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1. Introduction 

Recent years have witnessed the increasing importance of social media platforms as 

alternative information sources. Given the enormous volume and the rapid speed of information 

transmission, social media provides a more comprehensive real-time news database compared 

to traditional media channels (e.g. Zhang et al., 2011). However, this large amount of instant 

information can also contain potential noise that might mislead readers. These concerns are 

more critical given the recent rise of social bots, cybots, and social media farms (e.g. Ferrara 

et al., 2016), which could be weaponized to disseminate fake news and manipulate stock 

markets (Forbes, 2017). 

Indeed, the influence of social media bot activities on stock markets is not negligible. In 

our data, there are cases in which a sudden increase in the volume of automated (bot) tweets is 

associated with significant changes in stock returns. For example, on 1st May 2017, there was 

an upsurge in the number of ‘bot’ tweets with positive sentiment for Pearson from 18 to 4,349. 

On the same day, Pearson stock price increased by 1.01%, compared to a 0.63% rise of FTSE 

100. Another case is dated on 29th March 2017. The number of bot-created tweets containing 

the keyword ‘Barclays’ increased from 5 to 14,668 (all with negative sentiment) and Barclays 

stock price decreased by 0.35%. In the following week, Barclays’ shares lost over 5%. These 

concerns and stylized observations lead to a question of whether there is an empirically justified 

link between information spread by automated social media accounts and stock markets. 

Our paper is related to a few strands of literature. First, this paper contributes to the recent 

literature on social media and the stock market. Multiple studies have suggested that stock 

market participation and Twitter use are positively correlated (e.g. Bonaparte and Kumar, 

2013). Tweets can also be used to forecast aggregate market indexes and individual stock 

performance (e.g. Zhang et al., 2011; Sprenger et al., 2014a, b). A few papers investigate the 

link between social media and stock market manipulation (e.g. Renault, 2017b; Al Nasseri et 
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al., 2015). However, these studies do not directly consider the fact that not all messages posted 

on social media are created by humans. Some Twitter users are bots, automated computer 

algorithms that are designed to pump intended information into public domains. Given that 

Twitter bots’ tweets are autonomously created and spread, they can potentially contain helpful 

information, noise, and even unreliable information. 1  Thus, it is reasonable to expect 

differences in the effects of bot tweets and human tweets on stock markets. This has not yet 

been considered in the existing literature. 

In addition, most existing literature investigates the influence of information spread in 

professional investing platform and/or social media on daily stock prices (e.g. Sprenger et al., 

2014b; Rakowski et al., 2018). However, the use of daily data might not always capture the 

feature of swift information flows in social media. There are a few recent studies (e.g. Renault, 

2017a; Behrendt and Schmidt, 2018) examining the impacts of social media information on 

intraday stock prices. Renault (2017a) finds that online investor sentiment derived from 

messages posted on StockTwits can help predict intraday stock returns, while Behrendt and 

Schmidt (2018) do not find economically meaningful co-movement between intraday volatility 

and stock-related Twitter information. Our study complements and contributes to this strand of 

literature in two ways. To the best of our knowledge, this work is the first attempt to investigate 

the link between stock markets and social media content created by automated accounts. 

Further, the unique dataset allows us to account for the near-instant information flows in social 

media that might have a different effect on the stock market versus information from other 

sources that is typically spread at lower speed. 

 
1 Several studies have found evidence for the disproportional role of Twitter bots in spreading low-credibility 

content (e.g. Shao et al., 2018). Additionally, some studies (e.g. Kogan et al., 2018) have examined the impacts of 

fake news on stock market, while our paper focuses on the information spread by social media bots rather than 

fake information in general. 
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Second, this study makes a multidisciplinary contribution to the field of social media bots, 

politics, and the stock market. Gorodnichenko et al. (2018) detect spillover effects from bots 

to human activities on social media during political events such as the 2016 Brexit Referendum 

and 2016 US Presidential Election. However, it is difficult to evaluate the relationship between 

bots and political outcomes because the latter are not observable in real time. We contribute to 

this strand of literature by examining the link between real-world outcomes and information 

spread by Twitter bots. The evidence from financial markets could also be extrapolated to 

political opinions or other real-life events that could be associated with social media 

information flows. 

Our data come from three sources. First, we have a unique and comprehensive Twitter 

dataset.2 About 69.76 million tweets are collected from the Twitter Streaming application 

programing interface (API) from August 2015 to July 2018. These tweets contain the names of 

FTSE 100 firms. All Twitter messages have information about the content of the tweets as well 

as users’ metadata such as username and ID, date, location, and friend and follower counts. 

After excluding less frequently tweeted firms, our final data cover 55 firms with an average 

number of daily tweets of 100 or more during the sample period.  

Second, daily stock prices, volume, and bid-ask spread for the sampled companies are 

obtained from Datastream. Intraday data are also employed: 5-min stock prices and volume are 

collected from Tickdatamarket between August 2015 and July 2018.3 Finally, traditional news 

data are hand collected from the Financial Times.4 Thus, there are 37,674 firm-days for daily 

data and 1,408,538 observations for 5-min intraday data. 

 
2 Some prior studies use secondary data of aggregate tweet sentiment and other features. For example, Behrendt 

and Schmidt (2018) use 1-min Twitter count and sentiment data from Bloomberg. Cathcart et al. (2019) extract a 

measure of media tone from the Thomson Reuters News Analytics database. However, in this study, primary tweet 

data are collected and allow us to experiment with different measures of size and sentiment of information flows. 

3 Source: www.tickdatamarket.com 

4 Source: www.ft.com. Financial Times is widely recognized as a leading news outlet at least for UK companies 
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Our main results suggest that Twitter information is related to stock returns, volatility, and 

trading volume of individual stocks regardless of whether daily or high-frequency data are used. 

Both human and bot tweets have significant relations with stock features, and the magnitude 

of the impact of human tweets is larger. Moreover, the volume and sentiment of messages are 

also significantly associated with stock trading indicators. These results are robust to multiple 

alternative specifications such as tweets during pre-trading hours, lagged tweet features, as well 

as alternative measures of volatility, volume, bid-ask spread, and the sentiment of Twitter 

messages. Further, we use an event study to detect abnormal increases in the volume of tweets 

and bot-tweets and examine stock responses following these increases. The results show 

significant associations between tweeting activities and stock volatility as well as trading 

volume. We also detect a bounce-back pattern of stock prices following increases in the volume 

of negative retweets. 

Our findings raise some important implications. First, the transparency of tweets posted 

by bots on social media should be enhanced. Moreover, policy makers and regulators should 

establish a code of practice to monitor social media providers to prevent the spread of fake 

information. Second, there is a need for resources to mitigate the potential problems arising 

from a lack of social media literacy because people could be misled by false information. 

Finally, our study suggests the potential benefits of data availability for researchers. The large 

amount of data from social media should be made available for investigations and studies. 

These data in turn play an important role in monitoring (ab)usage of social media networks. 

The rest of this paper is organized as follows. Section 2 reviews the relevant literature. 

Section 3 describes the Twitter and stock data employed in the study. Section 4 explains the 

 

and UK financial news. All relevant news on sampled companies should be covered due to competition between 

news outlets. 
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methodology. Section 5 presents the empirical results. Section 6 summarizes the findings and 

concludes. 

 

2. Related literature 

2.1 News, stock message boards, Twitter information intermediaries, and social media bots 

Several studies have investigated the relationship between news, information spread in social 

media platforms such as Twitter, and stock performance. For instance, Dougal et al. (2012) 

find a causal relation between the Wall Street Journal columnists and Dow Jones Industrial 

Average daily returns. Local media coverage of earnings announcements of S&P 500 index 

firms can help to forecast local stock trading (Engelberg and Parsons, 2011). Chen et al. (2014) 

show that articles and commentaries on a popular online forum, seekingalpha.com, predict 

future stock returns and earnings surprises. Based on high-frequency data of UK stocks, Gross-

Klussmann and Hautsch (2011) find significant reactions of returns, volatility, trading volume, 

and bid-ask spread in response to news announcements collected from Reuters NewsScope 

Sentiment Engine. 

Multiple researchers have directed their attention to the large amount of qualitative user-

generated information from online stock forums, and their findings have been mixed. Wysocki 

(1998) shows that the posting volume on Yahoo! message boards can forecast next day trading 

volume and returns of the related stocks. Contrarily, Tumarkin and Whitelaw (2001) find that, 

consistent with market efficiency, online message board activity cannot predict industry-

adjusted returns or abnormal trading volume. Another relevant study by Antweiler and Frank 

(2004) uses a Naive Bayes algorithm to study information from both Yahoo! Finance and 

Raging Bull for 45 companies in the Dow Jones Industrial Average and the Dow Jones Internet 

Index. They acknowledge that the volume of such messages can help forecast volatility while 

the effect on stock returns is statistically significant but economically small. In contrast, 
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Behrendt and Schmidt (2018) argue that stocks-related tweets are not useful to assess and 

forecast intraday volatility for individual-level stocks. Some other studies have considered the 

sentiment embedded in messages on stock message boards such as StockTwits, and find the 

significant link between sentiment and stock index returns (e.g. Das and Chen, 2007; Renault, 

2017a).  

Since social media platforms such as Twitter provide alternative sources of information for 

investors, there are several studies examining how information spread in social media could 

affect investors’ beliefs. For example, emotional tweet percentage is linked to three major US 

stock market indicators, namely the Dow Jones Industrial Average, NASDAQ, and S&P 500 

(e.g. Zhang et al., 2011). Moreover, Sprenger et al. (2014a) find significant reactions in an S&P 

500 company’s stock prices to unusually high tweets volume about that company. Sprenger et 

al. (2014b) show that there is a strong relationship between Twitter messages sentiment, 

volume, and individual stock returns, trading volume, and volatility.5 

However, these studies have not yet accounted for the fact that some messages on social 

media are posted by bots, automated computer algorithms that could spread information and 

potentially mislead the general public. This concern has led to an increasing number of studies 

in computer science documenting the existence of social media bots and their influence. Stukal 

et al. (2017) acknowledge the use of bots to spread news stories in Russia between 2014 and 

2015. Kollanyi et al. (2016) find that bots influenced public opinion during the 2016 EU 

Referendum and 2016 US Presidential Election. Overall, these studies reveal that bots can 

imitate humans and are useful in disseminating information. More importantly, human and bot 

accounts interact with each other, and the former is more likely to retweet/share information 

 
5  Similarly, Ranco et al. (2015) illustrate that cumulative abnormal returns react significantly to abnormal 

increases in tweeting activities, based on a sample of 30 companies from the Dow Jones Industrial Average. 

Renault (2017b) demonstrate that fraudsters could use social media to manipulate stock prices of small 

capitalization firms.  
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than the latter (e.g. Ferrara et al., 2016). Motivated by the gap in finance literature and the 

findings in computer science literature, we aim to explore the effects of information spread by 

Twitter bots on the stock market in this paper. 

 

2.2. Psychological bias, the spread of information, and impacts of news among and on investors  

An emerging strand of literature argues that the spread of information could affect public 

opinions during political events. DeMarzo et al. (2003) theoretically show that repeated signals 

convert multi-dimensional to uni-dimensional (dis)agreements that are in turn effective at 

polarizing public opinions. Gorodnichenko et al. (2018) empirically reveal that the spread of 

information by Twitter bots polarized political beliefs during the 2016 Brexit Referendum and 

2016 US Presidential Election. 

Another strand of relevant literature focuses on how various channels of information 

dissemination could differently influence investors’ behavior. Hirshleifer and Teoh (2003) 

show that different forms of firm’s information disclosures affect investors differently due to 

limited attention and processing power. Similarly, Barber and Odean (2008) argue that most 

investors only think about buying stocks that can catch their attention due to limited attention 

problems. Dimpfl and Jank (2016) find a strong association between Dow Jones index volatility 

and the volume of retail investors’ search queries for its name. Further, trading decisions can 

be influenced via numerous channels including word of mouth or epidemic types of 

transmission (e.g. Hong et al., 2005). 

There are two main groups of research into the mechanism via which media coverage and 

public information impact stock markets. The information view states that media coverage can 

lower the cost of information acquisition and reduce information asymmetry between firms 

and investors (e.g. Tetlock, 2010; Bushee et al., 2010; Blankespoor et al., 2014). The salience 

view argues that more media coverage might bring the company more investor attention and 



9 
 

investments. For instance, Da et al. (2011) find that increasing attention, proxied by a search 

volume index, forecasts high stock prices in the next two weeks and big first-day returns after 

IPOs. Solomon et al. (2012) state that fund holdings with stocks recently covered in the press 

attract more investments than fund holdings with stocks not featured in the media.  

We conjecture that there might be a third view on the mechanism via which public 

information influences investors’ decisions. Since there is vast amount of information in social 

media, and due to limited attention and costly information acquisitions (e.g. Barber and Odean, 

2008), social media (bots) could exacerbate noise trading. Traditional asset pricing rules out 

the impact of irrationality based on an argument that competition among rational arbitrageurs 

would eliminate irrational beliefs and noise. However, under certain circumstances, noise 

trading could dominate the market. In practice, arbitrageurs who enforce the no-arbitrage 

principle and uphold market efficiency face significant risks and constraints (e.g. Pontiff, 2006). 

In particular, rational arbitrageurs would require a noise-trader risk premium and could be 

deterred by the unpredictability of noise traders’ misperceptions because such collective 

misperceptions could induce substantial losses (e.g. DeLong et al., 1990). 

  

3. Tweet features and bot identifications 

3.1. Tweet data collection and cleaning 

This study uses Twitter Streaming API to collect data.6 API can be treated as an interface 

between users and the system. The interface passes the inquiries raised by users to the system 

and then returns the responses to the users. We make requests to collect tweets with a FTSE 

100 company name and have a random sample of all tweets containing any FTSE 100 company 

 
6  API can collect real-time tweets with pre-determined characters. More information can be found at 

https://developer.twitter.com/en/docs/tweets/filterrealtime/guides/powertrack_rules_and_filtering, accessed on 

28 June, 2018. 

https://developer.twitter.com/en/docs/tweets/filterrealtime/guides/powertrack_rules_and_filtering
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names. The collected information includes the tweets’ content, metadata, username and ID, 

date, location, friend, and follower counts. Approximately 69.76 million tweets containing 

names of FTSE 100 companies are collected from 1st August 2015 to 31st July 2018.7 Daily 

stock data for FTSE 100 companies are acquired from Datastream from 1st January 2014 to 31st 

July 2018 to estimate abnormal measures of stock returns. The 5-min stock data are obtained 

from Tickdatamarket between August 2015 and July 2018. 

An extra cleaning process is applied to make sure that our Twitter data capture the sound 

information flows in social media. In particular, we cannot obtain satisfactory Twitter data for 

some companies (e.g. ‘Aberdeen Asset Management’), probably because Twitter users are not 

likely to post long company names. Therefore, we exclude all companies with fewer than 100 

average daily tweets. This leaves us with a final sample of 55 companies (full list in Table A1 

the online Appendix). 

Following Kollanyi et al. (2016), tweets are cleaned in three steps. First, special characters 

in tweets are deleted such as link tokens (starting with ‘http’, ‘https’, ‘www’), hashtag tokens 

(starting with ‘#’), and user identifier tokens (starting with ‘@’) from the tweet messages. 

Second, all tweets containing only links or URLs are deleted. Finally, all non-English tweets 

are excluded. 

3.2. The sentiment of Twitter messages 

As sentiment of news is one of the most important features of its information content, our 

study separates positive tweets from negative tweets using TextBlob. TextBlob is a text-

processing tool in Python that returns a polarity score for each tweet posting.8, 9 The polarity 

 
7 FTSE 100 composites as of 1st January 2014 are used. 

8 Refer to Loria (2018) for more details about TextBlob. 

9 The correlation between the sentiment using TextBlob and Renault (2017a) social media lexicon is 0.7 for the 

sampled companies. This result is conditional on that the sentiment is detected (at least one word is defined as 

either positive or negative). 
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scores range from -1 to 1: a negative (positive) score indicates that the sentiment is negative 

(positive) while 0 suggests that the sentiment is neutral. Both PatternAnalyzer and 

NaiveBayesAnalyzer in TextBlob are employed to perform sentiment analysis, and the same 

sentiment score is obtained for each tweet posting. Table A3 in the online Appendix gives 

examples of how the polarity scores of tweets in our sample are obtained using TextBlob. 

 

3.3. Humans vs. automated bots Twitter accounts 

There is no perfect procedure to recognize bot tweets because bots/cybots can imitate 

human behavior (Haustein et al., 2016). That being said, several studies (Chu et al., 2010; Cook 

et al., 2014) have discussed the criteria that can help to separate human and bot accounts. First, 

human users are more likely to tweet on weekdays and during the day; the tweeting time of bot 

accounts does not follow these patterns. Moreover, Haustein et al. (2016) document that the 

daily average number of posts is about five for bot accounts and two for human accounts. 

Finally, Lee et al. (2010) find that bot agents are more likely to constantly post similar messages 

whereas human accounts do not. Based on these, we identify a Twitter account as a potential 

bot agent if any one of the following three criteria about suspicious tweeting activities is met: 

(i) at least five tweets during abnormal tweeting times, i.e., from 0:00 to 6:00 am10; (ii) more 

than ten tweets are posted a day; and (iii) repeating the same tweet content three times or more 

on one day. A Twitter account is classified as a bot account if we record suspicious activities 

on more than 50% of active days during the sampled period. For example, if an account has 

tweeting activities for ten days, then it is detected as a bot account if this account is flagged as 

 
10 Our time is always London time, which is Greenwich Mean Time (GMT) in the winter and British Summer 

Time (BST) in the summer. 
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having suspicious bot behavior on more than five days.11 To cross-check the validity of our 

bot detection, we employ Botometer (previously BotOrNot). This is an online social media bot 

detection tool developed by researchers from Indiana University and Northeastern 

University.12 Our analyses based on these techniques are consistent with each other. 

A reader might be interested in what type of information bots actually spread. To provide 

a rough answer to this question, we extract the most frequent words from the content of bot 

tweets. The mentioned firms are categorized into industry groups, namely manufacturing, non-

financial services, or financial services industries (See Table 1). In general, bot accounts that 

mention manufacturing and non-financial services firms are likely to post advertisement related 

to products and services. These bots also mention words related to firm events: ‘deal’, ‘launch’, 

‘event’, and ‘merger’. When bots mention financial services firms, they are more likely to 

mention financial terms such as ‘rate’, ‘profit’, ‘hold’, ‘keep’, ‘target’, ‘buy’, or ‘loss’.  

 

3.4. Original tweets and retweets 

Original tweets, which are posted for the first time, are separated from their retweets. First, 

the text of each tweet is checked, and a new variable RT is generated. RT is 1 if the tweet 

begins with ‘RT @’, which means that this is a retweet; or 0 otherwise, which indicates that 

this is an original tweet. We then examine the content after ‘@’ but before the main text and 

denote it as RT_from. This is the username of the Twitter account from which the tweet was 

retweeted. Consequently, the original tweets and their retweets can be identified. 

 

 
11 We try alternative threshold values for every criterion and identify an account as bot agent if tweeting behavior 

satisfies all criteria on more than half of the days and for three or more days, and we obtain similar results. 
12 More information can be found in Davis et al. (2016). A threshold of 0.5 is used to detect automated accounts. 
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4. Aggregation of tweet information and estimation framework 

4.1. Tweet posting aggregation 

All daily tweets are aggregated to examine the relationship between all tweet postings and 

stock price changes on a daily basis. We explore the relationship between market features 

(stock returns, trading volume, volatility, and bid-ask spread) and tweet features (positiveness, 

message volume, and agreement). Similar to Antweiler and Frank (2004), our aggregate 

sentiment measure is given as: 

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑡 = ln (
1 + 𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

1 + 𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

)                     (1) 

where 𝑀𝑡
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

 and 𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

 are the counts of positive and negative tweets on day t. 

The tweet message volume is the natural logarithm of the count of all tweet messages 

containing one sample company name on day t. Tweet agreement is defined as follows: 

𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑡 = 1 − √1 − (
𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 − 𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑀𝑡
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑀𝑡

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
)

2

            (2) 

If all tweet messages are positive or negative, then the agreement among all messages 

equals 1. Tweet and stock feature data are available for most company-day observations. 

Finally, consistent with London Stock Exchange’s trading hours (8:00 am to 4:30 pm), Twitter 

messages posted on and after the market closes at 4:30 pm are assigned to the following day. 

Tweets posted during weekends are pooled to the following Mondays. 

 

4.2. Stock indicators 

Following prior literature (e.g. Antweiler and Frank, 2004), we measure abnormal return 

(ARi,t) as the difference between the log-return (Ri,t) and the expected return E(Ri,t) on a given 

day. Expected return is calculated using the market model. Following previous literature, a 
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100-day estimation period starting 110 days before the relevant date is used.13 

Two measures of volatility are used in our analysis. First, Parkinson (1980) daily volatility, 

which is based on intraday high and low stock prices (𝑆𝑡,ℎ𝑖𝑔ℎ, 𝑆𝑡,𝑙𝑜𝑤), is estimated as follows: 

𝑉𝑜𝑙𝑃𝑎𝑟𝑘 =
ln(𝑆𝑡,ℎ𝑖𝑔ℎ 𝑆𝑡,𝑙𝑜𝑤⁄ )

2√ln 2
 

Second, an abnormal change in the volatility measure equals volatility today minus the 

average volatility over the past 100 trading days (i.e., [-110, -10]). Similarly, trading volume 

is defined as the natural logarithm of the number of shares traded on a given day. A similar 

measure of abnormal changes in trading volume as above is used. Finally, the bid-ask spread 

is the logarithm of the difference between the bid and ask quotes. It is measured by basis points, 

and we make an identical transformation to obtain abnormal changes in the bid-ask spread. 

 

4.3. Summary statistics 

Table 2 presents the descriptive statistics of market and tweet features during the sampling 

period. The average number of daily tweets is 1,852, and the standard deviation is around 4,901 

tweet postings per day. A large number of Twitter messages per company per day indicates 

that our sample comprises a sound information flow. Meanwhile, the average number of tweets 

generated by automated bot accounts is significantly smaller, about 97 messages. Notably, 

tweets generated by bots are more negative than tweets generated by humans. The positiveness 

measure from bot-tweets is 0.5810, which is smaller than the counterpart from all tweet 

messages, 1.0615. There are also significant correlations between trading volume, volatility, 

 
13 Similarly, an alternative 1-year estimation period yields quantitatively similar results as shown in Table D11 in 

the online Appendix. There is a caveat against very long estimation periods since stock characteristics such as 

beta are not time invariant. 
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bid-ask spread, and tweet features.14 

 Figure 1 depicts weekly aggregate features from human-posted and bot-posted tweets on 

the 55 sampled firms. During the week commencing 12th September 2016, there were fewer 

tweet activities (< 300,000 tweet messages). The highest number of tweets was around 870,000 

in the week beginning February 2016 and the week ending January 2017. Furthermore, we 

observe a significant correlation between human and bot tweet volume (Figure 1). Sentiment 

measures from human-posted and bot-posted tweets are also correlated but to a much lesser 

extent (Figure 1).   

 

4.4. Empirical specification 

The baseline regression is as follows: 

𝑦𝑖,𝑡 = 𝛼 + 𝛽1𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑖,𝑡 + 𝛽2𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑖,𝑡 + 𝛽3𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑖,𝑡 + 𝛿1𝑇𝑁𝑒𝑤𝑠𝑖,𝑡 +

𝛿2𝑅𝑖,𝑡−1 + 𝛿3𝑅𝑡
𝐹𝑇𝑆𝐸 + 𝑢𝑖 + 𝜀𝑖,𝑡             (3) 

where 𝑖 stands for firm and 𝑡 denotes time, and 𝑦𝑖,𝑡 are the individual stock returns, 

volatility, trading volume, or bid-ask spread.  

Return is calculated as the log return, and the market-model abnormal return controls for 

the stock’s systematic risk. The market return is the FTSE 100 index return. 

Normalized trading volume is the natural logarithm of the number of shares traded. 

Volatility is the Parkinson (1980) intraday volatility and bid-ask spread is the logarithm of the 

difference between bid and ask quotes scaled by 10,000.  

We also perform regressions with three more measures of volatility, volume, and bid-ask 

spread: abnormal volatility (volume/bid-ask spread) is the volatility (volume/bid-ask spread) 

 
14 See the online Appendix for detailed results. 
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minus the average from a 100-day estimation period starting 110 days before the relevant date. 

The 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑖,𝑡  variable is defined using equation (1) to examine the impact of 

sentiment on stock market features. Tweets created between 4:30 pm on the previous trading 

day, when the London Stock Exchange closes, and 4:29 pm on the current day are used. Tweets 

posted after the market closes can only affect stocks on the next day. Consistent with prior 

literature (e.g. Ranco et al., 2015), a positive (negative) coefficient of positiveness in explaining 

returns (volatility, trading volume) is expected. 𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑖,𝑡 is defined as the natural logarithm 

of the number of tweets between 4:30 pm on the previous trading day and 4:29 pm today. In 

line with Antweiler and Frank (2004), we anticipate a positive coefficient of message to explain 

volatility and trading volume but not returns. 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑖,𝑡 describes the extent that tweets 

agree with or are different from each other, i.e., similar or very different number of positive 

versus negative tweets. Compatible with Sprenger et al. (2014b), negative coefficients of 

agreement to explain returns, volatility, and trading volume are anticipated.  

We control for a number of relevant factors. Following Chen et al. (2014), we include the 

number of traditional news (𝑇𝑁𝑒𝑤𝑠𝑖,𝑡) related to firm i during time period t, proxied by news 

on Financial Times.15 Other control variables include lagged return (𝑅𝑖,𝑡−1), market return 

(FTSE 100 return) 𝑅𝑖
𝐹𝑇𝑆𝐸 , and firm individual fixed effects 𝑢𝑖 . Finally, 𝜀𝑖,𝑡  is the error 

term.16 

 

5. Results discussion 

5.1. Relation of tweet and market indicators 

Table 3 reports fixed effects panel regressions for two return measures, volatility, volume, 

 
15  Robustness checks controlling for sentiment of traditional news provide quantitatively similar results, as 

reported in Tables D12 to D14 in the online Appendix.  

16 See a full list of definition of variables in Table A2 in the online Appendix. 
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and bid-ask spread as the dependent variables. The key independent variables are the three 

aggregate features (positiveness, volume, and agreement) from all tweets containing a sampled 

firm’s name. In line with Chen et al. (2014), we find a significant link between aggregate 

sentiment in messages and stock returns, and the magnitude of this effect (0.0218) is 

economically large because the mean return and market model return are 0.0166 and -0.0056 

(Table 2). There is no significant relationship between Twitter messages volume and stock 

returns and bid-ask spread. 17  This is different from Wysocki (1998), who documents a 

significant relationship between the message volume of stock message boards and stock returns. 

The results reinforce our initial concerns that—in contrast to information on professional stock 

forums, information flows in social media potentially contain significant noise. 

There are strongly significant correlations of tweet indicators with volatility and trading 

volume. The coefficients of message volume are positive and statistically significant in 

explaining variation in volatility and trading volume, a 1% increase in tweet volume is 

associated with a 0.07% increase in trading volume. We also detect statistically significant 

relations between positiveness and volatility, trading volume, and between agreement measure 

and trading volume. This is consistent with our expectation and the prior literature (e.g. 

Sprenger et al., 2014b). However, the magnitude of these coefficients is much smaller than 

those of the tweet message measure. 

Next, we split tweet-based measures into human-posted and bot-posted. The independent 

variables are Twitter features aggregated from human and bot tweets. Table 4 shows significant 

relations between sentiment of both human and bot tweets and stock returns. This effect is 

economically meaningful. This effect is economically meaningful: 1% increase in human (bot) 

tweets positiveness measure of sentiment is associated with 0.0206% (0.0165%) increase in 

 
17 Robustness investigations based on Fama-MacBeth regressions yield quantitatively similar results, as shown 

in Table D15 in the online Appendix. 



18 
 

returns. Positive (negative) human and bot tweets are associated with increases (decreases) in 

the two return measures. Moreover, there are strong associations between human and bot tweet 

features and, volatility and trading volume. The coefficients of both human and bot message 

volume are significantly positive in explaining the variation in volatility and trading volume. 

However, there are very few significant relations between Twitter features and bid-ask spread. 

In our further investigation, we employ the interaction terms between human and bot tweet 

characters as additional independent variables. We find that bot tweet message volume could 

reinforce the human tweet message volume in explaining the changes in volatility and trading 

volume (Table 5). The marginal effects of human and bot tweet messages on volatility and 

trading volume are also illustrated in Figure 2. A higher current level of human (bot) tweets on 

a given stock leads to a stronger impact of the bot (human) tweets. For example, if the current 

level of human tweets is at the 10th (90th) percentile level, then a 1% increase in bot messages 

leads to 0.03% (over 0.04%) increase in trading volume. The average number of bot tweets 

during the sampled period is below 97 (see Table 2). It is therefore affordable to increase these 

tweets more than a few percentage points. This gives practical implications for market 

participants and regulators that, a few hundred bot (human) tweets posted at a right moment 

could potentially spark an increase of several percentage points in trading volume. 

Tables 4 and 5 show that information extracted from both human and bot tweets is 

associated with significant changes in all stock indicators, and the impacts of human tweets are 

larger. This result implies that investors are likely to treat the repeated tweets, which are mainly 

spread by bots, as noise and thus less likely to act on this information. Nonetheless, there are 

significant increases in volatility and trading volume associated with bot-tweets. This is in 

support of Enikolopov et al. (2018), who argue that non-institutional investors tend to be 

affected by tweet postings. Furthermore, they might only change the trading volume but not 

the returns. Also, our measure of volatility (i.e., the high-low range) can be interpreted as a 
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measure of ex-post disagreement among market participants on a given day. Increased 

volatility is associated with bot-tweets (reported in Tables 4 and 5). This supports the argument 

that tweets posted by bots are more likely to cause disagreement among investors’ views on a 

stock’s fundamental value and hence its fair price. 

 

5.2. Intraday analysis 

The real-time nature of Twitter suggests that investigations using intraday data might 

provide further insights. Table 6 presents regression results based on 5-min stock prices from 

August 2015 to July 2018. There are significant relationships between tweets and stock returns, 

volatility, and trading volume. The impact on returns and volatility are economically significant. 

A 1% increase in tweet volume is associated with a 0.11% decrease and a 1.2% increase in 

returns and volatility respectively. These indicate that the information from tweets is 

disseminated in the stock market mainly through disagreement among market participants. 

In Table 7, we decompose tweets posted by humans and bots and estimate the intraday 

regression using 5-min data between August 2015 and July 2018. The results are similar to 

those in Table 6. We find a significant relationship between tweets and trading volume, and 

statistically significant and economically meaningful coefficients of tweet features on returns 

and ex-post volatility. Our results are consistent with prior literature based on high-frequency 

data. Gross-Klussmann and Hautsch (2011) find that news sentiment indicators can forecast 

future stock returns, volatility, trading volume, and bid-ask spread when using 20-s prices of 

UK stocks. Moreover, Renault (2017a) shows that online investor sentiment could help predict 

intraday stock index returns when grouping news sentiment into half-hour intervals. Thus, a 

trading strategy based on intraday sentiment-driven noise trading to buy (sell) in the last half-

hour trading interval and sell (buy) before the market closes is proposed. Similarly, our findings 

also suggest profitable trading strategies based on 5-min trading intervals. 
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Table 8 shows the results of regressing lagged tweet features on market features based on 

5-min data. The results confirm significant relations between information in tweets and bot-

tweets with stock returns, volatility, and trading volume. The effects of tweets on returns and 

volatility are economically significant. For example, a 1% increase in human tweet volume is 

associated with a 0.17% decrease in returns. These results provide further evidence that the 

sentiment (i.e., positiveness and agreement) and volume of tweets are associated with stock 

returns, trading volume, and disagreement among market participants (i.e., ex-post volatility 

when tweet features are collected from the previous 5-min intervals). Our analysis is useful for 

investors to establish profitable trading strategies at high-frequency intervals, and for regulators 

to closely monitor the use of Twitter to disseminate information about the stock market. 

The intraday analysis results indicate that information spread by Twitter bot accounts is 

related to volatility and trading volume of individual stocks, which is consistent with our daily 

analysis. In line with our daily analysis results, we note a significant relationship between 

information disseminated by Twitter bots and stock returns when 5-min stock prices are used. 

 

5.3. Event study 

We also use an event study to identify abnormal increases in volume of tweets and bot 

tweets and examine the impacts of the event on stock market features. An event or abnormal 

increase in tweets or bot-tweets volume satisfies the following three conditions: 1) the absolute 

number of tweets or bot-tweets is in the top 5% of each company’s empirical distribution of 

daily tweets; 2) the relative increase in volume of tweets or bot-tweets is larger than 100%; and 

3) the absolute increase in volume of tweets or bot-tweets is greater than 500. Figure C1 in the 

online Appendix depicts the number of events when there are abnormal increases in tweets 

containing a FTSE 100 firm name. There are about one to two events per day on 55 sampled 

firms during most of the sampling period. The highest number of events per day is 29, which 
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occurred during the week commencing 23rd January 2017. 

Panel A of Table 9 reports changes in returns following different types of events. There is 

no significant relationship on the event days (0) when there are abnormal increases in the 

volume of positive tweets. In contrast, stock prices decrease significantly when there are 

abnormal increases in negative tweet volume. All changes are reported in percentages. Hence, 

the magnitude of reduction is 0.38%. However, we detect significant positive returns during 

the following week (1, 5). The stock prices recover to almost the same level before the event 

in the following week. If we focus on tweets posted by bots, then we find no significant 

relationship on the event days (0) when the tweet volume has abnormal increases, but there are 

significant negative returns in the following week (1, 5) after abnormal increases in positive 

tweet volume. Panel B of Table 9 reports equivalent event study results while returns are 

market-model abnormal returns. The results are consistent with those in Panel A and confirm 

the bounce-back pattern of stock prices associated with abnormal increases in the volume of 

negative tweets. The effect of returns is economically relevant. 

Panel C of Table 9 presents the responses of an ex-post volatility measure to abnormal 

increases in tweet volume. There are strongly significant and positive associations for all time 

windows. This implies that abnormal increases in the volume of both positive and negative 

tweets, and tweets posted by bots could deepen the ex-post disagreement among market 

participants. Panel D of Table 9 shows the relationship between normalized trading volume and 

abnormal increases in tweet volume. There are statistically significant and economically 

meaningful associations in trading volume during all time windows after abnormal increases 

in tweet volume regardless of the type of tweets: positive tweets, negative tweets, or bot 

tweets.18  

 
18 Following abnormal increases in the volume of all tweets, trading volume increases over 9.1%+17.9%=27.0% 

on average among all events in the next week. 
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Panel E of Table 9 reports the changes in bid-ask spread, an inversed measure of liquidity, 

after abnormal increases in tweet volume. Again, we find statistically and economically 

significant associations in the bid-ask spread.19 Human tweets are separated into positive and 

negative tweets, and correlations are similar to the positive and negative bot tweets in Table 9. 

All tweets are further decomposed into original tweets and retweets, and we find that the 

bounce-back pattern of stock prices is related to abnormal increases in the volume of negative 

retweets but not original tweets.20   

Overall, this event study suggests that information embedded in tweets is strongly linked 

to market participants’ disagreement (i.e., ex-post volatility, trading volume, and liquidity); and 

there is a bounce-back pattern of stock prices only in relation to negative tweets. Again, these 

findings support the argument that tweets are more likely to affect non-institutional investors. 

 

5.4. Robustness checks 

It is possible that Twitter bots respond to changes in market conditions instead of causing 

them.21 To partially mitigate this potential issue, we conduct robustness checks by separating 

the Twitter postings into two groups based on the opening time of London Stock Exchange: 

from 4:30 pm yesterday to 8:00 am today as pre-trading, and between 8:00 am and 4:30 pm 

today as trading. Contemporaneous regressions using tweet features collected during pre-

trading hours yield similar results (Table 10). There are a few significant associations between 

tweet indicators and stock returns or bid-ask spread, but we find statistically significant 

relations between tweet features (positiveness, message volume, and agreement) and volatility 

 
19  After the event (abnormal increases in tweets volume), the mean change of bid-ask spread decreases by 

15.1+52.9=68.0 basis points the following week. 

20 See Tables C1 to C3 in the online Appendix for more details. 

21  Intuitively, this potential econometric issue is not very plausible because bot accounts holders have less 

incentives to simply react to market conditions. If they do react, then market conditions are exacerbated. Our 

findings of the association between bot tweets and stock performance remain highly relevant.  
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and trading volume. 

To account for persistence of volatility, GARCH-type models are employed instead of the 

measure based on intraday high-low range. This setup also allows asymmetry between positive 

and negative shocks (Glosten et al., 2003). The results of GARCH (1, 1) and GJR-GARCH (1, 

1) models are quantitatively similar to the main findings (reported in Tables D1 and D2 in the 

online Appendix). 22 , 23  Across all models, the coefficients of bot message are strongly 

significant and positive. Increases in bot tweets are linked to heightened volatility after 

controlling for the long memory characteristics of volatility. Positiveness of bot tweets reduces 

volatility, implying that more negative bot tweets are associated with higher volatility. There is 

also evidence that bot and human tweets interact and reinforce each other. The interaction 

seems to be stronger during pre-trading periods. 

Further robustness checks are conducted to investigate the lagged relations between tweet 

and market features, and the 1-day lagged tweet features are regressed on market features. 

Similar results are obtained and reported in Table D3 in the online Appendix. Specifically, 

there is no statistically significant association between lagged positiveness and stock returns. 

Contrary to Antweiler and Frank (2004), we detect few statistically significant relations 

between message volume and stock returns. This might be caused by the differences in datasets 

and subjects in our study. Investors might be more thoughtful when assessing the information 

content of Twitter messages compared to professional stock forums. Importantly, there are still 

statistically significant associations between 1-day lagged positiveness, message volume, and 

volatility, trading volume. We also use alternative measures of volatility (volume and bid-ask 

 
22  One-step ahead estimation from GARCH and GJR models is used as dependent variables for volatility 

regressions, and this further mitigates the backward causality issue, i.e., market volatility causes changes in tweet 

features. 

23 Hansen and Lunde (2005) show that the GARCH (1, 1) model outperforms within a class of 330 GARCH-type 

models. 
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spread) and obtain similar results (Table D4 in the online Appendix). 

Finally, two alternative aggregate measures of sentiment are employed as robustness 

checks. Following Brown and Cliff (2005), a positive-negative spread is calculated as follows: 

𝑆𝑝𝑟𝑒𝑎𝑑𝑡 =
𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 − 𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑡𝑤𝑒𝑒𝑡𝑠𝑡
                      (4) 

where 𝑀𝑡
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

 and 𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

 are the counts of positive and negative tweets on day 𝑡. 

We also employ the standardized percentages of positive/negative tweets as used in Tetlock 

et al. (2008), and negativeness is given as follows: 

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑡 =
𝑁𝑒𝑔𝑡 − 𝜇𝑁𝑒𝑔

𝜎𝑁𝑒𝑔
                      (5) 

here, 𝑁𝑒𝑔𝑡 =
𝑀𝑡

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑡𝑤𝑒𝑒𝑒𝑡𝑠𝑡
, and 𝜇𝑁𝑒𝑔, 𝜎𝑁𝑒𝑔 are the mean and standard deviation from 

each company’s empirical distribution of 𝑁𝑒𝑔𝑡.  

Both robustness measures yield quantitatively similar results, as reported in Tables D5-

D10 in the online Appendix. These results collectively confirm that both human and bot tweets 

are influential with strong evidence of interaction/reinforcement. The effect is particularly 

robust regarding trading volume and volatility.  

 

6. Conclusions 

Social media has become a popular platform for information sharing and acquisition. 

However, its convenience and popularity also come with threats. Recent literature and events 

have intensified the focus on the uses and abuses of social media for cyber interferences in 

Western democracies. Social media bots/farms could be weaponized during constitutional 

referendums, elections, and swinging political opinions (e.g. US Intelligence Committee, 2018). 

Scientific evidence of bots’ associations with actual outcomes, however, is limited given the 

fact that political beliefs are hard to measure at a reasonable frequency. This paper employs 
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characteristics of FTSE 100 composites as an alternative measure of actual outcomes. 

Specifically, we investigate whether the volume and sentiment of tweets/bot-tweets are 

associated with abnormal changes in stock indicators using a sample of 55 companies in the 

FTSE 100 composites during the period from August 2015 to July 2018.   

Based on the daily frequency, we find significant relations between tweets/bot-tweets and 

stock returns, volatility, and trading volume. This indicates that information embedded in social 

media can help to forecast certain stock features. In addition, there is evidence of significant 

interaction between the volume of tweets posted by humans and bots in affecting stock market. 

Given the fact that humans are more likely to retweet bots (e.g. Ferrara et al., 2016), this finding 

suggests a seeding role of bots in magnifying noise trading or any potential market 

manipulation. The 5-min stock prices are also used to perform an intraday analysis. There are 

associations between tweets (bot-tweets) and stock returns, volatility, and trading volume, 

which are consistent with the daily data analysis. Our results are robust to multiple alternative 

specifications, such as tweets during pre-trading hours, lagged tweets, GARCH and GJR 

volatility, and alternative tweets sentiment measures.  

Following existing literature on message volume and sentiment (e.g. Wysocki, 1998; Chen 

et al., 2014), an event study is conducted to identify stock responses following abnormal 

increases in tweets and bot-tweets volume. The results show that information embedded in 

tweets is strongly linked to market participants’ disagreement (i.e., ex-post volatility, trading 

volume and liquidity). There is a bounce-back pattern of stock prices when there are increases 

in the volume of negative retweets. 

Our findings collectively reveal evidence of social media bots’ relations with real 

outcomes. Particularly, abuses of social media bots could provoke instability (i.e., to intensify 

public heterogeneous beliefs and opinions polarization). Compared to institutional investors, 
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small investors are more sensitive to such information flows.24 Our findings have several 

implications. First, to prevent the potential spread of fake information, this paper emphasizes 

the transparency of information posted on social media and a proper code of practice for social 

media. Besides, there are needs to raise social media literacy and attention on the uses and 

abuses of social media bots. Finally, our study suggests the potential benefits of making social 

media data available for future research.  

 
24 See Ben-Rephael et al. (2017) for a more detailed discussion about institutional and individual investors and 

stock market. 
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Table 1: Most mentioned words in bot tweet activity spikes 

This table reports most mentioned words in large number bot tweet activities by categorizing the 

mentioned firms into three industries, i.e. manufacturing, non-financial services and financial services. 

Words are lemmatized before counting. An abnormal increase in tweets satisfies all the following three 

conditions: (i) in the top 5% of the empirical distribution of daily changes in each firm; (ii) relative 

change is larger than 100%; (iii) absolute change is larger than 100. 

 

Industry Most frequently mentioned words 

Manufacturing bag, check, handbag, preview, job, exhibit, 

fashion, new, leather, deal, men, event, launch, 

authentic, beauty 

  

Non-Financial Services jump, live, count, day, tour, say, idea, get, 

merger, deal, talk, new, ready, come, shop 

  

Financial Services read, rate, bank, profit, hold, keep, price, 

headquarter, target, analyst, buy, loss, move, 

financial, stay 
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Table 2: Descriptive statistics 

This table reports summary statistics. The sample covers 55 of FTSE 100 composites from 1st August 

2015 to 31st July 2018. Returns are log returns, market-model abnormal return is based on market model 

that reflects stock’s idiosyncratic risk, market return is FTSE 100 index return. Volume is the number 

of shares traded, and we calculate Parkinson (1980) intraday volatility using daily high and low prices. 

Traditional news is the number of relevant news on Financial Times. Positiveness is given 

as 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑡 = ln (
1+𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

1+𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒), where 𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 and 𝑀𝑡

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 are the counts of positive and 

negative tweets on day 𝑡, and Agreement is 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑡 = 1 − √1 − (
𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
−𝑀𝑡

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑀𝑡
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

+𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

2

. Human 

(bots) tweet features are based on human (bots) tweets. 

 

  Mean Std. Dev. No. of Obs. 

Return (%)   0.0166    1.8184   37,674 

Mrk-model return (%)  -0.0056    1.5262   37,674 

Trading (log) volume   8.3334    1.4613   37,674 

Abnormal trading (log) volume   0.0026    0.4355   37,674 

Volatility i.e. high-low range (%)   1.3210    0.9504   37,674 

Abnormal volatility (%)  -0.0030    0.8756   37,674 

Bid-ask spread (bpts)     5.6131   17.0815   37,674 

Abnormal bid-ask spread (bpts)   0.0760   17.0179   37,674 

Traditional News   0.0608    0.2726   37,674 

No. of tweets    1851.8089   4900.9761   37,674 

Positiveness     1.0615    1.0018   37,674 

Agreement     0.2550    0.2815   37,067 

No. of tweets generated by humans  1755.3040   4709.4215   37,674 

Positiveness of human tweets   1.0613    0.9926   37,674 

Agreement of human tweets    0.2655    0.2920   36,977 

No. of tweets generated by bots    96.5049    359.4532   37,674 

Positiveness of bot tweets   0.5810    1.1130   37,674 

Agreement of bot tweets    0.3864    0.4411   37,067 
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Table 3: Regressions for all tweets 

This table reports fixed-effects regressions of stock indicators by tweet characteristics. Dependent variables are (log) return, market-model return, volatility i.e. 

Parkinson (1980) intraday high-low range, (normalized) trading volume, and bid-ask spread. Main independent variables are aggregate Twitter characters based 

on tweets collected from 4:30 pm day -1 to 4:29 pm day 0. Message is the natural logarithm of the number of tweets, Positiveness is given as 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑡 =

ln (
1+𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

1+𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) , where 𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
  and 𝑀𝑡

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
  are the counts of positive and negative tweets on day 𝑡 , and Agreement is 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑡 = 1 −

√1 − (
𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
−𝑀𝑡

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑀𝑡
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

+𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

2

. Traditional news is the number of relevant news on Financial Times. T-statistics based on Huber-White robust standard errors are 

reported in parentheses. *, **, *** denote 10%, 5%, 1% significance, respectively. 

 Return Mrk-model return Volatility Volume Bid-Ask 

 (1) (2) (3) (4) (5) 

Positiveness 0.0218*** 0.0218** -0.0474*** -0.0065*** -0.0041 

 (2.77) (2.35) (-5.26) (-2.90) (-1.19) 

Message -0.0220 -0.0214 0.1630*** 0.0670*** -0.0001 

 (-1.64) (-1.36) (10.34) (17.47) (-0.01) 

Agreement -0.0032 -0.0038 -0.0088 -0.0104*** 0.0071 

 (-0.48) (-0.48) (-1.18) (-4.60) (0.83) 

Traditional News -0.0022 -0.0003 0.0947*** 0.0307*** -0.0031 

 (-0.27) (-0.04) (13.90) (17.36) (-0.69) 

Lagged Return 0.0205* 0.0205 -0.0538*** -0.0135*** 0.0083 

 (1.85) (1.53) (-3.78) (-6.19) (1.28) 

FTSE100 Return 0.5293*** 0.0283*** -0.0899*** -0.0182*** -0.0044 

 (79.67) (3.67) (-11.09) (-10.89) (-1.00) 

Observations 37,619 37,619 37,619 37,619 37,619 

R2 0.282 0.003 0.233 0.918 0.014 
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Table 4: Decomposition of human vs. bot tweets 

This table reports fixed-effects regressions of stock indicators by tweet characteristics. Dependent 

variables are (log) return, market-model return, volatility i.e. Parkinson (1980) intraday high-low range, 

(normalized) trading volume, and bid-ask spread. Main independent variables are either human-

originated or bot-originated Twitter characters based on tweets collected from 4:30 pm day -1 to 4:29 

pm day 0. Human (bots) tweet features are based on human (bots) tweets. Message is the natural 

logarithm of the number of tweets, Positiveness is given as 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑡 = ln (
1+𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

1+𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒), where 

𝑀𝑡
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

 and 𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

 are the counts of positive and negative tweets on day 𝑡, and Agreement is 

𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑡 = 1 − √1 − (
𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
−𝑀𝑡

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑀𝑡
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

+𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

2

. Traditional news is the number of relevant news on 

Financial Times. T-statistics based on Huber-White robust standard errors are reported in parentheses. 
*, **, *** denote 10%, 5%, 1% significance, respectively. 

 (1) (2) (3) (4) (5) 

 Return Mrk-model return Volatility Volume Bid-Ask 

Human Positiveness 0.0206*** 0.0213** -0.0429*** -0.0067*** -0.0015 

 (2.65) (2.33) (-4.91) (-3.06) (-0.38) 

Human Message -0.0340 -0.0332 0.2640*** 0.0851*** 0.0082 

 (-1.62) (-1.34) (11.47) (16.19) (0.77) 

Human Agreement -0.0032 -0.0038 0.0010 -0.0079*** 0.0076 

 (-0.45) (-0.45) (0.13) (-3.43) (0.94) 

Bots Positiveness 0.0165*** 0.0146** -0.0346*** -0.0047** -0.0087** 

 (2.70) (2.03) (-5.56) (-2.34) (-2.20) 

Bots Message 0.0043 0.0067 0.0941*** 0.0430*** 0.0141 

 (0.47) (0.63) (10.35) (13.55) (1.22) 

Bots Agreement -0.0066 -0.0081 0.0003 -0.0026 -0.0082* 

 (-1.23) (-1.30) (0.05) (-1.50) (-1.80) 

Traditional News -0.0013 0.0005 0.0819*** 0.0272*** -0.0039 

 (-0.16) (0.05) (12.15) (15.45) (-0.85) 

Lagged Return 0.0210* 0.0212 -0.0533*** -0.0132*** 0.0080 

 (1.88) (1.57) (-3.75) (-6.15) (1.22) 

FTSE100 Return 0.5295*** 0.0279*** -0.0903*** -0.0186*** -0.0044 

 (79.34) (3.60) (-11.13) (-11.02) (-1.03) 

Observations 36,925 36,925 36,925 36,925 36,925 

R2 0.282 0.003 0.242 0.919 0.014 
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Table 5: Human bot interactions 

This table reports fixed-effects regressions of stock indicators by tweet characteristics. Dependent 

variables are (log) return, market-model return, volatility, (normalized) trading volume, and bid-ask 

spread. Main independent variables are aggregate Twitter characters based on tweets collected from 

4:30 pm day -1 to 4:29 pm day 0. Human (bots) tweet features are based on human (bots) tweets. 

Message is the natural logarithm of the number of tweets, Positiveness is given as 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑡 =

ln (
1+𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

1+𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒), where 𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 and 𝑀𝑡

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 are the counts of positive and negative tweets on 

day 𝑡 , and Agreement is 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑡 = 1 − √1 − (
𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
−𝑀𝑡

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑀𝑡
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

+𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

2

 . The ‘Hu ×  Bo ...’ are 

interaction terms between Human and Bot tweets characteristics. Traditional news is the number of 

relevant news on Financial Times. T-statistics based on Huber-White robust standard errors are reported 

in parentheses. *, **, *** denote 10%, 5%, 1% significance, respectively. 

 (1) (2) (3) (4) (5) 

 Return Mrk-model return Volatility Volume Bid-Ask 

Human Positiveness 0.0208** 0.0225** -0.0342*** -0.0057** -0.0003 

 (2.51) (2.31) (-3.64) (-2.49) (-0.06) 

Human Message -0.0315 -0.0209 0.3806*** 0.0980*** 0.0128 

 (-0.97) (-0.55) (11.63) (12.36) (0.85) 

Human Agreement -0.0061 -0.0071 -0.0046 -0.0083*** 0.0111 

 (-0.80) (-0.78) (-0.55) (-3.20) (0.83) 

Bots Positiveness 0.0188** 0.0181* -0.0356*** -0.0045 -0.0080* 

 (2.04) (1.68) (-3.85) (-1.64) (-1.69) 

Bots Message 0.0048 0.0107 0.1330*** 0.0474*** 0.0163 

 (0.40) (0.74) (11.23) (12.48) (1.61) 

Bots Agreement -0.0104 -0.0112 0.0087 -0.0014 -0.0030 

 (-1.45) (-1.33) (1.19) (-0.60) (-0.61) 

Hu Pos. × Bot Pos. -0.0034 -0.0059 -0.0040 -0.0008 -0.0014 

 (-0.39) (-0.57) (-0.44) (-0.29) (-0.31) 

Hu Mess. × Bot Mess. 0.0026 0.0131 0.1286*** 0.0142** 0.0046 

 (0.12) (0.50) (5.85) (2.26) (0.44) 

Hu Agree. × Bot Agree. 0.0071 0.0069 -0.0050 -0.0010 -0.0084 

 (1.04) (0.85) (-0.73) (-0.40) (-0.78) 

Traditional News -0.0013 0.0004 0.0806*** 0.0270*** -0.0040 

 (-0.17) (0.04) (11.98) (15.37) (-0.86) 

Lagged Return 0.0210* 0.0212 -0.0535*** -0.0132*** 0.0080 

 (1.88) (1.57) (-3.77) (-6.17) (1.22) 

FTSE100 Return 0.5295*** 0.0278*** -0.0904*** -0.0186*** -0.0044 

 (79.34) (3.59) (-11.15) (-11.03) (-1.04) 

Observations 36,925 36,925 36,925 36,925 36,925 

R2 0.282 0.004 0.244 0.919 0.014 
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Table 6: Intraday regressions 

This table reports fixed-effects regressions of stock indicators by tweet characteristics. Dependent 

variables are (log) return, market-model return, volatility in basis points, and (normalized) trading 

volume at the end of each 5-minute interval. Main independent variables are aggregated Twitter 

characters based on tweets collected during that 5-minute interval. Tweets before trading hours i.e. after 

4:30 pm day -1 and before 8:00 am day 0 are pooled to the first 5-minute interval of day 0. Message is 

the natural logarithm of the number of tweets, Positiveness is given as  𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑡 =

ln (
1+𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

1+𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒), where 𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 and 𝑀𝑡

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 are the counts of positive and negative tweets on 

day 𝑡 , and Agreement is 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑡 = 1 − √1 − (
𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
−𝑀𝑡

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑀𝑡
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

+𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

2

 . Traditional news is the 

number of relevant news on Financial Times. T-statistics based on Huber-White robust standard errors 

are reported in parentheses. *, **, *** denote 10%, 5%, 1% significance, respectively. 

 

 (1) (2) (3) (4) 

 Return Mrk-model 

return 

Volatility Volume 

Positiveness 0.0584 0.0579 -0.2702*** -0.0129*** 

 (1.60) (1.59) (-4.55) (-11.97) 

Message -0.1114* -0.1070* 1.2147*** 0.1132*** 

 (-1.76) (-1.70) (16.96) (74.06) 

Agreement 0.0065 0.0017 -0.0504 -0.0238*** 

 (0.08) (0.02) (-0.50) (-9.19) 

Traditional News -0.4472 -0.4448 5.3028*** 0.3018*** 

 (-0.28) (-0.28) (6.41) (6.04) 

Lagged Return -0.4449 -0.4449 -0.0020 -0.0000 

 (-1.44) (-1.44) (-1.23) (-0.10) 

FTSE100 Return 0.9345*** -0.0269 -0.5667*** -0.0352*** 

 (2.87) (-0.08) (-10.04) (-37.18) 

Observations 1,408,538 1,408,538 1,408,538 1,408,538 

R2 0.199 0.199 0.004 0.694 
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Table 7: Decomposition of human vs. bot tweets at intraday frequency 

This table reports fixed-effects regressions of stock indicators by tweet characteristics. Dependent 

variables are (log) return, market-model return, volatility in basis points, and (normalized) trading 

volume at the end of each 5-minute interval. Main independent variables are aggregated Twitter 

characters based on tweets collected during that 5-minute interval. Tweets before trading hours i.e. after 

4:30 pm day -1 and before 8:00 am day 0 are pooled to the first 5-minute interval of day 0. Human (bots) 

tweet features are based on human (bots) tweets. Message is the natural logarithm of the number of 

tweets, Positiveness is given as 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑡 = ln (
1+𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

1+𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) , where 𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
  and 𝑀𝑡

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

are the counts of positive and negative tweets on day 𝑡 , and Agreement is 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑡 = 1 −

√1 − (
𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
−𝑀𝑡

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑀𝑡
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

+𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

2

. Traditional news is the number of relevant news on Financial Times. T-

statistics based on Huber-White robust standard errors are reported in parentheses. *, **, *** denote 10%, 

5%, 1% significance, respectively. 

 (1) (2) (3) (4) 

 Return Mrk-model return Volatility Volume 

Human Positiveness 0.0648* 0.0645* -0.2576*** -0.0122*** 

 (1.66) (1.66) (-4.36) (-11.20) 

Human Message -0.1074* -0.1040* 1.1727*** 0.1100*** 

 (-1.72) (-1.66) (16.21) (70.90) 

Human Agreement 0.0295 0.0249 -0.0838 -0.0266*** 

 (0.36) (0.30) (-0.82) (-10.24) 

Bots Positiveness -0.1032 -0.1073 -0.0985 -0.0060* 

 (-0.99) (-1.03) (-1.49) (-1.89) 

Bots Message 0.1219 0.1267 0.3020** 0.0176*** 

 (0.87) (0.90) (2.52) (7.99) 

Bots Agreement -0.2436 -0.2409 0.1119 0.0227*** 

 (-0.75) (-0.74) (0.50) (6.24) 

Traditional News -0.5511 -0.5484 5.2484*** 0.2994*** 

 (-0.34) (-0.34) (6.29) (5.95) 

Lagged Return -0.4458 -0.4458 -0.0021 -0.0000 

 (-1.44) (-1.44) (-1.24) (-0.31) 

FTSE100 Return 0.9352*** -0.0249 -0.5717*** -0.0354*** 

 (2.86) (-0.08) (-9.89) (-36.95) 

Observations 1,375,955 1,375,955 1,375,955 1,375,955 

R2 0.199 0.199 0.004 0.695 
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Table 8: Regressions for 5-minute lagged tweets 

This table reports fixed-effects regressions of stock indicators by tweet characteristics. Dependent 

variables are (log) return, market-model return, volatility in basis points, and (normalized) trading 

volume at the end of each 5-minute interval. Main independent variables are aggregate Twitter 

characters based on tweets collected during the previous 5-minute interval. Tweets before trading hours 

i.e. after 4:30 pm day -1 and before 8:00 am day 0 are pooled to the first 5-minute interval of day 0. 

Human (bots) tweet features are based on human (bots) tweets. Message is the natural logarithm of the 

number of tweets, Positiveness is given as 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑡 = ln (
1+𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

1+𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) , where 𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
  and 

𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

 are the counts of positive and negative tweets on day 𝑡, and Agreement is 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑡 =

1 − √1 − (
𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
−𝑀𝑡

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑀𝑡
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

+𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

2

. Traditional news is the number of relevant news on Financial Times. 

T-statistics based on Huber-White robust standard errors are reported in parentheses. *, **, *** denote 

10%, 5%, 1% significance, respectively. 

 (1) (2) (3) (4) 

 Return Mrkt-model return Volatility Volume 

Lagged Human Positiveness 0.0157 0.0155 -0.1779*** -0.0106*** 

 (0.43) (0.42) (-3.27) (-9.76) 

Lagged Human Message -0.1746*** -0.1710*** 1.3971*** 0.1162*** 

 (-2.81) (-2.75) (22.35) (75.74) 

Lagged Human Agreement -0.0243 -0.0290 -0.0758 -0.0269*** 

 (-0.36) (-0.43) (-1.26) (-10.38) 

Lagged Bots Positiveness 0.0726 0.0675 -0.2018*** -0.0050 

 (0.84) (0.78) (-4.27) (-1.57) 

Lagged Bots Message 0.0267 0.0313 0.3184*** 0.0205*** 

 (0.21) (0.25) (2.80) (9.36) 

Lagged Bots Agreement 0.1814 0.1856 -0.0612 0.0216*** 

 (0.81) (0.83) (-0.45) (5.94) 

Traditional News 0.0622 0.0665 6.1710*** 0.3920*** 

 (0.04) (0.04) (7.27) (7.92) 

Lagged Return -0.4456 -0.4456 -0.0021 0.0000 

 (-1.43) (-1.43) (-1.24) (0.11) 

Lagged FTSE100 Return 0.9158*** -0.0430 -0.6001*** -0.0355*** 

 (2.91) (-0.14) (-10.64) (-36.95) 

Observations 1,375,936 1,375,936 1,375,936 1,375,936 

R2 0.200 0.200 0.004 0.695 
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Table 9: Event study – Market responses following abnormal surges in tweet activities  

This table reports average cumulative (abnormal) returns, average cumulative changes in volatility, 

trading volume, bid-ask spread in responses to abnormal increases in the number of tweets. An abnormal 

increase in tweets satisfies all the following three conditions: (i) in the top 5% of the empirical 

distribution of daily changes in each firm; (ii) relative change is larger than 100%; (iii) absolute change 

is larger than 500 (100 for bot activities). [0], [1], [1,5] report average cumulative changes in percentage 

points. *, **, *** denote 10%, 5%, 1% significance, respectively. 

 

Time windows All Positive Negative Bots Bot pos. Bot neg. 

Panel A: Response of returns 

 [0]  -0.0030 -0.1098 -0.3820*** -0.0309  0.0473 -0.2414* 

 [1]  0.0929*  0.1476**  0.1024  0.0151  0.0303  0.0290 

 [1,5]  0.0943  0.0664  0.2865*  0.2405 -0.4009**  0.3466* 

 Obs.  1218 721 522 695 328 181 

Panel B: Response of market-model abnormal returns 

[0]   0.0562  0.0170 -0.2477**  0.0398  0.0729 -0.1330* 

[1]   0.0425  0.0985*  0.0950 -0.0244  0.0352  0.0507 

[1,5]   0.0507  0.0625  0.1286  0.1638 -0.4794**  0.2143* 

Obs.  1218 721 522 695 328 181 

Panel C: Response of volatility 

[0]  0.2948***  0.2533***  0.3664***  0.1607**  0.0419*  0.0253 

[1]  0.1626***  0.1403***  0.2262***  0.0765**  0.0111*  0.0548 

[1,5]  0.3558***  0.3069***  0.3633***  0.3916**  0.3348**  0.1152 

Obs.  1218 721 522 695 328 181 

Panel D: Response of (normalized) trading volume 

[0] 9.1225***  6.3627***  7.5173*** -0.6154 -3.8387* -6.5174** 

[1] 9.6686***  7.2143*** 11.1803***  5.5388***  2.8529  1.4550 

[1,5] 17.9111*** 13.7167*** 23.9366*** 16.8697** 11.8529* -3.9375 

Obs. 1218 721 522 695 328 181 

Panel E: Response of bid-ask spread 

[0] -15.1186*** -14.5438*** -15.0848*** -13.9371** -10.3607*** -10.8067*** 

[1] -14.6694*** -15.4248*** -14.2154*** -12.7374* -5.2121** -7.7433*** 

[1,5] -52.9291*** -53.4368*** -55.8268*** -42.8992* -32.6067*** -34.0654*** 

Obs. 1218 721 522 695 328 181 
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Table 10: Pre-trading hour regressions 

This table reports fixed-effects regressions of stock indicators by tweet characteristics. Dependent 

variables are (log) return, market-model return, volatility i.e. Parkinson (1980) intraday high-low range, 

(normalized) trading volume, and bid-ask spread. Main independent variables are aggregate Twitter 

characters based on tweets collected from 4:30 pm day -1 to 8:00 am day 0. Human (bots) tweet features 

are based on human (bots) tweets. Message is the natural logarithm of the number of tweets, 

Positiveness is given as 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑡 = ln (
1+𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

1+𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) , where 𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
  and 𝑀𝑡

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
  are the 

counts of positive and negative tweets on day 𝑡 , and Agreement is 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑡 = 1 −

√1 − (
𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
−𝑀𝑡

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑀𝑡
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

+𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

2

. Traditional news is the number of relevant news on Financial Times. T-

statistics based on Huber-White robust standard errors are reported in parentheses. *, **, *** denote 10%, 

5%, 1% significance, respectively. 

 (1) (2) (3) (4) (5) 

 Return Mrk-model return Volatility Volume Bid-Ask 

Human Positiveness 0.0154** 0.0183** -0.0289*** -0.0049** -0.0005 

 (2.06) (2.06) (-3.48) (-2.31) (-0.10) 

Human Message -0.0249 -0.0236 0.1858*** 0.0692*** 0.0152 

 (-1.31) (-1.06) (8.54) (13.38) (1.17) 

Human Agreement -0.0085 -0.0116 -0.0017 -0.0080*** 0.0035 

 (-1.19) (-1.36) (-0.22) (-3.51) (0.83) 

Bots Positiveness 0.0131** 0.0106 -0.0365*** -0.0059*** -0.0050 

 (2.09) (1.44) (-5.68) (-2.93) (-1.60) 

Bots Message 0.0031 0.0027 0.0655*** 0.0294*** 0.0031 

 (0.33) (0.24) (6.80) (9.33) (0.57) 

Bots Agreement -0.0112* -0.0128* 0.0087 -0.0000 -0.0059* 

 (-1.94) (-1.88) (1.46) (-0.02) (-1.77) 

Traditional News -0.0001 0.0021 0.0923*** 0.0301*** -0.0039 

 (-0.02) (0.22) (13.50) (16.94) (-0.83) 

Lagged Return 0.0214* 0.0217 -0.0527*** -0.0131*** 0.0080 

 (1.89) (1.59) (-3.64) (-5.93) (1.22) 

FTSE100 Return 0.5311*** 0.0292*** -0.0914*** -0.0188*** -0.0045 

 (78.50) (3.71) (-11.08) (-10.95) (-1.07) 

Observations 36,157 36,157 36,157 36,157 36,157 

R2 0.284 0.003 0.236 0.918 0.014 
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Figure 1: Weekly aggregate measures of human and bot tweets 

This figure describes weekly aggregate measures of tweets posted by human and bot on the 55 sampled 

firms from FTSE 100 composites from August 2015 to July 2018. Message is log-number of tweets. 

The left (right) y-axis is for human (bot) message. 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑡 = ln (
1+𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

1+𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) , and 

𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑡 = 1 − √1 − (
𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
−𝑀𝑡

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑀𝑡
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

+𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

2

 . Tetlock et al. (2008) Negativeness is standardized 

negative percentage. During the week commencing 12th September 2016, there are less tweet activities, 

i.e. the number of tweet messages is lower than 300,000. The highest number of tweets is around 

870,000 in the week beginning February 2016 and the week ending January 2017. 
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Figure 2: Marginal effects of human and bot messages 

This figure shows the marginal effects of human and bot tweets on stocks trading volume (volatility) 

with different levels of human and bot messages volume. Y axis is the marginal effects of bot (human) 

messages on either volume or volatility, and x axis denotes percentiles of distribution of human (bot) 

messages measure. Vertical lines denote 95% confidence intervals. 
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Appendix A: Textual information 

Table A1: Sampled companies 

This table lists names of the sampled companies. 
 

  Firm name 

 

  Firm name 

1 3I Group 31 Lloyds 

2 Anglo American 32 London Stock Exchange 

3 Antofagasta 33 Marks and Spencer 

4 Astrazeneca 34 Mondi 

5 Babcock 35 Morrison 

6 BAE Systems 36 National Grid 

7 Barclays 37 Old Mutual 

8 BHP Billiton 38 Pearson 

9 British American Tobacco 39 Persimmon 

10 British Land 40 Prudential 

11 British Petroleum 41 Reckitt Benckiser 

12 BT Group 42 Rio Tinto 

13 Bunzl 43 Rolls-Royce 

14 Burberry 44 Royal Bank of Scotland 

15 Carnival 45 Royal Dutch Shell 

16 Centrica 46 Royal Mail 

17 Coca-Cola 47 Sainsbury 

18 Compass Group 48 Schroders 

19 Diageo 49 Severn Trent 

20 Direct Line 50 Standard Chartered 

21 Easyjet 51 Taylor Wimpey 

22 Experian 52 Tesco 

23 Fresnillo 53 Unilever 

24 Glaxosmithkline 54 Vodafone 

25 Glencore 55 Whitbread 

26 HSBC     

27 Intercontinental Hotels     

28 Intertek     

29 Johnson Matthey     

30 Kingfisher     
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Table A2: Definition of variables 

This table gives a list of the definition of variables used in the analysis. 

Variable Definition Measure 

 Aggregate Twitter features 

Positivenessi,t 

Variable for the aggregate 

sentiment of tweets 

containing company i on 

day t  

Natural logarithm of the number of 

positive tweets containing company i 

on day t over the number of 

corresponding negative tweets 

Messagei,t 

Variable for the Twitter 

volume for company i on 

day t  

Natural logarithm of the number of all 

tweets containing company i on day t 

Agreementi,t 

Variable for the aggregate 

agreement of tweets 

containing company i on 

day t 

1 - square root of [1 – square of (the 

difference between the number of 

positive and negative tweets over the 

total number of positive and negative 

tweets)] 

Traditional Newsi,t 

Variable for traditional 

news channels 

Number of articles related to firm i on 

day t on Financial Times 

 Stock indicators 

Returni,t Return for stock i on day t Natural logarithm of the return 

Mrk-model returni,t 

Market-model abnormal 

return 

Difference between the log-return of 

stock i on day t and an estimate of 

expected return using the market model 

over the period from t-110 to t-10 

Volatilityi,t 

Intraday volatility of stock 

prices 

Natural logarithm of (the highest price 

divided by the lowest price of stock i 

on day t), adjusted by 
1

2√2
 

Volumei,t Trading volume 
Natural logarithm of the number of 

stocks i traded on day t  

Bid-aski,t 

Bid-ask spread (in basis 

points) 

Logarithm of the difference between 

bid and ask quotes for stock i on day t, 

scaled by 10,000 
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Table A3: Examples of polarity score of tweets given by TextBlob 

This table presents examples of polarity score of Twitter postings calculated by TextBlob. 

Text Sentiment score 

  

Ivans having a terrible time as Glencore earning slump -1 

HSBC 2015 profit slumps disappointing china market -0.6 

Why does Sainsburys want to buy Argos 0 

investment 3 reasons why carnival corporation ccl is a great momentum  0.8 

excellent news just in HSBC one of the world’s largest bank employing 10s of 

000s here will stay headquartered 

1 
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Appendix B: Correlations 
This table displays correlations between market and tweet features. Market features include daily (log) return, (normalized) trading volume, Parkinson (1980) 

volatility measure, bid-ask spread. Human (bots) tweet features are based on human (bots) tweets. Message is the natural logarithm of the number of tweets, 

Positiveness is given as 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑡 = ln (
1+𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

1+𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒), where 𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 and 𝑀𝑡

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 are the counts of positive and negative tweets on day 𝑡, and 

Agreement is 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑡 = 1 − √1 − (
𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
−𝑀𝑡

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑀𝑡
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

+𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

2

.  Traditional news is the number of relevant news on Financial Times. * denotes correlations 

that are significantly different from 0 at the 1% significance level. 
  

Return Log (volume) Volatility Bid-Ask Human 

Message 

Human 

Positiveness 

Human 

Agreement 

Bots 

Message 

Bots 

Positiveness 

Log (volume) -0.0227*         

Volatility -0.1211* 0.2337*        

Bid-Ask 0.0012 -0.0434* 0.0079       

Human Message -0.0057 0.1688* 0.0779* 0.0003      

Human Positiveness 0.0207* -0.0967* -0.0666* 0.0045 0.0073     

Human Agreement 0.0147* -0.1581* -0.0748* 0.0067 -0.4066* 0.5843*    

Bots Message -0.0029 0.1540* 0.1021* -0.0135* 0.7333* -0.0054 -0.2738*   

Bots Positiveness 0.0109 0.0683* -0.0123 -0.012 0.2970* 0.1923* -0.0118 0.4064*  

Bots Agreement 0.0045 0.0160* 0.0057 -0.0167* -0.0427* 0.1406* 0.0601* 0.0571* 0.3692* 

Traditional News -0.0033 0.1665* 0.1049* -0.0125 0.0937* -0.0342* -0.0510* 0.0889* 0.0304* 
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Appendix C: Event study 

Figure C1: Abnormal increases in tweets 

This figure depicts number of events per week. An event is defined as a day when there are abnormal 

increases in tweets containing a FTSE 100 firm name which satisfies three conditions: (i) in top 5% of 

empirical distribution of daily changes in tweets for each sampled firm; (ii) relative increase is larger 

than 100%; (iii) absolute increase is larger than 500.  
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Table C1: Event study – Response of returns 

This table reports the decomposition of cumulative (abnormal) returns in response to abnormal 

increases in different tweets. An abnormal increase in tweets satisfies all the following three conditions: 

(i) in the top 5% of the empirical distribution of daily changes in each firm; (ii) relative change is larger 

than 100%; (iii) absolute change is larger than 500 (100 for bot activities). [0], [1], [1,5] report average 

cumulative changes in percentage points. *, **, *** denote 10%, 5%, 1% significance, respectively. 
 

Time 

windows 

All Positive Negative Bots Bot pos. Bot neg. Human Human 

pos. 

Human 

neg. 

Panel A: Response of returns 

Responses to abnormal increases in tweets 

 [0]  -0.0030 -0.1098 -0.3820*** -0.0309  0.0473 -0.2414* -0.0151 -0.1450 -0.3934*** 

 [1]  0.0929* 0.1476**  0.1024  0.0151  0.0303  0.0290  0.1056  0.0972*  0.0939 

 [1,5]  0.0943  0.0664  0.2865*  0.2405 -0.4009**  0.3466*  0.0979  0.0804  0.3010* 

 Obs.  1218 721 522 695 328 181 1188 718 519 

Responses to abnormal increases in original tweets 

 [0]  -0.0437 -0.0845 -0.4103** -0.0159 -0.0081 -0.4097* -0.0787 -0.0729 -0.4904** 

 [1]  0.0416  0.0628  0.2891**  0.0174 -0.0378  0.2795*  0.1004  0.0111  0.2286* 

 [1,5]  0.1439  0.0246 -0.0461  0.2189 -0.1773  0.7190**  0.0229  0.0336 -0.0762 

 Obs.  974 469 341 665 301 120 910 453 315 

Responses to abnormal increases in retweets 

 [0]  -0.0697 -0.1935* -0.1807  0.0509  0.1483 -0.1872 -0.0814 -0.2093* -0.1676 

 [1]  0.0920 0.1367**  0.1475  0.1047  0.0486 -0.1608  0.1063  0.1365**  0.1446 

 [1,5] 0.2372** 0.2621**  0.4972*** -0.0752 -0.0587 -0.0683  0.2274  0.1939  0.4888*** 

 Obs.  873 563 399 267 129 45 869 560 396 

Panel B: Response of market-model abnormal returns 

Responses to abnormal increases in tweets 

[0]  0.0562  0.0170 -0.2477**  0.0398  0.0729 -0.1330*  0.0567 -0.0010 -0.2499** 

[1]  0.0425  0.0985*  0.0950 -0.0244  0.0352  0.0507  0.0573  0.0558  0.0802 

[1,5]  0.0507  0.0625  0.1286  0.1638 -0.4794**  0.2143*  0.0731  0.0506  0.1599 

Obs.  1218 721 522 695 328 181 1188 718 519 

Responses to abnormal increases in original tweets 

[0]   0.1069  0.0863 -0.1848  0.0599  0.0619 -0.1979**  0.0813  0.0911 -0.2569 

[1]  -0.0131  0.0137  0.2289** -0.0199 -0.0036  0.2475**  0.0297  0.0071  0.1867* 

[1,5]   0.0746 -0.0208 -0.1222  0.1840 -0.3654**  0.5623** -0.0035 -0.0056 -0.0974 

Obs.  974 469 341 665 301 120 910 453 315 

Responses to abnormal increases in retweets 

[0]  -0.0211 -0.0736 -0.1176  0.0636  0.1615 -0.1625 -0.0339 -0.0916 -0.1072 

[1]   0.0652  0.0907  0.1310  0.0225 -0.0121 -0.0735  0.0825  0.0852  0.1272 

[1,5]   0.1248  0.1521  0.3321** -0.0776 -0.2886* -0.5535*  0.1256  0.1270  0.3317** 

Obs.  873 563 399 267 129 45 869 560 396 
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Table C2: Event study – Response of volatility and trading volume 
This table reports the decomposition of volatility and (normalized) trading volume changes in response 

to abnormal increases in different tweets. An abnormal increase in tweets satisfies all the following 

three conditions: (i) in the top 5% of the empirical distribution of daily changes in each firm; (ii) relative 

change is larger than 100%; (iii) absolute change is larger than 500 (100 for bot activities). [0], [1], [1,5] 

report average cumulative changes in percentage points. *, **, *** denote 10%, 5%, 1% significance, 

respectively. 
 

Time 

windows 

All Positive Negative Bots Bot pos. Bot neg. Human Human 

pos. 

Human 

neg. 

Panel A: Response of volatility 

Responses to abnormal increases in tweets 

[0]  0.2948*** 0.2533*** 0.3664***  0.1607**  0.0419*  0.0253  0.2892 0.2312*** 0.3611*** 

[1]  0.1626*** 0.1403*** 0.2262***  0.0765**  0.0111*  0.0548  0.1670 0.1515*** 0.2199*** 

[1,5]  0.3558*** 0.3069*** 0.3633***  0.3916**  0.3348**  0.1152  0.3602 0.2788*** 0.3338*** 

Obs.  1218 721 522 695 328 181 1188 718 519 

Responses to abnormal increases in original tweets 

[0]  0.4329*** 0.3315*** 0.3636***  0.1055  0.0912*  0.0200  0.4688 0.3292*** 0.4207*** 

[1]  0.2274*** 0.1999*** 0.2348***  0.0817  0.0678*  0.1177*  0.2384 0.2250*** 0.2777*** 

[1,5]  0.5696*** 0.5310*** 0.4463***  0.3749 0.4249***  0.1209  0.5618 0.4734*** 0.5535*** 

Obs.  974 469 341 665 301 120 910 453 315 

Responses to abnormal increases in retweets 

[0]  0.1857***  0.1188** 0.2475*** -0.0589 -0.0123  0.2262  0.1869  0.1035** 0.2531*** 

[1]  0.1446***  0.0846** 0.2247*** -0.0236 -0.0050  0.0830  0.1468 0.0885*** 0.2275*** 

[1,5]  0.2888***  0.2255**  0.3514** -0.1287 -0.0178  0.0401  0.2975  0.2523**  0.3489** 

Obs.  873 563 399 267 129 45 869 560 396 

Panel B: Response of (normalized) trading volume 

Responses to abnormal increases in tweets 

[0] 9.1225*** 6.3627*** 7.5173*** -0.6154 -3.8387* -6.5174**  9.1613 5.9871*** 7.2406*** 

[1] 9.6686*** 7.2143*** 11.1803*** 5.5388***  2.8529  1.4550  9.5194 7.0642*** 10.5213*** 

[1,5] 17.9111*** 13.7167*** 23.9366*** 16.8697** 11.8529* -3.9375 17.8745 11.0679** 24.2224*** 

Obs. 1218 721 522 695 328 181 1188 718 519 

Responses to abnormal increases in original tweets 

[0] 12.9208*** 6.5964***  4.7994* -1.6898 -3.8824* -3.6356 14.5736 7.1038***  5.7998** 

[1] 13.1173*** 8.5612*** 13.6725***  7.3412 6.8460***  6.4731* 14.1471 9.6962*** 15.2918*** 

[1,5] 26.9189*** 21.2776*** 22.1404*** 20.5997 23.1817***  3.7549 28.1391 19.5932*** 25.6950*** 

Obs. 974 469 341 665 301 120 910 453 315 

Responses to abnormal increases in retweets 

[0]  3.8963**  4.9069** 7.3725*** -5.3645 -1.7490  0.4087  4.3064  4.5787** 7.7202*** 

[1] 6.0892*** 5.5938*** 10.4086*** -0.0230  1.4290 -4.4835  6.7802 5.6728*** 10.4510*** 

[1,5] 14.1659*** 10.9526** 26.4060*** -10.9239 -9.3281 -29.0807* 15.3796 11.5705** 26.0623*** 

Obs. 873 563 399 267 129 45 869 560 396 
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Table C3: Event study – Response of bid-ask spread 
This table reports the decomposition of cumulative changes in bid-ask spread in response to abnormal increases in different tweets. An abnormal increase in 

tweets satisfies all the following three conditions : (i) in the top 5% of the empirical distribution of daily changes in each firm; (ii) relative change is larger than 

100%; (iii) absolute change is larger than 500 (100 for bot activities). [0], [1], [1,5] report average cumulative changes in percentage points. *, **, *** denote 10%, 

5%, 1% significance, respectively. 

 
Time windows All Positive Negative Bots Bot pos. Bot neg. Human Human pos. Human neg. 

Response of bid-ask spread 

Responses to abnormal increases in tweets 

[0] -15.1186*** -14.5438*** -15.0848*** -13.9371** -10.3607*** -10.8067*** -15.3488 -15.6338*** -15.1950*** 

[1] -14.6694*** -15.4248*** -14.2154*** -12.7374* -5.2121** -7.7433*** -15.0629 -16.1590*** -14.5728*** 

[1,5] -52.9291*** -53.4368*** -55.8268*** -42.8992* -32.6067*** -34.0654*** -54.6402 -56.0207*** -55.4746*** 

Obs. 1218 721 522 695 328 181 1188 718 519 

Responses to abnormal increases in original tweets 

[0] -12.8980*** -8.3171*** -7.3179*** -13.7383 -6.8517*** -7.6324** -12.0182 -9.0906*** -7.5614*** 

[1] -12.9300*** -8.2405*** -8.1158*** -12.6109 -3.6379* -9.1111*** -11.5670 -8.4329*** -6.7627*** 

[1,5] -44.0075*** -26.0203*** -27.4392*** -42.5304 -15.0391** -27.4572*** -42.1854 -30.1440*** -25.0329*** 

Obs. 974 469 341 665 301 120 910 453 315 

Responses to abnormal increases in retweets 

[0] -15.4451*** -16.3414*** -16.6174*** -16.3799 -16.3839*** -14.0473** -15.2573 -16.1229*** -16.6007*** 

[1] -15.9117*** -17.8400*** -14.9649*** -13.0061 -13.4213*** -4.5937 -15.7423 -17.9572*** -15.2808*** 

[1,5] -62.0199*** -61.0678*** -67.5662*** -71.2719 -61.1448*** -55.8358*** -60.6125 -62.4888*** -68.6385*** 

Obs. 873 563 399 267 129 45 869 560 396 
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Appendix D: Robustness checks 

Table D1: Robustness check of volatility measures 
This table reports fixed-effects regressions of volatility measures by tweet characteristics. Dependent 

variables are one-day ahead GARCH (1, 1) volatility for columns (1) - (2) and GJR (1, 1) volatility for 

columns (3) - (4). Main independent variables are human (bots) tweet characters based on human (bots) 

tweets collected from 4:30 pm day -1 to 4:29 pm day 0. Message is the natural logarithm of the number 

of tweets, Positiveness is given as 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑡 = ln (
1+𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

1+𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒), where 𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 and 𝑀𝑡

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

are the counts of positive and negative tweets on day 𝑡 , and Agreement is 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑡 = 1 −

√1 − (
𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
−𝑀𝑡

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑀𝑡
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

+𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

2

. Traditional news is the number of relevant news on Financial Times.  T-

statistics based on Huber-White robust standard errors are reported in parentheses. *, **, *** denote 

10%, 5%, 1% significance, respectively. 

 

 (1) (2) (3) (4) 

 GARCH 

volatility 

GARCH 

volatility 

GJR volatility GJR volatility 

Human Positiveness -0.0045 0.0107 -0.0094 0.0125 

 (-0.41) (0.89) (-0.87) (1.07) 

Human Message 0.2394*** 0.2814*** 0.2203*** 0.3159*** 

 (7.92) (6.73) (7.14) (6.86) 

Human Agreement -0.0282** -0.0407** -0.0183* -0.0418** 

 (-2.33) (-2.14) (-1.67) (-2.30) 

Bots Positiveness -0.0432*** -0.0147 -0.0482*** -0.0128 

 (-5.43) (-1.41) (-5.94) (-1.21) 

Bots Message 0.1369*** 0.1527*** 0.1466*** 0.1766*** 

 (10.96) (11.83) (11.13) (12.41) 

Bots Agreement -0.0084 -0.0151 -0.0065 -0.0199 

 (-0.89) (-1.20) (-0.70) (-1.59) 

Traditional News 0.0125 0.0119 0.0088 0.0076 

 (1.27) (1.21) (0.99) (0.87) 

Hu Pos. × Bot Pos.  -0.0505***  -0.0619*** 

  (-4.41)  (-5.23) 

Hu Mess. × Bot Mess.  0.0390*  0.0936*** 

  (1.68)  (3.78) 

Hu Agree. × Bot Agree.  0.0232  0.0347** 

  (1.32)  (1.99) 

Observations 15,267 15,267 14,151 14,151 

R2 0.482 0.483 0.488 0.490 
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Table D2: Robustness check of volatility measures for pre-trading hours tweets  

This table reports fixed-effects regressions of volatility measures by tweet characteristics. Dependent 

variables are one-day ahead GARCH (1, 1) volatility for columns (1) - (2) and GJR(1,1) volatility for 

columns (3) - (4). Main independent variables are human (bots) tweet characters based on human (bots) 

tweets collected from 4:30 pm day -1 to 8:00 am day 0. Message is the natural logarithm of the number 

of tweets, Positiveness is given as 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑡 = ln (
1+𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

1+𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒), where 𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 and 𝑀𝑡

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

are the counts of positive and negative tweets on day 𝑡 , and Agreement is 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑡 = 1 −

√1 − (
𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
−𝑀𝑡

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑀𝑡
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

+𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

2

. Traditional news is the number of relevant news on Financial Times. T-

statistics based on Huber-White robust standard errors are reported in parentheses. *, **, *** denote 10%, 

5%, 1% significance, respectively. 

 

 

  

 (1) (2) (3) (4) 

 GARCH 

volatility 

GARCH 

volatility 

GJR volatility GJR volatility 

Human Positiveness -0.0281*** -0.0211*** -0.0269*** -0.0202*** 

 (-4.88) (-3.50) (-4.48) (-3.22) 

Human Message 0.1205*** 0.1908*** 0.1150*** 0.1817*** 

 (6.44) (5.87) (6.00) (5.39) 

Human Agreement -0.0051 -0.0080 -0.0069 -0.0105 

 (-0.91) (-1.29) (-1.17) (-1.64) 

Bots Positiveness -0.0353*** -0.0281*** -0.0346*** -0.0264*** 

 (-6.46) (-3.61) (-6.42) (-3.39) 

Bots Message 0.1178*** 0.1426*** 0.1303*** 0.1522*** 

 (14.76) (13.37) (15.41) (13.67) 

Bots Agreement -0.0001 0.0048 -0.0023 0.0011 

 (-0.02) (0.74) (-0.47) (0.18) 

Traditional News 0.0154*** 0.0146*** 0.0151** 0.0144** 

 (2.79) (2.66) (2.56) (2.45) 

Hu Pos. × Bot Pos.  -0.0144**  -0.0154** 

  (-2.01)  (-2.11) 

Hu Mess. × Bot Mess.  0.0760***  0.0715*** 

  (3.70)  (3.36) 

Hu Agree. × Bot Agree.  -0.0015  0.0011 

  (-0.25)  (0.19) 

Observations 36,248 36,248 36,257 36,257 

R2 0.491 0.491 0.467 0.467 
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Table D3: Lagged tweets regressions  

This table reports fixed-effects regressions of stock indicators by tweet characteristics. Dependent 

variables are (log) return, market-model return, volatility i.e. Parkinson (1980) intraday high-low range, 

abnormal change in volatility, (normalized) trading volume, abnormal change in trading volume, bid-

ask spread and abnormal change in bid-ask spread. Main independent variables are aggregate Twitter 

characters based on tweets collected from 4:30 pm day -2 to 4:29 pm day -1. Human (bots) tweet 

features are based on human (bots) tweets. Message is the natural logarithm of the number of tweets, 

Positiveness is given as 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑡 = ln (
1+𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

1+𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) , where 𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
  and 𝑀𝑡

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
  are the 

counts of positive and negative tweets on day 𝑡 , and Agreement is 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑡 = 1 −

√1 − (
𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
−𝑀𝑡

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑀𝑡
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

+𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

2

. Traditional news is the number of relevant news on Financial Times. T-

statistics based on Huber-White robust standard errors are reported in parentheses. *, **, *** denote 10%, 

5%, 1% significance, respectively. 

 (1) (2) (3) (4) (5) 

 Return Mrk-model 

return 

Volatility Volume Bid-Ask 

Lagged Human Positiveness 0.0049 0.0004 -0.0281*** -0.0074*** -0.0123 

 (0.62) (0.05) (-3.70) (-3.33) (-1.35) 

Lagged Human Message 0.0141 0.0101 0.1344*** 0.0592*** -0.0047 

 (0.80) (0.57) (7.91) (12.77) (-0.22) 

Lagged Human Agreement -0.0090 -0.0076 0.0009 -0.0051** 0.0031 

 (-1.16) (-0.96) (0.12) (-2.22) (0.41) 

Lagged Bots Positiveness 0.0063 0.0049 -0.0362*** -0.0052*** -0.0080* 

 (0.86) (0.67) (-5.61) (-2.58) (-1.73) 

Lagged Bots Message 0.0216** 0.0076 0.0549*** 0.0344*** 0.0169 

 (2.05) (0.71) (5.73) (10.86) (0.87) 

Lagged Bots Agreement -0.0098 -0.0104 0.0052 -0.0021 -0.0055 

 (-1.51) (-1.57) (0.89) (-1.18) (-1.22) 

Traditional News -0.0012 -0.0025 0.0978*** 0.0321*** -0.0037 

 (-0.13) (-0.26) (14.27) (18.03) (-0.82) 

Lagged Return 0.0257* 0.0266 -0.0405** -0.0032 0.0132 

 (1.66) (1.59) (-2.30) (-1.18) (1.10) 

Lagged FTSE100 Return -0.0164* -0.0110 -0.0202** -0.0186*** -0.0091 

 (-1.71) (-1.14) (-2.27) (-8.58) (-0.83) 

Observations 36,871 36,871 36,871 36,871 36,871 

R2 0.007 0.002 0.226 0.918 0.014 
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Table D4: Robustness checks for alternative measures of stock indicators 

This table reports fixed-effects regressions of stock indicators by tweet characteristics. Dependent variables are (log) return, market-model return, volatility i.e. 

Parkinson (1980) intraday high-low range, abnormal change in volatility, (normalized) trading volume, abnormal change in trading volume, bid-ask spread and 

abnormal change in bid-ask spread. Main independent variables are aggregate Twitter characters based on tweets collected from 4:30 pm day -1 to 4:29 pm day 

0. Message is the natural logarithm of the number of tweets, Positiveness is given as 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑡 = ln (
1+𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

1+𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒), where 𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 and 𝑀𝑡

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 are 

the counts of positive and negative tweets on day 𝑡, and Agreement is 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑡 = 1 − √1 − (
𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
−𝑀𝑡

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑀𝑡
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

+𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

2

. Traditional news is the number of 

relevant news on Financial Times. T-statistics based on Huber-White robust standard errors are reported in parentheses. *, **, *** denote 10%, 5%, 1% significance, 

respectively. 

 (1) (2) (3) (4) (5) (6) (7) (8) 

 Return Mrk-model 

return 

Volatility Abnormal 

Volatility 

Volume Abnormal 

Volume 

Bid-Ask Abnormal 

Bid-Ask 

Positiveness 0.0218*** 0.0218** -0.0474*** -0.0481*** -0.0065*** -0.0117 -0.0041 -0.0049 

 (2.77) (2.35) (-5.26) (-4.88) (-2.90) (-1.58) (-1.19) (-1.40) 

Message -0.0220 -0.0214 0.1630*** 0.1783*** 0.0670*** 0.2184*** -0.0001 -0.0038 

 (-1.64) (-1.36) (10.34) (10.24) (17.47) (17.12) (-0.01) (-0.37) 

Agreement -0.0032 -0.0038 -0.0088 -0.0085 -0.0104*** -0.0282*** 0.0071 0.0080 

 (-0.48) (-0.48) (-1.18) (-1.04) (-4.60) (-3.81) (0.83) (0.94) 

Traditional News -0.0022 -0.0003 0.0947*** 0.1011*** 0.0307*** 0.0999*** -0.0031 -0.0024 

 (-0.27) (-0.04) (13.90) (13.55) (17.36) (16.70) (-0.69) (-0.54) 

Lagged Return 0.0205* 0.0205 -0.0538*** -0.0661*** -0.0135*** -0.0516*** 0.0083 0.0081 

 (1.85) (1.53) (-3.78) (-4.25) (-6.19) (-6.92) (1.28) (1.25) 

FTSE100 Return 0.5293*** 0.0283*** -0.0899*** -0.1016*** -0.0182*** -0.0616*** -0.0044 -0.0044 

 (79.67) (3.67) (-11.09) (-11.36) (-10.89) (-10.94) (-1.00) (-1.01) 

Observations 37,619 37,619 37,619 37,619 37,619 37,619 37,619 37,619 

R2 0.282 0.003 0.233 0.071 0.918 0.087 0.014 0.003 
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Table D5: Regression using bull-bear spread from Brown and Cliff (2005) 

This table reports fixed-effects regressions of stock indicators by tweet characteristics. Dependent variables are (log) return, market-model return, volatility i.e. 

Parkinson (1980) intraday high-low range, (normalized) trading volume, and bid-ask spread. Main independent variables are aggregate Twitter characters based 

on tweets collected from 4:30 pm day -1 to 4:29 pm day 0. Message is the natural logarithm of the number of tweets, Sentiment spread is given as 𝑆𝑝𝑟𝑒𝑎𝑑𝑡 =
𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
−𝑀𝑡

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑡𝑤𝑒𝑒𝑡𝑠𝑡
 , where 𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
  and 𝑀𝑡

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
  are the counts of positive and negative tweets on day 𝑡 , and Agreement is 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑡 = 1 −

√1 − (
𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
−𝑀𝑡

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑀𝑡
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

+𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

2

. Traditional news is the number of relevant news on Financial Times. T-statistics based on Huber-White robust standard errors are 

reported in parentheses. *, **, *** denote 10%, 5%, 1% significance, respectively. 

 Return Mrk-model return Volatility Volume Bid-Ask 

 (1) (2) (3) (4) (5) 

Sentiment Spread 0.0154** 0.0164* -0.0366*** -0.0071*** -0.0045* 

 (2.13) (1.91) (-4.08) (-3.13) (-1.74) 

Message -0.0236 -0.0239 0.2819*** 0.1020*** 0.0127 

 (-1.20) (-1.03) (13.46) (20.37) (1.37) 

Agreement 0.0040 0.0028 -0.0164*** -0.0093*** 0.0067 

 (0.71) (0.42) (-2.64) (-4.70) (0.70) 

Traditional News -0.0014 0.0006 0.0837*** 0.0278*** -0.0038 

 (-0.17) (0.06) (12.45) (15.82) (-0.83) 

Lagged Return 0.0208* 0.0209 -0.0535*** -0.0132*** 0.0079 

 (1.87) (1.55) (-3.76) (-6.13) (1.22) 

FTSE100 Return 0.5300*** 0.0281*** -0.0895*** -0.0183*** -0.0043 

 (79.63) (3.64) (-11.05) (-10.93) (-1.02) 

Observations 37223 37223 37223 37223 37223 

R2 0.283 0.003 0.239 0.918 0.014 
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Table D6: Decomposition of human vs. bot tweets 

This table reports fixed-effects regressions of stock indicators by tweet characteristics. Dependent 

variables are (log) return, market-model return, volatility i.e. Parkinson (1980) intraday high-low range, 

(normalized) trading volume, and bid-ask spread. Main independent variables are either human-

originated or bot-originated Twitter characters based on tweets collected from 4:30 pm day -1 to 4:29 

pm day 0. Message is the natural logarithm of the number of tweets, Sentiment spread is given 

as  𝑆𝑝𝑟𝑒𝑎𝑑𝑡 =
𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
−𝑀𝑡

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑡𝑤𝑒𝑒𝑡𝑠𝑡
 ,where 𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
  and 𝑀𝑡

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
  are the counts of positive and 

negative tweets on day 𝑡 , and Agreement is 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑡 = 1 − √1 − (
𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
−𝑀𝑡

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑀𝑡
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

+𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

2

 . 

Traditional news is the number of relevant news on Financial Times. T-statistics based on Huber-White 

robust standard errors are reported in parentheses. *, **, *** denote 10%, 5%, 1% significance. 

 (1) (2) (3) (4) (5) 

 Return Mrk-model 

return 

Volatility Volume Bid-Ask 

Human Sentiment Spread 0.0135* 0.0148 -0.0309*** -0.0062*** 0.0040 

 (1.76) (1.63) (-3.32) (-2.61) (0.72) 

Human Message -0.0312 -0.0321 0.2655*** 0.0912*** 0.0133 

 (-1.46) (-1.28) (11.45) (16.51) (1.10) 

Human Agreement 0.0079 0.0074 -0.0179*** -0.0110*** 0.0078 

 (1.27) (0.99) (-2.68) (-5.07) (0.75) 

Bots Sentiment Spread 0.0161*** 0.0167** -0.0296*** -0.0078*** -0.0036* 

 (2.79) (2.43) (-4.64) (-3.80) (-1.68) 

Bots Message 0.0042 0.0065 0.0828*** 0.0407*** 0.0104 

 (0.47) (0.62) (9.01) (12.65) (1.10) 

Bots Agreement -0.0059 -0.0078 -0.0004 -0.0018 -0.0081* 

 (-1.11) (-1.24) (-0.08) (-1.02) (-1.73) 

Traditional News -0.0009 0.0013 0.0827*** 0.0281*** -0.0043 

 (-0.10) (0.12) (11.71) (14.98) (-0.79) 

Lagged Return 0.0218* 0.0224 -0.0525*** -0.0128*** 0.0085 

 (1.87) (1.58) (-3.54) (-5.61) (1.15) 

FTSE100 Return 0.5288*** 0.0319*** -0.0907*** -0.0192*** -0.0071 

 (75.48) (3.93) (-10.70) (-10.73) (-1.47) 

Observations 33474 33474 33474 33474 33474 

R2 0.282 0.004 0.247 0.917 0.016 
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Table D7: Human bot interactions 

This table reports fixed-effects regressions of stock indicators by tweet characteristics. Dependent 

variables are (log) return, market-model return, volatility, (normalized) trading volume, and bid-ask 

spread. Main independent variables are aggregate Twitter characters based on tweets collected from 

4:30 pm day -1 to 4:29 pm day 0. Human (bots) tweet features are based on human (bots) tweets. 

Message is the natural logarithm of the number of tweets, Sentiment spread is given as 𝑆𝑝𝑟𝑒𝑎𝑑𝑡 =

𝑀𝑡
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

−𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑡𝑤𝑒𝑒𝑡𝑠𝑡
, where 𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 and 𝑀𝑡

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 are the counts of positive and negative tweets on 

day 𝑡 , and Agreement is 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑡 = 1 − √1 − (
𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
−𝑀𝑡

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑀𝑡
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

+𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

2

 . The ‘Hu ×  Bo ...’ are 

interaction terms between Human and Bot tweets characteristics. Traditional news is the number of 

relevant news on Financial Times. T-statistics based on Huber-White robust standard errors are reported 

in parentheses. *, **, *** denote 10%, 5%, 1% significance, respectively. 

 (1) (2) (3) (4) (5) 

 Return Mrk-model return Volatility Volume Bid-Ask 

Human Sentiment Spread 0.0151* 0.0166* -0.0303*** -0.0060** 0.0045 

 (1.88) (1.74) (-3.07) (-2.50) (0.74) 

Human Message -0.0208 -0.0111 0.3676*** 0.0967*** 0.0167 

 (-0.62) (-0.29) (11.03) (11.57) (1.14) 

Human Agreement 0.0053 0.0049 -0.0200** -0.0117*** 0.0152 

 (0.70) (0.55) (-2.57) (-4.36) (0.77) 

Bots Sentiment Spread 0.0209*** 0.0216** -0.0364*** -0.0075*** -0.0031 

 (2.80) (2.45) (-4.28) (-2.73) (-1.26) 

Bots Message 0.0064 0.0112 0.1063*** 0.0419*** 0.0117 

 (0.58) (0.87) (9.82) (11.61) (1.33) 

Bots Agreement -0.0081 -0.0093 0.0030 -0.0022 -0.0004 

 (-1.12) (-1.09) (0.41) (-0.94) (-0.07) 

Hu Sent. × Bot Sent. -0.0117 -0.0119 0.0139 -0.0010 -0.0007 

 (-1.33) (-1.15) (1.31) (-0.25) (-0.17) 

Hu Mess. × Bot Mess. 0.0101 0.0209 0.1058*** 0.0156* 0.0028 

 (0.47) (0.82) (5.09) (1.90) (0.31) 

Hu Agree. × Bot Agree. 0.0050 0.0041 -0.0034 0.0011 -0.0137 

 (0.69) (0.48) (-0.47) (0.37) (-0.81) 

Traditional News -0.0010 0.0011 0.0818*** 0.0280*** -0.0043 

 (-0.12) (0.11) (11.60) (14.96) (-0.80) 

Lagged Return 0.0219* 0.0224 -0.0526*** -0.0128*** 0.0085 

 (1.87) (1.59) (-3.56) (-5.62) (1.15) 

FTSE100 Return 0.5288*** 0.0319*** -0.0908*** -0.0192*** -0.0070 

 (75.47) (3.92) (-10.71) (-10.74) (-1.47) 

Observations 33474 33474 33474 33474 33474 

R2 0.282 0.004 0.248 0.917 0.016 
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Table D8: Regression using standardized negative percentage from Tetlock et al. (2008) 

This table reports fixed-effects regressions of stock indicators by tweet characteristics. Dependent variables are (log) return, market-model return, volatility i.e. 

Parkinson (1980) intraday high-low range, (normalized) trading volume, and bid-ask spread. Main independent variables are aggregate Twitter characters based 

on tweets collected from 4:30 pm day -1 to 4:29 pm day 0. Message is the natural logarithm of the number of tweets, Negativeness is given as 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑡 =
𝑁𝑒𝑔𝑡−𝜇𝑁𝑒𝑔

𝜎𝑁𝑒𝑔
 , where 𝑁𝑒𝑔𝑡 =

𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑡𝑤𝑒𝑒𝑒𝑡𝑠𝑡
 , and 𝜇𝑁𝑒𝑔 , 𝜎𝑁𝑒𝑔  are mean and standard deviation from each company’s empirical distribution of 𝑁𝑒𝑔𝑡 , and 

Agreement is 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑡 = 1 − √1 − (
𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
−𝑀𝑡

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑀𝑡
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

+𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

2

. Traditional news is the number of relevant news on Financial Times. T-statistics based on 

Huber-White robust standard errors are reported in parentheses. *, **, *** denote 10%, 5%, 1% significance, respectively. 

 Return Mrk-model return Volatility Volume Bid-Ask 

 (1) (2) (3) (4) (5) 

Negativeness -0.0141** -0.0158** 0.0132* 0.0015 0.0026 

 (-2.40) (-2.28) (1.93) (0.87) (0.96) 

Message -0.0232 -0.0234 0.2818*** 0.1020*** 0.0127 

 (-1.18) (-1.01) (13.48) (20.37) (1.35) 

Agreement 0.0038 0.0022 -0.0256*** -0.0116*** 0.0061 

 (0.68) (0.34) (-4.30) (-6.01) (0.57) 

Traditional News -0.0014 0.0005 0.0839*** 0.0278*** -0.0038 

 (-0.17) (0.06) (12.48) (15.85) (-0.83) 

Lagged Return 0.0208* 0.0209 -0.0534*** -0.0132*** 0.0079 

 (1.87) (1.55) (-3.75) (-6.12) (1.22) 

FTSE100 Return 0.5300*** 0.0281*** -0.0895*** -0.0183*** -0.0043 

 (79.67) (3.64) (-11.04) (-10.92) (-1.02) 

Observations 37223 37223 37223 37223 37223 

R2 0.283 0.003 0.239 0.918 0.014 
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Table D9: Decomposition of human vs. bot tweets 

This table reports fixed-effects regressions of stock indicators by tweet characteristics. Dependent variables 

are (log) return, market-model return, volatility i.e. Parkinson (1980) intraday high-low range, (normalized) 

trading volume, and bid-ask spread. Main independent variables are either human-originated or bot-

originated Twitter characters based on tweets collected from 4:30 pm day -1 to 4:29 pm day 0. Human (bots) 

tweet features are based on human (bots) tweets. Message is the natural logarithm of the number of tweets, 

Negativeness is given as 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑡 =
𝑁𝑒𝑔𝑡−𝜇𝑁𝑒𝑔

𝜎𝑁𝑒𝑔
, where 𝑁𝑒𝑔𝑡 =

𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑡𝑤𝑒𝑒𝑒𝑡𝑠𝑡
, and 𝜇𝑁𝑒𝑔, 𝜎𝑁𝑒𝑔 are 

mean and standard deviation from each company’s empirical distribution of 𝑁𝑒𝑔𝑡 , and Agreement is 

𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑡 = 1 − √1 − (
𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
−𝑀𝑡

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑀𝑡
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

+𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

2

 . Traditional news is the number of relevant news on 

Financial Times. T-statistics based on Huber-White robust standard errors are reported in parentheses. *, **, 
*** denote 10%, 5%, 1% significance, respectively. 

 (1) (2) (3) (4) (5) 

 Return Mrk-model 

return 

Volatility Volume Bid-Ask 

Human Negativeness -0.0116* -0.0122* 0.0150** 0.0028 0.0006 

 (-1.86) (-1.66) (2.12) (1.51) (0.17) 

Human Message -0.0305 -0.0313 0.2656*** 0.0913*** 0.0129 

 (-1.42) (-1.25) (11.45) (16.51) (1.05) 

Human Agreement 0.0081 0.0077 -0.0253*** -0.0129*** 0.0099 

 (1.30) (1.04) (-3.96) (-6.06) (0.74) 

Bots Negativeness -0.0114** -0.0137** 0.0032 -0.0025 0.0021 

 (-2.43) (-2.45) (0.64) (-1.56) (0.77) 

Bots Message 0.0049 0.0072 0.0802*** 0.0398*** 0.0101 

 (0.55) (0.69) (8.62) (12.35) (1.08) 

Bots Agreement -0.0021 -0.0038 -0.0078 -0.0037** -0.0088* 

 (-0.43) (-0.65) (-1.49) (-2.18) (-1.84) 

Traditional News -0.0010 0.0012 0.0829*** 0.0281*** -0.0043 

 (-0.11) (0.12) (11.75) (15.03) (-0.80) 

Lagged Return 0.0218* 0.0223 -0.0524*** -0.0128*** 0.0085 

 (1.86) (1.58) (-3.54) (-5.60) (1.15) 

FTSE100 Return 0.5288*** 0.0320*** -0.0907*** -0.0192*** -0.0071 

 (75.47) (3.93) (-10.68) (-10.71) (-1.47) 

Observations 33474 33474 33474 33474 33474 

R2 0.282 0.004 0.246 0.917 0.016 
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Table D10: Human bot interactions 
This table reports fixed-effects regressions of stock indicators by tweet characteristics. Dependent variables 

are (log) return, market-model return, volatility, (normalized) trading volume, and bid-ask spread. Main 

independent variables are aggregate Twitter characters based on tweets collected from 4:30 pm day -1 to 

4:29 pm day 0. Human (bots) tweet features are based on human (bots) tweets. Message is the natural 

logarithm of the number of tweets, Negativeness is given as 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑡 =
𝑁𝑒𝑔𝑡−𝜇𝑁𝑒𝑔

𝜎𝑁𝑒𝑔
, where 𝑁𝑒𝑔𝑡 =

𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑡𝑤𝑒𝑒𝑒𝑡𝑠𝑡
 , and 𝜇𝑁𝑒𝑔 , 𝜎𝑁𝑒𝑔  are mean and standard deviation from each company’s empirical 

distribution of 𝑁𝑒𝑔𝑡 , and Agreement is 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑡 = 1 − √1 − (
𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
−𝑀𝑡

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑀𝑡
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

+𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

2

 . The ‘Hu × 

Bo ...’ are interaction terms between Human and Bot tweets characteristics. Traditional news is the number 

of relevant news on Financial Times. T-statistics based on Huber-White robust standard errors are reported 

in parentheses. *, **, *** denote 10%, 5%, 1% significance, respectively. 

 (1) (2) (3) (4) (5) 

 Return Mrk-model return Volatility Volume Bid-Ask 

Human Negativeness -0.0120* -0.0127* 0.0134* 0.0030 0.0008 

 (-1.87) (-1.68) (1.91) (1.59) (0.22) 

Human Message -0.0172 -0.0069 0.3680*** 0.0972*** 0.0154 

 (-0.51) (-0.18) (11.07) (11.60) (0.94) 

Human Agreement 0.0045 0.0041 -0.0263*** -0.0132*** 0.0178 

 (0.59) (0.46) (-3.47) (-4.94) (0.78) 

Bots Negativeness -0.0118** -0.0140** 0.0030 -0.0023 0.0027 

 (-2.53) (-2.53) (0.61) (-1.44) (0.97) 

Bots Message 0.0077 0.0126 0.1037*** 0.0411*** 0.0113 

 (0.70) (0.97) (9.48) (11.36) (1.33) 

Bots Agreement -0.0050 -0.0061 -0.0035 -0.0039* -0.0009 

 (-0.72) (-0.75) (-0.49) (-1.67) (-0.14) 

Hu Neg. × Bot Neg. 0.0004 -0.0002 -0.0030 -0.0013 -0.0014 

 (0.09) (-0.04) (-0.53) (-0.73) (-0.64) 

Hu Mess. × Bot Mess. 0.0139 0.0252 0.1046*** 0.0058 0.0017 

 (0.64) (0.98) (5.01) (0.93) (0.17) 

Hu Agree. × Bot Agree. 0.0056 0.0049 -0.0042 0.0006 -0.0140 

 (0.78) (0.58) (-0.59) (0.21) (-0.84) 

Traditional News -0.0011 0.0010 0.0820*** 0.0281*** -0.0043 

 (-0.13) (0.10) (11.64) (15.01) (-0.80) 

Lagged Return 0.0218* 0.0223 -0.0525*** -0.0128*** 0.0085 

 (1.87) (1.58) (-3.55) (-5.60) (1.14) 

FTSE100 Return 0.5288*** 0.0319*** -0.0908*** -0.0192*** -0.0070 

 (75.46) (3.93) (-10.69) (-10.72) (-1.47) 

Observations 33474 33474 33474 33474 33474 

R2 0.282 0.004 0.247 0.917 0.016 
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Table D11: Regression of market model return based on prior 250 days 
This table reports fixed-effects regressions of market model return by tweet characteristics. Dependent variables 

is market-model return. Parameters of the market model are estimated based on the [-260, -10] time window. 

Main independent variables are aggregate Twitter characters based on tweets collected from 4:30 pm day -1 to 

4:29 pm day 0. Human (bots) tweet features are based on human (bots) tweets. Message is the natural logarithm 

of the number of tweets, Positiveness is given as  𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑡 = ln (
1+𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

1+𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) , where 𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
  and 

𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

  are the counts of positive and negative tweets on day 𝑡 , and Agreement is 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑡 = 1 −

√1 − (
𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
−𝑀𝑡

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑀𝑡
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

+𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

2

 . The ‘Hu ×  Bo ...’ are interaction terms between Human and Bot tweets 

characteristics. Traditional news is the number of relevant news on Financial Times. T-statistics based on Huber-

White robust standard errors are reported in parentheses. *, **, *** denote 10%, 5%, 1% significance, respectively. 

 (1) (2) (3) 

    

Positiveness 0.0232**   

 (2.50)   

Message -0.0179   

 (-1.15)   

Agreement -0.0053   

 (-0.67)   

Human Positiveness  0.0231** 0.0212** 

  (2.53) (2.46) 

Human Message  -0.0295 -0.0094 

  (-1.20) (-0.68) 

Human Agreement  -0.0052 -0.0052 

  (-0.62) (-0.63) 

Bots Positiveness  0.0127* 0.0153* 

  (1.77) (1.64) 

Bots Message  0.0077 0.0040 

  (0.72) (0.50) 

Bots Agreement  -0.0084 -0.0100 

  (-1.34) (-1.24) 

Hu × Bot Pos.   -0.0081 

   (-0.81) 

Hu × Bot Mess.   0.0009 

   (0.06) 

Hu × Bot Agree.   0.0046 

   (0.59) 

Traditional News 0.0002 0.0011 0.0009 

 (0.02) (0.11) (0.10) 

Lagged Return 0.0194 0.0201 0.0201 

 (1.46) (1.49) (1.49) 

Market Return 0.0212*** 0.0207*** 0.0207*** 

 (2.75) (2.67) (2.67) 

Observations 37619 36925 36925 

R2 0.003 0.003 0.000 
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Table D12: Regressions for all tweets 
This table reports fixed-effects regressions of stock indicators by tweet characteristics. Dependent variables are (log) return, market-model return, volatility 

i.e. Parkinson (1980) intraday high-low range, (normalized) trading volume, and bid-ask spread. Main independent variables are aggregate Twitter 

characters based on tweets collected from 4:30 pm day -1 to 4:29 pm day 0. Message is the natural logarithm of the number of tweets, Positiveness is given 

as  𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑡 = ln (
1+𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

1+𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) , where 𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
  and 𝑀𝑡

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
  are the counts of positive and negative tweets on day 𝑡 , and Agreement is 

𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑡 = 1 − √1 − (
𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
−𝑀𝑡

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑀𝑡
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

+𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

2

 . No. of traditional news is the number of relevant news on Financial Times. Negativeness in news is 

percentage of negative words in traditional news using McDonald and Loughran dictionary. T-statistics based on Huber-White robust standard errors are 

reported in parentheses. *, **, *** denote 10%, 5%, 1% significance, respectively. 

 (1) (2) (3) (4) (5) 

 Return Mrk-model return Volatility Volume Bid-Ask 

Positiveness 0.0215*** 0.0214** -0.0473*** -0.0065*** -0.0042 

 (2.72) (2.30) (-5.25) (-2.89) (-1.19) 

Message -0.0215 -0.0208 0.1629*** 0.0670*** -0.0001 

 (-1.61) (-1.32) (10.34) (17.46) (-0.01) 

Agreement -0.0032 -0.0039 -0.0088 -0.0104*** 0.0071 

 (-0.48) (-0.48) (-1.18) (-4.60) (0.83) 

No. of Traditional News 0.0186 0.0239* 0.0922*** 0.0294*** -0.0007 

 (1.54) (1.68) (9.49) (10.73) (-0.24) 

Negativeness in News -0.0270** -0.0317** 0.0032 0.0017 -0.0032 

 (-2.45) (-2.43) (0.34) (0.63) (-0.78) 

Lagged Return 0.0200* 0.0198 -0.0538*** -0.0135*** 0.0082 

 (1.80) (1.48) (-3.78) (-6.18) (1.28) 

FTSE100 Return 0.5292*** 0.0282*** -0.0899*** -0.0182*** -0.0044 

 (79.70) (3.66) (-11.09) (-10.89) (-1.01) 

Observations 37619 37619 37619 37619 37619 

R2 0.282 0.004 0.233 0.918 0.014 
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Table D13: Decomposition of human vs. bot tweets 
This table reports fixed-effects regressions of stock indicators by tweet characteristics. Dependent variables are 

(log) return, market-model return, volatility i.e. Parkinson (1980) intraday high-low range, (normalized) trading 

volume, and bid-ask spread. Main independent variables are either human-originated or bot-originated Twitter 

characters based on tweets collected from 4:30 pm day -1 to 4:29 pm day 0. Human (bots) tweet features are 

based on human (bots) tweets. Message is the natural logarithm of the number of tweets, Positiveness is given 

as 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑡 = ln (
1+𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

1+𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒), where 𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 and 𝑀𝑡

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 are the counts of positive and negative 

tweets on day 𝑡, and Agreement is 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑡 = 1 − √1 − (
𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
−𝑀𝑡

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑀𝑡
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

+𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

2

. No. of traditional news is 

the number of relevant news on Financial Times. Negativeness in news is percentage of negative words in 

traditional news using McDonald and Loughran dictionary. T-statistics based on Huber-White robust standard 

errors are reported in parentheses. *, **, *** denote 10%, 5%, 1% significance, respectively. 

 

 

 (1) (2) (3) (4) (5) 

 Return Mrk-model return Volatility Volume Bid-Ask 

Human Positiveness 0.0203*** 0.0210** -0.0429*** -0.0067*** -0.0016 

 (2.61) (2.28) (-4.91) (-3.05) (-0.39) 

Human Message -0.0334 -0.0324 0.2639*** 0.0850*** 0.0083 

 (-1.59) (-1.32) (11.48) (16.18) (0.78) 

Human Agreement -0.0032 -0.0038 0.0010 -0.0079*** 0.0076 

 (-0.45) (-0.45) (0.13) (-3.43) (0.94) 

Bots Positiveness 0.0164*** 0.0144** -0.0346*** -0.0047** -0.0087** 

 (2.68) (2.00) (-5.56) (-2.34) (-2.20) 

Bots Message 0.0041 0.0065 0.0941*** 0.0430*** 0.0140 

 (0.45) (0.61) (10.35) (13.55) (1.22) 

Bots Agreement -0.0066 -0.0081 0.0003 -0.0026 -0.0082* 

 (-1.23) (-1.30) (0.05) (-1.50) (-1.80) 

No. of Traditional News 0.0176 0.0226 0.0798*** 0.0261*** -0.0012 

 (1.43) (1.55) (8.26) (9.53) (-0.43) 

Negativeness in News -0.0247** -0.0288** 0.0027 0.0014 -0.0035 

 (-2.21) (-2.17) (0.29) (0.51) (-0.86) 

Lagged Return 0.0205* 0.0206 -0.0533*** -0.0132*** 0.0079 

 (1.83) (1.53) (-3.75) (-6.14) (1.22) 

FTSE100 Return 0.5294*** 0.0277*** -0.0903*** -0.0186*** -0.0044 

 (79.37) (3.59) (-11.13) (-11.01) (-1.03) 

Observations 36925 36925 36925 36925 36925 

R2 0.283 0.004 0.242 0.919 0.014 
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Table D14: Human bot interactions 
This table reports fixed-effects regressions of stock indicators by tweet characteristics. Dependent variables are 

(log) return, market-model return, volatility, (normalized) trading volume, and bid-ask spread. Main independent 

variables are aggregate Twitter characters based on tweets collected from 4:30 pm day -1 to 4:29 pm day 0. 

Human (bots) tweet features are based on human (bots) tweets. Message is the natural logarithm of the number 

of tweets, Positiveness is given as 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑡 = ln (
1+𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

1+𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒), where 𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 and 𝑀𝑡

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 are the 

counts of positive and negative tweets on day 𝑡 , and Agreement is 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑡 = 1 −

√1 − (
𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
−𝑀𝑡

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑀𝑡
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

+𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

2

 . The ‘Hu ×  Bo ...’ are interaction terms between Human and Bot tweets 

characteristics. No. of traditional news is the number of relevant news on Financial Times. Negativeness in news 

is percentage of negative words in traditional news using McDonald and Loughran dictionary. T-statistics based 

on Huber-White robust standard errors are reported in parentheses. *, **, *** denote 10%, 5%, 1% significance, 

respectively. 

 (1) (2) (3) (4) (5) 

 Return Mrk-model return Volatility Volume Bid-Ask 

Human Positiveness 0.0204** 0.0221** -0.0342*** -0.0057** -0.0004 

 (2.47) (2.27) (-3.63) (-2.49) (-0.07) 

Human Message -0.0309 -0.0202 0.3805*** 0.0979*** 0.0129 

 (-0.95) (-0.53) (11.64) (12.36) (0.85) 

Human Agreement -0.0062 -0.0071 -0.0046 -0.0083*** 0.0111 

 (-0.81) (-0.78) (-0.55) (-3.20) (0.83) 

Bots Positiveness 0.0186** 0.0180* -0.0355*** -0.0045 -0.0080* 

 (2.03) (1.67) (-3.85) (-1.64) (-1.69) 

Bots Message 0.0046 0.0104 0.1330*** 0.0474*** 0.0163 

 (0.38) (0.72) (11.23) (12.49) (1.60) 

Bots Agreement -0.0104 -0.0113 0.0087 -0.0014 -0.0030 

 (-1.46) (-1.34) (1.19) (-0.60) (-0.61) 

Hu Pos. × Bot Pos. -0.0035 -0.0059 -0.0040 -0.0008 -0.0014 

 (-0.40) (-0.58) (-0.44) (-0.29) (-0.31) 

Hu Mess. × Bot Mess. 0.0025 0.0130 0.1286*** 0.0142** 0.0046 

 (0.11) (0.49) (5.85) (2.26) (0.44) 

Hu Agree. × Bot Agree. 0.0072 0.0070 -0.0050 -0.0010 -0.0084 

 (1.04) (0.86) (-0.73) (-0.40) (-0.77) 

No. of Traditional News 0.0176 0.0225 0.0784*** 0.0259*** -0.0013 

 (1.43) (1.54) (8.12) (9.47) (-0.45) 

Negativeness in News -0.0247** -0.0288** 0.0028 0.0014 -0.0035 

 (-2.21) (-2.17) (0.30) (0.52) (-0.85) 

Lagged Return 0.0205* 0.0206 -0.0534*** -0.0132*** 0.0079 

 (1.83) (1.53) (-3.76) (-6.15) (1.22) 

FTSE100 Return 0.5294*** 0.0277*** -0.0904*** -0.0186*** -0.0044 

 (79.36) (3.58) (-11.15) (-11.02) (-1.04) 

Observations 36925 36925 36925 36925 36925 

R2 0.283 0.004 0.244 0.919 0.014 
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Table D15: Fama-MacBeth regressions for all tweets 

This table reports fixed-effects regressions of stock indicators by tweet characteristics. Dependent variables are (log) return, market-model return, volatility i.e. 

Parkinson (1980) intraday high-low range, (normalized) trading volume, and bid-ask spread. Main independent variables are aggregate Twitter characters based on 

tweets collected from 4:30 pm day -1 to 4:29 pm day 0. Message is the natural logarithm of the number of tweets, Positiveness is given as 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑡 =

ln (
1+𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

1+𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) , where 𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
  and 𝑀𝑡

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
  are the counts of positive and negative tweets on day 𝑡 , and Agreement is 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑡 = 1 −

√1 − (
𝑀𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
−𝑀𝑡

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑀𝑡
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

+𝑀𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

2

. Traditional news is the number of relevant news on Financial Times. Lagged return and market return are included as control variables but 

not reported for brevity. T-statistics based on Huber-White robust standard errors are reported in parentheses. *, **, *** denote 10%, 5%, 1% significance, respectively. 

 

 (1) (2) (3) (4) (5) 

 Return Mrk-model return Volatility Volume Bid-Ask 

Positiveness 0.0177** 0.0174** -0.0595*** -0.0373*** -0.0023 

 (2.43) (2.03) (-7.42) (-5.68) (-0.40) 

Message -0.0021 -0.0035 0.0491*** 0.1518*** 0.0076 

 (-0.42) (-0.61) (9.73) (41.15) (1.49) 

Agreement -0.0020 -0.0044 -0.0034 -0.0839*** 0.0097 

 (-0.30) (-0.56) (-0.47) (-10.26) (0.98) 

Traditional news -0.0070 -0.0043 0.0836*** 0.1431*** -0.0154*** 

 (-0.81) (-0.42) (10.12) (21.45) (-2.85) 

Observations 37619 37619 37619 37619 37618 

R2 0.092 0.092 0.104 0.115 0.070 

 

 

 


