly, for LB < 0.44, increasing LB for fixed LR results in an increase in the number
of iterations required for convergence. Additionally, for fixed LB, increasing LR results
in a clear increase in the number of iterations. This behaviour agrees well with the
qualitative conclusions from the condition number experiment in Figure 5.3b. For
LB > 0.4 we see a decrease in the number of iterations as LB increases. In this range,
the value of κ(S) is similar across each of the horizontal lines shown in Figure 5.3a, so
we could expect the number of iterations to convergence to be similar. Additionally,
the Hessian is extremely ill-conditioned, which combined with a small tolerance in the
conjugate gradient routine could explain the noisy values for large LB.

5.6.2 Investigating changing lengthscales: observing p

alternate state variables (H = H2)

In Figure 5.3c we see how changing B and R affects the condition number of S for the
case H = H2. The changes in κ(S) with LR and LB are qualitatively similar to the
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case H1 described in Section 5.6.1. Again we see interaction between B and R has an
important effect on κ(S), in agreement with the results of Corollary 5.4.1. However,
for H = H2 the change of behaviour of κ(S) does not occur smoothly; we observe a
discontinuity in the gradient of the contours. As LR increases the value of LB at
which this ‘kink’ occurs also increases linearly. We will investigate this kink further in
Section 5.6.6 and show that it is caused by a change in regime.

In Figure 5.3d we see the number of iterations required for the conjugate gradient
method to converge for the case H = H2.

• For fixed values of LR we observe a change in behaviour as LB increases; for
smaller values of LB we see a decrease in the number of iterations as LB
increases and for larger values of LB the number of iterations increases with LB.
This does not agree with the results for the condition number of S in Figure
5.3c, where an increase in LB causes an increase in κ(S) for all values of LR.

• For smaller values of LB, increasing LR leads to an increase in the number of
iterations required for convergence. For larger values of LB, that occur to the
right of the kink, increasing LR decreases the number of iterations. Again, this is
unlike the results seen for the condition number, where increasing LR leads to an
increase in both the actual value and upper bound of κ(S) for all values of LB.

We note that the value of LB where this change in behaviour occurs is the same as the
value of λ1(B−1) where the change in gradient of the contours occurs in Figure 5.3c,
indicating that the kink is caused by an underlying change in regime. If we consider
the eigenvalues of S (not shown here), clustering of eigenvalues increases as the kink is
approached. The clustering of eigenvalues is important for convergence of a conjugate
gradient method [Nocedal, 2006], and is not detected by the condition number. This
explains the difference in behaviour between Figure 5.3c and 5.3 d with increasing LB.

5.6.3 Investigating changing lengthscales: observing p

alternate variables smoothed over 5 state variables
(H = H3)

In Figure 5.3e we see how changing B and R affects the condition number of S for the
case H = H3. The behaviour of κ(S) with changing LB and LR is qualitatively similar
to the case H = H2. However, for H = H3 and fixed LB, only changes to very large
values of LR result in a significant change to κ(S) and this is true for only the
smallest values of LB. Again, interaction between LB and LR has an important
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Figure 5.4: Bounds (dashed lines) and condition number (solid lines) of S for H1 (cross),
H2 (triangle) and H3 (circle) for LR = 0.33. The bounds are calculated using (5.16)
for all choices of H. We note that the bounds for the cases H1 and H2 are the same.

impact on κ(S) but to much less of an extent than in the previous two cases. This
agrees with the results of Corollary 5.4.1, as the value of λ1(HT

3 R−1H3) is much
smaller than λ1(HTR−1H) for H = H1 or H2, and hence LR will need to take a much
larger value in order that λ1(HT

3 R−1H3) + λN(B−1) > λ1(B−1). A discontinuity in
gradient similar to the one observed for the case H = H2 is seen here, but for much
larger values of λ1(HTR−1H) than for Figure 5.3e.

In Figure 5.3f we see the number of iterations required for the conjugate gradient to
converge for the problem described in Section 5.5.3 when H = H3. Similarly to Figure
5.3b, we see an initial decrease in the number of iterations required for convergence,
before a turning point where the number of iterations increases with LB. This turning
point occurs for the same values of LB as the discontinuity in gradient that was seen in
Figure 5.3e. As the value of LB at which this kink occurs is much smaller than for the
case H = H2, for most values of LB increasing LR decreases the number of iterations.
As in the case H = H2, clustering of the eigenvalues of S increases as we approach the
kink. The structure of the eigenvalues is more important in determining the
convergence of a conjugate gradient method than the condition number in this case.

69



Section 5.6 Page 70

5.6.4 Investigating bounds and actual value of κ(S) for
different choices of observation operator

We now compare the effect of changing the observation operator on both the
condition number of S and the bounds of S introduced in Section 5.4. Of particular
interest is how tight the bounds are for different values of λ1(B−1). For clarity, the
Hessian for the cases H = H1, H = H2 and H = H3 will be referred to as S1, S2 and
S3 respectively. Figure 5.4 displays the actual value of the condition number and the
bounds from (5.16) for a fixed choice of R with LR = 0.33 for all three choices of H.
We recall (Section 5.5.2) that the bounds for the cases H = H1 and H = H2 are equal,
with tighter bounds for the case H = H3. This is because the maximum eigenvalue of
H3HT

3 , which appears in both upper and lower bounds, is 0.52 rather than 1.

• Figure 5.4 shows cases where both the upper and lower bound give by (5.16) are
tight. The upper bound is close to the actual value of κ(S) for H1, particularly
when LB is small. For small values of LB the actual value of κ(S) for H3 is
much closer to the lower bound than the upper bound.

• The kink that was observed in Figure 5.3c for H = H2 can also be seen in Figure
5.4. The kink occurs at the location where κ(S2) coincides with κ(S3). For
values of LB greater than the kink, κ(S2) and κ(S3) are very close to each other.

• For all choices of H shown in Figure 5.4, increasing LB leads to the upper bound
moving away from both the lower bound and the actual value of κ(S).

We note that we have found different choices of B, R and H where the actual values
of S are close to both the upper and lower bounds given by (5.16). We now discuss
the implications of changing B, R and H in terms of the condition number of S and
the number of iterations required for the conjugate gradient to converge.

5.6.5 Comparison of results

In this section we compare the results of the previous sections for different choices of
observation operator H, as well as different choices of B and R. We recall that
λ1(B−1) = 1/λN(B) and λ1(R−1) = 1/λN(R).

We begin by considering how the lower bounds given by Lemma 5.4.1 for λ1(S)
change depending on whether λ1(B−1) or λ1(HTR−1H) + λN(B−1) is the larger term.
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• For a fixed value of LR and changing LB: for small values of λ1(B−1), the lower
bound of λ1(S) from (5.9) is given by λ1(HTR−1H) + λN(B−1), meaning that
the maximum eigenvalue of HTR−1H is most important for determining λ1(S).

• As LB increases, at some point λ1(B−1) will be larger than
λ1(HTR−1H) + λN(B−1), meaning that λ1(B−1) will be the most important
term for determining λ1(S).

• Alternatively, fixing LB and changing LR we observe similar behaviour: for
smaller values of LR, we see less impact on κ(S) when changing LR than for
larger values of LR, where a change in λ1(HTR−1H) has a significant effect on
the value of κ(S).

This behaviour is seen for all choices of H in Figure 5.3. This bound also provides
justification for the variation with LB and LR in the gradient of the contours seen in
Figures 5.3a, 5.3c and 5.3e.

We now consider the similarities between different choices of observation operator for
the two experiments:

• For a fixed choice of H there are strong similarities between the effect of
increasing λ1(B−1) on the convergence of the conjugate gradient method and
the effect on the condition number of the Hessian. In particular the kink in the
condition number (Figures 5.3c and 5.3e) and the change in gradient for
convergence (Figures 5.3d and 5.3f) occur at the same values of LB and LR for
both H = H2 and H = H3. This indicates that the kink is due to a change in
the underlying structure of S.

• The effect of varying LR and LB for H1, H2 and H3 was broadly similar in
terms of κ(S), with the main difference being the discontinuity in the contours
of κ(S) seen for H2 and H3 but not for H1.

We also see some large differences between the two experiments. The main
dissimilarity between the graphs for condition number (Figures 5.3a, 5.3c and 5.3e)
and for convergence (Figures 5.3b, 5.3d and 5.3e) is that increasing LB uniformly
results in an increase in the condition number of S, but is not always linked to an
increase in the number of iterations required for convergence. This difference was
explained in Sections 5.6.1-5.6.3 by the clustering of eigenvalues near the kink for H2

and H3.
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For the conjugate gradient experiments, conclusions for the cases H = H2 and
H = H3 were very different to the case H = H1. Both H = H2 and H = H3 have
block-circulant structures, meaning that in these cases S will have a block-circulant
structure. We suggest that this is the reason for the difference in eigenvalue clustering
behaviour compared to the case H = H1. This was tested through the use of an
additional non-circulant observation operator made by observing 100 random state
variables. The behaviour in this case is very similar to that which was observed for
H = H1. The fact that qualitative behaviour for the case H = H1 is the same as for
the randomly selected observation operator supports the conjecture that the rapid
convergence of the conjugate gradient seen for H = H2 and H = H3 is caused by the
inherent block-circulant structure of S2 and S3.

5.6.6 Understanding the Discontinuity in the Gradient for
H = H2 and H = H3

We now return to discuss the discontinuity in the gradient, or kink, that was observed
for H = H2 and H = H3 for both the condition number of S (Figures 5.3c and 5.3e)
and the convergence of the conjugate gradient method (Figures 5.3d and 5.3f). We
now explain this theoretically, and discuss why the discontinuity in gradient is
observed for H2 and H3 but not for H1. We begin by considering bounds for the
eigenvalues of S in terms of the eigenvalues of B−1 and R−1, using the bounds given
by Corollary 5.4.1 and the discussion that follows in Section 5.4.1.

Equations (5.9) - (5.12) explain the variation with λ1(B−1) and λ1(R−1) that was
observed in Figure 5.3. However, as the bounds in (5.11) and (5.12) apply to all
choices of H, they do not explain the difference between the choices of H for which
the kink is observed (H2 and H3) and the choices of H which have smoothly varying
values of κ(S), (namely H1).

In order to illustrate why the kink occurs for some choices of H but not for others we
present a tighter upper bound for the specific framework used in the numerical
experiments for two cases, beginning with H1. By expressing S in terms of the
difference between a circulant matrix and a low-rank update, we use (5.22) to directly
compute the eigenvalues of the circulant component via a direct Fourier
decomposition. This allows us to show that the kink occurs when there is an
significant change in the wavenumber corresponding to the largest eigenvalue of S.
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Lemma 5.6.1. We define C1 as in Appendix 5.9. For H = H1 we can bound the
eigenvalues of S above by:

λk(S) ≤ λk(C1) (5.35)

where the eigenvalues of C1 are given by:

γm(C1) = γm(B−1) +
p−1∑
k=0

ωmkR−1
1,k, m = 0, . . . , N − 1, (5.36)

where ω = e−2πi/N . Recall (using the notation introduced in Section 5.4.3) that the γjs
are ordered in terms of wavenumber rather than by decreasing eigenvalue.

Proof. See Appendix 5.9.

Lemma 5.6.1 yields an expression that is a sum of an eigenvalue of B−1, plus a term
depending on the coefficients of R−1 and the structure of H1. The choice of H = H1 is
important in determining the wavenumber at which the maximum value of the second
term of (5.36) is achieved. From Section 5.5.1 we recall that the largest eigenvalue of
B−1 occurs for the pth wavenumber, γN/2(B−1), (for N = 2p) or γ(N±1)/2(B−1) (for
N = 2p+ 1). The eigenvalues of B−1 ordered by wavenumber are shown by circles in
Figure 5.5. The crosses in Figure 5.5 show the second term of (5.36) ordered by
wavenumber. For H1, the largest value of the second term of (5.36) occurs for the
same wavenumber as the largest eigenvalue of B−1. The maximum value of this term
is equal to λ1(R−1). This means that as λ1(S1) changes from being controlled by
λ1(R−1) to λ1(B−1) the change appears smooth, as the wavenumber associated with
the frequency of the largest eigenvalue remains constant. It is clear that increasing LB
will have a significant effect on the value of this bound, as changing LB increases
λ1(B−1) significantly, and hence the upper bound given by (5.35). Therefore for both
regimes, changing LB has a large impact on both bounds for λ1(S).

We now present a similar bound for H = H2.

Lemma 5.6.2. For H = H2, the eigenvalues of S are bounded above by:

λk(S) ≤ λk(C2) (5.37)

where the eigenvalues of C2 are given by:

γm(C2) = γm(B−1) +
p−1∑
k=0

ω2mkR−1
1,k,m = 1, 2, ..., p− 1 (5.38)
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Figure 5.5: Plots of the contribution of the background and observation terms to the
eigenvalues of the circulant matrix made up of the first row of S1 and S2 for LR = 0.7
and LB = 0.3. Circles denote the eigenvalues of B−1 (which is a term in both (5.36)
and (5.38)), crosses denote the contribution of R−1 in the second term of (5.36) (i.e.
for H = H1) and pluses denotes the contribution of R−1 in the second term of (5.38)
(i.e for H = H2).

Recall (Section 5.4.3) that γjs are ordered in terms of wavenumber rather than by
maximum eigenvalue.

Lemma 5.6.2 also yields an upper bound that is the sum of an eigenvalue of B−1 and
a term depending on R−1 and the choice of H2. We note that the values of the second
term of (5.38) take the same values as the second term of (5.36) but in a different
order. These are shown by the pluses in Figure 5.5, where we see that in order of
wavenumber j, the second term of (5.38) yields the spectrum of R−1 twice. The
second term of (5.38) is maximised for j = p/2 and j = 3p/2. These are different
wavenumbers to the value of j = p which maximises the first term.

Hence, we can bound λ1(S) above by λ1(R−1) + λN/4(B−1) when
λ1(HTR−1H) + λN(B−1) > λ1(B−1). In this case, increasing LB has a very small
effect on the upper bound for λ1(S), as λN/4(B−1) does not change significantly with
LB. However, when λ1(B−1) > λ1(HTR−1H) + λN(B−1), small changes to LB will
have a larger impact on λ1(B−1) for all choices of H. Similar behaviour is observed for
fixed LB and changing LR. This change in the wavenumber of the largest eigenvalue
explains why the kink occurs in the case of H2.

Finally, we discuss why the kink occurs for different values of LB and LR for H2 and
H3. We have shown that the kink occurs when λ1(B−1) becomes larger than
λ1(HTR−1H) + λN(B−1). For all values of LR, λ1(HT

2 R−1H2)� λ1(HT
3 R−1H3). As
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the contribution of B−1 is not affected by the choice of observation operator, changing
from H2 to H3 increases the value of LR necessary for λ1(HTR−1H) to be greater
than λ1(B−1). Hence the kink is only visible (see Figure 5.3e) for LR � LB for the
choice H = H3.

5.7 Conclusions

Data assimilation is an important technique for combining information from
observations with model data for the purpose of state estimation. One application of
this is in numerical weather prediction (NWP), where data assimilation is used to
combine observations of the atmosphere with a numerical model, in order to obtain an
accurate description of the current state of the atmosphere. In this case correct
specification of the uncertainty of each term is needed to produce the best forecast.
The introduction of correlated observation error terms at operational NWP centres
motivates investigation into the influence of observation error covariance on the
convergence of the data assimilation procedure. We emphasise that the results
presented here are general, and are relevant for any application of variational data
assimilation. Improved knowledge of the role of correlated observation error
covariances will be of use in the context of engineering [Nakamura and Potthast,
2015], neuroscience [Nakamura and Potthast, 2015, Schiff, 2011] and ecology
[Pinnington et al., 2016, 2017].

In this work we developed theoretical bounds on the condition number of the Hessian
of the 3D-Var objective function, which can be studied as a bound on the speed of
convergence of the minimisation. These bounds were then tested in a simple
numerical framework. We found that

• The bounds separate the contributions of the (correlated) observation error,
background error, and observation operator, allowing us to better understand
the role played by each term. We note that Theorem 5.4.2 and Corollary 5.4.3
in particular are general bounds applying to any valid covariance matrices and
any choice of observation network.

• Numerical experiments for simple linear choices of observation network revealed
interaction between observation error and background error terms. This
interaction was also demonstrated theoretically for any choice of observation
network and error covariance matrices.
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• The structure of the observation network was seen to be crucial for determining
how the observation and background errors interact.

• Both bounds and experiments revealed that the minimum eigenvalue of the two
error covariance matrices is important for determining the conditioning of the
Hessian, as well as the number of iterations required for the convergence of a
minimisation procedure. This agrees with the findings of Weston et al. [2014],
where small minimum eigenvalues of the observation error covariance matrix
caused convergence problems in an practical setting.

• The ratio of the variances was also shown to be influential, although this was
not investigated in detail in this work. This was also seen in Haben [2011].

We emphasise that many of the theoretical results and conclusions presented in this
work are general and apply to any valid choice of background and observation error
covariance matrices, and any linear observation operator. In particular, although the
theoretical results presented in this chapter focus on the 3D-Var problem, a natural
extension to 4D-Var is obtained by replacing the observation operator H with the
generalised 4D observation operator which incorporates dynamical model information
[Haben, 2011]. It is therefore expected that the eigenvalues of this model will also be
important for the conditioning of the Hessian in this framework.

The importance of the choice of observation operator was revealed by the numerical
tests, both for the condition number of the Hessian, and in terms of interaction
between observation and background error covariances. Even for two observation
networks with identical theoretical bounds, very different behaviour was observed
numerically. This was explained by the existence of underlying structures in the
Hessian, induced by the structures of the constituent error covariance and observation
operator matrices. Better understanding of these interactions will be important for
predicting the response of operational systems to the introduction of correlated
observation errors. This is particularly applicable in practical applications where
diagnosed correlated observation error covariance matrices must be adapted prior to
their use in order to ensure convergence of the minimisation of the objective function.

In the numerical experiments presented in this chapter in Section 5.6, the observation
and background error covariance matrices were altered by changing the lengthscales of
the underlying correlation functions. This approach is mainly applicable for spatial
correlations, where correlation lengthscales have a physical interpretation. There is
significant research investigating spatial correlations [Waller et al., 2016c,a, Cordoba
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et al., 2017, Waller et al., 2016b], but much current work concerns the practical
implementation of interchannel correlations for satellite observations [Weston, 2011,
Stewart, 2010, Weston et al., 2014, Bormann et al., 2016, Campbell et al., 2017,
Stewart et al., 2014]. Although the theory presented in Section 5.4 applies directly to
the case of interchannel correlations, it would be of interest to extend our numerical
testing to the interchannel covariance case. In particular, practical experiments have
revealed that the minimum eigenvalue of the observation error correlation matrix is
important for the conditioning of the Hessian in the case of interchannel correlations
[Weston, 2011, Weston et al., 2014], which coincides with the theoretical and
experimental results presented in this work. This is of particular interest as the
correlation structure used in Weston et al. [2014] is not circulant, and demonstrates
that, even beyond the presented in this chapter, our qualitative conclusions provide
useful insight.

An additional area of future interest is investigation into how the best choice of
preconditioning changes with the introduction of correlated observation error. Bounds
on conditioning for the preconditioned case could be found by extending the results
presented here, using similar theoretical techniques to those used in this work. The
numerical and theoretical results discussed in this chapter suggest that interactions
between observation and background correlations are also likely in that framework. It
is expected that understanding how the introduction of correlated observation error
covariance affects the unpreconditioned 3DVar problem will provide insight for
suitable preconditioning methods in the correlated setting. One question of particular
interest is whether the use of the background error covariance term as a
preconditioner, as is done for the Control Variable Transform (CVT) [Bannister, 2008],
remains optimal. One example of an operational problem that is not preconditioned is
the 1DVar used at the UK Met Office for quality control [Stewart et al., 2008b]; the
conclusions from this chapter apply directly to that implementation. The application
of these results to the UK Met Office system will be discussed in a future chapter.
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5.9 Appendix: Proofs

In this section we present the proofs for Lemmas 5.6.1 and 5.6.2 (Section 5.6.6), in
which we express S as the difference between a circulant matrix and a singular matrix
in order to bound the eigenvalues of S above.

Proof of Lemma 5.6.1. We exploit the structure of S which arises from the choice of
H; entries from R−1 are only added to the top left p× p block of B−1. Let C1 be the
circulant matrix generated by the first row of S1. Then for i = 1, . . . , N

C1(1, i) = B−1(1, i) + (HT
1 R−1H1)(1, i) =

B−1(1, i) + R−1(1, i) for i = 1, . . . , p

B−1(1, i) for i = p+ 1, . . . , N.
(5.39)

Let H̃1 be given by

H̃1(i, j) =

1 for j = i, i = p+ 1, . . . , N

0 otherwise.
(5.40)

Then we can write S1 = C1 − H̃T
1 R−1H̃1. Applying (5.6) we obtain

λk(S) ≤ λk(C1) + λ1(−H̃1R−1H̃1). (5.41)

As H̃T
1 R−1H̃1 is not full rank and is positive semidefinite, its smallest eigenvalue is 0.

Hence λ1(−H̃T
1 R−1H̃1) = −λN(H̃T

1 R−1H̃1) = 0 and we have that

λk(S1) ≤ λk(C1). (5.42)

As C1 is circulant, we calculate its eigenvalues via a direct Fourier transform (5.22).
In order of wavenumber, the eigenvalues of C1 are given by

γm(C1) =
p−1∑
k=0

ωmk(B−1
1,k + R−1

1,k) +
N−1∑
k=p

ωkmB−1
1,k m = 0, . . . , N (5.43)

where ω = e2πi/N is an N -th root of unity. Separating the contributions of B−1 and
R−1 yields:

γm(C1) =
N−1∑
k=0

ωmkB−1
1,k +

p−1∑
k=0

ωmkR−1
1,k. (5.44)

Proof of Lemma 5.6.2. Follows the same arguments as the proof for Lemma 5.6.1
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above.

5.10 Summary

In this chapter we developed general bounds on the condition number of the Hessian of
the unpreconditioned variational data assimilation problem. The minimum eigenvalue
of the observation error covariance matrix appeared in the denominator of both
bounds, meaning that small eigenvalues are likely to yield ill-conditioned Hessians.
Numerical experiments revealed cases where both the upper and lower bounds were
tight. Both the background and observation error covariance matrix dominated the
conditioning of the Hessian for different parameter choices. Notably, the choice of
observation operator was important in determining whether the transition between
these regimes was smooth or not. We found that the condition number of the Hessian
represents convergence of the conjugate gradient method well for many examples.
However, in some cases repeated eigenvalues led to faster convergence than could be
expected by considering the condition number of the Hessian alone.

The importance of the minimum eigenvalue of the observation error covariance matrix
motivates the study of reconditioning methods in Chapter 7. Other key terms in the
bounds, such as the ratio of the background and observation variance, will be shown
to be important for the conditioning and convergence of an unpreconditioned
nonlinear data assimilation problem in Chapter 8. In the next chapter, we examine
how the bounds and conclusions for the unpreconditioned problem alter when we
consider the preconditioned data assimilation problem.
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Chapter 6

Conditioning of the preconditioned
variational data assimilation
problem

In this chapter we address RQ 2 from Chapter 1 and study how the effects of
introducing correlated observation error differ in the preconditioned variational
assimilation problem compared to the unpreconditioned problem. We wish to know:

• How does the importance of the background and observation terms differ in the
preconditioned case?

• Does the behaviour of the condition number of the Hessian represent
convergence of the conjugate gradient method well for numerical experiments?

6.1 Abstract

Data assimilation combines prior and observation information, weighted by their
respective uncertainties, to obtain the most likely initial state of a dynamical system.
In the variational data assimilation framework, a very high dimensional nonlinear
least squares problem is solved iteratively. Until recently, all numerical weather
prediction centres used diagonal error covariance matrices for all observation types.
The increasing use of full observation weighting matrices motivates theoretical study
regarding how introducing correlated observation error covariance matrices affects
convergence of the data assimilation routine. Previous work showed that the
minimum eigenvalue of the observation error covariance matrix was important for the
conditioning and convergence of the unpreconditioned data assimilation problem. In
this chapter we study how the conditioning of the preconditioned data assimilation
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problem is affected by the introduction of correlated observation error for the first
time. The minimum eigenvalue of the observation error covariance matrix also
appears in upper and lower bounds on the Hessian of the preconditioned objective
function. Numerical experiments reveal that it is harder to separate the effects of
changing each matrix than in the unpreconditioned cases. However, by considering
bounds that exploit different matrix norms it is possible to obtain good estimates of
how changes to parameters affect the conditioning of the Hessian. We find cases
where the eigenstructures of the constituent matrices lead to much faster convergence
of a conjugate gradient method than could be expected by just considering the
conditioning of the Hessian. Practical implementations of data assimilation
algorithms often require that estimated covariance matrices are modified prior to use
to reduce sampling noise. The theory in this chapter can be used to select
modifications that may lead to faster convergence.

6.2 Introduction

Data assimilation is the process by which observations of a dynamical system are
combined with information from a model of the system to find the most likely state of
the system at a given time. In the variational data assimilation framework, both the
observation and prior, or background, terms are weighted by their respective
uncertainties. The most mature application of data assimilation is to numerical
weather prediction (NWP), where it is used to obtain the best estimate, or analysis,
of the initial condition used to produce forecasts (see e.g. Carrassi et al. [2018], Daley
[1991], Kalnay [2002]). However, data assimilation methods can be used for any
dynamical system with observations, such as in ecology (e.g. Pinnington et al. [2016,
2017]), hydrology (e.g. Cooper et al. [2018]) and neuroscience (e.g. Nakamura and
Potthast [2015], Schiff [2011]).

The variational data assimilation method finds the analysis, or most likely state of the
dynamical system, by minimising a nonlinear least squares objective function using an
iterative method. The commonly-used incremental formulation solves the data
assimilation problem via a small number of nonlinear outer loops, and a larger
number of inner loops which solve the linearised problem [Courtier et al., 1994]. This
procedure has been shown to be equivalent to a Gauss-Newton method [Gratton
et al., 2007, Lawless et al., 2005a,b]. As the inner loop is a linear least squares
problem, the conjugate gradient method is often used for this minimisation [Fisher,
1998, Liu et al., 2018, Trémolet, 2007]. This method also has reasonable convergence
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and memory requirements for high dimensional problems [Chao and Chang, 1992].

One practical problem with implementing incremental 4D-Var is the cost of either
explicitly forming the background error covariance, or evaluating matrix-vector
products. This is partly due to the large size of this matrix; the number of state
variables can be of the order of 109 [Carrassi et al., 2018]. This motivates the use of
the control variable transform (CVT) to model the background error covariance
matrix implicitly [Bannister, 2008]. The CVT uses the square root of the background
error covariance matrix as a variable transform to obtain a modified objective
function [Lewis et al., 2006, Sec 9.1] and can therefore be considered as a form of
preconditioning. Statistically this equates to transforming the variables to states that
are uncorrelated. This leads to the additional benefit that the Hessian of the objective
function using the CVT is typically better conditioned than the Hessian
corresponding to the unpreconditioned problem. We will refer to the incremental
variational problem with the CVT as the preconditioned data assimilation problem
for the remainder of this chapter.

The use of correlated observation error covariance matrices can bring benefit to
applications [Stewart et al., 2013, Simonin et al., 2019], and indeed will be necessary
to capture high resolution phenomena [Rainwater et al., 2015, Fowler et al., 2018].
However, the move from uncorrelated (diagonal) to correlated (full) covariance
matrices, has been shown to cause problems with the convergence of the data
assimilation procedure [Weston, 2011, Weston et al., 2014]. NWP is a
high-dimensional application (typically 107 observations are assimilated every cycle
[Carrassi et al., 2018]) and computational time is at a premium. In order to use
correlated observation error covariance matrices in applications, methods must be
developed to ensure computationally efficient implementation. Some recent examples
of efficient methods include a diffusion-based covariance model where the inverse
observation covariance operator is formulated directly [Guillet et al., 2019], and an
alternative parallelisation scheme which groups together observations with mutually
correlated errors for processing [Simonin et al., 2019].

It is well-known that convergence of a conjugate gradient method can be bounded by
the condition number of the Hessian of the objective function [Gill et al., 1986, Golub
and Van Loan, 1996, Haben, 2011]. This means that the condition number of the
Hessian is often used as a proxy to study how changes to a data assimilation method
are likely to affect convergence of the minimisation. The condition number of the
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Hessian of an objective function is also of interest as it relates to the sensitivity of the
problem to perturbations in the background or observations. We expect much faster
convergence of the preconditioned problem than the unpreconditioned data
assimilation formulation. However, it is important to note that there are
circumstances, for example in the case of repeated eigenvalues, where the relationship
between condition number and convergence of a conjugate gradient method is not so
strong [Gill et al., 1986, Nocedal, 2006]. In this chapter we will therefore consider how
the condition number of the Hessian relates to convergence of the conjugate gradient
method in an idealised numerical framework.

Theoretical studies have considered how changes to the variational data assimilation
problem will change its conditioning for the case of uncorrelated observation error
covariance matrices and for the unpreconditioned problem. In the case of uncorrelated
(diagonal) observation error covariance matrices, Haben et al. [2011b], Haben [2011]
used the condition number of the Hessian as a proxy for convergence of the
preconditioned variational data assimilation problem. The ratio between background
and observation variances was found to play an important role in the conditioning of
the Hessian, as well as the choice of observation network. For correlated (full)
observation error covariance matrices, Tabeart et al. [2018] found cases where either
observation or background error covariance matrices dominated conditioning of the
unpreconditioned problem. It is expected that the role of each matrix will be more
complicated for the preconditioned problem, where the background and observation
error covariance matrices appear in the same product within the Hessian.
Additionally, theoretical bounds and numerical results from Tabeart et al. [2018]
showed that in the case of unpreconditioned variational assimilation, the minimum
eigenvalue of the correlated observation error covariance matrix is important in
determining the conditioning of the Hessian of the objective function. As estimated
observation error covariance matrices often need to be modified prior to their use at
NWP centres, e.g. by reconditioning [Weston, 2011, Tabeart et al., 2019a,b],
understanding which properties of the observation error covariance matrix may lead to
ill-conditioned data assimilation problems is of practical as well as theoretical interest.

In this chapter we consider the conditioning of the preconditioned variational data
assimilation problem in the case of correlated observation error covariance matrices.
We extend the analysis of Tabeart et al. [2018] to the preconditioned case. We begin
in Section 6.3 by defining the problem and introducing the notation of data
assimilation, alongside existing mathematical results relating to conditioning. In

83



Section 6.3 Page 84

Section 6.4 we present theoretical bounds on the condition number of the
preconditioned Hessian in terms of its constituent matrices. We introduce the
numerical framework that will be used for our experiments in Section 6.5, before
presenting the results of these experiments and related discussion in Section 6.6. We
find that increasing the correlation lengthscale of the background error covariance
matrix, or decreasing the correlation lengthscale of the observation error covariance
matrix reduces the condition number of the Hessian. We find cases where our bounds
represent the qualitative behaviour of the conditioning well, as well as cases where
other bounds from Haben [2011] are tighter. The effect of changing experimental
parameters on the convergence of a conjugate gradient method is also studied.
Finally, we present our conclusions in Section 6.7. The theoretical and numerical
conclusions from this chapter will help users understand how changes to individual
components of a data assimilation system are likely to affect its conditioning and
convergence. One example of this is the use of reconditioning methods for estimated
observation error covariance matrices [Weston, 2011, Weston et al., 2014, Campbell
et al., 2017], where the results in this work may allow users to select a method or
parameter value that will permit improved computational efficiency.

6.3 The preconditioned variational data
assimilation problem

6.3.1 The control variable transform formulation of the data
assimilation problem

We now define the preconditioned 4D-Var data assimilation problem and introduce
the notation that will be used in this chapter. We remark that in the 4D-Var setting
observations can be made at multiple times over a pre-defined observation window.

Let our time window begin at time t0 and end at time tn, with n being the total
number of timesteps. Let our state have dimension N . We define the background, or
prior, at time t0 as xb ∈ RN , with corresponding background error covariance matrix
B ∈ RN×N . Observations yi ∈ Rpi occur at time ti, with corresponding observation
error covariance matrix Ri ∈ Rpi×pi . The total number of observations across the
whole time window is given by Q = ∑n

i=0 pi. In order to compare observations with
state variables, we define an observation operator hi : RN → Rpi which maps from
state variable space to observation space at time ti.
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As Ri and B are covariance matrices, they are symmetric and positive semi-definite by
definition. We additionally assume that all these matrices are strictly positive definite,
and that observation and background errors are unbiased and mutually uncorrelated.

In order to compare an observation at time ti with the state variable at time ti, we
propagate the state from the previous time using a nonlinear forecast model, M to
obtain

xi =M(ti−1, ti,xi−1). (6.1)

This yields the full 4D-Var objective function

J(x0) = 1
2(x0 − xb)TB−1(x0 − xb) + 1

2

n∑
i=0

(yi − hi[xi])TR−1
i (yi − hi[xi]). (6.2)

The state xa which minimises (6.2) is the analysis. If n = 0 then (6.2) simplifies
immediately to the 3D-Var objective function.

Let xbi =M(ti−1, ti; xbi−1). Define δxi = xi − xbi . We then consider the Taylor
expansion of M(ti−1, ti; xi−1) about xbi(t)

xbi + δxi =M(ti−1, ti; xbi−1) + Miδxi−1 + higher order terms (6.3)
δxi ≈Miδxi−1 (6.4)

where Mi ∈ RN×N is the linearised model operator at time ti, linearised about xbi .
Similarly, expanding hi[xi] about xbi we obtain

hi[xi] ≈ hi[xbi ] + HiMiδxi (6.5)

where Hi ∈ RN×pi is the linearised observation operator at time ti linearised around
xbi .
We then write the linearised objective function in terms of δx0

J(x0) = 1
2δx

T
0 B−1δx0 + 1

2

n∑
i=0

(di −HiMiδx0)TR−1
i (di −HiMiδx0) (6.6)

where di = yi − hi[xbi ] are the innovation vectors. These measure the misfit between
the observations and the linearisation state, using the full nonlinear observation
operator.
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We then define the generalised observation operator as

Ĥ =
[
HT

0 , (H1M̂1)T , . . . , (HnM̂n)T
]T
, (6.7)

where the linearised forward model from time t0 to time ti is given by

M̂i(δxi) = M(ti, t0; δxi−1) = Mi . . .M1. (6.8)

Finally let R̂ ∈ RQ×Q denote the block diagonal matrix with the ith block consisting
of Ri:

δxi = M(ti−1, ti; xi−1)δxi−1 ≡Miδxi−1. (6.9)

This allows us to write the Hessian of the linearised objective function, (6.6), in the
simplified form

S = B−1 + ĤT R̂−1Ĥ. (6.10)

The formulation of the objective function given by (6.2) is too expensive to be used in
practice both in terms of computation, but also storage. The number of state
variables, N , is very large and typically B cannot be stored explicitly. One method
used to combat this problem is preconditioning, where a mathematically equivalent
but less expensive formulation is used. The most common preconditioner for the data
assimilation problem in NWP applications makes use of the control variable transform
(CVT) which is described in detail in Bannister [2008, 2017]. The CVT formulates
the objective function in terms of alternative ‘control variables’, which means that the
background matrix B does not need to be stored explicitly.

The control variable transform (CVT) is then applied to the incremental form of the
variational problem (6.6), via the change of variable δz0 = B−1/2δx0. This yields the
objective function

J(δz0) = 1
2δz

T
0 δz0 + 1

2
(
d̂− ĤB1/2δz0

)T
R̂−1

(
d̂− ĤB1/2δz0

)
. (6.11)

where z0 = B−1/2x0, zb = B−1/2xb, and

d̂
T =

[
dTo ,dT1 , . . . ,dTn

]
(6.12)

is a vector made up of the innovation vectors.

It can be shown [Haben et al., 2011b] that use of the CVT is equivalent to pre- and
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post-multiplying the Hessian of the unpreconditioned data assimilation problem (6.10)
by B1/2 (the uniquely defined, symmetric square root of B). This yields a
preconditioned Hessian for 4D-Var given by

Ŝ = IN + B1/2ĤT R̂−1ĤB1/2. (6.13)

We note that with the additional assumption that B and R are strictly positive
definite, then Ŝ is symmetric positive definite.

The preconditioned Hessian (6.13) highlights the computational benefit of using the
CVT. As there are fewer observations than state variables (typically difference of two
orders of magnitude [Carrassi et al., 2018]), the second term in (6.13) is rank deficient.
This means that the preconditioned Hessian is a low-rank update to the identity, and
hence its minimum eigenvalue is 1. Therefore, the preconditioned Hessian will not
suffer from small minimum eigenvalues that often result in ill-conditioning for the
unpreconditioned problem. This improved conditioning is expected to lead to faster
convergence of the associated data assimilation algorithm.

In this chapter we consider the conditioning of the Hessian of the CVT objective
function (6.11) as a proxy for convergence of the preconditioned data assimilation
problem. We will develop bounds on the condition number of (6.13) in terms of its
constituent matrices and investigate the importance of correlated observation error
covariance matrices for the preconditioned problem. For what follows we will write
R̂ ≡ R and Ĥ ≡ H in order to simplify notation.

6.3.2 Eigenvalue theory

For the remainder of this manuscript, we use the following order of eigenvalues: For a
matrix C ∈ Rd×d let λmax(C) = λ1(C) ≥ λ2(C) ≥ · · · ≥ λd(C) = λmin(C).

In this section we introduce theoretical results from linear algebra. These will be used
in Section 6.4 to develop bounds on the condition number of the preconditioned
Hessian in terms of its constituent matrices. We also present existing bounds on the
Hessian of the preconditioned 4D-Var problem, which we will compare with the new
bounds developed in Section 6.4 in the numerical experiments of Section 6.6.

We begin by formally defining the condition number.
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Definition 6.3.1. [Golub and Van Loan, 1996, Sec. 2.7.2] Let C ∈ Rd×d be a
symmetric positive definite matrix. Then we characterise the condition number in the
2−norm of C as

κ(C) = λ1(C)
λd(C) (6.14)

This shall be referred to as the condition number for the remainder of this work.

Since Ŝ is symmetric positive definite we apply the characterisation of the condition
number given by Definition 6.3.1 throughout this chapter.

The following result allows us to exchange the order of multiplication when computing
the eigenvalues of a matrix product.

Theorem 6.3.2. Let F ∈ Rm×n and G ∈ Rn×m. Then, the nonzero distinct
eigenvalues of GF are the same as those of FG.

Proof. Harville [1997, Theorem 21.10.1]

We now present several results which bound the eigenvalues of matrix sums and
products in terms of the eigenvalues of the individual matrices. These will be used in
Section 6.4 to separate the contribution of the background and observation error
covariance matrices to κ(Ŝ). We begin by considering the eigenvalues of a matrix sum.

Theorem 6.3.3. Consider two symmetric matrices C1, C2 ∈ Rd×d. The kth

eigenvalue of the matrix sum C1 + C2 satisfies

λk(C1) + λd(C2) ≤ λk(C1 + C2) ≤ λk(C1) + λ1(C2). (6.15)

Proof. See [Wilkinson, 1965, Ch. 2 Theorem 44].

We now present three results which bound the eigenvalues of a matrix product in
terms of the product of the eigenvalues of the individual matrices.

Theorem 6.3.4. If F,G ∈ Cd×d are positive semi-definite Hermitian matrices, then

k∏
i=1

λi(FG) ≤
k∏
i=1

λi(F)λi(G), k = 1, . . . , d− 1. (6.16)

Proof. See [Marshall et al., 2011, Sec. 9 H.1.a.].
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Theorem 6.3.5. If F,G ∈ Cd×d are positive semi-definite Hermitian and
1 ≤ i1 < · · · < ik ≤ d, then

k∏
t=1

λt(FG) ≥
k∏
t=1

λit(F)λd−it+1(G), (6.17)

with equality for k = d.

Proof. See Wang and Zhang [1992, Theorem 2].

Theorem 6.3.6. If F,G ∈ Cd×d are positive semidefinite Hermitian and
1 ≤ i1 < · · · < ik ≤ d, then

k∑
t=1

λit(FG) ≥
k∑
t=1

λit(F)λd−t+1(G). (6.18)

Proof. See Wang and Zhang [1992, Theorem 4].

These results will be used to develop bounds on the condition number of the Hessian
(6.13).

We first present an existing bound on κ(Ŝ) from Haben [2011]. We note that this
bound was developed for the 3D-Var case, although it extends naturally to the 4D-Var
problem by replacing R with R̂ and H with Ĥ.

Theorem 6.3.7. Let B ∈ RN×N be the background error covariance matrix and
R ∈ Rp×p be the observation error covariance matrix with p < N . Then the following
bounds are satisfied by the condition number of the Hessian
Ŝ = IN + B1/2HTR−1HB1/2

1 + 1
p

p∑
i,j=1

(
R−1/2HBHTR−1/2

)
i,j
≤ κ(Ŝ) ≤ 1 +

∥∥∥R−1/2HBHTR−1/2
∥∥∥
∞
. (6.19)

Proof. See Haben [2011, Theorem 6.2.1]

In this chapter, we want to develop bounds that separate the contribution of each
constituent matrix. The bounds given by (6.19) do not separate out each term,
meaning that they are likely to be tighter. In Section 6.6 we will numerically compare
the bounds given by (6.19) with those given developed in Section 6.4.
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6.4 Theoretical bounds on the Hessian of the
preconditioned problem

In this section we develop new theoretical bounds on the condition number of the
Hessian of the preconditioned variational data assimilation problem, following similar
methods to the unpreconditioned case in Tabeart et al. [2018]. We begin by defining
the problem of interest studied in this chapter.

Principal Theoretical Assumptions. Let B ∈ RN×N be the background error
covariance matrix. For a given time window [t0, tn], let observations yi ∈ Rpi be made
at times ti, for 0 ≤ i ≤ n. Let Ri ∈ Rpi×pi be the observation error covariance matrix
corresponding to observations at time ti. We define R ∈ RQ×Q as the block diagonal
matrix with Ri on the diagonal, where Q = ∑n

i=0 pi < N . Let H ∈ RQ×N be the
generalised linearised observation operator given by (6.7).

The first result shows that the condition number can be calculated via the eigenvalues
of the rank-p update.

Lemma 6.4.1. Following the Principal Theoretical Assumptions we can express the
condition number of Ŝ as

κ(Ŝ) = 1 + λ1(BHTR−1H) (6.20)
= 1 + λ1(R−1HBHT ). (6.21)

Proof. We begin by showing that κ(Ŝ) = 1 + λ1(B1/2HTR−1HB1/2), as was presented
in [Haben, 2011, Equation (4.2)]. We define B1/2HTR−1HB1/2 = C and write
Ŝ = I + C. Let σ1 ≥ σ2 ≥ · · · ≥ σN be the eigenvalues of C, with corresponding
eigenvectors vi. As Q < N , C is rank-deficient and therefore σN = 0.
Then, we can calculate the eigenvalues of Ŝ via

λi(Ŝ)vi = (I + C)vi
= vi + Cvi
= (1 + σi)vi.

(6.22)

As σN = 0, we find that λN(Ŝ) = 1. This means that κ(Ŝ) = λ1(Ŝ) = 1 + σ1(C). We
now use the result of Theorem 6.3.2 to exchange the order of multiplication. In order
to obtain (6.20) let G = B1/2 and F = B1/2HTR−1H. To obtain (6.21), we define
F = R−1HB1/2 and G = B1/2HT .
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The result of Lemma 6.4.1 shows that computing κ(Ŝ) only requires the computation
of the maximum eigenvalue of a single matrix product. We also note that the matrix
products that appear in (6.20) and (6.21) are of different dimensions:
BHTR−1H ∈ RN×N and R−1HBHT ∈ RQ×Q. Additionally, the first matrix product
is rank deficient, whereas the second matrix product is full rank.

We now develop bounds on the condition number of Ŝ in terms of its constituent
matrices.

6.4.1 General bounds on the condition number

Theorem 6.4.2. Given the Principal Theoretical Assumptions we can bound
Ŝ = IN + B1/2HTR−1HB1/2 by

1 + max
{
λ1(HTR−1H)λN(B), λ1(HBHT )

λ1(R) ,
λQ(HBHT )
λQ(R)

}

≤ κ(Ŝ) ≤ 1 + min{λ1(B)λ1(HTR−1H), λ1(HBHT )
λQ(R) }.

(6.23)

Proof. We write κ(Ŝ) as in the statement of Lemma 6.4.1. To obtain the upper bound
of (6.23), we use the result of Theorem 6.3.4 to separate the contribution of the
background and observation term

κ(Ŝ) = 1 + λ1(BHTR−1H) ≤ 1 + λ1(B)λ1(HTR−1H) (6.24)

and similarly for the alternative formulation

κ(Ŝ) = 1 + λ1(R−1HBHT )

≤ 1 + λ1(R−1)λ1(HBHT ) = 1 + 1
λQ(R)λ1(HBHT ).

(6.25)

Combining these two expressions yields the upper bound in the theorem statement.
To compute the lower bound of (6.23), we apply the result of Theorem 6.3.5 to (6.20).
This yields

λ1(BHTR−1H) ≥ max
{
λ1(HTR−1H)λN(B), λN(HTR−1H)λ1(B)

}
λ1(BHTR−1H) ≥ λ1(HTR−1H)λN(B).

(6.26)

This last inequality is due to the fact that HTR−1H is rank-deficient. We now apply
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the result of Theorem 6.3.5 to (6.21)

λ1(R−1HBHT ) ≥ max
{
λ1(HBHT )λQ(R−1), λQ(HBHT )λ1(R−1)

}
≥ max

{
λ1(HBHT )
λ1(R) ,

λQ(HBHT )
λQ(R)

}
.

(6.27)

Combining these bounds yields (6.23) as required.

We can separate the contribution of the observation error covariance matrix from the
observation operator via the following result.

Corollary 6.4.3. Under the same conditions as in Theorem 6.4.2, we can bound κ(Ŝ)
by

1 + max
{
λQ(HHT )λN(B)

λQ(R) ,
λ1(HHT )λN(B)

λ1(R)

}
≤ κ(Ŝ) ≤ 1 + λ1(B)

λQ(R)λ1(HHT ) (6.28)

Proof. We begin by considering the upper bound of (6.23). By Theorem 6.3.2
HTR−1H has precisely the same nonzero eigenvalues as R−1HHT and HHTR−1.
Applying Theorem 6.3.4 for k = 1 to λ1(R−1HHT ) yields:

λ1(R−1HHT ) ≤ λ1(R−1)λ1(HHT ) = λ1(HHT )
λQ(R) . (6.29)

By Theorem 6.3.2 , HBHT has precisely the same nonzero eigenvalues as BHTH.
Applying Theorem 6.3.4 for k = 1 yields:

λ1(BHTH) ≤ λ1(B)λ1(HTH) = λ1(B)λ1(HHT ). (6.30)

The final equality arises as the nonzero eigenvalues of HHT are equal to those of
HTH. Therefore the two cases from Theorem 6.4.2 yield the same ‘factorised’ upper
bound, and gives the upper bound in (6.28).

We now consider the first term in the lower bound of (6.23) and bound λ1(HTR−1H)
below. We separate the contribution of R and HHT using Theorem 6.3.5 for
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t = 1, i1 = 1. This yields

λ1(R−1HHT ) ≥ max
{
λQ(R−1)λ1(HHT ), λ1(R−1)λQ(HHT )

}
(6.31)

≥ max
{
λ1(HHT )
λ1(R) ,

λQ(HHT )
λQ(R)

}
. (6.32)

Multiplying this by λN(B) yields

κ(Ŝ) ≥ max
{
λ1(HHT )λN(B)

λ1(R) ,
λQ(HHT )λN(B)

λQ(R)

}
. (6.33)

This yields the two terms that appear in the lower bound of (6.28).

We now consider the second term of (6.23) and bound λ1(HBHT ) below. We
separate the contribution of B and HTH using Theorem 6.3.5 for
t = 1, k = 1, i1 = 1, d = N . This yields

λ1(BHTH) ≥ max
{
λ1(B)λN(HTH), λN(B)λ1(HTH)

}
≥ λN(B)λ1(HTH).

(6.34)

The last inequality follows as HTH is not full rank and therefore λN(HTH) = 0.
Multiplying this result by 1/λ1(R) gives the same value as the first term in (6.33).

Finally, we bound the third term of the lower bound in (6.23). As
λQ(HBHT ) = λQ(BHTH) by Theorem 6.3.2, we separate the contribution of B and
HTH using Theorem 6.3.6 for t = 1, k = 1, i1 = Q, d = N .

λQ(BHTH) ≥ max{λQ(B)λN(HTH), λN(B)λQ(HTH)}
≥ λN(B)λQ(HTH).

(6.35)

Multiplying the second term of (6.35) by 1/λQ(R) gives the second term in (6.33), as
λQ(HTH) = λQ(HHT ).

In general it is not possible to determine which term in the lower bound of (6.28) is
larger, as this will depend on the choice of B,H and R. However, we are able to
comment on how the bounds are likely to be altered by changes to individual
matrices. As we increase λQ(R) both the upper bound and first term in the lower
bound decrease. Similarly, as λ1(HHT ) appears in the upper bound and second term
of the lower bound, increases to this term will result in increases to both bounds. As
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smaller eigenvalues of B increase, the lower bound will increase but the upper bound
will remain unchanged. Finally, as λ1(R) increases, the second term of the lower
bound will decrease. In the experiments in Section 6.6 we will study how each of these
terms changes with interacting parameters, and assess which lower bound is tighter
for a variety of situations.

6.4.2 Bounds on the condition number in the case of
circulant error covariance matrices

The theoretical bounds presented in Section 6.4.1 apply for any choice of observation
and background error covariance matrices. However, for a given numerical framework,
general bounds can typically be improved by exploiting specific structure of the
matrices being used [Haben, 2011]. In this section we will show that under additional
assumptions on the structure of the error covariance matrices and observation
operator, the bounds given by (6.19) yield the exact value of κ(Ŝ).

We begin by defining circulant matrices, which arise for spatial correlations for
homogeneous, evenly distributed variables. We will make use of this structure in the
numerical experiments in Section 6.6.

Definition 6.4.4 (Davis [1979]). A circulant matrix D ∈ RN×N is a matrix of the
form

D =



d0 d1 d2 · · · dN−2 dN−1

dN−1 d0 d1 · · · dN−3 dN−2

dN−2 dN−1 d0 · · · dN−4 dN−3
... ... ... . . . ... ...
d2 d3 d4 · · · d0 d1

d1 d2 d3 · · · dN−1 d0


.

Circulant correlation matrices are computationally desirable to use as their
eigenvalues can be calculated via a discrete Fourier transform.

Theorem 6.4.5. The eigenvalues of a circulant matrix D ∈ RN×N , as given by
Definition 5.4.6, are given by

γm =
N−1∑
k=0

dkω
mk, (6.36)

with corresponding eigenvectors

vm = 1√
N

(1, ωm, · · · , ωm(N−1)), (6.37)
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where ω = e−2πi/N is an N−th root of unity.

Proof. See Gray [2006] for full derivation.

We note that the result of Theorem 6.4.5 means that any circulant matrix of
dimension N admits the same eigenvectors.

Our numerical experiments in Section 6.6 will use circulant background and
observation error covariance matrices. In the case of circulant error covariance
matrices, with some additional assumptions on the entries of matrix products, we can
prove that the upper and lower bounds given by Theorem 6.3.7 are equal and yield
the exact value of κ(Ŝ).

Corollary 6.4.6. If HBHT and R are circulant matrices, and all of the entries of
R−1/2HBHTR−1/2 are positive, then the upper and lower bounds in Theorem 6.3.7
are equal, and the bound is exact.

Proof. The product of circulant matrices is a circulant matrix, the inverse of a
circulant matrix is circulant [Gray, 2006], and the square root of a circulant matrix is
also circulant [Mei, 2012]. Therefore if the product HBHT is circulant, as R−1/2 is
circulant by construction, then the product R−1/2HBHTR−1/2 is circulant.

The lower bound of (6.19) computes the average row sum of the product
R−1/2HBHTR−1/2. As the product is circulant, each row has the same sum, given by∑p
k=1 dk, where di is the ith entry of the first row of the circulant matrix (as

introduced in Definition 6.4.4).

The upper bound of (6.19) returns the maximum absolute row sum of the product.
As the product is circulant with only positive entries, all absolute row sums are
identically equal to ∑p

k=1 |dk| =
∑p
k=1 dk. Hence, we have equality of lower and upper

bounds and hence the exact value for κ(Ŝ).

This results shows that, if the additional assumptions are satisfied, we can compute
κ(Ŝ) directly using the bounds (6.19). The bound given by (6.28) has the added
benefit of separating the contributions of each matrix, allowing greater understanding
of the influence of each term individually. Bounds which separate the contribution of
R allow users to understand the implication of introducing new observation operators
and new observation error covariance matrices on the conditioning of the
preconditioned 4D-Var problem.
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6.5 Numerical framework

In this section we describe the numerical framework that will be used to study how
the bounds on the preconditioned Hessian (6.13) compare with the actual value of
κ(Ŝ). We use the framework that was introduced in Tabeart et al. [2018], which
makes use of linear observation operators and circulant covariance matrices for the
3D-Var problem. We note that in the case of 3D-Var, variables with a hat in (6.11)
and (6.13) simplify to the standard observation error covariance matrix, R and
observation operator, H.

We now define the different components of the numerical framework. Our domain is
the unit circle, and we fix the ratio of state variables to observations as N = 2p, i.e.
twice as many state variables as observations. Similarly to Tabeart et al. [2018] we
define both the observation and background error covariance matrices to have a
circulant structure with unit variances. This is a natural choice for correlations on a
periodic domain with evenly distributed state variables. Circulant matrices also admit
useful theoretical properties as was discussed in Section 6.4.2. The use of circulant
error covariance matrices allow us to better understand the interaction between
different terms in the Hessian, and to isolate the impact of parameter changes.

Specifically we will focus on circulant matrices arising from the SOAR [Daley, 1991]
correlation functions [Johnson, 2003]. SOAR matrices are used in NWP applications
as a horizontal correlation function [Simonin et al., 2014] and are fully defined by a
correlation lengthscale for a given domain. We remark that we substitute the great
circle distance in the SOAR correlation function with the chordal distance, as
discussed in Gaspari and Cohn [1999] and Jeong and Jun [2015], to ensure that the
properties of positive definiteness are satisfied and that we obtain a valid correlation
matrix.

Definition 6.5.1. The SOAR error correlation matrix on the unit circle is given by

D(i, j) =
1 +

∣∣∣∣2 sin
(
θi,j

2

)∣∣∣∣
L

 exp
−

∣∣∣∣2 sin
(
θi,j

2

)∣∣∣∣
L

, (6.38)

where L > 0 is the correlation lengthscale and θi,j denotes the angle between grid
points i and j. The chordal distance between adjacent grid points is given by

∆x = 2 sin
(
θ

2

)
= 2 sin

(
π

N

)
, (6.39)
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where N is the number of gridpoints and θ = 2π
N

is the angle between adjacent
gridpoints.

Both our background and observation error covariance matrices for the experiments
presented in Section 6.6 will be SOAR with constant unit variance. We now introduce
the observation operators that will be used for the 3D-Var experiments. Three of our
observation operators are the same as those used in Tabeart et al. [2018] which we
state again for clarity. Tabeart et al. [2018, Figure 2] shows a representation of a low
dimensional version of the observation operator structure for H1, H2 and H3.

Definition 6.5.2. The observation operators H1, H2, H3 ∈ Rp×N , for N = 2p, are
defined as follows:

H1(i, j) =

1, j = i for i = 1, . . . , p

0, otherwise.
(6.40)

H2(i, j) =

1, j = 2i for i = 1, . . . , p

0, otherwise.
(6.41)

H3(i, j) =


1
5 , j ∈ {2i− 2, 2i− 1, 2i, 2i+ 1, 2i+ 2 (mod N)} for i = 1, . . . , p

0, otherwise.
(6.42)

The first choice of observation operator, H1 corresponds to direct observations of the
first half of the domain. The second observation operator, H2, corresponds to direct
observations of alternate state variables. The third observation operator, H3, is a
smoothed version of H2. Observations of alternate state variables are smoothed
equally over 5 adjacent state variables. The fourth choice of observation operator, H4

selects p random observations, which are then ordered. We considered a number of
choices of random observation operator, and all choices yielded similar numerical
results. In order to ensure a fair comparison, we fix the same choice of H4 for all of the
results presented in Section 6.6. This choice of observation operator is shown in Figure
6.1. Observations are spread over the whole domain, but are clustered rather than
evenly distributed. For the numerical experiments in Section 6.6, we will use p = 100
observations and N = 200 state variables. In the unpreconditioned case, structure in
the observation operator, such as regularly spaced observations, was important for the
tightness of bounds and convergence of a conjugate gradient method [Tabeart et al.,
2018]. We therefore consider H4 as an operator without strict structure. This will
allow us to see how structure (or the lack of it) affects the preconditioned problem.
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Figure 6.1: Representation of state variables that are observed for H4. Black denotes
state variables that are observed directly and white denotes state variables that are not
observed.

6.5.1 Changes to the condition number of the Hessian

Our first set of experiments consider how different combinations of parameters will
alter the value of κ(Ŝ) and the bounds given by (6.28). We compute the condition
number of the Hessian (6.13) using the Matlab function cond [MATLAB, 2018b] and
compare against the values given by our bounds. Tabeart et al. [2018, Table 1] shows
how the maximum and minimum eigenvalues of SOAR matrices are affected by
changes in lengthscale. The maximum and minimum eigenvalues of both error
covariance matrices appear in (6.28). We can therefore predict how the bounds will
change with varying parameter values.

• As LR increases, λQ(R) decreases. This means that both the upper bound and
the first term in the lower bound of (6.28) will increase. However, λ1(R)
increases with LR meaning that the second term in the lower bound will
decrease. It is therefore not possible to determine whether the lower bound will
increase or decrease with increasing LR in general.

• As LB increases, λ1(B) increases. This means that the upper bound of (6.28)
will increase with LB.

• As LB increases, λN(B) decreases. This means that both terms in the lower
bound of (6.28) will decrease with increasing LB. Hence, the bounds (6.28) will
diverge as LB increases.

We wish to assess whether the qualitative behaviour of κ(Ŝ) agrees with the
qualitative behaviour of the bounds for our experimental framework. Additionally, we
are interested in which of the lower bounds is better, and whether we can determine
situations where one bound is tighter than the other. However, we note that the
bounds (6.28) separate the contribution of different terms whereas these terms will
interact in the value of the Hessian. This means the bounds (6.28) are likely to fail to
account for interaction between B and R.
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6.5.2 Convergence of a conjugate gradient algorithm

Although conditioning of a problem is often used as a proxy to study convergence,
there are well-known situations where the condition number provides a pessimistic
indication of convergence speed. We therefore wish to assess how the convergence of a
conjugate gradient method changes with the parameters of the data assimilation
system, and whether situations where the bounds on the condition number are large
suffer from poor convergence. Following a similar method to [Tabeart et al., 2018, Sec
5.3.2] we study how the speed of convergence of a conjugate gradient method applied
to the linear system Ŝx = b changes with the parameters of the system. We define x
as a vector with features at a variety of scales, and then calculate b = Ŝx before
recovering x. We use the MATLAB 2018b routine pcg.m to recover x using the
conjugate gradient method. As we are studying a preconditioned system, convergence
is fast. In order to make the differences between parameter choices more evident we
use a strong tolerance of 1× 10−10 on the relative residual.

We consider how changes to lengthscale and observation operator alter the
convergence of the conjugate gradient method. In the case that convergence behaves
differently to conditioning, we study the eigenstructure of Ŝ to understand why these
differences occur.

6.6 3D-Var experiments

In this section we present the results of our numerical experiments. Figures will be
plotted as a function of changes to correlation lengthscales for both B and R. We
recall that increasing the lengthscale of a SOAR correlation matrix will reduce its
smallest eigenvalue and increase its largest eigenvalue, [Waller et al., 2016b, Tabeart
et al., 2018].

Figure 6.2 shows how the condition number of the preconditioned Hessian (6.13)
changes with the lengthscales of B and R for different choices of H. For H1,
increasing LR increases the value of κ(Ŝ), whereas changes with LB are much smaller.
For H2, large values of κ(Ŝ) occur for very large values of LR and small values of LB.
For a fixed value of LR, increasing LB results in a rapid decrease in the value of κ(Ŝ).
For small fixed values of LR (LR < 0.1), this decrease is followed by a slow increase to
κ(Ŝ) with increasing LB for LB > 0.2. The minimum value of κ(Ŝ) occurs when
LR = LB; in this case HBHT = R to machine precision for both H2 and H3. The
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Figure 6.2: Change to κ(Ŝ) with changes in LR, LB for (a) H1, (b) H2, (c) H3 and
(d) H4. The colour map is shown on a logarithmic scale which is standardised for all
figures. Contours range from κ(Ŝ) = 0.25 to κ(Ŝ) = 5 with a contour interval of 0.25.
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qualitative behaviour for H2 and H3 is very similar, with smaller values of κ(Ŝ) for
H3 than H2. This is also the case in the unpreconditioned setting [Tabeart et al.,
2018], and occurs as H3 can be considered as a smoothed version of H2. Qualitatively
the behaviour for H4 is a compromise between H1 and H2; we can reduce κ(Ŝ) by
increasing LB or decreasing LR. In the unpreconditioned case it is always beneficial
(in terms of reducing κ(Ŝ)) to decrease either LR or LB. However, in the
preconditioned setting, for H2 and H3 there are cases where κ(Ŝ) could be reduced by
increasing LB or LR.
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Figure 6.3: Bounds and value of κ(Ŝ) for (a,e,i) H1, (b,f,j) H2, (c,g,k) H3 and (d,h,l) H4 as a function of LB. Blue dashed lines
denote the bounds given by (6.19), red dot-dashed lines denote the upper bound and first term in the lower bound of (6.28). The
solid black line denotes the value of κ(Ŝ) calculated using the cond command in MATLAB [2018b]. The different rows correspond
to different values of LR.
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Figure 6.3 shows the value of κ(Ŝ), terms in the bounds (6.28) and the bounds (6.19)
for various combinations of H, R and B. The second term in the lower bound (6.28),
given by 1 + λ1(HHT )λN(B)(λ1(R))−1, is not shown, as it performs worse than the
first term of (6.28), given by 1 + λQ(HHT )λN(B)(λQ(R))−1, for all parameter
combinations studied. For all choices of H, LR and LB, the upper bound of (6.28) is
much larger than the actual value of κ(Ŝ) and does not represent the qualitative
behaviour well: the bound increases with LR which is not the case for κ(Ŝ) for any of
the experiments. This shows that considering the effect of changing each term
individually may be no longer be appropriate in the preconditioned case; it is more
complicated to separate the effects of changing parameters within a product than
within a sum (as in the unpreconditioned setting). The first term in the lower bound
of (6.28) represents the qualitative behaviour of κ(Ŝ) well, capturing the decrease of
κ(Ŝ) with an increase in LB. However, the value given by the bound is much smaller
than the value of κ(Ŝ), particularly for LB < LR.

The upper bound of (6.19) represents the qualitative and quantitative behaviour well
for all parameter choices. For smaller values of LR the lower bound of (6.19) also
performs well. However, this bound increases monotonically and fails to capture the
decrease in κ(Ŝ) with increasing LB for values of LB < LR. For H2 and H3 the upper
and lower bounds of (6.19) are equal for LB > LR. This results from Corollary 6.4.6
as HBHT is circulant when H = H2 or H = H3 and all entries in the product
R−1/2HBHTR−1/2 are positive for LB ≥ LR.
Comparing the bounds given by (6.28) and (6.19), we find that the upper bound of
(6.19) performs better for all parameters studied. The best lower bound depends on
the choice of LB and LR: for lower values of LB and larger values of LR the first term
of (6.28) is the tightest. Otherwise the bound given by (6.19) yields the tightest
bound in this setting. Although the bounds given by (6.19) represent the behaviour of
κ(Ŝ) well, we note that the numerical framework considered here has a very specific
structure that is unlikely to occur in practice. Observation operators are likely to be
much less smooth and have less regular structure: e.g. observations may not occur at
the location of state variables, observation and state variables may not be evenly
spaced, data may be missing, leading to different observation networks at different
times or time windows. This may make a difference to the performance of both sets of
bounds.

We now consider how altering the data assimilation system affects the convergence of
a conjugate gradient method for the problem introduced in Section 6.5.2. Figure 6.4
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Figure 6.4: Number of iterations required for a conjugate gradient method to converge
for changing values of LR and LB for (a) H1, (b) H2, (c) H3 and (d) H4.

Figure 6.5: Eigenvalues of R−1H1BHT
1 for LB = 0.8 and LR = 0.1, LR = 0.4, LR = 0.7.

Note the y-axis is plotted with a logarithmic scale
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shows how convergence of the conjugate gradient problem changes with LB, LR and
H. We see that for many cases κ(Ŝ) is a good proxy for convergence: for H2, H3 and
H4 reductions in κ(Ŝ) and the number of iterations required for convergence occur for
the same changes to LR and LB. The main difference in behaviour is seen for H1,
where increasing LR increases κ(Ŝ) for all choices of LB, but makes no difference to
the number of iterations required for convergence for LB > 0.4.

Figure 6.5 shows the full spectrum of eigenvalues of R−1H1BHT
1 for LB = 0.8 and

LR = 0.1, 0.4, 0.7. We recall that convergence of the conjugate gradient method
depends on the distribution of the entire spectrum, whereas the condition number is
sensitive only to the two extreme eigenvalues. In particular, we expect faster
convergence to occur where eigenvalues are repeated or clustered [Trefethen and Bau
[1997, Theorems 38.3, 38.5], Gill et al. [1986, Theorem 38.4]]. Figure 6.5 shows that
increasing LR leads to an increase in clustering of the eigenvalues of R−1H1BHT

1 as
well as an increase in κ(Ŝ). It can be shown numerically that for H1, H2 and H3 and
a fixed value of LR, the number of distinct clusters decreases with increasing LB until
a limiting value is reached. We note that for H4 the number of distinct clusters is
larger than for other choices of observation operator and does not reach a limiting
value with LB for values of LB studied in our experiments. This explains why
convergence of the conjugate gradient method was slowest for this choice of H, and
why increasing LB or decreasing LR leads to faster convergence for this choice of H.

We conclude that the condition number is a good proxy for convergence in this
framework. However, due to the specific structure of the observation network, which
leads to repeated and clustered eigenvalues, we obtain faster convergence than can be
predicted by κ(Ŝ) for some parameter choices.

We note that the experiments presented in this section have used constant variances
for both background and observation error covariance matrices. Previous work reveals
that in the unpreconditioned case the ratio of background and observation variances is
important for the conditioning of the unpreconditioned assimilation problem [Haben,
2011]. Further work which studies the effect of changing observation variance on
conditioning and convergence of the preconditioned data assimilation problem would
therefore be of interest. We recall that all of the experiments presented in this section
used constant unit variances for both the background and observation error covariance
matrices.
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6.7 Conclusions

The inclusion of correlated observation errors in data assimilation is important for
high resolution forecasts [Fowler et al., 2018, Rainwater et al., 2015], and to ensure we
make the best use of existing data [Michel, 2018, Stewart et al., 2013, Simonin et al.,
2019]. However, multiple studies have found issues with convergence of data
assimilation routines when introducing correlated observation error covariance (OEC)
matrices [Weston, 2011, Campbell et al., 2017, Bormann et al., 2015]. In this chapter,
we study the effect of introducing correlated OEC matrices on the convergence of the
preconditioned variational data assimilation problem. This extends the theoretical
and numerical results of a previous study [Tabeart et al., 2018] that considered the
unpreconditioned formulation.

In this chapter, we developed bounds on the condition number of the Hessian of the
preconditioned variational data assimilation problem. We then studied these bounds
numerically in an idealised framework. We found that:

• The minimum eigenvalue of the OEC matrix appears in both the upper and
lower bounds. This was also true for the unpreconditioned case.

• Decreasing the lengthscale of the observation error covariance matrix or
increasing the lengthscale of the background error covariance matrix reduced the
condition number of the Hessian. Our new lower bound represented the
qualitative behaviour better than an existing bound for many cases.

• For most cases the conditioning of the Hessian performed well as a proxy for the
convergence of a conjugate gradient method. However in other cases, repeated
eigenvalues (induced by the specific structure of the numerical framework)
meant that convergence was much faster than predicted by the conditioning.
The ratio between background and observation lengthscales was a determining
factor for this.

We remark that our findings about repeated eigenvalues occur as our numerical
framework has very specific structure. In particular, the eigenvectors of the
background and observation error covariance matrices are strongly related. Other
experiments not discussed in this chapter considered the use of the Laplacian
correlation function [Haben, 2011]. Qualitative conclusions were very similar to those
presented in Section 6.6. Although the additional assumptions of Corollary 6.4.6 are
not satisfied for the Laplacian correlation function, due to negative entries in
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Laplacian correlation function, the bounds presented in Haben [2011] were still tight.
In applications, we are likely to have more complex observation operators, and the
background and observation error covariance matrices are less likely to have
complementary structures. One example is for NWP and the use of observations from
satellite based instruments. These have interchannel correlation structures that are
different from the typical spatial correlations of background error covariance matrices.
We also note that our state variables were evenly distributed and homogeneous, which
will not be the case for non-uniform meshes.

In the unpreconditioned case using a similar numerical framework Tabeart et al.
[2018] found that improving the conditioning of the background or observation error
covariance matrix separately would always decrease κ(Ŝ). The preconditioned system
is more complicationed, with some cases where making the conditioning of the
background or observation error covariance matrix worse resulting in smaller values of
κ(Ŝ). We expect the relationship between each of the constituent matrices to be
complicated for more general problems. This is relevant for practical applications, as
estimated observation error covariance matrices typically need to be treated via
reconditioning methods before they can be used [Weston, 2011, Bormann et al., 2015].
Currently the use of reconditioning methods is heuristic [Tabeart et al., 2019a]
meaning that there may be flexibility to select a treated matrix that will result in
faster convergence in some cases. Theoretical knowledge about the contribution of
observation error covariance matrices to the conditioning of the Hessian will allow
users to choose between reconditioning methods or select parameters in a more
informed manner.
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6.8 Summary

In this chapter we developed bounds on the Hessian of the preconditioned data
assimilation problem. We found that the minimum eigenvalue of the observation error
covariance matrix appears in both upper and lower bounds, and that small
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eigenvalues of the observation error covariance matrix are likely to lead to larger
bounds on the condition number. This agrees with the qualitative conclusions for the
unpreconditioned problem that was considered in Chapter 5. Numerical experiments
revealed that reducing the condition number of either the background or observation
error covariance matrix does not guarantee a reduction in the condition number of the
Hessian. This behaviour was not well represented by our bounds, which separate the
contribution of each term. We also studied the convergence of a conjugate gradient
problem, and found cases where the eigenstructure of the preconditioned Hessian led
to much faster convergence than would be expected by simply considering its
conditioning. This is a similar finding to the unpreconditioned problem in Chapter 5.
However, clustering of eigenvalues occurred for all choices of observation operator in
the unpreconditioned case, due to the complementary spatial structures of the
background and observation error covariance matrices.

The conclusions from this chapter will not apply directly to the case study in
Chapter 8, as the Met Office 1D-Var system is unpreconditioned. However, the results
from this chapter will apply to the Met Office implementation of 4D-Var, which is
preconditioned. In the next chapter we consider the use of reconditioning methods,
which alter the eigenvalues of a covariance matrix in order to reduce its condition
number. Our findings that the minimum eigenvalue of the observation error
covariance appears in both upper and lower bounds developed in this chapter
indicates that reconditioning methods are likely to also be beneficial to the
preconditioned data assimilation problem.
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Chapter 7

Improving the condition number of
estimated covariance matrices

This chapter will address RQ 3 from Chapter 1 and consider how covariance matrices
are altered by the application of reconditioning methods. Reconditioning methods
have been used to mitigate problems with ill-conditioned estimated covariance
matrices by modifying small eigenvalues of a sample covariance matrix. We wish to
know:

• How do reconditioning methods alter correlations and standard deviations
associated with the covariance matrix?

• How is the variational objective function altered by the use of reconditioning
methods?

• How do two commonly-used reconditioning methods compare to multiplicative
variance inflation?

The remainder of this chapter, excluding the chapter summary (Section 7.9), is
strongly based on the paper: Tabeart J. M., Dance S. L., Haben S. A., Lawless A. S.,
Nichols N. K., Waller J. A. Improving the condition number of estimated covariance
matrices. Tellus A (in press). We also include the supplementary material to the
paper in Section 7.8. The submitted paper can be found at
https://arxiv.org/abs/1810.10984.

7.1 Abstract

High dimensional error covariance matrices and their inverses are used to weight the
contribution of observation and background information in data assimilation
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procedures. As observation error covariance matrices are often obtained by sampling
methods, estimates are often degenerate or ill-conditioned, making it impossible to
invert an observation error covariance matrix without the use of techniques to reduce
its condition number. In this chapter we present new theory for two existing methods
that can be used to ‘recondition’ any covariance matrix: ridge regression, and the
minimum eigenvalue method. We compare these methods with multiplicative
variance inflation, which cannot alter the condition number of a matrix, but is often
used to account for neglected correlation information. We investigate the impact of
reconditioning on variances and correlations of a general covariance matrix in both a
theoretical and practical setting. Improved theoretical understanding provides
guidance to users regarding method selection, and choice of target condition number.
The new theory shows that, for the same target condition number, both methods
increase variances compared to the original matrix, with larger increases for ridge
regression than the minimum eigenvalue method. We prove that the ridge regression
method strictly decreases the absolute value of off-diagonal correlations. Theoretical
comparison of the impact of reconditioning and multiplicative variance inflation on
the data assimilation objective function shows that variance inflation alters
information across all scales uniformly, whereas reconditioning has a larger effect on
scales corresponding to smaller eigenvalues. We then consider two examples: a general
correlation function, and an observation error covariance matrix arising from
interchannel correlations. The minimum eigenvalue method results in smaller overall
changes to the correlation matrix than ridge regression, but can increase off-diagonal
correlations. Data assimilation experiments reveal that reconditioning corrects
spurious noise in the analysis but underestimates the true signal compared to
multiplicative variance inflation.

7.2 Introduction

The estimation of covariance matrices for large dimensional problems is of growing
interest [Pourahmadi, 2013], particularly for the field of numerical weather prediction
(NWP) [Bormann et al., 2016, Weston et al., 2014] where error covariance estimates
are used as weighting matrices in data assimilation problems, (e.g. Daley [1991], Ghil
[1989], Ghil and Malanotte-Rizzoli [1991]). At operational NWP centres there are
typically O(107) measurements every 6 hours [Bannister, 2017], meaning that
observation error covariance matrices are extremely high-dimensional. In nonlinear
least squares problems arising in variational data assimilation, the inverse of
correlation matrices are used, meaning that well-conditioned matrices are vital for
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practical applications [Bannister, 2017]. This is true in both the unpreconditioned and
preconditioned variational data assimilation problem using the control variable
transform, as the inverse of the observation error covariance matrix appears in both
formulations. The convergence of the data assimilation problem can be poor if either
the background or observation variance is small; however, the condition number and
eigenvalues of background and observation error covariance matrices have also been
shown to be important for convergence in both the unpreconditioned and
preconditioned case in Haben et al. [2011b,a], Haben [2011], Tabeart et al. [2018].
Furthermore, the conditioning and solution of the data assimilation system can be
affected by complex interactions between the background and observation error
covariance matrices and the observation operator [Tabeart et al., 2018, Johnson et al.,
2005]. The condition number of a matrix, A, provides a measure of the sensitivity of
the solution x of the system Ax = b to perturbations in b. The need for
well-conditioned background and observation error covariance matrices motivates the
use of ‘reconditioning’ methods, which are used to reduce the condition number of a
given matrix.

In NWP applications, observation error covariance matrices are often constructed
from a limited number of samples Cordoba et al. [2017], Waller et al. [2016a,c]. This
can cause problems with sampling error, leading to sample covariance matrices, or
other covariance matrix estimates, that are very ill-conditioned or can fail to satisfy
required properties of covariance matrices (such as symmetry and positive
semi-definiteness) [Higham et al., 2016, Ledoit and Wolf, 2004]. In some situations it
may be possible to determine which properties of the covariance matrix are well
estimated. One such instance is presented in Skøien and Blöschl [2006], which
considers how well we can expect the mean, variance and correlation lengthscale of a
sample correlation to represent the true correlation matrix depending on different
properties of the measured domain (e.g. sample spacing, area measured by each
observation). However, this applies only to direct estimation of correlations and will
not apply to diagnostic methods, e.g. Desroziers et al. [2005], where transformed
samples are used and covariance estimates may be poor. We note that in this chapter,
we assume that the estimated covariance matrices used in our experiments represent
the desired correlation information matrix well and that differences are due to noise
rather than neglected sources of uncertainty. This may not be the case for practical
situations, where reconditioning may need to be performed in conjunction with other
techniques to compensate for the underestimation of some sources of error.

111



Section 7.2 Page 112

Depending on the application, a variety of methods have been used to combat the
problem of rank deficiency of sample covariance matrices. In the case of spatially
correlated errors it may be possible to fit a smooth correlation function or operator to
the sample covariance matrix as was done in Simonin et al. [2019] and Guillet et al.
[2019] respectively. Another approach is to retain only the first k leading eigenvectors
of the estimated correlation matrix and to add a diagonal matrix to ensure the
resulting covariance matrix has full rank [Michel, 2018, Stewart et al., 2013]. However,
this has been shown to introduce noise at large scales for spatial correlations and may
be expensive in terms of memory and computational efficiency [Michel, 2018].
Although localisation can be used to remove spurious correlations, and can also be
used to increase the rank of a degenerate correlation matrix [Hamill et al., 2001], it
struggles to reduce the condition number of a matrix without destroying off-diagonal
correlation information [Smith et al., 2018]. A further way to increase the rank of a
matrix is by considering a subset of columns of the original matrix that are linearly
independent. This corresponds to using a subset of observations, which is contrary to
a key motivation for using correlated observation error statistics: the ability to
include a larger number of observations in the assimilation system [Janjić et al., 2018].
Finally, the use of transformed observations imay result in independent observation
errors [Migliorini, 2012, Prates et al., 2016]; however, problems with conditioning will
manifest in other components of the data assimilation algorithm, typically the
observation operator. Therefore, although other techniques to tackle the problem of
ill-conditioning exist, they each have limitations. This suggests that for many
applications the use of reconditioning methods, which we will show are inexpensive to
implement and are not limited to spatial correlations, may be beneficial.

We note that small eigenvalues of the observation error covariance matrix are not the
only reason for slow convergence: if observation standard deviations are small, the
observation error covariance matrix may be well-conditioned, but convergence of the
minimisation problem is likely to be poor [Haben, 2011, Tabeart et al., 2018]. In this
case reconditioning may not improve convergence and performance of the data
assimilation routine.

Two methods in particular, referred to in this work as the minimum eigenvalue
method and ridge regression, are commonly used at NWP centres. Both methods are
used by Weston [2011], where they are tested numerically. Additionally in Campbell
et al. [2017] a comparison between these methods is made experimentally and it is
shown that reconditioning improves convergence of a dual four-dimensional variational
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assimilation system. However, up to now there has been minimal theoretical
investigation into the effects of these methods on the covariance matrices. In this
chapter we develop theory that shows how variances and correlations are altered by
the application of reconditioning methods to a covariance matrix.

Typically reconditioning is applied to improve convergence of a data assimilation
system by reducing the condition number of a matrix. However, the convergence of a
data assimilation system can also be improved using multiplicative variance inflation,
a commonly used method at NWP centres such as the European Centre for
Medium-Range Weather Forecasts (ECMWF) [Liu and Rabier, 2003, McNally et al.,
2006, Bormann et al., 2015, 2016] to account for neglected error correlations or to
address deficiencies in the estimated error statistics by increasing the uncertainty in
observations. It is not a method of reconditioning when a constant inflation factor is
used, as it cannot change the condition number of a covariance matrix. In practice
multiplicative variance inflation is often combined with other techniques, such as
neglecting off-diagonal error correlations, which do alter the conditioning of the
observation error covariance matrix.

Although it is not a reconditioning technique, in Bormann et al. [2015] multiplicative
variance inflation was found to yield faster convergence of a data assimilation
procedure than either the ridge regression or minimum eigenvalue methods of
reconditioning. This finding is likely to be system-dependent; the original diagnosed
error covariance matrix in the ECMWF system has a smaller condition number than
the corresponding matrix for the same instrument in the Met Office system [Weston
et al., 2014]. Additionally, in the ECMWF system the use of reconditioning methods
only results in small improvements to convergence, and there is little difference in
convergence speed for the two methods. This contrasts with the findings of Weston
[2011], Weston et al. [2014], Campbell et al. [2017] where differences in convergence
speed when using each method of reconditioning were found to be large. Therefore, it
is likely that the importance of reducing the condition number of the observation
error covariance matrix compared to inflating variances will be sensitive to the data
assimilation system of interest. Aspects of the data assimilation system that may be
important in determining the level of this sensitivity include: the choice of
preconditioning and minimisation scheme [Bormann et al., 2015], quality of the
covariance estimate, interaction between background and estimated observation error
covariance matrices within the data assimilation system [Fowler et al., 2018, Tabeart
et al., 2018], the use of thinning and different observation networks. We also note that
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Stewart et al. [2008b], Stewart [2010], Stewart et al. [2013] consider changes to the
information content and analysis accuracy corresponding to different approximations
to a correlated observation error covariance matrix (including an inflated diagonal
matrix). Stewart et al. [2013], Healy and White [2005] also provide evidence in
idealized cases to show that inclusion of even approximate correlation structure gives
significant benefit over diagonal matrix approximations, including when variance
inflation is used.

In this work we investigate the minimum eigenvalue and ridge regression methods of
reconditioning as well as multiplicative variance inflation, and analyse their impact
on the covariance matrix. We compare both methods theoretically for the first time,
by considering the impact of reconditioning on the correlations and variances of the
covariance matrix. We also study how each method alters the objective function
when applied to the observation error covariance matrix. Other methods of
reconditioning, including thresholding [Bickel and Levina, 2008] and localisation
[Horn, 1991, Ménétrier et al., 2015, Smith et al., 2018] have been discussed from a
theoretical perspective in the literature but will not be included in this work. In
Section 7.3 we describe the methods more formally than in previous literature before
developing new related theory in detail in Section 7.4. We show that the ridge
regression method increases the variances and decreases the correlations for a general
covariance matrix and the minimum eigenvalue method increases variances. We prove
that the increases to the variance are bigger for the ridge regression method than the
minimum eigenvalue method for any covariance matrix. We show that both methods
of reconditioning reduce the weight on observation information in the objective
function in a scale dependent way, with the largest reductions in weight corresponding
to the smallest eigenvalues of the original observation error covariance matrix. In
contrast, multiplicative variance inflation using a constant inflation factor reduces the
weight on observation information by a constant amount for all scales. In Section 7.5
the methods are illustrated via numerical experiments for two types of covariance
structures. One of these is a simple general correlation function, and one is an
interchannel covariance arising from a satellite based instrument with observations
used in NWP. We provide physical interpretation of how each method alters the
covariance matrix, and use this to provide guidance on which method of
reconditioning is most appropriate for a given application. We present an illustration
of how all three methods alter the analysis of a data assimilation problem, and relate
this to the theoretical conclusions concerning the objective function. We finally
present our conclusions in Section 7.6. The methods are very general and, although
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their initial application was to observation error covariances arising from numerical
weather prediction, the results presented here apply to any sampled covariance
matrix, such as those arising in finance [Higham, 2002, Qi and Sun, 2010] and
neuroscience [Nakamura and Potthast, 2015, Schiff, 2011].

7.3 Covariance matrix modification methods

We begin by defining the condition number, noting that all covariance matrices are
positive semi-definite by definition. The condition number provides a measure of how
sensitive solutions of a linear equation Ax = b are to perturbations in the data b. A
‘well-conditioned problem’ will result in small perturbations to the solution with small
changes to b, whereas for an ‘ill-conditioned problem’, small perturbations to b can
result in large changes to the solution. We distinguish between the two cases of
strictly positive definite covariance matrices, and covariance matrices with zero
minimum eigenvalue. Symmetric positive definite matrices admit a definition for the
condition number in terms of their maximum and minimum eigenvalues. For the
remainder of the work, we define the eigenvalues of a symmetric positive semi-definite
matrix S ∈ Rd×d via:

λ1(S) ≥ . . . ≥ λd(S) ≥ 0. (7.1)

Theorem 7.3.1. If S ∈ Rd×d is a symmetric positive definite matrix with eigenvalues
defined as in 7.1 we can write the condition number in the L2 norm as κ(S) = λ1(S)

λd(S) .

Proof. See [Golub and Van Loan, 1996, Sec. 2.7.2].

For a singular covariance matrix, S, the convention is to take κ(S) =∞ [Trefethen
and Bau, 1997, Sec. 12]. We also note that real symmetric matrices admit orthogonal
eigenvectors which can be normalised to produce a set of orthonormal eigenvectors.

Let R ∈ Rd×d be a positive semi-definite covariance matrix with condition number
κ(R) = κ. We wish to recondition R to obtain a covariance matrix with condition
number κmax

1 ≤ κmax < κ, (7.2)

where the value of κmax is chosen by the user. We denote the eigendecomposition of
R by

R = VRΛVT
R (7.3)
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where Λ ∈ Rd×d is the diagonal matrix of eigenvalues of R and VR ∈ Rd×d is a
corresponding matrix of orthonormal eigenvectors.

In addition to considering how the covariance matrix itself changes with
reconditioning, it is also of interest to consider how the related correlations and
standard deviations are altered. We decompose R as R = ΣCΣ, where C is a
correlation matrix, and Σ is a non-singular diagonal matrix of standard deviations.
We calculate C and Σ via:

Σ(i, i) =
√

R(i, i), C(i, j) = R(i, j)√
R(i, i)

√
R(j, j)

. (7.4)

We now introduce the ridge regression method and the minimum eigenvalue method;
the two methods of reconditioning that will be discussed in this work. We then
define multiplicative variance inflation. This last method is not a method of
reconditioning, but will be used for comparison purposes with the ridge regression and
minimum eigenvalues methods.

7.3.1 Ridge regression method

The ridge regression method (RR) adds a scalar multiple of the identity to R to
obtain the reconditioned matrix RRR. The scalar δ is set using the following method.

• Define
δ = λ1(R)− λd(R)κmax

κmax − 1 . (7.5)

• Set RRR = R + δI

We note that this choice of δ yields κ(RRR) = κmax.

In the literature [Hoerl and Kennard, 1970, Ledoit and Wolf, 2004], ‘ridge regression’
is a method used to regularise least squares problems. In this context, ridge regression
can be shown to be equivalent to Tikhonov regularisation [Hansen, 1998]. However, in
this chapter we apply ridge regression as a reconditioning method directly to a
covariance matrix. For observation error covariance matrices, the reconditioned
matrix is then inverted prior to its use as a weighting matrix in the data assimilation
objective function. As we are only applying the reconditioning to a single component
matrix in the variational formulation, the implementation of the ridge regression
method used in this chapter is not equivalent to Tikhonov regularisation applied to
the variational data assimilation problem [Budd et al., 2011, Moodey et al., 2013].
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This is shown in Section 7.4.5 where we consider how applying ridge regression to the
observation error covariance matrix affects the variational data assimilation objective
function. The ridge regression method is used at the Met Office [Weston et al., 2014].

7.3.2 Minimum eigenvalue method

The minimum eigenvalue method (ME) fixes a threshold, T , below which all
eigenvalues of the reconditioned matrix, RME, are set equal to the threshold value.
The value of the threshold is set using the following method.

• Set λ1(RME) = λ1(R)

• Define T = λ1(R)/κmax > λd(R), where κmax is defined in (7.2).

• Set the remaining eigenvalues of RME via

λk(RME) =

λk(R) if λk(R) > T

T if λk(R) ≤ T
. (7.6)

• Construct the reconditioned matrix via RME = VRΛMEVT
R, where

ΛME(i, i) = λi(RME).

This yields κ(RME) = κmax. The updated matrix of eigenvalues can be written as
ΛME = Λ + Γ, the sum of the original matrix of eigenvalues and Γ, a low-rank
diagonal matrix update with entries Γ(k, k) = max{T − λk, 0}. Using (7.3) the
reconditioned RME can then be written as:

RME = VR(Λ + Γ)VT
R = R + VRΓVT

R. (7.7)

Under the condition that κmax > d− l + 1, where l is the index such that
λl ≤ T < λl−1, the minimum eigenvalue method is equivalent to minimising the
difference R −RME ∈ Rd×d with respect to the Ky Fan 1-d norm (The proof is
provided in Appendix 7.7). The Ky Fan p− k norm (also referred to as the trace
norm) is defined in Fan [1959], Horn [1991], and is used in Takana and Nakata [2014]
to find the closest positive definite matrix with condition number smaller than a given
constant. A variant of the minimum eigenvalue method is applied to observation error
covariance matrices at ECMWF [Bormann et al., 2016].
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7.3.3 Multiplicative variance inflation

Multiplicative variance inflation (MVI) is a method that increases the variances
corresponding to a covariance matrix. Its primary use is to account for neglected error
correlation information, particularly in the case where diagonal covariance matrices
are being used even though non-zero correlations exist in practice. However, this
method can also be applied to non-diagonal covariance matrices.

Definition 7.3.2. Let α > 0 be a given variance inflation factor and

R = ΣCΣ

be the estimated covariance matrix. Then multiplicative variance inflation is defined by

ΣMV I = αΣ. (7.8)

This is equivalent to multiplying the estimated covariance matrix by a constant. The
updated covariance matrix is given by

RMV I = (αΣ) C (αΣ) = α2ΣCΣ = α2R. (7.9)

The estimated covariance matrix is therefore multiplied by the square of the inflation
constant. We note that the correlation matrix, C, is unchanged by application of
multiplicative variance inflation.

Multiplicative variance inflation is used at NWP centres including ECMWF [Bormann
et al., 2016] to counteract deficiencies in estimated error statistics, such as
underestimated or neglected sources of error. Inflation factors are tuned to achieve
improved analysis or forecast performance, and are hence strongly dependent on the
specific data assimilation system of interest. Aspects of the system that might
influence the choice of inflation factor include observation type, known limitations of
the covariance estimate, and observation sampling or thinning.

Although variance inflation with a fixed inflation factor is not a method of
reconditioning, as it is not able to alter the condition number of a covariance matrix,
we include it in this chapter for comparison purposes. This means that variance
inflation can only be used in the case that the estimated matrix can be inverted
directly, i.e. is full rank. Multiplicative variance inflation could also refer to the case
where the constant inflation factor is replaced with a diagonal matrix of inflation
factors. In this case the condition number of the altered covariance matrix would
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change. An example of a study where multiple inflation factors are used is given by
Heilliette and Garand [2015], where the meteorological variable to which an
observation is sensitive determines the choice of inflation factor. However, this is not
commonly used in practice, and will not be considered in this chapter.

7.4 Theoretical considerations

In this section we develop new theory for each method. We are particularly interested
in the changes made to C and Σ for each case. Increased understanding of the effect
of each method may allow users to adapt or extend these methods, or determine
which is the better choice for practical applications.

We now introduce an assumption that will be used in the theory that follows.

Main Assumption: Let R ∈ Rd×d be a symmetric positive semi-definite matrix with
λ1(R) > λd(R).

We remark that any symmetric, positive semi-definite matrix with λ1 = λd is a scalar
multiple of the identity, and cannot be reconditioned since it is already at its
minimum possible value of unity. Hence in what follows, we will consider only
matrices R that satisfy the Main Assumption.

7.4.1 Ridge Regression Method

We begin by discussing the theory of RR. In particular we prove that applying this
method for any positive scalar, δ, results in a decreased condition number for any
choice of R.

Theorem 7.4.1. Under the conditions of the Main Assumption, adding any positive
increment to the diagonal elements of R decreases its condition number.

Proof. We recall that RRR = R + δI. The condition number of RRR is given by

κ(RRR) = λ1(RRR)
λd(RRR) = λ1(R) + δ

λd(R) + δ
. (7.10)

It is straightforward to show that for any δ > 0, κ(RRR) < κ(R), completing the
proof.

119



Section 7.4 Page 120

We now consider how application of RR affects the correlation matrix C and the
diagonal matrix of standard deviations Σ.

Theorem 7.4.2. Under the conditions of the Main Assumption, the ridge regression
method updates the standard deviation matrix ΣRR, and correlation matrix CRR of
RME via

ΣRR = (Σ2 + δId)1/2, CRR = Σ−1
RRRΣ−1

RR + δΣ−2
RR. (7.11)

Proof. Using (7.4), Σ(i, i) = (R(i, i))1/2. Substituting this into the expression for RRR

yields:
ΣRR(i, i) = (RRR(i, i))1/2 = (R(i, i) + δ)1/2 = (Σ(i, i)2 + δ)1/2. (7.12)

Considering the components of CRR and the decomposition of ΣRR given by (7.4):

ΣRRCRRΣRR = R + δId, CRR = Σ−1
RRRΣ−1

RR + δΣ−2
RR (7.13)

as required.

Theorem 7.4.2 shows how we can apply RR to our system by updating C and Σ
rather than R. We observe, from (7.11), that applying RR leads to a constant
increase to variances for all variables. However, the inflation to standard deviations is
additive, rather than the multiplicative inflation that occurs for multiplicative
variance inflation. We now show that RR also reduces all non-diagonal entries of the
correlation matrix.

Corollary 7.4.3. Under the conditions of the Main Assumption, for i 6= j,
|CRR(i, j)| < |C(i, j)|.

Proof. Writing the update equation for C, given by (7.11), in terms of the variance
and correlations of R yields:

CRR = Σ−1
RRΣCΣΣ−1

RR + δΣ−2
RR. (7.14)

We consider CRR(i, j) for i 6= j. As ΣRR and Σ are diagonal matrices, we obtain

CRR(i, j) = Σ−1
RR(i, i)Σ(i, i)C(i, j)Σ(j, j)Σ−1

RR(j, j). (7.15)

From the update equation (7.11), ΣRR(i, i) > Σ(i, i) for any choice of i. This means
that Σ−1

RR(i, i)Σ(i, i) < 1 for any choice of i. Using this in (7.15) yields that for all
values of i, j with i 6= j, |CRR(i, j)| < |C(i, j)| as required.

For i = j, it follows from (7.14) that CRR(i, i) = 1 for all values of i.
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7.4.2 Minimum Eigenvalue Method

We now discuss the theory of ME as introduced in Section 7.3.2. Using the alternative
decomposition of RME given by (7.7) enables us to update directly the standard
deviations for this method.

Theorem 7.4.4. Under the conditions of the Main Assumption, the minimum
eigenvalue method updates the standard deviations, ΣME, of R via

ΣME(i, i) =
(

R(i, i) +
d∑

k=1
VR(i, k)2Γ(k, k)

)1/2

. (7.16)

This can be bounded by

Σ(i, i) ≤ ΣME(i, i) ≤
(
Σ(i, i)2 + T − λd(R)

)1/2
. (7.17)

Proof.

ΣME(i, i) =
(
R(i, i) +

(
VRΓVT

R

)
(i, i)

)1/2
(7.18)

=
(

R(i, i) +
d∑

k=1
VR(i, k)2Γ(k, k)

)1/2

. (7.19)

Noting that Γ(k, k) ≥ 0 for all values of k, we bound the second term in this
expression by

0 ≤
d∑

k=1
VR(i, k)2Γ(k, k) ≤ max

k
{Γ(k, k)}

d∑
k=1

VR(i, k)2 (7.20)

≤ (T − λd(R))
d∑

k=1
VR(i, k)2. ≤ T − λd(R) (7.21)

This inequality follows from the orthonormality of VR, and by the fact that
T > λd(R) by definition.

Due to the way the spectrum of R is altered by ME it is not evident how correlation
entries are altered in general for this method of reconditioning.

7.4.3 Multiplicative variance inflation

We now discuss theory of MVI that was introduced in Section 7.3.3. We prove that
MVI is not a method of reconditioning, as it does not change the condition number of
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a covariance matrix.

Theorem 7.4.5. Multiplicative variance inflation with a constant inflation parameter
cannot change the condition number or rank of a matrix.

Proof. Let α2 > 0 be our multiplicative inflation constant such that RMV I = α2R.
The eigenvalues of RMV I are given by α2λ1, α

2λ2, . . . , α
2λd.

If R is rank-deficient, then λmin(RMV I) = α2λd = 0 and hence RMV I is also rank
deficient. If R is full rank then we can compute the condition number of RMI as the
ratio of its eigenvalues, which yields

κ(RMV I) = α2λ1

α2λd
= κ(R). (7.22)

Hence the condition number and rank of R are unchanged by multiplicative
inflation.

7.4.4 Comparing ridge regression and minimum eigenvalue
methods

Both RR and ME change R by altering its eigenvalues. In order to compare the two
methods, we can consider their effect on the standard deviations. We recall from
Sections 7.4.1 and 7.4.2 that RR increases standard deviations by a constant and the
changes to standard deviations by ME can be bounded above and below by a constant.

Corollary 7.4.6. Under the conditions of the Main Assumption, for a fixed value of
κmax < κ, ΣME(i, i) < ΣRR(i, i) for all values of i.

Proof. From Theorems 7.4.2 and 7.4.4 the updated standard deviation values are
given by

ΣRR =
(
Σ2 + δId

)1/2
and ΣME(i, i) ≤

(
Σ(i, i)2 + T − λd(R)

)1/2
. (7.23)

From the definitions of δ and T we obtain that

δ = λ1(R)− λd(R)κmax
κmax − 1 >

λ1(R)− λd(R)κmax
κmax

= T − λd(R). (7.24)

We conclude that the increment to the standard deviations for RR is always larger
than the increment for ME.
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7.4.5 Comparison of methods of reconditioning and
multiplicative variance inflation on the variational data
assimilation objective function

We demonstrate how RR, ME and MVI alter the objective function of the variational
data assimilation problem when applied to the observation error covariance matrix.
We consider the 3D-Var objective function here for simplicity of notation, although
the analysis extends naturally to the 4D-Var case. We begin by defining the 3D-Var
objective function of the variational data assimilation problem.

Definition 7.4.7. The objective function of the variational data assimilation problem
is given by

J(x) = 1
2(x− xb)TB−1(x− xb) + 1

2(y− h[x])TR−1(y− h[x]) := Jb + Jo (7.25)

where xb ∈ Rn is the background or prior, y ∈ Rd is the vector of observations,
h : Rn → Rd is the observation operator mapping from control vector space to
observation space, B ∈ Rn×n is the background error covariance matrix, and R ∈ Rd×d

is the observation error covariance matrix. Let Jo denote the observation term in the
objective function and Jb denote the background term in the objective function.

In order to compare the effect of using each method, they are applied to the
observation error covariance matrix in the variational objective function (7.25). We
note that analogous results hold if all methods are applied to the background error
covariance matrix in the objective function.

We begin by presenting the three updated objective functions, and then discuss the
similarities and differences for each method together at the end of Section 3.5. We
first consider how applying RR to the observation error covariance matrix alters the
variational objective function (7.25).

Theorem 7.4.8. By applying RR to the observation error covariance matrix we alter
the objective function (7.25) as follows:

JRR(x) = J(x)− (y− h[x])TVRΛδV
T

R (y− h[x]), (7.26)

where Λδ is a diagonal matrix with entries given by (Λδ)ii = δ
λi(λi+δ) .

Proof. We denote the eigendecomposition of R as in (7.3). Applying RR to the
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observation error covariance matrix, R, we obtain

RRR = VR(Λ + δIp)VT
R. (7.27)

We then calculate the inverse of RRR and express this in terms of R−1 and an update
term:

R−1
RR = VR(Λ + δIp)−1VT

R (7.28)

= VRDiag
( 1
λi
− δ

λi(λi + δ)

)
VT

R (7.29)

= R−1 −VRDiag
(

δ

λi(λi + δ)

)
VT

R. (7.30)

Substituting (7.30) into (7.25), and defining Λδ as in the theorem statement we can
write the objective function using the reconditioned observation error covariance
matrix as (7.26).

The effect of RR on the objective function differs from the typical application of
Tikhonov regularisation to the variational objective function [Budd et al., 2011,
Moodey et al., 2013]. In particular, we subtract a term from the original objective
function rather than adding one, and the term depends on the eigenvectors of R as
well as the innovations (differences between observations and the background field in
observation space). Writing the updated objective function as in (7.26) shows that the
size of the original objective function (7.25) is decreased when RR is used.
Specifically, as we discuss later, the contribution of small-scale information to the
observation term, Jo, is reduced by the application of RR.

We now consider how applying ME to the observation error covariance matrix alters
the objective function (7.25).

Theorem 7.4.9. By applying ME to the observation error covariance matrix we alter
the objective function (7.25) as follows:

JME(x) = J(x)− (y− h[x])TVRΓ̃V T
R (y− h[x]), (7.31)

where

Γ̃(i, i) =

0 ifλi ≥ T

T−λi

Tλi
ifλi < T.

(7.32)
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Proof. We begin by applying ME and decomposing RME as in (7.7):

RME = VR(Λ + Γ)VT
R. (7.33)

Therefore calculating the inverse of the reconditioned matrix yields

RME = VR(Λ + Γ)−1VT
R. (7.34)

As this is full rank we can calculate the inverse of the diagonal matrix Λ + Γ

(Γ + Λ)−1(i, i) =


1
λi

ifλi ≥ T

1
λi+(T−λi) ifλi < T

(7.35)

= Λ−1 −

0 ifλi ≥ T

T−λi

Tλi
ifλi < T.

(7.36)

Defining Γ̃ as in the theorem statement, and we can write R−1
ME as

R−1
ME = R−1 −VRΓ̃VT

R. (7.37)

Substituting this into the definition of the objective function (7.25) we obtain the
result given in the theorem statement.

As Γ̃ is non-zero only for eigenvalues smaller than the threshold, T , the final term of
the updated objective function (7.31) reduces the weight on eigenvectors
corresponding to those small eigenvalues. As all the entries of Γ̃ are non-negative, the
size of the observation term in the original objective function (7.25) is decreased when
ME is used.

Finally we consider the impact on the objective function of using MVI. We note that
this can only be applied in the case that the estimated error covariance matrix is
invertible as, by the result of Theorem 7.4.5, variance inflation cannot change the rank
of a matrix.

Theorem 7.4.10. In the case that R is invertible, the application of MVI to the
observation error covariance matrix alters the objective function (7.25) as follows

JMV I(x) = Jb + 1
α2Jo. (7.38)

Proof. By Definition 7.3.2, RMV I = α2R for inflation parameter α. The inverse of
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RMV I is given by
R−1
MV I = 1

α2 R−1. (7.39)

Substituting this into (7.25) yields the updated objective function given by (7.38).

For both reconditioning methods, the largest relative changes to the spectrum of R
occur for its smallest eigenvalues. In the case of positive spatial correlations, small
eigenvalues are typically sensitive to smaller scales. For spatial correlations, weights
on scales of the observations associated with smaller eigenvalues are reduced in the
variational objective function, increasing the relative sensitivity of analysis to
information content from the observations at large scales.

We also see that for RR and ME smaller choices of κmax yield larger reductions to the
weight applied to small scale observation information. For RR, a smaller target
condition number results in a larger value of δ, and hence larger diagonal entries of
Λδ. For ME, a smaller target condition number yields a larger threshold, T , and
hence larger diagonal entries of Γ̃. This means that the more reconditioning that is
applied, the less weight the observations will have in the analysis. This reduction in
observation weighting is different for the two methods; RR reduces the weight on all
observations, although the relative effect is larger for scales corresponding to the
smallest eigenvalues, whereas ME only reduces weight for scales corresponding to
eigenvalues smaller than the threshold T . In ME, the weights on scales for eigenvalues
larger than T are unchanged.

Applying MVI with a constant inflation factor also reduces the contribution of
observation information to the analysis. In contrast to both methods of
reconditioning, the reduction in weight is constant for all scales and does not depend
on the eigenvectors of R. This means that there is no change to the sensitivity to
different scales using this method. The analysis will simply pull closer to the
background data with the same relative weighting between different observations as
occurred for analyses using the original estimated observation error covariance matrix.

We have considered the impact of RR, ME and MVI on the unpreconditioned 3D-Var
objective function. For the preconditioned case, Johnson et al. [2005] showed how,
when changing the relative weights of the background and observation terms by
inflating the ratio of observation and background variances, it is the complex
interactions between the error covariance matrices and the observation operator that
affects which scales are present in the analysis. This suggests that in the
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preconditioned setting MVI will also alter the sensitivity of the analysis to different
scales.

7.5 Numerical experiments

In this section we consider how reconditioning via RR and ME and application of
MVI affects covariance matrices arising from two different choices of estimated
covariance matrices. Both types of covariance matrix are motivated by numerical
weather prediction, although similar structures occur for other applications.

7.5.1 Numerical framework

The first covariance matrix is constructed using a second-order auto-regressive
(SOAR) correlation function [Yaglom, 1986] with lengthscale 0.2 on a unit circle. This
correlation function is used in NWP systems [Fowler et al., 2018, Stewart et al., 2013,
Tabeart et al., 2018, Waller et al., 2016b, Thiebaux, 1976] where its long tails
approximate the estimated horizontal spatial correlation structure well. In order to
construct a SOAR error correlation matrix, S, on the finite domain, we follow the
method described in Haben [2011], Tabeart et al. [2018]. We consider a one-parameter
periodic system on the real line, defined on an equally spaced grid with N = 200 grid
points. We restrict observations to be made only at regularly spaced grid points. This
yields a circulant matrix where the matrix is fully defined by its first row. To ensure
the corresponding covariance matrix is also circulant, we fix the standard deviation
value for all variables to be σ =

√
5.

One benefit of using this numerical framework is that it allows us to calculate a
simple expression for the update to the standard deviations for ME. We recall that
RR updates the variances by a constant, δ. We now show that in the case where R is
circulant, ME also updates the variances of R by a constant.

Circulant matrices admit eigenvectors which can be computed directly via a discrete
Fourier transform [Gray, 2006] (via R = VΛV†, where † denotes conjugate
transpose). This allows the explicit calculation of the ME standard deviation update
given by (7.16) as

ΣME(i, i) =
(

Σ(i, i) + 1
d

d∑
k=1

Γ(k, k)
)1/2

. (7.40)

This follows from (7.16) because the circulant structure of the SOAR matrix yields
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∑d
k=1 V(i, k)2 = 1/d.

We therefore expect both reconditioning methods to increase the SOAR standard
deviations by a constant amount. As the original standard deviations were constant,
this means that reconditioning will result in constant standard deviations for all
variables. These shall be denoted σRR for RR and σME for ME. Constant changes to
standard deviations also means that an equivalent MVI factor that corresponds to the
change can be calculated. This will be denoted by α.

Our second covariance matrix comprises interchannel error correlations for a
satellite-based instrument. For this we make use of the Infrared Atmospheric
Sounding Interferometer (IASI) which is used at many NWP centres within data
assimilation systems. A covariance matrix for IASI was diagnosed in 2011 at the Met
Office, following the procedure described in Weston [2011], Weston et al. [2014]
(shown in Online Resource 1). The diagnosed matrix was extremely ill-conditioned
and required the application of the ridge regression method in order that the
correlated covariance matrix could be used in the operational system. We note that
we follow the reconditioning procedure of Weston et al. [2014], where the
reconditioning method is only applied to the subset of 137 channels that that are used
in the Met Office 4D-Var system. These channels are listed in Stewart et al. [2008a,
Appendix A]. As the original standard deviation values are not constant across
different channels, reconditioning will not change them by a constant amount, as is
the case for Experiment 1. We note that the 137× 137 matrix considered in this
chapter corresponds to the covariance matrix for one ‘observation’ at a single time
and spatial location. The observation error covariance matrix for all observations from
this instrument within a single assimilation cycle is a block diagonal matrix, with one
block for every observation, each consisting of a submatrix of the 137× 137 matrix .

In the experiments presented in Section 7.5.2 we apply the minimum eigenvalue and
the ridge regression methods to both the SOAR and IASI covariance matrices. The
condition number before reconditioning of the SOAR correlation matrix is 81121.71
and for the IASI matrix we obtain a condition number of 2005.98. We consider values
of κmax in the range 100− 1000 for both tests. We note that the equivalence of the
minimum eigenvalue method with the minimiser of the Ky Fan 1− d norm is satisfied
for the SOAR experiment for κmax ≥ 168 and the IASI experiment for κmax ≥ 98.
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Table 7.1: Change in standard deviation for the SOAR covariance matrix for both
methods of reconditioning. Columns 4 and 6 show α, the multiplicative inflation factor
corresponding to the values for σRR and σME respectively.

κmax σ σRR α corr. RR σME α corr. ME
1000 2.23606 2.26471 1.013 2.25439 1.008
500 2.23606 2.29340 1.026 2.27599 1.018
100 2.23606 2.51306 1.124 2.45737 1.099

7.5.2 Results

7.5.2.1 Changes to the covariance matrix

Example 1: Horizontal correlations using a SOAR correlation matrix
Due to the specific circulant structure of the SOAR matrix and constant value of
standard deviations for all variables, (7.11) and (7.40) indicate that we expect
increases to standard deviations for both methods of reconditioning to be constant.
This was found to be the case numerically. In Table 7.1 the computed change in
standard deviation for different values of κmax is given as an absolute value and as α,
the multiplicative inflation constant that yields the same change to the standard
deviation as each reconditioning method. We note that in agreement with the result of
Corollary 7.4.6 the variance increase is larger for the RR than the ME for all choices
of κmax. Reducing the value of κmax increases the change to standard deviations for
both methods of reconditioning. The increase to standard deviations will result in the
observations being down-weighted in the analysis. As this occurs uniformly across all
variables for both methods, we expect the analysis to pull closer to the background.
Nevertheless, we expect this to be a rather small effect. For this example, even for a
small choice of κmax the values of the equivalent multiplicative inflation constant, α, is
small, with the largest value of α = 1.124 occurring for RR for κmax = 100.

As the SOAR matrix is circulant, we can consider the impact of reconditioning on its
correlations by focusing on one matrix row. In Figure 7.1 the correlations and
percentage change for the 100th row of the SOAR matrix are shown for both methods
for κmax = 100. These values are calculated directly from the reconditioned matrix.
We note that by definition of a correlation matrix, C(i, i) = 1 ∀ i for all choices of
reconditioning. This is the reason for the spike in correlation visible in the centre of
Figure 7.1a and on the right of Figure 7.1b. As multiplicative variance inflation does
not change the correlation matrix, the black line corresponding to the correlations of
the original SOAR matrix also represents the correlations in the case of multiplicative
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inflation. We also remark that although ME is not equivalent to the minimiser of the
Ky Fan 1− d norm for κmax = 100, the qualitative behaviour in terms of correlations
and standard deviations is the same for all values in the range 100− 1000. It is
important to note that ME is still a well-defined method of reconditioning even if it is
not equivalent to the minimiser of the Ky Fan 1− d norm.

Figure 7.1a shows that for both methods, application of reconditioning reduces the
value of off-diagonal correlations for all variables, with the largest absolute reduction
occurring for variables closest to the observed variable. Although there is a large
change to the off-diagonal correlations, we notice that the correlation lengthscale,
which determines the rate of decay of the correlation function, is only reduced by a
small amount. This shows that both methods of reconditioning dampen correlation
values but do not significantly alter the overall pattern of correlation information.
Figure 7.1b shows the percentage change to the original correlation values after
reconditioning is applied. For RR, although the difference between the original
correlation value and the reconditioned correlation depends on the index i, the relative
change is constant across all off-diagonal correlations. As MVI does not alter the
correlation matrix, it would correspond to a horizontal line through 0 for Figure 7.1b.

When we directly plot the correlation values for the original and reconditioned
matrices in Figure 7.1a, the change to correlations for ME appears very similar to
changes for RR. However, when we consider the percentage change to correlation in
Figure 7.1b we see oscillation in the percentage differences of the ME correlations,
showing that the relative effect on some spatially distant variables can be larger than
for some spatially close variables. The spatial impact on individual variables differs
significantly for this method. We also note that ME increases some correlation values.
These are not visible in Figure 7.1, due to entries in the original correlation matrix
that are close to zero. Although the differences between C and CME far from the
diagonal are small, small correlation values in the tails of the original SOAR matrix
mean that when considering the percentage difference we obtain large values, as seen
in Figure 7.1b. This suggests that RR is a more appropriate method to use in this
context, as the reconditioned matrix represents the initial correlation function better
than ME, where spurious oscillations are introduced. These oscillations occur as ME
changes the weighting of eigenvectors of the covariance matrix. As the eigenvectors of
circulant matrices can be expressed in terms of discrete Fourier modes, ME has the
effect of amplifying the eigenvalues corresponding to the highest frequency
eigenvectors. This results in the introduction of spurious oscillations in correlation
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(a)

(b)

Figure 7.1: Changes to correlations between the original SOAR matrix and the re-
conditioned matrices for κmax = 100. (a) shows C(100, :) = CMV I(100, :) (black
solid), CRR(100, :) (red dashed), CME(100, :) (blue dot-dashed) (b) shows 100 ×
C(100,:)−CRR(100,:)

C(100,:) (red dashed) and 100 × C(100,:)−CME(100,:)
C(100,:) (blue dot-dashed). As the

SOAR matrix is symmetric, we only plot the first 100 entries for (b).
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Figure 7.2: Standard deviations for the IASI covariance matrix Σ (black solid), ΣRR

(red dashed), ΣME (blue dot-dashed) for κmax = 100.

space.

Both methods reduce the correlation lengthscale of the error covariance matrix. In
Tabeart et al. [2018], it was shown that reducing the lengthscale of the observation
error covariance matrix decreases the condition number of the Hessian of the 3D-Var
objective function and results in improved convergence of the minimisation problem.
Hence the application of reconditioning methods to the observation error covariance
matrix is likely to improve convergence of the overall data assimilation problem.
Fowler et al. [2018] studied the effect on the analysis of complex interactions between
the background error correlation lengthscale, the observation error correlation
lengthscale and the observation operator in idealised cases. Their findings for a fixed
background error covariance, and direct observations, indicate that the effect of
reducing the observation error correlation lengthscale (as in the reconditioned cases) is
to increase the analysis sensitivity to the observations at larger scales. In other words,
more weight is placed on the large-scale observation information content and less
weight on the small scale observation information content. This corresponds with the
findings of Section 7.4.5, where we proved that both methods of reconditioning reduce
the weight on small scale observation information in the variational objective function.
However, the lengthscale imposed by a more complex observation operator could
modify these findings.

Example 2: Interchannel correlations using an IASI covariance matrix
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We now consider the impact of reconditioning on the IASI covariance matrix. We
note that there is significant structure in the diagnosed correlations (see Stewart et al.
[2014, Fig. 8] and Section 7.8), with blocks of highly correlated channels in the lower
right hand region of the matrix. We now consider how RR, ME and MVI change the
variances and correlations of the IASI matrix.

Figure 7.2 shows the standard deviations Σ, ΣRR and ΣME. These are calculated
from the reconditioned matrices, but the values coincide with the theoretical results of
Theorems 7.4.2 and 7.4.4. Standard deviation values for the original diagnosed case
have been shown to be close to estimated noise characteristics of the instrument for
each of the different channels [Stewart et al., 2014]. We note that the largest increase
to standard deviations occurs for channel 106 only and corresponds to a multiplicative
inflation factor for this channel of 2.02 for RR and 1.81 for ME. Channel 106 is
sensitive to water vapour and is the channel in the original diagnosed covariance
matrix with the smallest standard deviation. The choice of κmax = 100 is of a similar
size to the value of the parameters used at NWP centres [Weston, 2011, Weston et al.,
2014, Bormann et al., 2016]. This means that in practice, the contribution of
observation information from channels where instrument noise is low is being
substantially reduced.

Channels are ordered by increasing wavenumber, and are grouped by type. We expect
different wavenumbers to have different physical properties, and therefore different
covariance structures. In particular larger standard deviations are expected for higher
wavenumbers due to additional sources of error [Weston et al., 2014], which is
observed on the right hand side of Figure 7.2. For RR, larger increases to standard
deviations are seen for channels with smaller standard deviations for the original
diagnosed matrix than those with large standard deviations. This also occurs to some
extent for ME, although we observe that the update term in (7.16) is not constant in
this case. This means that the reduction in weight in the analysis will not be uniform
across different channels for ME. The result of Corollary 7.4.6 is satisfied; the
increase to the variances is larger for RR than ME. This is particularly evident for
channels where the variance from the original diagnosed covariance matrix is small.
As MVI increases standard deviations by a constant factor, the largest changes for
this method would occur for channels with large standard deviations in the original
diagnosed matrix. This is in contrast to RR, where the largest changes occur for the
channels in the original diagnosed matrix with the smallest standard deviation.
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Figure 7.3: Difference in correlations for IASI (a) (C−CRR)◦sign(C), (b) (C−CME)◦
sign(C), and (c) (CME−CRR)◦ sign(C), where ◦ denotes the Hadamard product. Red
indicates that the absolute correlation is decreased by reconditioning and blue indicates
the absolute correlation is increased. The colourscale is the same for (a) and (b) but
different for (c). Condition numbers of the corresponding covariance matrices are given
by κ(R) = 2005.98, κ(RRR) = 100 and κ(RME) = 100.

Figure 7.3 shows the difference between the diagnosed correlation matrix, C, and the
reconditioned correlation matrices CRR and CME. As some correlations in the
original IASI matrix are negative, we plot the entries of (C−CRR) ◦ sign(C) and
(C−CME) ◦ sign(C) in Figures 7.3a and b respectively. Here ◦ denotes the
Hadamard product, which multiplies matrices of the same dimension elementwise.
This allows us to determine whether the magnitude of the correlation value is reduced
by the reconditioning method; a positive value indicates that the reconditioning
method reduces the magnitude of the correlation, whereas a negative value indicates
an increase in the correlation magnitude. For RR, all differences are positive, which
agrees with the result of Theorem 7.4.2. As MVI does not change the correlation
matrix, an equivalent figure for this method is not given. We also note that there is a
recognisable pattern in Figure 7.3a, with the largest reductions occurring for the
channels in the original diagnosed correlation matrix which were highly correlated.
This indicates that this method of reconditioning does not affect all channels equally.

For ME, we notice that there are a number of entries where the absolute correlations
are increased after reconditioning. There appears to be some pattern to these entries,
with a large number occurring in the upper left hand block of the matrix for channels
with the smallest wavenumber [Weston et al., 2014]. However, away from the diagonal
for channels 0-40, where changes by RR are very small, the many entries where
absolute correlations are increased by ME are much more scattered. This more noisy
change to the correlations could be due to the fact that 96 eigenvalues are set to be
equal to a threshold value by the minimum eigenvalue method in order to attain
κmax = 100. One method to reduce noise was suggested in Smith et al. [2018], which
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showed that applying localization methods (typically used to reduce spurious
long-distance correlations that arise when using ensemble covariance matrices via the
Schur product) after the reconditioning step can act to remove noise while retaining
covariance structure.

For positive entries, the structure of CME appears similar to that of CRR. There are
some exceptions however, such as the block of channels 121-126 where changes in
correlation due to ME are small, but correlations are changed by quite a large amount
for RR. The largest elementwise difference between RR and the original diagnosed
correlation matrix is 0.138, whereas the largest elementwise difference between ME
and the original diagnosed correlation matrix is 0.0036. The differences between
correlations for ME and RR are shown in Figure 7.3c.

For both methods, although the absolute value of all correlations is reduced,
correlations for channels 1-70 are eliminated. This has the effect of emphasising the
correlations for channels that are sensitive to water vapour. Weston et al. [2014],
Bormann et al. [2016] argue that much of the benefit of introducing correlated
observation error for this instrument can be related to the inclusion of correlated error
information for water vapour sensitive channels. Therefore, although the changes to
the original diagnosed correlation matrix are large it is likely that a lot of the benefit
of using correlated observation error matrices is retained.

We also note that it is more difficult to choose the best reconditioning method in this
setting, due to the complex structure of the original diagnosed correlation matrix. In
particular, improved understanding of how each method alters correlations and
standard deviations is not enough to determine which method will perform best in an
assimilation system. One motivation of reconditioning is to improve convergence of
variational data assimilation algorithms. Therefore, one aspect of the system that can
be used to select the most appropriate method of reconditioning is the speed of
convergence. As ME results in repeated eigenvalues, we would expect faster
convergence of conjugate gradient methods applied to the problem Rx = b for
x,b ∈ Rd for ME than RR. However, Campbell et al. [2017], Weston [2011], Weston
et al. [2014], Bormann et al. [2015] find that RR results in faster convergence than
ME for operational variational implementations. This is likely due to interaction
between the reconditioned observation error covariance matrix and the observation
operator, as the eigenvalues of HTR−1H are shown to be important for the
conditioning of the variational data assimilation problem in Tabeart et al. [2018].
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Another aspect of interest is the influence of reconditioning on the analysis and
forecast performance. We note that this is likely to be highly system and metric
dependent. For example, Campbell et al. [2017] studies the impact of reconditioning
on predictions of meteorological variables (temperature, geopotential height,
precipitable water) over lead times from 0 to 5 days. In the U.S. Naval Research
Laboratory system, ME performed slightly better at short lead times, whereas RR
had improvements at longer lead times [Campbell et al., 2017]. Differences in forecast
performance were mixed, whereas convergence was much faster for RR. This meant
that the preferred choice was RR. However, in the ECMWF system, Bormann et al.
[2015] studied the standard deviation of first-guess departures against independent
observations. Using this metric of analysis skill, ME was found to out-perform RR.
The effect of RR on the analysis of the Met Office 1D-Var system is studied in
Tabeart et al. [2019b], where changes to retrieved variables sensitive to water vapour
(humidity, variables sensitive to cloud) are found to be larger than for other
meteorological variables such as temperature.

7.5.2.2 Changes to the analysis of a data assimilation problem

In Section 7.4.5 we considered how the variational objective function is altered by RR,
ME and MVI. We found that the two methods of reconditioning reduced the weight
on scales corresponding to small eigenvalues by a larger amount than MVI, which
changes the weight on all scales uniformly. In this section we consider how the
analysis of an idealised data assimilation problem is altered by each of the three
methods. We also consider how changing κmax alters the analysis of the problem.

In order to compare the three methods, we study how the solution of a conjugate
gradient method applied to the linear system Sx = b changes for RR, ME and MVI,
where S = B−1 + HTR−1H is the linearised Hessian associated with the 3D-Var
objective function (7.25). Haben [2011] showed that this is equivalent to solving the
3D-Var objective function in the case of a linear observation operator. We define a
background error covariance matrix, B ∈ R200×200, which is a SOAR correlation
matrix on the unit circle with correlation lengthscale 0.2 and a constant variance of 1.
Our observation operator is given by the identity, meaning that every state variable is
observed directly.

We construct a ‘true’ observation error covariance Rtrue, given by a 200 dimensional
SOAR matrix on the unit circle with standard deviation 1 and lengthscale 0.7. We
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Figure 7.4: Change in pointwise difference of Discrete Fourier Transform (DFT) from
xest to xmod where aest denotes the vector of coefficients of the imaginary part of
DFT (xest). A positive (negative) value indicates that xmod is closer to (further from)
xtrue than xest and the amplitude shows how large this change is. Vertical dashed lines
show the locations of non-zero values for the true signal.

then take 250 random samples of Rtrue to construct an estimated sample covariance
matrix Rest with κ(Rest) = 3.95× 108. The largest estimated standard deviation is
1.07 and the smallest is 0.90, compared to the true constant standard deviation of 1.
RR, ME and MVI are then applied to Rest with κmax = 100. When applying MVI, we
use two choices of α which correspond to changes to the standard deviations
(RRR(1, 1))1/2, αRR = 1.41, and (RME(1, 1))1/2, αME = 1.39. The modified error
covariance matrices will be denoted RinflRR = α2

RRRest and RinflME = α2
MERest.

We define a true state vector,

x(k) = 4 sin(kπ/100)−5.1 sin(7kπ/100)+1.5 sin(12kπ/100)−3 sin(15kπ/100)+0.75 sin(45kπ/100),
(7.41)

which has five scales. We then construct b ≡ Sx using Rtrue, and apply the Matlab
2018b pcg.m routine to the problem (B−1 + R−1)x = b for each choice of R. We
recall that S = B−1 + HTR−1H = B−1 + R−1 as H = I. Let xest denote the solution
that is found using Rest and xmod refer to a solution found using a modified version of
Rest, namely RRR, RME, RinflRR or RinflME. The maximum number of iterations
allowed for the conjugate gradient routine is 200, and convergence is reached when the
relative residual is less than 1× 10−6.

From Section 7.4.5 we expect RR, ME and MVI to behave differently at small and
large scales. We therefore analyse how using each method alters the solution x at
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different scales using the discrete Fourier transform (DFT). This allows us to assess
how well each scale of xtrue is recovered for each choice of R. As xtrue is the sum of
sine functions, only the imaginary part of the DFT will be non-zero. We therefore
define atrue = imag(DFT (xtrue)); similarly aest = imag(DFT (xest)) and
amod = imag(DFT (xmod)).

By construction, as x, given by (7.41), is the sum of sine functions of period 2πn/200
for n = 1, 7, 12, 15, 45, atrue returns a signal with 5 peaks, one for each value of n at
frequency k = n. The amplitude for all other values of k is zero. For frequencies larger
than 20, all choices of estimated and modified R recover atrue well. Figure 7.4 shows
the correction that is applied by the modified choices of R compared to Rest for the
first 20 frequencies. A positive (negative) value shows that amod moves closer to
(further from) atrue than aest. The distance from 0 shows the size of this change. For
the first true peak (k = 1) RR is able to move closer to atrue than aest for the first true
peak. However, both reconditioning methods move further from the truth at the
location of true signals k = 7, 12, 15. For frequencies where aest has a spurious
non-zero signal RR and ME are able to move closer to atrue than aest. At the location
of true signals k = 7, 12, 15, MVI makes smaller changes compared to aest than either
method of reconditioning. As all modifications to Rest move amod further from atrue

than aest for k = 7, 12, 15, MVI is therefore better able to recover the value of atrue
than RR or ME at these true peaks. However, MVI introduces a larger error for the
first peak at k = 1 than RR or ME, and changes for frequencies k > 5 are much
smaller than for reconditioning. This agrees with the findings of Section 7.4.5, that
the weight on all scales is changed equally by MVI, whereas both methods of
reconditioning result in larger changes to smaller scales and are hence able to make
larger changes to amplitudes for higher frequencies. We recall from Section 7.4.5 that
ME changes only the smaller scales, whereas RR also makes small changes to the
larger scales. This behaviour is seen in Figure 7.4: for frequencies k = 0 to 5 ME
results in very small changes, with much larger changes for frequencies 5 ≤ k ≤ 15.
RR makes larger changes for larger values of k, but also moves closer to atrue for
1 ≤ k ≤ 3.

We now consider how changing κmax alters the quality of xRR. As the behaviour for
κmax = 100 shown in Figure 7.4 was similar for both RR and ME, we only consider
changes to RR. Figure 7.5 shows the difference between atrue and aRR for different
choices of κmax. Firstly we consider the true signal that occurs at frequencies
k = 1, 7, 12, 15. For k = 1 the smallest error occurs for κmax = 50 and the largest error
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Figure 7.5: Difference between atrue and aRR for different choices of κmax. Vertical
dashed lines show the locations of non-zero values for the true signal.

Table 7.2: Changes to convergence of RR, MI and MVI for different values of κmax. For
all choices of κmax, convergence for Rtrue occurs in 17 iterations and Rest occurs in 244
iterations.

κmax 10, 000 1, 000 100 50 10
RR 245 244 170 141 73
ME 240 239 193 145 76
Infl RR 244 244 238 233 199

occurs for κmax = 10000. For k = 7, 12, 15 the error increases as κmax decreases. For
all other frequencies, reducing κmax reduces the error in the spurious non-zero
amplitudes. For very large values of κmax we obtain small errors for the true signal,
but larger spurious errors elsewhere. Very small values of κmax can control these
spurious errors, but fail to recover the correct amplitude for the true signal. Therefore
a larger reconditioning constant will result in larger changes to the analysis. This
means that there is a balance to be made in ensuring the true signal is captured, but
spurious signal is depressed. For this framework a choice of κmax = 100 provides a
good compromise between recovering the true peaks well and suppressing spurious
correlations.

Finally, Table 7.2 shows how convergence of the conjugate gradient method is altered
by the use of reconditioning and MVI. Using a larger inflation constant does lead to
slightly faster convergence compared to Rest. However, reducing κmax leads to a much
larger reduction in the number of iterations required for convergence for both RR and
ME. This agrees with results in operational data assimilation systems, where the
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choice of κmax and reconditioning method makes a difference to convergence Weston
[2011], Tabeart et al. [2019b].

7.6 Conclusions

Applications of covariance matrices often arise in high dimensional problems
[Pourahmadi, 2013], such as numerical weather prediction (NWP) [Bormann et al.,
2016, Weston et al., 2014]. In this chapter we have examined two methods that are
currently used at NWP centres to recondition covariance matrices by altering the
spectrum of the original covariance matrix: the ridge regression method, where all
eigenvalues are increased by a fixed value, and the minimum eigenvalue method,
where eigenvalues smaller than a threshold are increased to equal the threshold value.
We have also considered multiplicative variance inflation, which does not change the
condition number or rank of a covariance matrix, but is used at NWP centres
[Bormann et al., 2016].

For both reconditioning methods we developed new theory describing how variances
are altered. In particular, we showed that both methods will increase variances, and
that this increase is larger for the ridge regression method. We also showed that
applying the ridge regression method reduces all correlations between different
variables. Comparing the impact of reconditioning methods and multiplicative
variance inflation on the variational data assimilation objective function we find that
all methods reduce the weight on observation information in the analysis. However,
reconditioning methods have a larger effect on smaller eigenvalues, whereas
multiplicative variance inflation does not change the sensitivity of the analysis to
different scales. We then tested both methods of reconditioning and multiplicative
variance inflation numerically on two examples: Example 1, a spatial covariance
matrix, and Example 2, a covariance matrix arising from numerical weather
prediction. In Section 7.5.2 we illustrated the theory developed earlier in the work,
and also demonstrated that for two contrasting numerical frameworks, the change to
the correlations and variances is significantly smaller for the majority of entries for the
minimum eigenvalue method.

Both reconditioning methods depend on the choice of κmax, an optimal choice of
which will depend on the specific problem in terms of computational resource and
required precision. The smaller the choice of κmax, the more variances and
correlations are altered, so it is desirable to select the largest condition number that
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the system of interest can deal with. Some aspects of a system that could provide
insight into reasonable choices of κmax are:

• For conjugate gradient methods, the condition number provides an upper bound
on the rate of convergence for the problem Ax = b [Golub and Van Loan, 1996],
and can provide an indication of the number of iterations required to reach a
particular precision [Axelsson, 1996]. Hence κmax could be chosen such that a
required level of precision is guaranteed for a given number of iterations.

• For more general methods, the condition number can provide an indication of
the number of digits of accuracy that are lost during computations [Gill et al.,
1986, Cheney, 2005]. Knowledge of the error introduced by other system
components, such as approximations in linearised observation operators and
linearised models, relative resolution of the observation network and state
variables, precision and calibration of observing instruments, may give insight
into a value of κmax that will maintain the level of precision of the overall
problem.

• The condition number measures how errors in the data are amplified when
inverting the matrix of interest [Golub and Van Loan, 1996]. Again, the
magnitude of errors resulting from other aspects of the system may give an
indication of a value of κmax that will not dominate the overall precision.

For our experiments we considered choices of κmax in the range 100− 1000. For
Experiment 2 these values are similar to those considered for the same instrument at
different NWP centres e.g. 25, 100, 1000 [Weston, 2011], 67 [Weston et al., 2014], 54
and 493 [Bormann et al., 2015], 169 [Campbell et al., 2017]. We note that the
dimension of this interchannel error covariance matrix in operational practice is small
and only forms a small block of the full observation error covariance matrix.
Additionally, the matrix considered in this chapter corresponds to one observation
type; there are many other observation types with different error characteristics.

In this work we have assumed that our estimated covariance matrices represent the
desired correlation matrix well, in which case the above conditions on κmax can be
used. This is not true in general, and it may be that methods such as inflation and
localisation are also required in order to constrain the sources of uncertainty that are
underestimated or mis-specified. In this case, the guidance we have presented in this
chapter concerning how to select the most appropriate choice of reconditioning
method and target condition number will need to be adapted. Additionally,
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localisation alters the condition number of a covariance matrix as a side effect; the
user does not have the ability to choose the target condition number κmax or control
changes to the distribution of eigenvalues [Smith et al., 2018]. This indicates that
reconditioning may still be needed in order to retain valuable correlation information
whilst ensuring that the computation of the inverse covariance matrix is feasible.

The choice of which method is most appropriate for a given situation depends on the
system being used, and knowledge of its ‘true’ error statistics. The ridge regression
method preserves eigenstructure by increasing the weight of all eigenvalues by the
same amount, compared to the minimum eigenvalue method which only increases the
weight of small eigenvalues and introduces a large number of repeated eigenvalues. We
have found that ridge regression results in constant changes to variances and strict
decreases to absolute correlation values, whereas the minimum eigenvalue method
makes smaller, non-monotonic changes to correlations and non-constant changes to
variances. In the spatial setting, the minimum eigenvalue method introduced spurious
correlations, whereas ridge regression resulted in a constant percentage reduction for
all variables. In the inter-channel case, changes to standard deviations and most
correlations were smaller for the minimum eigenvalue method than for ridge
regression.

Another important property for reconditioning methods is the speed of convergence of
minimisation of variational data assimilation problems. It is well-known that other
aspects of matrix structure, such as repeated or clustered eigenvalues, are important
for the speed of convergence of conjugate gradient minimisation problems. As the
condition number is only sensitive to the extreme eigenvalues, conditioning alone
cannot fully characterise the expected convergence behaviour. In the data assimilation
setting, complex interactions occur between the constituent matrices [Tabeart et al.,
2018], which can make it hard to determine the best reconditioning method a priori.
One example of this is seen for operational implementations in Campbell et al. [2017],
Weston [2011] where the ridge regression method results in fewer iterations for a
minimisation procedure than the minimum eigenvalue method, even though the
minimum eigenvalue method yields observation error covariance matrices with a large
number of repeated eigenvalues. Furthermore, Tabeart et al. [2018] found cases in an
idealised numerical framework where increasing the condition number of the Hessian
of the data assimilation problem was linked to faster convergence of the minimisation
procedure. Again, this was due to interacting eigenstructures between observation and
background terms, which could not be measured by the condition number alone.
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Additionally, Haben [2011], Tabeart et al. [2018] find that the ratio of background to
observation error variance is important for the convergence of a conjugate gradient
problem. In the case where observation errors are small, poor performance of
conjugate gradient methods is therefore likely. This shows that changes to the
analysis of data assimilation problems due to the application of reconditioning
methods are likely to be highly system dependent, for example due to: quality of
estimated covariance matrices, interaction between background and observation error
covariance matrices, specific implementations of the assimilation algorithm, and
choice of preconditioner and minimisation routine. However, the improved
understanding of alterations to correlations and standard deviations for each method
of reconditioning provided here may allow users to anticipate changes to the analysis
for a particular system of interest using the results from previous idealised and
operational studies (e.g. Tabeart et al. [2018], Fowler et al. [2018], Simonin et al.
[2019], Weston et al. [2014], Bormann et al. [2016]).

7.7 Appendix: Equivalence of the minimum
eigenvalue method with the Ky Fan 1-d norm
method

We introduce the Ky-Fan p− k norm. We show that the solution to a nearest matrix
problem in the Ky-Fan 1− d norm, where X ∈ Rd×d, is equivalent to the minimum
eigenvalue method of reconditioning introduced in Section 7.3.2 with an additional
assumption.

Definition 7.7.1. The Ky Fan p-k norm of X ∈ Cm×n is defined as:

||X||p,k =
(

k∑
i=1

γi(X)p
)1/p

, (7.42)

where γi(X) denotes the i-th largest singular value of X, p ≥ 1 and
k ∈ {1, . . . ,min{m,n}}.

As covariance matrices are positive semi-definite by definition, the singular values of a
covariance matrix X ∈ Rd×d are equal to its eigenvalues.

Theorem 7.7.2. Let X ∈ Rd×d be a symmetric positive semi-definite matrix, with
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0 and corresponding matrix of eigenvectors given by
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VR. The choice of X̂ that minimises

||X− X̂||1,p, (7.43)

subject to the condition κ(X̂) = κ̂, for κ̂ ≥ d− l + 1, is given by X̂ = VRDiag(λ∗)VT
R,

where λ∗ is defined by

λ∗k =

 µ∗ := λ1
κ̂

if λk < µ∗

λ∗k = λk otherwise.
(7.44)

and where l is the index such that λl ≤ µ∗ < λl−1.

Proof. We apply the result given in Theorem 4 of Takana and Nakata [2014] for the
trace norm (defined as p = 1 and k = d) to find the optimal value of µ∗. Theorem 2 of
the same work yields the minimising solution X̂ for the value of µ∗.

We remark that the statement of Theorem 4 of Takana and Nakata [2014] uses the
stronger assumption that κ̂ ≥ d. However, a careful reading of the proof of this
theorem indicates that a weaker assumption is sufficient: we assume that κ̂ > d− l+ 1
where l is the index such that λl ≤ µ∗ < λl−1.

We note that this optimal value of µ∗ is the same as the threshold T = λ1
κ̂

defined for
the minimum eigenvalue method in (7.6) and hence the minimum eigenvalue method
is equivalent to the Ky Fan 1-d minimizer of (7.43)in the case that κ ≥ d− l + 1.

The minimum eigenvalue method is still a valid method of reconditioning when the
additional assumption on the eigenvalues of X is not satisfied. In particular, in the
experiments considered in Section 7.5 we see qualitatively similar behaviour for the
choices of T that satisfy the assumption, and those that do not. It is possible that the
lower bound on the condition number imposed by the additional constraint on κmax

could provide guidance on the selection of the target condition number.
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7.8 Supplementary material

Figure 7.6: Diagnosed correlation matrix for IASI for the subset of 137 channels with
non-zero off-diagonal entries.

Figure 7.6 shows the estimated and symmetrised observation error covariance matrix
for IASI, obtained using the diagnostic of Desroziers et al. [2005] using the Met Office
4D-Var routine. The effects of reconditioning on this matrix were studied in
Section 7.5.

7.9 Summary

In this chapter we developed theory on two methods of reconditioning, ridge
regression and the minimum eigenvalue method, and compared them against
multiplicative variance inflation. We found that both methods of reconditioning
increase variances, with ridge regression resulting in larger increases to variances that
the minimum eigenvalue method for any choice of covariance matrix. We proved that
the ridge regression method strictly decreases the absolute value of off-diagonal
correlations, whereas the minimum eigenvalue method can increase the absolute value
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of correlations. Both methods of reconditioning reduce the weight on scales associated
with small eigenvalues of the observation error covariance matrix in the variational
objective function, whereas multiplicative variance inflation reduces the weight on all
scales equally. Numerical experiments revealed that for spatial correlations the
minimum eigenvalue method can introduce spurious oscillations, but for an
inter-channel example the minimum eigenvalue method made smaller changes to
correlations and variances. An illustrative example showed that both methods of
reconditioning are able to make changes to the analysis of a data assimilation problem
on smaller scales, whereas multiplicative variance inflation cannot reduce spurious
sample error on smaller scales.

Reconditioning methods were also found to result in faster convergence than
multiplicative variance inflation. This agrees with the results of Chapter 5 that
increasing the minimum eigenvalue of the observation error covariance matrix is likely
to improve convergence of a conjugate gradient method. In this chapter we
implemented reconditioning methods for an idealised data assimilation problem. In
the next chapter, we will consider how the ridge regression method of reconditioning
performs for an operational nonlinear data assimilation problem.
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Chapter 8

The impact of using reconditioned
correlated observation error
covariance matrices in the Met
Office 1D-Var system

In this chapter we answer RQ 4 from Chapter 1, and study how the use of the ridge
regression method of reconditioning affects an operational data assimilation problem.
We present a case study using the operational Met Office 1D-Var retrieval system. We
wish to know

• How do the qualitative theoretical conclusions from the linear case apply in a
non-linear, realistic setting?

• How are the quality control process and retrieved values affected by the
introduction of correlated observation error and the use of reconditioning
methods?

The work in this chapter, excluding the chapter summary (Section 8.8), has been
strongly based on a paper submitted to the Quarterly Journal of the Royal
Meteorological Society as: Tabeart J. M., Dance S. L., Lawless A. S., Migliorini, S.
Nichols N. K., Smith, F., Waller J. A. The impact of using reconditioned correlated
observation error covariance matrices in the Met Office 1D-Var system. Quarterly
Journal of the Royal Meteorological Society. The submitted paper can be found at
http://arxiv.org/abs/1908.04071.
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8.1 Abstract

Recent developments in numerical weather prediction have led to the use of correlated
observation error covariance (OEC) information in data assimilation and forecasting
systems. However, diagnosed OEC matrices are ill-conditioned and may cause
convergence problems for variational data assimilation procedures. Reconditioning
methods are used to improve the conditioning of covariance matrices while retaining
correlation information. In this chapter we study the impact of using the ‘ridge
regression’ method of reconditioning to assimilate Infrared Atmospheric Sounding
Interferometer (IASI) observations in the Met Office 1D-Var system. This is the first
systematic investigation of how changing target condition numbers affects convergence
of a 1D-Var routine. This procedure is used for quality control, and to estimate key
variables (skin temperature, cloud top pressure, cloud fraction) that are not analysed
by the main 4D-Var data assimilation system. Our new results show that the current
(uncorrelated) OEC matrix requires more iterations to reach convergence than any
choice of correlated OEC matrix studied. This suggests that using a correlated OEC
matrix in the 1D-Var routine would have computational benefits for IASI
observations. Using reconditioned correlated OEC matrices also increases the number
of observations that pass quality control. However, the impact on skin temperature,
cloud fraction and cloud top pressure is less clear. As the reconditioning parameter is
increased, differences between retrieved variables for correlated OEC matrices and the
operational diagonal OEC matrix reduce. These retrieval differences are smaller than
retrieved standard deviation values for over 75% of IASI observations. Up to 5% of
retrievals have large differences for alternative choices of the OEC matrix. As
correlated choices of OEC matrix yield faster convergence, using stricter convergence
criteria along with these matrices may further increase efficiency and improve quality
control.

8.2 Introduction

In numerical weather prediction (NWP) a data assimilation procedure is used to
combine observations of the atmosphere with a model description of the system in
order to obtain initial conditions for forecasts. The contribution of each component is
weighted by its respective error statistics. In recent years, interest in the
understanding and use of correlated observation error statistics has grown (e.g. Janjić
et al. [2018]). This increased interest has been motivated by results showing that
neglecting correlated observation errors hinders forecasts [Rainwater et al., 2015,
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Stewart et al., 2008b], and that even including poorly approximated correlation
structures is better than using uncorrelated error statistics in the presence of
correlated errors [Stewart et al., 2013, Healy and White, 2005].

Previously, uncorrelated observation error statistics were used for all observations,
even when it was known that non-zero error correlations were present. Determining
error statistics is a non-trivial problem, as they cannot be observed directly and must
be estimated in a statistical sense. It was also thought that it would not be possible
to use correlated observation error covariance (OEC) matrices operationally due to
the increased computational cost associated with inverting a dense matrix rather than
a diagonal matrix [Stewart et al., 2013]. The development of a new method to check
error consistency by Desroziers et al. [2005] was first applied to explicitly diagnose
error correlations using the Met Office system [Stewart et al., 2008a]. Since then, the
diagnostic introduced in Desroziers et al. [2005] (henceforth referred to as DBCP) has
been used widely at operational centres [Weston, 2011, Weston et al., 2014, Stewart
et al., 2014, Bennitt et al., 2017, Bormann et al., 2011, 2016, Campbell et al., 2017,
Gauthier et al., 2018, Wang et al., 2018], although uncorrelated OEC matrices are still
used operationally for most instruments. Although much of the initial use of the
diagnostic to estimate observation errors focussed on interchannel correlations, this
has been extended to spatial correlations [Waller et al., 2014b, 2016a,c, Cordoba
et al., 2017, Michel, 2018]. Theoretical work has also demonstrated how well the
diagnostic is expected to perform depending on either the accuracy of the initial
choice of background and OEC matrices for the single step [Waller et al., 2016b] and
the iterative form of the diagnostic [Ménard, 2016, Bathmann, 2018]. The use of the
diagnostic in data assimilation schemes using localization has also been considered
[Waller et al., 2017].

The output of the diagnostic cannot be used directly in the assimilation procedure.
Diagnosed matrices are asymmetric, and some are not positive definite [Stewart et al.,
2014, Weston et al., 2014] and are therefore not valid covariance matrices. Typically,
the matrices are symmetrised, and negative and zero eigenvalues are set to be small
and positive [Weston, 2011]. Additionally, diagnosed OEC matrices are often
ill-conditioned. This means that small perturbations to the observations will result in
large changes to the analysis, and that iterative methods are likely to converge slowly.
Indeed, the direct use of diagnosed matrices has led to problems with non-convergence
of the minimisation of the data assimilation procedure [Weston, 2011, Weston et al.,
2014]. Weston [2011] suggested that part of these problems were due to small
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minimum eigenvalues of the diagnosed OEC matrix, R.

One way to study the effect of changes to the assimilation system on the convergence
of the objective function minimisation is by using the condition number of the Hessian
of the variational objective function as a proxy for convergence. This was done in
Haben [2011] for the case of a linear observation operator. In Tabeart et al. [2018] the
minimum eigenvalue of the OEC matrix, R, appears in bounds on the condition
number of the Hessian of the variational assimilation problem, indicating that this
term will also be important for convergence of the objective function minimisation.

Increased understanding of how the eigenvalues of R affect the convergence of the
data assimilation problem motivated investigation into ‘reconditioning’ methods
[Weston, 2011, Weston et al., 2014, Campbell et al., 2017, Tabeart et al., 2018]. These
methods increase eigenvalues of the matrix R to improve the conditioning of the OEC
matrix, while maintaining much of the existing correlation structure of the diagnosed
matrix. Two methods are commonly used by NWP centres: ‘ridge regression’ which
increases all eigenvalues of R by the same amount, and the ‘minimum eigenvalue’
method which changes only the smallest eigenvalues. These methods were investigated
theoretically in Tabeart et al. [2019a] where it was found that both methods increase
standard deviations, and that the ridge regression method strictly reduces all
off-diagonal correlations. Both methods were compared in an operational system in
Campbell et al. [2017], where the sensitivity of forecasts to the choice of method was
found to be small, but the ridge regression outperformed the minimum eigenvalue
method in terms of convergence. A method similar to the minimum eigenvalue
method is used at the European Centre for Medium Range Weather Forecasts
(ECMWF) [Bormann et al., 2016], but will not be discussed further in this chapter.

The aim of this chapter is to investigate the use of the ridge regression method within
the Met Office system. At the Met Office, in addition to the 4D-Variational data
assimilation routine (4D-Var) that is used to produce the initial conditions for weather
forecasts, a 1D-Variational data assimilation routine (1D-Var) is used for quality
control and pre-processing purposes [Eyre, 1989]. The 1D-Var routine assimilates
observations individually, and is used to remove observations that are likely to cause
problems with convergence in the 4D-Var routine, as well as to estimate model
variables that are not included in the 4D-Var state vector [Pavelin and Candy, 2014,
Pavelin et al., 2008]. After the work of Weston [2011], Weston et al. [2014], correlated
OEC matrices were introduced in the 4D-Var routine for IASI (Infrared Atmospheric
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Sounding Interferometer) and other hyperspectral IR sounders. However, this was not
the case for the 1D-Var routine, where a diagonal OEC matrix continues to be used.
Previous work found that diagnosed observation error correlations were small for most
channels for the 1D-Var routine [Weston, 2011, Stewart et al., 2014] and the
proportional increase in computational cost was estimated to be large compared with
using correlated OEC matrices in 4D-Var [Weston et al., 2014].

In this chapter we study how the use of reconditioning methods affects the 1D-Var
routine when applied to interchannel OEC matrices for the Infrared Atmospheric
Sounding Interferometer (IASI). We examine whether the ridge regression method of
reconditioning allows us to include correlated observation error information more
efficiently than the diagnosed OEC matrix. This method of reconditioning is used at
the Met Office to recondition OEC matrices that are used in the 4D-Var routine. We
compare a selection of reconditioned OEC matrices with the current diagonal
operational error covariance matrix, and an inflated diagonal OEC matrix. This is the
first time that multiple levels of reconditioning have been compared systematically in
an operational system. We study the impact of reconditioning in terms of the
computational efficiency as well as the effect on important meteorological variables.

In Section 8.3 the data assimilation problem is defined and the ridge regression
method of reconditioning is introduced. In Section 8.4 we provide an overview of the
experimental design. In Sections 8.5 and 8.6 we discuss the impact of changing the
OEC matrix on the 1D-Var procedure, and alterations to the quality control and
pre-processing for the 4D-Var routine respectively. We find that convergence is
improved for any of the choices of reconditioning compared to the current operational
choice of OEC matrix. Additionally, increasing the amount of reconditioning results
in faster convergence - which corresponds to theoretical results for the linear
variational data assimilation problem in Tabeart et al. [2018]. However, the quality
control procedure is altered by changing the OEC matrix, with a larger number of
observations being accepted for reconditioned correlated OEC matrices compared to
the current diagonal choice of OEC matrix. We also find that for most variables, the
difference between retrieved values for different choices of OEC matrix are small
compared to retrieved standard deviations. However, there are a significant minority
of observations for which differences are very large. Finally, in Section 8.7 we
summarise our results and conclusions.
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8.3 Variational data assimilation and
reconditioning

8.3.1 Data assimilation

In data assimilation, a weighted combination of observations, y ∈ Rp, with a
background, or ‘prior’, field, xb ∈ Rn, is used to obtain the analysis, or posterior,
xa ∈ Rn. The weights are the respective error statistics of the two components. The
matrix R ∈ Rp×p is the observation error covariance (OEC) matrix and B ∈ Rn×n is
the background error covariance matrix. In order to compare observations with the
background field, the, possibly non-linear, observation operator H : Rn → Rp is used
to map from state space to observation space. The weighted combination is written in
the form of an objective function in terms of x ∈ Rn, the model state vector. In the
case of 3D-Var the objective function is given by:

J(x) =1
2(x− xb)TB−1(x− xb) + 1

2(y−H[x])TR−1(y−H[x]). (8.1)

The value of x that minimises (8.1) is given by xa.

The first order Hessian, or matrix of second derivatives, of the objective function (8.1)
is given by

∇2J ≡ S = B−1 + HTR−1H, (8.2)

where H ∈ Rp×N is the Jacobian of the observation operator, H[x], linearised about
the current best estimate of the optimal solution of (8.1).

We now define the condition number of a matrix. Let
λmax(S) = λ1(S) ≥ · · · ≥ λN(S) = λmin(S) be the eigenvalues of S. We note that this
ordering convention will be used for the remainder of the chapter. Although covariance
matrices are symmetric positive semi-definite by definition, in practice B and R are
required to be strictly positive definite in order that they can be inverted in (8.1).
This means that S is symmetric positive definite, and its condition number is given by

κ(S) = λ1(S)
λN(S) . (8.3)

We note that the minimum possible value of the condition number of any matrix is
one. The condition number of the Hessian is of interest because it can be used to
study the sensitivity of the solution to small changes in the background or observation
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data [Golub and Van Loan, 1996, Sec 2.7]. As (8.1) is non-linear, it is solved using a
sequence of Gauss-Newton iterations with an inner linearised problem solved using
the conjugate gradient method [Haben et al., 2011b]. The rate of convergence of the
minimisation of the linearised problem by a conjugate gradient function can also be
bounded by κ(S) [Golub and Van Loan, 1996], although this bound is quite
pessimistic. In particular, clustering of eigenvalues can result in much faster
convergence than is predicted by κ(S) [Nocedal, 2006].

8.3.2 Reconditioning: motivation and definition

In Weston [2011], observations from IASI were used at the Met Office for an initial
study investigating the feasibility of using correlated observation error matrices in
their 4D-Var system. A first guess of the OEC matrix was obtained using the DBCP
diagnostic.

One problem that was encountered in Weston [2011] and Weston et al. [2014] was the
ill-conditioning of the matrix resulting from the DBCP diagnostic. The use of an
ill-conditioned OEC matrix can result in slower convergence of a variational scheme
[Weston et al., 2014, Tabeart et al., 2018]. Similar problems were encountered at
ECMWF where a degradation in the forecast was seen when the raw output of the
DBCP diagnostic was tested [Lupu et al., 2015]. Weston [2011] suggested that the
convergence problems were caused by very small minimum eigenvalues of the
diagnosed observation error covariance matrix.

Tabeart et al. [2018] developed bounds for the condition number of the Hessian in
terms of its constituent matrices in the case of a linear observation operator. This
provides an indication of the role of each matrix in the conditioning of S, and
therefore the convergence of the associated minimisation problem. The bound which
separates the role of each matrix is given by

max
1 + λmax(B)

λmin(R)λmax(HHT )
κ(B) ,

1 + λmax(B)
λmax(R)λmax(HHT )

κ(B) ,

κ(B)
1 + λmax(B)

λmin(R)λmax(HHT )


≤ κ(S) ≤

(
1 + λmin(B)

λmin(R)λmax(HHT )
)
κ(B).

(8.4)

153



Section 8.3 Page 154

These bounds show that the minimum eigenvalue, λmin(R), of the OEC matrix is a
key term in the upper bound for S, meaning that increasing the minimum eigenvalue
of R is a reasonable heuristic for reducing the condition number of S and improving
the conditioning of the problem (8.1).

In the case that the error covariance matrices can be written as the product of a
scalar variance with a correlation matrix, e.g. R = σ2

oD and B = σ2
bC, and

observations are restricted to model variables, we can simplify the bound (8.4) to

max
1 + σ2

b

σ2
o

λmax(C)
λmin(D)

κ(C) ,
κ(C)

1 + σ2
b

σ2
o

λmax(C)
λmin(D)


≤ κ(S) ≤

1 + σ2
b

σ2
o

λmin(C)
λmin(D)

κ(C).

(8.5)

The qualitative conclusions of Tabeart et al. [2018] can be summarised as follows.

• The minimum eigenvalue of R was shown to be important for determining both
the conditioning of the Hessian, and the speed of convergence of a minimisation
procedure. This can be seen in (8.4) and (8.5).

• The ratio of the background and observation variances was also shown to be
important for conditioning of the Hessian. This can be seen in (8.5) explicitly
for the case of direct observations where variances are homogeneous for both
background and small scale matrices. However, we expect the conclusion to hold
more broadly, for example in the case where all standard deviation values
corresponding to an OEC matrix were larger than those corresponding to
another OEC matrix, then the bounds would be smaller for the first choice of
OEC matrix.

• Although (8.4) and (8.5) separate the contribution of each term, numerical
experiments revealed that the level of interaction between observation error and
background error statistics depends on the choice of observation network.
Examples of observation operators which yield identical bounds for (8.4) but
different dependence of κ(S) on B and R were found experimentally in Tabeart
et al. [2018].

These conclusions motivate the use of reconditioning methods. In order to make
operational implementation of correlated observation error matrices feasible, it is
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necessary to reduce the impact of the very small eigenvalues of the matrix R by
increasing its condition number. To achieve this, different methods of inflation, or
reconditioning are used to improve conditioning of correlation matrices for a variety of
applications. The ridge regression method is used to recondition OEC matrices at the
Met Office [Weston, 2011, Weston et al., 2014], and hence will be the reconditioning
method that is considered in the remainder of this chapter. The ridge regression
method adds a scalar multiple of the identity to R to obtain the reconditioned matrix
RRR. This scalar, δ, is chosen such that κ(RRR) = κmax, a user-specified condition
number. The method for calculating δ for a given choice of κmax was formally defined
in Tabeart et al. [2019a] as follows:

Definition 8.3.1. Ridge regression reconditioning constant, δ [Tabeart
et al., 2019a]
Define δ = (λmax(R)− λmin(R)κmax)/(κmax − 1).
Set RRR = R + δI.

We note that this choice of δ yields κ(RRR) = κmax. Mathematical theory describing
the effect of this reconditioning method on the correlations and variances of any
covariance matrix was developed in Tabeart et al. [2019a], which showed that the
ridge regression method increases error variances for all observations, and decreases all
off-diagonal correlations. In this chapter we investigate whether the qualitative
conclusions from Tabeart et al. [2018] hold in the case of a non-linear observation
operator, and we study the impact of reconditioning methods in an operational
system.

8.4 Experimental Overview

8.4.1 Met Office System

The experiments carried out in this manuscript will use observations from the IASI
instrument on the EUMETSAT MetOp constellation. IASI is an infrared Fourier
transform spectrometer, and measures infrared radiation emissions from the
atmosphere and surface of the earth [Chalon et al., 2001]. We note that the
observation operator for this instrument, a radiative transfer model, is highly
non-linear so the conclusions from Tabeart et al. [2018] will not necessarily apply to
this problem. The infrared spectrum is split into channels corresponding to different
wavelengths; this means that an observation at a single location will provide
information for up to 8641 channels. An early use of the DBCP diagnostic focused on

155



Section 8.4 Page 156

observations from IASI implemented in the Met Office system [Stewart et al., 2008a].
Much of the subsequent research on correlated observation error uses IASI
observations [Weston, 2011, Weston et al., 2014, Stewart et al., 2014, Bormann et al.,
2016]. In particular IASI has channels that are sensitive to water vapour which have
been found to have errors with large correlations [Stewart et al., 2014, Weston et al.,
2014, Bormann et al., 2016].

One attraction of IASI, and other hyperspectral instruments, is the large number of
available channels, which provides high vertical resolution. However, using all of these
channels is not feasible in current operational NWP systems for reasons including
computational expense, and not requiring too many observations of a similar type.
Additionally, when IASI was first used, there was a reluctance to include correlated
observation errors so an effort was made to choose channels that are spectrally
different and hence less likely to have correlated errors [Stewart et al., 2014]. This
means that of the 8461 available channels, only a few hundred are used at most NWP
centres [Stewart et al., 2014]. At the time of the experiments, the Met Office stored a
subset of 314 channels with a maximum of 137 being used in the 4D-Var system. A
list of these channels is given by Stewart [2010, Appendix A]. As there is a large
degree of redundancy between channels [Collard et al., 2010], directly assimilating a
larger number of channels is likely to make the conditioning of the OEC matrix worse.
This has motivated alternative approaches such as principal component compression
[Collard et al., 2010] and the use of transformed retrievals [Prates et al., 2016], which
will not be considered in this work.

A larger number of channels is used for the 1D-Var assimilation than for the Met
Office 4D-Var assimilation; standard deviation values for these channels are filled in
from the current operational (diagonal) OEC matrix. We chose to focus on the
channels used in the 4D-Var system in order to be consistent between both
assimilation systems. We also note that not all channels are used for each
assimilation; for example, some channels are not used in the presence of cloud. In this
case, rows and columns corresponding to channels that are affected by cloud are
deleted from the OEC matrix. As the submatrix chosen from the full OEC matrix
used could change at each observation time, there may be a difference in the condition
number of the OEC matrix used in practice and the OEC matrices presented in this
work. However, the Cauchy interlacing theorem [Bernstein, 2009, Lemma 8.4.4] states
that the condition number will not be increased by deleting rows and columns of a
symmetric positive definite matrix. This means that the values given here are upper
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bounds for κ(S) even if the quality control procedure excludes some channels.

We test the impact of using correlated OEC matrices in the Met Office 1D-Var system
and consider the effect of using the ridge regression method of reconditioning with
different choices of target condition number. At the Met Office, 1D-Var is run prior to
every 4D-Var assimilation procedure, meaning that retaining current computational
efficiency and speed of convergence is desirable. We note that a single IASI
observation consists of brightness temperature values for each of the channels that are
used in the assimilation. A 1D-Var procedure takes observations separately at each
location to retrieve variables such as temperature and humidity over a 1D column of
the atmosphere. This procedure is much cheaper and more parallelisable than a
4D-Var algorithm.

The 1D-Var routine performs two main functions:

1. Quality control (QC): Observations that require more than 10 iterations for the
1D-Var minimisation to reach convergence are not passed to the 4D-Var routine.
This is because it is assumed that observations for which the retrieval procedure
takes too long to converge for the 1D-Var minimisation will also result in slow
convergence for a 4D-Var minimisation. A Marquardt-Levenberg minimisation
algorithm is used, with convergence criteria is based on the value of the cost
function and normalised gradient [Pavelin et al., 2008]. Changing the OEC
matrix will alter the speed of convergence of 1D-Var, and hence affect which
observations are accepted.

2. Estimation of values for certain variables that are not included in the 4D-Var
state vector: values for skin temperature, cloud fraction, cloud top pressure and
emissivity over land are fixed by the 1D-Var procedure. Altering the OEC
matrix will change retrieved values for these variables.

Changing the OEC matrix is therefore likely to have two main effects on results of the
1D-Var procedure: changing the observations that are accepted by the quality control,
and changing the values of those variables not included in the 4D-Var state vector.
Skin temperature (ST), cloud fraction (CF) and cloud top pressure (CTP) are
retrieved as scalar values at each observation location. In contrast, surface emissivity
is retrieved as a spectrum, which is represented as a set of leading principal
components [Pavelin and Candy, 2014]. As we expect the interactions between the
choice of R and the retrieved values to be complex, in this work we only consider the
effect of changing R on the three scalar variables: skin temperature, cloud top
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pressure and cloud fraction.

We finish by commenting briefly on the implementation of Marquardt-Levenberg that
is used at the Met Office for 1D-Var. As the nonlinear Jacobian is recomputed at
every iteration, 1D-Var can be thought of as a fully nonlinear model with only outer
loops and no inner loops (see Rodgers [1998] for further discussion). Therefore the
experimental results presented in the following section will allow us to test how well
previous linear theory from Tabeart et al. [2018] applies to a nonlinear data
assimilation algorithm.

8.4.2 Experimental Design

We now describe the experimental framework and key areas of interest that will be
investigated in Sections 8.5 and 8.6. We use the operational Met Office 1D-Var
framework at the time of the experiments (July 2016), and consider how the results
change for different choices of OEC matrix. Background profiles are obtained from the
Unified Model (UM) background files for the corresponding configuration. A number
of different times and dates for the six months between December 2015 and June 2016
were considered, but as results were similar across all trials we only present results
from experiments for 16th June 2016 0000Z.

The correlated choices of R are calculated using the method introduced in Weston
et al. [2014]; applying the ridge regression method of reconditioning to the diagnosed
matrix for a variety of choices of κmax. The matrices estimated by the DBCP
diagnostic depend considerably on the choice of background and observation error
matrices. For all OEC matrices produced, the same 4 days of IASI and background
NWP data (03/12/15-06/12/15), were used as input data. We note that the
estimated OEC matrix was obtained using background and OEC matrices from the
4D-Var assimilation routine rather than the 1D-Var routine. Although this is not
theoretically consistent with the smaller error correlations that have been estimated
for the 1D-Var problem in previous studies [Stewart et al., 2014, Weston, 2011], the
use of 4D-Var error statistics allows us to better understand the impact that our
changes are likely to have on 4D-Var. We are using 1D-Var as a pre-processing step
for 4D-Var to remove observations that are likely to cause convergence issues in the
main assimilation algorithm.

We use the operational background error covariance matrix, B, at the time of the

158



Section 8.4 Page 159

1 2 3
Temperature (K)

 (a)

0

10

20

30

40
M
od
el
 le
ve
l 

0.0 0.1 0.2 0.3 0.4
ln(Specific humidity) (g/kg)

 (b)

0

5

10

15

20

25

M
od
el
 le
ve
l 

Figure 8.1: Standard deviation values for the operational background error covariance
matrices, B, for the northern hemisphere (solid line), tropics (dot-dashed line) and
southern hemisphere (dashed line) for temperature (a) and ln(specific humidity) (b).
43 model levels are determined by the 43 evenly distributed pressure levels in the
radiative transfer retrieval algorithm, where model level 0 corresponds to the surface
and model level 42 the top of the atmosphere. ln(specific humidity) is only computed
for the lowest 26 model levels.

Figure 8.2: Correlation matrices for the operational background error covariance ma-
trices, B, for the northern hemisphere (a), tropics (b) and southern hemisphere (c).
Dashed vertical and horizontal lines separate inter and cross correlations between tem-
perature, ln(specific humidity) and other variables (from left to right). ST is variable
72, CTP is 74 and CF is 75.

Variable CF CTP (hPa) ST (NH) (K) ST (Tr) (K) ST (SH) (K)
Standard deviation 1 1000 2.24 1.92 2.02

Table 8.1: Background standard deviation values for variables not included in the 4D-
Var state vector.
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experiments. This consists of three different choices of B for the northern hemisphere
(30N:90N), the tropics (30S:30N) and the southern hemisphere (90S:30S). Figure 8.1
shows background standard deviation (BSD) values for temperature and humidity
variables, and Table 8.1 gives BSD values for CF, CTP and ST for each of the choices
of B. The 43 model levels are determined by the 43 evenly distributed pressure levels
in the radiative transfer retrieval algorithm. Figures in this paper are plotted with
model level 0 corresponding to the surface, and model level 42 the top of the
atmosphere. This is the opposite ordering to that which is used by RTTOV
(Radiative Transfer for TOVS (Television Infrared Observation Satellite (TIROS)
Operational Vertical Sounder)). We note that standard deviations for cloud variables
are assumed to be very large so that the background is ignored for these variables
[Pavelin et al., 2008]. In Sections 8.5 and 8.6 we will compare the standard deviations
from the background error covariance matrix against retrieved standard deviations for
the observations as well as differences between observations for different choices of R.
Figure 8.2 shows that correlations corresponding to the three choices of B are
qualitatively very similar. Cross-correlations between variables are quite weak, with no
correlations between temperature and specific humidity. Most correlations larger than
0.2 occur for adjacent model levels for temperature and specific humidity. Correlations
greater than 0.2 also occur between surface temperature and ST and temperature for
larger model level numbers, and surface specific humidity and specific humidity at
larger model level numbers. CTP and CF are uncorrelated with all other variables.

We apply the DBCP diagnostic to the subset of 137 channels that are assimilated in
the 4D-Var routine. The 1D-Var routine uses additional channels [Hilton et al., 2009],
with a total of 183 channels being assimilated. Observation errors for these additional
channels are assumed to be uncorrelated, and filled in with values from the diagonal
error covariance matrix Rdiag. If additional channels are included in future versions of
the operational system, it would be advisable to recompute the DBCP diagnostic
applied to all channels.

The seven different choices of the matrix R that were tested are now listed:

• Rinfl which is an inflated diagonal matrix. This matrix was used prior to the
introduction of correlated observation error in the 4D-Var assimilation scheme
Weston et al. [2014]. In particular variances are inflated to account for the fact
that the assumption of uncorrelated errors is incorrect. The standard deviations
corresponding to Rinfl are shown by the black solid line in Figure 8.4. The
largest value entry of Rinfl is 16, and the smallest entry is 0.25. The
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Figure 8.3: The correlation matrices corresponding to each correlated choice of R.
Recall that the subscript defines the choice of κmax used in the ridge regression method
of reconditioning, which was applied to the covariance matrix Rest.

construction of Rinfl is described in Hilton et al. [2009].

• Rdiag, the current operational matrix for 1D-Var retrievals, which is diagonal.
The standard deviations are calculated as instrument noise plus 0.2K
forward-model noise [Collard, 2007]. The variances of Rdiag are shown by the
solid red line in Figure 8.4. The variances are much smaller than for Rinfl; for
the first 120 channels, the diagonal elements of Rdiag are all less than 0.27 and
the largest value of Rdiag is given by 0.49.

• Rest, the symmetrised raw output of the code that produces the DBCP
diagnostic. This is computed by Rest = 1

2(RDBCP + RT
DBCP ), where

RDBCP ∈ R137×137 is the output of the DBCP diagnostic.

• Reconditioned versions of Rest so that the correlated submatrix has a condition
number of 1500, 1000, 500 and 67, referred to respectively as R1500,R1000,R500

and R67.

The correlations and standard deviations corresponding to Rest,R1500,R1000,R500 and
R67 are shown in Figures 8.3 and 8.4 respectively. We refer to the experiments using
each choice of OEC matrix as E with subscript corresponding to that of the OEC
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Figure 8.4: Standard deviations values corresponding to each choice of R. Black solid
line denotes Rinfl, red solid line denotes Rdiag, blue solid line denotes Rest, black dashed
line denotes R1500, red dashed line denotes R1000, blue dashed line denotes R500 and
black dot-dashed line denotes R67. We note that the standard deviation value for Rinfl

for channels 106-137 is 4K.

Experiment name Ediag Eest E1500 E1000 E500 E67 Einfl
Choice of R Rdiag Rest R1500 R1000 R500 R67 Rinfl

λmin(R) 0.025 0.00362 0.00482 0.007244 0.0145 0.1010 0.0625
κ(R) 9.263 2730 1500 1000 500 67 64

Table 8.2: Minimum eigenvalues and condition number of R for each experiment.

matrix (i.e. Ediag, Eest, E1500E1000, E500, E67 and Einfl).

Details of the conditioning, and minimum eigenvalues of each of the choices of R can
be found in Table 8.2. We see that for the non-diagonal matrices, as we decrease the
target condition number, we increase the minimum eigenvalue of R. This agrees with
the theoretical results of Tabeart et al. [2019a]. We also see that of the two diagonal
choices of R, Rinfl has the larger value of λmin(R), suggesting that we might expect
better convergence compared to Rdiag. We also notice that the largest value of
λmin(R) occurs for R67. It will be of interest to consider whether the introduction of
correlations has more effect on convergence and conditioning than the value of
λmin(R). We note that the inclusion of 46 extra channels in the 1D-Var algorithm, in
addition to the 137 channels used in the 4D-Var algorithm, could change the
condition numbers presented in Table 8.2 by the introduction of very small or very
large eigenvalues.
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Our numerical experiments will be broadly split into two groups. Firstly we will
consider the effect of changing the OEC matrix, R, on the 1D-Var procedure itself in
Section 8.5. This includes the impact on retrieved values and the convergence of the
1D-Var assimilation. Secondly, in Section 8.6, we will consider the impact of these
changes on the 4D-Var procedure, by looking at how the number of accepted
observations varies, and how the retrieved values of skin temperature, cloud top
pressure, and cloud fraction retrievals are altered.

8.5 Impact on Met Office 1D-Var routine

In this section we consider the impact of changing the OEC matrix used in the Met
Office 1D-Var system on the conditioning of the Hessian and on individual retrievals
of temperature and humidity. In particular, the conditioning of the Hessian is
important in terms of speed of convergence of the minimisation procedure. We recall
(Section 8.4.1) that in 1D-Var information for each observation location is assimilated
separately. Here a single observation corresponds to information from a column of
IASI channels valid at one location. This corresponds to 97330 observations over the 4
days of data discussed in Section 8.4.2 with objective functions that converge in 10 or
fewer iterations for all choices of Eexp. For much of the discussion that follows we will
consider statistics of this set of 97330 observations to understand how changing the
OEC matrix affects 1D-Var for IASI observations.

8.5.1 Influence of observation error covariance matrix on
convergence and conditioning of the 1D-Var routine

We begin by investigating explicitly the effect of changing the OEC matrix, R, on the
1D-Var routine. We consider two variables: the number of iterations required for
convergence for the minimisation routine and the condition number of the Hessian of
the 1D-Var cost function.

Firstly we consider the number of iterations required for the minimisation of the
1D-Var cost function to reach convergence for each assimilated observation. For NWP
centres, this is a variable of significant interest, as the extra expense of introducing
correlated error predominantly comes from the increase in the number of iterations
needed before convergence in the case of interchannel errors [Weston, 2011]. We note
that this may not be the case for other types of error correlation such as spatial and
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temporal correlations (where the computation of matrix-vector products may require
additional communication between processors [Simonin et al., 2019]). The
minimisation is deemed to have converged when the absolute value of the difference
between each component of two successive estimates of the state vector is smaller
than 0.4σB, where σB is the vector whose components are the background error
variances for each retrieved variable. Values deemed to be unphysical, such as
temperature components falling out of the range 70K − 340K, are discarded.
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Figure 8.5: Number of iterations required for convergence of the minimization of the 1D-Var cost function as a fraction of the total
number of observations common to all choices of R. Symbols correspond to: Rdiag (4), Rest (◦), R67 (�) and Rinfl (�).

Ediag Eest E1500 E1000 E500 E67 Einfl

max κ(S) 3.01× 1012 7.546× 1011 7.469× 1011 7.30× 1011 7.02× 1011 3.71× 1011 1.74× 1011

mean κ(S) 2.78× 1010 6.71× 109 6.62× 109 6.43× 109 6.00× 109 4.01× 109 2.83× 109

median κ(S) 2.09× 108 1.31× 108 1.32× 108 1.33× 108 1.37× 108 1.78× 108 2.89× 108

Table 8.3: Maximum, mean and median values of κ(S) for Ediag and experiments.
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For each observation, we store the number of iterations required for the corresponding
1D-Var objective function to converge, niter. Figure 8.5 shows the fraction of
observations that have objective functions that converge in niter iterations for four
choices of R. We note that the behaviour for the other correlated experiments is
similar to the behaviour for Eest and hence only the distributions for Eest and E67 are
shown. We see that for all experiments niter = 2 is the modal class and contains over
50% of the observations. We begin by considering experiments corresponding to
correlated choices of the matrix R. Our results show that as the minimum eigenvalue
of the matrix R increases, there is a decrease in the required number of iterations.
This agrees with the theoretical conclusions of Tabeart et al. [2018]. However, the
overall effect of reconditioning on convergence speed is less for 1D-Var than was
observed in the case of 3D-Var or 4D-Var as described in Weston [2011]. It is likely
that this is because the average number of iterations is greater in 3D and 4D-Var, and
the maximum permitted number of iterations is much larger than the 10 allowed for
the 1D-Var minimisation.

We now consider the two diagonal choices of OEC matrix, Rinfl and Rdiag. The
distribution corresponding to Ediag is more heavily weighted towards a higher number
of iterations than any of the correlated cases. This is not what we might expect from
an uncorrelated choice of OEC matrix, particularly as it is well-conditioned compared
to most other choices of OEC matrix. In particular, λmin(Rdiag) is greater than the
minimum eigenvalue for all choices of correlated OEC matrix apart from R67 (see
Table 8.2). In contrast, for the experiment Einfl convergence is faster than for any of
the other experiments.

As we noted in Section 8.3.2, the minimum eigenvalue of the matrix R is not the only
important property for determining the speed of convergence. The distribution of
standard deviations for Ediag and Einfl is shown in Figure 1 of Weston et al. [2014].
As the standard deviations for Rinfl are much larger than the standard deviations for
any other choice of R, the ratio of background variance to observation variance will
be smaller for Einfl than other experiments, resulting in smaller condition numbers of
the Hessian and hence faster convergence of the 1D-Var minimisation. We recall from
Section 8.3.2 that the ratio of background to observation error variances appears in
the bounds on the condition number of the Hessian given by (8.5) in Tabeart et al.
[2018] and similar bounds in Haben [2011]. It is clear from these bounds that
decreasing the observation error variance will increase the value of the bounds. We
can therefore explain the worse convergence seen for Ediag by considering channels
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107-121 and 128-137, where variances for Rdiag are smaller than the variances for
correlated choices of R. These channels are sensitive to water vapour, and also
correspond to the strongest positive correlations in Rest. Typically, inflation is used
when correlated errors are not accounted for; here we have the opposite effect with
smaller variances for uncorrelated Rdiag. In terms of the minimisation of the 1D-Var
objective function, this means that Ediag is pulling much closer to observations for
those channels than any of the correlated experiments. This makes it harder to find a
solution, resulting in slower convergence.

We now consider how the condition number of the Hessian of the 1D-Var cost
function, κ(S), changes with the experiment E. From theoretical results developed in
Tabeart et al. [2018], in particular the result of Corollary 1, we expect κ(S) to
decrease as λmin(R) increases. The minimum eigenvalues for each choice of OEC
matrix, R, discussed here can be seen in Table 8.2. The condition number of S is
computed separately for each objective function. We can therefore consider the
maximum, mean and median value of κ(S) over the 97330 observations for each
experiment. This information is shown in Table 8.3. As discussed in Section 8.3.1 the
condition number of any matrix is bounded below by one. We therefore do not
include the minimum values of κ(S) in the table. We firstly note that the maximum
values of κ(S) are extremely large, with the largest value occurring for the matrix
Rdiag. For experiments with correlated OEC matrices, increasing λmin(R) results in a
decrease in the maximum value of κ(R). We note that the changes to the condition
number for R67 compared to R500 are much larger than the difference in conditioning
between other experiments. The maximum value of κ(R) for the OEC matrix Rinfl is
the smallest of all choices of OEC matrix. A decrease in the maximum value of κ(S)
corresponds to a distribution that has increased weight at the lower end of the
spectrum for the iteration count distribution shown in Figure 8.5.

We now consider the mean and the median of κ(S). Firstly we note that the values of
the mean and median differ by at least one order of magnitude. The distribution of
κ(S) is not symmetric: it is bounded below by 1, with very large maximum values.
The mean is skewed by such outliers and we note that for a boxplot of this data (not
shown) the mean does not lie within the interquartile range (IQR) of the data for all
experiments other than E67 and Einfl. Both the maximum and mean of κ(S) decrease
with increasing λmin(R), for correlated OEC matrices. The largest values occur for
the experiment Ediag, and the smallest for the experiment Einfl. In contrast, the
median is largest for the experiment Einfl, and decreasing λmin(R) increases the
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median value of κ(S) for experiments with correlated choices of OEC matrix.
Considering the deciles indicates that the spread of κ(S) across all observations
reduces as more reconditioning is applied.

We have seen that introducing correlated OEC matrices improves convergence and
reduces κ(S) compared to the current operational choice. Additionally, reducing the
target condition number results in further improvements. This behaviour agrees with
the theoretical conclusions of Tabeart et al. [2018] that were summarised in Section
8.3.2. For a linear observation operator we expect the upper bound on the condition
number of the Hessian to decrease as the minimum eigenvalue of the OEC matrix, R,
increases. This is shown in (8.4). This inequality also shows that the ratio between
background and observation variance is important for the conditioning of S. The final
column of Table 8.3 shows that range of κ(S) for the experiment Einfl is less than the
range for any experiment with a correlated choice of OEC matrix. The variances for
Rinfl are much larger than the variances for any other OEC matrix considered in this
work. We therefore conclude that the qualitative conclusions of Tabeart et al. [2018],
as presented in Section 8.3.2, hold in this framework, even in the case of a non-linear
observation operator.

8.5.2 Effect of changing the observation error covariance
matrix on 1D-Var Retrievals

In this section we consider how changing the OEC matrix impacts the retrieved values
of physical variables. In particular we focus on temperature and specific humidity, as
we obtain profiles that occur across multiple model levels rather than individual
values. We note that the retrieved temperature and humidity values are not passed to
the 4D-Var assimilation procedure. However, studying how these variables change for
different choices of OEC matrix helps us understand the impact of changing the OEC
matrix, R, on the 1D-Var assimilation. Additionally, as part of the 1D-Var
assimilation procedure, retrieved standard deviation (RSD) values for each of the
retrieval values are derived. The RSD values are calculated as the square root of the
diagonal entries of the inverse of the Hessian given by (8.2), i.e. the retrieved analysis
error covariance in state variable space. For each 1D-Var assimilation we obtain a
different value for RSD for each retrieved variable. We therefore consider the average
RSD value for a given experiment and retrieved variable. For temperature and specific
humidity this means that we obtain different RSD values for each model level.
Comparing the range of differences between retrievals to the RSD values will allow us
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Figure 8.6: Relative difference between background and retrieved profiles from observa-
tion at (-33.16N,-32.70E) for 16th June 2016 0000Z for (a) temperature (b) ln(specific
humidity). Differences are shown for Ediag (blue dot-dashed line), Eest (red dotted line),
E67 (cyan solid line) and Einfl (black dashed line).

to determine whether the difference made when changing the OEC matrix, R, is of a
similar order to expected variation, or much larger (and hence results in significant
differences). We will also compare RSD and differences against BSD values as shown
in Figure 8.1.

Figure 8.6 shows the relative difference between background profiles and retrieved
profiles for temperature and humidity for observations at the location
(-33.16N,-32.70E). Retrievals are shown at pressure levels in the atmosphere. These
model levels are determined by the 43 evenly distributed pressure levels in the
radiative transfer retrieval algorithm. Specific humidity is only calculated for the
lowest 26 model levels. We note that this is the configuration that was used at the
time of the experiments (July 2016). Relative differences from the background are
much larger for specific humidity profiles than for temperature. However qualitative
behaviour is similar for both variables. In both cases Ediag is the most different from
the background, implying that the use of correlated observation errors increases the
weighted importance of the background. Increasing the amount of reconditioning used
decreases the norm of the difference between the retrieved profile and the background
for all correlated OEC matrices. Hence, applying a larger amount of reconditioning
results in a retrieved profile that is closer to the background. Finally, the retrieval
corresponding to Einfl is closest to the background for both variables. For this case,
standard deviations have been inflated, meaning that we expect the retrieved profile
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Figure 8.7: Differences in retrievals between Ediag and E67 for trial on 16th June 0000Z
for (a) temperature and (b) ln(specific humidity) for 97330 observations. Dashed lines
and solid lines give the mean RSD values for Ediag and E67 respectively. Dashed lines
with dots denote the median and solid lines with dots denote the mean for each pressure
level. The solid box contains the middle 50% of the data, and the whiskers (dashed
horizontal lines) extend to the quartiles plus/minus 1.5 times the interquartile range
(IQR) - the difference between the third and first quartiles. Outliers, which lie outside
the range of the whiskers, are not shown.

to fit closer to the background. This is particularly evident for specific humidity
where there is a large relative difference between background and retrieved values for
model level 7 for Ediag, Eest and E67. This occurs due to large differences between
background and retrieved brightness temperature for channels 128-137, which have
water vapour mixing ratio Jacobians that peak at pressure level 7 [Stewart, 2010]. We
recall that these channels are sensitive to water vapour, and have the strongest
positive correlations in Rest. This explains why specific humidity is particularly
affected by changes to the OEC matrix for this model level, although we note that
noticeable changes also occur for temperature for this model level.

We now consider the differences between retrieved values for Ediag and E67 for all
97330 observations that were accepted by the 1D-Var routine for all choices of OEC
matrix. Figures 8.7a and b are box plots showing the distribution of these differences
across each model level for temperature and ln(specific humidity profiles) respectively.
The qualitative behaviour for other experiments was very similar and is not shown
here. Figures 8.7a shows that for most model levels the whiskers are contained within
the average RSD values, and for model levels 1− 41 the central 50% of differences lie
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within the averaged RSD. This indicates that changing from an uncorrelated to
correlated choice of OEC matrix has a generally small impact on temperatures for the
majority of model levels compared to RSD.

Mean RSD values for E67 and Ediag are also very similar, with larger mean RSD
values for E67 than Ediag for all model levels. This is observed for all correlated
choices of OEC matrix; the mean RSD is increased for all model levels compared to
Ediag. This suggests that using a correlated choice of OEC matrix increases the mean
RSD for temperature i.e. by introducing correlations we have less confidence in the
retrieved values, or 1D-Var analysis. This increase to standard deviations is expected
from theoretical and idealised studies [Stewart et al., 2008b, Rainwater et al., 2015,
Fowler et al., 2018]. We also note that by including correlations we put less weight on
the individual channels but allow more freedom to fit multivariate information arising
from the combination of channels. Comparing the RSD values to the BSD values
given by Figure 8.1 we find that across all three choices of B, the standard deviation
values are similar to RSD values for most model levels. For model levels where the
BSDs are smaller than both Ediag and experimental RSD, differences are small in
comparison to all standard deviation values.

Figure 8.7b shows the differences between retrieved values of specific humidity for
Ediag and E67 for 23 model levels. As was the case for temperature, the mean RSD
values for all other choices of experiment are larger than those for Ediag. We note that
differences for model levels 1 and 18− 23 are very small compared to RSD. However,
for model levels 5− 12, the whiskers lie outside the values for mean RSD. This means
there is a large proportion of model levels where changing the OEC matrix has a
larger impact on retrieved specific humidity values than we would expect due to
instrument noise and other quantified types of uncertainty. We also note that for
these model levels we have non-zero and non-equal means and medians. This suggests
that the distribution of differences is not symmetric. Again, BSD values are larger
than RSD values for the majority of model levels for specific humidity. However,
whiskers still extend past the BSD values for levels 5 - 10 for all choices of B.

The effect of changing the OEC matrix, R, seems to affect a larger proportion of the
retrieved specific humidity values than temperature values. This coincides with the
findings of Bormann et al. [2016], Weston et al. [2014]. They found large changes to
humidity fields with the introduction of correlated OEC matrices in 4D-Var
assimilation procedures, which resulted in improved NWP skill scores.
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8.6 Impact on variables that influence 4D-Var
routine

In Section 8.5 we showed that the choice of OEC matrix, R, does make a difference to
the 1D-Var routine in terms of convergence, and the individual retrieval values. We
now consider variables that directly impact the main 4D-Var procedure that is used to
initialise forecasts. Changes to the OEC matrix in the 1D-Var routine affect 4D-Var
in two main ways: firstly by altering the observations that are accepted by the quality
control procedure, and secondly via retrieved values of variables that are not analysed
in the 4D-Var state vector. We will consider these two aspects in turn.

8.6.1 Changes to the quality control procedure

In Section 8.5.1 we showed that increasing λmin(R) increases the speed of convergence
of the 1D-Var routine. We now investigate whether changing the OEC matrix, R,
alters the number of observations that pass the quality control step that was
described in Section 8.4.1. We also consider how the number of observations accepted
by experiment (respectively Ediag) and rejected by Ediag (respectively experiment)
changes for different choices of OEC matrix. This information is presented in Table
8.4.

We begin by considering in more detail why changing the OEC matrix would result in
changes to the number of observations that pass quality control. Observations are
rejected if the minimisation of the 1D-Var procedure requires more than 10 iterations
to converge. In Section 8.5.1 we found that introducing correlated observation error
reduces the number of iterations required for convergence, and that decreasing the
target condition number increases convergence speed further. This suggests that
introducing correlated OEC matrices and using reconditioning will result in a larger
number of observations that converge fast enough to pass this aspect of quality
control. We therefore expect the use of reconditioning methods to result in a larger
number of accepted observations.

The first row of Table 8.4 shows that the number of accepted observations increases as
λmin(R) (see Table 8.2) increases and the largest number of accepted observations
occurs for experiment Einfl. This coincides with what we would expect due to
alterations in the quality control procedure. However, we note that the number of
accepted observations is slightly larger for Ediag than Eest even though convergence for
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Eexp
Experiment Eest E1500 E1000 E500 E67 Einfl
No. of accepted obs (T) 100655 100795 101002 101341 102333 102859
Accepted by Ediag and Eexp 99039 99175 99352 99656 100382 100679
Accepted by Eexp, rej. by Ediag 1616 1620 1650 1685 1951 2180
Accepted by Ediag, rej. by Eexp 1647 1511 1334 1030 304 7

Table 8.4: Number of observations accepted by the 1D-Var quality control for each ex-
periment (Eexp) compared to Ediag. For Ediag the total number of accepted observations
is 100686. Here T refers to the total number of distinct observations (defined in Section
8.4.1) accepted by Eexp for each experiment. The number of observations accepted by
all experiments is 97330.

Eest was faster than for Ediag across the set of common observations. The second row
of Table 8.4 shows that most observations are accepted by both Eexp and Ediag. We
see that the number of accepted observations increases with λmin(R) for correlated
choices of R. The largest number of observations is accepted by Einfl. The third and
fourth rows of Table 8.4 shows the number of observations that are accepted by Eexp
(respectively Ediag) and rejected by Ediag (respectively Eexp). However, this number is
smaller than 2.2% of the total number of observations all choices of Eexp. For what
follows we shall consider the large majority of observations that are accepted by both
Ediag and Eexp. Although observations that are accepted by only one of Ediag and Eexp
are of interest, the fact that there are very few observations in either of these sets
makes it hard to study their properties statistically.

8.6.2 Changes to retrieved values for variables that are not
included in the 4D-Var control vector

In this Section we consider how altering the OEC matrix used in the 1D-Var routine
alters the retrieved values of variables that are not included in the 4D-Var control
vector. For all three variables, Figure 8.8 shows that the majority of retrievals are
changed by a small amount for each choice of experiment. The largest differences
occur between Ediag and Eexp for ST, CF and CTP, where the IQR and whiskers are
much larger than for any correlated choice of OEC matrix. For correlated OEC
matrices, we see a reduction in IQR and whisker length as λmin(R) increases. This
indicates that as we increase the amount of reconditioning that is applied, the
differences between Ediag and Eexp reduce. However, there are some differences
between the variables.

173



Section 8.6 Page 174

−2 −1 0 1 2
STdiag− STexp (K) 

 (a)

est

1500

1000

500

67

infl
Ex
pe
rim

en
t

2 1 0 1 2
RSD (K)

−0.15 −0.10 −0.05 0.00 0.05 0.10 0.15
CFdiag−CFexp 

 (b)

est

1500

1000

500

67

infl

0.1 0.05 0 0.05 0.1
RSD

−100 −50 0 50 100
CTPdiag−CTPexp (hPa) 

 (c)

Ra 

1500

1000

500

67

Old

75 50 25 0 25 50 75
RSD (hPa)

Figure 8.8: Box plot showing differences between retrieved variables for Ediag−Eexp for
(a) ST (skin temperature) (b) CF (cloud fraction) and (c) CTP (cloud top pressure).
The circle shows the median, the triangle depicts the mean, the solid box contains the
central 50% of data (the interquartile range), and the dashed horizontal lines show
the whiskers which extend to the quartile ±1.5 × IQR. Vertical dashed lines show
the mean retrieved standard deviation (RSD) values for the experiment, and the solid
vertical lines shows the mean RSD values for Ediag. Outliers (not shown) lie in the
range (a) ±33.52K, (b) ±1 and (c) ±913.25hPa. The number of outliers and extreme
outliers for these experiments is presented in Tables 8.5 and 8.6.

Firstly, for ST all choices of OEC matrix yield whiskers that are equal to or exceed
the RSD values corresponding to Ediag (solid line), and all except E67 exceed the RSD
values for the corresponding experiment (dashed line). In contrast, the whiskers for
correlated choices of OEC matrix are well within both RSD values for CF and CTP,
as well as the BSD values given in Table 8.1. This shows that compared to expected
observation variability, differences between CF and CTP retrievals are small for
correlated choices of OEC matrix. However, we recall that BSD values for cloud
variables were artificially inflated [Pavelin et al., 2008].

For ST and CTP the values of the mean and median are close for all correlated
choices of Eexp, and the box and whiskers are fairly symmetric about 0. In contrast,
for CF, differences between the mean and median occur, and the box extends further
into the positive axis. Cloud errors are expected to vary greatly with the cloud state,
meaning that it is difficult to interpret gross statistics [Eyre, 1989]. We include them
here for completeness.

For all variables, the majority of retrievals change by a small amount, relative to RSD,
when comparing the experiment to Ediag. However, Table 8.5 shows that over 15% of
observations are classed as outliers for all three variables. These outliers are defined as
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Eest E1500 E1000 E500 E67 Einfl
% outliers (ST) 15.1 15.3 15.6 16.3 17.6 15.9
% of outliers (CF) 23.9 24.02 24.2 24.6 25.3 21.4
% outliers (CTP) 22.8 22.8 23.0 22.9 21.4 18.8
Maximum difference (ST (K)) 21.67 21.12 21.14 22.38 21.03 26.83
Minimum difference (ST (K)) -33.52 -33.01 -32.14 -29.76 -23.82 -20.88

Table 8.5: Percentage of outliers for cloud fraction, cloud top pressure and skin tem-
perature. Outliers are differences which fall outside the whiskers shown in Figure 8.8.
Maximum and minimum differences are shown for skin temperature only; maximum dif-
ferences for cloud fraction and cloud top pressure are ±1 and ±913.25hPa respectively,
for all choices of R.

Eest E1500 E1000 E500 E67 Einfl
% large outliers (|ST | > 5K) 1.6 1.5 1.5 1.4 1.4 3.6
% large outliers (|CF | > 0.25) 4.9 4.7 4.4 3.9 3.2 7.5
% large outliers (|CTP | > 225hPa) 3.3 3.3 3.3 3.3 2.7 4.4

Table 8.6: Number of large outliers for cloud fraction, cloud top pressure and skin tem-
perature for each experiment. Large outliers are defined as observations with absolute
differences greater than 0.25 for CF, 225hPa for CTP and 5K for ST. This corresponds
to absolute differences greater than approximately 25% of the maximum differences
presented in Table 8.5.

observations with retrieval differences that are not between Q1 − 1.5IQR and
Q3 + 1.5IQR, where Q1 and Q3 denote the first and third quartiles of the data
respectively, and are not shown in Figure 8.8. Not all of these outliers represent large
differences between retrieved values. Instead we consider ‘large’ outliers, which we
define in this setting as differences larger than 25% of the maximum differences for
each variable. For cloud variables the maximum difference is defined by the possible
range of values: ±1 and ±913.25hPa for CF and CTP respectively. For ST we use the
maximum difference between retrievals from the data set. These values are given in
Table 8.5.

Table 8.6 shows the percentage of large outliers for each variable, which is much
smaller than the total number of outliers for all variables and experiments. For all
variables, the number of large outliers decreases with λmin(R) for correlated
experiments. The experiment Einfl has a much greater number of large outliers than
any experiment with a correlated choice of OEC matrix, agreeing with earlier findings
that the qualitative and quantitative differences between Einfl and Ediag are much
larger than for any other experiment.
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As background information has almost no weight for cloud variables, due to inflated
BSD values, changing the OEC matrix could result in much larger differences between
retrieved values for CF and CTP than for other variables. However, this is not the
case for ST, where the maximum differences given in Table 8.5 are extremely large
compared to RSD and BSD values. The number of observations with extremely large
retrievals is small: for correlated experiments fewer than 10 observations yield
absolute differences larger than 20K. These observations can be considered as failures
of the 1D-Var algorithm and should be removed by the quality control procedure.
This emphasises that when altering the OEC matrix, the quality control procedure
needs to be altered as well.

Previous studies by Stewart et al. [2014], Weston et al. [2014], Bormann et al. [2016],
Campbell et al. [2017] have shown that the largest impacts of applying the DBCP
diagnostic to IASI occur for humidity sounding channels, which will affect clouds and
retrieved values associated with clouds. Skin temperature is also sensitive to cloud;
although in partly overcast conditions it is possible to retrieve estimates of skin
temperature, errors in the modelling of cloud effects are likely to dominate the surface
signal [Stewart et al., 2014, Pavelin and Candy, 2014]. In terms of impact, under
cloudy conditions the 4D-Var assimilation procedure is less sensitive to skin
temperature [Pavelin and Candy, 2014], so it is possible that these large changes to
retrievals will not result in large impacts when passed to 4D-Var. However, further
work is needed to understand the origin and consequences of these extreme differences
fully.

8.7 Conclusions

It is widely known that many observing systems in numerical weather prediction
(NWP) have errors that are correlated [Janjić et al., 2018] for reasons including scale
mismatch between observation and model resolution, approximations in the
observation operator or correlations introduced by preprocessing. However, diagnosed
error covariance matrices have been found to be extremely ill-conditioned, and cause
convergence problems when used in existing NWP computer systems [Campbell et al.,
2017, Weston et al., 2014]. Tabeart et al. [2018] established that increasing the
minimum eigenvalue of the OEC matrix improves bounds on the conditioning of the
associated linear variational data assimilation problem. This provided insights into
possible reconditioning methods which could permit the inclusion of correlation
information while ensuring computational efficiency [Tabeart et al., 2019a].
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In this chapter we have investigated the impact of changing the OEC matrix for the
IASI instrument in the Met Office 1D-Var system, an operational non-linear
assimilation system. In particular we have considered how reconditioning methods
could permit the implementation of correlated observation error matrices. The
1D-Var system is used for quality control purposes and to retrieve values of variables
that are not included in the 4D-Var state vector. As each observation is assimilated
individually, it is more straightforward to understand and isolate the effects of using
different choices of OEC matrix on retrieved variables and convergence compared to
the more complicated 4D-Var procedure.

We found that:

• The current operational choice of observation error covariance (OEC) matrix for
IASI results in the slowest convergence of the 1D-Var routine of all OEC
matrices considered. Increasing the amount of reconditioning applied to
correlated OEC matrices improves convergence of the 1D-Var routine, in
accordance with the qualitative theoretical conclusions of Tabeart et al. [2018,
2019a].

• Most experimental choices of correlated OEC matrix resulted in a larger number
of IASI observations that were accepted by the 1D-Var routine than the current
diagonal operational choice. Increasing the amount of reconditioning applied to
correlated OEC matrices increases the number of IASI observations that
converge in fewer than 10 iterations, and hence pass the quality control
component of 1D-Var.

• Retrieval differences for skin temperature, cloud fraction and cloud top pressure
are smaller than retrieved standard deviation values for over 75% of IASI
observations for all choices of correlated OEC matrix. Up to 5% of retrievals
have large differences relative to the retrieved standard deviation.

• As the minimum eigenvalue of the OEC matrix is increased, the difference
between Ediag (using the current operational diagonal OEC matrix) and
experimental retrieved values reduces.

We also find that for most variables studied RSD values are of a similar size to BSD
values. We note that the BSD values for cloud variables are artificially inflated, and
are hence an order of magnitude larger than the corresponding RSD values. This
indicates that observation information has as large or a larger weight in the 1D-Var
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objective function than background profiles.

The qualitative conclusions from this work agree with the theoretical results of
Tabeart et al. [2018], which prove that for a linear observation operator, increasing
the minimum eigenvalue of the OEC matrix is important in terms of convergence of a
variational data assimilation routine.

We emphasise that the specific choice of correlated observation error covariance
matrices studied in this work are not necessarily more optimal than the current choice
of uncorrelated observation error covariance. Although we have studied the effect of
changing the OEC matrices within the 1D-Var routine, we have not assessed whether
these changes lead to improvement or degradation of either the 1D-Var assimilation
system, or the 4D-Var assimilation system and subsequent forecasts. However, our
results clearly show that the analysis and speed of convergence of the 1D-Var
assimilation problem are sensitive to the choice of observation error covariance matrix,
and the use of reconditioning methods.

In particular these convergence results contradict the common assumption that the
use of correlated OEC matrices in a variational data assimilation scheme will cause
convergence problems. In fact, one key benefit of using correlated OEC matrices in a
1D-Var framework is the increase in convergence speed, particularly when combined
with reconditioning methods. At the Met Office the 1D-Var routine is run every 6
hours for the global model so reducing the cost of the routine would save significant
computational effort. Additionally, the faster convergence that is achieved by
correlated choices of OEC could permit stricter convergence criteria, e.g. reducing the
maximum number of iterations from 10 to 8, which would also result in computational
savings. However, care needs to be taken to consider how this will interact with other
aspects of the quality control procedure and ensure that ‘good’ observations are not
rejected.

Changes to OEC matrices also alter the quality control aspect of the 1D-Var
procedure, so care needs to be taken to ensure that these changes to the system are
well understood. In particular, reducing the number of iterations required for
convergence of the 1D-Var routine means that a larger number of observations were
accepted by our tests and passed to the 4D-Var routine. For observations that were
accepted by all experiments, we considered changes to retrieved estimates for skin
temperature, cloud top pressure and cloud fraction. Although changes to the retrieved
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values with different OEC matrices were small for the majority of observations, for a
small percentage of observations, the differences between retrieved values were very
large. As ST, CTP and CF are not estimated as part of the 4D-Var procedure, such
large changes may have significant effects on the analysis for 4D-Var. The most
extreme of these differences (particularly for ST) are unrealistic and can be viewed as
1D-Var failures. This highlights that changes to the 1D-Var system, such as with the
introduction of correlated OEC matrices, must be made in conjunction with tuning of
the quality control procedures. In general, improvements to convergence need to be be
balanced with impacts on other aspects of the assimilation system, such as changes to
quality control, analysis fit and forecast skill.
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8.8 Summary

In this chapter we presented the first detailed case study of the effects of using
correlated observation error and the ridge regression method of reconditioning in a
1D-Var data assimilation framework. This method of reconditioning was studied
theoretically in Chapter 7. We find that using correlated observation error covariance
matrices results in faster convergence than the operational diagonal covariance
matrix. This agrees with the qualitative conclusions of Chapter 5, that increasing
small eigenvalues of the observation error covariance matrix will improve the
conditioning of the unpreconditioned data assimilation problem. Changes to retrieved
variables are mostly small, although a very small number of observations resulted in
extremely large changes to retrieved variables. Changes to the quality control
procedure need to be taken into account when introducing a new observation error
covariance matrix. Using more reconditioning via a smaller target condition number
results in further improvements to convergence, and smaller differences for retrieved
variables. In the next chapter we summarise the conclusions of this thesis, and
suggest ideas for future work.
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Conclusions

The use of correlated observation error covariance (OEC) matrices in data
assimilation algorithms for numerical weather prediction (NWP) is of increasing
importance [Stewart et al., 2008b, Stewart, 2010] with a growing quantity of satellite
data, and the move towards higher resolution forecasts [Rainwater et al., 2015].
However, case studies have found that using correlated OEC matrices degrades the
convergence of operational NWP data assimilation schemes (e.g. Weston [2011],
Weston et al. [2014], Campbell et al. [2017], Bormann et al. [2015]). Much of the prior
work on this topic has been empirical, but small eigenvalues of estimated OEC
matrices were thought to be a primary cause of these convergence issues [Weston,
2011, Weston et al., 2014]. ‘Reconditioning’ techniques have been popular ad hoc
methods to mitigate the problems caused by ill-conditioning of estimated OEC
matrices [Bormann et al., 2015, Campbell et al., 2017, Weston et al., 2014]. However,
it was not well understood how the use of these methods altered the properties of the
covariance matrices themselves, or what impact the use of reconditioning techniques
had on the overall data assimilation problem. Previous work by Haben et al. [2011a,b]
and Haben [2011] used the conditioning of the variational data assimilation problem
as a proxy for convergence of conjugate gradient methods and studied the case of
uncorrelated observation errors in detail for the unpreconditioned and preconditioned
3D-Var and 4D-Var problems. In this thesis we have developed a theory of
conditioning of the Hessian of both the unpreconditioned and preconditioned data
assimilation problems for the case of correlated OEC matrices. We have designed a
numerical framework that allows us to study interactions between terms of the
Hessian. We developed theory for two methods of reconditioning that are used at
NWP centres. A case study implementing one of these methods of reconditioning in
the Met Office 1D-Var system shows how qualitative conclusions from a more
restrictive theory can be applied in practice to realistic applications. Improved
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understanding of the contribution of correlated OEC matrices to the convergence of
data assimilation problems permits the design of computationally efficient methods
which allow the inclusion of correlated observation error information. We now provide
an overview of the key results of this thesis, and answer the research questions that
were proposed in the first chapter. We then discuss ideas for further work.

9.1 Key questions and conclusions

In Chapter 1 we presented the key research questions that we would study in the
thesis.

RQ 1: How does introducing correlated observation error affect the
conditioning of the Hessian of the variational data assimilation
problem?
How are these bounds affected by changes to the observation error covariance
matrix? How tight are these bounds for an idealised numerical framework? How
well does the behaviour of the condition number of the Hessian represent
convergence of the conjugate gradient method?

RQ 2: What is the difference between the preconditioned and
unpreconditioned case?
How does the importance of background and observation terms differ from the
unpreconditioned case? Does the behaviour of the condition number of the
Hessian represent convergence of the conjugate gradient method well for
numerical experiments?

RQ 3: How do reconditioning methods modify covariance matrices?
How do reconditioning methods modify correlations and standard deviations
associated with the covariance matrix? How is the variational objective function
modified by the use of reconditioning methods? How do two commonly-used
reconditioning methods compare to multiplicative variance inflation?

RQ 4: What is the impact of using the ridge regression method of
reconditioning on an operational data assimilation problem?
How do the qualitative theoretical conclusions from the linear case apply in a
nonlinear, realistic setting using the Met Office 1D-Var system? How are the
quality control process and retrieved values affected by the introduction of
correlated observation error and the use of reconditioning methods?
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We now discuss the main conclusions of this thesis, and explicitly consider how the
key research questions have been addressed.

In the initial chapters we provided background material for this thesis. In Chapter 2
we defined the variational data assimilation problem. We discussed different sources
of observation error, and introduced the diagnostic of Desroziers et al. [2005].
Numerical linear algebra results were presented in Chapter 3. In particular, the
condition number was formally defined, and its relationship to the convergence of the
conjugate gradient method was established. In Chapter 4 we motivated the use of
conditioning as a proxy for convergence of a conjugate gradient method, and
highlighted some of the numerical issues associated with the introduction of correlated
OEC matrices at NWP centres.

RQ 1: In Chapter 5 we developed general bounds on the condition number of the
Hessian of the unpreconditioned variational data assimilation problem. We
found that:

• The minimum eigenvalue of the OEC matrix appeared in the denominator
of both bounds, meaning that small eigenvalues are likely to yield
ill-conditioned Hessians.

• We found experimental cases where both upper and lower bounds are tight.

• Numerical experiments revealed that for different experimental cases,
conditioning of the Hessian is dominated by either the background or
observation error covariance matrix. The choice of observation network
determined the smoothness of the transition between these two regimes.

• In our numerical framework, the conditioning of the Hessian represented
the convergence of a conjugate gradient method well in many examples.
For instances where the behaviour was different, repeated eigenvalues of
the Hessian led to rapid convergence of the conjugate gradient method.
This is a well-known case where the condition number provides a very
pessimistic upper bound on convergence.

RQ 2: In Chapter 6 we developed bounds on the Hessian of the preconditioned data
assimilation problem. We found that:

• The minimum eigenvalue of the OEC matrix appears in both upper and
lower bounds, meaning that small eigenvalues of the OEC matrix are likely
to lead to ill-conditioned Hessians.
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• Numerical experiments revealed that, unlike in the unpreconditioned case,
reducing the condition number of the background or observation error
covariance matrix did not always decrease the condition number of the
Hessian. This behaviour was not well-represented by our bounds, which
separate the contribution of each term.

• For many cases, the condition number gives a good indication of how
changes to the data assimilation problem are likely to affect convergence of
a conjugate gradient method. However, there were also cases where
clustered eigenvalues of the preconditioned Hessian led to much faster
convergence that would be expected by simply considering its conditioning.

RQ 3: In Chapter 7 we developed theory of two methods of reconditioning, ridge
regression and the minimum eigenvalue method, and compared them against
multiplicative variance inflation. We found that:

• Both methods of reconditioning increase variances, with ridge regression
resulting in larger increases to variances for any choice of covariance
matrix. We proved that the ridge regression method strictly decreases the
absolute value of off-diagonal correlations. Numerical experiments revealed
that the minimum eigenvalue method can increase the absolute value of
correlations, but results in smaller absolute changes to correlation entries.
However, it can introduce spurious correlations at large distances.

• Both methods of reconditioning reduce the weight on small eigenvalues of
the OEC matrix, whereas multiplicative variance inflation reduces the
weight on all scales equally.

• An illustrative example showed that both methods of reconditioning are
able to make changes to the analysis of a data assimilation problem on
smaller scales, whereas multiplicative variance inflation cannot reduce
spurious sample error on smaller scales. Reconditioning methods were also
found to result in faster convergence of a conjugate gradient method than
multiplicative variance inflation.

RQ 4: In Chapter 8 we presented the first detailed case study of the effects of using
correlated observation error and the ridge regression method of reconditioning in
an operational 1D-Var data assimilation framework. We found that:

• Using correlated OEC matrices resulted in faster convergence than the
operational diagonal covariance matrix. Applying ridge regression, which
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increases the smallest eigenvalue of the OEC matrix, improves convergence
of the data assimilation algorithm further.

• Changes to retrieved variables were mostly small, although for a very small
number of observations changes to the OEC matrix resulted in extremely
large changes to retrieved variables. Using more reconditioning via a
smaller target condition number results in further improvements to
convergence, and smaller differences from the control for retrieved variables.

We now consider the practical implications for the findings of these results. Firstly,
the theoretical importance of the minimum eigenvalue of the OEC matrix coincides
with empirical results from operational experiments [Weston, 2011]. As reconditioning
techniques were designed to mitigate for small eigenvalues, users can have more
confidence that increasing small eigenvalues of the OEC matrix will improve
convergence for their system. Additionally, theoretical study of the impact of
reconditioning methods on correlations and standard deviations will help users pick
most appropriate method for their application, and have a better understanding of
how these techniques are likely to change their analysis. Comparison of the two
methods of reconditioning with multiplicative variance inflation emphasises the
difference between these two methods, in particular regarding their effect on the
solution of the variational objective function.

The bounds for both the unpreconditioned and preconditioned case also provide
further insight into the interactions between terms. For example, in the
unpreconditioned setting, examples were found where the observation operator
determined whether the background or observation error covariance matrix dominated
the conditioning of the Hessian. In the preconditioned problem it was harder to
separate the effect of changing one error covariance matrix on the conditioning of the
Hessian. For both formulations the choice of observation network, particularly
whether observations were regularly distributed, had a large effect on conditioning
and convergence of a conjugate gradient method. In Chapter 8 the ratio between
background and observation error variance that occurs in the bounds on the condition
number in Chapter 5 was used to understand differences between experiments in an
operational system. This shows how the bounds in this thesis can be informative from
a qualitative perspective as well as quantitatively for idealised experiments.
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9.2 Future work

We begin by considering some major questions of interest to the data assimilation
community.

• Is the Control Variable Transform the optimal choice of preconditioning in the
presence of correlated OEC matrices? An improved preconditioner may depend
on the structure of both the observation and background error covariance
matrices; in the numerical experiments presented in this thesis, preconditioning
with the background error covariance matrix acted as a good preconditioner due
to the circulant structures of both error covariance matrices. However, in the
case when the background and observation error covariance matrices have very
different correlation structures, an additional or improved preconditioner based
on the OEC matrix could be beneficial.

• The theoretical and numerical examples in this thesis have considered linear
observation operators. However, for many observation types, such as satellite
observations, the observation operator is highly nonlinear [Eyre, 1989]. In
Chapter 8 we showed that the qualitative conclusions from the linear setting
hold for experiments using a nonlinear observation operator. Many theoretical
studies use idealised observation operators (e.g. all state variables observed
[Fowler et al., 2018], regularly-spaced observations [Haben et al., 2011a, Waller
et al., 2016b]). A more thorough examination of how more realistic choices of
observation operator modify the properties of the data assimilation problem
could assess the extent to which the conclusions from the linear setting hold for
nonlinear choices of observation operator.

We now consider some more specific research questions that arise directly from the
work presented in this thesis.

• The conditioning analysis in Chapters 5 and 6 could be extended in a number of
ways:

– For specific problems of interest, exploiting the relevant structure of the
data assimilation framework is likely to lead to improved, tighter bounds.
This could include: making use of different norms, and taking advantage of
circulant error covariance matrices and direct observations to simplify the
bounds in this thesis.

– Further experiments using non-homogeneous or non-spatial correlations
would be particularly useful for the preconditioned setting, to assess
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whether the conclusions of Chapter 6 hold for the case that the eigenvectors
of the background and observation error covariances are unrelated.

• In Chapter 7 we compared two methods of reconditioning. Future lines of
research could include

– Designing new methods of reconditioning, by making use of different
norms, or combining aspects of both existing methods. Alternative metrics
include finding the nearest correlation matrix using a modified Cholesky
factorisation [Higham and Strabić, 2016] or using the entropy loss function
[Lin et al., 2014].

– Developing more rigorous and specific methods to select a value of κmax.

• The case study using the Met Office 1D-Var system in Chapter 8 could be
extended to assess the impact of changing the OEC matrix used in the 1D-Var
routine on forecast performance. Preliminary tests (not presented in this thesis)
showed that passing the results of the 1D-Var assimilation to the operational
4D-Var routine degrades forecast performance, even though most differences
between the control and experimental 1D-Var outputs were small. However,
changes to the quality control procedure in the 1D-Var routine meant that a
small number of observations with gross errors were passed to the 4D-Var
routine. Changes to the quality control procedure would be necessary in order
to perform a true comparison.

Finally, the theory of conditioning developed in this thesis could be extended to
consider a broader class of problems. One such problem of interest is comparing
different optimisation techniques for data assimilation problems. The inner loop of the
variational data assimilation problem is often solved on a lower-dimension subspace in
order to reduce the cost of each iteration. A natural approach is to solve the inner
loop on a lower-resolution grid. However, it has been shown that more accurate low
order approximations to the linearised objective function can be obtained using model
reduction methods [Lawless et al., 2008]. A theoretical comparison of model reduction
methods (for example the use of ensembles, or projections of the existing problem into
a lower dimensional space) on conditioning and convergence could provide insight into
their relative computational efficiency and accuracy.
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