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 23 

Abstract 24 

This study reconstructs the regional vegetation and climate dynamics between the upper Late 25 

Pleistocene and Holocene around Pian del Lago, a coastal mountain marshland located at 831 m asl 26 

in western Liguria (NW-Italy), based on the pollen analysis of a 13 m-long sediment core. The 27 

record provided a unique opportunity to study a poorly documented period in northern Italy and 28 

across many parts of southwestern Europe. We propose an event stratigraphy based upon the 29 

identification of seven interstadials (NAI-7 to NAI-1) spanning the upper Late Pleistocene. The 30 

correlation with other terrestrial records in Italy, and with Mediterranean marine sequences and the 31 
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Greenland ice cores, permitted a coherent reconstruction of main environmental changes from 32 

>~43,000 cal. BP. Significantly, the pollen record indicates the persistence of a mesophilous 33 

mountain vegetation cover, mainly composed of Quercus (deciduous and evergreen), Abies, Fagus 34 

and Alnus over the whole time period recorded. At the Last Glacial Maximum (LGM) and during 35 

the Late Würm Lateglacial, despite the presence of steppic vegetation composed of Artemisia, 36 

woodlands dominated by Pinus, with Abies, Picea, Fagus, Alnus and Betula are present. This forest 37 

composition provides an important insight into the history of Picea in southern Europe and Late 38 

Pleistocene refugia for mesophilous species. During the Early Holocene, Pinus is first replaced by 39 

Abies and then by deciduous Quercus and mixed temperate species as the dominant forest 40 

component. Both arboreal and herbaceous anthropogenic pollen indicators only make their 41 

appearance during the Late Holocene, attesting to the increasing importance of human activities . 42 

 43 

Keywords 44 

North-western Italy, Late Pleistocene, Holocene, Pollen Analysis, Micro-charcoal Analysis 45 

 46 

1. Introduction 47 

During the last few decades, several palynological studies have documented the Holocene 48 

environmental dynamics of the northern Apennines, NW Italy (e.g. Bellini et al., 2009a; Bertoldi et 49 

al., 2007; Branch, 2004, 2013; Branch and Marini, 2013; Branch and Morandi, 2015; Branch et al., 50 

2014; Cruise, 1990a, 1990b; Cruise and Maggi, 2000; Cruise et al., 2009; Guido et al., 2003, 2004a, 51 

2009, 2013; Lowe, 1992; Maggi, 2000; Morandi and Branch, 2018; Watson, 1996), including 52 

coastal areas (Arobba et al., 2018; Bellini et al., 2009b; Guido et al., 2004b, 2004c; Mariotti Lippi et 53 

al., 2004; 2007; Montanari et al., 1998; Montanari et al., 2014; Piccazzo et al., 1994). Very little is 54 

known about the upper Late Pleistocene (~50,000-11,700 cal. BP), however, with the majority of 55 

records only covering the Late Würm Lateglacial (~14,800-11,700 cal. BP), (e.g. Branch 2004; 56 

Branch and Morandi, 2015; Lowe, 1992; Lowe and Watson, 1993; Vescovi et al., 2010a, 2010b; 57 
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Watson, 1996). The only sites with a chronology covering the whole period in NW Italy are Lago di 58 

Massaciuccoli (Menozzi et al., 2002), Berceto (Bertoldi et al., 2007) and Ivrea (Arobba et al., 1997; 59 

Gianotti et al., 2008; 2015). Additional information for this time frame has been obtained from 60 

archaeological studies (mainly coastal caves), but these sedimentary archives are generally 61 

unsuitable for regional palaeoenvironmental reconstructions (see Kaniewski et al., 2005) (Fig. 1). 62 

 63 

 64 

 65 

 66 

 67 

 68 

 69 

 70 

 71 

 72 

 73 

                Fig. 1: Location of Pian del Lago and key Late Pleistocene and Holocene palaeoenvironmental  74 
                                records from the northern Apennines mentioned in the text 75 
 76 

This new study from Pian del Lago provided a unique opportunity to fill this chrono-stratigraphic 77 

gap for NW Italy (cf. Magri, 2010; Magri et al., 2015) enabling: (1) reconstruction of the main 78 

vegetation dynamics of the area during the upper Late Pleistocene and the Holocene (~43,000-8000 79 

cal. BP); (2) significantly improved understanding of the response of the northern Apennines to 80 

known periods of abrupt climate change towards the end of the last glaciation; (3) greater 81 

appreciation of the environmental and climatic setting for major developments in the human history 82 

of southwestern Europe and the Mediterranean. 83 

 84 
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2. Geographical and environmental setting 85 

Pian del Lago is located near the village of Bargone, Casarza Ligure (Genova), Western Liguria, 86 

north-western Italy, at around 830 m a.s.l. and less than 3 km away from the coast (Fig.1 and Fig.2). 87 

The watershed ridge, marking the boundary of the catchment, reaches fairly high altitudes, 88 

considering the proximity of the sea: M. Roccagrande (971 m) and M. Tregin (870 m) on the 89 

western side, M. Alpe (1093 m), M. Zenone (1055 m) and M. Pu (1001 m) on the eastern side. 90 

These mountains are mainly of ophiolitic nature, but there are also sediments (e.g. jasper with 91 

manganese) that covered the submarine effusions. This explains the presence, since prehistoric 92 

times, of copper, iron and manganese mines in the surrounding area. 93 

 94 

The climate of the area is sub-Mediterranean. Data from Castiglione Chiavarese weather station 95 

(300 m a.s.l.) indicate a mean annual temperature of 13°-14°C, with a maximum in summer (mean 96 

above 22°C) and a minimum in winter (6-8 °C). The mean annual precipitation is 1300 mm, while 97 

the average monthly rainfall distribution shows a maximum in November (160 mm) and a 98 

minimum in July (less than 50 mm). Before specific palaeoenvironmental studies were made, the 99 

origin of the swamp was attributed to periglacial phenomena, which would be consistent with other 100 

northern Apennines wetlands (cf. Cruise, 1990a). Faccini et al. (2009) have instead recognized 101 

deep-seated gravitational slope deformations (DSGSD), which is a geomorphological feature 102 

characterising other Ligurian landscapes. The palaeoenvironmental research presented here 103 

confirms that this phenomenon is older than ~43,000 years. 104 

 105 

The wetland contains lacustrine sediments, with thickness varying from a few metres to about 13.30 106 

m. Despite to the altitude and proximity to the coast that cause a relatively mild humid climate, this 107 

is a mountain site comparable to other upland wetlands studied by pollen analysis in the massif of 108 

M. Beigua, western Ligurian coast (Guido et al., 2004a). The area surrounding the plateau is mainly 109 

treeless, except for the local reforestation with Pinus nigra. At slightly lower elevations meso-110 
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thermophilic deciduous forests of Quercus cerris L. (Turkey-oak), Q. pubescens Willd. (white oak), 111 

Q. ilex L. (holm oak), Ostrya carpinifolia Scop. (hop-hornbeam) and abandoned orchards of 112 

Castanea sativa Miller (sweet chestnut) are widespread. Presently, the area is included in the 113 

European ecological network Natura 2000, designed to protect the most endangered habitats and 114 

species, and it belongs to the Site of Community Interest (SIC IT1342806 M. Verruga - M. Zenone 115 

– M. Roccagrande - M. Pu).  116 

 117 

Fig. 2: Photographs of Pian del Lago during the field investigations 118 
           (top – west facing; bottom – east facing)   (in color online) 119 
 120 

The plateau hosting the small wetland is partially occupied by grassland, formerly a pastureland, 121 

which is more and more invaded by a post-cultural scrubland dominated by Buxus sempervirens L. 122 

and heathland with Calluna vulgaris (L.) Hull, Erica carnea L., E. arborea L., Pteridium aquilinum 123 

(L.) Kuhn etc. The mire includes hygro-hydrophilous vegetation, i.e. sedges populations (Carex cfr. 124 

caespitosa L., C. distans L., C. flava L., C. pallescens L., C. panicea L., C. stellulata Good., C. 125 
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tumidicarpa Anderss.), stands of bulrushes (Juncus articulatus L., J. effusus L., J. fontanesii J. Gay, 126 

J. tenageja Ehrh.), Typha latifolia L. and Molinia caerulea (L.) Moench (Fig. 2). 127 

 128 

3. Field and laboratory methods 129 

One of the several cores sampled during the field campaign was studied for bio-stratigraphical 130 

analyses. This core (S1) is 1330 cm long and 10 cm in diameter and was recovered using a rotary 131 

drilling rig. Sub-samples for pollen and microcharcoal analysis were extracted every 5 or 10 cm, 132 

although sub-sampling was occasionally impossible due to the presence of stones or coarse 133 

sediment. In total, 100 levels have provided statistically valid pollen counts. Approximately 2 cm3 134 

of sediment were processed according to standard palynological treatments (Moore et al., 1991). 135 

With only some exceptions, a minimum of 300 pollen grains were counted (aquatic and spore taxa 136 

were excluded from the pollen sum). Pollen identification was completed to the lowest taxonomic 137 

level possible using reference materials and pollen atlases held at the University of Genoa (Punt, 138 

1976; Punt and Blackmore, 1991; Punt and Clarke, 1980, 1981, 1984; Punt et al., 1988, 1995; 139 

Reille, 1992-1998). Pollen percentages and microcharcoal influx (particles cm-2 yr-1) were 140 

calculated, and the results plotted using TILIA and TILIA.GRAPH version 2.1.1 (Grimm, 1993). 141 

Local pollen-assemblage zones (LPAZs) were identified using stratigraphically constrained cluster 142 

analysis (Grimm, 1987).  143 

 144 

Chronological control for the sequence was provided by a Bayesian age-depth model based on 10 145 

conventional AMS 14C dating (Stuiver and Polach, 1977) and on 3 Uranium series dates (Table 1). 146 

The AMS 14C samples were dated at CEDAD, University of Salento (Italy). All radiocarbon 147 

samples were prepared using standard acid-alkali-acid pre-treatment and were quoted in accordance 148 

with international standards (Stuiver and Kra, 1986). The radiocarbon ages were calibrated to the 149 

calendar timescale and a Bayesian age-depth model was generated using the R package (R Core 150 

Team, 2016) Bacon v.2.3.4 (Blaauw and Christen, 2011) and the IntCal13 radiocarbon calibration 151 
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curve (Reimer et al., 2013). The Bacon software package creates flexible age-depth models utilising 152 

an autoregressive gamma process and is typically robust to the presence of outlying dates since 153 

these are modelled using a student-t distribution with wide tails (Christen and Pérez, 2009). 95% 154 

confidence intervals and weighted mean age estimates at 1 cm intervals along the core were 155 

generated through several million Markov chain Monte Carlo iterations (Blaauw and Christen, 156 

2011). 157 

 158 

Lab code    
(dates 
marked * 
excluded 
from age 
model) 

Depth (cm) Material δ13C (‰) 14C age (BP) U/Th age 
(BP) 

Calibrated 
age range 
cal BP 
(95.4% 
confidence) 

LTL3092A 100 Clay -27.0 534 ± 45    650-500 

LTL4200A 180 Peat -27.5 3483 ± 50   3890-3630 

LTL4201A 290 Peat -25.3 8892 ± 60   10,200-9770 

LTL4202A 380 Silty clay -28.1 9625 ± 75   11,200-
10,740 

U-series1 400 Diatomite    13,840 ± 750 14,220-
13,200 

U-series2 432 Diatomite    21,260 ± 320 21,580-
20,930 

U-series3 464 Diatomite    21,550 ± 370 21,920-
21,170 

LTL12573A 471 Clay -29.0 29,917 ± 150   34,310-
33,710 

*LTL4365A 529 Clay -27.1 32,755 ± 300    37,900-
36,060 

*LTL4203B 530 Clay -26.5 33,081 ± 280    38,220-
36,420 

*LTL4203A 530 Clay -26.3 34,214 ± 500    40,000-
37,320 

LTL4204A 730 Sandy clay -30.1 29,687 ± 170    35,430-
34,860 

LTL3093A 960 Clay -32.0 31,122 ± 300    36,030-
34,760 

LTL12574A 1110 Clay -29.9 31,458 ± 200   35,840-
34,860 

LTL1536A 1281 Peat -35.5 40,844 ± 650   45,560-
43,240 

 159 

Table 1. Results of the radiocarbon and U-series dating 160 

 161 
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U-Series dating of amorphous opal silica is well established (Ivanovich and Harmon 1992; 162 

Neymark and Paces, 2000; Neymark et al., 2000, 2002). For minerals precipitated from aqueous 163 

solutions, U-series dating can provide precise chronologies if samples have high U/Th ratios and 164 

have remained closed to post-depositional mobility of U-series nuclides (e.g., Ludwig and Paces, 165 

2002; Neymark and Paces, 2013). Three samples from diatom-rich units were analysed by XRD to 166 

quantify the mineralogy prior to age determinations (Sprynskyy et al., 2010; Table 2). Most of the 167 

samples are composed of amorphous opal silica (27-67%) and quartz (17-42%) with vermiculite, 168 

nimite and clinochrysotile, which are the weathering products of iron-rich, nickel-rich and hydrous 169 

phases from Serpentinite bedrock, respectively making up the remainder. As a result of the 170 

composition, the sub-samples were separated by density with fractions < 2.1 g/cm3, < 2.3 g/cm3 and 171 

a heavy fraction > 2.8 g/cm3 together with a whole sample to create isochrons from the sub-172 

fractions for analysis by mass spectrometry and gamma spectroscopy. For the gamma spectroscopy, 173 

samples and fractions were counted on a Harwell Instruments, Broad Energy BE5030 high purity 174 

germanium coaxial photon detector at the University of Reading (UK). External reproducibility was 175 

checked using international standards (Yokoyama and Nguyen, 1980). For the mass spectrometry, 176 

multiple, small sub-samples (100-500 mg) were extracted from the diatom-rich units and sub-177 

fractions for determination of the 234U/238U, 235U/238U and 230Th/232Th ratios by means of a Thermo-178 

fisher iCAPQ Inductively Coupled Plasma Mass Spectrometer. External reproducibility was 179 

checked using international standards (NIST SRM 3164, 4355 and 4357) and by monitoring the 180 

(235/238) ratios in the samples to be within the naturally abundant ratio (137.5). U/Th 181 

concentrations were also determined via mass spectrometry using the same instrument. Age 182 

determinations were calculating following the methodology of Ludwig and Paces (2002). Isochrons 183 

were constructed for samples to check the integrity of the ages and correlated errors were reduced 184 

by calculating isochron ages in Isoplot v4.15 (Ludwig, 2008) and IsoplotR (Vermeesch, 2018). 185 

 186 

 187 
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 Diatomite Sediment fraction Serpentinite alteration products 

Sample Depth 
(cm) 

Diatomite 
(opal silica) 

Quartz Albite (low) Muscovite Vermiculite Clinochrysotile Nimite 

400-401 26.8 42.0 4.3 1.3 16.5 5.4 3.7 

432-433 56.7 23.0 2.1 1.0 10.8 3.7 2.7 

464-465 67.0 16.9 1.8 0.9 8.8 2.8 2.0 

 188 

Table 2: Proportions (%) of minerals present in samples analysed for U-Series dating 189 

 190 

4. Results 191 

4.1 Sedimentary History and Geochronology 192 

The results of the U-series and AMS 14C dating are provided in Table 1. Although the age 193 

modelling approach utilised by the Bacon package is generally robust to the presence of outlying 194 

dates, it was not possible to obtain a stable age model that acceptably fitted all the dates. This was 195 

taken to indicate the presence of spurious dates in the sequence probably due to the re-deposition of 196 

older organics within the basin given the lithological evidence for erosion events in parts of the 197 

record (i.e. ingress of coarse sediments and boulders into the basin). LTL4365A, LTL4203A and 198 

LTL4203B, which were identified as potential outliers by initial models, were therefore considered 199 

to be erroneously old and excluded from subsequent analysis. The resulting age depth plot is 200 

presented in Fig. 3. 201 

 202 

 203 

 204 

 205 

 206 

 207 

 208 

 209 

 210 
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    Fig. 3: Lithostratigraphy and age-depth model of Pian del Lago, Northern Apennines, Italy (in color online) 211 
 212 

The age model indicates a highly variable accumulation rate at Pian del Lago over the past ~40,000 213 

years, ranging from less than 10 yr cm-1 (during ~36,580-33,850 cal. BP at 1099-750 cm) to over 214 

180 yr cm-1 (during ~21,670–12,490 cal. BP at 449-400 cm), with a mean accumulation rate of ~36 215 

yr cm-1. The average 95% confidence level was 3300 years, but uncertainties vary considerably 216 

throughout the sequence, ranging from only 218 years at the top of the sequence, to a maximum of 217 

7671 years at 600 cm. 218 

 219 

A simplified lithostratigraphy for Pian del Lago (core S1) is presented in Table 3. A predominately 220 

organic silt/clay with gravel (> ~43,490 cal. BP) is overlain by clay and sandy clay deposition from 221 

> ~43,490 to ~34,790 cal. BP. This was followed by the erosion and deposition of Serpentinite and 222 

then gravel (~34,790 to ~34,020 cal. BP), indicating significant destabilisation of slopes 223 

surrounding the basin. A further period of Serpentinite deposition occurs from ~30,750-26,880 cal. 224 

BP overlying a unit of sandy clay (~34,020-30,750 cal. BP). Thereafter, mineral rich fine-grained 225 

sediments are deposited from ~26,880 to ~9970 cal. BP (clay and silt), interrupted only by the 226 

formation of diatomite between ~21,850-14,360 cal. BP. Diatomite formation at Pian del Lago may 227 

be attributed to successive algal blooms associated with the influx of freshwater into the basin, 228 

possibly enriched with minerals due to weathering of surrounding rocks. Although clay and silt 229 

deposition persisted into the Early Holocene, suggesting the presence of an unstable land surface 230 

surrounding the basin, from ~9970 to 3205 cal. BP peat formation occurred, indicating increased 231 

organic sedimentation and improved stability. From ~3205 cal. BP to the present day renewed clay 232 

deposition may be strongly associated with a reduction in woodland cover and human impact on the 233 

local environment. 234 

 235 

 236 
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 237 

Depth (cm) Lithostratigraphy (Unit) Modelled Age Range (cal. 
BP) 

170-0 Clay ~3205-<565 

290-170 Peat ~9970-3205 

320-290 Silt ~10,640-9970 

410-320 Silty clay ~14,360-10,640 

450-410 Diatomite ~21,850-14,360 

580-450 Clay ~26,880-21,850 

660-580 Serpentinite rock ~30,750-26,880 

770-660 Sandy clay ~34,020-30,750 

800-770 Gravel ~34,260-34,020 

870-800 Serpentinite rock ~34,790-34,260 

890-870 Sandy clay ~34,940-34,790 

1040-890 Clay ~36,090-34,940 

1110-1040 Missing ~36,715-36,090 

1290-1110 Clay > ~43,490-36,715 

1350-1290 Organic (peat) silt, clay and gravel > ~43,490 

 238 

Table 3: Simplified lithostratigraphy for Pian del Lago (core S1) 239 

 240 

4.2 Vegetation History 241 

During LPAZ PdL-1a (> ~43,400 cal. BP; 1330-1290 cm), woodlands are dominated by Abies 242 

(17%) and Fagus (13.5%) (Fig. 4a,b,c,d). These were succeeded by Pinus (11%) and deciduous 243 

Quercus (25%) (Figure 4). Through the zone Quercus ilex (2.4%), Alnus (2.3%), Carpinus (1.9%), 244 

Ulmus (1.2%), Sorbus (1.2%), Tilia (1%) and Ericaceae (1%) form mixed forests. The local wetland 245 

is colonized by Poaceae (16%) and Cyperaceae (5%), forming a sedge-grass swamp. Microcharcoal 246 

values (~1500 fragments cm-2 yr-1) are not very high compared to the long-term mean, suggesting 247 

that during this period fire is not a very important disturbance factor.  248 

 249 

 250 

 251 

 252 

 253 

 254 
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Fig. 4a. Pollen diagram from Pian del Lago, Northern Apennines, Italy: tree taxa 255 
 256 

 257 

Fig. 4b. Pollen diagram from Pian del Lago: shrubs and herbs 258 

 259 

 260 

Fig. 4c. Pollen diagram from Pian del Lago: herbs 261 

 262 

 263 

 264 

 265 

 266 

 267 

 268 

 269 

Fig.4c.  Pollen diagram from Pian del Lago: herbs (continued) 270 
 271 
 272 

 273 
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 274 

 275 

 276 

 277 

 278 

 279 

 280 

 281 

     Fig.4d.  Pollen diagram from Pian del Lago: aquatics, spores, microcharcoal 282 

 283 

LPAZ PdL-1b (> ~43,400-41,940 cal. BP; 1290-1250 cm) is characterized by the expansion of 284 

coniferous woodlands dominated by Abies (31%) and Pinus (26%), and a decline of mesophilous 285 

broadleaved woodlands recorded in PdL-1a (deciduous Quercus 8%, Fagus 5.5%). High presence 286 

of Poaceae (15%) and Cyperaceae (4%) indicate the persistence of grass-sedge swamp, fringed by 287 

Alnus (3%), whilst the surprisingly high value of Sphagnum spores (43%) suggests the deposition of 288 

moss-rich organic sediment. During this phase microcharcoal values are very low (~200 fragments 289 

cm-2 yr-1), indicating little influence of fire on ecosystem dynamics.  290 

 291 

During LPAZ PdL-2 (~41,940-35,470 cal. BP; 1250-960 cm), Pinus (including mugo/sylvestris) is 292 

dominant (69%) together with Abies (7% but with a peak >40%), as well as a diverse mixture of 293 

woodland and shrubland species comprising Corylus (1%), deciduous Quercus (0.7%), Fagus 294 

(0.6%), Castanea (0.6%), Ulmus (0.5%), Ericaceae (0.4%) and Ephedra (0.3%). Alnus (2.5%) and 295 

Salix (1.3%), together with Cyperaceae and Poaceae dominate the wetlands. Asteroideae, 296 

Caryophyllaceae, Plantago, Artemisia, Chenopodiaceae, Cichorioideae, Ranunculaceae, Apiaceae, 297 

Polygonaceae and Solidago are present. Microcharcoal values are low (~300 fragments cm-2 yr-1) at 298 

the beginning and then increase, reaching a maximum value (>12,500 fragments cm-2 yr-1) during 299 
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the last part of this phase suggesting an important role of fire in shaping vegetation structure and 300 

composition. 301 

 302 

During LPAZ PdL-3 (~35,470-33,250 cal. BP; 960-725 cm) there is an overall reduction in Pinus 303 

(~28%) and Abies (7.5%). Deciduous woodlands with Corylus (6.5%), Alnus (between 35% and 304 

5%), Quercus (2.6%), Salix (2.5%), Betula (1.7%), Ulmus (0.6%), Carpinus (0.45%), Fagus 305 

(0.35%) and Tilia (0.30%) are present. The overall reduction in woodland cover is indicated by the 306 

increased proportion of shrubland (mainly Ericaceae, 4%) and herbaceous (66%) taxa. Poaceae 307 

(almost 30%) significantly increase during the zone together with a diverse range of taxa including 308 

Caryophyllaceae, Ranunculaceae, Asteroideae, Artemisia and Cichorioideae. The wetland continues 309 

to be dominated by Cyperaceae (13%), together with Typha (0.5%).  The zone has some samples 310 

with a very low pollen concentration (< 6000 grains/gram) with poor pollen preservation, and 311 

therefore there are concerns over the reliability of these data. Microcharcoal values remain quite 312 

high but decrease with respect to the last part of the previous phase, with values ~3400 fragments 313 

cm-2 yr-1. 314 

 315 

LPAZ PdL-4 (~33,250-26,880 cal. BP; 725-580 cm) records an expansion of Pinus woodland 316 

(26%, including Pinus mugo/sylvestris) with a diverse range of other woody taxa, including Alnus 317 

(6%), Corylus (4%), Carpinus (3%), Abies (2.6%), Salix (2.1%), deciduous Quercus (1.7%), Ulmus 318 

(1.6%),  Betula (1.5%) and Fagus (1.1%), as well as Ericaceae (4.6%), Juniperus (1.4%) and Buxus 319 

(1.1%). Nevertheless, herbaceous taxa reach 57% of the pollen values and are dominated by 320 

Poaceae (27%), as well as Chenopodiaceae (2%), Cichorioideae (1.7%), Apiaceae (1.4%), 321 

Asteroideae (1%) and Artemisia (1%). Once again, the wetland is dominated by Cyperaceae (7%). 322 

Microcharcoal influxes continue to decrease (values ~2500 fragments cm-2 yr-1). 323 

 324 
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LPAZ PdL-5 (~26,880-12,480 cal. BP; 580-400 cm) is characterized by the highest number of taxa 325 

(up to 55 TLP). Pinus (54%, including Pinus mugo/sylvestris) remains dominant, together with 326 

Abies (5.7%), Betula (1.9%), Alnus (1.7%), Picea (1.6%), Fagus (1%), Salix (0.7%) and deciduous 327 

Quercus (0.7%). Shrub taxa include Juniperus (0.5%), Buxus (0.4%) and Ephedra (0.23%). Despite 328 

the formation of diatomite in the upper part of the zone, the woodland cover remains broadly 329 

similar throughout. Artemisia values are notably higher than in previous zones (9%) and dominate 330 

the herbaceous layer together with Poaceae (11%) and small amounts of Apiaceae (2%), 331 

Chenopodiaceae (1.3%) and Asteroideae (1.2%). The wetland includes Cyperaceae, Juncaceae, 332 

Typha, Sanguisorba officinalis, Phragmites, Butomus, Myriophyllum, Equisetum and Callitriche. 333 

Microcharcoal values are characterised by a rapid decline during this phase (~600 fragments cm-2 334 

yr-1). 335 

 336 

During LPAZ PdL-6a (~12,480-11,600 cal. BP; 400-367 cm) Pinus (56%, including Pinus 337 

mugo/sylvestris) dominates, while Abies temporarily withdraws (2%) and Picea (1%) starts to 338 

decline. Deciduous woodlands are mainly composed of Salix (1%), Alnus (0.8%), Betula (0.4%) 339 

and Fraxinus (0.35%). Shrub taxa include Ephedra (0.4%) and Juniperus (0.3%). The herbaceous 340 

layer is dominated by Artemisia (14%), together with Poaceae (9%), Chenopodiaceae (4.5%), 341 

Apiaceae (1.7%) and Asteroideae (1.5%). On the wetland, Cyperaceae (12%) and Juncaceae (1.6%) 342 

are the main taxa. Microcharcoal values (~1000 fragments cm-2 yr-1) increase during this period 343 

with respect to the previous phase. 344 

 345 

LPAZ PdL-6b (~11,600-10,760 cal. BP; 367-330 cm) is characterized by an increase in Abies (5%) 346 

and deciduous Quercus (1%), concomitant with the beginning of the Pinus decline (48%, including 347 

Pinus mugo/sylvestris). Betula (3%), Picea (0.4%), Castanea (0.35%), Fraxinus (0.3%), and 348 

Juniperus (1.5%) are also present. The most notable change in the herbaceous taxa is the decline in 349 

Artemisia (12%), Chenopodiaceae (2%) and Asteroideae (1.2%), although there is still a diverse 350 
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range of taxa including Poaceae (14%), Plantago (1.3%) and Apiaceae (1%). The wetland includes 351 

Salix (1.4%) and Alnus (1%), with Cyperaceae (12%), Juncaceae (1.5%) and Typha (1%). During 352 

this phase microcharcoal values (~800 fragments cm-2 yr-1) are characterised by a decline. 353 

 354 

LPAZ PdL-6c (~10,760-9550 cal. BP; 330-280 cm) is dominated by Pinus (27%, including Pinus 355 

mugo/sylvestris), Abies (22%) and deciduous Quercus (6%), together with Betula (5%), Corylus 356 

(1.3%), Fraxinus (1%) and Tilia (0.9%). Juniperus (0.8%), Ephedra (0.65%) and Buxus (0.5%) also 357 

occur. The herbaceous layer is mainly composed of Poaceae (17%), Artemisia (7.5%), 358 

Chenopodiaceae (1.2%) and Apiaceae (1.2%). On the wetland, Alnus (1.4%), Salix (0.4%), 359 

Cyperaceae (6.3%) and Typha (6%) are present. Microcharcoal values (~1800 fragments cm-2 yr-1) 360 

increase during this period with respect to the previous phase. 361 

 362 

LPAZ PdL-7 (~9550 cal. BP to the present day; 290-0 cm) spans the remaining part of the 363 

Holocene. Due to detailed previous research on this part of the sequence (Cruise et al., 2009), the 364 

pollen stratigraphical changes have simply been divided into two major sub-zones to aid description 365 

and brief discussion of the main vegetation changes: LPAZ PdL-7a (~9550-3765 cal. BP) and 7b 366 

(~3765-0 cal. BP). 367 

 368 

LPAZ PdL-7a (~9550-3205 cal. BP, 290-170 cm): Before ~6000 cal. BP Abies (24%) replaced 369 

Pinus (12%) as the dominant tree, and deciduous Quercus (11%), Corylus (6%), Alnus (3%), Betula 370 

(1.6%), Ulmus (1.2%), Ostrya (1.2%) and Tilia (0.7%) form a mixed temperate woodland, possibly 371 

with Quercus ilex (2.5%) and Fagus (1.7%), respectively at lower and higher altitudes. Vitis 372 

becomes more frequent. Ericaceae (2.4%) spread and occupy dry and poor soils. Amongst the 373 

herbs, Poaceae significantly increase from this zone onwards makes up most of the herbaceous 374 

pollen, along with Cyperaceae. Artemisia has a clear and definitive decline resulting in a higher 375 

diversity of other herbaceous taxa typical of more mesic grasslands (e.g. Caryophyllaceae, 376 
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Chenopodiaceae, Fabaceae, Apiaceae, Sanguisorba officinalis, Potentilla, Filipendula, Plantago, 377 

Centaurea, Cirsium and Achillea). The increasing abundance of microcharcoal (~2400 fragments 378 

cm-2 yr-1) may suggest sustained human impact on the environment (see 5.2). 379 

 380 

LPAZ PdL-7b (~3205-0 cal BP, 170-0 cm): During this final part of the sequence Abies values drop 381 

(2.9%) and Pinus continues to decrease (7%). Fagus, Tilia and Carpinus almost disappear from the 382 

area (both 0.2%). Despite a decline in deciduous Quercus (16.5%), broadleaves dominate the 383 

landscape. The appearance of Castanea (2%), Olea (1%) and Juglans (0.4%), which are important 384 

indicators of human activity throughout the Mediterranean, testifies their cultivation. Ericaceae 385 

remain abundant (7%). After reaching minimum values, corresponding to a spread of woodland 386 

cover, Poaceae (26%) increases again and, together with Cyperaceae (26%), Juncaceae (3.5%) and 387 

Sanguisorba officinalis (10%) dominate the herbaceous layer, probably reflecting hydrological 388 

changes in the basin catchment. Cichorioideae, Plantago and Rumex show isolated peaks and, 389 

together with Cerealia, Caryophyllaceae and Centaurea, represent indicators of human activity 390 

(Behre, 1981; Branch, 2004). The peak in fern spores together with an increase in microcharcoal 391 

(~3200 fragments cm-2 yr-1) indicate an important role of fire in the vegetation succession, possibly 392 

due to periods of higher human activity. The abundance of unidentified pollen grains suggests 393 

caution in the interpretation of the upper part of the sequence.  394 

 395 

5. Discussion 396 

5.1 Upper Late Pleistocene 397 

Our data from Pian del Lago indicate that the northern Apennines undoubtedly experienced periods 398 

of abrupt climatic and vegetation changes during the upper Late Pleistocene. The record is unique 399 

for this part of Italy and is one of the few terrestrial sedimentary deposits spanning the last glacial 400 

stage in southwestern Europe (see Allen and Huntley, 2000; Fletcher et al., 2010). It thus permits 401 

improved understanding of the spatial and temporal patterns of vegetation succession, and the 402 
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possible causes of these changes. Although the radiocarbon dated pollen stratigraphy from Pian del 403 

Lago marshland does not have the geochronological precision of other central and southern Italian 404 

longer lake sequences, such as Lago Grande di Monticchio (Allen et al., 1999; Watts, 1985; Watts 405 

et al., 1996a,b) and Valle di Castiglione (Follieri et al., 1988), it does permit a broad correlation 406 

with these records, as well as with Mediterranean marine sequences (Cacho et al., 2001) and the 407 

Greenland ice core records (Rasmussen et al., 2014) (Fig. 5 and Fig. 6). Correlation with these 408 

sequences is dependent upon specific pinning points, most notably the termination of the Würm 409 

glacial stage at ~14,300 cal. BP, the onset of the Holocene at ~11,700 cal. BP, and the expansion of 410 

pollen of woody taxa reflecting ameliorating climatic conditions (see Fletcher et al., 2010; Pini et 411 

al., 2010; Magri et al., 2015).  412 

 413 

 414 

 415 
 416 
 417 
 418 
 419 
 420 
 421 
 422 
 423 
 424 
 425 
 426 
 427 
 428 
 429 
 430 
 431 
 432 
 433 
 434 
 435 
 436 
        437 
                        Fig. 5: Key Late Pleistocene and Holocene palaeoenvironmental and palaeoclimatic  438 
                                         records from southwestern Europe mentioned in the text 439 
 440 
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 441 

   Figure 6: Selected taxa pollen diagram and event stratigraphy compared with the ice core and marine  442 
   records, and INTIMATE event stratigraphy; grey bands indicate interstadial events identified in this research   443 
  (in color online) 444 
 445 

Several of the pollen-stratigraphical changes from Pian del Lago are interpreted here as vegetation 446 

responses to relatively mild climatic conditions (interstadial), in contrast to intervening colder 447 

climate phases (stadial). The biostratigraphical signature for the transition to interstadial conditions 448 

is highlighted by a seemingly ‘abrupt’ change to mesophilous woodland succeeded by the onset of 449 

cooler conditions indicated by a reduction in tree cover, poor pollen preservation and/or a major 450 

change in sedimentary deposition. Based on this assumption, we believe that they can be correlated 451 

with several of the well-recorded climatic fluctuations known as Dansgaard-Oeschger (D – O) 452 

events (Dansgaard et al., 1989; Rasmussen et al., 2014). Due to geochronological uncertainties and 453 

the poor pollen preservation of some parts of the sequence, the precise duration of each interstadial 454 

event at Pian del Lago is unclear, but it certainly appears that they varied considerably. Based on 455 

the ice core records for the D – O events, it is also acknowledged that the same climatic event may 456 

not have occurred at precisely the same time in different regional scale archives due to transmission 457 

variability in oceanic and atmospheric D-O changes (Moreno et al., 2014). For this reason, and 458 

following published protocols (Rasmussen et al., 2014), we decided to label the events recorded at 459 
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Pian del Lago as a Northern Apennine Interstadial (NAI) or a Northern Apennine Stadial (NAS) 460 

with an associated number, and attempted a correlation with the Greenland ice core records (GI and 461 

GS for interstadial and stadial, respectively), different Mediterranean marine sequences, and various 462 

central and southern Italian lake records (Table 4; Fig. 5 and Fig. 6; see Bosselin and Djindjian, 463 

2002).  464 

 465 

Pian del Lago local 
pollen assemblage 
zone (LPAZ) 

Event stratigraphy - 
northern Apennines 

Lago Grande di 
Monticchio 
pollen zone 
(Allen et al., 
2000) 

Valle di 
Castiglione 
(Follieri et 
al., 1988) 

INTIMATE event 
stratigraphy (Rasmussen 
et al., 2014) 

PdL-6b 
~11,600-10,760 cal. 
BP 
 

Start of Holocene 1 
11,200 – 
present (11,200) 

Holocene Start of Holocene 

PdL-6a 
~12,480-11,600 cal. 
BP 
 

NAS-1 
~12,480-11,560 cal. 
BP 

2 
12,800 – 11,200 
(1600) 

Younger 
Dryas 

GS-1 ~12,896-11,703 a 
b2k 

PdL-5 ~30,380-
23,655 to ~13,430-
11,310 cal. BP 
(~26,880-12,480 cal. 
BP) 

NAI-1 
~14,360-12,480 cal. 
BP 

3 
14,300 – 12,800 
(1500) 

Late Glacial 
Interstadial 

GI-1 (1a-1e) 
~14,692-13,099 a b2K 

NAI-2 
~23,030-22,800 cal. 
BP 

4 
25,900 – 14,300 
(11,600) 

Full Glacial GI-2.1 
~23,020-22,900 a b2k 

NAI-3 
~26,880-26,400 cal. 
BP 

5a 
29,400 – 25,900 
(3500) 

Lazio VI and 
VII 

No event 

PdL-3 ~36,380-
34,630 to ~34,400-
31,080 cal. BP 
(~35,470-33,250 cal. 
BP) 

NAI-4 
~33,860-32,650 cal. 
BP 
 

6 
34,900 – 31,800 
(3100) 

 GI-6 (~33,740-33,360) 
and GI-5 
~32,500-32,040 (5.2) and 
~30,840-30,600 (5.1) a 
b2k 

PdL-2 ~44,740-

38,310 to ~36,380-

34,630 cal. BP 

(~41,950-35,470 cal. 

BP) 

NAI-5 
~36,050-35,160 cal. 
BP 
 
 

7 
36,500 – 34,900 
(1600) 

Lazio IV GI-7 
~35,480-34,880 a b2k 

NAI-6 
~37,130-36,650 cal. 
BP 
 

8 
37,600 – 36,500 
(1100) 

 GI-8 
~38,220-36,580 a b2k 

PdL-1b ~45,230-
41,070 to ~44,740-
38,310 cal. BP 
(~43,440-41,950 cal. 
BP) 

NAI-7 
~43,440-41,950 cal. 
BP 

11 
50,000 – 42,300 
(7700) 

Lazio II GI-11 
~43,340-42,240 a b2k 
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    Table 4: Event stratigraphy for the northern Apennines 466 

 467 

From ~43,440-41,950 cal. BP (NAI-7), the vegetation succession at Pian del Lago was 468 

characterized by the expansion of Abies and Pinus, as well as Fagus, Quercus (both deciduous and 469 

Q. ilex) and Picea. The predominance of these taxa also at Lago di Alice Superiore (Piedmont, 470 

northern Italy; Figure 5) suggests similar climatic conditions north of the Po Plain (Gianotti et al., 471 

2015). At Valle di Castiglione (Lazio, central Italy; Figure 5), woodland mainly composed of Picea, 472 

Fagus, Ulmus and deciduous Quercus dominated during the Lazio II interstadial (Follieri et al., 473 

1988, 1990, 1998). Similarly, at Lago Grande di Monticchio (Basilicata, southern Italy; Figure 5), 474 

the open woodland comprised Quercus, Fagus and Abies, with Tilia, Ulmus and Fraxinus (Allen et 475 

al., 2000). A marine record from the Bay of Salerno (Campania, southern Italy; Figure 5) similarly 476 

indicates this period favorable to meso-thermophilic vegetation (Russo Ermolli and Di Pasquale, 477 

2002). The data from Pian del Lago are however quite different from several other southern 478 

European records that indicate a predominance of microtherm conifers (Pinus, Picea and Larix) or 479 

just a few broadleaved trees (deciduous Quercus, Betula, Corylus) (e.g. Peyron et al., 1996; Willis 480 

et al., 2000; Woillard, 1978). Instead the dominance of mesophilous trees at Pian del Lago, which 481 

are similar or even higher to those recorded during the Late Holocene, clearly indicate a temperate-482 

humid climate. The record also appears to confirm the existence of a temperature gradient between 483 

northern/central (cooler) and southern (warmer) Italy based upon the presence (or absence) of Picea 484 

(see Allen et al., 2000; Beaudouin et al., 2005; Fletcher et al., 2010). According to Rasmussen et al. 485 

(2014), NAI-7 may be equated with Greenland Interstadial 11 (GI-11; ~43,340-42,240 a b2K; Table 486 

4). The timing also suggests a tentative correlation with the Hengelo Interstadial of north-western 487 

Europe (Behre and van der Plicht, 1992; Helmens, 2013; Rasmussen et al., 2014; Vandenberghe 488 

and van der Plicht, 2016). 489 

 490 
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From ~37,130-36,650 cal. BP (NAI-6), the vegetation cover at Pian del Lago was characterized by 491 

the presence of Corylus and Abies, as well as Pinus, Quercus, Alnus and Fagus, and may be equated 492 

with Greenland Interstadial 8 (GI-8, ~38,220-36,860 a b2K; Table 4). There is no indication at Pian 493 

del Lago for the interstadial event evidenced during pollen zone 9 at Lago Grande di Monticchio 494 

and denoted by Lazio III at Valle di Castiglione (Follieri et al., 1998). Instead, NAI-6 495 

chronologically correlates with zone 8 at Lago Grande di Monticchio (characterised by steppic 496 

vegetation dominated by Artemisia; Allen et al., 2000). As noted above, this difference in timing for 497 

the D-O event may be due to transmission variability between different parts of southwestern 498 

Europe or alternatively chronological uncertainties within the age models. 499 

 500 

Between ~36,050 and 35,160 cal. BP (NAI-5) the expansion of Abies, Pinus, and Artemisia at Pian 501 

di Lago indicates a further increase of wooded steppe vegetation, also recorded by Allen et al. 502 

(2000) at Lago Grande di Monticchio during pollen zone 7 (Betula, Quercus, Ulmus and Fagus), 503 

and by Follieri et al. (1998) during Lazio IV at Valle di Castiglione (deciduous Quercus, Corylus, 504 

Fagus, Tilia, Ulmus and Carpinus). Although the event appears to be chronologically correlated 505 

with the early stages of Greenland Interstadial 7 (GI-7, ~35,480-34,880 b2K), once again there is no 506 

clear sub-division of GI-7 based on the pollen data (GI-7a, b and c) (Table 4).  The timing also 507 

suggests a tentative correlation with the Danekamp I Interstadial of north-western Europe (Behre 508 

and van der Plicht, 1992; Bosselin and Djindjian, 2002; Helmens, 2013; Rasmussen et al., 2014; 509 

Vandenberghe and van der Plicht, 2016).  510 

 511 

During the period ~33,860-32,650 cal. BP (NAI-4) the vegetation succession at Pian di Lago was 512 

characterized by the expansion of Corylus, as well as Pinus and Quercus. Similarly, at Berceto 513 

(Emilia Romagna, northern Italy, Figure 1), the presence of Pinus and Picea forests support the 514 

occurrence of a warming event (Bertoldi et al., 2007). According to our findings, this may be 515 

equated with either Greenland Interstadial 6 or 5 (GI-6 and 5; ~33,740-30,600 a b2K), or possibly 516 
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both, with no clear stadial events (GS-6 and GS-5.2). However, this event appears to be 517 

chronologically correlated with Lago Grande di Monticchio pollen zone 6 (Table 4), a stadial event 518 

(Allen et al., 2000), which is anomalous. Tentatively, the event may be correlated with the 519 

Danekamp II / Arcy Interstadial of north-western Europe (Behre and van der Plicht, 1992; Bosselin 520 

and Djindjian, 2002). 521 

 522 

From 35,470-33,250 cal. BP, the Pian di Lago pollen record is interrupted by the deposition of 523 

Serpentinite, suggesting major erosion in the catchment area. The chronology indicates that this 524 

event occurred between GI-7 and GI-6 and may reflect a deterioration in climate (stadial). Support 525 

for this interpretation is provided by both the marine and ice core records, and it may be equated 526 

with GS-7, a colder climatic event dated to ~34,740 a b2K (Cacho et al., 2001; Rasmussen et al., 527 

2014).  528 

 529 

A second major erosional event indicated by the deposition of Serpentinite occurred at Pian del 530 

Lago between ~33,220 and 26,880 cal. BP. Both the chronology and the comparison with marine 531 

and ice core records suggest that this episode may be equated with Heinrich 3 (~30,000-29,000 cal. 532 

BP) or GS-5.1 (~30,600-28,900 a b2K), or possibly GS-4 (~28,600-27,780 a b2K) and GS-3 533 

(~27,540-23,340 a b2K) (Guiot et al., 1993; Rashid and Grosjean, 2006; Rasmussen et al., 2014). 534 

The increase in herbaceous taxa supports the existence of cooler conditions. The absence of clear 535 

biostratigraphical evidence for GI-4 (~28,900-28,600 a b2K) and GI-3 (~27,780-27,540 a b2K) 536 

during the zone is interesting, although the reason remains unknown (Rasmussen et al., 2014). In 537 

contrast, at Berceto, pollen zone BER-4 has been tentatively correlated with the Tursac Interstadial 538 

of north-western Europe, occurring sometime after 34,325-33,191 cal. BP (29,620 ±290 BP) and 539 

characterised by the presence of Pinus and Picea forests (Bertoldi et al., 2007). 540 

 541 
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During the period ~26,880-26,400 cal. BP (NAI-3) the vegetation cover at Pian del Lago is 542 

dominated by Pinus with Abies, Betula, Picea, Fagus and deciduous Quercus. This diverse range of 543 

taxa has been correlated with Lago Grande di Monticchio pollen zone 5a (Table 4; Allen et al., 544 

2000). In agreement with the Pian del Lago sequence, this detailed record indicates an increase in 545 

woody taxa (especially Pinus), suggesting warmer conditions. Interestingly, this event cannot be 546 

linked with the ice core records (Rasmussen et al., 2014), but it does correlate with a major 547 

excursion in the δ18O marine record from the Mediterranean (Cacho et al., 2001) as well as with 548 

Lazio VI and VII Interstadials of central Italy (Follieri et al., 1998) (Figure 6). For this reason, NAI-549 

3 should be regarded as a highly significant climatic event in the northern Apennines that may 550 

require revision of the ice core event stratigraphy given the clear evidence in Figure 6 for climatic 551 

amelioration at this time (see Rasmussen et al., 2014). 552 

 553 

At Pian del Lago, the presence of high pollen values of Artemisia, along with many other 554 

herbaceous taxa, between ~26,400 cal. BP (~29,930-23,400 cal. BP) and ~9970 cal. BP (~10,270-555 

9620 cal. BP) is of significance for several reasons: 556 

(1) At ~26,400 cal. BP, it coincides with a sustained increase in Pinus and Abies. This persists until 557 

approximately ~19,040 cal. BP (~20,980-17,870 cal. BP), when Abies declines and there is a 558 

temporary reduction in Pinus. This is also concurrent with the formation of diatomite at Pian del 559 

Lago. Thereafter, Pinus re-expands until ~10,640 cal. BP (~11,270-10,090 cal. BP), when it is 560 

succeeded by Abies and Quercus. Throughout this period, the high presence of Artemisia indicates 561 

the existence of an open steppe woodland and shrubland cover, perhaps benefitting from climatic 562 

amelioration following the Last Glacial Maximum, which may have favoured soil development and 563 

the colonisation of a more diverse range of taxa. Our suggestion is supported by the ice core 564 

records, which arguably indicate a more sustained period of stable climatic conditions from ~23,340 565 

(GI-2.2) and ~23,030 (GI-2.1) a b2K, and throughout Greenland Stadial 2.1 (GS-2.1), which spans 566 

the period 22,900-14,692 a b2K (Rasmussen et al., 2014). This overall trend is also reflected in the 567 
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Mediterranean marine sequences (Cacho et al., 2001). GI-2.2/GI-2.1 has been correlated with the 568 

Laugerie Interstadial of north-western Europe (~23,500-22,000 cal. BP), whilst at Berceto, Bertoldi 569 

et al. (2007) have tentatively linked the temporary expansion of Pinus and Picea at this time with 570 

the Lascaux Interstadial (~21,000-20,000 cal. BP) (Behre and van der Plicht, 1992; Bosselin and 571 

Djindjian, 2002). 572 

(2) The ‘Younger Dryas’ chronozone, a stadial event conventionally placed between ~12,900 and 573 

11,700 a b2k (GS-1 starts at ~12,896 a b2K in the ice core records; Rasmussen et al., 2014), has 574 

been recorded in a number of terrestrial and marine sequences in southwestern Europe, including 575 

the northern Apennines, and is characterised by the prevalence of a colder/drier climate (e.g. Lowe, 576 

1992; Ponel and Lowe, 1992; Lowe and Watson, 1993; Lowe et al., 1994a, b; Watson, 1996; Cita et 577 

al., 1996; Watts et al., 1996a, b; Bertoldi et al., 2007; Vescovi et al., 2010a,b). The notable increase 578 

in Artemisia pollen values at Pian del Lago from ~12,480-11,600 cal. BP may be assigned to the 579 

‘Younger Dryas’ (PdL-6a, NAS-1; Table 4). At Prato Spilla C (Emilia Romagna, northern Italy; 580 

Figure 5), the marked decline in Quercus and the expansion of a range of steppe herbs, including 581 

Artemisia, provides the clearest evidence for the event in the northern Apennines (Lowe, 1992), 582 

whilst it can be correlated with Lago Grande di Monticchio pollen zone 2 (Allen et al., 2000; de 583 

Beaulieu et al., 2017). The presence of an additional site in the northern Apennines with evidence 584 

for the ‘Younger Dryas’ stadial is an important confirmation of the widespread impact of this event 585 

in southwestern Europe. 586 

(3) The persistence of Artemisia until ~9970 cal. BP is surprising, especially given the clear 587 

evidence for the expansion of those warmth loving taxa that characterise the early postglacial. This 588 

may reflect an ongoing landscape instability rather than a climate signal, which is supported by the 589 

continued deposition into the Pian del Lago basin of mineral-rich sediment rather than organic-rich 590 

sediments. 591 

 592 
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Prior to the onset of GS-1, there are records in the northern Apennines for GI-1, a pronounced 593 

interstadial lasting ~1500 years (~14,692-13,099 b2K) documented in the ice core records 594 

(Rasmussen et al., 2014; Table 4). Despite the evidence for a Pinus dominated woodland at the 595 

beginning (~14,360 cal BP) and at the end (12,480 cal. BP) of this phase, the presence of this event 596 

at Pian del Lago is unclear. This may be attributed to either poor pollen preservation, or to a muted 597 

response to a warmer period in this part of the northern Apennines. At Prato Spilla C (from 598 

~>14,350 cal BP), the Interstadial was characterised by the expansion of warm mixed forest 599 

including Quercus, Tilia, Betula and Corylus (Lowe, 1992), whilst at Lago Grande di Monticchio 600 

broadleaved deciduous forests with Quercus, Corylus, Fagus, Ulmus, Tilia and Alnus were present 601 

(Allen et al., 2000). 602 

 603 

5.1.1 Palaeolithic Cultural History 604 

The upper Late Pleistocene vegetation history and event stratigraphy from Pian del Lago can be 605 

correlated with main cultural changes occurred in the wider region, including the Maritime Alps 606 

(western Liguria) and the northern Apennines. PdL-1a (> ~43,400 cal. BP) and PdL-1b (> ~43,400-607 

41,940 cal. BP) can be equated with the late Middle Palaeolithic. Lithic tools (Neanderthal) 608 

attributed to the Middle Palaeolithic have been found near Pian del Lago, as well as other sites in 609 

the northern Apennines (e.g. Pianaccia di Suvero, Liguria; Ronco del Gatto, Emilia-Romagna). It is 610 

tempting to correlate NAI-7 (~43,440-41,950 cal. BP) with a phase of late Neanderthal activity at 611 

Pian del Lago, although the lack of precisely dated, well-stratified archaeology makes this 612 

association uncertain. 613 

 614 

During the Upper Palaeolithic (~42,000-11,000 cal. BPPdL-2 to PdL-6a), the presence of six 615 

interstadials at Pian del Lago (NAI-6 to NAI-1) provides considerable potential for examining the 616 

relationships between human activity, climate variability and environmental change (see Kaniewski 617 

et al., 2005; Maggi, 2015). The Aurignacian (~42,000-34,000 cal. BP in Italy; Mussi et al., 2006) 618 
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has provided approximately 30 known sites in Italy, and only a small number of these are from the 619 

Maritime Alps and northern Apennines (e.g. Pian del Lago, Balzi Rossi sites, Ronco del Gatto; 620 

Mussi et al., 2006). The sequence at Mochi (Balzi Rossi), for example, has a stone tool assemblage 621 

indicating population movement between southern France, the Maritime Alps, northern Apennines 622 

and the Adriatic coast, and the exploitation of a range of animals. Several key radiocarbon dates 623 

spanning ~41,500-37,500 to ~38,000-35,000 cal. BP (level G) encompass both NAI-6 (~37,130-624 

36,650 cal. BP) and NAI-5 (~36,050-35,160 cal. BP). Whether occupation was facilitated by 625 

periods of warmer (interstadial) climate remains unclear due to chronological uncertainties. 626 

Nevertheless, the pollen data from Pian del Lago provide a valuable insight into the environment 627 

occupied by earliest European Modern Humans in this part of the northern Apennines. 628 

 629 

During the Gravettian (~34,000-20,000 cal. BP in Italy), lithic tools have once again discovered at 630 

Pian del Lago and Ronco del Gatto, as well as at the cave of Arene Candide in the Maritime Alps 631 

(Pettitt et al., 2015). The latter has provided stratified radiocarbon dates from charcoal and human 632 

remains, e.g. an age of ~27,899-27,338 cal. BP from a human femur (known as ‘Il Principe’) 633 

spanning GS-4 (starts ~28,600 a b2k), GI-3 (starts ~27,780 a b2k) and GS-3 (starts ~27,540 a b2k) 634 

of the Greenland ice core event stratigraphy (Rasmussen et al., 2014). Whether the period of 635 

occupation is correlated with the ameliorating conditions of GI-3 is uncertain without further dating 636 

evidence. Therefore, once again the absence of enough well-stratified, precisely dated sites means 637 

that comparison with the event stratigraphy from Pian del Lago (NAI-4 ~33,860-32,650 cal. BP; 638 

NAI-3 ~26,880-26,400 cal. BP; NAI-2 ~23,030-22,800 cal. BP) is unfortunately problematic. 639 

 640 

The Epigravettian cultural period (~20,000-11,000 cal. BP in Italy) witnesses an important increase 641 

in evidence for human occupation in the Maritime Alps, but unfortunately there is little evidence 642 

from the northern Apennines. Charcoal records from cave sites (e.g. Arene Candide, Arma di 643 

Nasino, Arma dell' Aquila and Arma dello Stefanin; Barker et al., 1990) indicate the exploitation of 644 
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regional vegetation composed of Abies and Pinus. During the Lateglacial Interstadial (NAI-1, 645 

~14,360-12,480 cal. BP, from Pian del Lago), charcoal data from Arma dello Stefanin and isotopic 646 

data from Arene Candide (Barker et al., 1990) suggest a significant climatic oscillation with an 647 

increase in mean annual temperature to 8-10 oC, and the exploitation of more thermophilous 648 

vegetation, such as Quercus pubescens, Q. ilex, Corylus, Acer, Ulmus, Fagus, Alnus, 649 

Ostrya/Carpinus and Prunus. Arene Candide has also provided a unique insight into Epigravettian 650 

funerary practices, which are believed to represent a social response to harsh climatic conditions 651 

during the Younger Dryas stadial (NAS-1, ~12,480-11,560 cal. BP, from Pian del Lago) (Sparacello 652 

et al., 2018). It is tempting to suggest therefore that the archaeological records indicate a response 653 

by human groups to late-glacial climatic variability both in terms of an adaptation to changing 654 

resource availability, and transformation of socio-cultural practices.   655 

 656 

5.2 Holocene 657 

The transition to the Early Holocene at Pian del Lago (~11,600 cal. BP, PdL-6b) is marked by the 658 

progressive expansion of mesophilous woodland dominated by Abies and the decline of Pinus, 659 

probably P. mugo. Broadleaved woodland, such as deciduous Quercus, Alnus, Betula, Corylus and 660 

Fagus are still scarce, but are gradually starting to increase. This is consistent with previous work at 661 

Pian del Lago, which indicates the main expansion of Abies from 12,220-10,910 (start of Bg2) to 662 

11,270-10,170 (start of Bg3) cal. BP (Cruise 1990a, 1990b; Cruise et al., 2009). At ~9970 cal. BP 663 

(290 cm), there is unequivocal evidence for a major environmental change, which may be linked to 664 

ameliorating climatic conditions of the Early Holocene. This is marked by the formation of peat and 665 

a decline of Pinus and Artemisia, and a spread of broadleaved trees, namely deciduous Quercus, Q. 666 

ilex, Corylus, Alnus, Fagus, Ostrya, Tilia, Ulmus and Fraxinus, and mesophilous conifers (Abies) 667 

and heathland (Ericaceae). This is partly in agreement with the findings of Cruise et al. (2009) who 668 

record the main period of peat initiation shortly before 9550-9090 cal. BP (from 259 cm) in core 669 

Barg94. However, the authors also record peat formation shortly after 12,220-10,910 cal. BP (from 670 
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396 cm) in core Bg89. This indicates intra-site differences in the timing of the event, which may be 671 

attributed to sub-surface topographical variability and proximity of the core to the basin edge. 672 

 673 

The sustained evidence for burning at Pian del Lago during the Early Holocene based on 674 

microcharcoal data could be due to human activity. During the Mesolithic (~11,000-7800 cal. BP) 675 

the primary zone of human occupation was seemingly in the northern Apennines rather than the 676 

Maritime Alps (see 5.1). There is extensive indication of human activity (e.g. Pianaccia di Suvero, 677 

Passo della Camilla, Bosco delle Lame) characterised by rich artefactual assemblages, including 678 

scalene triangles, truncated and backed blades, bilateral backed points and microburins made from 679 

jasper and flint (Biagi and Maggi, 1984; Maggi, 1999; Maggi, Negrino, 2016). These sites suggest 680 

increasing exploitation at higher altitudes and principally around inter-montane basins. At Mogge di 681 

Ertola (Liguria), for example, sedimentological and pollen data suggest deforestation by burning 682 

during the Late Mesolithic (Cevasco et al., 2013). Alternatively, the increased fire frequency could 683 

be related to drier climatic conditions during the Early Holocene, and possibly periods of short-term 684 

climate change. There is no pollen evidence for the ‘9.3’ climatic event (~9350-9240 a b2K, 685 

respectively) at Pian del Lago, although there is possible evidence for the ’11.4’ (~11,520-11,400 686 

b2K – Pre-Boreal Oscillation) and ‘8.2’ (~8300-8140 a b2K) events; the former is marked by high 687 

percentages of Artemisia pollen together with Pinus mugo, Juniperus and Betula (c.f. Di Rita et al., 688 

2013, 2015; de Beaulieu et al., 2017), whilst the latter is marked by a temporary decline in Abies 689 

woodland, which is also recorded in other parts of the northern Apennines (Branch, 2013; Cruise et 690 

al., 2009; Lowe, 1992; Watson, 1996). During the earliest part of the Holocene (~11,500-10,500 691 

cal. BP) aridity has been used to explain the hiatus in sedimentation at several northern Apennines 692 

sites, while the expansion of Corylus and the temporary decline of Abies has been connected to 693 

higher summer temperatures and drought causing an increase in fire events (see Branch, 2013; 694 

Finsinger et al., 2006; Mercuri et al., 2011; Peyron et al., 2011).  695 
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Cruise et al. (2009) suggested that fluctuating values of Abies and the presence of cereal pollen at 696 

Pian del Lago between ~8450-7880 and ~8050-7550 cal. BP (start and end of Bg3b) were 697 

associated with human activity (Early Neolithic). Throughout the Middle Holocene, Abies values 698 

continued to vary whilst herbaceous and heathland taxa increased suggesting increasing human 699 

impact on the environment. In addition to these previously published results, the present study also 700 

underlines significant evidence for sustained burning activity in the area probably connected to the 701 

use of agro-silvo-pastoral practices during the Neolithic, Copper Age and Bronze Age (see 702 

Colombaroli et al., 2007, 2008; Tinner et al., 1999). 703 

 704 

However, archaeological evidence for the Early Neolithic ‘Impressa Ligure’ Pottery Culture 705 

(~7800-7000 cal. BP) and the Middle Neolithic Square Mouthed Pottery Culture (~7000-6300 cal. 706 

BP) is mainly confined to the Maritime Alps (e.g. Barker et al., 1990; Biagi et al., 1987; Maggi, 707 

1990; Rowley-Conwy, 1997). Indeed, the western part of Liguria has provided the earliest records 708 

of Neolithic occupation in North-Central Italy (e.g. Arene Candide cave). The evidence suggests 709 

movement of human communities over considerable distances, including parts of the northern 710 

Apennines, to exploit clay, flint and obsidian. Subsistence practices included the cultivation of 711 

Triticum spp., Hordeum spp., Lens culinaris and Vicia (Nisbet, 2006), and animal husbandry 712 

(Rowley-Conwy, 1997). Charcoal records indicate the exploitation of Quercus pubescens, Q. ilex, 713 

Acer, Fraxinus, Ulmus, Fagus, Pinus, Pistacia, Phillyrea, Olea, Taxus, Erica arborea and Arbutus 714 

unedo (e.g. Nisbet, 1997). By the Late Neolithic Chassey Culture (~6300-5700 cal. BP), 715 

intensification of animal husbandry and cultivation had reduced the diversity of woodland taxa, 716 

especially deciduous trees, in the Maritime Alps and probably led to the formation of 717 

‘Mediterranean macchia’ dominated by Quercus ilex, Arbutus unedo, Erica arborea, Rhamnus 718 

alaternus, Phillyrea, Olea and Pistacia lentiscus (Girod, 1997; Maggi and Nisbet, 1990; Nisbet, 719 

1997). 720 

 721 



31 
 

Despite the considerable lower number of known Neolithic archaeological sites in the northern 722 

Apennines compared to the Maritime Alps (e.g. Pianaccia di Suvero; Biagi et al., 1987; Maggi, 723 

1983), palaeoecological results from several records (e.g. Braggio Morucchio et al., 1989; Cruise, 724 

1990a, 1990b; Branch, 2002, 2004, Cruise et al., 2009) have provided consistent evidence for 725 

increasing human impact on the environment (e.g. burning activities, pastoralism, cultivation), 726 

supporting our results from Pian del Lago: 727 

a) The vegetation succession from Abies and Corylus to deciduous Quercus, Q. ilex and Erica 728 

arborea together with the presence of cereal pollen during the Early Neolithic at Sestri Levante 729 

and Rapallo (<100 m asl) (Bellini et al., 2009b). 730 

b) The temporary reduction in Abies woodland during the Late Mesolithic/Early Neolithic 731 

transition (from ~8100 cal yrs BP) accompanied by evidence for burning, increase in 732 

herbaceous taxa and expansion of Fagus and Corylus woodland at Mogge di Ertola (1015 m asl) 733 

(Guido et al., 2013). 734 

c) An increase in light loving taxa (i.e. Fraxinus and Ostrya), a slight reduction in Ulmus 735 

woodland, the expansion of Fagus woodland (~6100 cal yrs BP) and the beginning of a 736 

sustained decline in Abies during the Middle Neolithic and early part of the Late Neolithic at 737 

Lago Riane (1279 m asl) (Branch, 2013). 738 

d) The decline in Ulmus, Tilia and Fraxinus (~7000 cal. BP), during the Middle Neolithic at Prato 739 

Spilla ‘A’ (Lowe et al., 1994a, 1994b). 740 

e) The decline in Abies and expansion of Fagus from ~7000-5000 cal. BP at Lago del Greppo 741 

(Vescovi et al. 2010a). 742 

f) The decline of Abies at ~6000 cal. BP at Pavullo and Lago di Massaciuccoli (Colombaroli et al., 743 

2007; Mariotti-Lippi et al., 2007; Vescovi et al., 2010b). 744 

 745 

From ~3205 cal. BP (170 cm; PdL-7b) peat formation at Pian del Lago ends and is substituted by 746 

clay deposition and possible lowering of the summer water table, which resulted in poor pollen 747 
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preservation. However, there is a clear anthropogenic signature in the palaeoecological record with 748 

an abundance of microcharcoal fragments indicating the use of burning activities in the area, a 749 

reduction in woodland taxa, the evidence for Castanea, Juglans, Olea and Vitis cultivations, as well 750 

as the presence of nitrophilous taxa (i.e. Chenopodiaceae, Plantago and Rumex) probably connected 751 

to grazing practices. These findings are consistent with those of Cruise et al. (2009) who also 752 

recorded a notable reduction in Abies and other tree taxa associated with burning. However, in 753 

contrast to the current study, these authors concluded that the charcoal evidence indicated “light, 754 

controlled burning” (p. 999) rather than woodland clearance by fire. In our opinion, this is unlikely 755 

given the significant rise in microcharcoal influx and the deposition of colluvium in the basin, 756 

suggesting a sustained period of landscape disturbance consistent with woodland clearance from the 757 

Late Bronze Age and Iron Age onwards. 758 

 759 

This conclusion is consistent with the archaeological evidence, which clearly indicates that the 760 

pattern of human settlement and subsistence shifted from a dependence on the exploitation of 761 

lowland and coastal resources to a greater dependence on upland resources during the Copper Age 762 

(~5800-4200 cal. BP) and Bronze Age (~4200-2900 cal. BP). Sites are concentrated at altitudes 763 

between 400 m and 800 m asl (Bronze Age 'Castellari'), along watersheds and mountain hilltops 764 

(e.g. Uscio, northern Apennines) that are considered important strategic locations for access to 765 

mountain pastures (transhumant pastoralism), although artefactual remains have also been located at 766 

higher elevations. The period also witnesses the initiation of large-scale Copper Age mining (Maggi 767 

and Pearce, 2005, 2013), and the introduction of agricultural terracing during the Middle Bronze 768 

Age (~3800 cal. BP; Maggi, 2004). As noted above, there were pronounced changes in the 769 

vegetation and environment during this period, and into the Iron Age and historic periods, which 770 

have been attributed to human activities including cultivation, animal husbandry and woodland 771 

management (e.g. Juglans, Castanea and Olea). The impact of climate change remains uncertain, 772 

but there is an increasing body of evidence to indicate that both human activities and vegetation 773 
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succession were occasionally affected by abrupt events, e.g. 4200 cal. BP (Branch, 2013; Di Rita 774 

and Magri, 2019). 775 

 776 

6. Conclusions 783 

The palaeoenvironmental data presented here confirm the importance of Pian del Lago as a unique 784 

biostratigraphic archive for reconstructing the environmental history of the northern Apennines. In 785 

particular, the results of pollen analysis have made it possible to shed light on the upper Late 786 

Pleistocene and Early Holocene; periods poorly documented in this geographical area. The 787 

identification of seven interstadials from ~43,000 cal. BP to the beginning of the Holocene is of 788 

considerable significance for our understanding of vegetation response in southwestern Europe to 789 

periods of abrupt climate change. Overall, the record indicates that for much of the upper Late 790 

Pleistocene, steppic taxa (mainly Artemisia and Chenopodiaceae) with shrubland of Juniperus, 791 

Salix and Ephedra, typical of central and northern Europe, were less prevalent in the northern 792 

Apennines. Tree species (e.g. Pinus, Abies and Alnus) apparently persisted throughout the period, 793 

although it should be noted that phases of poor pollen preservation (possibly equated with stadials) 794 

may have resulted in an expansion of steppic taxa. The presence of herbaceous taxa throughout the 795 

Pian del Lago sequence nevertheless indicates that the woodland was open in structure, supporting 796 

the hypothesis advocated for greater moisture stress during this period (cf. Allen and Huntley, 2000; 797 

Fletcher et al., 2010). 798 

 799 

As noted, the chronological uncertainties associated with the Pian del Lago sequence preclude 800 

detailed discussion of the rate and duration of the main vegetation changes. The data from Lago 801 

Grande di Monticchio indicate, however, that vegetation succession during the upper Late 802 

Pleistocene was so rapid that it may have contributed to the magnitude of environmental variations 803 

in mountain ecosystems by affecting biogeochemical cycles (Fletcher et al., 2010). If this 804 

hypothesis is correct, it would be worth testing by undertaking further multi-proxy 805 
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palaeoenvironmental and palaeoclimatic research at Pian del Lago (e.g. diatoms, Cladocera, 806 

Chironomids) coupled with the development of a chronology of higher precision (e.g. radiocarbon 807 

dating, U-series dating and tephrochronology). 808 

 809 

The persistence of Pinus, Picea and Larix along with mesophilous taxa (i.e. Abies, Quercus decid., 810 

Corylus and Alnus) during the Last Glacial Maximum (LGM) is noteworthy. According to Bertoldi 811 

et al. (2007), Picea was a typical species of interstadial periods in Emilia (eastern northern 812 

Apennines), whilst at Pian del Lago it sharply characterises the maximum expansion of the Würm 813 

glaciation, along with Larix. Today, relict formations of Picea near Passo del Cerreto (~60 km from 814 

the study site) and Sestaione Valley (~110 km away) can possibly be linked to its expansion in the 815 

northern Apennines (cf. Branch and Marini, 2013; Ravazzi, 2002). If regional pollen transportation 816 

is excluded, the site of Pian del Lago could therefore have been an intermediate area where Picea 817 

was present, linking the south-western Alps and the north-western Apennines. This part of the 818 

northern Apennines can therefore be regarded as a favourable environment for the persistence - 819 

even during climatically unfavourable periods - of relatively demanding vegetation communities 820 

creating a refuge for mesophilous species, which then spread across southern Europe during the 821 

Early Holocene. Indeed there is now a growing body of palaeoenvironmental research in northern 822 

Italy and other parts of Europe indicating the presence of arboreal populations, especially conifers 823 

but also mesophilous taxa, during the climatically more hostile phases of the upper Late Pleistocene 824 

(e.g. Drescher-Schneider et al., 2007; Guiter et al., 2008; Jalut et al., 2010; Kaltenrieder et al., 2009; 825 

Miola et al., 2003; Müller et al., 2003; Willis and Van Andel, 2004; Willis et al., 2000). 826 

 827 

Finally, this new investigation at Pian del Lago highlights the importance of using, whenever 828 

possible, heavy-duty percussion or rotary drilling equipment to explore basins (large and small) for 829 

palaeoenvironmental research. The equipment permitted the recovery of core samples to a much 830 
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greater depth than the previous investigation (Cruise et al., 2009), which has provided a record of 831 

climate and environmental change that is unique to the northern Apennines. 832 

 833 
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